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This paper reports a simple but effective filtering approach to deal with single-

crystal artefacts in X-ray diffraction computed tomography (XRD-CT). In

XRD-CT, large crystallites can produce spots on top of the powder diffraction

rings, which, after azimuthal integration and tomographic reconstruction, lead to

line/streak artefacts in the tomograms. In the simple approach presented here,

the polar transform is taken of collected two-dimensional diffraction patterns

followed by directional median/mean filtering prior to integration. Reconstruc-

tion of one-dimensional diffraction projection data sets treated in such a way

leads to a very significant improvement in reconstructed image quality for

systems that exhibit powder spottiness arising from large crystallites. This

approach is not computationally heavy which is an important consideration with

big data sets such as is the case with XRD-CT. The method should have

application to two-dimensional X-ray diffraction data in general where such

spottiness arises.

1. Introduction

X-ray diffraction computed tomography (XRD-CT) marries

traditional computed tomography with conventional powder

X-ray diffraction, offering a powerful chemical imaging

method (Hounsfield, 1973; Elliott & Dover, 1982; Harding et

al., 1987). It was first demonstrated using laboratory X-ray

radiation, but its potential has been more fully realized using

synchrotron radiation (Bleuet et al., 2008). Local diffraction

signals can be extracted that allow not only the observation

and identification of materials that conventional methods such

as powder XRD may be blind to, but also the extraction of

local chemical and physical information (Egan et al., 2013;

Vamvakeros et al., 2015). Obtaining this spatially resolved

information is essential in materials science. For example, the

distribution of different crystallographic phases and/or

elements in a heterogeneous catalyst is expected to directly

affect its performance (Grunwaldt et al., 2013; Beale, Jacques

et al., 2014). One can readily make the argument that such

methods will become standard methods to characterize

materials, like conventional X-ray imaging (mCT) and classical

in situ X-ray powder diffraction. Indeed, this is reflected in the

increasing popularity of XRD-CT, and there are now a

number of material studies and developmental publications in

this area (Stock et al., 2008; Álvarez-Murga et al., 2011; De

Nolf & Janssens, 2010; Palancher et al., 2011; Valentini et al.,

2011, 2012; Stock & Almer, 2012; Voltolini et al., 2013; Egan et
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al., 2013; Bonnin et al., 2014; Cedola et al., 2014; Jensen et al.,

2015; Vanmeert et al., 2015). Especially in the field of

heterogeneous catalysis, XRD-CT has already proven to be a

powerful characterization tool used for spatially resolved

studies as it allows catalytic reactors to be studied intact and

under real process conditions (Jacques et al., 2011; O’Brien et

al., 2012; Beale, Gibson et al., 2014; Price et al., 2015;

Vamvakeros et al., 2015).

Despite this interest, there are several issues that need to be

addressed before the technique can be more widely adopted,

and these are mostly associated with treatment and processing

of collected data. Included in this are problems associated with

crystallite size of materials composing the scanned object. The

issue of small crystallites leading to the loss of Bragg diffrac-

tion has been addressed by the development of pair distri-

bution function computed tomography, but, to date, there is

no adequate procedure for dealing with or preventing the

artefacts caused by large crystallites (Jacques et al., 2013). The

problem faced becomes a greater issue with higher-resolution

XRD-CT scans, where the use of smaller beams can lead to

substantial deviations from the ideal powder condition.

1.1. The XRD-CT method

Before elaborating further on this specific problem and the

attempts to date to address this, we briefly describe the XRD-

CT principle and experiment (see Fig. S1 in the supporting

information). The method relies on a pencil-beam scanning

approach using a highly collimated or focused monochromatic

beam with, for best counting statistics/speed, scattered X-rays

recorded on an area detector. This is typically normal to and

centred with respect to the beam. If the object under study

behaves as a powder, the images obtained will be two-

dimensional powder patterns containing powder diffraction

rings. Each pattern contains the integral diffraction contribu-

tions seen by the detector from the entire length of the beam,

so for a 5 mm-diameter sample centred on the beam, ignoring

the air scatter from outside the sample, the detector will see

diffraction contributions from the entire 5 mm length the

beam passes through.

There are several existing approaches to the collection but

in all cases the translational scan should be of sufficient size

that the object is totally scanned for all measured angles. In

many cases though, one may need to perform a translational

scan smaller than the cross section of the sample (e.g. avoid

scanning the whole in situ cell in the case of a fixed-bed

reactor). However, this means that the diffracting/scattering

contribution from these parts of the sample cannot be easily

separated/removed from the acquired data. Regarding the

angular scan, in most cases it is sufficient to scan angles from 0

to �.

