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Abstract 
 

clear cell Renal Cell Carcinoma (ccRCC) is the most prevalent subtype of Kidney 

Cancer and is the eighth most common cancer in the United Kingdom. Historically, 

the disease has been characterised by the biallelic loss of VHL gene and loss-of-

heterozygosity of chromosome 3p. Inactivation of the VHL gene leads to 

constitutive up-regulation of the HIF family of transcription factors, thereby leading 

to a hypoxia response transcription signature. Recent studies have led to the 

identification of recurrent mutations in genes involved in chromatin remodelling and 

histone methylation. Increasing evidence has also been presented to show genetic 

intratumour heterogeneity (ITH) for this disease. These observations have led to 

important questions regarding disease etiology and the impact of ITH on disease 

biology as well as prognosis. This thesis investigates high throughput “omics” 

datasets and a comprehensive integrative analysis is performed of the genetic 

changes and transcriptome expression levels for ccRCC. Computational methods 

ranging from survival statistics, analyses of co-alteration and mutual exclusivity 

patterns for genetic alterations, gene expression analyses, to network algorithms 

have been used as part of this work to elucidate both ccRCC biology and pathology. 

To validate biomarkers, which could provide independent prognostic information in 

the clinic, published ccRCC prognostic biomarkers are investigated in an 

independent patient cohort published by the Cancer Genome Atlas (TCGA). The 

ITH of the most promising marker is then investigated in a multiregion biopsy 

dataset to guide biomarker optimisation. Furthermore, the functional consequences 

of cancer gene mutations as well as copy number events are interpreted by 

integrating them with gene expression data and by employing state of the art 

computational network algorithms. 
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Chapter 1. Introduction 

The past few decades have witnessed some of the largest advances in diagnosing, 

understanding and thereby treating complex diseases. With the increasing average 

age of the population, the rate of incidence of diseases such as Alzheimer’s and 

cancer have risen dramatically; however, there have been corresponding 

improvements in patient care and treatment. Combined with this is the advent of 

newer technologies such as next generation sequencing (NGS), including DNA and 

RNA sequencing, which facilitate an improved measure of such diseases at various 

levels. Computational methods have further enabled analyses of this dearth of data. 

Through the work presented in this thesis, I have attempted to unravel the 

biological mechanisms underlying clear cell Renal Cell Carcinoma (ccRCC) and 

underpin important prognostic markers for this cancer. In this chapter, a 

background of ccRCC, both in terms of biology and prognosis, as well as an 

introduction to the analytical methods used for this study are presented.  

 

1.1 A thesis justified 

1.1.1 Cancer and its hallmarks 

Cancer is a complex multifaceted disease characterised essentially by eight 

properties, namely: sustaining proliferative signalling, evading growth suppressors, 

resisting cell death, enabling replicative immortality, inducing angiogenesis, 

activating invasion and metastasis, reprogramming of energy metabolism and 

evading immune destruction. Together the above properties are commonly known 
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as the hallmarks of cancer (Hanahan and Weinberg, Hanahan and Weinberg). 

Although monoclonal in origin, cancers acquire numerous genetic and epigenetic 

changes facilitated by a background of genomic instability (Burrell et al.). Such 

changes are acquired both at onset as well as throughout the development of the 

disease and thus lead to the evolution of the cancer cell in a manner similar to 

Darwinian evolution.  

 

Decades of research have enabled the characterisation of mutations in several 

genes, which are central in causing and progressing cancer (‘Cancer Genes’), and 

the pathways through which these genes may act. However, since cancer can be 

considered to be a consequence of malfunctions within complex cellular systems, 

our understanding of the disease is by no means complete (Hornberg et al.). 

Through recent advances in DNA sequencing technologies, knowledge of the 

genetic alterations in cancer is accumulating rapidly allowing the descriptive 

analysis of cancer genomes at unprecedented speeds and at nucleotide resolution. 

This has led to the discovery of multiple new cancer genes, which are recurrently 

mutated (Dalgliesh et al., Varela et al., Wood et al., The Cancer Genome Atlas 

Research Network, International Cancer Genome et al.) 

 

However, a typical solid tumour harbours tens to hundreds of non-synonymous 

somatic mutations, and it is now apparent that this mutational landscape is highly 

heterogeneous. This heterogeneity is characterized by only a few commonly 

mutated genes in each cancer type, which have been referred to as ‘mountains’ on 

the mutational landscape, and a much larger number of infrequently mutated genes 

or ‘hills’, which are only found in a small percentage of tumours of a particular type 

(Wood et al.). Furthermore, there are multiple levels of heterogeneity; inter-patient, 

intra-patient and intratumour. Inter-patient heterogeneity exists at the level where 

even within cancer of the same type, patients exhibit differences in terms of both 

biology and prognosis, for example, in breast cancer, based on gene expression, 

patients can be classified into at least four broad subtypes, namely basal (triple 

negative breast cancer (TNBC)), HER2+, and luminal A and B subtypes.  Luminal 

A and B are estrogen positive cancers, with luminal A having the best prognosis. 

True to its name, HER2+ has overexpression of the HER2 growth enhancing 

protein. These are slow growing tumours and respond well to treatment. The Basal 



Chapter 1 Introduction 

18 

 

or TNBC subtype is triple negative for estrogen, progestin receptors and HER2. 

This is the most aggressive subtype, and is unresponsive to treatment. Extending 

on this, intra-patient heterogeneity is explained by the differences in the primary 

and the metastatic tumour sites; these include morphological and genetic 

differences, and differences in terms of tumour aggressiveness and proliferation. 

Intratumour heterogeneity is then explained by difference between regions within 

the same tumour mass (Gerlinger et al., Gerlinger et al.) (Figure 1.1).  

 

 
 

Figure 1.1: The different levels of tumour heterogeneity 
This figure depicts tumour heterogeneity at different levels. At the top level, 
phenotypic and genotypic diversity between patients within the same cancer type is 
referred to as Intertumour or Inter-patient heterogeneity in the population. Within 
the same patient, we can observe heterogeneity between tumours from different 
sites, example primary and metastatic sites, which is referred to as Intra-patient 
heterogeneity and ultimately heterogeneity can be seen at the intratumour level. 
Multiple sites within the same tumour biopsy can show variations both at the 
genetic and non-genetic levels. Figure modified with permission from ((Burrell et 
al.), Nature Publishing Group). 
 

 

Although the existence of high levels of intra-tumour heterogeneity now appears to 

be well established, little is known as to the exact advantages this provides 

tumours (Stratton). However, it is postulated that heterogeneous mutations may 

provide tumour cells with specific advantages. Such advantages at the cellular level 

may increase the fitness of tumours under specific environmental conditions, 

leading to cancer progression, drug resistance and eventually patient death. The 
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big question facing the research community is how can the high volume of primary 

information, collected at both the genetic and phenotypic levels, be integrated to 

help cancer patients? 

 

To an extent, recent developments in the high-throughput technologies have 

lessened the difficulties in monitoring the systemic changes occurring during 

cancer cell progression. Computational algorithms have become indispensable for 

the integration of different types of ‘omics’ datasets, such as sequencing, mRNA 

expression and protein interaction data. Moreover, since cellular systems are 

perturbed both during the onset and development of cancer, and the behavioural 

change of tumour cells usually involves a broad range of dynamic variations, 

computational approaches developed for network analysis are becoming especially 

useful for providing insights into the mechanism behind tumour development and 

metastasis. These ideas are embodied in this work. 

 

1.1.2 clear cell Renal Cell Carcinoma  

Renal Cell Carcinoma is by far the most common form of kidney cancer, with about 

9 in 10 cases of kidney cancer being renal cell carcinoma (Motzer et al.). It is 

comprised of a set of different histologies, out of which the clear cell subtype 

(ccRCC) is most prevalent (60%-80%), followed by papillary and chromophobe 

subtypes (Kovacs et al., Thoenes et al.). Characteristically, ccRCCs are defined as 

cancer cells with clear cytoplasms and nested clusters of cells surrounded by 

dense endothelial networks (Jonasch et al.).  ccRCC is one of the 10 most common 

cancers in both men and women (Rini and Atkins).  ccRCC incidence has 

increased progressively in the past 30 years (Figure 1.2), which could be in part 

attributed to development in diagnostic techniques; however, there has been little 

corresponding improvement in survival (Brannon et al.). As yet, surgery for 

localised disease is the only curative therapy. Treatment of metastatic disease is 

even more challenging; with 5-year survival rates for patients with metastatic 

disease being less than 10% (Motzer et al.).  
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Figure 1.2: ccRCC incidence and mortality within the UK 
Graphs depicting the incidence and mortality rates for ccRCC, during the 1970’s-
2012 in the UK for both males and females. Data presented by Cancer Research 
UK and adapted from the CRUK website.  
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Historically, ccRCC has been characterised by biallelic inactivation of the von 

Hippel Landau (VHL) gene, which can be found in approximately 85% of ccRCCs 

(An and Rettig). VHL is located on chromosome 3p25 and its biallelic inactivation 

occurs via loss of chromosome 3p along with either somatic mutations in the VHL 

gene or promoter hypermethylation (An and Rettig, Gossage et al.). Inactivation of 

the VHL gene leads to stabilisation of the hypoxia response pathway, which in turn 

leads to increased levels of tumour angiogenesis. Recent work has also shown the 

inactivation of other tumour suppressor genes such as PBRM1, SETD2, KDM5C 

and BAP1 (Dalgliesh et al., Guo et al., van Haaften et al., Varela et al., The Cancer 

Genome Atlas Research Network, Sato et al., Scelo et al.). Intriguingly all these 

genes function as histone and/or chromatin modifiers. Thus ccRCC seems to be a 

metabolically and epigenetically controlled cancer (The Cancer Genome Atlas 

Research Network). In addition to the loss of chromosome 3p, other aberrations 

have also been reported as recurrent events in ccRCC (Klatte et al., Kroeger et al., 

Gunawan et al.): gains of 5q (Gunawan et al.), 8q (Klatte et al., Monzon et al.), 12 

(Elfving et al.) and losses of 8p (Elfving et al.), 9p (Sanjmyatav et al., Klatte et al., 

La Rochelle et al., Moch et al., Brunelli et al.) and 14q (Kroeger et al., Monzon et 

al.). Moreover, along with this inter-patient heterogeneity, recent work has shown 

substantial genetic intratumour heterogeneity in ccRCC through exome sequencing 

of several regions from the same tumour as well as somatic copy number 

alterations (SCNAs) profiling (Gerlinger et al., Gerlinger et al., Martinez et al.); all of 

which is likely to influence clinical outcome, and provides a possible explanation for 

the slow progress in development of effective therapies for ccRCC.  

 

To summarise, much work has been done on studying ccRCC in terms of 

sequencing (Dalgliesh et al., Guo et al., van Haaften et al., Varela et al., The 

Cancer Genome Atlas Research Network, Sato et al., Scelo et al.), copy number 

analysis (Beroukhim et al.), analysing gene expression data to classify patients into 

different subgroups (Brannon et al., Zhao et al., Beleut et al.) and studying patient 

biology and survival patterns amongst patients (Jones et al., Vasselli et al., Zhao et 

al., Zhao et al.). This has led to the identification of key genetic events; however 

their biological effects and their impact on cancer cell fitness are largely unknown 

(with the exception perhaps of the VHL gene). Although incremental work over the 

past two decades has increased our knowledge of the disease, there is still the 



Chapter 1 Introduction 

22 

 

need to understand the mechanisms that not only lead to induction of the cancer 

but also allow it to proliferate and resist treatment. The implications of previous 

findings are further limited due to the extensive amounts of both inter-patient and 

intratumour heterogeneity.  These observations mandate further research in the 

field of ccRCC biology. Large-scale tumour profiling efforts from the Cancer 

Genome Atlas (TCGA, (The Cancer Genome Atlas Research Network)) and 

International Cancer Genome Consortium (ICGC (International Cancer Genome et 

al.)), have made it possible to analyse larger cohorts of patients and unravel 

tumour mechanisms. A detailed analysis of ccRCC dataset profiled by the TCGA 

forms the base of the work presented here. 

 

In this thesis, the aim is to present a comprehensive and integrated molecular 

analyses, analysing somatic mutation, copy number alteration as well as 

transcriptomics data, to shed light on key driver events for cancer progression and 

evolution, find prognostic biomarkers and elucidate biological mechanisms 

underlying ccRCC by interpreting the analyses of TCGA dataset. Moreover, the 

conclusions drawn from this cohort are related to an in-house multiregion ccRCC 

dataset (Swanton Laboratory) to gain insights into what drives ITH in ccRCC by 

defining the variable phenotypes established through genetic ITH. 

 

1.2 clear cell Renal Cell Carcinoma: what is known and where 
the field stands 

1.2.1 Genetics  

While mutations in the VHL gene (both somatic or germline) and loss of 

heterozygosity (LOH) of chromosome 3p is observed in over 90% of ccRCC cases, 

thereby marking these two events as the major players of this disease as well as 

the necessary precursors, recent studies have identified somatic mutations in other 

genes including PBRM1, BAP1 and SETD2 as well as recurrent somatic copy 

number alterations. In this section, the VHL gene axis of ccRCC biology is 

reviewed followed by a review of the other recurrent ccRCC associated alterations.   

 

The VHL gene and Hypoxia inducible factors (HIFs) 
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The VHL gene is a tumour suppressor that lies on chromosome 3p25. It was first 

characterised in 1993 (Latif et al.), which led to the identification of families with 

VHL disease. The VHL disease is a hereditary disorder, which predisposes patients 

to various benign and malignant neoplasms including ccRCC. Typically patients 

with VHL disease inherit a germline-mutated copy of the VHL gene and 

subsequently acquire a somatic alteration or loss of the second VHL allele (Latif et 

al.). Soon after, VHL was also seen to be the main driver event in sporadic ccRCC 

cohorts as well, where loss of function was taking place by either somatic mutation 

or promoter hypermethylation in up to 80-90% of the cohort (Gnarra et al., 

Nickerson et al., Shuin et al., Duan et al., Pause et al., Kibel et al., The Cancer 

Genome Atlas Research Network, Sato et al., Scelo et al.).  Thus the VHL gene is 

a classic example of a ‘two-hit’ tumour suppressor gene, where one copy of the 

gene is lost via deletion or chromosomal arm loss and the second copy is 

inactivated via somatic mutation or hypermethylation (Brugarolas, Linehan et al.).  

 

The VHL gene product (pVHL) has various roles, the most important being its 

function as the substrate recognition module of an E3 ubiquitin ligase complex. 

This complex targets the hypoxia inducible factor (HIFα) and facilitates its oxygen-

dependent ubiquitination. This has been well characterised in relationship to 

ccRCC (Keefe et al.). When the VHL gene is activated, it targets the HIFs for 

polyubiquitinilation and degradation. However, when the VHL gene is inactivated, 

HIFs are stabilised and the cell is under the condition of hypoxia. Under hypoxic 

conditions, HIF translocates to the nucleus and up-regulates a variety of genes 

including vascular endothelial growth factor (VEGF) and Erythropoietin (EPO) 

(Gordan and Simon), which enable the cell to adapt to hypoxic conditions.  The up-

regulation of VEGF accounts for the highly vascular nature of this disease 

(Brannon and Rathmell). Furthermore, HIF also targets various metabolism related 

genes, which mediates the global metabolic shift of ccRCCs (Keefe et al.).  Major 

targets include Glut1, which is a glucose transporter and rate-limiting enzymes 

involved in glycolysis (hexokinase, phosphofructokinase, lactate dehydrogenase) 

(Osthus et al., Kim et al., Semenza). HIF translocation also leads to expression of 

pyruvate dehydrogenase kinases, thereby suppressing the entry of pyruvate into 

the citric acid cycle (Kim et al.) (Figure 1.3). 
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Figure 1.3: Regulation of HIF via the VHL protein. 
In the absence of pVHL, the VHL protein – Elongin complex is disrupted, which 
then cannot target the degradation of HIF. Accumulation of HIF in turn leads to 
activation of downstream targets such as VEGF, PDGF and Glut1. Figure 
reproduced with permission from (Linehan et al.). 
 
 

However, recent work has demonstrated that despite large-scale VHL gene loss 

and correlation with ccRCC, HIF deregulation is not uniform in all patients. It has 

been postulated that different mutation types may contribute differently to HIF1α 

and HIF2α regulation (the two most prominent members of the HIF family) (Lee et 

al., Rathmell et al.). Further work has shown that depending on whether tumours 

are expressing both HIF1 and HIF2 (H1H2) or only HIF2 (H2), differences can be 

seen in terms of c-myc transcription factor activity (Gordan et al.) and tumour 

metabolism. Further, Dalgliesh et al. (Dalgliesh et al.) suggest that H2 tumours may 

have certain nonsense mutations that puts them under selective pressure to lose 

HIF1 expression. 

 

The estimates for VHL gene mutations in sporadic ccRCC cohorts vary greatly 

between studies (Yoshida et al., Banks et al., Gnarra et al., Brauch et al., The 

Cancer Genome Atlas Research Network, Sato et al., Scelo et al.), with as high as 
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90% loss being reported (Nickerson et al.).  While the importance of VHL gene 

mutation as a precursor event for ccRCC is well established, its efficacy as a 

biomarker still remains questionable (Brannon and Rathmell, Lee et al.).  

 

Somatic mutations profile  

The advent of next generation sequencing technologies facilitated the possibility of 

sequencing larger cohorts of patients to look for other majorly mutated genes in 

ccRCC. In 2009, van Haaften et al. (van Haaften et al.), performed sequencing of 

the genes involved in histone methylation in different human cancers (n=1390) 

including 419 ccRCCs. This study proposed the histone lysine demethylase gene 

UTX/KDM6A as a novel ccRCC gene. UTX is located on chromosome Xp11.2 and 

encodes a histone H3 lysine 27 (H3K27) demethylase. Studies in model organisms, 

have suggested that the UTX gene plays a role in cell cycle progression, affecting 

proliferation as well as cell fate (Wang et al., Herz et al.). Moreover, reintroducing 

UTX into cancer cells showed decrease in cell proliferation further supporting its 

role in ccRCC tumourigenesis (van Haaften et al.).  

 

Following this, another study (Dalgliesh et al.), presented results from the selected 

sequencing of coding exons of 3544 genes in 101 ccRCC cases. They followed up 

60 genes in another 246 cases of ccRCCs. Their results not only supported the 

potential role of UTX/KDM6A in ccRCC tumourigenesis but further highlighted 

recurrent mutations in major chromatin and histone modifying genes including SET 

Domain Containing 2 (SETD2), Lysine (K)-Specific Demethylase 5C 

(JARID1C/KDM5C) and Lysine (K)-Specific Methyltransferase 2D (MLL2) genes. 

All these genes have been seen to be mutated in many other cancers such as 

pancreatic, prostate and breast cancers (Rydzanicz et al.). Another gene, 

Neurofibromin 2 (NF2), which is a regulator of multiple receptor tyrosine kinases 

and activates pathways such as Ras/Raf/MEK/ERK, PI3K/AKT and mTORC1, was 

also seen to be recurrently mutated in this cohort. NF2 has been shown to be a 

potential tumour suppressor involved in mitogenic signalling and cell proliferation 

(Zhou and Hanemann, 2012). Independent studies have confirmed recurrent 

mutations in SETD2 (Duns et al.) and JARID1C/KDM5C genes (Guo et al.).  Down-

regulation of JARID1C has further been shown to promote tumour growth in 

xenograft models (Niu et al.). Recent work by our collaborators has suggested 
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SETD2 to be promoting tumourigenesis through potentially suppressing replication 

stress and coordinating DNA damage repair pathways (Kanu et al.). 

 

Subsequently, Varela et al. (Varela et al.), performed exome sequencing for 7 

ccRCC cases, identifying recurrent mutations in the Polybromo 1 (PBRM1) gene. 

This observation was followed up in a mixed RCC cohort of 257 cases, 227 of 

which were ccRCC. The PBRM1 gene was seen to be mutated in 41% of the cases 

in this cohort. PBRM1 encodes the BAF180 protein, which is part of the SWI/SNF 

chromatin-remodelling complex (Reisman et al.). This complex is involved in 

multiple processes such as replication, transcription (Burrows et al.), DNA repair, 

cell proliferation (Burrows et al., Xia et al.) and chromosome stability (Xue et al., 

Vries et al.). The observation that PBRM1 is the second most frequently mutated 

gene in ccRCC has since been verified in various independent study cohorts (Duns 

et al., Pena-Llopis et al., Kapur et al.). While mutations in PBRM1 have been 

shown to have better patient prognosis than those with mutations in the BAP1 gene 

(Kapur et al.), loss of PBRM1 protein expression nevertheless correlates with 

advanced tumour stage, low tumour grade and a relatively poor patient prognosis 

(Pawlowski et al.).  

 

Guo et al. (Guo et al.) performed whole exome sequencing of 10 ccRCC samples, 

which identified 282 somatic mutations in over 234 genes. They further queried for 

genes identified in cosmic and cancer gene census to be associated with ccRCC 

and combined them with their identified genes, to compile a list of ~1100 genes 

which were screened for in 88 cases. This identified 23 genes as frequently 

mutated in ccRCC, confirming previous finding of frequent mutations in VHL, 

PBRM1, SETD2, KDM5C and additionally identified genes associated in the 

ubiquitin mediated proteolysis pathway (UMPP) to be mutated in ccRCC. These 

genes included BAP1, SYNE2, SPTBN4, RYR1, AHNAK, ZNF804A, TSC1, 

SHANK1, LRRK2, FMN2, FAM11B and ASB15. Further targeted sequencing of 

135 genes involved in UMPP showed mutation in 50% of the analysed tumours in 

at least one of these genes, including VHL (27%), BAP1 (8%), CUL7 (3%) and 

BTRC (2%).  The BAP1 gene has since then been shown to be of particular 

interest in independent ccRCC cohorts (Duns et al., Pena-Llopis et al., Kapur et al., 

The Cancer Genome Atlas Research Network) as well as other cancers (Rydzanicz 
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et al.). It encodes a ubiquitin carboxy-terminal hydrolase/BRCA1-associated protein 

(BAP1), and is implicated in DNA damage response, cell cycle regulation and cell 

growth (Matsuoka et al., Yu et al.).  

 

All the above studies were either targeted towards selected genes or were done on 

smaller cohorts. However in 2013, two studies were published showing whole 

exome sequencing (WES) data for a large cohort of ccRCC cases. The first study 

(Sato et al.), performed genome and exome sequencing; whole exome sequencing 

was done for ~110 cases. The top significantly mutated genes were VHL, PBRM1, 

BAP1 and SETD2. Furthermore, they also identified recurrent mutations in the 

Transcription Elongation Factor B (SIII), Polypeptide 1 (TCEB1) gene, which leads 

to HIF accumulation by disrupting the binding of the C-VHL gene product with 

elongin. 

 

The second study was published by the TCGA (The Cancer Genome Atlas 

Research Network), which comprises the biggest study cohort for ccRCC cases to 

date. Over 400 cases were undertaken for WES, clinical follow-up, SNP-array 

analysis and RNA-Sequencing (RNA-Seq). This analysis underlined recurrent 

mutations in the chromatin machinery in ccRCC and underscored ccRCC being a 

metabolic and chromatin regulation controlled cancer. 

 

The most recent study (Scelo et al.), includes a cohort of ~100 ccRCC cases of 

either European or British origin. Whole genome sequencing was performed for 94 

cases out of which 25 were from the United Kingdom. Non-synonymous mutations 

were detected in 583 genes and the top 5 most frequent genes identified included 

VHL, PBRM1, SETD2, BAP1 and Zinc finger homeobox 4 (ZFHX4) gene. This 

study was important in highlighting that ccRCC mechanisms may differ in diverse 

populations. This has been discussed in more detail in Chapter 3.  

 

A few striking features emerged from all these studies. The first is the emergence 

of recurrent mutations of chromatin and histone modifying genes, namely PBRM1, 

SETD2 and KDM5C (Figure 1.4). The second remarkable feature is that PBRM1, 

SETD2 and BAP1 all share proximity to the 3p25 locus which is where the VHL 

gene also resides. Most mutations in these genes are loss of function mutations 
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and this combined with the fact that 3p LOH occurs in over 90% of ccRCC cases, 

results in the complete inactivation of these genes when mutated. While all these 

genes show recurrence in terms of being mutated in various ccRCC cohorts from 

different origins, their importance in terms of cancer progression and prognosis still 

remains to be shown.  

 

 

 
Figure 1.4: Major chromatin regulators in ccRCC 
Major chromatin regulators altered by somatic mutations and somatic copy number 
alterations (SCNAs) in ccRCC are depicted. SETD2 is involved in trimethylation of 
H3K36, UTX/KDM6A is a H3K27 demethylase, KDM5C is a H3K4 demethylase 
and PBRM1 is part of the SWI/SNF complex. Figure reproduced with permission 
from ((Jonasch et al.), American Association for Cancer Research). 
 

 

Chromosomal aberrations 

Chromosomal aberrations include both numerical changes (duplications or 

deletions) of parts of or whole chromosome as well as structural rearrangements of 

chromosomes. 

 

Besides somatic mutations described above and 3p LOH, there are multiple other 

genetic aberrations which maybe supplementing ccRCC from development to 
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progression. Molecular cytogenetic methods such as fluorescent in-situ 

hybridisation (FISH), array based comparative genomic hybridisation (CGH) and 

more recently, single nucleotide polymorphism (SNP) based arrays have led to 

advancements in detecting recurring chromosomal aberrations for ccRCC at higher 

resolution and at genome wide levels (Rydzanicz et al.).  

 

Loss of chromosome 3p spanning the VHL locus is an example of a hallmark 

somatic copy number alteration (SCNA) in ccRCC and has been described in 

various studies (Junker et al., 2003, Chen et al., Klatte et al.). Interestingly, two 

large-scale studies have described 3p LOH to be associated with a relatively good 

patient prognosis. In the first study (Klatte et al.), cytogenetic analysis was used to 

look for recurrent gains and losses in ccRCC and they assessed Cancer Specific 

Survival (CSS) to analyse the association of these aberrations with patient 

prognosis. Another study (Kroeger et al.) compared patients with loss of 3p or with 

loss of 14q and patients with loss of both these chromosomes with each other. 

Here too they observed that while patients with loss of only 3p had better prognosis, 

patients with loss of 14q had poorer survival in comparison and patients with loss of 

both had the worst prognosis.  

 

The second most recurrent SCNA for ccRCC is gain of chromosome 5q (Gunawan 

et al., Junker et al., 2003, The Cancer Genome Atlas Research Network). In the 

TCGA publication (The Cancer Genome Atlas Research Network), using focal 

amplifications, the authors narrowed the amplification down to 5q35 focal region, 

with 60 putative target genes including genes involved in histone modification 

(EZH2), stress response (STC2), cell adhesion and migration (VCAN). All these 

genes are over-expressed in ccRCC. In addition, using cytogenetic analysis 

Gunawan et al. (Gunawan et al.) described the focal region 5q31-qter to be 

associated with CSS, where patients with 5q gain had relatively better survival than 

those without.  

 

Multiple groups have discussed the loss of chromosome 9p as an important 

recurrent SCNA in ccRCC and its association with poor prognosis has been 

observed in various independent study cohorts (Moch et al., Sanjmyatav et al., 

Klatte et al., La Rochelle et al., Brunelli et al.). All these studies described loss of 
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the whole p-arm of chromosome 9, apart from (Sanjmyatav et al.), where loss of 

two particular focal regions namely 9p21.3p24.1 and 9q32q33.1 was described to 

be associated with poor prognosis. 

 

Besides deletions of chromosomes 3p and 9p, Klatte et al. (Klatte et al.), also 

described other recurrent gains and losses. Losses of chromosome 4p and 14q 

were each associated with poor patient prognosis. 

 

Sanjmyatav et al. described some other SCNAs (Sanjmyatav et al.) detected using 

CGH arrays and Fluorescent in-situ hybridisation (FISH). They studied CSS in 

patients and observed gain of 7q36.3 region to be associated with poor patient 

survival. Gain of focal region 20q11.21q13.32 was also identified to be associated 

with poor patient prognosis. 

 

Gain of the q-arm of chromosome 8 has been described by two groups to be 

associated with poor patient survival. Klatte et al. (Klatte et al.), used cytogenetics 

to identify recurrently altered chromosomes in ccRCC, and then studied CSS to 

identify 8q gain to be associated with poor prognosis. The second group (Monzon 

et al.) used SNP arrays to identify 8q gains in ccRCC patient, reasserting the above 

observation. They studied overall survival for their patient cohort. In the same study, 

the authors described loss of chromosome 14q to also be associated with poor 

patient prognosis.  

 

Other ccRCC recurrent SCNAs in ccRCC include deletion of chromosomes 1p, 4q 

(Beroukhim et al., Girgis et al.), 6q (Toma et al.), 8p (Chen et al., Toma et al., 

Girgis et al.), and amplification of chromosomes 7q (Beroukhim et al., Girgis et al.) 

and 12q (Girgis et al.). 

 

To further our understanding of associations of SCNAs with cancer, the algorithm 

GISTIC was developed (Beroukhim et al., Mermel et al.). GISTIC identifies genes 

targeted by SCNAs that drive cancer growth. The algorithm estimates the 

background rates for each category and defines the boundaries of SCNA regions, 

by separating SCNA profiles into underlying arm-level and focal alterations. 

Beroukhim et al. (Beroukhim et al.) used GISTIC on a cohort of 90 ccRCCs and 
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identified gains of 1q, 2q, 5q, 7q, 8q,12p and 20q and losses of 1p, 3p, 4q, 

6q,8p,9p and 14q of to be associated with ccRCC.  

 

All SCNAs discussed above have potential tumour suppressors and oncogenes 

located on them, and further studies that analyse the effect of these SCNAs at the 

gene expression and functional levels should provide insights into ccRCC 

tumourigenesis. 

 

1.2.2 Transcriptomics 

Gene expression profiling is a very powerful tool when studying cellular phenotypes. 

Indeed multiple studies analysing mRNA expression, have been able to elucidate 

gene associated with ccRCC at the phenotypic level. Using microarray data 

analyses, a study (Tun et al.) has shown genes associated with three major 

pathways, namely loss of normal renal function, down-regulated metabolism and 

immune activation to be reflective of the ccRCCs. These findings were verified in 

another independent study (Zhou et al.). A recent study using RNA-Sequencing 

data from 537 patients profiled by TCGA, identified 186 differentially expressed 

genes after multiple testing correction with |log fold change | > 5 (Yang et al.). 

Moreover, expression levels for multiple genes have also been shown to associate 

with patient outcome. For example, high levels of CD31, EDNRB and TSPAN7 

have shown to correlate with better prognosis (Wuttig et al.). A three-gene 

signature based on the expression levels VCAM1, EDNRB and RGS5 has been 

shown to predict ccRCC prognosis effectively and higher levels of these genes too 

correlate with better prognosis (Yao et al.).  

 

Furthermore, similar to other cancer types, clustering of patients based on 

transcriptional signatures has revealed multiple molecular subgroups in ccRCC. 

