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We demonstrate the potential of differentiating embryonic and induced pluripotent stem cells by the regularized linear and decision
tree machine learning classification algorithms, based on a number of intragene methylation measures. The resulting average
accuracy of classification has been proven to be above 95%, which overcomes the earlier achievements. We propose a constructive
and transparent method of feature selection based on classifier accuracy. Enrichment analysis reveals statistically meaningful
presence of stemness group and cancer discriminating genes among the selected best classifying features. These findings stimulate
the further research on the functional consequences of these differences in methylation patterns. The presented approach can be
broadly used to discriminate the cells of different phenotype or in different state by their methylation profiles, identify groups of
genes constitutingmultifeature classifiers, and assess enrichment of these groups by the sets of genes with a functionality of interest.

1. Introduction

The studies of embryonic stem cells (ESCs) and induced
pluripotent stem cells (iPSCs) constitute a focal point ofmod-
ern developmental biology and regenerative medicine [1–4].
Reprogramming somatic cells (SCs) to the pluripotent state
presents both the fundamental interest of understanding and
controlling the development and the practical importance of
circumventing ethical and logistical issues of obtaining and
supplying stem cells for therapy. At the same time the func-
tional equivalence of ESCs and iPSCs for experimental, ther-
apeutic, or diagnostic purposes remains questioned, since
noticeable differences in gene expression and methylation

profiles have been reported along with a considerably higher
heterogeneity of iPSCs [5]. The potential candidates for the
underlyingmechanisms are somaticmemory [6], laboratory-
specific stochasticity [7], and reprogramming aberrations
[8]. Importantly, it was found that reprogramming process
manifests deletions of tumor-suppressor genes, and passaging
tends to produce duplications of oncogenic genes [9], which
poses the question of the stability and clinical safety of iPSCs.
Moreover, it was demonstrated that the DNA hyperme-
thylation in cancers preferentially targets the development-
associated polycomb group (PcG) proteins and other stem-
ness related loci, and expression patterns of particularly
poor differentiated tumors are similar to ESCs, including
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repression of PcS targets (PCGTs) [10–13]. In this light,
identifying markers that would discriminate ESCs and iPSCs
and analyzing their potential functional impact, including
oncogenetic, appear to be a promising solution.

Considerable advance has been achieved by analyzing
variations in methylation profiles of ESCs and iPSCs that
evoked dozens of markers, which would account for the dif-
ferences [14–16]. Furthermore, there is an increasing evidence
on the collective nature of suchmethylationmarkers, and the
first successes due to the large scalemachine learning analysis
have been reported [17].These studies, however, concentrated
on the variations of methylation levels in separate CpG
dinucleotides, which themselves do not characterize the
aggregate changes to gene methylation and its coordinated
variations in the groups of genes.

Here, led by the results of [13], where intragene methy-
lation measures were introduced to efficiently discrimi-
nate cancerous and normal samples by machine learning
techniques, we explore their potential as descriptors for
EPCs/iPSCs differentiation. We access applicability of the
well-established regularized linear and random forest models
to confirm their performance. We implement feature selec-
tion and analyze the derived sets of top-rank genes for the
ESCs/iPSCs for enrichment by the stemness genes and the top
cancer gene methylation markers [13]. Altogether, it provides
a consistent approach to uncover coordinated variations
in the gene methylation profiles between embryonic and
induced pluripotent stem cells and quantify similarity of the
found best discriminators to the other sets of the known or
hypothesized functionality, aiding the quality assessment of
reprogramming.

2. Materials and Methods

2.1. DNA Methylation Data and Descriptors. We analyze
genome-wide DNA methylation data collected via the Illu-
mina Infinium Human Methylation 450 BeadChip [14] and
available at the NCBI GEO database under the accession
designationGSE30654.They containDNAmethylation levels
at >450,000 CpG sites, mapped on 18,272 genes for 31 ESCs
and 35 iPSCs samples.