The raw data are thus a four-dimensional projection data set

of size n � m � p � q where n is translational sampling, m is

rotational sampling and p � q is the area detector size. As in

the case of first-generation X-ray computed tomography,

according to the Nyquist sampling theorem, the number of

angles scanned should be equal to the number of translational

measurements times �/2 (i.e. m = n � �/2). However, in

practice, the number of angular steps can be decreased

without significant changes in the quality of the collected data

(Álvarez-Murga et al., 2012). Most typically, the raw four-

dimensional data set is reduced by azimuthal integration such

that diffraction intensity is stored as a three-dimensional

projection data set of size n � m � r where r is the number of

radial steps, and this third dimension represents the scattering

angle 2�. Features can be extracted from the projection data

set and reconstructed to real-space images (of size n � n)

using filtered back-projection or algebraic reconstruction

methods (Gordon et al., 1970; Kak, 1979). An alternative

approach, termed the reverse analysis method, is to reconstruct

each of the r sinograms to real-space images to produce an n�
n � r image set which represents reconstructed diffraction

patterns for all of the pixels in the measured slice (Bleuet et al.,

2008).

1.2. The single-crystal artefact problem

For objects composed of small, randomly orientated crystals

the projected diffraction patterns contain ‘powder’ rings.

Where the crystal size is large with respect to the size of the

incident beam this moves towards a more single-crystal

behaviour and spots appear in the recorded diffraction

patterns (Wilchinsky, 1951). This phenomenon is well under-

research papers

1944 Antonios Vamvakeros et al. � Removing multiple outliers from XRD-CT data J. Appl. Cryst. (2015). 48, 1943–1955

Figure 1
(a) A raw two-dimensional diffraction image of 2%La–2%Mn–1.6%Na–3.1%W/SiO2 catalyst collected during an XRD-CT scan using a 46 keV
monochromatic pencil beam with a spot size of 2.5 � 2.5 mm. (b) Sinogram of scattering angle 5.3� 2� corresponding to an SiO2 cristobalite peak. (c) The
respective reconstructed XRD-CT image using the filtered back-projection algorithm.
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stood but it is important to highlight some points. By large

crystallites, here we mean those that represent a large number

of repeat crystallographic units. As such, they tend to give rise

to strong diffraction signals when lying in a position to satisfy

the Bragg condition, leading to high-intensity spots on the

detector.

When the incident X-ray beam is small, there are a smaller

number of crystallites in the diffracting volume and as such a

larger number of spots appear in the recorded diffraction

pattern. More specifically, the spottiness arises from the strong

diffraction of favoured orientations and is accentuated by a

lower population of crystallites which are, by statistical

consequence, less randomly orientated. As a result, the

diffraction signal generated by each sample volume element

(voxel) consists of two components: one that is independent of

the voxel orientation (i.e. signal produced by the small crys-

tallites randomly orientated) and one that is dependent on the

orientation (i.e. signal produced by the large crystallites).

Fig. 1(a) shows an example of a two-dimensional diffraction

image exhibiting such spottiness. When radially integrating

spotty powder patterns, the integral intensity can deviate

significantly from that which would arise from an ideal powder

sample.

This can be further exacerbated in XRD-CT where, by the

nature of the tomographic collection procedure, the orienta-

tion of the studied object favours the measurement of some

planes at the expense of others. XRD-CT produces artefact-

free images only when the scattering power of every scanned

sample volume element (voxel) is independent of the sample

orientation. If this condition is not met, then the spotty

powder patterns will cause spottiness within the sinogram

constructions, as is shown in Fig. 1(b), leading to streak arte-

facts in the reconstructed images, as is shown in Fig. 1(c). This

phenomenon can be a major problem in XRD-CT data as, if

the artefacts are severe, the desired spatial information will be

lost.

1.3. Existing strategies for treatment of single-crystal
diffraction artefacts

The ideal filter would remove the spots from the raw

powder diffraction images while maintaining the intensities of

the powder diffraction rings. In XRD-CT, a good approach to

mitigate the spottiness problem is to use a continuous-angle

scanning approach. Here, the data collection is conducted so

that the object is rotated at fixed speed about the tomographic

axis and diffraction patterns are accumulated over a fixed

angular range (equivalent to the angular step in a stop–start

approach). This means that during collection crystallites are

swept into the diffracting volume and their orientations are

constantly changed and, with respect to the axis of rotation, all

angles are equally sampled. This requires continuous rotation

in the range 0 to �� for each translation. Whilst continuous

scanning does not necessarily fully eradicate the streak arte-

fact problem, in practice this is the best approach if circum-

stances permit. However, there are collection strategies and

measurement constraints that preclude such measurement and

for such one must look for other ways to deal with spotty data.