Such analyses are done primarily with two objectives in mind. The first being to be 

able to classify patients into discernible subgroups and a second closely related 

objective is to be able to distinguish between these subgroups, not only in terms of 

biological signatures but also in terms of patient prognosis. Most such studies start 

as unsupervised clustering analyses (Zhao et al., Kosari et al., Vasselli et al., 
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Takahashi et al., Brannon et al., Beleut et al.). These studies use gene expression 

analysis to form an understanding of the dataset such as, number of subgroups 

and genes differentially regulated between subgroups. Subsequently, a 

superimposed question is asked, such as how to maximise patient prognosis, 

enabling a more supervised analysis to be performed. There have been two 

landmark studies showing the existence of at least two major subgroups in ccRCC 

with differences in biology as well as prognosis (Zhao et al., Brannon et al.). These 

studies are discussed in further details in Section 1.2.7.  

 

1.2.3 DNA methylation, microRNA profiling, Tissue Microarrays (TMAs), and 

plasma serum protein analysis 

Other than those discussed above, other methodologies are available to detect 

alterations and biomarkers for ccRCC. While these methodologies do not form part 

of the work covered in this thesis, they are briefly outlined below.  

 

DNA methylation 

DNA methylation is a cellular mechanism frequent utilised by cells for epigenetic 

silencing of genes. For ccRCCs, methylation of the VHL promoter region is seen 

frequently as an alternative method of silencing the gene instead of somatic 

mutations (Herman et al., Clifford et al.). Promoter methylation of the DLEC1 

tumour suppressor gene was shown to be associated with advanced tumour stage 

and grade (Zhang et al.). Significant correlation was also observed between 

methylation of SCUBE3 and increased risk of death or relapse for RCC (Morris et 

al.). In the TCGA publication (The Cancer Genome Atlas Research Network), the 

authors identified 289 genes epigenetically silenced in at least 5% of cases. For 

example, the UQCRH gene was observed to be hypermethylated in about 36% of 

the tumours, a gene previously been proposed to be a tumour suppressor gene.  

 

MicroRNA expression 

MicroRNAs (miRNA) are 21-23 nucleotide long segments of single-strand non-

coding RNAs. They have been implicated in tumour development as well as 

progression. Since a single miRNA targets the expression of many genes, aberrant 
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expression of miRNAs can be an effective mechanism for epigenetic regulation. A 

number of studies have been undertaken to ascertain the ability of miRNAs to 

distinguish RCCs from normal cells or between RCC histologies (Chow et al., 

Huang et al., Juan et al., Petillo et al.). Two studies were undertaken to assess 

miRNAs associated with metastasis, and their analysis suggested that miR-10b, 

miR-29a and miR-30a characterise metastatic potential (Junker et al.). Recent work 

has shown the overexpression of miR-210 in ccRCCs and while miR-210 positive 

patients had a higher chance of disease recurrence and shorter overall survival in 

univariate analysis, the statistical significance of this classification was lost when 

adjusted for tumour size and stage (Samaan et al.).  

 

Tissue microarrays 

Tumour protein expression levels can be efficiently assessed using Tissue 

microarrays (TMAs). TMAs from 800 ccRCCs were analysed for genes in pathways 

reported to be controlled by VHL and PTEN genes. Improved prognosis was 

observed for tumours that stained positive for p7 and CAIX (stage T2 and T3 

tumours) (Dahinden et al.). In another study of 308 ccRCC patients, high nuclear 

HIF2α was shown to be associated with smaller tumour size and lower Fuhrman 

grades while high cytoplasmic HIF2α correlated with lymph node and distant 

metastasis as well as higher Fuhrman grades (Kroeger et al.).  

 

Plasma serum proteins 

Due to the ease of sampling, plasma serum proteins form an attractive category of 

biomarkers. Compared to tumour biopsies, a blood test is relatively simpler, as well 

as less invasive for the patients. Potential biomarkers for response to the drug 

sunitinib in metastatic RCC (mRCC) patients have been identified. Those 

responding had low levels of TNFα (tumour necrosis factor α) and MMP9 (matrix 

mettalloproteinaise-9) (Perez-Gracia et al.). Tumour response has also been seen 

to be correlated with changes in serum levels of VEGF, sVEGFR-s and sVEGFR-3 

levels (Deprimo et al.). In another study, sVEGFR-3 and VEGF-C serum levels 

were shown to be associated with longer progression free survival and response 

rate in bevacizumab-refractory mRCCs (Rini et al.). While these serum proteins 

have been shown to have potential predictive power, they all still need to be 

validated in independent cohorts.   
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1.2.4 ccRRCs and the PIK3CA/mTOR pathway 

Beside the VHL/HIF pathway, the PIK3CA/mTOR pathway is also a prominent in 

ccRCCs, indeed it is classified as the second major pathway recurrently altered in 

ccRCC. The mammalian target of rapamycin (mTOR) protein has been identified 

as part of two complexes (mTORC1 and mTORC2) in humans (Oosterwijk et al.). 

mTORC1 has been shown to play a role in cell growth regulation and metabolism 

(Jonasch et al.). mTORC1 has been shown to suppress autophagy (He and 

Klionsky, Sancak et al.) and regulating mitochondrial functions (Blagosklonny and 

Hall), but its most important role is to promote protein translation which is mediated 

through phosphorylation of S6K and the eukaryotic initiation factor 4E-binding 

protein 1 (Ma and Blenis). As suggested by its name, mTORC1 is inhibited by 

rapamycin and its analogues and it controls the regulation of HIF1 (Zhong et al., 

Brugarolas et al., Thomas et al.). Upstream regulation of the mTOR pathway is 

controlled by the PTEN gene. Mutations in PTEN are rare in ccRCC (The Cancer 

Genome Atlas Research Network); however, deregulation of the PIK3CA/mTOR 

pathway can be seen in 17-28% of the cases if mutations across different genes in 

pathway as well as ITH are taken into consideration (The Cancer Genome Atlas 

Research Network, Gerlinger et al.).  
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Figure 1.5: the mTORC1 pathway in ccRCC 
Figure depicts the HIF and mTORC pathway connections. HIF expression is 
blocked under hypoxia in a TSC1/TSC2 and REDD1 dependent manner. 
  

1.2.5 Intratumour heterogeneity 

So far, this introduction has concentrated on the evidence of extensive genetic and 

phenotypic heterogeneity at the inter-patient level. Recent work in multiple cancers 

has also revealed existence of this heterogeneity within individual tumour samples, 

so called intra-tumour heterogeneity (ITH) (Gerlinger et al., Gerlinger et al., Nik-

Zainal et al., Shah et al., Ding et al., Yachida et al., Sottoriva et al., Thirlwell et al., 

Campbell et al., Bashashati et al., Navin et al.). ITH is being increasingly perceived 

as a major challenge for the implementation of personalised cancer medicine. 

Branched cancer evolution analogous to Darwinian evolution, may lead to multiple 

distinct clones which may co-exist in a tumour mass and result in varying degree of 

ITH (Navin and Hicks).  

 

Using single biopsies to sample such heterogeneous tumours may lead to 

undervaluing the extent of this heterogeneity. The analysis of multiple tumour 



Chapter 1 Introduction 

36 

 

regions from individual ccRCCs has identified substantial ITH, indicating that cells 

within a single tumour do not all share the same mutations, rather subgroups of 

tumour cells differ in their mutation spectrum (Gerlinger et al., Gerlinger et al.). The 

authors identified extensive genetic intra-tumour heterogeneity by whole exome 

sequencing of multiple regions i.e. multiple biopsies from the same tumour. 

According to these studies, approximately 50% of the mutations found in any one 

biopsy are not shared with other biopsies from the same patient. They showed that 

the ancestral relationship between the mutations in different regions from a patient 

could be represented in the form of a phylogenetic tree. The trunk of such a tree 

represents the clonal or ubiquitous mutations for a single tumour, i.e. mutations that 

are present in all malignant cells assessed, for example VHL (Figure 1.6). The 

branches represent shared or private mutations to a particular region i.e. the 

subclonal mutations. The mutational timing can be approximated from such a tree 

on the basis of the distance between subclonal mutations and the mutations is the 

most recent common ancestor; thus truncal mutations occur before the mutations 

on the branches. Spatially separated subclones harbouring distinct driver mutations 

and somatic copy number aberrations (SCNAs) were present within primary 

tumours and between primary tumours and metastases (Gerlinger et al., Gerlinger 

et al., Martinez et al.). Phylogenetic reconstruction revealed branched evolution, 

demonstrating that multiple subclones were evolving simultaneously within 

individual tumours. Assessment of a validated prognostic gene expression 

signature (Brannon et al.) showed expression of the good prognosis ccA signature, 

or poor prognosis ccB signature, in different tumour regions within the same 

patient (Gerlinger et al.).  
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Figure 1.6: Branched evolution in ccRCC development 
Figure depicts a tree to show the branched evolution as observed by sequencing 
multiple regions from individual tumour biopsies (Gerlinger et al.). Examples are 
shown for mutations in genes (red), representing clonal and subclonal mutations.  
 

 

Furthermore, some of the major somatic mutations and SCNAs discussed above 

such as mutations in SETD2 and BAP1 genes and deletions of chromosome 9p 

and 14q were observed to be subclonal events (Gerlinger et al.). These studies 

have shown that while the clonal or ubiquitous events in ccRCC are consistent 

(VHL, 3p loss), there is still diversity in terms of patient outcomes. These 

observations support the hypothesis discussed previously, that subclonal events 

play a major role in tumour progression, and may increase the fitness of tumours 

under specific environmental conditions, leading to cancer progression, drug 

resistance and eventually patient death. 

 

While quantitative analyses on mutation timing are beyond the scope of the work 

presented here, the qualitative impact of ITH, at both the biological and prognostic 

levels for ccRCC, are described in a number of places in this thesis.  
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1.2.6 Staging, prognosis and management of disease 

Tumour stage describes the progress of the tumour cells. The American Joint 

Committee on Cancer (AJCC) tumour node metastasis (TNM) staging system has 

been the most widely adopted system for ccRCC. It classifies tumours with a 

combined stage between I-IV using three values. T gives the size of the primary 

tumour and extent of invasion, N describes if the tumour has spread to regional 

lymph nodes and M is indicative of distant metastasis. The exact method of 

combination of these three factors to give an overall stage has been explained in 

detail in Figure 2.1.  

 

In terms of prognosis, Stage I patients have the best prognosis with 5 year survival 

rates of ~80-95%. The survival rates progressively worsen with stage, with Stage II 

patients having survival rates of ~80% and Stage III ~60%. Even with advances in 

targeted therapies, Stage IV patients have survival rates of just over two years 

(Jonasch et al.). 

 

At the time of diagnosis, about three quarters of the ccRCC cases, present with 

localised disease and with no evidence of metastasis (Jonasch et al.). Partial 

(partial kidney removal) or radical (complete surgical removal) nephrectomy 

remains the gold standard for treatment of localised disease. Different clinical trials 

have discussed and compared the merits of both these methods and results 

favoured partial nephrectomy since it preserves kidney function.  

 

1.2.7 Clinical prognosis and molecular biomarkers 

As discussed in the previous section, the clinical behaviour of ccRCCs is highly 

variable, ranging from slow-growing localised tumours to aggressive metastatic 

disease. ccRCCs are resistant to both chemotherapy and radiotherapy, with 

surgery (nephrectomy) for localised disease, being the only suitable treatment. 

Prognostic markers in routine clinical use include tumour stage and histologic 

grade, necrosis and blood tests aimed at measuring levels of lactate 

dehydrogenase, haemoglobin, platelets, and calcium levels. Other markers include 

prior nephrectomy, symptoms, and performance status (Motzer et al., Heng et al., 
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Tang et al., Sorbellini et al.). Multiple prognostic models and nomograms have 

been developed that evaluate and incorporate a combination of these factors. The 

Mayo clinic’s SSIGN model is based on the stage, size, grade and the extent of 

necrosis (Ficarra et al., Frank et al.); while the University of California, Los Angeles 

integrated staging system (UISS) quantifies stage, tumour grade and performance 

status (Zisman et al., Han et al.).  Another widely used model is the Leibovich score, 

which incorporates tumour size, stage, grade, necrosis and regional lymph node 

status to predict relapse of disease after radical nephrectomy (Leibovich et al.). A 

recent review (Lane and Kattan) compared the utility of these models. However, 

the accuracy of predictions for each individual patient remains limited.  

 

Molecular prognostic markers are thus important to guide therapeutic intervention 

and follow-up strategies. Traditionally molecular biomarkers have been researched 

at the level of gene expression, for example, in breast cancer a gene expression 

panel to classify patients into prognostic groups is commercially available and has 

been adopted in clinical practice (Glas et al.).  Multiple biomarker studies have 

been published for ccRCC, finding recurrent somatic mutations, SCNAs as well as 

gene expression signatures to be clinically associated with ccRCC. The first few 

clinical studies concentrated on finding association between the VHL gene 

mutations and patient prognosis. Two groups, both analysing loss of function 

(insertions/deletions and nonsense) mutations in the VHL gene, described patients 

with loss of function mutations to have a poor prognosis when compared to those 

who did not have these mutations (Schraml et al., Kim et al.). In addition, a third 

group (Yao et al.) studied VHL gene alterations, which included both mutation as 

well as hypermethylation events, and assessed the association of these with CSS, 

finding that patients with VHL gene alterations had better prognosis than those 

without. However, this association was seen only for Stage I-III cases. It has been 

shown that non-synonymous mutations in BAP1 gene are associated with poor 

survival in ccRCC when compared to patients with PBRM1 mutations (Kapur et al.). 

Further, other groups have validated the association of BAP1 gene with poor 

prognosis in independent cohorts (Hakimi et al., The Cancer Genome Atlas 

Research Network, Sato et al.). Mutations in other key genes such as the SETD2 

gene have been described to be associated with poor patient prognosis (Hakimi et 

al., Sato et al.).  
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As described in section 1.2.1, several recurrent SCNAs have been observed to be 

associated with ccRCC prognosis. Some examples include deletion of 3p, 4p, 8p, 

9p, 14q and 19 (Klatte et al., Kroeger et al., Elfving et al., Sanjmyatav et al., La 

Rochelle et al., Moch et al., Brunelli et al., Antonelli et al.), and amplification of 5q, 

7q, 8q and 20q chromosomes (Gunawan et al., Sanjmyatav et al., Klatte et al., 

Monzon et al., Elfving et al.).  

 

In terms of studying gene expression signatures, high expression levels of CD31, 

EDNRB and TSPAN7 have been described to be associated with better prognosis 

(Wuttig et al.). Using microarray data and hierarchical clustering Zhao et al. (Zhao 

et al.), showed the existence of two main subgroups of ccRCC differing in terms of 

prognosis. These two subgroups could be further divided into five subgroups 

differing in terms of gene expression. They also developed a panel of 259 genes 

that could be used to stratify patients into good and poor prognosis groups. Another 

landmark study in 2010 (Brannon et al.), showed that ccRCC patients could be 

divided into two molecular subtypes, ccA and ccB, where ccB patients had a worse 

prognosis as compared to ccA patients. This group also used microarray data and 

using logical analysis of data (LAD) analysis devised a panel of 120 probes (110 

genes) to classify patients into ccA and ccB subgroups. A recent publication by 

Bostrom et al. (Bostrom et al.), showed the association of a TGFβ pathway 

expression signature with ccRCC prognosis. Here the authors showed that patients 

with higher TGFβ activity had a poorer survival prognosis than those with lower 

activity.  

 

While all these publications have shown clinical association of various molecular 

signatures with patient prognosis, most associations have not been independently 

validated. Even those that have been validated have not entered clinical practice. 

Neither have these biomarkers been compared with each other to identify lead 

candidates for further development. This leads to the question as to which of these 

predictors are independently associated with patient prognosis and do they 

influence each other? Furthermore, as discussed in section 1.2.5, most of these 

alterations have been observed to be subclonal; thus ITH with spatially separated 

subclones can lead to sampling biases that may contribute to the lack of clinically 



Chapter 1 Introduction 

41 

 

qualified biomarkers in ccRCC. Such observations raise questions regarding how 

biomarker discovery strategies can be improved in heterogeneous tumours.  

 

1.2.8 Therapy and targets 

The increase in our understanding of the genetic factors underlying ccRCC, has 

translated to improvements in target identification and therapies. The 

understanding of VEGF and mTOR being central to ccRCC biology, led to the 

implementation of multiple antiangiogenic drugs (sunitinib, sorafenib, pazopanib, 

everolimus, and bevacizumab plus interferon-α) for ccRCC treatment (Junker et al.). 

VEGF targeted therapies produce a more robust Response Evaluation Criteria in 

Solid Tumours (RECIST) - response than cytokine therapy (Jonasch et al.). 

However, response rates vary between 10-50% depending upon the VEGF 

inhibitor used. mTOR-targeted therapy rates are reported to be more modest, 

although mTOR and VEGF-targeted therapies haven’t been compared within the 

same cohorts (Jonasch et al.).  

 

While the response rates for targeted therapies are impressive (Rini and Atkins), 

there are uncertainties regarding specific targeting of RCC cells (Huang et al., 

2010a).  Furthermore not only toxicity due to these drugs still remains an obvious 

concern (van der Veldt et al.), resistance mechanisms have also been observed to 

develop to both these targets (Huang et al., Rini and Atkins). Moreover, at least in 

part, it has been argued that both treatment response and toxicity maybe reflective 

of the underlying genetic makeup of the patients. Multiple studies have evaluated 

this (van Erp et al., van der Veldt et al., Garcia-Donas et al., Xu et al.) and the data 

suggest that there might be differential clinical benefits depending on the genotype 

of the patient and if such hypothesis could be confirmed, future studies could 

benefit and provide more tailored and personalised cancer treatments.  

 

1.3 Survival modelling 

As discussed in section 1.2.7, it is imperative to assess and identify biomarkers, 

either diagnostic or prognostic. The primary interest in such an analysis is to study 
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the effect of a risk factor or treatment with respect to cancer progression. In survival 

modelling, the data is referred to as ‘time to event’ data. The objective here is to 

analyse the time that passes before an event occurs due to one or more covariates. 

This type of data has three main characteristics. Firstly, the dependent variable or 

response is defined as the waiting time until the occurrence of a well-defined event, 

for example, death. Secondly, there are certain observations, which are ‘censored’, 

i.e. there are certain cases in the data cohort, for whom the event of interest has 

not occurred at the time the data were analysed; or there is loss of information 

regarding these cases, the reason of which may be known or unknown. Lastly, the 

objective of such an analysis is to assess or to control the effect of predictors or 

explanatory variables on the waiting time. Computationally, there can be multiple 

ways to address the above, including but not limited to linear regression models, 

decision trees and support vector machines. However, due to the unique 

characteristics of this problem, the modelling of this data requires modelling of two 

specific functions namely the survival and hazard functions and sophisticated tests 

such as logrank tests (Bland and Altman) and Cox regression analysis (Cox). 

These methods have been developed specifically for this purpose and are the tests 

used as part of this thesis.  

 

1.3.1 The Survival and Hazard functions 

The two main functions that model survival data are the survival and hazard 

functions. The survival function, or the survival probability S(t), gives the probability 

of the survival of an individual from the original time to a future time t. This 

describes the survival experience of the cohort under consideration.  

 

The hazard function h(t), however, is the probability of the individual to have the 

event at the given time t. It represents the instantaneous rate of event for an 

individual, who has also reached or survived to time t. It is different from the 

survival function in the respect that while the survival function estimates the 

probability of not having the event, the hazard focuses on the probability of the 

event occurrence (Clark et al.).  
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Mathematically the relationship between the hazard and survival functions can be 

represented as (Clark et al.): 

 

 1.1 
 

 

1.3.2 Censoring 

Censoring is an important constraint in survival analysis. In a survival analysis, not 

all patients reach the endpoint of interest till the end of the study period. Therefore 

‘survival’ times are unknown for these individuals. This phenomenon is called 

censoring and such individuals are censored when analysing survival data. There 

are three cases in which a patient may be censored: 1) the patient did not reach 

the endpoint of interest by the end of the study period – for example, if death due to 

disease is the endpoint of interest, patients alive at the end of the study will fall into 

this category. 2) Loss of follow-up during the study period – this could happen due 

to various reasons such as the will of the patient to provide further information. 3) 

The patient experiences a different event than the endpoint of interest, which 

renders further follow up impossible – following from the previous example, in this 

case could be death due to causes other than the disease under consideration.  

 

The above examples all come under what is known as ‘right’ censoring since the 

event (if it occurred) is beyond the timeline of the follow up period. However if there 

was a scenario where while we knew when the event occurs, the time from when it 

began is unknown, this falls under the category of ‘left’ censoring. Most survival 

data include right-censored cases, and for the purpose of this thesis, that is the 

censoring under use. Lastly, a very important consideration is that the censoring 

should be uninformative. This means that there is equal probability of the censored 

cases to have the event as there is of those cases that did have the event; i.e. the 

censoring does not carry any prognostic information (Clark et al.).  
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1.3.3 Methods for estimating and comparing survival times 

A few typical errors in survival analysis include, counting only the event frequencies 

i.e. only assessing if the event occurred or not with no thought to the time to event 

or considering how long the patients were observed. Another mistake could be to 

exclude patients, for whom the event did not occur from the analysis, and lastly to 

assume that the time of censoring is equivalent to event time; i.e. no distinction is 

made whether the patient is recorded as ‘event’ or ‘censored’ (Zwiener et al.). Thus 

special methods are required to avoid these mistakes.  

 

The Kaplan Meier (KM) method (Bland and Altman) is the most common method 

used to estimate the survival function. It is a non-parametric method, which 

estimates the survival probability from observed survival times taking both 

censored and uncensored observations into account. Mathematically, the KM 

estimator calculates the probability of survival at time point t from the probability of 

being alive at time point t-1, where t0 = 0 and S(0) =1, i.e. at the beginning of time 

there is 100% survival probability.  

 

However, often in studies assessing survival, there is a need to compare the 

survival of two or more groups; for example in a drug trial, the survival of patients 

on the drugs would be compared to the placebo group. While the KM estimator 

would assess the survival of each group, it does not provide a comparison. There 

are different tests available to perform these comparisons. Another important point 

of consideration is the effect of covariates. The survival of an individual may be the 

consequence of multiple factors, which can be assessed using multivariate models. 

In the following sections, both univariate tests and multivariate models are 

discussed.  

 

1.3.3.1 Univariate analysis  

The logrank test is the most common statistical test applied to test the significance 

of differences in survival between two or more groups. It tests the null hypothesis 

that there is no difference in survival between the two groups. The test is based on 

the same assumptions as the KM estimator, i.e. the censoring is uninformative, the 
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events happened at the specified times and the probability of the event occurring 

for an individual is independent of when the individual was recruited for the study. 

An advantage of this test is that it makes no assumptions regarding the survival 

distributions or the shape of the survival curves (Bland and Altman). The null 

hypothesis here is that there is no difference in the survival between the groups 

under consideration. The exact method of assessment has been described in detail 

in Methods section 2.6.2. 

 

The logrank test is considered to be a robust test for estimating differences in 

survival, when compared to other tests (Clark et al.), however, it cannot provide the 

effect size of the variable which is a definite limitation. A univariate Cox model 

(Cox) can be used here to compliment the logrank analysis and calculate the effect 

size or hazard due to the test variable. The Cox model is explained in greater detail 

in the section 2.6.5.  

 

The competing risk (CR) analysis is another popular method of choice when 

estimating survival especially when competing events might be taking place. For 

example if ‘death due to disease’ is the event of interest, death due to other causes 

is a competing risk event, as either of these will prevent the other from happening 

(Satagopan et al., Putter et al.).  In contrast to logrank test, which estimates the 

survival function of the variable under consideration, the CR analysis estimates the 

cumulative incidence function of a variable. This function calculates the proportion 

of patients at time t, which have had the event k, taking into account that patients 

can have other competing events.  

 

1.3.3.2 Multivariate analysis 

The Cox proportional hazards model (Cox) is the most commonly used multivariate 

model for analysing survival data. Here too the assumptions for censoring being 

right and is uninformative holds. It is a regression model, which defines the 

association between the occurrence of the event using the hazard function and a 

set of covariates. The Cox model estimates the hazard function based on a set of 

covariates, mathematically written as (Equation 1.2): 
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 1.2 
 

Where β1, β2, β3 represent the coefficients of regression for each variable under 

consideration. The term h0 represents the baseline hazard and an important 

feature of the Cox model is that it estimates the baseline hazard non-parametrically 

giving the advantage of not assuming any underlying statistical distribution for the 

survival data (Bradburn et al.).  

 

1.4 Computational approaches to understand cancer biology 

1.4.1 Integrated genotype-phenotype analysis 

The previous sections have discussed the technological advances that have 

occurred over recent years and that have led to the accumulation of large 

heterogenous cancer datasets within public repositories and the identification of a 

growing number of cancer associated genes. Of particular interest for the 

advancement of the field is the integration of genetic alteration data with the 

corresponding gene expression data, which holds merit by virtue of the fact that, if 

deregulation of expression levels of genes relative to the genetic altered genes can 

be observed, then this serves to provide a stronger signal for the interpretation of 

the genotype to phenotype relationships in the dataset.  

  

At the most straightforward and simplistic level - combining gene expression data 

with somatic mutations has been shown to provide answers for elucidating the 

relationships between genotype and phenotype. Ragazzon et al. (Ragazzon et al.), 

performed a transcriptome analysis for Adrenocortical Cancers (ACC). They first 

identified two subgroups of patients by gene expression profiling, and showed that 

these subgroups had different survival outcomes. Subsequent integration of 

somatic mutation data with this classification of patients revealed that mutations in 

TP53 and CTNNB1 genes, which are the two most frequent mutations in ACC, 

seem to be mutually exclusive and occur only in the poor prognosis cases of ACC. 
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However, as pointed out previously, genome wide ‘omics’ analyses have revealed 

a staggering number of genetic alterations, and correlative approaches such as 

discussed in the previous paragraph, are no longer feasible. Thus, extending on 

the basic premise of genotype–phenotype relationships, newer methods need to be 

developed. The DriverNet algorithm (Bashashati et al.) was developed to identify 

driver mutations that affect and control the mRNA expression signatures of the 

disease of interest. This method creates a bipartite graph, where on one side are 

the genetic alterations and on the other is the gene expression network of the 

genes showing significant deregulation. An edge is drawn from one side to the 

other, if gene gi is mutated in the left partition; gene gj is deregulated in the right 

partition and there are known interactions between gi and gj. Then a greedy 

algorithm is applied so as to explain as many changes on the right using as few 

genes possible from the left partition, nominating these genes as driver alterations. 

Stochastic sampling for null distributions and statistical tests are then applied to 

filter the driver lists. 

 

Another method, Conexic (Akavia et al.), combines copy number alterations and 

gene expression data to identify SCNA drivers of cancer progression using 

Bayesian modelling approaches. It uses a score guided approach to devise a 

combination of drivers that may best explain the observed gene expression 

signature across all tumour samples, and then searches for the maximum scoring 

drivers in the amplified and deleted regions of the samples, to determine the driver 

SCNAs.  

 

1.4.2 Network analysis 

While the above work is commendable, such correlative analyses have still to 

reach their potential. The presence of high number of non-synonymous somatic 

mutations in individual tumours proves to be a major hurdle for correlative analyses 

between expression signatures and individual somatic mutations. A traditional gene 

or pathway centric approach, which individually evaluates the contribution of each 

gene or pathway alteration towards the overall cancer phenotype, is highly limited 

in large-scale ‘omics’ datasets for two reasons: the datasets are huge, consisting of 
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thousands of individual measurements and simple correlative analyses are often 

limited because of multiple testing errors. Secondly, gene- or pathway centric 

approaches are usually limited when applied to poorly characterized genes. 

Although they may reveal associations, they usually don’t allow identification of the 

functional relevance of alterations in poorly characterised genes. Nevertheless, 

connections between different genes and pathways can potentially be identified 

through integrative analysis of genome wide datasets, which requires the 

investigation of multimodal “omics” datasets such as DNA sequencing and mRNA 

expression data with computational and statistical modelling approaches.  

 

Coupled to this is our increased ability to generate detailed interactome maps that 

help to enrich our knowledge of the biological implications of cancer mutations. As 

a result, network analysis approaches have become an invaluable tool to predict 

and interpret mutations that are associated with tumour survival and progression. A 

detailed review has also been reported on the applicability of using protein 

networks information for disease analysis studies (Ideker and Sharan).  The 

authors discuss the applications of mapping human disease associated genes to 

protein interaction networks, and the subsequent boost in our understanding of 

human disease mechanisms.   

 

Interaction networks may be generated with information from multiple levels; 

networks can be created based on genetic alterations in the disease of interest 

representative of the genotype of the disease. Alternatively, networks can be 

generated based on gene expression data, which are representative of the 

phenotype of the disease. Examples of both these approaches are discussed 

below. 

 

Genetic networks are generally based on a background of protein-protein 

interaction networks, with an aim to understand cancer biology as well as predict 

novel cancer driver genes. These studies also aim to use such networks to explain 

inter-patient heterogeneity and the pathways that the specific cancer may be 

targeting. Such networks usually exploit two features in genetic alterations; firstly 

that major ‘driver’ events will have higher recurrence and secondly alterations in the 

same pathway would probably be mutually exclusive.  



Chapter 1 Introduction 

49 

 

Protein-protein interaction networks are generated using physical interactions 

between proteins. Based on the premise of what you sow, so shall you reap; 

various sources of PPI data have been advocated in different studies. Physical 

PPIs are inferred through high throughput methods such as yeast two hybrid 

(Fields and Song), and tandem affinity purification-mass spectrometry (TAP-MS) 

(Rigaut et al.) (see review by Shoemaker and Panchenko (Shoemaker and 

Panchenko) for more methods). Multiple databases such as IntAct (Orchard et al.), 

HPRD (Keshava Prasad et al.), MINT (Licata et al.), dip (Ding et al.) and BioGrid 

(Chatr-Aryamontri et al.) collect and store information of such interactions from the 

published literature. Other databases may use text mining approaches to generate 

putative PPI data, for example the STRING database, which is a meta database 

which collects data from other primary databases and also predicts putative 

interactions by text mining (Szklarczyk et al.). Other approaches include the 

prediction of PPIs based on interactions in homologous proteins (Jonsson and 

Bates). Further, there are curated pathway databases that give directionality to 

interactions but also annotate them as belonging to specific functional pathways. 

Major examples include KEGG (Kanehisa et al., Kotera et al., Tanabe and 

Kanehisa), Biocarta (http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways) and 

Reactome (Croft et al., Haw and Stein).  

 

Prototypical studies which set the stage for integrating cancer genes were more 

focused on studying the global topological features of cancer genes; including 

centrality, inbetweenness of nodes, characteristic path length and shortest path 

length (Jonsson and Bates, Goh et al., Xia et al.) (Figure 1.7).  

 

Studies have also been successful in characterizing disease states by combining 

gene expression, sequence predictions and literature-based analysis. To identify 

links between transcription factors (TFs), Tuck et al. (Tuck et al.), constructed a 

human transcriptional regulatory network, by combining co-expression data with 

transcription factor-gene regulatory relationships based on sequence predictions 

and a careful examination of the literature. This approach can potentially identify 

key TF-gene pairs that show differential activity between diseased and healthy 

states. Once a list of potential TFs has been obtained, it is possible to build links 
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and generate networks from variations at the DNA level, then simulate by 

computational means, how these TFs are controlled and regulated in a cell.  