A vast number of methylation values as potential fea-
tures render extremely high-dimensional spaces for machine
learning algorithms, additionally complicated by a rela-
tively small number of available samples. Another diffi-
culty is the biological interpretation of a single CpG site
methylation importance in distinguishing between different
cell types. To overcome these difficulties we propose to
describe methylation patterns on a gene level. Following
[13], we implement mean (MEAN), variance (VAR), and
mean derivative (DERIV) measures, which have proved to
be valid in cancer/norm discrimination tasks. In addition,
we introduce deviation from a linear pattern (DEV) and
asymmetry (ASYMM)measures.The rawmethylation values
𝛽 are arranged as they appear along the DNA strand and
identify the probes 𝛽

1
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It is worth noting that most of these features requiremore
than one probe per gene. To make sure that all of them are
defined and to add more stability to their values we only
consider those genes that have ≥ 5 CpG sites.

To do a sanity check that these features can complement
each other, we compute Kendall’s coefficient of concordance
based on every single DNA sample and summarize statistics
over the whole dataset at hand. As long as the number of
features per DNA is fixed we can derive a common critical
value for a given significance level (e.g., 5%). Having Kendall’s
statistics value over this threshold gives a strong argument
for the rejection of features disagreement hypothesis. Figure 1
confirms that features cannot be considered as redundant,
and below we explore to what extent they can complement
each other.

This diversity of gene-scale aggregate features is intended
to capture coordinated variations of intragene methylation
profiles across the cell types. Overall, it reduces the dimen-
sionality of the problem and potentially simplifies interpreta-
tion of significant descriptors.

2.2. Machine Learning Techniques. To solve classification
problem we implement the well-established machine learn-
ing approaches, regularized linear models, and decision
trees. Furthermore, appropriate feature selection routines are
employed.

Linear models separate the objects of different classes by
a linear decision surface in the feature space. In machine
learning, they are known to perform well, when the number
of features is much greater than the number of examples,
which justifies the choice. In particular, setting a constraint
on the linear model parameters via the regularization term
in the optimization objective, one can prevent divergence,
making the model more stable and relevant, or even make
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Figure 1: Kendall’s coefficient of concordance for the 5 gene-level
methylation features summarized over all ES and iPS cells. Green
line determines the critical value for the significance level of 5%.

the optimal parameters vector sparse, naturally leading to
feature selection. This is realized by logistic regression [19]
with 𝐿

1
regularizer.

Decision tree is a data mining model with the stepwise
decision making procedure. Its nodes are binary decision
points assigned with a certain test, which probes for the
presence of a particular simple pattern in the data item.
Depending on the outcome, one goes to one of the descendant
nodes. The procedure is repeated recursively until a leaf is
reached and the final decision is taken. In practice, trees are
grouped in ensembles to improve the stability of the process.
Here, decision trees are trained with the CART algorithm
[20], and grouping is realized with the random forest method
[21].

Feature importance can be estimated from the set of tests
that determine informativity of decision trees in terms of
separation of classes [21]. However, as the method itself only
ranks features by a certain importance quantifier rather than
picking up the meaningful ones, one would have to choose
a selection cutoff in the list. A threshold in the importance
value would suffer certain arbitrary and, even worse, would
lack a transparent relation to the performance.

To overcome these drawbacks, we employ the recursive
best feature elimination (RBFE) procedure. The process is
started with training the random forest and ranking with
the full set of features. In the next step a predefined number
of features with top ranks are excluded from the further
examination. The procedure is repeated recursively until
the remaining feature list becomes empty. In each step we
calculate the error of classifiers trained on (i) all selected
features, (ii) features selected on the current iteration only,
and (iii) the remaining features. In the result, the selection
cutoff is informed by the classifier performance curve: one
chooses the maximal acceptable classification error for the
problem at hand and stops feature selection procedure as the
error on current best subset (green curve in Figures 2 and 3)
exceeds this threshold.

As the classifier quality is in the heart of feature selection,
it is crucial to organize the data flow correctly. We employ
the nested 5-fold stratified cross-validation scheme [22]. In
case of logistic regression the nested cross-validation is used
to calibrate the regularization strength based on the classi-
fication accuracy. Hyperparameters, such as regularization
coefficient, are tuned in the inner loop, while the outer one
estimates the quality of a model. On each fold the subsets of
the same cardinality are selected, which makes the averaging
more consistent and less noisy.