A simple approach to deal with spottiness is to apply image

filtering techniques to the recorded two-dimensional diffrac-

tion images (Álvarez-Murga et al., 2012). An image threshold

approach has been previously proposed and generally applied

in the past. In this method, the pixels that have intensities

above the threshold value are excluded in the azimuthal

integration (Hammersley, 1998). It is important to note here

that replacing pixels above the threshold value with zero

should be avoided as this would certainly lead to distortion of

Bragg intensity after azimuthal integration. The image

threshold approach has also been implemented in recently

developed software programs [GSAS-II (Toby & Von Dreele,

2013), XRDUA (De Nolf et al., 2014), DAWN (Basham et al.,

2015) and PyFAI (Ashiotis et al., 2015)]. Unfortunately, there

are potential problems with this approach. Firstly, the

threshold is arbitrary since it must be chosen by the user; for

individual or a small number of diffraction patterns a ‘satis-

factory’ result can be obtained by eye but for XRD-CT where

the data sets can contain several thousand images it would be

obviously unrealistic to check each treated image. One could

use a harsh threshold to be fairly confident that spots at a

specific 2� angle were removed but this brings us to a second

problem: harsh thresholds reduce acquisition statistics. Finally,

such methods do not deal with relative difference in intensities

at different 2� values: both strong and weak diffraction peaks

may exhibit spottiness and obviously a single threshold cannot

deal with this and preserve the required information.

Voltolini et al. (2013) also reported the limitations of the

threshold method to remove spottiness from the raw two-

dimensional diffraction images collected during an XRD-CT

experiment. The authors proposed a different approach where

the contributions from single crystals and powder are sepa-

rated in XRD-CT data. This is achieved by (i) applying a

median filter for each angle projection set, (ii) subtracting the

filtered images from the raw two-dimensional diffraction

images to get a spot pattern, (iii) creating masks by setting a

threshold using the difference images (involving some image

dilation), (iv) removing diffraction spots from the raw

diffraction images using the masks, (v) replacing the spots in

the raw diffraction images with values from the median

filtered images (it is claimed that this is better than replacing

with zero values), and (vi) subtracting the images created in

step (v) from the raw diffraction images to obtain the large

grain images. This approach has some advantages as it is

possible to obtain information about the signal generated

from both the large crystallites and the powder. Nevertheless,

this method is computationally heavy, the image dilation in

step (iii) does not guarantee complete removal of the spots

and the powder intensities are not maintained because the

intensities are based on in-filled values.

Another potential approach is to apply image filtering

techniques directly to the sinogram after azimuthal integra-

tion. However, in our experience, standard one-dimensional

or two-dimensional median filtering is often not effective at

removing these artefacts and leads to loss/blurring of infor-

mation. A better approach may be to employ a sinusoidal

median filter specifically designed for sinogram treatment, but
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this has yet to be investigated. This is probably not worthwhile,

however, as again the median will lead to blurring, though at

least in a desired direction.

A different way to deal with streak artefacts in the recon-

structed XRD-CT images is to use a method sometimes

applied in conventional X-ray tomography (Kak & Slaney,

1988). The intersection of the streaks in the reconstructed

images is first found and segmented. This segmented image is

then forward-projected to arrive at a sinogram which is then

subtracted from the original sinogram. This updated sinogram

is then back-projected to arrive, hopefully, at a streak-free

image. Although this is a tried and tested method, it requires

several computational steps and may not be easily automated

or practicable for XRD-CT data.

Herein, we report an alternative approach, which requires

minimum user input, to deal with multiple outliers and spot-

tiness in two-dimensional diffraction images. We compare the

effect of different filters applied directly to the raw two-

dimensional diffraction images collected during XRD-CT

experiments. Data from two experiments studying the in situ

chemistry of working catalytic reactors are presented, one

with the use of a monochromatic pencil beam with a spot size

of 25 � 25 mm and one with a spot size of 2.5 � 2.5 mm,

demonstrating the efficacy of this simple filtering approach

even with high-resolution XRD-CT data. This is important as

the assumption of an ideal powder can become less valid with

decreasing beam size relative to the average crystallite size of

the sample, thus leading to spotty diffraction images.

2. Experimental details

Two different catalytic reactors were tested at station ID15A

of the ESRF. In each case, the reactor was mounted into a gas

delivery stub, itself mounted to a standard goniometer. The

goniometer was fixed to a rotation stage set upon a translation

stage to facilitate the movements required for the CT

measurement. Heating was achieved by virtue of two hot air

blowers heating each side of the catalytic membrane reactor.

A state-of-the-art PILATUS3 X CdTe 300K hybrid photon-

counting area detector, which uses cadmium telluride (CdTe)

as the semiconducting direct conversion layer, was used to

record the two-dimensional diffraction patterns. Tomographic

reconstruction was performed using filtered back-projection

(FBP). The MATLAB (The MathWorks Inc., Natick, MA,

USA) scripts used in this work are provided in the supporting

information. Copies of the radially integrated XRD-CT data

after applying the various filters can be found at http://tiny.cc/

C5CC03208C.