 

However, the view that that most biological networks are composed of strongly 

connected functional modules (Barabasi and Oltvai) (Figure 1.7), and 

developments in graph clustering algorithms to identify cancer genes (Bader and 

Hogue, Reimand et al.), has led to a shift in the trends to study cancer related 

networks.  
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Figure 1.7: Network analysis based workflows to study disease biology 
(A) Basic terminology and prototypical analysis as used in PPINs. (B) Methodology 
as applied by Gu et al. where the authors used a GBM specific PPIN to detect co-
altered modules. The right most panel shows an example of such co-altered 
modules. (C) Methodology as used by Chuang et al. to classify breast cancer 
metastasis. Gene expression data was mapped onto the human interactome and a 
greedy search algorithm was applied to identify subnetworks showing maximum 
differentiating behaviour between the two phenotypes (metastatic and non-
metastatic). (D) The left panel shows the main steps in the methodology as used in 
(Lefebvre et al.). First, the ARACNe algorithm to reverse engineer and generate a 
B cell specific interactome was applied, followed by the MARINa algorithm to infer 
master regulators (TFs) for this interactome. This figure is as presented in (Gulati et 
al.). 
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One of the most common approaches used to study cancer datasets has been to 

study characterised pathways/networks – such as signalling and metabolic 

networks as defined in databases such as KEGG (Kanehisa et al., Kotera et al.) 

and Reactome (Croft et al., Haw and Stein). Studies have indeed successfully used 

these databases to identify which curated pathways may be deregulated in specific 

cancers (Cancer Genome Atlas Research, Guichard et al.). However, it has been 

pointed out that concentrating only on pre-defined pathways is not sufficient, as 

many of the known human proteins have still not been assigned to any of the 

characterised pathways (Wu et al.). In this study, the authors generated a 

comprehensive PPIN by combining curated pathways with data from protein–

protein interactions, gene expression, protein–domain interactions, gene ontology 

(GO) annotations and text-mined protein interactions. They employed this network 

and applied graph-clustering algorithms to identify network modules enriched for 

genes altered in glioblastoma multiforme (GBM). They found two network modules, 

one formed of genes whose products are localised in the cytoplasm and plasma 

membrane, and the other with gene products in the nucleus. The authors also 

found similar network patterns when they analysed data for breast, colorectal and 

pancreatic cancers. 

 

Ciriello et al. (Ciriello et al.) have advocated that three major characteristics can be 

attributed to gene modules that may drive cancer progression. Firstly, these 

modules should be altered with high frequency, secondly genes in these modules 

belong to the same pathway or biological process and finally the genes exhibit 

patterns of mutual exclusivity across multiple patients. The authors designed an 

algorithm named ‘MEMo’ to detect such “candidate driver networks”. They have 

shown its applicability using the TCGA GBM and ovarian cancer datasets and 

claim, the affectivity of MEMo in suggesting genetic alterations, which have 

particularly strong selective effects when applied to any cancer dataset, and also 

are able to aid the design of drug combinations based on the rationale of ‘synthetic 

lethality’.  

 

In contrast, another study has developed an algorithm named Dendrix (Vandin et 

al.), where they find driver modules within genetic alteration data using mutation 

patterns in patients only. The algorithm uses a Monte Carlo search with two guiding 



Chapter 1 Introduction 

53 

 

rules to search for driver networks. 1) The genetic alterations (genes) should have 

high coverage i.e. they should be occurring in a large number of patients and 2) the 

genes within the driver network should be mutually exclusive. 

 

Another study has developed an algorithm called RME modules (recurrent and 

mutually exclusive modules), based on the principles of recurrence and mutual 

exclusivity (Miller et al.). A mutation matrix is generated for the cancer of interest 

from which a gene exclusivity network was created using the WINNOW tool, which 

is an online-learning linear threshold method that can effectively detect patterns of 

exclusivity in a noisy dataset. Using a greedy search algorithm, starting with each 

gene in the network as seed gene, RME modules were detected.  

 

While the work discussed above has concentrated on detecting individual pathways 

and modules altered in cancer, a recent paper by Gu et al. (Gu et al.) has 

presented an approach to search for pairs of co-altered modules in glioblastoma 

(GBM) patients. They defined co-altered modules by two properties: firstly, each 

module is a group of genes that are strongly connected with each other with a 

frequency higher than random; secondly, alterations between module genes show 

a higher level of co-occurrence than random. They generated a GBM specific 

network, using genetic alteration profiles for GBM (both somatic mutations and 

genes altered due to copy number variations), and detected seven co-altered 

modules within this network. They found that genes occurring within these seven 

module pairs were significantly enriched with genes from both the F-census 

database and the Cancer Gene Census database. They also calculated that the 

average frequency of alteration of module genes was higher than the non-module 

genes (Figure 1.7). 

 

In a similar fashion, an extension of the Dendrix algorithm, Multi-Dendrix (Leiserson 

et al.) has been reported. The aim here was again to simultaneously identify driver 

pathways de novo in somatic mutation data. Again, Multi-Dendrix, does not take 

physical PPIs into account and only relies on mutation patterns.  

 

Another approach, based on tissue-specific expression data, has shown to provide 

useful indicators of breast cancer outcome (Taylor et al.). In this work, Taylor et al. 
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annotated a protein with greater than five interactions as a hub, and then divided 

them into two categories: intermodular and intramodular hubs, the former display a 

low correlation of co-expression with their interacting partners whereas the latter 

have high correlation of co-expression with their interaction partners. When they 

further preformed functional enrichment analysis on these hubs, they found that 

intramodular hubs have higher similarities with their partners than the intermodular. 

In addition, intermodular hubs were more associated with global network 

connectivity.  

 

In recent years, the application of reverse engineering algorithms to generate 

tissue specific PPINs have gained increasing popularity. For example, an analysis 

of brain tumours identified two master regulators (transcription factors), namely 

C/EBP and STAT3, of the mesenchymal transformation pathway for these tumours; 

inactivation of these genes in mouse xenografts blocked tumour growth and 

development (Carro et al.). In a second study by the same group (Lefebvre et al.), 

an analysis of a B-cell interactome identified two genes, MYB and FOXM1, to be 

master regulators of proliferation in the germinal centre. These studies provided a 

paradigm for the applicability of interactome analysis for studying normal and 

pathogenic tissues (Figure 1.7). 

 

Whether we study modules altered on their own or in a co-altered manner, a 

foremost objective in the field of cancer therapeutics is to extend their applicability 

as prognostic signatures. Two recent studies have used network analysis 

approaches to identify such prognostic signatures. The idea behind both studies 

being that it is not a single gene, but a network of genes that regulates cellular 

phenotypes, and hence using network analysis to study patient survival should 

provide better signatures for predicting prognosis. In the first study, Wu and Stein 

(Wu and Stein) developed a semi-supervised algorithm, which first identifies gene 

modules involved in disease independent of clinical status, and then applied the 

supervised principal component method (developed by Bair and Tibshirani (Bair 

and Tibshirani)) to identify clinically significant modules. When applied to breast 

cancer data, they found a signature consisting of 31-genes, which could be 

validated across five independent studies, and when applied to ovarian cancer, the 

algorithm identified a signature of 75-genes linked to patient survival. 
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In another study (Zhang et al.), networks were used to complement Cox regression 

analysis for studying patient survival in ovarian cancer. Their results show that by 

adding network information the accuracy of predicting survival outcome over using 

Cox regression on its own is improved. These results were shown to validate over 

three independent datasets. 

 

Another important application of network analyses methods has been as effective 

tools to classify patients into meaningful subtypes. Combining gene expression 

profiles with PPINs (Chuang et al.), a successful framework was developed to 

differentiate between metastatic and non-metastatic breast cancers (Figure 1.7).  

According to the authors, using a network-based method has several advantages 

over differential expression analyses. This is because the resulting subnetworks 

not only provide models for molecular mechanisms underlying cancer, but also are 

more reproducible between different cohorts of patients. In addition, typical cancer 

mutations may or may not be detected through analysis of differential expression 

but they play a central role in PPINs by interconnecting many crucial genes. 

 

Extending on the argument that network based signatures are much more 

reproducible than using single gene based signatures, in another study (Hofree et 

al.), somatic mutation profiles were used to stratify patients into subtypes by 

clustering patients with mutations in similar pathways/networks together. This 

method called network based stratification (NBS) was applied to cancer in different 

tissues, and in each case it was able to identify subtypes that were associated with 

clinical outcome. 

 

In a different approach, Teschendorff and Severini (Teschendorff and Severini) 

have studied cancer metastasis by assessing network flux. They argue that 

integrating PPINs and gene expression data can not only overcome some of the 

inherent problems associated with microarrays, such as background noise, but also 

allows distinguishing between direct and indirect protein–protein interactions. They 

integrated PPI data with gene expression measurements, and by using local 

entropy measures, showed that the cancer metastasis phenotype displays an 

increased randomness of local information flux patterns. They conclude that using 
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gene entropy measures on an integrated PPI and gene expression data set can be 

useful for identifying genes and pathways disrupted in one phenotype with respect 

to another. 

 

All work discussed here, has been on static PPI networks, however there have 

been studies showing the application of dynamic networks such as Boolean 

networks and ordinary differential equations in cancer studies; these networks have 

been reviewed elsewhere (Cheng et al.), and were not covered as part of the work 

of this thesis.  

 

1.5 Computational analysis in this thesis 

There are two parallel tracks in this thesis and a computational framework has 

been developed to understand the molecular mechanisms and the prognostic 

biomarkers underpinning ccRCC. To understand ccRCC mechanisms (Chapter 3), 

key ccRCC genes were first validated in the TCGA cohort using integrated ‘omics’ 

datasets. A comprehensive human protein-protein interaction network (PPIN) was 

generated by collecting and combining protein-protein interaction (PPI) data from 

five primary databases namely, IntAct, BioGrid, HPRD, MINT and DIP. A ccRCC 

specific PPIN was obtained by combining the two datasets. Network properties of 

ccRCC were assessed and strongly connected subnetworks were detected using 

the MCODE (Bader and Hogue) algorithm. The Dendrix (Vandin et al.) algorithm 

was applied to detect de novo modules of genes altered in a mutually exclusive 

manner and the results were compared with the modules detected via the MCODE 

algorithm on the ccRCC specific PPIN. Co-altered modules were obtained by 

adapting a probabilistic model previously developed by Gu et al. (Gu et al.). 

Expression based drivers were assessed using the ARACNE (Margolin et al.) and 

MARINa algorithms (Lefebvre et al.). Lastly, genotype-phenotype relationships 

were explored using the DriverNet algorithm (Bashashati et al.). 

 

To assess and validate prognostic markers, a statistical survival analyses 

framework was developed; where logrank and competing risk analyses were 
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performed for univariate analyses and Cox regression was applied to identify 

independent prognostic markers for ccRCC (Chapter 5).   

  

1.6 Thesis objectives and outline 

As discussed in this chapter, recent large scale ‘omics’ studies have led to the 

identification of key alterations in ccRCC, shown extensive inter-tumour and 

intratumour heterogeneity, and the possible utility of molecular biomarkers as 

clinical prognosis tools. However, multiple questions too have arisen from these 

studies; which somatic mutations/SCNAs drive ccRCC progression, which 

pathways are driving the aggressive subtype, how is resistance to therapy 

developing, can molecular markers help to improve patient prognosis and last but 

not the least, how may ITH affects all of the above. In this thesis, I present two 

parallel tracks, where a comprehensive integrated analysis of the available ccRCC 

‘omics’ datasets is performed, with the aim to better understand the biological 

mechanisms underpinning this cancer as well as evaluate prognostic biomarkers to 

improve prediction of patient prognosis.  The remaining chapters of this thesis are 

organised as follows: 

 

Chapter 2: Methods, presents the main methods and software applied in this work. 

This chapter introduces the two main datasets that were used to study ccRCC. The 

preliminary data processing before analyses is explained and all the methods and 

pipelines used in this thesis are detailed.  

 

Chapter 3: The molecular landscape of ccRCC. In order to explore the biological 

landscape of the cancer, this first results chapter details the analyses of the TCGA 

dataset – somatic mutations, CNVs and gene expression analysis. Data from Sato 

et al. (Sato et al.) and Scelo et al. (Scelo et al.) is discussed and compared with the 

TCGA dataset (The Cancer Genome Atlas Research Network). All datasets are 

carefully explained using some preliminary analyses. First, each individual ‘omics’ 

dataset is analysed on its own, following which integrated data analyses are 

presented. Individual somatic aberrations are investigated, discussing putative 

drivers and the gene expression signatures potentially controlled by these 
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aberrations. However, as cancer cells target pathways to mutate and not individual 

genes, this chapter details computational network analyses performed to explore: 

1) network properties of ccRCC genes. 2) Patterns of co-occurrence or mutual 

exclusivity of genetic aberrations. 3) Patterns of co-alterations of 

networks/pathways.  

 

Chapter 4: The quest for prognostic biomarkers. The above chapter 

investigates the biological factors contributing to variations in ccRCC. This chapter 

discusses the clinical impact of molecular signatures, including both genetic and 

transcriptomic makers for ccRCC, and further questions how ITH impacts the 

accuracy of these biomarkers. Here each identified molecular marker (n=28), is first 

assessed individually at the univariate level by 2 tests – logrank and competing risk 

analyses for association with Cancer Specific Survival (CSS). The validated 

biomarkers are then assessed in comparison to each other along with tumour stage 

and grade in a multivariate regression model. This model helped identify a 

molecular test, which adds further prognostic information to tumour stage. The 

effect of ITH of the identified biomarker is assessed in a multiregion biopsy cohort. 

 

Chapter 5:  Molecular drivers of the ccA/ccB signature. Having identified a 

molecular signature, which adds further prognostic information to tumour stage, 

and also shows reliable result despite ITH, this chapter explores this signature and 

the molecular drivers underlying these expression subtypes. The ultimate idea is to 

identify targets for adjuvant or immunotherapy for patients, which is as yet are 

lacking. Having observed clear differences between the ccA and ccB subgroups 

both at the genetic and transcriptomics levels individually, a more imperative 

objective is then to find the connections between these two levels and to identify 

putative drivers for both signatures, thereby identifying targets for therapy. 

 

Chapter 6: Discussion. An evaluation of the work performed in this thesis and 

conclusions drawn. The level of, importance and implications of ITH for ccRCC are 

discussed further along with future avenues still to be explored in the ccRCC field.  
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Chapter 2. Methods 

In this chapter, all methods used in the thesis are described in detail. Section 1 

details the datasets analysed whilst section 2 covers the preliminary data 

processing. Sections 3-4 describe the algorithms used to query these datasets in 

order to understand ccRCC biology. At each stage of the analysis, various methods 

were considered and evaluated. The method fitting best to the needs of each 

analysis was applied with typically the method providing the greater functionality 

being chosen. Sections 5-7 cover the statistical tests used for the prognostic 

analyses. Section 8 details the tests used to identify and analyse differentially 

regulated genes. Finally, section 9 describes the statistical tests used at various 

places throughout the thesis.  

 

2.1 Datasets 

There are two main datasets used for the analyses presented in this thesis; the 

data published by The Cancer Genome Atlas (TCGA) and a multiregion profiling 

dataset published by our collaborators.  

2.1.1 TCGA dataset 

The TCGA consortium has molecularly profiled over 400 ccRCC cases for somatic 

mutations, SCNA, RNA-Seq and clinical data (The Cancer Genome Atlas Research 

Network). Samples were collected from patients newly diagnosed with ccRCC, 

undergoing partial or complete nephrectomy and received no prior treatment 
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including chemo- or radiotherapy. There was no bias for sample collection against 

any surgical stage or histologic grade and staging was performed according to the 

American Joint Committee on Cancer (AJCC) staging system. According to this 

system, a tumour tissue can be classified as Stage I-IV, based on the size and 

extent of the primary tumour, the spread to neighbouring lymph nodes and the 

presence of distant metastasis (Figure 2.1). Stage I cancers are the least advanced 

while Stage IV are the most advanced with potential metastatic spread.  

 

 
Figure 2.1: The AJCC Staging system 
Figure explains the assignment of tumour stage I-IV based on the AJCC Staging 
system, taking into account the size of the primary tumour (T), the extent of 
necrosis (N) and the existence of metastasis (M). 
 

 

Histologic grade describes the microscopic appearance of the cancer cells. For 

kidney cancer, the Fuhrman grading system is used. There are four grades under 

this system; the higher the grade, the more abnormal the cancer cells look. Similar 

to the tumour stage, Grade 1 tumours are the most ‘normal’ in appearance and 

least likely to have spread whereas Grade 4 tumours would be most likely to have 

spread to metastatic sites.  
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Normal tissue specimens, where available, comprised either of blood components, 

adjacent normal tissue from > 2cm away from tumour or previously extracted 

germline DNA from blood or non-malignant tissue. The contributing tissue source 

sites were Catholic Health Initiative - Penrose St. Francis Health Services, Catholic 

Health Initiative - St. Joseph’s Medical Centre Cancer Institute, Christiana Care 

Health Services, Inc., Cureline, Inc., Fox Chase Cancer Centre, Harvard University, 

International Genomics Consortium, Mayo Clinic, MD Anderson, MSKCC, National 

Cancer Institute Urologic Oncology Branch, University of North Carolina and 

University of Pittsburgh. 

 

Data from TCGA has further been divided and referred into multiple datasets; the 

‘original’ dataset comprises data for somatic mutations (n=417), SCNAs (n=450), 

RNA-Seq (n=469) and clinical data (n=446); the downloaded time stamps were up 

to and including June 2013. A ‘core’ dataset of 350 cases was derived from this 

original dataset, which comprises cases for whom all of the above four information 

components is available. A further extension of some of these dataset components 

has been collated for use in certain places; time stamp for downloaded data 

corresponds to dates since January 2014, and this is referred to as the ‘extended’ 

dataset. 

 

2.1.2 Multiregion biopsy dataset  

Our collaborators in Prof. Swanton’s laboratory have profiled multiple regions from 

each tumour biopsy for ten ccRCC patients (Gerlinger et al., Gerlinger et al.), 

comprising of stage T2 (n=2), T3 (n = 7) and T4 (n = 1) cases. Eight out of the ten 

cases had metastatic disease (stage IV tumours) whilst two (RMH008 and RK26) 

were stage II patients. Three cases had no treatment prior to nephrectomy, while 

six (EV001, EV002, EV003, EV005, EV006 and EV007) received everolimus 

treatment, which is a mTOR inhibitor and one case (RMH002) received sunitib 

treatment, which is an anti-angiogenic drug. Biopsies from perinephric metastasis 

(M1) and from a chest wall metastasis (M2a and M2b) were available for EV001. 

For EV002, a biopsy from a metastasis obtained at the time of disease progression 
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on everolimus treatment was available (M2) (Gerlinger et al.). For EV006, lymph 

node metastasis (LN1a and LN1b) and a tumour thrombus from the renal vein of 

RMH004 (VT) were also available (Gerlinger et al.). 

 

Microarray data was generated with Affymetrix Gene 1.0 arrays. For the analyses 

performed in this thesis both microarray and DNA Sequencing dataset are 

available for a cohort of 63 regions from the ten patients (GSE31610 and 

GSE53000) with a minimum of at least four regions per patient. 

 

2.2 Data processing  

2.2.1 Somatic mutations 

Somatic mutation data was collected from the supplementary material of the TCGA 

ccRCC publication (The Cancer Genome Atlas Research Network). A mutation was 

considered to be non-synonymous (non-syn) depending on the value in the ‘Variant 

classification’ column (examples include ‘indels’, ‘missense’ and ‘nonsense’ for 

non-syn mutations and ‘silent’, ‘intron’ and ‘3’UTR’ for silent mutations), and was 

assigned to the mutant patient subgroup for each gene. Mutation frequencies for all 

genes were calculated based on non-syn mutations only unless otherwise specified.  

 

2.2.2 Copy number data and SCNA profiles 

The raw copy number profiles (original dataset) were downloaded and processed 

by Pierre Martinez in our collaborating laboratory for the original dataset. The 

aroma R package (CRMA v2, CalMaTe “v1” algorithm & TumorBoost) (Bengtsson 

et al., Bengtsson et al., Ortiz-Estevez et al.) was used to obtain logR and BAF 

values from SNP array data that was generated on Affymetrix Genome-Wide SNP 

Array 6.0 platform by the TCGA, using normal samples as references. Sex 

chromosomes were excluded from the analysis. The Allele-specific copy number 

analysis of tumours (ASCAT) algorithm was applied to all 450 samples to obtain 

copy number profiles (Van Loo et al.) as described in (Martinez et al.). The SCNA 

data was converted to cytoband level data using the cytoband coordinates 

retrieved from the UCSC Genome Browser database (http://genome.ucsc.edu/) 
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(Meyer et al., 2013). For each cytoband a weighted average copy number was 

obtained, and deletions and amplifications were defined as copy numbers deviating 

from the ploidy, as estimated by ASCAT, by more than 0.6, similar to the original 

ASCAT publication (Van Loo et al.). 

 

2.2.3 RNA-Sequencing data 

For each gene, raw RSEM (RNA-Seq by Expectation-Maximization) RNA-Seq 

counts as well as normalised counts, which had been normalised to the upper 

quartile counts by TCGA consortium, were downloaded from the TCGA data portal 

(https://tcga-data.nci.nih.gov/tcga/) on 18th September 2012. RSEM is a software 

package for estimating gene and isoform expression levels from RNA-Seq data.  

The files downloaded from TCGA included raw counts per gene per patient and a 

separate file contained normalised count per gene per patient.  

 

Raw counts were used where differential regulation analysis was performed 

(Sections 3.3.3.1 and 5.3.1.1). Normalised counts were used, after log2 

transformation, for performing clustering analysis (Sections 3.3.3.4 and 5.3). Only 

genes for which normalized RSEM counts were above 30 in at least 80% of the 

samples were included in further analyses. 

 

2.2.4 Microarray data 

Samples for mRNA expression profiling were collected in Prof. Swanton’s 

laboratory. RNA was extracted from all tumour specimens and corresponding 

normal kidney specimens where available and quantified on an Agilent Bioanlalyser. 

Expression profiling was done using the Affymetrix HuGene-1_0-st-v1 platform by 

an external service provider, for 63 tumour regions and for 6 samples from normal 

kidney from which sufficient high-quality RNA was available, and data was 

deposited in the in the GEO repository (GSE31232 and GSE53000). Samples were 

normalized using the oligo R package and the RMA algorithm in R.   
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2.2.5 Ploidy 

Ploidy is a measure of the number of chromosomes in a cell. Normal cells are 

diploid - that is they have two sets of each of the 23 chromosomes. Cancer cells 

can be diploid too but generally tend to have higher ploidy. Aneuploid cells are 

those that have either too many or too few chromosomes. Aneuploidy cancer cells 

may be more aggressive than diploid cancer cells. Ploidy estimates for each 

sample are obtained from ASCAT (Van Loo et al.). The algorithm calculates ploidy 

as the average total copy number for each sample.  

 

2.2.6 Weighted Genomic Instability Index (wGII) 

The wGII (Burrell et al.) score gives a numerical score between 0 and 1 and is the 

measure of the genomic instability of an individual’s genome. It is computed by first 

calculating for each chromosome of the sample, the proportion of bases whose 

copy number deviates from the ploidy value of the sample as given by ASCAT by 

more than 0.6. The sample wGII score is then calculated as sum of the 

chromosomal scores divided by the number of analysed chromosomes (n=22). This 

data was obtained from our collaborating laboratory. 

 

2.3 Significantly mutated genes and SCNAs 

2.3.1 MutsigCV 

To determine significantly mutated genes i.e. which are mutated more often than by 

chance, the MutSig (Mutational significance) algorithm (Lawrence et al., 2013) was 

used.  

 

This algorithm was implemented using the standalone package provided by the 

Broad Institute. A list of mutations identified through DNA sequencing is provided 

as input to the MutSig algorithm, along with information regarding the coverage of 

sequencing. The algorithm then models the background mutation processes that 

may be in play during tumour progression. It then assesses the mutations in each 
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of the input gene and identifies genes, which are mutated more often than random, 

given the background mutation model. 

 

Several versions of MutSig have been developed since its inception, differing in the 

manner in which they determine the background mutation rate (BMR); MutSigCV 

being the most recent and the most sophisticated to date. While MutSig1.0 

assumed a constant BMR to be applicable throughout the genome, MutSig1.5, 

estimated the BMR from assessing the silent mutations in each gene as well as the 

estimated expression levels of the gene. The TCGA consortium used Mutsig1.5 in 

their publication. MutSig2.0 added two new measures, namely clustering of 

mutations in hotspots in a gene and the functional impact of each mutation.  

 

After testing a number of prototype versions, MutSigCV was developed. The "CV" 

stands for "covariates". Here the BMR is estimated by taking into account 

information on ‘neighbouring’ genes in the covariate space. Genes selected to be in 

the neighbouring space are chosen on the basis of similar genomic properties to 

the gene under consideration. MutSigCV was applied to the original (n=417) as well 

as the extended (n=549) datasets and results were compared to those published in 

the TCGA publication (The Cancer Genome Atlas Research Network). 

 

2.3.2 GISTIC 

The results from a SNP array analysis, subsequently fed into the ASCAT algorithm 

provide a numerical copy number for each analysed cytoband. While this data can 

be used to assess which cytobands are amplified or deleted (as described in 

Section 2.2.2), identifying which of these regions maybe associated with the 

disease of interest presents a non-trivial problem. The GISTIC algorithm (Mermel et 

al.) was designed to identify regions of the genome, which are significantly 

amplified or deleted across a set of samples in a given phenotype (disease state). 

The algorithm works by assigning a so-called G-score to each sample that takes 

into account the amplitude of its aberration (amplification/deletion) as well as the 

frequency of aberration across all samples. Using this G-score, False Discovery 
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Rate (FDR) q-values are calculated for each aberrant region; regions with q-values 

below a user-defined threshold are considered significant.  

 

GISTIC 2.0 package (Mermel et al.) available on the Broad Institute’ GenePattern 

portal (Reich et al.) was run on SCNA data from TCGA to determine amplifications 

and deletions of interest in our cohort. The required inputs to the package include a 

segmentation data file, which provided copy number details for all cytobands for all 

samples (n=555). It has six columns, namely sample id, chromosome, start position, 

end position, number of markers for this region and a segmented copy number 

(CN) which is the log2 ratio of the CN with respect to the sample ploidy were 

provided. A markers file was also provided which gives the cytoband (markers) 

names and positions of the cytobands in the original dataset before segmentation. 

The reference genome used was hg19, the threshold for defining amplifications 

and deletions was set at the default value of log2 ratio = 0.1; all other parameters 

were set to their default values. 

 

For the output, GISTIC provides an all lesions file, which gives details of all the 

significant regions, identified by the algorithm. For each significant region, a “peak 

region” is identified, which represents the part of the aberrant region, which has the 

highest amplitude, and frequency of alteration. Additionally, a “wide peak” region is 

also determined in a leave-one-out manner to allow for errors in the identification of 

the boundaries in a single sample. These wide peaks are considered to be more 

robust for identifying the more likely gene targets in the region.  

 

2.4 Network analyses algorithms  

As discussed in section 1.4.2 of the Introduction, network analyses methods 

provide a great medium to study cancer biology. Various state-of-the-art algorithms 

were either directly applied or adapted for the work presented in this thesis. This 

section describes these algorithms. In brief, for detection of strongly connected 

subnetworks in an undirected PPIN, the MCODE algorithm was applied. This 

method was chosen due to its availability as a computationally inexpensive 

package in Cytoscape. To compare the results obtained from analysis of the PPINs, 
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the Dendrix algorithm was chosen as it provides a good contrast in terms of 

obtaining clusters of genes without using background knowledge of its interaction 

partners. To detect co-altered modules, an adaptation of a probabilistic algorithm 

by Gu et al. (Gu) was developed. At the time this study was performed, it was one 

of the few algorithms developed in this area and provided a good foundation for the 

analysis presented.  

 

At the gene expression level, to detect master regulators, ARACNE and MARINa 

algorithms were applied. These are well-established algorithms that are widely 

used in the field. Lastly, to assess if algorithms extending the paradigm of co-

relative analyses to test genotype-phenotype relationships could provide additional 

information, the DriverNet algorithm was applied.  

 

2.4.1 Constructing a Protein-Protein Interaction Network (PPIN) 

A protein-protein interactions (PPIs) database was created by downloading and 

combining data from five databases, namely IntAct (Orchard et al.), MINT (Licata et 

al.), DIP (Xenarios et al.), HPRD (Keshava Prasad et al.) and BioGRID (Chatr-

Aryamontri et al.) (all downloaded before September 2013). These primary 

databases collect potential PPIs from the scientific literature; these PPIs have been 

experimentally verified using methodologies such as yeast two-hybrid, mass 

spectrometry and co-immunoprecipitation. MySQL was used to generate the 

combined database of interactions. Each row of the database corresponded to one 

protein-protein interaction and along with the protein-id information was extracted 

on the method of detection, the source of interaction (given as PubMed id), and the 

database from which it was extracted. Interactions were extracted from this 

database for ccRCC altered genes to generate a ccRCC specific PPIN. 

 

2.4.2 Detecting strongly connected subnetworks 

Module or subnetwork detection was performed using the Molecular Complex 

Detection (MCODE) (Bader and Hogue, 2003) algorithm. The algorithm uses vertex 

weighting by local neighbourhood density and traverses outwards from a locally 
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dense seed protein to isolate the dense regions according to given parameters. 

There are several advantages of this algorithm; first it has a directed mode that 

allows fine-tuning clusters of interest without considering the rest of the network, 

secondly it allows examination of cluster interconnectivity, which is relevant for 

protein networks. Lastly, it is claimed not to be affected by a known high rate of 

false positives in data from high-throughput interaction techniques, which are 

generally applied to generate protein-protein interaction data.  

 

2.4.3 Dendrix 

To examine mutual exclusivity patterns of mutations independent of protein-protein 

interaction information the Dendrix algorithm was applied. Dendrix (De novo Driver 

Exclusivity) (Vandin et al., 2012) is an algorithm for discovery of mutated driver 

pathways in cancer using only mutation data. The algorithm applies a Monte Carlo 

search to find sets of genes mutations in which exhibit both high coverage and 

mutual exclusivity in the analysed samples. 

 

2.4.4 Co-altered modules 

To explore co-alteration of pathways, a probabilistic model (Gu et al., 2013) was 

applied. The algorithm was coded in the programming language Python. It takes 

into account the likelihood of co-occurrence of genetic alterations in patients and 

combines it with a network search algorithm to identify co-altered modules in a 

background gene interaction network. The ccRCC specific PPIN generated above 

was used as the background. The probability of co-occurrence of genes was 

calculated using Equation 2.1: 

 

 2.1 
  

 

Where G1, G2 are the modules, n is the number of all samples, a is number of 

samples with alterations in both modules, b is the number of samples with 
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alterations only in G1, c is the number of samples with alterations only in G2 and d 

is the number of samples with alterations in none of the modules.  

