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Abstract

In this thesis, methods are developed for the design of protein structures
based only on abstract structural descriptions of the protein fold. The
design protocol starts with rough alpha-carbon (backbone) models and
progress through several stages of high-resolution refinement, sequence
design and filtering according to known principles of protein structure,
coarse-grained and high-resolution knowledge-based potentials and
secondary and tertiary structural prediction methods. Following this
protocol led to the identification of protein solubility as a major limiting
factor in the progression of designs. To overcome this problem, a systematic
analysis was undertaken focusing on the more restricted problem of
sequence redesign of the native structure to find common principles that
govern viable protein sequences that can then be applied to the design of

novel structures.

A factorial design of experiments approach was used to screen a multitude
of sequence redesigns for known backbones that each possess a unique set
of properties. The behaviour of each redesign was characterised when
expressed in E. Coli in the hopes of elucidating some common features
indicative of a viable sequence. Even with the use of fractional factorial
design, the number of experimental designs required was limiting and to
test the approach, we adopted an ab initio prediction method as a proxy for
the "wet" experiments. This allowed us to increase the information gain for
each experiment and we found that optimizing towards secondary structure

prediction had a negative effect on the predictability of sequences.

Following this, an improved design methodology was developed that uses a
genetic algorithm to produce sequence redesigns which look realistic to a
number of computational measures such as sequence composition, both ab
initio and comparative modelling prediction methods, and have a high
degree of native sequence recapitulation (a good indicator for a viable

design method). Although these state-of-the-art measures all point toward



our sequence designs being on-par with (or better than) native sequences,

the problem of solubility and foldedness remained.

Machine learning techniques were used to unravel some of the complex
intricacies governing these two properties. Using this approach, we
discovered features that a substantial portion of native sequences comply
with but were missing from our designs. Using the genetic algorithm design
method, we directed our sequences to this area of attribute space in the
hopes that this would produce more realistic designs. Unfortunately,

solubility of designs still remained a large problem.

We also tested the relatively new technique of convergent peptide synthesis
to understand how valuable it could be in a synthetic biology context. After
designing a single Leucine-rich repeat, we used peptide chemistry to
synthetically build the protein before investigating solubility and
foldedness. Upon producing a single repeat of this designed protein,
multiple repeats were linked together and the resulting properties
characterised. A single 28-mer peptide was produced that was soluble and

folded.
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1.1 Protein Folding

The spontaneous formation of a 3-dimensional structure by a polypeptide
chain has given rise to a multitude of protein functions present in naturel=2.
Though not all proteins adopt stable 3D structures in order to perform their
function3, most do. Experiments by Anfinsen in the 1960's established that
the sequence of a protein is sufficient to specify the structure adopted*. The
precisely ordered 3D states of each protein sequence are global free energy
minima and the natively folded conformation is the lowest free energy

state>.

In order for folding to occur, the attractive interactions in the folded state
must be sufficient to overcome the large entropic cost of folding. For an
energy gap to exist such that one native structure is greatly favoured over
another is a non-trivial task, given the weak and relatively unspecific
noncovalent van der Waals, hydrogen bonding and hydrophobic
interactions that stabilise the folded structure®’. The interplay between the
configurational entropy of a polypeptide chain and the energy of its 3D state
has led to the conclusion that there are folding pathways or energy
“funnels”, which systematically allow a protein to find the same stable state
(Figure 1). The width of the folding funnel is representative of the
configurational entropy of the chain and the number of potential states
available, whereas the depth of the funnel is proportional to the free energy
function (not including a protein's internal degrees of freedom)s.
Regardless of starting position on the energy landscape, there are multiple
pathways that lead to the final folded and stable conformation at the bottom

of the funnel.

15



Free energy

Native state

A

Conformational entropy

Figure 1. Diagram of a protein folding funnel. The width of the funnel
represents the conformational entropy of the polypeptide chain and the
depth of the funnel indicates the free energy. As conformational entropy
is lowered with increasing structure, there is a subsequent drop in free
energy. The lowest global minima corresponds to the native folded state.
Adapted from Dill and Chan (1997)3204,