The first reactor tested was a catalytic membrane reactor

(CMR) for the oxidative coupling of methane (OCM) to

produce C2 molecules. The 2%Mn–1.6%Na–3.1%W/SiO2

catalyst bed was packed inside a BaCo0.4Fe0.4Zr0.2O3��

(BCFZ) hollow-fibre membrane (2.4 mm diameter and

180 mm wall thickness). The catalyst bed was supported with

glass wool. Details of the preparation of catalyst and

membranes are given in the supporting information. XRD-CT

measurements were performed using a 93 keV monochro-

matic pencil beam with a spot size of 25 � 25 mm. The XRD-

CT measurements were made with 140 translations over 180�

in 1.8� steps covering a physical area of 3.5 � 3.5 mm.

Reconstruction of these data yielded XRD-CT images with

140 � 140 pixels and 25 mm resolution.

The second reactor was a fixed-bed reactor consisting of a

2%La–2%Mn–1.6%Na–3.1%W/SiO2 catalyst bed supported

with glass wool. Details of the catalyst preparation are given in

the supporting information. XRD-CT measurements were

performed using a 46 keV monochromatic pencil beam with a

spot size of 2.5 � 2.5 mm. The XRD-CT measurements were

made with 300 translations over 180� in 0.75� steps covering a

physical area of 750 � 750 mm. Reconstruction of these data

yielded XRD-CT images with 300 � 300 pixels and 2.5 mm

resolution.

3. Results and discussion

We propose a simple method that treats the original two-

dimensional diffraction data collected from an XRD-CT

experiment (e.g. Fig. 2a). Firstly, the raw two-dimensional

diffraction images are polar transformed to arrive at images

illustrated in Fig. 2(b). In the polar-transformed image, there

are zero elements which were generated as a result of binning

the data because only part of the powder diffraction rings

were collected (i.e. azimuthal range smaller than 0 to 2�). A

mask has to be applied to set the values of these pixels to NaN

(not a number) values so that these elements are not taken

into account during the image reconstruction process. The

mask can be created by using either a two-dimensional

diffraction image acquired by testing a standard (e.g. CeO2

NIST standard) or any two-dimensional diffraction image

acquired during the actual XRD-CT experiment. The pixels

with zero intensity generated by binning the data have to be

separated from the pixels with zero intensity in the raw two-

dimensional images. This is done by (a) setting the value of the

pixels in the raw two-dimensional image that have zero

intensity to an arbitrary positive value (e.g. one), (b)

performing the polar transformation, and (c) setting the zero

values to NaN and the rest to one. In cases where there are

pixels in the raw two-dimensional images with negative or

extreme values, these are set to zero before the polar trans-

formation and are then converted to NaN values. The mask

that was created for processing the XRD-CT data is presented

in Fig. 2(c).

It is important to note that this mask needs to be created

only once per XRD-CT experiment; it does not require any

user input and is then used for processing all the raw two-

dimensional diffraction data. More specifically, this is done by

multiplying the polar-transformed image with the binary mask

(i.e. a mask that contains ones and NaN values) and the mean

value for each row can be calculated (the MATLAB code

developed in-house uses the ‘nanmean’ function which

excludes the NaN values), which generates a vector that

represents the respective one-dimensional diffraction pattern

(Fig. 2d). Note, this process yields the same one-dimensional

diffraction patterns as the standard azimuthal integration and
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is also computationally cost equivalent to standard azimuthal

integration.

In our recent study, we showed that the crystalline phases

present in the 2%Mn–1.6%Na–3.1%W/SiO2 catalyst at

ambient conditions are Na2WO4, Mn2O3, SiO2 cristobalite and

SiO2 tridymite (Vamvakeros et al., 2015). We also reported a

chemical interaction between the cata-

lyst particles and the BCFZ membrane

at the high temperatures required for

the OCM reaction, which led to the

formation of a new stable phase, iden-

tified as BaWO4. This solid-state

chemical interaction is a thermal effect

as it takes place during temperature

ramping without the presence of any

reactive gases (i.e. before switching to

OCM conditions). Unfortunately, the

formation of BaWO4 leads also to the

formation of large crystallites, them-

selves giving rise to single-crystal-like

diffraction and therefore spottiness in

the raw two-dimensional diffraction

images. On the other hand, these XRD-

CT data present a great opportunity to

investigate the effect of different filters

during the image reconstruction

process. Furthermore, the quality of the

sinograms and the reconstructed XRD-

CT images corresponding to BaWO4

can serve as a benchmarking tool for the

different filters.