 

The score for each module pair is then calculated as the negative logarithm of the 

probability (Equation 2.2): 

 

 2.2 
                                                                   

 

2.4.5 Detecting master regulators at the Gene expression levels: MARINa 

algorithm 

The MARINa (Master Regulator Inference Algorithm) (Lefebvre et al., 2010) 

algorithm was applied to find gene expression based regulators. First, a gene 

expression network needed to be generated for which the ARACNE (Algorithm for 

the Reconstruction of Accurate Cellular Networks) algorithm (Margolin et al., 2006) 

was used. ARACNE reverse engineers a network from gene expression data using 

an information theoretic approach, to calculate mutual information between gene 

pairs. This approach has been described as effective to eliminate majority 

of indirect interactions, which are typically inferred by pairwise analysis. The 

ARACNE standalone implementation was downloaded and used to generate the 

network. The input to the tool is a gene expression matrix with each row 

representing a gene and columns correspond to patients. An adjacency matrix is 

retrieved as output with a probability of interaction between gene pairs in each cell. 

 

The R package ‘viper’ was used to implement the MARINa algorithm. The 

adjacency matrix obtained from the ARACNE algorithm along with the original gene 

expression matrix is provided as input. The algorithm is designed to infer 

transcription factors (TFs) controlling the transition between the two phenotypes – 

‘normal’ and ‘tumour’ in this work, as well as the maintenance of the latter 

phenotype.  
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2.4.6 DriverNet 

Extending on the genotype-phenotype relationship detection, the DriverNet 

algorithm was also applied (Bashashati et al.). This algorithm integrates genetic 

alterations (mutation and copy number variation data) and transcriptome data 

(gene expression data) to predict functional important driver genes in cancer. This 

algorithm makes a bipartite graph with the genetic alterations on one side of the 

graph and the corresponding gene expression data on the other side (as discussed 

in Introduction section 1.4.1). It then uses an influence graph, which is a gene-gene 

interaction network derived from pathway data. A greedy algorithm is then applied 

to find the possible driver genes (based on frequency of alteration), which may be 

pushing the gene expression values of the connected genes to some extreme 

values. 

 

2.5 Classification of patients into prognostic groups  

In Chapter 4, a number of variables were assessed for association with ccRCC 

prognosis. This section describes how patients were classified into subgroups for 

each variable under consideration.  

 

2.5.1 Somatic mutations 

Somatic mutations in five genes, namely VHL, PBRM1, SETD2, BAP1 and TP53 

were analysed. CSS was assessed for patients with tumours harbouring a non-

synonymous mutation in the gene vs. patients with tumours without the mutation. 

For VHL, association with survival was also tested under the specific constrains of 

only being in stage I-III tumours and for those with loss of function mutations only 

(defined as frameshift and nonsense mutations), as compared to all other patients. 

 

2.5.2 SCNAs 

A total of 14 candidate SCNAs were assessed for association with CSS. CSS was 

compared between patients with tumours harbouring a specific SCNA vs. those 
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with tumours without these SCNAs. Amplification or deletion of ≥50% of a 

chromosome arm or of both arms of a chromosome was considered to be 

equivalent to an arm level alteration as described (The Cancer Genome Atlas 

Research Network) or to a whole chromosome aberration respectively. For 

Chrom22 deletion (identified as a candidate prognostic biomarker), the SNP array 

data did not include any probes for the Chrom22 p-arm, thus deletion of Chrom22q 

was used as a substitute measure.  

 

2.5.3 Gene expression RNA-Seq data  

Log2 transformed expression data was used to divide the cohort into 2 groups at 

median values for CD31 and EDNRB expression levels and at 33rd percentile 

value for TSPAN7 expression levels (Wuttig et al.).  

 

For all cluster-based analyses performed in this thesis, the Non-negative matrix 

factorisation (NMF) clustering (Brunet et al.) method has been used. Consensus 

NMF clustering uses the principle of dimensionality reduction, using non-negative 

matrix factorisation, to find a set of metagenes from the given gene list; it then uses 

these metagenes to perform the clustering of samples. The metagenes are defined 

as a positive linear combination of the genes for which expression has been 

provided in the dataset submitted as input. It repeatedly runs the algorithm against 

variations of the gene expression data and creates a consensus matrix to assess 

the stability of the resulting clusters. 

 

The Consensus NMF clustering package provided on the Broad Institute’ 

GenePattern portal (Reich et al.) was used to implement this method. The input to 

the algorithm is the gene expression matrix, where rows are genes and columns 

represent patients and thereby each cell represents the expression for the gene for 

the respective patient. Log2 normalised RSEM counts were provided as input for 

this analysis. The cluster number (k) range was set between 2 ≤ k ≤ 10.  The 

number of clustering’s to be tested was set to 50 and 1000 iterations per clustering 

were performed for each k value.  
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Expression data for genes in each identified gene expression signatures (Kosari et 

al., Zhao et al., Lane et al., Brannon et al., Beleut et al.) was submitted for 

consensus NMF clustering analysis. Gene expression was available for 26 out of 

35 genes (74%) from (Kosari et al.), 220 out of 259 genes (85%) from (Zhao et al.), 

36 out of 44 (82%) genes from (Lane et al.), 103 out of 110 (94%) genes from 

(Brannon et al.) and 37 out of 48 (77%, Cluster B vs. A/C) and 21 out of 23 (91%, 

Cluster A vs. C) genes from the two gene panels from (Beleut et al.) respectively. 

The cluster number range was predefined from two to ten. Each clustering run 

returned a cophenetic correlation coefficient, which measures the stability of cluster 

assignments, as well as consensus clustering maps. Based on both these results, 

the optimal numbers of clusters for each gene expression panel were identified. For 

each signature, the same number of clusters was considered to be optimal as had 

been identified in the original publications. 

 

For the TGFβ pathway signature (Bostrom et al.), a TGFβ activity score for each 

sample was defined as follows. RNA-Seq counts were available for 145/157 TGFβ 

regulated genes, the log2 normalised RSEM expression counts for these genes 

were multiplied by either 1 or -1, depending on their expected regulation by TGFβ. 

These values were then averaged to give a relative TGFβ score for each sample. 

Using the median score of all samples as the cut-off, patients were divided into 

TGFβ low activity and TGFβ high activity cohorts as previously described (Bostrom 

et al.). 

2.5.4 Analysis of multi-region biopsy data: classification of tumour regions 

into ccA and ccB prognostic groups 

Expression data was available for 107 out of 110 genes from the ccA/ccB signature 

(Brannon et al.). This data was used to classify the 63 tumour regions into either 

ccA/ccB expression subgroups by applying consensus NMF clustering analysis for 

a predefined number of clusters from two to ten. The cophenetic coefficient was 

highest for two clusters. Clustering was also performed using the Clearcode34 

panel (Brooks et al.) and the same cluster assignments were obtained for 61 out of 

63 (97%) regions. 
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2.6 Clinical statistics for biomarker assessment  

One of the main questions asked in this thesis and presented in Chapter 4, is 

querying suitable biomarkers for predicting patient prognosis. To this end, the 

analyses query the effect of a biomarker on the patient cohort. A number of 

statistical measures in clinical studies were used, which are described here. All 

tests were implemented in R v 3.0.1 (R Development Core Team) using the 

packages ‘survival’ (Therneau and Grambsch, Therneau), ‘cmprsk’ (https://cran.r-

project.org/web/packages/cmprsk/index.html) and randomforestSRC (Ishwaran and 

Kogalur, Ishwaran et al.).  

 

2.6.1 The Kaplan-Meier estimate  

The Kaplan-Meier (KM) estimate (Kaplan and Meier) is the most prominent test 

used to estimate the effect of a variable on the survival of patients. It measures the 

length of time patients lived after a predefined point in time. For example, it may be 

used to estimate the length of life of patients after receiving a particular treatment. 

For cancer studies, the end point of interest is either relapse of disease or death 

due to disease. Mathematically, the KM estimate measures the probability of 

surviving a given length of time while considering time in many small intervals 

(Equation 2.3).  

 

 2.3 
                                                                              

 

Where S(t) is the probability of survival at time t, and F(t) represents the cumulative 

frequency distribution of the random variable T. 

 

However, certain points need to be considered here; apart from the cases which 

may or may not reach endpoint (death), there will be cases for which follow-up will 

be lost due to known or unknown reasons, such as death due to other unrecorded 

causes, loss of contact or unwillingness to maintain contact. In such cases, the 

patients are ‘censored’ at the point of last contact. Three main assumptions form 

the basis of the KM estimate; first, that at any point in time, survival probability is 
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similar between cases that are censored and those that continue to be followed up. 

Secondly, the chances of survival of any patient are independent of the time of 

recruitment of the patient into the study cohort. Finally, the event happens at the 

time recorded in the study.   

 

2.6.2 Logrank test 

The logrank test (Clark et al.) is one of the most routinely used measures to assess 

the effect of either a drug or a prognostic biomarker in clinical studies. While the 

KM estimate discussed above is the best measure to estimate survival probability, 

it is not capable of comparing multiple survival curves and assess if they are 

significantly different.  

 
Figure 2.2 clearly shows two survival curves to be different; however, the objective 

here is to assess the statistical significance of such differences. The logrank test is 

a widely used statistic to achieve this objective. It tests the null hypothesis that 

there is no difference between the KM curves for the different populations under 

consideration i.e. the probability of an event (here a ‘death’ event) is not different 

between the populations at any given point of time (Bland and Altman).  

 

 
 
Figure 2.2: Kaplan-Meier survival curves 
Figure depicts example survival curves to be compared and the need for a 
statistical test to distinguish between them  
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A definitive advantage of using the logrank test in this setting is the fact that it is 

based on the same assumptions as the KM estimate; i.e. censoring is unrelated to 

prognosis, the probability of survival is independent of the time of recruitment of the 

subjects and the events took place at the recorded time points (Bland and Altman).   

 

Logrank test was performed using the survdiff() function from the package ‘survival’ 

in R to estimate the p-value of significance for differences between the KM curves.  

 

2.6.3 Hazard ratio 

In a survival analysis, the hazard ratio (HR) refers to the rate of risk (death) due to 

the explanatory variable with respect to a reference state. It is often used in clinical 

trials to measure the survival at any point of time for patients in a particular group 

(e.g. treatment) with respect to the placebo group. A HR = 1 means that there is no 

difference in the survival of the two groups being compared. HR > 1 means the risk 

of death is higher in the considered group, while HR < 0 means the patients in the 

reference group are at a greater risk of death.  

 

Since the logrank test is a test of significance only, the effect of a variable using 

this test cannot be measured. For this purpose, a Cox proportional hazard model is 

applied. This model assumes that the hazard or risk of a factor is constant 

throughout the study period and calculates the hazard for a variable using the 

formula shown in equation 2.4; mathematically, if Oa and Ob are the observed 

number of events in the two groups a and b under consideration, and Ea and Eb are 

the expected number of events, the HR can be then calculated as: 

 

 2.4 
  

The null hypothesis here will be that there is no difference between the HRs of the 

two groups. The coxph() function from the package ‘survival’ in R (R Development 

Core Team) was used to estimate the HRs and 95% C.I. for each variable. 
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2.6.4 Competing risk analysis  

While the logrank is a widely used test, a limitation of the test is that the censoring 

is uninformative i.e. it cannot take into consideration the reasons for censoring. For 

example, for the work presented in this thesis, death due to cancer is the event of 

interest; thus for the purposes of the logrank test, all other patients, whether alive 

or dead due to other causes, were treated as censored at the time point where the 

information about them was last recorded. This may lead to overestimation of the 

effect of a biomarker. To avoid such overestimation, competing risk (CR) analysis 

was performed for all variables that were observed to be significant in the logrank 

analysis.  

 

A CR analysis evaluates the cumulative incidence of the variable under 

consideration (Equation 2.5). It also takes into account the death of patients due to 

causes other than cancer. The cumulative incidence of the variable k represents 

the proportion of patients at a time t who have died from cause k, while accounting 

for the fact that patients can die from other causes. 

 

 2.5 
                                                                                                          

Where hk represents the cause-specific hazard, X is the vector of covariates and S 

is the overall survival function. The CR test was implemented using the cuminc() 

function from the ‘cmprsk’ package in R and used to estimate the p-value of 

significance.  

 

2.6.5 Multivariate Cox regression analysis 

To assess the independence of the variables that were validated in the univariate 

analyses (logrank and CR analyses), and to question whether any of these 

variables added further information to the clinical variables in use, a multivariate 

Cox regression analysis was performed. A Cox model (Cox) calculates the hazard 

at any time point t as a function of the baseline hazard and the coefficient of 

regression β of each variable X in the model: 
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 2.6 
  

The backwards-stepwise selection model was used. All variables, which had a p-

value ≤ 0.05 in the univariate analyses, were added to the model along with the 

clinical variables Tumour stage and Fuhrman grade. An initial p-value was 

generated for all variables in the model, following which the variable with the worst 

(highest) p-value was iteratively removed from the model, until all variables in the 

model had a p-value ≤ 0.05.  The hazard ratio, 95% confidence interval (C.I.) and 

p-value was noted for all the significant variables, whilst for all non-significant 

variables, the hazard ratio, 95% confidence interval (C.I.) and the p-value was 

generated at the step it was removed. The coxph() function from the package 

‘survival’ in R was used to implement the backwards-stepwise regression model. 

 

2.7 Supervised learning algorithms 

2.7.1 Recursive partitioning – classification trees 

Decision tree based algorithms provide a useful extension to survival analysis 

methods. These algorithms can be applied to build stratification models where 

patients are classified using the statistical tests described above to guide the 

splitting process, into distinguishable groups. Recursive partitioning for single 

decision trees and Random Forests for cross-validated stratification modelling are 

two of the most commonly applied and robust methods for classification and 

regression problems and were therefore used in this study. 

 

Recursive Partitioning (RP) (Banerjee et al.) was used to build a stratified patient 

prognosis model. This is a tree-based analysis, which can be used to classify 

patients into different cohorts based on given input parameters. The response 

variable in this work was a survival object i.e. time to death and a R implementation 

of RP using the function ‘ctree()’ in the package ‘party’ (Hothorn et al.) was used. 

Briefly, the algorithm tests the null hypothesis for independence between the 

explanatory variables and the response. It stops if the hypothesis cannot be 

rejected; otherwise, it selects the input variable with strongest association to 
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response. It then implements a binary split based on this variable. This step is 

recursively repeated. For survival response, the split is based on maximising the 

likelihood ratio of survival. The input to this function was a matrix where each row 

represented a patient and columns represented the input parameters along with the 

days to death/last follow up of patients and dead/alive status of the patients. Unlike 

Cox analysis, RP is adept in uncovering variables that may be largely operative 

within a specific patient subgroup but may have minimal effect or none in other 

patient subgroups.  

 

2.7.2 Random forest  

The random forest (RF) (Breiman) method consists of a supervised learning 

algorithm that is commonly used for both classification and regression problems. It 

was used in this thesis to implement a classification model and to test the 

significance of the variables most important to distinguish between the two 

classifications. It uses an ensemble of trees to decide the classifications where 

each tree is generated on the principle of recursive partitioning. For classification 

problems, the final prediction is a majority vote of all the trained decision trees. The 

‘Random’ aspect of the RF algorithm is related to the way it builds each decision 

tree. For a training set of N samples, sampling with replacement is performed and 

two thirds of this sample is used as the training set for a given decision tree in the 

forest. The other one third (termed as the oob (out-of-bag) data), is used to get an 

unbiased estimate of the test error and for variable importance measures. The 

second randomization involved in the RF’s decision trees is that at each node, not 

all features are available for making a split. Rather random samples of ‘mtry’ 

features are chosen at each node and the best split is chosen amongst them. An 

important aspect of the RF is that the test error is reduced with more accurate and 

less correlated decision trees. Part of the randomization procedures employed in 

the tree building are in fact aimed at introducing variability in the hope of achieving 

low correlation between decision trees. The mtry parameter is therefore central to 

the RF method. Given a powerful descriptor in the set of features, for high mtry 

values, it is more likely that this descriptor would be chosen in the random sample 

and subsequently used at the node split. Therefore this descriptor would dominate 
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most of the trees, resulting in highly accurate trees but with low correlation. If the 

mtry parameter is set too low, then the powerful descriptor might be missed out 

from most of the trees. The RF would then consist of low correlation trees but with 

low accuracy. Though this parameter is the one to which the RF is most sensitive, it 

has a broad range of optimal values (Breiman).  

 

RF Variable Importance Measure: Once the random forest has been built and the 

oob error estimate for each tree recorded, the importance of each feature to the 

prediction is measured as follows. For each feature m, all of its values are 

randomly permuted and the oob examples are fed through the trees with m 

randomly permuted. The importance score of feature m is the different between the 

original oob error estimates, and the new ones with m permuted. The importance 

score is then normalized by the standard deviation of these differences across all 

trees. Large values imply more important features.  

 

Random forest was implemented using the R package ‘randomforestSRC’. The 

function rfsrc() was used to build trees with all default parameters and selecting a 

1000 trees to build the random forest. The Variable importance was then 

determined using the function vimp(), on the results obtained from the random 

forest prediction. 

 

2.8 Differential expression analyses 

Testing for differential expression between phenotypes (tumour vs. normal) 

enables the identification of the genes or pathways that may help define the 

phenotype. Differential expression analyses were performed at two levels; first to 

identify top deregulated genes (either up- or down-regulated) in ccRCC patients 

when compared to normal kidney samples. These genes were then assessed using 

overrepresentation analyses. In the second pipeline, Gene Set Enrichment analysis 

was performed using the complete set of genes for which RNA-Seq data was 

available. The details and differences between the two methods are discussed 

below. 
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2.8.1 Differentially regulated genes 

To identify genes most significantly deregulated in ccRCC, differential expression 

(DE) analysis was performed for tumour samples over normal samples (Chapter 3) 

and between ccRCC subgroups (Chapter 5) using the edgeR (Robinson et al.) 

package in R.  

 

The input to the package included two files; the first was a data matrix where the 

columns represented patients (j) and the genes represented rows (i) and thus every 

cell (ij) gave the raw RNA-Seq RSEM count for that gene for the respective patient. 

The second file was a phenotype file, which defined the patient’s subgroup (tumour, 

normal or ccRCC subgroup). This file was then used in the package to specify 

which subgroups should be used to make the comparisons.  

 

The edge R package is based on negative binomial distribution for count data. The 

algorithm estimates gene-wise dispersions and uses an empirical Bayes process to 

shrink this dispersion towards a consensus value. The differential expression is 

then assessed by an adaptation of Fisher’s exact test for over-dispersed count data.  

 

The output from the final DE estimation function gives three values for each gene 

that was assessed; the log fold change (FC), the log counts per million (CPM) and 

the p-value. These p-values were corrected using the False discovery rate (FDR) 

correction using the p.adjust() function in R. Using a fold change cut-off of |log FC| 

≥ 2.5 and a FDR q ≤ 0.05, the final list of differentially regulated genes was 

obtained. 

 

2.8.2 Overrepresentation analyses 

A Gene ontology (GO) or pathway overrepresentation (ORA) or enrichment 

analysis refers to an analysis which tests how significantly overrepresented are 

certain GO terms or pathways in a list of genes than if a similar list was chosen at 

random. Essentially each gene in the list is assigned to a term (GO term or 

pathway), and all genes belonging to the same term are then collected together; 
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this collection is compared with a random gene list of the same size to assign a p-

value of significance to the enrichment of this term. 

 

For this purpose, both a hit list (from the given gene list) and a population list 

(random list from all genes available) are compiled, and then the aim is to assess 

the significance of the difference between these two lists. The most common 

approach to test this statistically is by using the hypergeometric test (or its variants 

such as Fisher's exact test) to calculate the probability of seeing at least a 

particular number of genes containing the biological term of interest in the gene list. 

ORA analysis has been implemented in this thesis using tools available from 

MSigDB (Liberzon, Liberzon et al.) and genego portal (Thomson Reuters, 

https://portal.genego.com/).  

 

For MSIGDB, for the pathway ORA, KEGG (Kanehisa et al., Kotera et al., Tanabe 

and Kanehisa), Biocarta (http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways) 

and Reactome (Croft et al., Haw and Stein) databases were used to compile the 

background population lists. In the case of GO enrichment, only the biological 

processes (BPs) terms were used to compile the background. The top 100 

pathways overrepresented in the input list (as compiled by DE analysis) were 

returned. 

 

For the genego portal, for GO ORA, only the BP category as above was used. For 

the pathway ORA, pathway annotations from KEGG, Biocarta, Reactome were 

used. All pathways or GO processes which passed the FDR q ≤ 0.05 were returned. 

 

It was thought prudent to consider two sources, firstly for the sake of validation, and 

secondly since a longer/more extensive list was required and MSigDB only returns 

the top 100 hits; therefore, the genego portal was also used.       

                                                                                      

2.8.3 Gene set enrichment analysis 

Gene Set Enrichment Analysis (GSEA) (Subramanian et al., Mootha et al.) is a 

computational method that was developed to determine whether an a priori defined 
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set of genes shows statistically significant, concordant differences between two 

biological states, for example tumour samples and normal kidney samples in the 

work presented here. It is different from the ORA described above in the manner 

that a GSEA uses the complete list of genes assessed, irrespective of FCs and p-

values, to find significance of overlap between deregulated genes and the 

population gene sets. 

 

The stand-alone version of GSEA tool provided by the Broad Institute was used to 

run the analysis. For the purposes of this thesis, pre-ranked GSEA was performed. 

This means that edgeR was run, and using the log FC from the output, the 

complete list of genes was subsequently ranked. This ranked list was provided as 

input for GSEA.  

 

The GSEA output has two lists; one is a list of pathways which are up-regulated i.e. 

show more positive FCs than seen by chance and the other is the list of down-

regulated pathways. Using FDR q ≤ 0.05, a list of significant pathways for each 

comparison was compiled.  

 

2.9 Statistical measures 

2.9.1 Multidimensional Scaling 

Multidimensional Scaling (MDS) is a method to visualise the similarities and 

differences between individual samples in a dataset. The R implementation of 

MDS, cmdscale() was used to visualise the differences between tumour and 

normal samples in the RNA-Seq original dataset (n=469). A distance matrix was 

provided as input, which was calculated as the Euclidean distances between the 

cases based on the gene expression values.  

2.9.2 Wilcoxon test 

The Wilcoxon (Wilcox) test is a non-parametric test, which can be used when 

comparing the distribution of repeated measurements of a numerical variable 

between two groups such as disease vs. normal. It tests the difference between the 

median observations between the two groups where the null hypothesis is defined 
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as being no difference between the medians. It is used as an alternative to the 

paired Student's t-test when the population cannot be assumed to be normally 

distributed. It has been used at various points in this thesis to assess the 

differences between patient subgroups for various numerical variables. The 

wilcox.test() function in R was used to implement this test and to estimate a p-value 

of significance.  

 

2.9.3 Fisher’s test 

The Fisher's exact test is used to test the independence of two nominal variables. It 

estimates whether the proportions of one variable are significantly different 

depending on the values of the other variable. It has the definitive advantage over 

other tests, such as chi-square, since it can be used for smaller sample sizes as 

well. It has been used in this thesis to test the relationships of occurrence between 

mutations, SCNAs, patient subgroups and genetic alterations. The fisher.test() 

function in R was used to perform the Fisher’s exact test.  
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Chapter 3. The molecular landscape of ccRCC 

3.1 Introduction 

As discussed in the Introduction section 1.2, despite recent advances in the 

detection of recurrent mutations and somatic copy number alterations (SCNAs) in 

ccRCC, our understanding of the pathogenesis of the disease is still limited. While 

nephrectomy has shown to be curative for localised disease, relapse is not 

infrequent. ccRCC is highly resistant to chemotherapy and radiotherapy and 

therapeutic success is limited. To develop suitable therapies, understanding the 

disease mechanisms is imperative. Recent large-scale sequencing and expression 

profiling efforts provide the opportunity to comprehensively investigate genotype-

phenotype correlations. This should improve our understanding of ccRCC biology 

and potentially shed lights on what drives ITH. Researchers at The Cancer genome 

atlas (TCGA) have comprehensively measured and provided genomic, epigenetic, 

expression as well as clinical data for over 400 ccRCC patients. This dataset is 

based on single biopsies, and thus they overlook ITH; however, they have large 

numbers of patients, allowing for correlative analysis.  

 

In this chapter, with the aim to better understand ccRCC biology, somatic mutation, 

SCNA and RNA-Sequencing (RNA-Seq) data sets, molecularly profiled by the 

TCGA (The Cancer Genome Atlas Research Network) are investigated and a 

series of integrated analyses performed upon them. Wherever possible, 

comparisons were also made with other datasets identified in the literature (Sato et 

al., Scelo et al.), enabling some key insights into ccRCC mechanisms to be drawn. 
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In the TCGA publication on ccRCC (The Cancer Genome Atlas Research Network), 

a number of key disease associated factors were highlighted including mutations in 

oxygen sensing (VHL) and chromatin modifying genes (for example PBRM1), 

down-regulation of metabolism related pathways and recurrent mutations in the 

PIK3CA/MTOR pathway. Here these findings are expanded upon by making use of 

the availability of multiple “omics” datasets thereby providing the opportunity to 

perform integrated analyses of genetic and transcriptomic data to understand some 

of the functional consequences of the genetic mutations observed.  

 

Heterogeneity in cancer, both inter-patient and intratumour, were discussed in 

sections 1.2.5 and 1.4 of the Introduction. This presents a hurdle for quantitative 

correlative analyses between expression signatures and individual somatic 

mutations. The big question now, is how can this high volume of primary 

information, collected at both the genetic and phenotypic levels, be integrated to 

help cancer patients? Computational network algorithms have become increasingly 

popular as useful tools for the integration and interpretation of these complex 

datasets to study cancer mechanisms. In this work, advantage is taken of key 

concepts and state-of-the-art algorithms, which are then applied to both genetic 

and transcriptomic ccRCC datasets. 

 

3.2 Methods 

All the methods and algorithms applied in this chapter are briefly explained in the 

following sections; references to more detailed descriptions, Chapter 2, are 

provided in each section. 

 

3.2.1 Data processing 

Somatic mutations 

Somatic mutation data for the original dataset was obtained from the 

supplementary material of the TCGA publication for ccRCC (The Cancer Genome 

Atlas Research Network). A gene was considered to be mutated based on the 
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classification in the ‘VARIANT TYPE’ column. Mutation frequencies were calculated 

based on non-synonymous mutations only.  

 

Gene expression data 

For both the core and extended datasets RNA Sequencing (RNA-Seq) data was 

downloaded from the TCGA data portal. Both raw counts generated by the RSEM 

method and normalised RSEM counts, normalised to the upper quartile by TCGA, 

were downloaded from the data portal (https://tcga-data.nci.nih.gov/tcga/) on 18 

September 2012. Raw and normalised datasets have been used for different 

analysis in this chapter as described in the relevant sections. Normalised counts 

were log2 transformed before further analyses. In either case, only genes, for 

which the counts (raw and normalised resp.) were above 30 in at least 80% of the 

samples, were included in all analyses. 

 

3.2.2 Significantly mutated genes 

MutsigCV (Lawrence et al.) was run to assess significant mutations from the TCGA 

mutation matrix. The input data to MutSigCV is the list of mutations in all the 

samples for which DNA sequencing is available. It builds a model of the 

background mutation processes, and analyses the mutations of each gene to 

identify genes that were mutated more often than expected by chance, given the 

background model. (Methods section 2.3.1) 

 

3.2.3 SCNAs significantly associated with ccRCC 

To determine which SCNAs are associated with ccRCC biology, GISTIC (Mermel 

et al.) was run on the copy number calls from ASCAT (as described in Methods 

section 2.2.2). For this analysis an extended cohort of 555 cases for which SCNA 

data was available was used. This analysis was done in collaboration with Dr Peter 

Van Loo. GISTIC requires a segmented copy number profiles file, where each line 

represents the copy number of a particular chromosomal region (represented in 

coordinates) for each patient. Another file mapping these coordinates to specific 

regions is also provided (Methods section 2.3.2).  
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3.2.4 Multidimensional scaling 

Multidimensional scaling (MDS) was applied on the gene expression RNA-Seq 

data to determine and visualise the differences in expression between normal and 

tumour samples. The R implementation of MDS, the function cmdscale() was used 

and a distance matrix was provided as input to estimate similarities and differences. 

(Methods section 2.9.1) 

 

3.2.5 Differential regulation analysis 

The edgeR (Robinson et al.) package in R (R Development Core Team) was used 

to find differentially regulated genes. The edgeR output provides three different 

values for each gene in the input, namely log FC, log CPM, and the p-value for the 

significance of deregulation. All p-values can then be corrected for multiple testing 

using the function p.adjust() in R (R Development Core Team). A list of significantly 

differentially regulated genes can then be generated using p-value and/or fold 

change cut-offs. (Methods section 2.8.1)  

 

3.2.6 NMF clustering 

The top 1500 genes showing the maximum variation (high standard deviation) 

across all tumour samples were used to perform NMF clustering to find the optimal 

number of subgroups for ccRCC (Methods section 2.5.3). 

 

3.2.7 Overrepresentation analyses 

Using MSigDB (Liberzon et al., Liberzon) and the genego portal (Thomson Reuters, 

https://portal.genego.com/), GO and pathway overrepresentation analyses were 

performed for the genes showing high levels of deregulation between tumour vs. 

normal kidney samples. For the pathway overrepresentation analyses, only 

pathways defined in KEGG, Reactome and Biocarta were used (Methods section 

2.8.2).   
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3.2.8 Gene set enrichment analysis 

The Gene Set Enrichment Analysis (GSEA) (Subramanian et al.) algorithm was 

applied to gene expression data to determine pathways/gene sets deregulated in 

ccRCC. This method tries to determine whether an a priori defined set of genes 

shows statistically significant concordant differences between two biological states; 

here ccRCC samples vs. normal kidney (Methods section 2.8.3).   

 

3.2.9 Statistical analyses 

Fisher’s exact test was used to estimate co-occurrence or mutual exclusivity of 

genetic alterations relative to each other. All analyses were performed in R (R 

Development Core Team) version 3.0.1. 

 

3.2.10 Generating a ccRCC specific protein-protein interaction network 

A protein-protein interaction database was created by downloading and combining 

data from five databases, namely IntAct (Orchard et al.), MINT (Licata et al.), DIP 

(Xenarios et al.), HPRD (Keshava Prasad et al.) and BioGRID (Chatr-Aryamontri et 

al.). These primary databases collect potential PPIs from the scientific literature, 

which have been experimentally verified using methodologies such as yeast two-

hybrid, mass spectrometry and co-immunoprecipitation. Interactions for genes 

altered in ccRCC were extracted from this database to create a ccRCC protein-

protein interaction network (PPIN) (Methods section 2.4.1). 

 

3.2.11 Detecting sub-networks  

Module or subnetwork detection was performed using the Molecular Complex 

Detection (MCODE). This algorithm gives a weight to each node and uses 

neighbourhood density to grow a subnetwork from each tested seed node 

(Methods section 2.4.2). 
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3.2.12 Dendrix 

Dendrix (De novo Driver Exclusivity) (Vandin et al.) is an algorithm for discovery of 

mutated driver pathways in cancer using only mutation data. It finds sets of genes, 

domains, or nucleotides whose mutations exhibit both high coverage and high 

exclusivity in the analysed samples (Methods section 2.4.3). 