1.2 Solubility

A fundamental requirement for proper folding and function of proteins is
the existence of a soluble state®10. Many factors contribute to the solubility
of a protein, including free folding energy!l, net electrostatic charge!?, and
the number of exposed hydrophobic residues on the surfacel3. The
aggregation of proteins and peptides increases with the amount of exposed
hydrophobic area on the surface!4, and even partially burying these
hydrophobic residues can lead to a large increase in solubility’>. When
attempting to express proteins under conditions differing from the native
environments for proteins, aggregation can occur and lead to insoluble
aggregatesl617, Traditionally, solubility of recombinant proteins has been
optimised through the use of weak promoters, modified growth media,
lower growing temperatures, or solubility tags!®1°. There has also been
some progress made in attempting to predict solubility based on the
physicochemical properties of the primary amino acid sequence of the

protein, allowing directed mutation to increase expression yields20-22,

16



1.3 Fold space

1.3.1 Ideal forms

Proteins can adopt a multitude of different 3D structures (folds), and these
can be classified into various families. Many classification methods have
been devised for this purpose, which hierarchically cluster structures
showing partial or overall similarity’2. However, most of these methods
have concentrated on attempting to optimally align 3D structures in space.
This allows close relationships between similar proteins to be well defined,
but gives the problem that global similarity or tentative relationships

between folds can be difficult to interpret?3.

A significant step towards an objective fold definition was presented by
Taylor in 200224 The “ideal forms” of protein structures form a model
where the hydrogen bonds across a (3-sheet impose a layered structure onto
the arrangement of secondary structures in the fold. Each layer consists of
exclusively a-helices or B-sheets, with seldom more than 4 layers present
(Figure 2). Using this method to classify folds is very successful, as it covers
a substantial proportion of structures and can allow an unambiguous
definition of the structure?s. The ideal forms presented in the paper enable
pathways to be made through secondary structure elements, which
produces a topology string unique for that protein. For the purposes of our
studies, the terms “fold” and “topology” are used interchangeably.
“Topology” does not refer to its mathematical context, where most proteins
would be seen as having the same open string topology, but to the relative
packing and orientation of secondary structures regardless of twisting or

shearing.
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Figure 2. The “ideal forms” of protein topology. The 3 models across the
top of the diagram highlight the main ideal forms for mixed a/f folds.
Below is a representation of the ‘periodic table’ of these ideal forms. o-
helical regions are depicted as red circles, with -sheets as solid green
lines. Each “element” of the periodic table gives an indication of the
layering of secondary structures, irrespective of the number of secondary
structure elements present in each layer. The curvature of the -strands
can also be represented (I=no curvature, C=partial barrel, O=barrel).
Taken from Taylor (2002)24.

1.3.2 Topology Strings

Using the ideal forms of protein structure, it is possible to create topology
strings as unique identifiers for a specific fold?426. The standardised method
used in this approach makes it much easier to clearly define the boundaries

of structural similarity.

To produce a string representation of a protein, a simple co-ordinate system
is used. The layers of secondary structure are classed as “A”, “B”, “C” and

“E”, where layers “A” and “C” are helical whereas “B” and “E” are sheets

18



(shown in Figure 3). Each element in a layer is assigned a number based on
its position in the layer, and “+/-“ is placed before the element description to
give it an orientation (i.e. facing frontwards or backwards). The first
element present in the layer is assigned as position “0” and all other
positions in the layer are defined relative to position 0. The first strand in
the sheet always takes the positive orientation, +B+0, while the first helix is
always in the top layer “A”26. The string produced via this method is unique
for each individual fold, easily visualised and gives a simplistic indication of
general structure. It also has the benefit of being able to recognised more
global similarities between topologies that would be undetected or wrongly
identified by root-mean-square deviation (RMSD)-based superposition

methods of comparison.

0
A
// - C /
2.7 A 0 /N +1 +2 e [/
\VVA VA \Vaa\
B / 7/
/ /’ C L7 //
1 ,/ Y PR L7
] / / ’
7’
C /
0 +1 +2
+B+0.-A+0.4B-2.-C+0.+B-1.-C+1.+B+1.-C+2.+B+2 +B+0.-A+0.4B-1.-C+0.4B+2.-C+1.+B+3.-A+1.+B+1

Figure 3. Two examples of fold topologies with their respective topology
strings. Circles represent a-helices, whereas triangles are -strands. The
two models shown have similar secondary structural features and therefore
belong to a similar group in the ‘periodic table’ of protein folds, but each has
a unique descriptive topology string to identify it. Layers “A” and “C” are
helical layers and layers “B” and “E” are sheets. Note: Layer “E” isn’t shown
in these examples but would be present between layers “B” and “C” for a
double-layered sheet. A co-ordinate system is used to identify positions
within a layer, with the first element to be present in that layer labelled as
“0”. All other positions are then given a position relative to this. An
orientation of “+” or “-“ is given to each element to give it an orientation
within the structure. Using this method, a pathway can be traced through
secondary structures to give a unique descriptive identifier for each protein

fold. Adapted from Taylor (2009)2¢.
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1.3.3 Fold space