In this study, we are presenting the

results from a high-temperature XRD-

CT scan of the CMR (1048 K). The

sinograms being presented here are derived from the highest

intensity peaks of SiO2 cristobalite, BaWO4 and Mn2O3

phases. More specifically, these sinograms correspond to

scattering angles 1.87, 2.26 and 2.80� 2�, respectively (Fig. S2).

Regarding the BCFZ sinograms, the intensity of the 111

reflection is used (scattering angle 3.22� 2�). In all the figures
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Figure 3
The sinograms of SiO2 cristobalite, BaWO4, Mn2O3 and BCFZ and the corresponding reconstructed XRD-CT images are shown when no filter is used
(i.e. equivalent to standard azimuthal integration).

Figure 2
(a) Original two-dimensional diffraction data of CeO2 standard. (b) The transformed image in polar
coordinates. (c) The binary mask containing ones and NaN values. (d) The derived one-dimensional
diffraction pattern is a vector whose elements are the mean values of each row in the polar-
transformed image after the application of the mask.
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presented in this section, a mask has been applied to the

reconstructed XRD-CT images, setting the value of the pixels

outside the sample to zero.

As mentioned previously, when no filter is applied (i.e.

equivalent to standard azimuthal integration), the spottiness

in the original two-dimensional diffraction images is not

suppressed and the reconstructed XRD-CT images contain

streak artefacts. In the case of the XRD-CT data presented

here, it can be seen in Fig. 3 that the reconstructed image

corresponding to the BaWO4 phase is full of streak artefacts

and useful information cannot be readily extracted concerning

this phase. These artefacts are present to a lesser extent in the

image corresponding to the Mn2O3 phase and are absent in the

images corresponding to the cristobalite and BCFZ phases.

Fig. 3 is the template that should be used to compare and

assess the effectiveness of the different filters presented in this

study. At this point, it should be noted that different recon-

struction algorithms (i.e. apart from FBP) have also been

implemented but the line artefacts remain in the reconstructed

images (Fig. S3). As a result, in this study, the FBP algorithm

was chosen to reconstruct the sinograms after applying the

various filters in the polar-transformed images as it is a very

fast and easy-to-implement algorithm.

The advantage of using the polar-transformed images to

apply potential filters instead of the raw two-dimensional

diffraction images is that a variety of different matrix opera-

tions can be easily performed to treat the spottiness. Several

different approaches are discussed in the following sections.

3.1. Median filter

The simplest operation that can be applied is a row-wise

median operation. The median value of each row is calculated,

which is different from the application of a standard median

filter to the polar-transformed image. Essentially, this means

that the values of each row are sorted and the middle value of

the population is stored in a vector. The results are presented

in Fig. 4. The streak artefacts are indeed removed but this

process leads to distorted images due to the crude nature of

this filtering operation.

3.2. Alpha-trimmed-mean filter

Another approach is to apply an alpha-trimmed mean to

each row of the polar-transformed image (Bednar & Watt,

1984). The user is requested to provide a percentage for the

trimmed mean. This percentage corresponds to a specific

number of pixels p for each row in the polar-transformed

images. The number p is row dependent as a different number

of pixels describe different diffraction peaks in the two-

dimensional diffraction images. The values of each row in the

polar-transformed images are then sorted and the mean value

of each row is calculated after excluding the p pixels. The

extreme values are removed from both the high and low end

(p/2 values, respectively) for every row of the polar-trans-

formed images and reliable intensities without significant loss

of information can be obtained. This is shown in Fig. S4 of the

supporting information, where the CeO2 one-dimensional

diffraction pattern has been calculated using different values

for the alpha-trimmed-mean filter. It is essential to note here

that the desired filter should avoid significant decrease in

intensity in the obtained one-dimensional diffraction patterns

as this would directly alter the chemical information.

Although phase distribution maps can still be created when

loss of intensity takes place, this should be prevented. If the

XRD-CT data are of high enough quality, then sequential

whole powder pattern fitting can be performed to create maps

showing the change of unit-cell parameters, average crystallite
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Figure 4
The sinograms of SiO2 cristobalite, BaWO4, Mn2O3 and BCFZ and the corresponding reconstructed XRD-CT images are shown when the median value
of each row in the polar-transformed images is used.
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size and, in the case of preferred orientation, texture distri-

bution maps (Egan et al., 2013). However, reliable intensities

are needed if sequential/parametric Rietveld refinement is to

be performed. Therefore, the desired filter should be able to

remove outliers and deal with single-crystal diffraction arte-

facts but at the same time not radically alter the intensities of

the other peaks in the derived one-dimensional diffraction

patterns.