 

3.2.13 Co-altered modules 

To identify co-altered modules likely to drive the growth of ccRCC, a probabilistic 

model (Gu et al.) was implemented, which takes into account the likelihood of co-

occurrence of genetic alterations in patients, and combines it with a network search 

algorithm to identify co-altered modules in a given gene interaction network 

(Methods section 2.4.4). 

 

3.2.14 ARACNE and MARINa 

To generate a gene expression based network and find its regulators, the ARACNE 

(Margolin et al., Basso et al.) algorithm was applied. This algorithm reverse 

engineers a network by calculating mutual information between associated genes. 

Log2 normalised RSEM counts for RNA-Seq data were provided as input. The 

output network from ARACNE, provided as an adjacency matrix, was used as input 

to the MARINa (Lefebvre et al.) algorithm, which estimates the master regulators of 

a gene expression network. The MARINa algorithm was implemented in R using 

the ‘viper’ package (Methods section 2.4.5). 

 

3.2.15 DriverNet 

The DriverNet algorithm was used to assess genotype-phenotype relationships. 

This algorithm uses bipartite graphs and a background gene-gene interaction 

network to find cancer drivers at the genetic level that may explain the 

corresponding gene expression level changes (Methods section 2.4.6). 
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3.3 Results 

3.3.1 Somatic mutations 

In the original dataset, somatic mutation data was available for 417 patients, 

spanning mutations in a total of 10401 genes. These included 2,389 

insertions/deletions, 16,821 missense mutations, 1149 nonsense mutations and 

6,383 silent mutations. 

 

Figure 3.1 shows the frequency of mutations of all genes in this dataset. 

Characteristic of cancer, a long tail of mutation frequency is observed. VHL, 

PBRM1, SETD2, BAP1 and JARID1C/KDM5C were observed to be the top five 

most recurrently mutated genes. However, taking only the frequency of mutation 

events is no longer considered to be the most appropriate method when assessing 

the most important cancer drivers (Lawrence et al.). It is imperative to take into 

account other factors, such as the background mutation frequency rate and gene 

size.  

 

 
Figure 3.1: Somatic mutations in ccRCC 
A Frequency bar chart for the top 100 genes with somatic mutations in ccRCC in 
the TCGA dataset. The most frequently mutated genes were VHL (53%), PBRM1 
(33%), MUC4 (20%) SETD2 (12%), and BAP1 (10%). Beyond this Frequency of 
mutations was ≤ 10% for all genes.  
 

 

MutSigCV (Lawrence et al.) was used to assess the most significantly mutated 

genes in this cohort. The TCGA ccRCC publication had used an older version of 

this same algorithm (see Methods section 2.3.1 for a comparison of the two 
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versions). Comparing both these results as well as published literature, 11 genes 

namely VHL, PBRM1, SETD2, KDM5C, BAP1, MTOR, TP53, PTEN, PIK3CA, 

ARID1A and HMCN1 formed the top targets for further investigation. Other studies 

published at the same time (Sato et al.) and recently (Scelo et al.) observed 28 

(Sato et al.) and 17 (Scelo et al.) genes to be significantly mutated in their study 

cohorts. Table 3.1 shows the genes assessed as significant in this analysis (FDR ≤ 

0.05), and in the other studies (The Cancer Genome Atlas Research Network, Sato 

et al., Scelo et al.).  

 

Table 3.1:  Significantly mutated genes in major ccRCC studies 
This table shows the top significantly mutated genes obtained in this analysis in 
comparison to the 3 other major studies. As seen major genes such as VHL, 
PBRM1, SETD2 were observed in all analyses; however, each analyses showed 
additional genes such as STAG3L2, NEFH (this analysis) and MLL3 and CSMD3 
(Scelo et al.)  
 

 
 

 

Interestingly VHL had a much higher frequency of mutations in the Scelo (Scelo et 

al.) cohort when compared to the TCGA (The Cancer Genome Atlas Research 

Network) and Sato (Sato et al.) datasets. The Scelo study was performed on a 

European cohort including patients from Czech Republic, Romania, Russia and the 

United Kingdom, whereas the TCGA cohort is a USA based dataset and the Sato 

study had patients from Asia. Differences in frequency were also observed for other 

genes; KDM5C showed lower frequencies of mutation in the Sato cohort, while 

MTOR showed higher frequency of recurrence in the Sato dataset.  Furthermore, 

certain genes seen to be mutated with moderate to high frequencies in one study 

were not seen in the other (Figure 3.2). These data may indicate the role of race in 

ccRCC pathogenesis. 

 

Study Top significantly mutated genes
Our analysis VHL, PBRM1, SETD2, KDM5C, BAP1, C16orf3, KCNMB4, PTEN, STAG3L2, NEFH, ZNF717, KANK3
The Cancer Genome Consortium VHL, PBRM1, SETD2, KDM5C, PTEN, BAP1, MTOR, TP53, PIK3CA
Sato et al. VHL, PBRM1, BAP1, TCEB1, SETD2, TP53, FPGT, MUDENG, KEAP1, TET2, MUC4, MLLT10, MSGN1
Scelo et al. VHL, PBRM1, SETD2, BAP1, ZFHX4, CSMD3, MTOR, KDM5C, ZNF469, MLL3
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Figure 3.2: Comparison of frequency of mutations in the three data cohorts 
Figure shows a bar chart depicting a comparison of the frequency of mutation for a 
few example genes in the three data cohorts (The Cancer Genome Atlas Research 
Network, Sato et al., Scelo et al.). As shown, mutations in the VHL gene were 
observed at much higher frequency in the Scelo cohort. Likewise, SETD2 gene 
was also mutated at higher frequency in the Scelo cohort. MUC4 and PIK3CA 
genes while observed to be mutated in both TCGA and Sato cohorts were not seen 
to be mutated in the Scelo cohort. 
 

 

As discussed in section 1.2.4 of the Introduction, the PIK3CA/MTOR pathway has 

been shown to be an important pathway for ccRCC pathogenesis. Mutations in this 

pathway lead to an up-regulation in HIF1A levels, thereby giving a VHL 

independent route to HIF regulation (Zhong et al., Brugarolas et al., Thomas et al.). 

The MTOR gene was observed to be mutated in all three datasets at varying 

frequency; 6% (The Cancer Genome Atlas Research Network, Sato et al.), and 

8.5% (Scelo et al.). When other genes in this pathway were assessed, the overall 

mutation frequency of the MTOR pathway associated genes was observed to be 

17% in the TCGA dataset (Figure 3.3). Convergent evolution on the MTOR 

pathway by mutations in different genes of the pathway within the same patient has 

also been observed (Fisher et al.). These results highlight the fact, that assessing 

mutations in individual genes by themselves does not elucidate the complete 

picture mechanistically and pathways/networks should be assessed together. This 

idea is further explored from section 3.3.4 onwards. 
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Figure 3.3: Somatic mutations in the MTOR/PIK3CA pathway 
Figure shows a bar chart depicting somatic mutations occurring in the 
MTOR/PIK3CA pathway per sample in ccRCC. The MTOR gene is the most 
frequently mutated in this cohort, however, taken together, mutations in this 
pathway cover ~17% of cases. The figure was generated using the cbio portal tool 
(http://www.cbioportal.org/) and has been zoomed in and cropped to remove 
unaltered cases. 
 

 

Next, to examine relationships between key mutations (n=11), co-occurrence and 

mutual exclusivity patterns were explored using Fisher’s exact tests. Mutations in 

the VHL gene were observed to be co-occurring with mutations in the PBRM1 gene. 

PBRM1 mutations showed a tendency of co-occurrence with SETD2 mutations as 

well, while showing a tendency of mutual exclusivity with BAP1 mutations, which 

agrees with previous published data (Kapur et al.). Other genes were not seen to 

show any statistically significant associations. 

 

Lastly, to assess the impact of intratumour heterogeneity (ITH), mutation 

frequencies were compared in the TCGA cohort (T2-T4, VHL mutated cases only) 

and the multiregion biopsy cohort (Gerlinger et al.). Apart from VHL and PBRM1, all 

other genes were observed to be subclonal events in the multiregion biopsy cohort. 

Most striking differences were observed for mutations in the TP53 gene, which was 

observed to be mutated in only 5% of the cases in TCGA as compared to 40% of 

the samples in the multiregion biopsy cohort (Table 3.2). 
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Table 3.2: Comparison of frequency of mutations in key genes for ccRCC 
between the TCGA and multiregion biopsy cohorts 
The table compares the frequencies of mutations of key genes in ccRCC between 
the TCGA (n=102) and the multiregion biopsy cohorts. As can be seen while similar 
frequencies are observed when considering each multiregion biopsy as an 
individual sample (Columns 1 and 2 of the table). However, if all multiregion 
biopsies from each patient are considered as 1 sample (Column 3), much higher 
frequencies are observed for most genes, the most prominent example being TP53 
and BAP1 genes.  
 

 
 

 

3.3.2 Somatic copy number alterations 

After processing the raw copy number data into copy number calls using ASCAT, 

amplifications and deletions were determined as copy numbers deviating from the 

ploidy (estimated by ASCAT), by more than 0.6, similar to the original ASCAT 

publication (Van Loo et al.). Gistic (Mermel et al.) was applied to these copy 

number profiles to assess which of these cytobands may be significantly 

associated with ccRCC. Amplifications in 20 cytobands and deletions of 27 

cytobands were observed to be significant in this cohort of 555 cases (Figure 3.4). 

These results were in concordance with those observed by the TCGA and 

previously published by others (Beroukhim et al.), though the exact focal positions 

differed from one dataset to the other (In the TCGA publication GISTIC was run on 

~450 cases, whereas the data presented here is for the extended cohort of 550 

case).   

 

Gene Prevalence in TCGA samples (n=102) Prevalence in all M-Seq regions (n=79 regions) Prevalence in total M-Seq based cases (n=10)
PBRM1 42% 39% 60%
SETD2 18% 27% 30%
BAP1 21% 23% 40%
KDM5C 7% 11% 10%
TP53 5% 6% 40%
ATM 3% 4% 10%
ARID1A 6% 1% 10%
PTEN 5% 10% 20%
MTOR 9% 8% 10%
PIK3CA 3% 4% 20%
TSC2 2% 6% 10%
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Figure 3.4: GISTIC analysis of copy-number changes in ccRCC tumours.  
The left panel of the figure depicts the significant amplifications (red) and the right 
panel depict the significant deletions (blue). The G-score represents the frequency 
average amplitude of the aberrations identified in the SNP arrays. False discovery 
rate q values, representing the statistical significance associated with these scores 
with correction for multiple testing, are displayed on the bottom axis of the figure. 
Regions with q values < 0.25 (green lines) were considered to be significantly 
altered. Chromosome positions are indicated along the vertical axis with 
centromere positions indicated by dotted lines. The locations of the peak regions of 
maximal copy-number change are annotated on the right. 
 

 

To identify the cis-effects of these SCNAs, gene expression data was evaluated; to 

determine the genes showing the corresponding expression changes (up-

regulation for amplifications and down-regulation for deletions). Table 3.3 details 

the frequency of these SCNAs and gives the examples of putative targets on these 

bands. Prominent kidney cancer genes such as ARID1A and SMARCA5 

(chromatin regulators), and other cancer genes such as BRCA1, RET and BRAF 

were observed to be altered. This analysis requires further follow up with published 

literature as well as experimental validation to find evidence for the role of these 

putative target genes in ccRCC.  
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Table 3.3: Summary of SCNA drivers 
This table shows the significant peaks (SCNAs) as observed in the GISTIC 
analysis. Column 3 gives the frequency of alteration of each peak. Column 4 and 5 
give the number of putative target genes on each peak and some example genes 
respectively. Putative targets were assessed by considering the corresponding 
gene expression data. 
  

 

Status Peak Frequency(%) Number	of	putative	targets Examples
Amplification	Peak		1 1p31.1		 3 3 AK5,	PTGFR,	TTLL7
Amplification	Peak		2 1q21.1		 13 15 CHD1L,	FAM72D
Amplification	Peak		3 2q31.3		 14 3 CERKL,	CWC22
Amplification	Peak		4 3q26.32	 13 4 KCNMB2,	KCNMB3
Amplification	Peak		5 4p16.3		 4 0
Amplification	Peak		6 4p16.3_1 6 16 FAM53A,	POLN
Amplification	Peak		7 4q31.21	 5 5 SMARCA5,	RNF150
Amplification	Peak		8 5q21.3		 43 3 PJA2,	EFNA5
Amplification	Peak		9 5q34				 57 6 CCNG1,	GABRB2
Amplification	Peak	10 7p12.1		 30 3 COBL,	DDC
Amplification	Peak	11 7q34				 30 0
Amplification	Peak	12 7q34_1 31 23 BRAF,	CASP2
Amplification	Peak	13 8q24.12	 13 4 MTBP,	TAF2
Amplification	Peak	14 10q11.21 6 2 RET,	TMEM72
Amplification	Peak	15 11p11.12 8 0
Amplification	Peak	16 11q13.4	 7 4 P2RY2,	P2RY6
Amplification	Peak	17 12p13.31 20 41 CLEC2B,	MLF2
Amplification	Peak	18 12q24.13 20 11 TRAFD1,	RPL6
Amplification	Peak	19 14q11.2	 9 0
Amplification	Peak	20 16p13.12 18 5 PARN,	ERCC4
Deletion	Peak		1 1p36.33	 25 26 FAM132A,	C1orf159
Deletion	Peak		2 1p36.11	 20 31 FCN3,	ARID1A
Deletion	Peak		3 1p31.1		 14 14 SLC44A5,	ACADM
Deletion	Peak		4 1q21.1		 10 8 NBPF15,	FCGR1C
Deletion	Peak		5 2q37.3		 12 29 C2orf54,	HDAC4
Deletion	Peak		6 3p26.1		 84 5 SUMF1
Deletion	Peak		7 3p21.31	 85 93 SETD2,	AMT
Deletion	Peak		8 4p16.3		 14 27 CTBP1
Deletion	Peak		9 4q35.2		 16 3 KLKB1
Deletion	Peak	10 6q24.1		 27 8 TXLNB
Deletion	Peak	11 7p22.3		 6 1 LFNG
Deletion	Peak	12 8p21.3		 27 26 CHMP7,	C8orf58
Deletion	Peak	13 8q24.3		 12 60 C8orf31
Deletion	Peak	14 9p23				 23 3 NFIB
Deletion	Peak	15 9p21.3		 24 5 KLHL9,	MLLT3
Deletion	Peak	16 9q12				 27 0
Deletion	Peak	17 9q34.3		 33 33 NOTCH1
Deletion	Peak	18 10q26.3	 23 11 PPP2R2D,	BNIP3
Deletion	Peak	19 11p15.5	 9 1 IGF2
Deletion	Peak	20 15q11.2	 14 5 SNURF
Deletion	Peak	21 16p13.3	 10 9 CLDN9
Deletion	Peak	22 16p11.1	 7 0
Deletion	Peak	23 16q22.2	 7 2 HYDIN
Deletion	Peak	24 17q21.31 7 17 BRCA1,	ADAM11
Deletion	Peak	25 17q25.3	 10 6 TSPAN10,	AATK
Deletion	Peak	26 19p13.3	 15 9 PLIN4,	PLIN5
Deletion	Peak	27 19p12			 6 1 ZNF208
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3.3.3 Gene expression analyses 

In the original dataset, RNA-Seq data was available for 469 tumour samples and 

68 normal samples. Of these, 65 were matched normal and tumour samples, 3 

were unmatched normal samples and 404 were unmatched tumour samples. 

Matched samples had sequencing data from both normal kidney and kidney cancer 

tissues in the same ccRCC patients, whereas unmatched samples only have 

sequencing data from either disease or no disease tissues.  

 

To decide if it was suitable to compare all tumour samples to all normal samples, 

multidimensional scaling (MDS) was performed (Figure 3.5). As all tumour samples 

were sufficiently clustered together, and were clearly distinguishable from the 

normal samples, it was deemed acceptable to groups all tumour samples vs. all 

normal samples for all further analyses. 

 

 
Figure 3.5: MDS plot for RNA-seq gene expression data for ccRCC 
MDS plot comparing ccRCC tumour and normal tissue samples. 469 ccRCC 
tumour samples were available (red) along with 68 normal kidney tissue samples 
(black). 
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3.3.3.1 Differentially regulated genes 

To obtain genes differentially regulated between the normal and tumour samples, 

the edgeR (Robinson et al.) package in R (R Development Core Team) was used. 

Using FDR q ≤ 0.05 and fold changes (FCs) of |log FC| ≥ 2.5 (equivalent to |FC| 

=5.6) as selection criteria, a list of 867 genes was obtained as significantly 

deregulated in ccRCC when compared to normal kidney samples.  

 

Genes showing the highest FCs included DOC2A, LPPR5, BIRC7, HP and MYEOV 

showing high up-regulation and UMOD, SCL12A1, DUSP9, KCNJ1 and KNG1 

showing high down-regulation. The biological roles of these genes are discussed in 

the following sections.  

 

3.3.3.2 GO and pathway enrichment for significantly deregulated genes 

GO overrepresentation analyses showed enrichment for genes involved in signal 

transduction, immune system processes, developmental processes and cell 

surface receptor linked signal transduction, and apoptosis related genes as top 

terms (Appendix A). Pathway enrichment analyses showed similar results; 

specifically cytokine receptor interaction genes, transmembrane transport, immune 

system genes and metabolism related genes represented the top pathways 

(Appendix 0).  

 

3.3.3.3 Gene Set Enrichment Analysis (GSEA) 

While an overrepresentation analyses as performed above enabled highlighting the 

major processes under play in ccRCC patients, a gene set enrichment analysis 

(GSEA) was performed to get a deeper understanding of the deregulation of these 

processes. All genes for which RNA-Seq data was assessed were included. A pre-

ranked GSEA was performed whereby a list of genes ranked according to FC was 

provided as input. The top pathways up-regulated in the ccRCC cohort included 

pathways belonging to immune cell regulation processes such as cytokine-cytokine 

receptor interaction and allograft rejection. The down-regulated pathways included 
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genes belonging to metabolic pathways, namely valine, leucine, isoleucine 

degradation, propanoate and fatty acid metabolism.  

 

3.3.3.4 NMF Clustering reveals the existence of at least two subgroups for 

ccRCC 

NMF clustering using the top 1500 most variable genes revealed two major 

subgroups of ccRCC. The cophenetic coefficient was highest for k=2 and k=3, but 

then dropped rapidly. The consensus clustering matrices also supplemented this 

result. The two subtypes contained 301 (Group 1) and 168 (Group 2) samples 

(Figure 3.6). 

 

This result is in concordance with recent work (Brannon et al.), which showed two 

subgroups for ccRCC, namely ccA and ccB subgroups. These two subgroups were 

shown to have a different prognosis, with ccA patients having a better survival than 

ccB. Using the classifier panel devised in the publication, 305 cases were classified 

as the ccA and 164 were classified as the ccB subgroup. 88% of the samples 

overlapped between Group 1 above with ccA classification and Group 2 with ccB, 

the mismatch for the rest can be explained with the possible existence of a third 

subgroup which has been discussed above. Since the ccA/ccB classification 

scheme has been shown to have prognostic significance, it has been used as the 

classification of choice for the purpose of this thesis. This work has been discussed 

in greater details in the results chapters, Chapter 4 and Chapter 5. 
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Figure 3.6: NMF clustering plot using the top 1500 most variable genes in the 
ccRCC cohort 
Consensus NMF clustering heatmaps depicts the stability of consensus clustering 
assignment into clusters using the top 1500 most variable genes for ccRCC based 
on RNA-Seq data. A. Ordered Consensus map for k=2. B. Ordered Consensus 
map for k=3. C. Cophenetic coefficient plot for k=2 to k=10. The coefficient was 
highest for k=2 and k=3. Both the coefficient and the clustering maps suggested 
the existence of two ccRCC subgroups and potentially a small third subgroup of 
ccRCC tumours (top red square in panel C). 
 

 

3.3.4 Network properties of ccRCC genes 

To study the network properties of ccRCC genes, all genes with somatic mutations 

were considered. These genes were then mapped to the PPIN to study network 

properties.  

 

Closely connected sub-networks (clusters) were determined for the ccRCC specific 

network using MCODE (Bader and Hogue). A total of 11 clusters were obtained 

with a degree cut-off of 4. Out of the 11 high confidence drivers, only five genes 
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namely VHL, PBRM1, ARID1A, BAP1 and TP53 were observed to cluster. The 

VHL gene was part of a 29-gene cluster (Figure 3.7A). A total of 11 genes in this 

cluster are ribosomal protein encoding genes or are involved in RNA metabolism. A 

few others were implicated in immune system related pathways while 11 genes 

could not be assigned to any particular pathway.  

 

PBRM1 and ARID1A are part of SWI/SNF complex. They were observed to be 

interacting with other genes in a larger complex of 147 genes (Figure 3.7B). A set 

of ~17 genes were implicated to be involved in the spliceosome and another large 

cluster of genes were identified to be immune system regulated genes. Multiple 

other chromatin modifiers were also observed to be part of this cluster. Both BAP1 

and TP53 genes were observed as part of a large cluster of 352 genes. The genes 

from this cluster are involved in transcription, cell cycle and immune system related 

pathways.  

 

Another cluster of 27 genes, which did not contain any apparent drivers (high or 

low confidence), was seen to be variably mutated in ~10% of the patient samples 

(Figure 3.8). These genes are ribosomal proteins involved in metabolism and 

translational processes. This observation might indicate that alternate pathways 

control multiple ccRCC mechanisms. Another smaller set of genes annotated as 

passengers, which were observed to be mutated in all together 5% of cases, 

seems to be part of a cluster (separate from the previous one) interacting with 

genes involved in ribosomal processes (the 42 gene cluster). While it is hard to 

comment on the relative significance of these modules, these data may indicate yet 

unthought-of pathways that may be playing a part in ccRCC biology. All 11 clusters 

are provided in appendix C. 
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Figure 3.7: Strongly connected subnetworks within the ccRCC PPIN 
Two example clusters (subnetworks) detected as part of the ccRCC specific PPIN. 
A. Depicts the 29-gene cluster which consisted of the VHL gene (red). B. Depicts 
the 147-gene cluster, which consisted of other chromatin modifiers such as ABL1 
and CREBBP. 
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Figure 3.8: Mutations in a cluster consisting of ribosomal proteins 
Figure depicts a bar chart showing somatic mutations occurring in genes encoding 
ribosomal proteins per sample in ccRCC. Taken together, mutations in this cluster 
have a total coverage of 10% of cases. The figure was generated using the cbio 
portal tool (http://www.cbioportal.org/) and has been zoomed in and cropped to 
remove unaltered cases. 
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3.3.5 Determining ccRCC driver modules using mutual exclusivity patterns 

The Dendrix (Vandin et al.) algorithm was applied to the mutation matrix of TCGA 

patient samples. Parameters were set similar to the original Dendrix publication. 

The algorithm was run for a range of set sizes k, for 2 ≤k ≤10. For each k, the 

algorithm was run 10000 times, starting with random seeds. Similar to the original 

publication, only sets that were sampled at frequency ≥ 1% were considered to be 

significant for each k. In the first instance, all genes mutated in at least three cases 

(total n=417) were considered as part of the analyses. Statistical significance was 

not observed for any sets with k ≥ 3. For k=2, five sets were sampled with a 

frequency ≥ 1%, (VHL and MUC4), (VHL and SETD2), (VHL and PBRM1), (VHL 

and PABPC1) and (VHL and KDM5C). Similar to the Dendrix publication, the 

mutual exclusivity of these gene pairs is not significant when tested using standard 

statistical tests. However, it may be postulated that these gene pairs might be 

biased due to the high coverage of the VHL gene. Therefore, the Dendrix algorithm 

was run again after removing the VHL gene; two sets, namely (MUC4 and PBRM1) 

and (BAP1 and PBRM1) were observed to be sampled with average frequencies of 

~8% and ~2%  respectively. While no direct interactions are known between either 

of PBRM1 with BAP1 or MUC4 genes, the role of mutations in the SWI/SNF 

(PBRM1 complex) and its impact on other pathways has been highlighted by the 

TCGA (The Cancer Genome Atlas Research Network). Furthermore, as discussed 

in sections 1.2.1 and 1.2.7, BAP1 and PBRM1 genes have been previously shown 

to be mutated in a mutually exclusive manner (Kapur et al.). The authors also 

showed differences in patient outcome for BAP1 and PBRM1 mutated cases. 

Moreover, a recent pan-cancer analysis also showed the mutual exclusivity 

between the SWI/SNF (PBRM1 complex) and the BAP1 complex in ccRCC in the 

TCGA cohort using the HotNet2 algorithm (Leiserson et al.).  

 

Biologically, MUC4 (Mucin 4) gene is known to be associated with intestinal 

epithelial cell differentiation. It has been implicated in tumour progression by 

repression of apoptosis. Expression levels of MUC4 have been associated with 

various cancers (up-regulated in pancreatic (Ansari et al., Singh et al.) and down-

regulated in breast (Cho et al.)). There are no known interactions between MUC4 

and PBRM1 genes. However, for set size k=3 (after removing VHL), two sets 
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namely, (MLL3, MUC4 and PBRM1) and (BAP1, MUC4 and PBRM1) were 

reported with an average frequency ~2.6% and 1.4% respectively. MLL3/KMT2C 

(Lysine (K)-Specific Methyltransferase) is a histone methyltransferase gene, a 

central component of MLL2/MML3 complex and is a coactivator complex of nuclear 

receptors, involved in transcriptional co-activation. It was also reported to be 

significantly mutated in Scelo et al. (Scelo et al.). While all these genes (MLL3, 

MUC4 and PBRM1) have different mechanisms of action, they all could potentially 

be modulating their functions by affecting the transcription machinery of the cancer 

cells. No sets were reported with frequency ≥ 1% above k=3. 

 

3.3.6 Co-alteration patterns reveals chromatin modifiers as key players in 

ccRCC 

Until now this analysis has focused on either driver genes or driver modules in 

isolation. Next, gene modules are explored that may be altered in a co-altered 

fashion. A probabilistic algorithm was adapted from the literature (Gu et al.) to test 

this hypothesis. The algorithm assigns each pair of co-altered modules a score, 

where a higher score indicates a higher likelihood for the module to be a putative 

signal for ccRCC (Methods section 2.4.4 and Figure 3.9). When the distribution of 

frequency of scores was assessed, a peak of coaltered modules with scores ≥ 30 

(max score = 36) was observed. Co-altered modules were analysed in this peak 

area, which contained ~19000 module pairs. This analysis is ongoing work being 

pursued in collaboration with Dr Tammy MK Cheng and data presented here form 

part of the preliminary analysis. 
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Figure 3.9: Schematic for detection of co-altered modules in ccRCC 
Figure depicts the workflow used to determine modules of genes that maybe 
mutated in co-altered manner. In each iteration of the algorithm, the search is 
begun with a pair of random seed genes (mutations in ccRCC), and iteratively the 
closest interaction partner of each seed gene is added to the module. At each step 
the score is calculated as shown at the bottom of the figure. Genes whose addition 
to the module does not increase the score are removed. Apart from the seed 
genes, all other genes in the module are removed iteratively to get the maximum 
score possible. The search stops when the score stops increasing.  
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The module pairs with the most frequent gene occurrences, or sets of genes, were 

interpreted. Chromatin modifier genes especially PBRM1 and ARID1A were the 

most frequent gene set. Modules containing these genes were observed to be 

coaltered along with genes associated with a range of functions and pathways, for 

example, ubiquitin proteolysis, the TGFβ pathway, the cell cycle and the EGFR1 

pathway. Further assessment showed that this gene set was most commonly 

altered with gene sets consisting of the VHL and SETD2 genes. While this is in line 

with the data presented here (section 3.3.1), it does contradict the results obtained 

from Dendrix when VHL was included in the analysis; however, as previously 

postulated, those results may have been biased due to high recurrence of VHL 

mutations. Nevertheless, further validation of these findings in independent cohorts 

will be required.  

 

Other genes that were observed to be part of multiple module pairs were TP53, 

VHL, SETD2 and the MTOR pathway related genes (MTOR, PIK3CA and PTEN). 

While unsurprisingly modules containing the TP53 gene were co-altered with a 

whole range of other genes with various cellular functions, VHL showed a tendency 

of co-alteration with genes belonging to immune system related functions or 

signalling genes such as those belonging to WNT, NOTCH and MAPK pathways. 

Intriguingly, most other top hits were seen to be occurring in conjunction with one 

or more chromatin modifying genes (for example, KDM5C). As part of this first pass 

analyses, chromatin regulators were observed to be the key players in ccRCC 

biology; however, at the time of writing of this thesis, certain analysis were still 

missing. These include assessing the differences between genes, which were 

observed to be part of module pairs vs. those not part of the module pairs, 

accounting for bias if any introduced due to the background PPIN and lastly, 

correlating mutational patterns of module pairs with ccRCC aggressiveness still 

remains to be elucidated.  

  

3.3.7 Detecting master regulators at the gene expression level 

To assess regulators at the gene expression stage, the MARINa algorithm was 

used. First a ccRCC specific gene expression network was generated using the 
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ARACNE algorithm (section 2.4.5 and 3.2.14). ARACNE uses minimal information 

between nodes to reverse engineer a network from gene expression data. MARINa 

was then applied to this network to get the master regulators (MRs) of gene 

expression for ccRCC. A total of 8442 regulators were obtained, out of which 692 

were significant at the FDR cut-off q ≤ 0.05 after bootstrapping. Following this list 

with a shadow analysis, to remove false positive regulators, gave a list of 76 

putative MRs. One of the top MRs in this was the epidermal growth factor (EGF) 

gene. EGF is implicated to be upstream of the PIK3CA/MTOR pathway and thus is 

involved in its regulation. Furthermore, not surprisingly, pathway enrichment on this 

list showed some genes belonging to metabolic pathways. However, while now a 

list of putative MRs at the gene expression level has been obtained much work is 

still required. This list needs to be comprehensively followed up with a literature 

search to gather data on these genes and their potential roles and how they may 

be enabling ccRCC mechanisms. Ultimately, experimental validation of the final list 

of MRs will be required.  

 

3.3.8 Genotype-Phenotype relationships 

Finally, a preliminary analysis to explore genotype-phenotype relations by 

integrating the genetic alterations to the gene expression data was performed. To 

find which genetic alterations may explain the gene expression changes observed, 

the DriverNet algorithm was applied. As explained in the Methods sections 2.4.6 

and 3.2.15, DriverNet, generates a bipartite graph and an edge is drawn from the 

left (genetic alterations) to the right (gene expression matrix), if an alteration could 

explain the corresponding gene expression changes. Intriguingly, while DriverNet, 

came up with a list of 100 putative drivers, this list was composed of primarily rare 

mutations. While it consisted of key transcription factors such as TP53 (mutated in 

2% of cases) and MYC (~0.5%), which do regulated numerous other genes, their 

coverage is low, which fails to explain what would be controlling the genes in the 

majority of the patient cohort. This avenue of investigation will require further 

exploration. 
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3.4 Summary 

The analyses performed in this chapter revealed the key genes involved in ccRCC 

pathogenesis. At the genetic level, these analyses, along with others reported in 

the literature, confirmed the importance of somatic mutations in VHL, PBRM1, 

SETD2, BAP1, KDM5C and TP53. Analyses of SCNA data, confirmed previously 

results (amplification of 5q and deletion of 9p), and also indicated deletion of 

chromosomes 1p (ARID1A) and 6q as putative target events. Comparison of these 

events with multiregion biopsy data, revealed that apart from VHL mutations and 

loss of chromosome 3p, almost all other events are subclonal, and single biopsy 

approaches are not effective in detecting such alterations due to under-sampling 

(Gerlinger et al.). Gene expression analysis established the existence of two 

subgroups of ccRCC, which map to the published prognostic signature ccA/ccB 

(Brannon et al.).  