Considerable effort has been made towards understanding the space of
potential protein structures and though the number of structures in the PDB
is around 111,00027, the rate at which novel folds are being discovered is
becoming increasingly rare28. It has therefore been proposed that we now
possess a structural representation for every basic, or “natural”, protein
fold?°. Due to the large amount of known structures available, it has become
more and more apparent that there are some very distinct relationships
between particular sequences and the secondary structures that they are
most likely to adopt3031,  Using homology-based template modelling,
combined with energy functions to find the lowest energy state, detailed
predictive models of protein structure can be produced that possess
relatively small root-mean-square deviation (RMSD) from the native
conformation3233, Ultimately, this has led to speculation that all natural
protein sequences can be modelled through assembly of fragments taken

from the current collection2934,

However, the number of unique folds in the current database is only a
fraction of what should theoretically be possible. Many groups have
attempted to estimate the number of unique folds available, ranging from
around 400 folds3> to over 10,00036. More likely estimates seem to
converge at ~4,000 novel folds, of which ~2,200 should be visible in
nature3’:38, When comparing the possible protein fold space to what have
already been observed (using topology strings to identify distinct folds),
there is a ratio of 10:1 that exists for unseen:known folds?¢ (Figure 4). This
suggests that nature is very restricted in the folds that it uses, favouring a
specific subset of topologies and leaving protein fold space surprisingly

empty.
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Figure 4. RMSD projection showing distances between potential folds in 3D
space. Coloured (green and red) spheres represent known folds and white
spheres are unobserved folds, with the radius of the sphere indicating the
number of proteins known to contain the fold. There is about a 10:1 ratio of
unseen:known folds in the projection, indicating that there is a lot of fold
space that nature has not yet explored. Taken from Taylor et al (2009)26.

1.4 Protein structure prediction

1.4.1 Comparative modelling

The tertiary structure of a protein can be predicted from the amino acid
sequence using various methods. One of these methods is comparative
modelling, which can be implemented with programs such as Rosetta3® and
[-TASSER#0,  Comparative modelling uses a template library of solved
protein structures, from NMR and X-ray crystallography techniques, to build
a model for a sequence with an unknown 3D conformation*!. Firstly, the
target sequence is aligned with the sequences of proteins that have known
structures using an alignment program such as HMMer#2 or PSI-BLAST#3.
Then, incomplete models are produced based on the template structures by

copying coordinates (alpha carbons, as well as phi and psi angles) from
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aligned regions**. Loop regions are inherently more flexible and have
greater conformational diversity than defined secondary structures and will
not usually be consistently aligned for different proteins. To model the non-
conserved loops of proteins de novo, Rosetta produces a fragment library
(based on real structures) for the loop sequence and then iteratively
combines these different fragment conformations to find the lowest energy
state and reproduce realistic loop closure#s. This process is similar to the ab
initio protocol described in the next section. By stitching together templates
from known structures and adding in appropriate loops between secondary
structure elements, a coarse-grain model is produced. However, this coarse
model may still have poor geometry at segment boundaries with steric
clashes, unfavourable hydrogen bonding energies and distorted peptide
bonds. To refine the model, a series of various small moves and
perturbations are applied to the backbone atoms, with stochastic rotamer
packing for side-chains of the residues. Using a Monte-Carlo method of
sampling and an all-atom energy function scoring system*¢, the energy
minimum of the structure is investigated as the local environment of the
structure is explored. The schematic of this process is outlined in Figure 5.
The Rosetta prediction protocol suggests that a total of 10,000 models are
made in this way, with the lowest 10% of models by energy selected and

then clustered to give the optimal prediction of tertiary structure>47.48,
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Figure 5. Schematic representation of the comparative modelling process
for protein structure prediction. The target sequence is aligned with
sequences that have a known structure. The templates are then ranked
based on their sequence similarity and overlapping regions are copied for
the coarse-grain model. Structural refinement is performed on this coarse
model by Monte Carlo sampling methods aimed to minimize the energy of
the structure. Adapted from Wu and Zhang*4.

1.4.2 Ab initio modelling

Ab initio modelling is another structure prediction technique that can be
used, in the absence of templates, to produce a 3D model purely based on

fundamental physicochemical properties.

The Rosetta software suite offers an option to predict the structures of
proteins ab initio, and the basic features will be outlined here. For more

comprehensive detail, the published manuals can be consulted39:49-52,

There are two major tasks that an ab initio prediction protocol must

perform. It must be able to sample the conformational space of a protein,
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and then evaluate these resulting structures to determine which has the
lowest energy. Conformational space is explored mainly with knowledge-
guided Metropolis Monte Carlo sampling, where a substitution or
perturbation is made to the structure and then accepted if the new
conformation scores better. To evaluate potential structures, a knowledge-

based energy function is used to score each one.