Binary classification performance (ESCs/iPSCs) is char-
acterized by the three kinds of error: (i) type I error (the
fraction of iPSCs erroneously classified as ESCs), (ii) type II
error (fraction of ESCs erroneously classified as iPSCs), and
(iii) misclassification error (the total fraction of erroneously
classified samples).

Data preprocessing is implemented in R programming
language [23] and employs Bioconductor [24] packages.
Implementation of themachine learningmethods is based on
the Scikit-Learn library [25] in Python.

2.3. Gene Set Enrichment Analysis. To probe for poten-
tial aberrations in cell stemness, we assess the enrich-
ment [26] of the best classifiers set by PCGT genes,
MESC (Methylated in Embryonic Stem Cells) genes, and
PCGT repressed methylated gene groups H3K4, H3K27, and
their union (bivalent group) [27], downloaded from the
Broad Institute Molecular Signatures Database (http://www
.broadinstitute.org/). Searching for the potential cancer-
related modifications, we test the enrichment by the 100
genes most significant for discriminating 13 types of tumor
[13, Table S1]. These data sets are listed in the Supplemen-
tary file S1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2015/976362.

3. Results and Discussion

3.1. ESCs versus iPSCs Classification. First, we explore the
potential of logistic regression [19] with 𝐿

1
regularizer and

random forest [21] for ESCs versus iPSCs classification. As
described in Materials and Methods, we make use of the
5-fold cross-validation to estimate the quality of classifica-
tion. In case of logistic regression we employ nested cross-
validation to calibrate the regularization strength based on
the classification accuracy. For random forest we always build
1000 trees of depth 3.

Table 1 summarizes performance of these types of classi-
fiers based on different intragenemethylation level measures.
It shows the average errors of three types along with the
standard errors of these estimates (in parenthesis), obtained
by cross-validation. Remarkably, both types of classifiers and
all intragenemeasures demonstrate a very good performance
with the average accuracy above 95%, improving the previous
90% result, based on the artificial neural network and support
vector machine implementations for CpG sites methylation
data [17]. Instructively, all the considered intragene features
perform in a very similar way with respect to classification
quality, which could be understood as multimodal changes
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Figure 2: Classification errors of the logistic regression classifiers built on the subsets of features derived by the RBFE procedure.The colored
curves show errors of the classifiers utilizing the set of features, selected up to the current iteration (blue), the currently best subset (green),
and the remaining features (red). Errors are averaged over the cross-validation folds; the range of the errors is shown in light colors. During
feature selection their number was fixed at about 250 and varied during classification to achieve better accuracy.
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Figure 3: Classification errors of the random forest classifiers built on the subsets of features derived by the RBFE procedure. The colored
curves show errors of the classifiers utilizing the set of features, selected up to the current iteration (blue), the currently best subset (green), and
the remaining features (red). Errors are averaged over the cross-validation folds; the range of the errors is shown in light colors. A thousand
of top-ranked features are selected as the best ones at each iteration.
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Table 1: ESCs versus iPSCs classification performance for linear
regression and random forest based algorithms and for differ-
ent types of intragene methylation measures, taken separately or
together. Standard deviations of the estimates are given in paren-
thesis.

Features type Type I error Type II error Misclassification
error

Logistic regression
MEAN 0.12 (±0.15) 0.00 (±0.00) 0.04 (±0.05)
VAR 0.05 (±0.10) 0.07 (±0.08) 0.06 (±0.05)
DEV 0.00 (±0.00) 0.07 (±0.08) 0.04 (±0.05)
DERIV 0.00 (±0.00) 0.03 (±0.07) 0.02 (±0.04)
ASYMM 0.00 (±0.00) 0.03 (±0.07) 0.02 (±0.04)
All features 0.00 (±0.00) 0.03 (±0.07) 0.02 (±0.04)

Random forest
MEAN 0.00 (±0.00) 0.03 (±0.07) 0.02 (±0.04)
VAR 0.00 (±0.00) 0.07 (±0.08) 0.04 (±0.05)
DEV 0.07 (±0.13) 0.07 (±0.08) 0.06 (±0.05)
DERIV 0.00 (±0.00) 0.07 (±0.08) 0.04 (±0.05)
ASYMM 0.07 (±0.13) 0.07 (±0.08) 0.06 (±0.05)
All features 0.00 (±0.00) 0.07 (±0.08) 0.04 (±0.05)

in gene methylation due to reprogramming. Substantial
standard deviations in error estimates, observed in almost
all cases, are likely to be caused by a limited number of
samples. It should be noted, however, that the apparently
marked differences in the intragenemethylation profiles of ES
and iPS cells that allow for their confident discrimination do
not necessarily imply dramatic functional distinctions, and
their biological impact remains to be elucidated.