 

Multiple network algorithms were employed to understand the pathways that 

genetic alterations are targeting as well as tackle inter-patient heterogeneity and in 

turn shed light on ITH. Using the MCODE algorithm, subnetworks/clusters of genes 

consisting of VHL, PBRM1 and ARID1A could be detected. In comparison, using 

the Dendrix algorithm to de novo identify new pathways, showed that in this dataset 

of ccRCC cases, adding PPI data is imperative to understand the mechanisms and 

that using mutational patterns alone are underpowered to do so.  

 

Further, assessing co-altered pathways at the genetic level revealed the 

importance of chromatin modifier genes both in terms of coverage and also as 

important genes that are altered along with multiple other pathways. Moreover,  

VHL, PBRM1 and SETD2, which are the three most recurrently altered genes in 

ccRCC, appears to be co-altered within pathways; co-alteration within key 

pathways was observed for other gene sets. These results shed insight into ccRCC 

mechanisms. Further exploration of such analysis for larger cohorts, with higher 

frequency of events, may enable answering questions such as which combinations 

of co-alteration patterns may lead to the more aggressive disease phenotype, or 

which combination of protein functions within key pathways should be 

simultaneously targeted to gain maximum therapeutic benefit. 
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Importantly, most analysis pointed out the significance of PBRM1 and other 

members of the SWI/SNF machinery, including ARID1A, to be key players in 

ccRCC biology. The complex was observed to be part of a larger module consisting 

of 142 genes (MCODE). PBRM1 was observed to be significant along with BAP1 

and MUC4 genes (Dendrix). Even in the co-altered module analysis, a high 

likelihood is assigned for multiple pathways to be co-altered with PBRM1, ARID1A 

and other chromatin modifying genes. Therefore, these analyses strongly 

emphasize the importance of chromatin regulators in ccRCC biology. While the 

utility of PBRM1 as a prognostic marker is still disputable (further discussed in 

Chapter 4 and see (Kapur et al., Gulati et al.)), these results are indicative of the 

importance of the SWI/SNF complex in ccRCC biology.   

 

While an attempt was made to elucidate genotype-phenotype relationships using 

the DriverNet algorithm, significant results were not obtained. There could be 

multiple reasons for this. The analyses may have been underpowered due to low 

frequency of events at the genetic level. Furthermore, the gene list obtained from 

DriverNet was enriched for genes that were hub genes i.e. had high numbers of 

PPIs. It can be speculated that the results may be biased towards such genes and 

thus producing false positives. Lastly, the algorithm was developed for microarray 

data and no significant changes have been made to the underlying calculations for 

RNA-Seq data. There is a step within the algorithm where expression outliers are 

calculated from the gene expression matrix, it may be that the algorithm is under 

detecting deregulated genes due to inherent differences in the microarray and 

RNA-Seq read outs.  

 

Finally, it should be noted that due to time limitations, for all network-based 

analyses only somatic mutation data was considered. Adding genes altered via 

SCNAs could potentially add more definitive information to the analyses performed. 
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Chapter 4. The quest for prognostic biomarkers 

4.1 Introduction 

So far it can be seen that, fitting to the overall picture of a typical cancer, ccRCC 

has a heterogeneous landscape with a few highly recurrent and numerous low 

frequency, somatic mutations as well as somatic copy number alterations (SCNAs). 

Moreover, in a number of studies, multiple gene expression based subtypes have 

been observed for ccRCC (Brannon et al., Zhao et al., Beleut et al.). As discussed 

in section 1.2.7 of the Introduction, outcome prediction for ccRCC greatly relies on 

clinical factors, such as tumour stage and tumour grade. Prognostic models have 

been formulated using these and other factors identified through routine clinical 

practice; such as the Mayo clinic, stage, size, grade and necrosis (SSIGN) score 

for predicting cancer specific survival (CSS) and the University of California 

Integrated Staging System (UISS), which includes TNM category, Fuhrman grade, 

and performance status to predict overall survival (OS). It is fit to presume that 

combining the existing clinical models to molecular biomarkers may help improve 

the accuracy of prognostic models. Through the years various research groups 

have found recurrent somatic mutations, SCNAs as well as gene expression 

signatures to be clinically associated with ccRCC. While a few of these events such 

as mutations in the BAP1 gene and deletion of chromosome 9p have been 

observed to be associated with patient prognosis in multiple studies (Kapur et al., 

Hakimi et al., Sanjmyatav et al., Klatte et al., La Rochelle et al.), most of these 

signatures have not been independently validated on different patient cohorts. 

Furthermore, the presence of a substantial amount of genetic intra-tumour 
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heterogeneity in ccRCC, detected through exome sequencing (Gerlinger et al., 

Gerlinger et al.), as well as SNP array analysis (Martinez et al.), of several regions 

from the same tumour, has raised questions regarding the applicability of such 

signatures in clinical practice. Taken together, these caveats suggest that further 

research is required to validate all available signatures in larger and independent 

cohorts. 

 

Availability of somatic mutation, SCNA, gene expression (RNA sequencing) and 

follow up data for over 400 ccRCC cases, published by The Cancer Genome Atlas 

consortium (TCGA, https://tcga-data.nci.nih.gov/tcga/), has enabled the direct 

comparison of the known ccRCC genomic predictors and provide the opportunity to 

systematically validate previously identified genetic and transcriptomic prognostic 

biomarkers in a large independent patient cohort.  

 

Thus, the analyses explained in this chapter were devised with an aim to answer 

two particular questions; first, to validate and compare published ccRCC prognostic 

biomarkers in an independent patient cohort and secondly, to assess intratumour 

heterogeneity (ITH) of the most promising markers to guide biomarker optimisation.  

 

4.2 Methods 

The framework for the analysis in this chapter has been described in detail here. All 

statistics applied in this chapter are briefly outlined with references to more detailed 

descriptions in Chapter 2 provided in relevant places. 

 

4.2.1 Literature Search 

While putative driver events were identified in Chapter 3 (such as mutations in the 

VHL gene, BAP1 gene and SCNAs in Chrom 3p), due to the lack of availability of a 

second independent validation cohort, candidate prognostic markers to be 

assessed in this chapter were selected using an exhaustive literature search. 

Biomarkers were selected that had been previously shown to have distinctive 

prognostic association as apposed to just simply being identified with driver events. 
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The aim here was to validate these prognostic biomarkers using an independent 

cohort from the TCGA data set.  

 

To compile an exhaustive list of possible biomarkers for validation, a systematic 

search of the PubMed and Google Scholar databases for publications describing 

genetic or transcriptomic prognostic biomarkers for RCC, was performed.  The 

terms, renal cell carcinoma, biomarker, prognosis and survival were used as 

keywords, and the search restricted to combinations of these terms. Articles 

published before and until December 2013, and in the English language, were 

considered for further analyses. Studies had to be based on either exclusively clear 

cell histology or could be mixed cohorts with other histologies; studies exclusively 

based on non-clear cell histology were excluded. Additional literature cited in 

identified prognostic marker publications or recent review articles (Brannon and 

Rathmell, Jonasch et al., Tang et al., Eichelberg et al., Junker et al., Arsanious et 

al., Oosterwijk et al.) was also assessed.  

 

As a final filter, the inclusion of follow-up data to show association with prognosis 

was deemed essential; studies that only showed an association with other poor 

prognosis clinical factors, such as tumour stage and grade were removed. Several 

publications investigating gene expression levels as potential prognostic 

biomarkers lacked information about how the identified genes can be applied to 

clinical samples in order to identify prognostically distinct subgroups. These were 

also excluded from further analysis. Using all these filters, 30 publications 

describing in all 32 RCC genetic or gene expression based prognostic biomarkers 

were identified in the literature search. However, four biomarkers were excluded 

from further analysis due to technical reasons. One biomarker (Yao et al.) was 

based on regression coefficients devised using microarray gene expression data. 

This could not to be applied to RNA-Seq data and was therefore excluded. The 

other three studies included multi-gene expression signatures, for which fewer than 

70% of gene probes mapped to genes annotated in the TCGA RNA-Seq dataset, 

which was chosen as an arbitrarily justified cut-off to be able to reproduce the 

respective signature (Takahashi et al., Sultmann et al., Vasselli et al.).   
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4.2.2 Patient cohort 

To study the above outlined objects, two cohorts were used. For the first part of the 

analysis, where an attempt to identify prognostic biomarkers was made, data 

published by TCGA was used. As described in Methods, sections 2.1.1, somatic 

mutation (n=417) and clinical data (n=446) were obtained for the same cohort from 

the supplementary material of the TCGA ccRCC publication (The Cancer Genome 

Atlas Research Network), SNP array (n=450) and RNA sequencing (RNA-Seq) 

data (n=469), and were downloaded (https://tcga-data.nci.nih.gov/tcga/) on 14th 

March 2012 and 18th September 2012, respectively. All of somatic mutations, 

SCNA, RNA-Seq and clinical data were available for a common cohort of 354 

patients. However, follow-up data or tumour grade were missing for four patients, 

leaving 350 patients, which formed our study cohort (core dataset). 

 

For the second part of the analysis, to assess ITH of the identified biomarkers, data 

published by our collaborating laboratory was used (Gerlinger et al., Gerlinger et 

al.). The multi-region gene expression datasets GSE31610 and GSE53000 were 

downloaded from the gene expression omnibus for the assessment of ITH. The 

dataset and preliminary processing of the microarray data is detailed in sections 

2.1.2 and 2.2.4; clustering of regions was performed using NMF clustering, as 

explained in section 0. 

 

4.2.3 Classification of patients into prognostic groups 

For somatic mutations, patients were classified into prognostic groups as those 

having non-syn mutations in the gene versus those not having these mutations. For 

VHL two additional cases were considered; 1) Non-syn mutations for Stage I/II/III 

cases only and 2) Loss-of-function mutations only. For SCNAs, patients were 

compared as those with the specific SCNA versus those without. For gene 

expression based signatures, for the three individual genes, CD31, EDNRB and 

TSPAN7; the cut-offs as given in the reference publication were used. For gene 

panel based classifiers, NMF clustering was performed to classify patients into 

cohorts. Lastly, for the TGFβ signature, pathway activity score was calculated and 
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patients were divided into two cohorts using median score value (Methods section 

2.5). 

 

4.2.4 Statistical Methods 

Assessment of association with prognosis was done at both i) univariate, using the 

logrank test (Methods Section 2.6.2) and the competing risk analysis (Methods 

Section 2.6.4), and at the ii) multivariate level using the Cox regression analysis 

(Methods Section 2.6.5). Death due to ccRCC was the chosen endpoint of interest. 

For all analyses, patients with the field “Composite Vital Status” = “DECEASED” 

and “Composite Tumour Status” = “WITH TUMOR” were considered to be dead 

with clear cell renal cancer related causes, while those with “Composite Vital Status” 

= “DECEASED” and “Composite Tumour Status” = “TUMOR FREE” were 

considered to be dead due to other causes. Follow-up time was defined using the 

“Composite Days to Death” field in case of patient death, and “Composite Days to 

Last Contact” for patients alive at the end of study period. For the multivariate Cox 

regression analysis, a backwards-stepwise selection process was implemented. 

The selection step was repeated till all the variables left in the model had p≤0.05. 

Although it is hard to define a formal way to determine the number of parameters, 

which can be tested in multivariate analysis based on the death event rate, to the 

best of our knowledge, we should not have more than ‘n’ number of variables in the 

final model where n = total number of deaths from disease/10, which for our study 

would equal 8 variables (Zwiener et al.). Our final multivariate model after stepwise 

selection has only two variables, which is in accordance with this criterion.  

 

Recursive partitioning (Methods section 2.7.1) was performed using the ctree() 

function in the ‘party’ package in R to generate a prognostication model. The 

logrank method was used to generate the p-values, and each node was split based 

on the logrank statistic and p ≤ 0.05. 

 

All statistical analyses were performed in R (v3.0.1) (R Development Core Team), 

using the packages ‘survival’ ‘gplots’, ‘cmprsk’ and ‘party’. Survival graphs were 

generated with GraphPad Prism (v6.03).  
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4.3 Results 

The median follow-up for the analysed patient cohort was 51 months. Clinical and 

pathological characteristics for the cohort are described in 
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Table 4.1 and were similar to the RCC cohorts from which the candidate 

biomarkers had been identified. All patients had undergone nephrectomy, which is 

the current line of treatment for kidney cancers and from which the samples for 

molecular analysis had been taken. After passing through the filters described in 

section 4.2.1, the literature search resulted in a total of 26 studies describing in all 

28 prognostic biomarkers (Table 4.2).  
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Table 4.1: Patient and tumour characteristics for the data cohort 
Table gives key clinical patient and tumour characteristics for the core dataset of 
350 cases. 
 
 

 
 

 

 

 

  

Variable TCGA Cohort (n=350)
Age
Median (IQR)   61 (52-70)
Gender
Male 222 (63%)
Female 128 (37%)
Fuhrman Grade
G1     4 (1%)
G2 145 (41%)
G3 146 (42%)
G4   55 (16%)
Clinical Stage
Stage I 162 (46%)
Stage II   34 (10%)
Stage III   96 (27%)
Stage IV   58 (17%)
Primary Tumour Spread
T1 166 (48%)
T2   40 (11%)
T3 139 (40%)
T4     5 (1%)
Metastatic Spread
M0 293 (84%)
M1   57 (16%)
Lymphnode Spread
N0 168 (48%)
N1     8 (2%)
NX (Undetermined) 174 (50%)
Median Follow-up   51 months
Total number of deaths 121
Number of deaths from ccRCC 80
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Table 4.2: Literature Search Results  
This table gives a summary of all the studies, biomarkers from which were 
considered part of this analysis, along with a reference of each study.  
 

Details on the cohort size of the original 

study, along with the method of detection 

of the biomarker as well as the endpoint 

of interest (CSS or overall survival) are 

shown.  
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Table 4.2 continued 
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4.3.1 Univariate analyses 

In order to validate the identified prognostic biomarkers, univariate analyses were 

performed using two different tests. All identified biomarkers were first tested using 

the logrank test, and all biomarkers assessed to be significant in logrank test, were 

then re-validated using the competing risk analysis. 

  

4.3.1.1  logrank test 

The logrank test assesses the significance of the difference in the survival 

distribution of samples under two or more conditions. The working of the logrank 

test is explained in more detail in section 2.6.2. This test was used to validate all 

identified prognostic signatures along with tumour stage and Fuhrman grade. The 

analysis started with assessing clinical factors, which have established association 

with prognosis. As expected, higher tumour stage and grade were significantly 

associated with poor CSS (Figure 4.1 and Table 4.3). Other established clinical 

prognostic variables such as blood test results, performance status or necrosis 

were not available for all patients and hence were not evaluated at this point. 

 

 

 
Figure 4.1: Kaplan Meier survival estimates for cancer specific survival 
determined for key clinical variables 
A. Depicts the Kaplan Meier (KM) survival curves based on tumour stage. Tumour 
Stage I has the best survival while stage IV has the worst survival. B. Depicts the 
KM curves based on Fuhrman grade. Due to the low number of G1 cases (n=2), 
they have been included along with G2 cases, with these cases having the best 
prognosis and G4 the worst. 
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Somatic mutations 

Somatic mutations in five tumour suppressor genes have been described to have 

prognostic associations (Kim et al., Schraml et al., Yao et al., Kapur et al., Hakimi 

et al., Sato et al., Kandoth et al.). While for genes, PBRM1, BAP1, SETD2 and 

TP53, association has been observed for non-synonymous mutations with CSS; for 

the VHL gene, association has been shown for non-synonymous mutations in one 

case for stage I-III grade tumours only (Yao et al.), while in two other studies, loss-

of-function mutations (frameshift and nonsense mutations) were shown to be 

associated with prognosis (Kim et al., Schraml et al.). Significance was assessed in 

accordance with each study, however only non-synonymous mutations in the BAP1 

(HR 1.94, p=0.022) and TP53 (HR 5.09, p<0.001) tumour suppressor genes 

validated as predictors of poor CSS (Figure 4.2 and Table 4.3). 
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Figure 4.2: Kaplan Meier survival estimates for cancer specific survival 
determined for somatic mutations 
A. VHL non-synonymous (non-syn) mutations (all cases), B. VHL loss-of-function 
mutations, C. VHL non-syn mutations (Stage I-III), D. PBRM1 non-syn mutations, 
E. BAP1 non-syn mutation status, F. SETD2 non-syn mutations, G. TP53 non-syn 
mutation status 
WT = wild type 
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Somatic copy number alterations 

A total of 14 copy number alteration events were identified as candidate biomarkers, 

including four focal SCNAs (Gunawan et al., Sanjmyatav et al.), six arm level 

alterations (Klatte et al., Monzon et al., Klatte et al., Kroeger et al., Elfving et al., La 

Rochelle et al., Moch et al., Brunelli et al.) and four whole chromosome alterations 

(Elfving et al., Antonelli et al.). Several of these SCNAs have been identified by 

cytogenetic and other low-resolution analyses. To facilitate comparison, copy 

number profiles generated from high resolution SNP array data, obtained from 

TCGA, were converted into lower resolution cytoband level data. Amplification or 

deletion of ≥50% of a chromosome arm, or of both arms of a chromosome, was 

considered to be equivalent to an arm level alteration, or to a whole chromosome 

aberration, respectively (The Cancer Genome Atlas Research Network). 

 

Nine out of the 14 SCNAs validated to be associated with prognosis and 

interestingly all showed association with poor prognosis. Chromosome 8q 

(Chrom8q) amplification (HR 2.70, p<0.001), Chrom12 amplification (HR 1.74, 

p=0.034), Chrom20 focal amplification (HR 2.44, p<0.001), Chrom20 amplification 

(HR 2.37, p<0.001), Chrom4p deletion (HR 1.97, p=0.019), Chrom9p focal deletion 

(HR 2.33, p<0.001), Chrom9p deletion (HR 2.56, p<0.001), Chrom19 deletion (HR 

3.25, p=0.034) and Chrom22q deletion (HR 2.23, p=0.012) were significantly 

associated with poor CSS. The remaining five SCNA markers failed validation 

(Figure 4.3 and Table 4.3).  
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Figure 4.3: Kaplan Meier survival estimates for cancer specific survival for 
somatic copy number alterations 
A. Chrom5q focal amplification (amp) status, B. Chrom 7q focal amp status, C. 
Chrom8q amp status, D. Chrom12 amp status, E. Chrom20q focal amp status, F. 
Chrom20 amp status, G. Chrom3p deletion (del) status, H. Chrom4p del status, I. 
Chrom8p del status, J. Chrom9p focal del status, K. Chrom9p del status, L. 
Chrom14q del status, M. Chrom19 del status, N. Chrom22q del status. 
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Gene expression analysis 

Nine gene expression biomarkers were identified, which included gene expression 

levels of three individual genes namely EDNRB, CD21 and TSPAN7, five gene 

expression panel based classifiers, and one signature based on TGFβ pathway 

activity. Eight out of the nine signatures validated. EDNRB and TSPAN7 gene-

expression above defined cut-offs (Wuttig et al.) correlated with improved CSS (HR 

0.29, p <0.001 and HR 0.37, p<0.001 respectively); however, CD31 overexpression 

was not significant. NMF clustering was applied for each multi-gene expression 

signature (Brannon et al., Kosari et al., Lane et al., Zhao et al., Beleut et al.) in 

order to identify samples with distinct expression profiles (consensus clustering 

maps can be found in Appendix D). All prognostic gene expression signatures 

validated: the aggressive subgroup defined by Kosari (Kosari et al.) had worse 

CSS than the non-aggressive subgroup (HR 2.85, p<0.001);  the Zhao (Zhao et al.) 

poor prognosis Cluster 2 had worse CSS than Cluster 1 (HR 5.26, p<0.001); the 

aggressive subgroup defined by Lane (Lane et al.) showed worse CSS than the 

indolent subgroup (HR 4.21, p<0.001); the Brannon (Brannon et al.) poor prognosis 

ccB subgroup (HR 4.90, p<0.001) had worse CSS than the ccA subgroup. Based 

on Beleut (Beleut et al.), CSS was significantly worse for patients in the poor 

prognosis Clusters C (HR 2.21, p=0.034) and B (HR 2.46, p=0.002) than for those 

in Cluster A; although CSS of Clusters B and C showed no significant difference. 

Bostrom’s (Bostrom et al.) poor risk subgroup with high TGFβ score had worse 

CSS than the subgroup with a low score (HR 1.98, p=0.003) (Figure 4.4 and Table 

4.3). 
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Figure 4.4: Kaplan Meier survival estimates for cancer specific survival for 
clinical gene expression based signatures  
A. EDNRB expression levels, B. TSPAN7 expression levels, C. Gene expression 
subgroup of patients – Kosari signature, D. Gene expression subgroup of patients 
– Zhao signature, E. Gene expression subgroup of patients – Lane signature, F. 
Gene expression subgroup of patients – ccA/ccB, G. Gene expression subgroup of 
patients – Beleut signature, and H. Gene expression subgroup of patients 
according to TGFβ activity score.  
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Table 4.3: Results from logrank analysis 
Table gives the results as obtained by logrank analysis for each of the 28 assessed 
biomarkers. For each biomarker, the number of cases, the hazard ratio (HR) 
calculated by univariate Cox analysis and the p-value of significance calculated by 
logrank analysis is provided.  
 

 

Variable Number of cases (n=350)   HR (95% C.I.) p-value

Stage II vs. Stage I   34 (10%)   4.45 (1.55 – 12.77) 0.006
Stage III vs. Stage I   96 (27%)   7.34 (3.16 – 17.08) <0.001
Stage IV vs. Stage I   58 (17%) 25.24 (11.26 – 56.71) <0.001
G3 vs. G1/G2 146 (42%)   2.35 (1.30 – 4.26) 0.005
G4 vs. G1/G2   55 (16%)   7.43 (3.99 – 13.81) <0.001

VHL loss of function mutation   86 (24.5%)   0.59 (0.34 – 1.04) 0.064
VHL non-syn mutation (all cases) 178 (51%)   0.80 (0.51 – 1.25) 0.323
VHL non-syn mutations (stage I-III cases) 155/292 (53%)   0.95 (0.50 – 1.80) 0.873
PBRM1 non-syn mutation 117 (33%)   0.90 (0.56 – 1.43) 0.643
BAP1 non-syn mutation   37 (10.5%)   1.94 (1.08 – 3.45) 0.022
SETD2 non-syn mutation   39 (11%)   1.41 (0.76 – 2.60) 0.273
TP53 non-syn mutation     7 (2%)   5.09 (1.85 – 14.00) <0.001

5q focal Amplification 191 (54.5%)   0.72 (0.47 – 1.12) 0.143
7q focal Amplification   95 (27%)   1.29 (0.81 – 2.05) 0.283
8q  Amplification   33 (9%)   2.70 (1.52 – 4.81) <0.001
12 Amplification   56 (16%)   1.74 (1.04 – 2.91) 0.034
20q focal Amplification   51 (15%)   2.44 (1.49 – 3.99) <0.001
20 Amplification   47 (13%)   2.37 (1.41 – 3.97) <0.001
3p  Deletion 318 (91%)   0.86 (0.41 – 1.79) 0.687
4p  Deletion   42 (12%)   1.97 (1.10 – 3.52) 0.019
8p  Deletion 101 (29%)   1.58 (0.99 – 2.50) 0.051
9p focal Deletion   85 (24%)   2.33 (1.49 – 3.64) <0.001
9p Deletion   88 (25%)   2.56 (1.64 – 3.99) <0.001
14q Deletion 140 (40%)   1.51 (0.97 – 2.35) 0.064
19 Deletion     6 (1.7%)   3.25 (1.02 – 10.32) 0.034
22q Deletion   26 (7%)   2.23 (1.18 – 4.23) 0.012

Clinical and Pathological Characteristics

Copy Number Variations

Somatic Mutations
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Table 4.3 continued 

 
 

4.3.1.2  Competing risk analysis 

While a logrank test is commonly used when assessing the association of an event 

with patient prognosis, as discussed in section 2.6.4, a competing risk (CR) 

analysis assesses the cumulative incidence of an event and takes into account 

death due to other causes. Thus, a CR analysis is less likely to over fit the 

significance of an event. Keeping this in mind, all 19 of the 28 molecular 

biomarkers, which were observed to be significantly associated (p≤0.05) with CSS 

in the logrank test, were re-assessed using competing risk analysis. As shown in 

Table 4.4, 17 out of the 19 assessed biomarkers showed significant association 

Variable Number of cases (n=350)   HR (95% C.I.) p-value

< median 175 (50%)
≥ median 175 (50%)

< median 175 (50%)
≥ median 175 (50%)

< 33 percentile 105 (30%)
≥ 33 percentile 245 (70%)

Non - aggressive 242 (69%)
Aggressive 108 (31%)

Cluster 1 (good) 269 (77%)
Cluster 2 (poor) 81 (23%)

Indolent 219 (63%)
Aggressive 131 (37%)

ccA 240 (69%)
ccB 110 (31%)

Cluster A 127(36%)   1.00 (Ref)
Cluster B 175 (50%)   2.27 (1.31 – 3.96)
Cluster C 48 (14%)   2.30 (1.13 – 4.66)

Low expression score 175 (50%)
High expression score 175 (50%)

Expression Analysis

0.051  0.64 (0.41 – 1.01)

  0.37 (0.23 – 0.59) <0.001

CD31 expression

EDNRB expression

TSPAN7 expression

Kosari signature

Zhao signature

Lane signature

ccA/ccB status

0.009

  1.98 (1.23 – 3.16) 0.003

TGFβ signature

  0.29 (0.18 – 0.45) <0.001

  2.85 (1.84 – 4.43) <0.001

  5.26 (3.37 – 8.22) <0.001

  4.21 (2.62 – 6.77) <0.001

  4.90 (3.09 – 7.76)

Beulet signature

<0.001
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with poor prognosis and only non-synonymous mutations in the BAP1 gene and 

Chrom19 deletion failed to validate.  

 

Table 4.4: Competing risk analysis 
Table gives the p-value of significance for the 19 biomarkers which were re-
assessed in a competing risk analysis. 17 out of the 19 biomarkers validated in this 
analysis. 
 

 
 

4.3.2 Multivariate Cox regression analysis 

At this stage, 17 of the 28 identified candidate biomarkers, using two univariate 

analyses, could be validated. Of further interest, is how independent these 

biomarkers were in comparison to each other, and if any of them were able to 

added prognostic information to established clinical factors. To assess this, a 

multivariate analysis was performed, containing these validated biomarkers along 

with established clinical variables.  As there were overlapping SCNA events that 

passed validation in the univariate analysis, to avoid redundancy, Chrom9p focal 

deletion and Chrom20 whole arm amplification were excluded on the basis of their 

Variable p-value
BAP1 non-syn mutation 0.072
TP53 non-syn mutation 0.006
8q  Amplification <0.001
12 Amplification 0.047
20q focal Amplification <0.001
20 Amplification 0.001
4p  Deletion 0.028
9p focal Deletion <0.001
9p Deletion <0.001
19 Deletion 0.081
22q Deletion 0.016
EDNRB >= median <0.001
TSPAN7 >= 33% <0.001
Kosari signature : aggressive <0.001
Zhao signature: poor subgroup <0.001
Lane signature: aggressive <0.001
ccA/ccB subgroup status <0.001
Beulet signature 0.015
TGFβ signature: high expression 0.003
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lower hazard ratios as compared to the overlapping Chrom9p arm level deletions 

and Chrom20 focal amplifications. Two instances of Cox regression were 

performed; in the first instance, the 17 biomarkers remaining after removing the 

above two, which had been validated in the logrank analysis, were included 

together with tumour stage and grade into the multivariate analysis (MVA). Tumour 

stage, the ccA/ccB gene expression signature and Chrom19 deletions were the 

only independent predictors of CSS (Table 4.5). In the second instance of the 

analysis, the two markers (BAP1 mutations, Chrom19 deletions), which had not 

been significant in the competing risk analysis, were excluded and only tumour 

stage and the ccA/ccB signature remained significant in the MVA (Table 4.5). 

Taking both these results into consideration, along with the small number of six 

tumours showing Chrom19 deletions, the ccB signature was the lead candidate for 

further assessment. For all non-significant variables, the hazard ratio, 95% 

confidence interval (C.I.), and a p-value, was generated at the step it was removed 

(Appendix E). 

 

Table 4.5: Multivariate Cox Regression analysis 
Table shows the results as obtained in both the iterations of the backwards-
stepwise regression analysis. The left side of the table gives the HR and p-value for 
the three significant variables remaining at the end when all 19 variables were 
considered. The right side of the table shows the results when the analysis was 
performed considering only the 17 variables which validated both in the logrank 
and competing risk analysis.  
 

 
 

 

 

 

Variable
Hazard Ratio (C.I.) p-value Hazard Ratio (C.I.) p-value

Stage I   1.00 (Ref)   1.00 (Ref)
Stage II   3.48 (1.20 – 10.06) 0.022   3.40 (1.18 – 9.82) 0.024
Stage III   4.61 (1.93 – 11.00) <0.001   4.86 (2.05 – 11.55) <0.001
Stage IV 18.01 (7.89 – 41.12) <0.001 17.77 (7.79 – 40.53) <0.001
Chromosome 19 deletion   4.18 (1.27 – 13.69) 0.018 - -

ccA status   1.00 (Ref)   1.00 (Ref)
ccB status   2.99 (1.87 – 4.80)   2.95 (1.84 – 4.72)

Including BAP1 mutations and Chrom19 deletion Excluding BAP1 mutations and Chrom19 deletion

<0.001 <0.001

Tumour stage

ccA/ccB status
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The ccB signature was consistently associated with a worse prognosis in patients 

with stage I (HR >10, p<0.001), stage II/III (HR 3.03, p=0.003) and stage IV 

ccRCCs (HR 2.15, p=0.015) (Figure 4.5). A total of 135 patients with stage I 

tumours expressing the ccA signature, demonstrated particularly good outcomes 

with no cancer specific deaths for over 6 years.  

 

 

 
Figure 4.5: Kaplan Meier survival estimates for cancer specific survival for 
ccA/ccB split by tumour stage 
KM curves depicting that even if patient cohorts are divided according to stage, for 
each stage wise cohort, significant differences in survival (all logrank p <0.05) are 
observed based on the ccA/ccB subgroup of the patients.  
 
 

A further point to note here is that in section 3.2.6 of chapter 3, we had seen that 

results using the ccA/ccB gene panel of 110 genes correlate well with the results of 

using the much larger panel of 1500 genes when attempting to classify patients into 

subgroups.  