Because the conformational space of even a small sequence is so vast and
the energy landscape so rugged, Rosetta starts with a coarse-grained search
to find local energy minima. The structure starts as a completely extended
chain, with side-chains treated as “super-atom” centroids (Figure 6A). This
limits the degrees of freedom in the chain, while still conserving some
physicochemical properties of individual residues®3. By treating side-chains
as soft interaction centres, the conformation of a protein is completely
specified by the phi (@), psi (V) and omega ({1) torsion angles of the
backbone. Next, a position along the chain is randomly selected to undergo
change. At this position, a fragment of the same sequence is inserted from a
library that has been produced by analysing bond angles between resides in
fragments of real structures. If the subsequent conformation results in a
lower backbone energy, the change is accepted and if there is a lower energy
then the change is discarded. Another position is then randomly selected
and the process continues for a given number of iterations (usually 5000) to
produce a rough estimate of the global fold (Figure 6B)#°. Initially, a
fragment size of 9 residues is used in the replacement to produce the global
fold and then the length is reduced to 3 residues for better local structural

refinement.

24



B Hydrophobic residues

Bl Positively charged residues
B Negatively charged residues
B Polar residues

Figure 6. Representation of the conformational sampling method used in the
Rosetta program. A) The protein is initially treated as an extended chain
with side-chains coarse-grained as soft interaction centres (centroids). A
position is selected randomly and a structural fragment, containing
backbone torsion angles taken from known PDBs, of similar sequence is
inserted into that position. If a lower energy is obtained, the conformation
of that fragment is adopted. Higher energy changes are discarded and the
process continues with another position being selected. B) Fragment
selection and replacement proceeds in a Metropolis Monte Carlo method to
minimize energy for a number of iterations and converges on a global fold.
Because of this coarse-grained low-resolution approach, many local energy
minima are found. Picture taken from Das and Baker#®

This methodology has its own energy function scoring system, based on
probability profiles derived from real PDB structures. Solvation effects are
modelled as the probability of seeing a particular amino acid with a given
number of alpha carbons in the local vicinity. Electrostatic interactions are
captured by the probability of observing a given distance between centroids.
The radius of gyration is used to model the effect of van der Waals attractive
forces and centroid overlap is penalised to reproduce the repulsive

component39:52,
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Coarse-graining the energy landscape allows multiple local minima to be
found relatively quickly by the sampling technique. Once found, these can
be explored in more detail by using a physically realistic, fine-detail
atomistic model in order to distinguish between native and non-native
states with greater accuracy. Starting from each minima, details of the side-
chains are added back onto the structure and a simulated annealing search
is performed through all combinations of discrete amino acid rotamers at
each position. Monte Carlo sampling occurs again after this, with an
assortment of torsion angle perturbations (which do not change the global
fold of the protein), one-at-a-time rotamer optimisation and then
continuous gradient-based minimization of side-chains and backbone

torsion angles finishes the protocol°.

The energy function used for this fine-detail approach is different from the
one used for the low-resolution search. Atom-atom interactions are
described using a Lennard-Jones potential, an implicit solvation term
calculates the desolvation effects>* and hydrogen bonds are modelled with

an explicit potential55-6,

By discovering local minima then optimizing with a fine-detail forcefield, the
global minima can be explored. Although there are potential problems
associated with the inaccuracy of energy functions and the approximations
made by them?®7, there is a good precedent for using the method for de novo

structure prediction5358-60,

As with the comparative modelling process, it is suggested that a large
number of models be made (~10,000) using this method and then the

lowest 10% by energy clustered to find an optimal structure prediction>.
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1.5 Protein Design

As protein structure prediction techniques improve and accuracy increases,
it opens up greater possibilities for protein design. Structure prediction
attempts to determine the structure that a given sequence will adopt. The
other side of this coin is being able to design a sequence that will fold into a

given structure, i.e. the “inverse folding” problem®1.

Arguably, the field of protein engineering and design began with a series of
papers from Gutte et al. that aimed to produce peptides with a desired
function and a specific tertiary structure®2-64. Although the peptides seemed
to have correct functionality, these experiments did not contribute directly
to understanding structural design principles as they proved difficult to
characterise. Nevertheless, interest in the field was stimulated and further

successes were to follow.