3.2. Feature Selection for ESCs versus iPSCs Classification. Let
us proceed with the task of identifying the particular groups
of genes, which display significant differences in the intragene
methylation profiles between the cell types. In general, a good
performance of a classifier only reveals that all intragene
methylation features (taken separately or together) contain
substantial dissimilarities. To determine a relatively small
group of genes that still serves a good discriminator, one has
to employ feature selection techniques.

Herewemake use of the recursive best feature elimination
(RBFE) procedure (cf. Materials and Methods) for both
the logistic regression and random forest base classifiers to
extract subgroups of intragene features, which nevertheless
contain enough information to distinguish betweenESCs and
iPSCs without compromising the quality.

In fact, 𝐿
1
regularized logistic regression model inher-

ently performs feature selection. However, the inspection
showed that the results are very unstable, as reflected in
the huge variation of subsets cardinality among the cross-
validation folds and small intersection of these subsets. It can
be a consequence of the limited data volume or an evidence
that reprogramming of the cell affects methylation of many
genes.

We find that the RBFE procedure performs in a consid-
erably more stable way, as it allows for exploring the features
beyond the best ones in terms of the logistic regression. That
is, exclusion of the best performing features from the pool
shows whether they are crucial for the good classification
quality or there are other subsets that perform nearly as well.
At each iteration we evaluate three classifiers: (i) utilizing the
set of features, selected up to the current iteration, (ii) taking
the currently best subset, and (iii) based on the remaining
features. During feature selection under the logistic regres-
sion model the number of features remains fixed, while the
rest of hyperparameters are tuned. The numerical results are
reported in Figure 2.

Despite the fact that error curves appear noisy,most prob-
ably due to the limited number of samples, it can be clearly
seen that the quality of classifiers trained on the currently best
and remaining features decreases over RBFE iterations. At the
same time, in the initial steps, the decay is negligible if present
at all.This observation corroborates the hypothesis that there
exist multiple gene subsets approximately equal in terms of
their discriminating ability.

A word of caution to be said, regularized linear models
are known to lack sufficient power in capturing complex
nonlinear relations between the features and the class types.
Therefore, it might occur that the features, left out by the
RBFE procedure as failing to produce the high-quality linear
model, are valid as an input to a nonlinear model.

Random forests, as powerful nonlinear classifiers, usu-
ally do not require fine tuning of hyperparameters. As a
side advantage, they allow for avoiding the nested cross-
validation, leaving only the outer loop for the quality esti-
mation model. However, it should be pointed out that,
examining the way the features are utilized in the random
forest, one can only rank the features from the most relevant
to the totally irrelevant ones. In the RBFE procedure we
were selecting 1000 top-ranked features at each iteration.The
resulting average cross-validation misclassification error and
the range of the scores for all folds are shown in Figure 3.

Overall, the results for logistic regression and random
forest models have been proven to be quite similar. For each
intragenemeasure one can identify a subset of features which
contain highly important genes, though the size of this subset
would still be too large for manual inspection.

3.3. Gene Enrichment Analysis. Identification of biological
functions associated with the top-ranked classifier genes can
be performed by the standard gene enrichment analysis [26].
The method determines whether the overlap between a set
of genes of a known or hypothesized functionality and a set
of best classifier genes can be explained as a random event.
The negative answer implies that a statistically meaningful
part of a functional gene group has substantially different
methylation profiles in the distinguished cell types. For a
quantitative test, we calculate the probability of the null
hypothesis, 𝑝 value, that the genes from the functional group
found among the best classifiers have entered this set by
a random choice from the whole pool of genes. The null
hypothesis is rejected if 𝑝 < 0.01.
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Figure 4: Enrichment analysis of the genes ranked by the misclassification error from the decision tree depth 1 classifier built on MEAN
features and sorted in descending order. Horizontal scales indicate gene numbers. Left vertical scales indicate average errors (blue lines) and
standard deviations (light blue areas). Black vertical dashed lines indicate the error level 10%. Right vertical scales and red curves indicate 𝑝
values for the enrichment of the best classifiers group, contained between gene #1 and a current gene, by (a) PCGT, (b) MESC, (c) H3K4, (d)
H3K27, (e) bivalent, and (f) cancer gene groups. Green dashed lines indicate the null hypothesis rejection threshold of 𝑝 = 0.01 probability.