 

In February 2014, after completion of the literature search, a newer prognostic 

signature named ClearCode34, which is based on the ccA/ccB signature, was 

published (Brooks et al.). This signature is based on the expression of 34 genes to 

classify patients into the ccA and ccB subgroups. As the ccA/ccB signature proved 

to be a lead candidate throughout all the analyses, this signature was also tested 

for its applicability. ClearCode34 was significant in univariate analysis, and together 

with tumour stage in MVA, if the ccA/ccB signature was omitted (Appendix F).  

Although the HR for ClearCode34 in the MVA was lower (HR=2.23) than that of the 

ccA/ccB signature (HR=2.95), the implementation of this 34-gene signature may be 

easier in clinical practice than the 110-gene ccA/ccB signature. However, for the 

purposes of this work, the cluster assignments obtained using the full 110-gene 

panel were used for all further analyses.  
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4.3.3 Recursive partitioning reiterates the importance of ccA/ccB subgroup 

status 

The multivariate Cox regression model developed in this analysis enabled a 

consensus set of prognostic markers to be selected in an unbiased manner. A tree 

based recursive partitioning was applied, using these markers, namely, tumour 

stage and ccA/ccB subgroup status, to propose a risk stratification model. This 

analysis highlighted key points; firstly patients with tumour stage I and expressing 

the ccA expression signature represented the low risk groups, with no deaths for 

over 6 years within this subgroup. Secondly, while the ccA subgroup showed 

significantly different survival between stages I and stage II/III cases, this was not 

true for the ccB subgroup. Finally, even within the Stage IV cases, for cases 

expressing the ccA subgroup signature, the median survival was almost twice that 

of those in the ccB subgroup (Figure 4.6). This analysis reconfirmed the results 

observed by Cox regression analysis and the stage-wise logrank test for ccA/ccB 

subgroup status (Figure 4.5 and Table 4.5).  
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Figure 4.6: A prognostic model based on tumour stage and the ccA/ccB 
subgroup status of patients 
Risk stratification based on recursive partitioning using only tumour stage and the 
ccA/ccB subgroup status of patients. Each node is split based on logrank p ≤ 0.05. 
The bottom panel of the figure shows the Kaplan Meier curve for each risk 
subgroup. 
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4.3.4 Comparison of the ccA/ccB signature with other prognostic scoring 

schemes 

The SSIGN prognostic scoring system is a validated and a widely used scoring 

measure used to predict ccRCC prognosis and is based on stage, grade and 

tumour necrosis (Frank et al., Ficarra et al., Zigeuner et al.). As tumour necrosis 

data was missing for 16 of the 350 cases in our cohort, this measure was not 

included in our main analyses; however it was compared with the ccA/ccB 

signature in a separate analysis. In the multivariate setting, the ccA/ccB signature 

was significant when adjusted for the SSIGN score. CSS of patients whose 

tumours displayed the ccA or ccB signature were significantly different in three out 

of five validated SSIGN score categories as seen in logrank tests (Ficarra et al., 

Zigeuner et al.) (Table 4.6 and Figure 4.7).  

 

Table 4.6: Multivariate analysis with the SSIGN score and ccA/ccB subgroup 
status 
Table shows the results of Multivariate Cox analysis considering both the SSIGN 
score and the ccA/ccB subgroup of the patients. As shown, even when adjusted for 
the SSIGN score, the ccA/ccB subgroup status still remains significant predictor of 
CSS. 
 

 
 

 

The ccA/ccB signature could not be compared with other clinical nomograms, such 

as haemoglobin, LDH, ECOG performance and UISS score (Motzer et al., Heng et 

al., Zisman et al., Sorbellini et al.) as essential parameters were not available for 

the majority of patients in the TCGA cohort.  

 

Variable Hazard Ratio (C.I.) p-value
SSIGN Score
SSIGN 0-2   1.00 (Ref)
SSIGN 3-4   2.69 (0.64 – 11.29) 0.175
SSIGN 5-6   8.28 (2.28 – 30.06) 0.001
SSIGN 7-9 13.23 (3.92 – 44.61) <0.001
SSIGN ≥ 10 34.73 (10.29 – 117.20) <0.001
ccA subgroup
ccB subgroup

  2.24 (1.38 – 3.64) 0.001
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Figure 4.7: Kaplan-Meier cancer specific survival estimates for ccA/ccB 
subgroups split by SSIGN score classes (n=334) 
Cases were split by SSIGN score categories (Ficarra et al., Zigeuner et al.) and 
Kaplan-Meier estimates were reassessed based on ccA/ccB subgroup status for 
each category. The subgroup status showed significant association with CSS in 
three of the five assessed categories. 
 

4.3.5 ITH of the ccA/ccB signature 

In the Introduction, section 1.2.5, the evidence of extensive levels of Intratumour 

heterogeneity in ccRCC was discussed (Gerlinger et al., Gerlinger et al.). Also, in 

(Gerlinger et al.), it was shown that the ccA and the ccB signature were present 

simultaneously within an individual ccRCC. The results discussed so far in this 

chapter, were based on single-biopsy data, and at this stage of the analysis, it was 

important to evaluate whether ITH can lead to ccA and ccB signatures being 

displayed within a single tumour. To this end, previously analysed published gene 

expression data was reinvestigated (Gerlinger et al., Gerlinger et al.). 63 tumour 

regions from 10 stage II-IV ccRCCs were classified as ccA/ccB using the gene 

expression panel (Appendix G), and the results mapped onto the phylogenetic 

trees previously published for these tumours (Gerlinger et al.) (Figure 4.8). ccA and 

ccB signatures were observed to occur within the same tumour in eight out of the 

10 cases and only two tumours homogenously expressed the ccA signature. This 

signifies the need to sample multiple tumour regions in order to reliably detect poor 

prognostic clones. 
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Figure 4.8: Heterogeneity analysis of ccA/ccB expression profiles 
ccA and ccB profiles detected by consensus NMF clustering in a multi-region 
analysis dataset from 10 ccRCCs, which were mapped onto the phylogenetic trees 
of these tumours (adapted with permission from (Gerlinger et al.)). Regional gene 
expression signatures were assigned to the dominant clones detected within the 
region and the minority clones detected in some regions in the original publication 
have been omitted. This figure is as presented in (Gulati et al.). 
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4.4 Summary 

In this biomarker study, performed in an independent validation cohort, out of 28 

previously published genetic and transcriptomic prognostic ccRCC markers, 17 

validated in logrank and competing risk analyses as predictors of CSS. However, 

only the ccB gene expression signature, along with tumour stage, was significant in 

the MVA. Taken together, this analyses suggested that the ccA/ccB gene 

expression signature outperforms other transcriptomic and genetic biomarkers for 

the prediction of ccRCC CSS and that it adds prognostic information to tumour 

stage and to the SSIGN prognostic model. This signature could be particularly 

relevant for the profiling of stage I ccRCCs where the detection of the ccA signature 

was associated with an excellent prognosis. Stage I ccA tumours may only require 

minimal follow-up whereas ccB tumours may benefit from more stringent 

surveillance and may therefore be good candidates for adjuvant therapy trials.  

 

Evaluation of the ccA/ccB signature across multiple tumour regions from each of 10 

stage II-IV ccRCCs demonstrated heterogeneous expression patterns with ccA and 

ccB signatures co-existing in 8/10 cases. ITH within spatial separated subclones, 

that may harbour distinct transcriptomic profiles, demonstrates that single tumour 

biopsies are unlikely to reveal a complete picture of the landscape of even the best 

current binary classification ccRCC biomarkers. These observations highlighted the 

need for multi-region profiling of larger cohorts, which could help define how to 

integrate heterogeneity assessments into biomarker predictions and subsequently 

improve the accuracy of the ccA/ccB signature. 

 

This study had a few limitations. Firstly, several candidate markers, which failed 

validation in univariate or multivariate analysis, such as Chrom19 deletion, 

Chrom8q amplification and BAP1 and TP53 mutations have low prevalence 

(≤10%); therefore this study may be underpowered to definitively assess the role of 

these markers. Secondly, biomarkers based on immunohistochemistry could not be 

assessed due to the lack of protein expression data for the validation cohort. 
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Chapter 5. Molecular drivers of the ccA/ccB 
signature 

5.1 Introduction 

The analyses in the previous chapter have shown that the ccA/ccB gene 

expression signature was the only biomarker, which validated as an independent 

predictor of patient prognosis even when adjusted for clinical established variables. 

Furthermore, although ITH was observed for this signature; in a single biopsy per 

patient setting, this signature was observed to successfully classify poor prognosis 

patients. While, questions regarding the impact of ITH on the accuracy of these 

predictions still remain unanswered, an important question is to ascertain what 

drives the poor prognosis ccB subgroup and how is it different from the ccA 

subgroup. This is imperative, since due to a marked absence of effective adjuvant 

strategies, prognostic ccRCC markers are of limited clinical utility. Thus in this 

chapter, an attempt is made to deconvolve the molecular mechanisms behind 

these expression signatures.  

 

Previously, in the original publication for this signature, the authors revealed that 

genes overexpressed in samples with the ccA signature are enriched for genes 

implicated in angiogenesis, fatty acid-, organic acid- and pyruvate metabolism. 

Whereas genes overexpressed in samples displaying the ccB signature are 

enriched for cell differentiation, epithelial to mesenchymal transition, mitotic cell 

cycle control, response to wounding and TGFβ and Wnt signalling pathway 



Chapter 5. ccA/ccB signature 

 

141 

 

regulation (Brannon et al.).  In this chapter, these signatures were further explored. 

Three major objectives were set:  

 

1. To determine the pathways deregulated in both ccA and ccB subgroups. 

2. To elucidate drivers of ccA and ccB subgroups at the genetic level. 

3. Finding driver networks and regulators for the ccA/ccB signature by 

performing genotype-phenotype analysis. 

 

5.2 Methods 

The methods used for the analyses in this chapter are briefly outlined below; for 

further details, a reference to the appropriate section is provided at the end of each 

section.  

 

5.2.1 Patient cohort 

In the analyses performed in this chapter, the original dataset of 469 ccRCC 

patients for which RNA-Seq was available for each patient from TCGA was used. 

Depending upon the requirements of the analysis, either raw count generated by 

the RSEM method or normalised RSEM counts to the upper quartile normal counts 

of the TCGA, were used. This has been clarified in the relevant sections. 

Normalised counts were log2 transformed before further analyses. In either case, 

only genes, for which the counts (raw and normalised resp.) were above 30 in at 

least 80% of the samples, were included in the analyses. 

 

The ccA/ccB subgroups were determined for all 469 cases using supervised NMF 

clustering; however, when comparing with other variables the number of cases may 

be different depending upon data availability of the variable under consideration. 

Case counts (n) have been given in all such places.  
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5.2.2 NMF clustering 

Expression data was available for 103/110 genes in gene expression signature 

used to validate biomarkers for ccRCC (Brannon et al.), and was submitted for 

consensus NMF clustering analysis (Brunet et al.) to the Broad Institute’s 

GenePattern server (Reich et al.). The cluster number (k) range was predefined 

from two to 10. Each clustering run returned a cophenetic correlation coefficient 

that measures the stability of cluster assignments as well as a consensus 

clustering maps for the respective k value. Based on both these data, the optimal 

number of clusters could be identified. (Refer methods section 2.5.3) 

 

5.2.3 Statistical analysis 

Differential regulation analysis was performed using the edgeR (Robinson et al., 

2010) package in R (R Development Core Team, 2013). (Refer methods section 

2.8.1).Over representation analysis for gene ontology and pathways was performed 

using the MSigDB (Liberzon, Liberzon et al.) and genego portal (Thomson Reuters, 

https://portal.genego.com/). (Refer methods section 2.8.2). Gene Set Enrichment 

Analysis was performed using the standalone tool from the Broad Institute using 

the curated pathways dataset as background (Subramanian et al., 2005). (Refer 

methods section 2.8.3). To evaluate the differences in the occurrences of genetic 

alterations in the ccA/ccB subgroups, Fisher’s exact test was performed in R to 

calculate the odds ratio and the p-value of significance. 

 

5.2.4 Weighted Genomic Instability Index (wGII) 

The weighted genomic instability index (wGII) (Burrell et al.), is a measure of the 

overall copy number alterations within a tumour genome, and thus provides a score 

for the level of genomic perturbations within tumour samples; a numeric score 

between 0 and 1 is returned where a wGII ≥ 0.2 is considered to be genomically 

unstable (Lee et al.). The returned numbers are a weighted average of the 

deviation from the proportion of bases on each chromosome away from the sample 

ploidy. (Refer methods section 2.2.6) 
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5.2.5 Machine learning: random forest 

In order to find the more important features to classify the ccA (n=240) and ccB 

(n=110) subgroupings the Random Forest (RF) machine learning protocol, in R, 

was used; the package randomForestSRC (Ishwaran et al., Ishwaran and Kogalur). 

In this implementation, the number of trees was set to 1000 for each iteration; all 

other parameters were set to their default values. (Refer methods section 2.7.2). 

After training, the random forest feature importance values were invoked (Breiman). 

This gives a ranked list of the features, which were most important for 

accurate classification, and hence features which can discriminate best between 

ccA and ccB. 

 

5.3 Results 

The ccA/ccB subgroup status was ascertained for the 469 cases for which RNA-

Seq data were available. To meet the objectives set out in the introduction of this 

chapter, firstly a pathway enrichment analyses was performed using the gene 

expression data to find out major pathways controlling the ccA and ccB subgroups. 

Following this the putative genetic drivers of the ccA/ccB subgroups were 

ascertained through enrichment analyses using Fisher’s exact tests. Subsequently, 

genotype – phenotype relationships were elucidated for these subgroups.  

 

Consensus NMF clustering led to the classification of 305 cases belonging to the 

ccA subgroup and 164 cases belonging to the ccB subgroup (Figure 5.1). Clinically, 

the ccA subgroup tended to be more Stage I/II than Stage III/IV, while the ccB 

subgroup tended to consist of more from the higher stages (n=417, OR=3.43, 

p<0.001). There were no statistical differences in the age of patients in the two 

subgroups (n=417, p=0.348). In the full cohort of patients, for whom both SCNA 

and RNA-Seq data were available, chromosome 3p was observed to be more 

enriched in the ccA subgroup (n=422, OR=0.31, p<0.001). In contrast to the 

primary study (Brannon et al.), in this cohort of cases there were higher odds of 

ccA patients having a non-synonymous VHL mutations than the ccB patients 

(n=390, OR=0.48, p<0.001). Median survival for ccA was not yet reached at the 
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end of the study period where as for ccB subgroup this was 4.45 years (n=415, 

nccA=281, nccB=134).  

 

 
 

Figure 5.1: NMF clustering results for the ccA/ccB gene panel 
A. Cophenetic correlation coefficient. The cophenetic coefficient depicts the 
strength of clustering at different values of k. The coefficient was highest for k=2. B. 
Consensus clustering matrix for k=2. 
 

5.3.1 Differential regulation analysis 

Differential gene expression analysis was performed using the edgeR (Robinson et 

al.) package, for three separate comparisons. Genes deregulated in ccA cases 

when compared to normal kidney samples in the first instance, second comparison 

was between ccB and normal cases and the last analysis was performed by 

comparing ccA cases to ccB. The edgeR output provides three different values for 

each gene in the input namely log fold changes (log FC), log CPM, and the p-value. 

A list of significantly differentially regulated genes can then be generated using p-

value and/or fold change cut-offs. However, another approach is to rank the input 

list of genes using either the fold changes or p-values and then run a Gene set 

enrichment analysis (GSEA). Both analyses were performed for all pairwise 

comparisons.   
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5.3.1.1 Differentially regulated genes  

To generate a list of significantly differentially regulated genes, all p-values were 

first corrected for multiple testing. The final list of differentially expressed genes 

was compiled using a statistical FDR q-value ≤ 0.05 and a FC cut-off of |log FC| ≥ 

2.5 (equivalent to |FC| =5.6) as selection criteria, for each comparison. 

 

When comparing ccA and ccB gene expression levels to normal kidney cell 

expression levels, some genes were identified to be deregulated in both subgroups. 

This was not unexpected since both are ccRCC subtypes. After removing these 

genes, 235 genes were obtained to be uniquely deregulated in the ccA subgroup, 

and 539 genes were deregulated in the ccB subgroup, only.  

 

Gene ontology (GO) term enrichment and pathway over-representation analysis on 

these genes were performed using two sources, namely MSigDB (Broad Institute 

(Liberzon, Liberzon et al.)) and the genego portal (Thomson Reuters, 

https://portal.genego.com/). 

 

MSigDB was used to obtain the top 100 pathways and the top 100 GO Biological 

Processes (BPs), enriched respectively in the ccA vs. Normal samples (Appendix 

H) and ccB vs. Normal samples (Appendix I). In the pathway enrichment analysis 

only 13 pathways were considered to be enriched for the ccA subgroup using the 

FDR q-value ≤ 0.05 as cut off, whereas the ccB subgroup had 100 pathways 

enriched of out of which only five were also observed in the ccA subgroup. The five 

pathways which were present in both lists, included genes involved in 

developmental biology, PDGF signalling, homeostasis, axon guidance and peptide 

ligand-binding receptors. ccA samples were enriched for genes involved in glycine, 

serine and threonine metabolism, GPCR signalling and transmembrane transport. 

Whereas, genes involved in mitotic cell cycle and cell cycle checkpoints, immune 

signalling, immune response activation genes, regulation of the immune system 

were enriched specifically in the ccB subgroup. 
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For the GO enrichment analysis, 44 BPs were seen to be enriched for from the ccA 

list of differentially expressed genes, whereas a total of 100 BPs were obtained 

from the ccB list, 12 of which were shared with ccA. The ccA subgroup showed an 

enrichment for genes involved in genes involved in cellular transport, G protein 

coupled signalling while the ccB subgroup showed similar results to the pathway 

enrichment with significant enrichment of mitotic cell cycle, cell cycle regulation and 

checkpoint control genes, apoptosis control and immune regulation. The results 

from genego portal did not add any significant new pathways to the above results.  

 

As a final check, differential expression was also tested specifically between the 

ccB subgroup vs. the ccA subgroup. 144 genes were obtained to be deregulated 

with FDR q ≤ 0.05 and |log fc| ≥ 2.5. Enrichment analyses for this list showed 

differential regulation of genes involved in organ development, immune response, 

response to external and internal stimuli and apoptosis pathways. This comparison 

highlighted the differential regulation of these pathways within ccRCC subgroups, 

and may indicate their role in the pathogenesis of the poor prognosis ccB subgroup. 

 

5.3.1.2 Gene set enrichment analysis (GSEA) 

Furthermore, gene set enrichment analyses was also performed for all the three 

comparisons under consideration. When both of the ccA and ccB subgroups were 

compared to the Normal samples, using the FDR q-value ≤0.05 as cut off, 90 

significantly enriched pathways were obtained for the ccA subgroup and 150 

pathways were enriched for in the ccB subgroup. As previously observed (Brannon 

et al.) the metabolic pathways showed a down-regulation in both cohorts. In the 

ccA subgroup, up-regulation was seen for phagosome and myogenesis pathways 

while genes belonging to the oxidative phosphorylation pathway and signalling by 

ERBB4, and amino acid synthesis pathways, showed a down-regulation. In 

contrast, in the ccB subgroup, significant up-regulation was seen primarily for 

genes involved in extracellular matrix (ECM) reorganisation, ECM-receptor 

interaction, mitotic cell cycle and cell cycle check point genes, while genes 

belonging to histidine metabolism, pyruvate metabolism, glycolysis, glucose 
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transport and transmembrane transport pathways in general, were seen to be 

significantly down-regulated. 

 

These results suggest that the ccA subgroup is primarily controlled by metabolic 

pathways, which is representative of the metabolic nature of ccRCC. However, the 

ccB subgroup has additional deregulation of immune signalling pathways and cell 

cycle checkpoint genes, which may be contributing to the aggressive nature of this 

subgroup.   

 

5.3.2 Molecular drivers of the ccA and ccB subgroups 

To determine if the molecular drivers of the ccA/ccB expression subgroups could 

be associated with the genetic factors assessed in the prognostic analyses 

described in Chapter 4, the following analysis was performed. 

 

All the genetic prognostic factors that were found in the literature search (n=17*, 

duplicate entries of Chrom9p and Chrom20 were removed based on lower (HRs)), 

were categorised as those that validated in the log-rank tests (n=9) and those that 

failed to validate (n=8). The ccB expression signature was then investigated to see 

if it might reflect the transcriptomic impact of the poor risk genetic alterations, which 

were significant in logrank analysis but failed in the multivariate analysis. For this 

analysis, the cohort of all 350 cases, as devised in Chapter 4, was used. Seven out 

of the nine poor prognosis genetic alterations (BAP1 and TP53 mutations; 

Chrom8q, Chrom12 and Chrom20q focal amplifications; Chrom9p and Chrom22q 

deletions) were significantly enriched (p<0.05) in the ccB subgroup (Figure 5.2). In 

contrast, on repeating the analyses for the eight candidate genetic markers that 

had failed univariate validation, only two were found to be enriched in ccB samples 

(Figure 5.3). 
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Figure 5.2: Enrichment analysis for the poor prognosis genetic events in the 
ccA/ccB subgroups 
The top part of the figure depicts a heatmap, showing the gene expression of the 
103/110 gene panel (Brannon et al.). The ccA subgroup is represented on the left 
and the ccB subgroup on the right. The bars below the heatmap depict the 
occurrence of the genetic events in each patient. The odds ratio of the occurrence 
of these events in the ccB subgroup with respect to the ccA subgroup is given on 
the right side, along with a p-value of significance for the odds (Fisher’s exact test). 
The barchart at the bottom of the figure depicts the total number of these events 
per patient. The highest number of these events occurring in a single patient is 
seven, with both of these cases belonging to the ccB subgroup. This figure is as 
presented in (Gulati et al.). 
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Figure 5.3: Enrichment analysis for the genetic events, which failed validation 
in the ccA/ccB subgroups 
The top part of the figure depicts a heatmap, showing the gene expression of the 
103/110 gene panel (Brannon et al.). The ccA subgroup is represented on the left 
and the ccB subgroup on the right. The bars below the heatmap depict the 
occurrence of the genetic events in each patient. The odds ratio of the occurrence 
of these events in the ccB subgroup with respect to the ccA subgroup is given on 
the right side, along with a p-value of significance for the odds (Fisher’s exact test). 
The barchart at the bottom of the figure depicts the total number of these events 
per patient. The highest number of these events occurring in a single patient is 
seven, with both of these cases belonging to the ccB subgroup. This figure is as 
presented in (Gulati et al.). 
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Further assessment of these aberrations showed that about 72% of the ccB 

samples had at least one of the seven enriched aberrations in contrast to only 30% 

of ccA samples (Figure 5.4A). Both, the maximum and the median number of the 

poor prognosis aberrations per sample were higher in the ccB group than in the 

ccA group (Figure 5.4A and 5.4B). However, when the distribution of aberrations 

which failed validation in the prognostic analysis was compared, the median 

number of these aberrations between ccA and ccB samples was not statistically 

different (Figure 5.4C and 5.4D). 

 
Figure 5.4: Comparison of genetic markers in the ccA/ccB subgroups 
A. Comparison of the number of poor prognosis genetic aberrations per sample 
between ccA and ccB subgroups. Only aberrations, which are enriched in the ccB 
subgroup, were considered. B. Box and whisker plot comparing median number of 
poor prognosis genetic aberrations between samples assigned to the ccA and the 
ccB group. C. Comparison of the number of number of genetic aberrations, which 
did not pass univariate validation per sample between ccA and ccB subgroups. D. 
Boxplot and whisker plot showing the median number of genetic aberrations, which 
did not pass univariate validation between ccA and ccB subgroups.  
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Chromosomal instability is known to foster the acquisition of SCNAs and has been 

associated with poor prognosis in several cancers (McGranahan et al., 2012). To 

reveal whether enrichment of chromosomal aberrations in ccB was a result of 

increased chromosomal instability, the weighted Genomic Instability Index (wGII), a 

measure of overall copy number aberrations, was calculated for each sample (wGII 

≥ 0.2 is considered unstable (Lee et al.)). The ccB samples had significantly higher 

wGII scores when compared to ccA samples (p<0.001, Figure 5.5A). However, the 

mutation load was not significantly different between the two cohorts (p>0.05, 

Figure 5.5B and 5.5C). Based on these results, it appears possible that the 

aggressive ccB phenotype is partially driven by several poor prognosis genetic 

alterations, co-occurring within these samples, which may be permitted by a cancer 

genomic background of elevated chromosomal instability.  

 

 
 

Figure 5.5: Comparison of genomic measures in the ccA/ccB subgroups 
Box and whisker plots comparing genomic factors between the ccA/ccB subgroups. 
A. Comparison of wGII between the two cohorts where wGII ≥ 0.2 is deemed to be 
genomically unstable; ccB patients were observed to be more genomically 
unstable. B. and C. compare the total mutation load and the number of non-syn 
mutations between the two subgroups respectively. No statistical differences were 
seen between the two cohorts.  
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5.3.3 Random forests elucidate the most important determinants of the ccB 

subgroup   

At this point, it was decided to test the hypothesis, that while high genomic 

instability fosters the development of the aggressive ccB subgroup, it is not the 

absolute determinant of the aggressiveness of this subgroup. Since an important 

part of the random forest classification method is to report the weights of each 

factor contributing to the classification, this method was chosen to test the 

hypothesis.  Multiple iterations were performed with different sets of events as 

variables to first determine the most accurate set of variables, which could 

distinguish between the ccA and ccB subgroups (Table 5.1). Most accurate (least 

error rate) classification was achieved using all the variables under consideration in 

the classifier (Iteration 6, Table 5.1). The variables from this iteration were ranked 

to find the most important variables that were able to distinguish between the ccA 

and ccB subgroups (Figure 5.6). In decreasing order of importance, Chrom8q, 

Chrom20q and Chrom5q amplification status, the BAP1 non-synonymous 

mutations and deletion of Chrom9p were observed to be the most important 

variables for distinguishing between the ccA and ccB subgroups; followed by 

genomic instability. It should be noted here, none of the variable sets achieved high 

accuracy on cross validation, especially when predicting the ccB subgroup; 

however, since the aim of analysis was not to build a classifier but to determine the 

factors more likely to be important for distinguishing between the subgroup. It may 

be said with some confidence that while a genomically unstable background fosters 

the aggressive subtype, other unknown factors, along with the ones discussed in 

this chapter, are important for the establishment and progression of the cancer  
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subgroups.  

 

 

  

Table 5.1: Random Forest Iterations  
Table gives the results as obtained by multiple iterations of the random forest analysis.  

Each row represents 1 iteration of the analysis, and 
the details for the variables considered and error 
rates: overall error rate and error rate in specifically 
predicting the ccA and ccB subgroups. 
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Figure 5.6: Variable importance calculated from Random forest analysis 
The bar charts depict the importance of various factors when distinguishing 
between the ccA/ccB subgroups. The top bar chart depicts the importance of each 
variable when predicting the overall classification, while the remaining two depict 
the importance of each variable when specifically differentiating the ccA subgroup 
(1) and the ccB subgroup (2). Positive importance is shown as blue bars whereas 
negative is shown as red bars.  
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5.3.4 Genotype – phenotype relationships  

In the above analyses, both genetic and transcriptomic have ascertained that there 

are clear differences in the ccA and ccB subgroups.  This led to the question of 

finding what genetic alterations may be controlling the transcriptomic regulation of 

these two signatures, identifying drivers and thereby suggesting targets for therapy.  

 

Interestingly, results from employing the random forest method also indicated that 

taking into account only the above 17 genetic events, along with wGII, is not 

sufficient to accurately distinguish between the ccA and ccB phenotypes. However, 

investigating genotype - phenotype relationships in a very simplistic manner, simply 

by comparing the co-occurrence of events relative to the ccA/ccB subgroups, some 

putative driver events can be identified.    

 

Apart from BAP1, Chrom8q, Chrom20q and Chrom9p, all have genes involved in 

the ubiquitin mediated proteolysis pathway (UMPP), all of which have higher odds 

of alteration in the ccB subgroup; which may explain the higher deregulation of the 

UMPP in this subgroup of ccRCC cases. Further, Chrom8q and Chrom20q also 

have genes involved in the ECM receptor interaction pathway, which is deregulated 

in the ccB subtype.  

 

5.4 Summary 

In this chapter the ccA/ccB signature is explored in detail, with the objective of 

explaining the mechanisms that distinguish the aggressive ccB subgroup from ccA. 

The analyses confirmed previously known observations but also add further 

information and understanding. As discussed in the introduction of this chapter, 

previous work had revealed that genes overexpressed in samples with the ccA 

signature are enriched for genes implicated in angiogenesis, fatty acid-, organic 

acid- and pyruvate metabolism. Genes overexpressed in samples displaying the 

ccB signature are enriched for cell differentiation, epithelial to mesenchymal 

transition, mitotic cell cycle, response to wounding and TGFβ and Wnt signalling 

genes (Brannon et al.). In the differential gene expression analysis, while the ccA 

subgroups showed a deregulation of genes involved in metabolic pathways, in 
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concordance with previous results, the ccB group in addition showed significant 

deregulation in immune regulation and cell cycle checkpoint pathways.  

 

Seven out of nine specific genetic alterations, which were validated in univariate 

analysis, were shown to be enriched in ccB samples with 72% of samples 

harbouring at least one and up to six of these alterations per patient. These genetic 

changes were only found in 30% of the ccA samples with a maximum of four 

aberrations per sample. Thus, the ccB signature may reflect the transcriptomic 

impact of these poor prognosis alterations, but more than one alteration may be 

necessary to establish this phenotype and as yet unknown alterations are also 

likely to contribute. We had also pointed out that prognostic markers are of limited 

clinical utility in ccRCC due to the current absence of effective adjuvant strategies. 

Further study of the interplay of these genetic aberrations and the pathways 

deregulated in the ccB signature are clearly necessary in order to reveal the 

mechanisms and biological implications of the ccB phenotype. Such insights could 

eventually foster the development of specific therapeutic approaches for poor 

prognosis ccRCCs. 

 

Chromosomal instability indices (wGII) were higher in ccB than in ccA samples; 

however; the mutational load was not statistically different between these two 

cohorts. Random forest analysis also ranked individual alterations higher than wGII, 

when distinguishing between the two subgroups. These data suggest that 

chromosomal instability may catalyse the evolution of the ccB phenotype by 

providing the permissive heterogeneous genomic background, from which these 

genetic alterations can be selected, but it may not be the sole driver of the 

aggressive subtype. These results are hypothesis generating and will require 

further study. 

 

In a simple genotype-phenotype analysis, putative drivers of the ccB signature can 

be identified; however, a complete picture of specific drivers of the ccA/ccB 

subgroups could not be discerned. There are a number of confounding factors. 