The effect of the alpha-trimmed-mean filters using different

percentages (i.e. 0, 1, 2 and 3%) is shown in Fig. 5, where the

sinograms and respective images corresponding to BaWO4 are

presented; the reason for this choice of display is that the

impact of the filters can be readily observed. Indeed, it is

impressive that only a 2% trimmed mean is enough to eradi-

cate most of the hotspots in the sinogram while maintaining

the main features. The new reconstructed image now reveals

the important spatial information that could not be extracted

before: the formation of BaWO4 takes place at the interface

between the catalyst particles and the inner side of the BCFZ

membrane. The effect of a 5, 10, 25 and 50% alpha-trimmed-

mean filter has also been investigated but the quality of the

reconstructed XRD-CT images does not further improve or

deteriorate compared to the 3% alpha-trimmed-mean filter;

therefore these results are not presented here.
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Figure 5
The effect of alpha-trimmed-mean filters using different percentages (i.e. 0, 1, 2 and 3%) is shown. The sinograms and respective images correspond to
the BaWO4 phase.

Figure 6
The sinograms of SiO2 cristobalite, BaWO4, Mn2O3 and BCFZ and the corresponding reconstructed XRD-CT images are shown when the 3% alpha-
trimmed-mean filter is used.
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In Fig. 6, the effect of the 3% trimmed-mean filter is shown.

It is important to note that this filter not only removed the

artefacts from the BaWO4 XRD-CT image but also improved

the quality of the reconstructed images corresponding to the

other phases. This improvement is also observable in the

Mn2O3 XRD-CT image where minor streak artefacts have

been removed, yielding a clearer image.

3.3. Standard deviation based trimmed-mean filter
A similar approach to the alpha-trimmed-mean one is the

application of a trimmed mean that trims values based on the

calculated value of the standard deviation of each row in the

polar-transformed images. It works as follows: the absolute

value of the difference between the intensity of every pixel of

each row and the mean intensity of that row is calculated. If

this calculated value is higher than the value of the standard

deviation of that row, then the intensity of the pixels that

satisfy this condition is set to the NaN value. By replacing the

values of these pixels with NaNs, these pixels do not contri-

bute to the statistical result. This means that this filter works in

a similar way to an alpha-trimmed-mean filter as it removes

pixels from both the high and low end (i.e. due to the presence
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Figure 7
The sinograms of SiO2 cristobalite, BaWO4, Mn2O3 and BCFZ and the corresponding reconstructed XRD-CT images are shown when the SDTM filter,
using one standard deviation, is applied.

Figure 8
The sinograms of SiO2 cristobalite, BaWO4, Mn2O3 and BCFZ and the corresponding reconstructed XRD-CT images are shown when the SDTM filter,
using three times the standard deviation, is applied.
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of the absolute in the previous condition). However, in the

case of the standard deviation based trimmed-mean (SDTM)

filter, the number of elements excluded in each row of the

polar-transformed images is not a fixed number but depends

on the value of the standard deviation of each row. The user

has to specify how many times the standard deviation should

be selected as the criterion for the filter to operate.

The effect of the adaptive trimmed-mean filter using one

and three times the standard deviation is shown in Figs. 7 and

8, respectively. Where one standard deviation has been

applied, most of the artefacts have been removed from the

BaWO4 XRD-CT image (Fig. 7). However, there is loss of

intensity in the cristobalite phase, as highlighted by the arrow

in Fig. 7. On the other hand, when using three standard

deviations, it is shown that the intensity of the cristobalite

XRD-CT image is maintained but there are still streak arte-

facts in the BaWO4 XRD-CT image (Fig. 8). This can also be

observed by inspecting the BaWO4 sinogram where a signifi-

cant number of hotspots have not been removed, as high-

lighted by the arrows in Fig. 8. The behaviour of this filter can

be rationalized as follows: when there are spotty powder

diffraction rings in the raw two-dimensional diffraction

images, the value of the calculated standard deviation for the

respective row in the polar-transformed image can be high

enough that not enough pixels are rejected during filtering.

Similarly, in cases where the calculated standard deviation is

too low, a significant number of pixels may end up being

rejected. An alternative approach to the SDTM filter would be

to perform the trimming based on a more robust statistical

measure, like the median absolute deviation (MAD) esti-

mator, similar to the Hampel identifier, instead of the value of

the standard deviation for each row of the polar-transformed

images (Davies & Gather, 1993). The Hampel identifier is

used to identify outliers, which may not be appropriate in the

case of very spotty two-dimensional diffraction images, but

this remains to be investigated. Unfortunately, it also requires

the user to choose a threshold value.