To probe for potential aberrations in cell stemness, we
assess the enrichment of the best classifiers set by PCGT
genes, MESC (Methylated in Embryonic Stem Cells) genes,
and PCGT repressed methylated gene groups H3K4, H3K27,
and their union (bivalent group) [27]. Searching for the
potential cancer-related modifications, we test the enrich-
ment by the 100 genes significant for discriminating 13 types
of tumor [13, Table S1].

To begin with, we perform feature selection based on
decision tree classifiers of depth 1, where cell discrimination is
based on a single feature. Sacrificing the accuracy of classifica-
tion, one benefits from the transparentmeaning of the feature
importance, which is simply the average misclassification
error. For each intragene methylation measure, we arrange
genes according to the single gene classifier performance in
descending order and consider only those with average error
<10%.Then we select a progressively increasing group of best
classifier genes, contained between gene #1 and a current
gene, and calculate 𝑝 value for the enrichment hypothesis.

The results for MEAN and VAR measures are shown in
Figures 4 and 5, respectively. (The other measures do not
manifest significant enrichment and the corresponding plots
are not shown.) Remarkably, we find that the hypothesis of
enrichment by any of the stemness-related functional groups
does not pass the accepted 𝑝 = 0.01 rejection threshold.
Quite on the contrary both MEAN and VAR measure based
best classifiers groups do exhibit a statistically meaningful
enrichment by the cancer discriminating genes.

Repeating the procedure for random forest classifiers
we not only confirm the pronounced enrichment by cancer
markers but also uncover significant enrichment by PCGT
(MEAN measure), MESC, and H3K4 (MEAN and VAR
measures) gene groups; see Figures 6 and 7. This result
can be explained by a better performance and sensitivity
of multifeature classifiers. Presumably, they uncover hidden
variations in the iPSCs methylation profiles, coordinated
between gene subsets and missed by the trivial single-feature
classifiers.

Finally, we note that while the meaningful differences in
the stemness and cancerous gene groups between the ES an
iPS cell states are identified, the conclusions on the equiva-
lence of iPSCs and ESCs and safety of iPSCs cannot be made
straightforwardly. Whether the distinction in methylation
patterns leads to the biologically pronounced effects has to be
verified separately. Here, our analysis provides a good starting
point.

4. Conclusions

We studied the potential of differentiating embryonic and
induced pluripotent stem cells by the regularized linear
and decision tree machine learning classification algorithms,
based on a number of intragene methylation measures. The
resulting average accuracy of classification has been proven
to be above 95%, which overcomes the earlier achievements.
We proposed a constructive and transparent method of
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Figure 7: Enrichment analysis of the genes that are top-ranked by the random forest classifier built on the VAR features and sorted according
to their importance scores (blue lines and left vertical scales) in descending order. Red curves and right vertical scales indicate 𝑝 values for
the enrichment of the best classifiers group, contained between gene #1 and a current gene, by (a) PCGT, (b) MESC, (c) H3K4, (d) H3K27,
(e) bivalent, and (f) cancer gene groups. Horizontal scales indicate gene numbers. Green dashed line indicates the null hypothesis rejection
threshold of 1% probability.

feature selection based on classifier accuracy instead of the
feature importance. Enrichment analysis revealed statistically
meaningful presence of stemness group and cancer discrim-
inating genes among the selected best classifying features.
These findings stimulate the further studies to determine the
functional consequences of these differences in methylation
patterns. The presented approach can be broadly applied to
discriminate the cells of different phenotype or in different
state by their methylation profiles, identify groups of genes
constituting multifeature classifiers, and assess enrichment
of these groups by the sets of genes with a functionality of
interest.
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