Firstly, there may be other elements, such as epigenetic alterations and 

methylation patterns, contributing to the aggressive subtype, which have not been 

considered as part of this overall analysis. Secondly, intratumour heterogeneity is 
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not taken into consideration and this is likely to play an important role, not least 

because some tumours may actually consist of both a ccA and ccB cellular 

phenotype. Finally, as exemplified by the relatively high error rates associated with 

the ccA/ccB classification when employing the random forest methodology, it 

appears various factors such as cohort sizes and the accuracy of some of the 

calculated features, is not yet sufficient to attempt a full and definitive classification 

for the drivers and dynamic network attributes associated with each cancer 

subgroup.   
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Chapter 6. Epilogue 

In this thesis, I have reported on ccRCC in terms of its biology and prognosis using 

multi ‘omics’ datasets. Primary aims were to evaluate the catalogue of genetic 

alterations, understand the molecular mechanisms driving ccRCC evolution, come 

up with better molecular markers to improve prognostication and even to predict 

novel therapeutic avenues. Chapter 3 covered the biology led analyses. Chapter 4 

covered the prognostic analyses, with both these chapters culminating in a 

description of the molecular mechanisms of the lead prognostic marker, namely the 

ccA/ccB gene expression subgroup, described in Chapter 5.  

 

Today, NGS technologies permit analyses at nucleotide resolution for both protein 

coding regions (exomes) and whole genomes. Through deep coverage, it is 

possible to detect mutations that occur in even a small population of cells, allowing 

the subclonal architecture of tumours to be inferred (Nik-Zainal et al.). Over the 

past few years, this has led to the identification of multiple new ccRCC genes, 

increasing our knowledge of the disease. Our research (Chapter 3) as well as well 

as that of others (The Cancer Genome Atlas Research Network, Gerlinger et al.), 

have established loss of chromosome 3p and biallelic mutations in the VHL gene 

as the two key events in ccRCC. Moreover, mutations in major chromatin modifiers 

such as PBRM1, SETD2 and KDM5C were also verified as key recurrent events. In 

terms of SCNAs, amplification of chromosomes 5q, 8q, 12 and 20q as well as 

deletion of chromosomes 9p, 8p and 14q were observed to be potential driver 

events. At the gene expression level, we were able to confirm the existence of at 

least two subgroups for ccRCC (Brannon et al.). Further gene expression analysis 
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showed ccRCC to be primarily a metabolism driven cancer and that the more 

aggressive subgroup has higher deregulation of immune signalling pathways 

(Chapters 3 and 5).  

 

However, inter-patient as well as intratumour heterogeneity, especially taking into 

account the fact that most genetic events in ccRCC are rare, raises important 

questions as to the pathogenesis of the cancer. Inter-patient heterogeneity has 

been thought to be the most common reason for the diversity in patient outcomes 

even between tumours with the same histology, stage and grade (Gerlinger et al.). 

Nevertheless, computational network analysis algorithms have been successfully 

utilised to study cancer and disease genome previously and therefore provided the 

platform to explore these rare events in ccRCC. In Chapter 3, multiple state-of-the-

art algorithms were used, leading to the finding of multiple chromatin regulators as 

the major players in ccRCC biology. While this has been observed by others (The 

Cancer Genome Atlas Research Network), our analysis on co-altered modules 

further emphasised their role in ccRCC pathogenesis. 

 

Furthermore, in Chapter 3, using the ARACNE and MARINa algorithms, putative 

drivers at the gene expression level were identified. This provided an indication of 

some important genes controlling the gene expression of ccRCCs; however, further 

analysis of these genes is warranted. One important exercise could be to compare 

if any of these drivers are regulated in other cancer types. This may provide 

important clues as to the mechanism of actions of these genes and also validate 

the analysis presented in this thesis.  

 

Compounding this inter-patient heterogeneity further, is the intratumour 

heterogeneity, whereby molecular characteristics vary within individual tumour 

biopsies. ITH complicates the precise molecular profiling of tumours and thereby 

constitutes a major hurdle in identifying optimal patient therapy. Our capabilities to 

detect and characterise ITH have improved significantly as the sequencing 

technologies no longer present the biggest limitation (Gerlinger et al.). 

Nevertheless, the challenge now is to develop optimal sampling technologies that 

will enable the identification of somatic alterations across different regions from the 
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same tumour and associated metastasis, which would enable effective modelling of 

the dynamics of tumour evolution.  

 

Cancer evolution has always been depicted as a linear evolution over time, where 

successive accumulation of alterations provides corresponding increases in fitness 

(Gerlinger et al.). However, work by and with our colleagues has refuted this claim 

and shown branched evolution patterns for 10 ccRCCs that were analysed through 

multiregion biopsies (Gerlinger et al., Gerlinger et al.). Moreover, analyses 

presented in this thesis on assessment of the heterogeneity of the ccA/ccB gene 

expression signature, has shown heterogeneity for this signature within individual 

tumour regions (Gulati et al.).  

 

In terms of prognostic biomarkers, as shown in Chapter 5, 17 out of the 28 

published genetic and transcriptomic prognostic ccRCC markers could be validated 

in logrank and competing risk analysis as predictors of CSS for an independent 

validation cohort. Of those, only the ccB gene expression signature was significant 

in MVA. Tumour stage was the only other independent predictor of CSS in MVA. 

Importantly, the ccA signature identified patients with Stage I ccRCCs who had an 

excellent prognosis with no cancer specific deaths over more than 6 years of follow 

up. The ccA/ccB signature was also significant in MVA with the established SSIGN 

prediction model, demonstrating that this molecular marker can add additional 

information to one of the best currently available predictors based on clinical and 

pathological information. Thus, the ccA/ccB signature could refine personalized 

follow up strategies or stratification into adjuvant therapy trials. The novel 

ClearCode34 signature is based on the ccA/ccB signature but can be assessed 

from 34 instead of 110 genes. The performance of this new marker was slightly 

inferior but it may nevertheless be valuable as clinical adoption may be easier 

(Gulati et al.). 

 

Alternatively, as discussed in section 1.4.2 of the Introduction, methods combining 

network analysis with cox regression analysis (NetCox) can be employed to build 

more robust prognostic signatures. NetCox based strategies may prove to be an 

effective pipeline to overcome the problems associated with rare genetic alterations. 



Chapter 6. Epilogue 

 

161 

 

It also provides a method to combine different transcriptomic and epigenetic data 

types such as somatic mutations, SCNAs, methylation data, and RNA-Seq data. 

 

Therapeutically speaking, several actionable driver genetic markers were shown to 

be subclonal, for example mutations in the MTOR gene (Gerlinger et al.), thereby 

raises questions as to the suitability of these markers as therapeutic targets. It has 

been suggested that targeting the alterations on the trunk (ubiquitous alterations) 

may be an effective clinical strategy (Yap et al.); however, thus far identified 

definitive ubiquitous events in ccRCC are limited to mutations in VHL gene and loss 

of chromosome 3p. Targeted therapies against VEGF, which is downstream to VHL 

mutations, have been previously tested, but as discussed in the Introduction, these 

are no longer thought to be the most effective route for treatment.   

 

The work described here (Chapter 6), along with the work of others (Brannon et al.), 

has also shown that the aggressive ccB subtype is associated with genes involved 

in vascular, immune response, inflammation, cell cycle progression, and 

proliferation pathways. It has been suggested that this may explain the 

ineffectiveness of existing targeted treatment strategies as they mainly tackle 

angiogenesis pathways; hence these treatments might preferentially target 

vascularised tumours and are in turn ineffective in the treatment of the highly 

aggressive hypoxic renal cell carcinomas (Kroeger et al.). Likewise, targeting 

multiple alterations from different subclones might also provide more effective 

treatment strategies and help in improving outcomes. Furthermore, immune 

therapies which are independent of the heterogeneity of single target genes have 

been suggested to have potential as they may overcome ITH (McGranahan and 

Swanton). Indeed, before the emergence of antiangiogenic targeted therapies, 

immune based therapies were the method of choice for metastatic ccRCC care. 

Curative responses had been observed for IL-2 based therapies, whereas only 

delayed progression has been shown for targeted therapies (Fyfe et al., McDermott 

et al., Yang et al.). Recently, there has been a resurrection of immune therapies for 

ccRCC in the form of immune checkpoint inhibitors, which have shown good results 

for melanoma and are now in clinical trials and show promising early stage results 

(Naidoo et al., Topalian et al., Yang et al.). A recent review also comprehensively 
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assesses the progress of PD1/PDL1 inhibitors for Urologic cancers (Carosella et 

al.). 

 

Further extending on the topic of prognostication models, recently, Rini and 

colleagues (Rini et al.) investigated the association between outcome post-

nephrectomy for ccRCC patients and the expression levels of 732 genes in a 

cohort of 942 cases. They selected 11 best performing genes that represent key 

ccRCC pathways, combining them with 5 reference genes to develop a recurrence 

score. They then validated this score in a cohort of 626 cases. 

 

To address ITH, Rini et al. (Rini et al.) focused on 8 cases. They used two 

representative formalin-fixed paraffin-embedded (FFPE) blocks for each case and 

sampled 3 sections from each block. They concluded that little or no intratumour 

heterogeneity was associated with their score. However, in our analysis of more 

extensively sampled, albeit more advanced-stage tumours (Gerlinger et al.), we 

observe pervasive intratumour variability of expression of the 11 genes from the 

Rini score (Figure 6.1). Thus, our analysis does not support the authors’ conclusion 

that this transcriptomic signature is a truncal event that can be fully captured in a 

single biopsy approach (Gulati et al.). 
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Figure 6.1: Heatmap based on hierarchical clustering of multiple regions from 
10 tumours (Gerlinger et al.) based on the 11 cancer related genes from the 
Rini score (Rini et al.).  
Columns represent tumour regions (n=63) and rows correspond to the genes 
(n=11). Regions derived from the same tumour (coloured identically) do not cluster 
together, demonstrating intratumour heterogeneity with respect to the expression of 
the 11 genes. Specifically, based on EDNRB expression Region 1 (R1) from 
patient EV002 shows down-regulation while the remaining regions show varying 
degrees of up-regulation; based on IL6 expression Region 2 (R2) from patient 
RMH004 shows strong up-regulation while all other regions show down-regulation.  
 

Besides our work on the ccA/ccB gene expression signature validating as the only 

biomarker adding prognostic value over and above the clinical parameters 

available for the TCGA cohort (Gulati et al.), ClearCode34, as discussed above, 

which is based on the ccA/ccB signature, has been shown to be a significant 
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predictor of RFS (Brooks et al.). While the Rini score is based on the expression of 

16 genes, ClearCode34 is based on a 34-gene signature. Both the Rini score and 

the ClearCode34 model have been independently validated and add value to 

recurrence predictions. However, while the Rini score has been developed based 

on RT-PCR data, the ccA/ccB signature was developed based on microarray data, 

and validated using RNA-Sequencing data. There are inherent differences in these 

methodologies both in terms of the read-out and expression normalisation. 

Therefore, it would be worthwhile to compare both signatures in the same cohort, 

profiled by the same technique. This should enable an assessment of the most 

robust signature and its clinical applicability.  

 

The scoring scheme devised by Rini et al. is commendable. Whilst we have shown 

the existence of heterogeneity for both these signatures, it is yet to be established 

as to which of them would be more robust against the background of ITH. Caution 

is therefore recommended when commenting on the relative contribution of tumour 

heterogeneity to prognostication models. 

 

These data suggest some interesting avenues for research. Despite ITH, the ccB 

signature out performs every other candidate biomarker in this analysis. It is 

currently unknown whether a tumour with a small ccB component has a similarly 

poor prognosis to an identical size tumour, which is dominated by the ccB signature. 

If the absolute size of the poor risk clone, irrespective of the entire tumour 

population, is the most critical parameter, then ITH may be less problematic in 

small tumours as the chance of analytical techniques sampling the high risk cell 

population would be high. However, detection of a poor risk ccB clone in larger 

tumours may be more difficult unless the entire tumour is sampled or dominated by 

the ccB signature. These considerations demonstrate that insights into the impact 

of ITH on clinical outcomes are limited, raising important questions regarding the 

clinical interpretation of subclonal abundance and how heterogeneous tumours can 

be better profiled for biomarker discovery and precision medicine.  

 

All the analyses presented in this thesis underline that the challenges lying ahead 

of us are linked to sampling technologies and how they can improve both 

prognostic models as well as understanding how tumour clonal heterogeneity 
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impacts upon clinical outcome. How cancer subclones compete, adapt, and evolve 

through the disease course in relation to therapy, is an area of unmet clinical and 

scientific need.  Multiple samples from the same tumour are imperative for the 

determination of the most aggressive molecular signature or subclone within the 

tumour. A major effort has been launched in this direction known as the Lung 

TRACERx (TRAcking non-small cell lung Cancer Evolution through therapy [Rx], 

ClinicalTrials.gov number, NCT01888601), which is a prospective study in primary 

non-small cell lung cancer (NSCLC). This study, aims to define the genomic 

landscape of NSCLC and to understand the impact of ITH on therapeutic and 

survival outcome through multiregion and longitudinal tumour sampling and 

sequencing (Jamal-Hanjani et al.). While this methodology was initially proposed 

for the TRACERx trial for Non-small cell lung cancer, our colleagues are now 

implementing this for ccRCC as well (Soultati et al.).  

 

While efforts such as TRACERx are commendable, longitudinal sampling for solid 

tumours presents greater problems both in terms of finances and discomfort for the 

patient. Non-invasive sampling methods such as circulating tumour cells (CTCs) 

and circulating tumour DNA (ctDNA) are increasingly becoming popular as proxy 

measures for tumour biopsies. While solid tumour biopsies remain the gold 

standard for tumour characterisation, the evolving demands of precision medicine 

require the development of more real time assays which can enable tumour 

evolution studies (Mateo et al.). CTCs shed from tumour cells into the blood stream 

are extremely rare (Allard et al.). Metastatic tumours are more likely to have higher 

counts of CTCs in the blood stream (Tanaka et al.), and primary tumours 

undergoing treatment have also shown the existence of CTCs, reflective of the 

probability of recurrence of disease (Hofman et al.). 

 

Studies have been successful in showing the correlation between the number of 

CTCs in the blood stream and patient prognosis for metastatic disease for prostrate, 

breast and colorectal cancer (Cristofanilli et al., de Bono et al., Cohen et al.); 

promising results are also being seen in other cancer studies, for example, lung 

(Krebs et al., Hiltermann et al.), melanoma (Rao et al.), head and neck (Nichols et 

al.) and pancreatic cancers (Han et al.).  Furthermore, CTCs have been shown to 

be promising biomarkers for early stage diseases in colorectal (Iinuma et al.) and 
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breast cancers (Rack et al.), establishing that enumeration of CTCs is a powerful 

prognostic tool.  

 

Moreover, profiling of DNA and RNA from CTCs can enable extensive longitudinal 

studies evaluating the molecular landscape of the cancer, intratumour 

heterogeneity and the response of the cancer top therapy. Indeed in multiple 

cancers, targeted approaches have revealed tumour specific SCNAs (Shaw et al.), 

mutations driving drug response (Diaz et al.).  Whole exome and genome 

sequencing has revealed the clonal structure of the primary tumour (Chan et al.), 

variant selection by therapy (Murtaza et al., Dawson et al.) and de-novo genomic 

rearrangements (Leary et al.).  

 

While questions regarding the extent to which ctDNA is representative of tumour 

DNA present some obvious caveats, the benefits in terms of sampling and ease of 

analysis and the obvious associations seen with prognosis warrant further studies 

to evaluate and develop the clinical applicability of CTCs and ctDNA. Both the 

above mentioned longitudinal trials are incorporating the serial collection of blood 

samples in their assessments and are working on evaluating the utility of ctDNA to 

study disease burden and progression. Such studies will provide unparalleled 

platforms to study cancer mechanisms and offer insights into further advancing 

cancer therapy and personalised treatment opportunities. 
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Appendix 
A. GO overrepresentation analysis: Tumour vs. Normal 
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B. Pathway overrepresentation analysis: Tumour vs. Normal 
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PK1,RELA,STRN3,STRIP1,PHF10,TAF8,TCP1,ERBB2,TAF7,TCEB2,LRR1,TCEB1,IKBKB,

SMARCA2,INPP5D,ARID1B,YY1,MED6,ARID1A,MED23,HRAS,IGF1R,INSR,PTK2,ACTL6

A,YWHAG,SRRM2,ZAP70,HSPA1L,SFPQ,EZR,HCK,EPOR,TAF3,SNRPA1,HNRNPA2B1,
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3K7,MAP1LC3B,KIT,SREBF1,SNRNP200,EP300,LEF1,NCOR2,SF3B1,CBLB,FGFR1,RUN

X1,CTR9,SRSF9,HNRNPH3,TAB2,TAF4,PRPF40A,BCAR1,RPL28,EFS,FBXO25,CTTNBP

2NL,NMT1,TRA2A,NELFB,PAF1,HSP90B1,HNRNPH2,PNO1,BCR,SRA1,DLGAP2,RBMX,

HNRNPDL,CTDP1,ASAP1,RTF1,CREBBP,RBX1,EPHA2,LEO1,PPP2R2A,MLH1,CDC73,R
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,CASP8AP2,HECTD3,RYK,SUMO3,WHSC1,DSG1,COG5,SEC24D,PTPRA,AKTIP,HSPB1,

TBPL1,RBL1,GTF3C5,DNAJC7,SHMT1,ZC3H15,TAB1,IL4R,AGL,HIST1H4A,IL2RG,EIF3B,

TSEN34,MIS12,PDGFRA,PAWR,MIER1,KHDRBS1,ATF4,AARSD1,NKX2-

1,NSL1,CD247,TOR1AIP1,RNF8,GINS3,MORF4L1,ARAP1,NDUFS8,COMMD1,KIAA1598,

PIAS2,BCL11B,ITGB3,PTPN18,SERBP1,RASA1,TAF1B,LAT2,CCP110,SCNN1A,XRCC6,A

RNTL,KANK2,PAG1,EGF,UFC1,SLC25A3,USP9X,TRMT112,SSSCA1,NEURL4,RAB3GAP

1,MAP3K5,EIF3J,ARHGEF7,TAF1L,KRT73,AHR,DCD,HIST1H1C,MYCBP,EIF5,EIF4G2,TF

DP2,DAPK3,TARDBP,APPL1,PRKCE,CBX5,GTF2B,TEK,TRIM37,ZNF217,PRPF4,ACTR3

B,DCC,TPM3,SEC24A,ATP5B,CEP290,SH3GL1,CEP76,EEF1B2,SUV39H2,CHERP,CD22,

TERF2,EHMT2,CSTF3,CXCR4,LIG4,TTC8,CEP97,EGFR,CCNT1,THOC1,PTGES3,E2F1,B

BS5,GTF2E1,ICT1,GTF3C2,IRAK2,PDHX,BBIP1,SLC1A5,LRSAM1,USP5,HIST4H4,DOK2,

PPP2R5D,SET,CHEK1,TOPBP1,TOPORS,SART3,CALU,MRPS15,PDLIM5,GNE,NCKIPSD

,PRDX6,CBX1,PIAS3,SNX6,RPL34,ALDOB,USP22,PRMT5,SCNN1G,AP1M2,NDC80,RQC

D1,CNOT3,CNOT2,LAP3,CNOT1,NUF2,GSS,OGFR,BECN1,KDM4A,GTF2H3,EIF2S1,SRC

AP,TRAT1,STUB1,MLLT1,CBFA2T2,GTF2H4,PRMT3,GRB2,PAX3,CD2BP2,ARPC2,PNMA

1,BBS12,TUT1,GTF2H5,FES,TP53,TIAM1,LCP2,RBM7,ARPC3,PHC2,ERCC2,RAB3GAP2,

KDM5B,IQCB1,SRSF11,DNMT1,BRCA1,AFF1,HOOK2,VARS,BAP1,CBFA2T3,BRD8,SAE1

,SKAP2,EPM2AIP1,USP25,SLC7A11,NEDD4L,MYH10,PARD6A,KRT9,ITK,SUPT3H,BMPR

1B,TNFAIP3,NINL,SPC24,SPP1,TDG,HP1BP3,MCM10,IL1R1,COG7,NR4A1,TPI1,UBQLN

2,AURKA,IRAK4,LAGE3,COPB2,KDM5A,KHDRBS2,KCNA3,UBXN7,ADAM15,MYD88,TBC

B,PPARD,MECP2,SERTAD1,ARPC1A,CCND2,ARCN1,COPG2,TAF9B,ADRB2,CDK4,ATF

7IP,SPTAN1,ARHGAP32,PEBP1,TSC1,KAT5,PELI1,SOCS3,BBS4,MSX1,SLC9A2,ATRX,H

DAC3,CTBP1,EXOC7,WIZ,DDX39B,CDC34,MEPE,SKIL,KMT2A,SMARCA5,MERTK,AIFM

1,OGDH,USP10,EIF4G3,PPP5C,NCOA2,GRAP2,CLOCK,FLNC,TAF9,FLNB,AP2M1,SP10

0,ZMIZ1,UBASH3A,DNTTIP2,GTF3C4,SH3GLB2,POLR3C,TNK2,CDYL,RPS6KA5,BBS1,F

HOD1,BBS7,NUDCD3,PSMG1,PRKD1,RANBP3,APEX1,ERCC5,THOC3,PABPN1,FARSB,

ANKRD28,DFFA,MAPK8IP1,ERC2,MRPS27,TRAF5 
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st
er

 1
0 

LUC7L3,EIF3E,EIF4A2,HSPBP1,DIS3,RANGAP1,PPME1,NXF1,SRSF3,OGT,LEPRE1,ALA

D,TNFRSF1A,OSGEP,AGFG1,BAZ1B,INO80E,EIF3L,G3BP2,FADD,TRADD,SRRM1,EPS1

5,RBM14,SMARCD2,ARPC4,ALYREF,NCOA3,EXOSC9,ORC3,RIPK1,RIPK2,SIRT2,TNFR

SF10B,PPP2R4,HIST2H2BE,AP2B1,HIST3H3,AR,VCP,CDC7,LPP,NAP1L4,SMARCB1,JA

K2,PRMT1,SAP30,RRN3,LARS,PINX1,RNF11,TONSL,TPD52L2,TAF1A,MCRS1,TAF1C,D

YRK2,TFPT,EPRS,VPRBP,NR3C1,ETS1,ORC6,PPP2CB,EIF1B,SRPK2,SIN3B,PPP2R2D,

EXOSC6,MMS22L,NFRKB,ACTR8,PANK4,DBNL,INO80B,TAF1D,H3F3A,U2AF1,PDIA6,IN

O80C,CCT6A,AARS,RBM25,EFTUD1,EXOSC5,ACTR5,AICDA,PDS5A,WAPAL,SKIV2L2,

WFDC5,HDAC9,CDCA5,STAG2,ORC5,EIF3A,PCBP1,EXOSC1,TAF12,NR2C1,KDM1A,EX

OSC7 
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C
lu

st
er

 1
1 

TNKS2,FAF1,CHM,GSTK1,XPO7,SEPHS1,SLC9A3R2,BFAR,RAB8B,MGA,EDC3,COPB1,

NUDCD2,NUB1,DUSP1,KRT15,COL1A1,C12orf10,FKBP4,RIC8A,SCPEP1,ID3,GBF1,GPA

A1,DDX4,SSU72,PRPH,PPP2R5B,CCNB2,EIF2B1,CAV1,BAI1,GINS2,SIK2,RORC,HAUS2,

BHLHE40,CASP8,HAUS4,SPSB2,PIGK,HAUS8,HMGXB3,RCOR3,LMNB1,KPNA2,S100A7

,MGRN1,HAUS3,POLD1,NT5C2,HAUS5,LAMTOR2,HAUS6,ELN,POLD2,IKZF4,ALDH7A1,

CLN3,UNC45A,TRPV4,FKBP10,KPNA4,HIRIP3,B4GALT1,AGO3,STIP1,TGFB3,XRCC1,S

MARCAD1,VRK2,PCK2,RB1,UBE2Q2,LAMTOR5,TXNRD1,CRYZ,MDM4,PIH1D1,WHSC1L

1,MRPL24,DHX8,AATF,PIN1,GRM5,SLC25A6,SFN,MKRN3,GMNN,ENG,FERMT2,POLI,T

BL1XR1,UBE2U,PKP2,KANSL1,FUBP1,NF1,YWHAB,MEF2A,ATF3,MSH3,KLC2,DDAH2,M

APT,CCNH,TELO2,TNF,PTPRU,TTI1,EIF3D,CCNG2,JUNB,IMPDH2,MARCH7,ITGA5,NUP

210,PCGF3,TRIM74,RUVBL1,ATR,APP,ARNT,UTP14A,MRPL4,NOSIP,ACD,TUBB2A,ARH

GAP5,EFNB2,SMC3,DEPTOR,TPBG,MLST8,MALT1,ERCC6,BRD4,MAP3K2,CS,FRK,CLA

SP1,SPSB1,GSR,EPHA3,INADL,KYNU,STK33,LRP6,AXIN1,RASL12,PPFIA1,PLD2,ATP2A

2,TRAF7,HSPA4,MAPRE1,DDX42,ELAC2,TGFBR3,TUBB,PLIN3,ABI2,UBE2G2,UBE2B,M

DM2,PRDM16,CDC37,PPFIA3,STK3,MRPL42,PPFIA2,KRT85,KCNJ4,PPFIBP1,EPB41L5,

SEPT1,PIGU,PIGT,PTPRD,ACAT1,PFKP,UBOX5,IFT57,BMP7,RNF10,CDK7,RNF2,PPP2

R2B,MRPS5,RING1,INHBA,TAGLN,TRAIP,GNAO1,CDK12,KIF3A,PRKD2,LIN7A,CASK,G

OPC,ANKMY2,OS9,HOMER3,VDAC2,GET4,ATF2,OTUD7B,TNFRSF10D,ATP6V1E1,AGO

4,TRIM23,TRIM65,DBN1,YWHAH,RHOQ,GLRX3,EFEMP2,NLRP2,CTBP2,PIGS,RAB7A,H

SPB2,SDHB,SLU7,PFDN1,ARHGEF1,PFN1,TSSK6,CD46,HERC4,REL,WASF1,CD9,BCL2

,CDKN1A,DNMBP,CAPNS1,SGK3,CNBP,HAUS1,SUGP1,RBBP6,ATG5,AIP,CARD9,LCK,

ATIC,CFH,LDHA,SOCS6,USP21,PICALM,CASP2,RUFY1,CLK2,ATP6V1D,HIF1AN,PIAS4,

CTNNBL1,UBE2D4,SUV420H2,SMAD3,UNK,ZFYVE19,KSR1,LTBR,NRD1,SMURF2,PPID,

EIF2B5,NFIA,HDAC2,MARK3,PKN1,MKNK1,TNFSF14,C3,SP3,NUP155,CSK,CWC15,MRP

S35,SULT1A1,ECE1,COPZ1,GJB1,NEFH,CRELD2,FXR2,THRA,CLU,RBBP8,RNF7,DCAF

6,PARD6B,CHD4,MNDA,BCL2L11,PRDX3,LIMA1,PGK1,CTGF,PRKAG2,KCNJ12,SAMHD

1,PFKL,FOXH1,DACT1,TRPC1,CFTR,PAFAH1B1,MAPK9,NLRP12,RANBP2,ACTN4,ZMY

ND11,KDM2A,RNF126,KIF3B,MYOZ1,SNX5,SMEK1,DHPS,ITGA2,DPP8,DDX39A,KATNB

1,KIF2A,CLSTN1,CENPF,PHLDA1,HAX1,UBE2H,KPNA1,UGGT1,FRYL,ATP6V1B2,MCM3

AP,ZWINT,BRAP,FOXM1,CCND3,WARS,PDCD6,CCAR1,GNL2,RAN,ADSL,CAD,M6PR,T

UBA1A,CPT1A,BCOR,PTPRK 
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D. Ordered Consensus NMF clustering maps for k=2 for gene 
expression classifying panels included in the prognostic 
study 

 
 

Ordered Consensus maps for k=2. Each heatmap depicts the stability of consensus 
clustering assignment for two clusters. 
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E. Multivariate analysis results - hazard ratios and p-values for 
all assessed variables ranked according to order of 
elimination.  

All variables which failed validation are highlighted in red and final significant 
variables are highlighted in green. 

 

Variable Hazard Ratio (C.I.) p-value
EDNRB expression 
< median 1.00 (Ref) 0.972
≥ median 0.98 (0.44 – 2.23)
Beulet signature
Cluster A 1.00 (Ref)
Cluster B 1.52 (0.78 – 2.96) 0.211
Cluster C 0.95 (0.40 – 2.30) 0.915
12 Amplification 1.00 (0.46 – 1.91) 0.882
BAP1 non-syn mutation 1.08 (0.56 – 2.09) 0.819
4p  Deletion 1.13 (0.54 – 2.37) 0.737
Lane signature
Indolent 1.00 (Ref) 0.748
Aggressive 1.13 (0.54 – 2.38)
22q Deletion 1.24 (0. 58 – 2.67) 0.578
8q  Amplification 1.27 (0.59 – 2.68) 0.536
TGFβ signature
Low expression score 1.00 (Ref) 0.415
High expression score 1.25 (0.72 – 2.18)
TP53 non-syn mutation 1.67 (0.54 – 5.19) 0.368
Furhmann Grade
G1/G2 1.00 (Ref)
G3 1.45 (0.77 – 2.70) 0.243
G4 1.87 (0.87 – 4.02) 0.107
9p Deletion 1.35 (0.82 – 2.23) 0.232
20q focal Amplification 0.69 (0.40 – 1.20) 0.194
Zhao signature
Cluster 1 (good) 1.00 (Ref) 0.246
Cluster 2 (poor) 1.51 (0.75 – 3.00)
Kosari signature
Non - aggressive 1.00 (Ref) 0.137
Aggressive 0.62 (0.32 – 1.16)
TSPAN7 expression
< 33 percentile 1.00 (Ref) 0.341
≥ 33 percentile 0.76 (0.43 – 1.34)
Tumour stage
Stage I   1.00 (Ref)
Stage II   3.48 (1.20 – 10.06) 0.022
Stage III   4.61 (1.93 – 11.00) <0.001
Stage IV 18.01 (7.89 – 41.12) <0.001
Chrom 19 deletion 4.18 (1.27 – 13.69) 0.018
ccA subgroup 1.00 (Ref)
ccB subgroup 2.99 (1.87 – 4.80) <0.001
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F. Multivariate analysis with ClearCode34 signature 
 

 

Variable Hazard Ratio (C.I.) p-value
Tumour stage
Stage I   1.00 (Ref)   
Stage II   3.92 (1.36 – 11.32) 0.012
Stage III   4.86 (2.51 – 13.90) <0.001
Stage IV 19.32 (8.44 – 44.21) <0.001
ClearCode34
ccA subgroup   1.00 (Ref) <0.001
ccB subgroup   2.23 (1.39 – 3.60)
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G. Consensus NMF clustering analysis for multiregion biopsy 
dataset. 

 
A. Consensus NMF clustering matrix for multi-region biopsy dataset for two clusters 
(obtained from http://genepattern.broadinstitute.org/), B. Heatmap shows 
consensus NMF clustering analysis for the multi-region biopsy dataset using gene 
expression data of 107 ccA/ccB signature genes. Tumour regions assigned to the 
ccA or ccB prognostic subgroups is indicated by coloured bars at the top of the 
heatmap.  
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H. MSigDB Overrepresentation analysis for ccA vs. Normal 
Kidney 
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I. MSigDB Overrepresentation analysis for ccB vs Normal 
Kidney 
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