3.4. Two-dimensional order statistic median filters

Finally, an alternative method to deal with spottiness in the

raw two-dimensional diffraction images is to apply local order

statistic filters to the polar-transformed images (Bovik et al.,

1983). The three filters presented here are nth rank-order

filters (Nodes & Gallagher, 1982). This local filtering process

requires a few extra steps as certain software programs may

not be able to handle correctly the NaN values present in the

polar-transformed images after the application of the binary

mask (Fig. 2c). For example, the developed MATLAB in-

house script uses the ‘ordfilt2’ function that allows the user to

create custom two-dimensional order statistic filters but fails if

there are NaN values present in the image to be processed.

Fortunately, there is a quick way to overcome this problem.

For every row in the polar-transformed images, the pixels that

have NaN values are moved to the end of the row (Fig. 9a). It

is important to note here that this matrix operation is not

equivalent to sorting the values because the application of a

filter (e.g. local median filter) to a row with sorted values will

radically alter the results. The next step is to create another

binary image containing ones and NaN values which will be

used as a mask later on (Fig. 9b). Finally, the NaN values in the

transformed image are set to zero, the desired filter is applied

to the transformed image and the new image is multiplied with

the new mask. As before, the respective one-dimensional

diffraction pattern is a vector whose elements are the mean

values of each row (Fig. 9c). Also it should be noted that these

local filters can be combined very easily with the ones

previously mentioned in this study (e.g. first apply the local

median filter and then a trimmed-mean filter).

The effect of local median filters is shown in Fig. 10, where

the sinograms and respective images corresponding to BaWO4

are presented. A simple filter that can be applied is the

traditional median filter where the domain of operation is a

three-by-three matrix (i.e. eight neighbouring pixels). As can

be seen in Fig. 10, although most of the hotspots have been

removed in the sinograms, not all have been eradicated, which

leads to the formation of a few streak artefacts in the recon-

structed images. The next filter is a cross median filter where

the domain of operation is again a three-by-three matrix but

only the north, east, west and south neighbouring pixels are

taken into account. This filter eradicates the hotspots in the

sinogram but at the expense of losing intensity, which can be

easily observed in the respective reconstructed image. Last but
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Figure 9
(a) The transformed image in polar coordinates. (b) The binary mask containing ones and NaN values. (c) The derived one-dimensional diffraction
pattern is a vector whose elements are the mean values of each row in the polar-transformed image after the application of the mask. The two-
dimensional diffraction image using the CeO2 presented in Fig. 2 is used.
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not least, a median row filter [1 1 1 1 1] is applied which blurs

information only in the horizontal direction. The domain of

operation for this filter is a five-by-one matrix where the first

and second, east and west, neighbouring pixels are taken into

account. This filter shows promising results as it eradicates the

hotspots in the sinogram without any significant loss of

intensity.

In Fig. 11, the effect of the median row filter [1 1 1 1 1] is

illustrated. It shows that this filter not only eradicated the

artefacts associated with the BaWO4 images but also improved

the Mn2O3 images. Unfortunately, there is loss of intensity in

the SiO2 cristobalite images (i.e. both in the sinogram and in

the corresponding reconstructed image as highlighted by the

arrow in Fig. 11) compared to images created with standard

azimuthal integration (Fig. 3) and the 3% trimmed-mean filter

(Fig. 6).

3.5. High-resolution XRD-CT data

The results from a high-resolution XRD-CT scan of a

2%La–2%Mn–1.6%Na–3.1%W/SiO2 catalyst at ambient

conditions are shown in Fig. 12. The sinograms being

presented here are derived from raw scattering intensity of

SiO2 cristobalite, SiO2 tridymite, SiO2 quartz and Na2WO4
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Figure 11
The sinograms of SiO2 cristobalite, BaWO4, Mn2O3 and BCFZ and the corresponding reconstructed XRD-CT images are shown when the median row
filter [1 1 1 1 1] is used.

Figure 10
The effect of different local median filters (i.e. a 1 � 5 row, a cross and a 3 � 3 median filter) is shown. The sinograms and respective reconstructed images
correspond to the BaWO4 phase.
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phases. More specifically, these sinograms correspond to

scattering angles 4.86, 4.04, 4.56 and 2.87� 2�, respectively. As

expected, when no filter is applied, the spottiness in the

original two-dimensional diffraction images is not suppressed

and the reconstructed XRD-CT images contain streak arte-

facts (Fig. 1). As is shown in Fig. 12, all four reconstructed

XRD-CT images contain streak artefacts and the desired

spatial information is lost.

As the 3% alpha-trimmed-mean filter showed the best

performance for removing the single-crystal diffraction arte-

facts from the XRD-CT data collected with the CMR, this

filter was chosen to be tested with the spotty two-dimensional

diffraction images of the high-resolution XRD-CT scan. The

results after the application of the 3% alpha-trimmed-mean

filter are presented in Fig. 13. It can be seen that this filter

efficiently removed the artefacts from all the SiO2 phases and

it improved the quality of the reconstructed images corre-

sponding to the Na2WO4 phase. The SiO2 cristobalite and

tridymite phases are homogeneously distributed in the three

2%La–2%Mn–1.6%Na–3.1%W/SiO2 catalyst particles while
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Figure 12
The sinograms of SiO2 cristobalite, SiO2 tridymite, SiO2 quartz and Na2WO4 and the corresponding reconstructed XRD-CT images are shown when no
filter is used (i.e. equivalent to standard azimuthal integration).

Figure 13
The sinograms of SiO2 cristobalite, SiO2 tridymite, SiO2 quartz and Na2WO4 and the corresponding reconstructed XRD-CT images are shown when the
3% alpha-trimmed-mean filter is used.
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there are hotspots of the SiO2 quartz phase. More importantly,

the Na2WO4 phase is preferentially located near the edge of

the catalyst particles.

3.6. Future work

The new filtering approach demonstrated here opens new

pathways to improve the quality of the reconstructed XRD-

CT images as a variety of different filters can be applied to the

polar-transformed images. Filters including the Winsorized

mean, the Hampel filter, the modified trimmed-mean filter,

local minimum and maximum filters by applying appropriate

rank-order filters, local trimmed-mean filters (i.e. instead of

calculating a single trimmed-mean value for each row in the

polar-transformed images), and local mean filters can be

tested (Lee & Kassam, 1985; Bednar & Watt, 1984). The effect

of adaptive filters, like the adaptive median filter, the adaptive

trimmed-mean filter (both symmetrical and unsymmetrical)

and their variations, can also be explored (Restrepo & Bovik,

1988; Hsieh, 1994; Taguchi, 1995; Hwang & Haddad, 1995;

Marazzi & Ruffieux, 1999; Li et al., 2012). The potential of

recently developed arithmetic filters, which avoid the slow

process of sorting the values, like the iterative truncated mean,

the weighted iterative truncated mean, and the iterative

trimmed and truncated mean, should also be investigated

(Jiang, 2012; Miao & Jiang, 2013, 2014). However, it is

essential to note here that all the filters should fulfil another

criterion too: the filtering process must be computationally

efficient. This criterion should not be treated lightly as a single

XRD-CT scan can easily yield tens of thousands of powder

diffraction images.

3.7. Towards high-quality XRD-CT images

The advent of novel, more efficient detectors (e.g. the

PILATUS3 X CdTe 300K hybrid photon-counting area

detector introduced here) along with the continuous effort to

achieve more brilliant and intense hard X-rays produced at

third-generation synchrotrons (e.g. the Upgrade Programme

at the ESRF, http://www.esrf.eu/about/upgrade) is expected to

set the XRD-CT technique at the forefront of materials

science research. XRD-CT has the potential to be used not

only for spatially resolved studies but also for dynamic, time-

resolved studies leading to five-dimensional (i.e. three-

dimensional spatial and one-dimensional spectral as a function

of time) diffraction imaging (Beale, Jacques et al., 2014).

However, this will also lead to a radical increase in the

quantity of data being collected during a single beamtime

experiment, and efficient, fast and user-friendly routes to yield

high-quality, artefact-free XRD-CT images will be needed.

4. Conclusions

We have reported a fast and easy image filtering approach to

deal with a common image-based problem during the analysis

of XRD-CT data. The formation of spots in the raw two-

dimensional diffraction images due to single-crystal effects

leads also to hotspots in the sinograms and to line/streak

artefacts in the reconstructed XRD-CT images. A potential

way to overcome this problem is to apply filters to the original

two-dimensional diffraction images after transforming them to

polar coordinates. In the future, this simple filtering strategy

could also be easily implemented in the Python scripts of

GSAS-II and PyFAI (which can also be used in combination

with the DAWN software), but also in other software

programs used for analysis of XRD-CT data, like XRDUA.

We compared different filters and showed that the most

promising results are generated with a simple alpha-trimmed-

mean filter as the streak artefacts can be removed without

significant loss of information. This filtering method requires

the user to choose a percentage for the trimmed mean and this

value is expected to be sample dependent. However, we have

shown that the 3% alpha-trimmed-mean shows promising

results, even with high-resolution XRD-CT data (i.e. beam

with a spot size of 2.5 � 2.5 mm). Future work will focus on the

development of a script that can process a single XRD-CT

data set efficiently, using several values so that the user can

first inspect the quality of the reconstructed XRD-CT images

and then choose the correct value and apply it to the rest of

the XRD-CT data collected during an experiment.

5. Related literature

For related literature see Middelkoop et al. (2014) and Van

Noyen et al. (2012).
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