The next big development came in the mid-1980s when Eisenberg
attempted to design a simple 16-residue sequence, from first principles, that
would form an amphipathic helix and associate into a bundle®s. This
sequence was made by DeGrado using peptide synthesis, and optimised
through an incremental design process®®. To start, a sequence was designed
that would fold into a single helix, based on circular dichroism (CD) spectra
and association behaviour. Dimers and a tetramer were then made through
linking identical helices together and optimising individual residues to
produce the final form. The work culminated in the production of a de novo

designed 4-helix bundle®’.

The first fully automated protein redesign came from Mayo and Dahiyat in
1997, when they successfully produced a sequence that folded into a target
BBa backbone structure (taken from the zinc-finger motif of the Zif268
protein)®8. Kim et al. also had success around this time, designing and
experimentally characterising right-handed coiled-coils not found in

nature®®. Both of these achievements relied heavily on newly developed
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energy functions that model atomistic interactions, a feat only possible with

the increased computational power that was available.

Early experiments in protein design focused on simple tertiary structures, in
order to reduce the complexity of the problem. By choosing helical bundles
(possessing a high degree of symmetry) or a simplified o fold, the
complexity of secondary structure interactions is reduced and allows for a
greater chance of design success. Skipping ahead to today, the best-
understood targets for structural design are coiled-coils, which have a high
degree of symmetry along with a well-defined parameter set. Association of
a-helices to form bundles is programmed at the sequence level by a very
well characterised heptad repeat of hydrophobic (H) and polar (P) residues,
HPPHPPP7°. Modelling of a coiled-coil in silico can also be performed with a
high degree of accuracy by invoking Crick’s parametric equations, that use
only 4 parameters’!. Since the principles governing coiled-coil structures
are so well understood, they are attractive targets for protein engineering
experiments. In fact, large steps have been taken to standardise the design
methodology and assessment of potentially viable candidates’273. Complete
de novo design of backbone and sequence has now been accomplished for
helical targets’4-7¢ and the future potential in this area has only just begun

to be explored.

While the successes in structural design have so far been very exciting,
ideally we would like to head towards being able to produce more complex
protein structures from first principles. Perhaps the most significant step in
this direction was by Baker et al in 2003 when they managed to
experimentally characterise a completely de novo design of a backbone
never before seen in nature (Figure 7)77. The protein, Top7, was designed
with atomic-level accuracy while being highly stable and robust to
mutation’8. Using a similar protocol to the one used to make Top7, Koga et

al. managed to produce 5 completely de novo redesigns of known folds?”®.

28



Figure 7. Top7 computationally
designed structure (blue)
superposed with the solved x-ray
structure (red). There is very
close agreement between the
designed and experimentally
characterised structures. The
fold is a completely novel one,
never seen before in nature, and
makes Top7 one of the best
demonstrations of protein
design so far. Taken from Baker
etal. 77

Creating proteins purely from first principles still remains a huge challenge
and although a number of groups have proposed different methodologies®-
82, experimental success for complete de novo design has been mainly

limited to the experiments previously outlined.

Rather than complete de novo design, a more functional approach can be
taken by permuting existing architectures or sequences to produce novel
proteins. Hybrid proteins are a good example of using existing folds to
create completely new topologies8384, Protein domains are made from
modular secondary structure elements with regular geometries8>. These
“building blocks” also form larger supersecondary structures that are
present across domain families®¢, e.g. the strand-turn-helix repeat of
Leucine-rich repeat proteins. Linking these smaller, intrinsically stable
subunits together can then create new hybrid folds87.88. A good example of
this type of fragment recombination is the work of Hocker et al, when they
successfully created a Ba-barrel by combining fragments of two different

proteins (CheY and HisF)8°.

Redesigning existing architectures to accommodate different (and
sometimes novel) functions has also met with considerable success?0-93,
Natural protein sequence-structure relationships appear to be quite robust
to mutation®# and this property can be exploited in a directed way. To avoid

having to design a protein sequence from scratch, designed functional sites
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can be incorporated into folds that are already intrinsically stable. By
adapting as much information as possible from natural precedent, the
chances of success are greatly increased as native sequence-structure
relationships are used to support the design process®. Perhaps the best
successes using this methodology came from a series of papers from the
Baker lab, where they successfully designed new enzymes to catalyse the
retro-Aldol reaction®®, a Diels-Alder reaction®’, and a new Kemp-elimination
reaction®8. For all of these experiments, an active site engineered for a novel

function was grafted onto a fold already found in natural proteins.

1.6 Discussion

The structure and function of a protein are specified directly by the
sequence of amino acid residues it is composed from. The folded 3D
structures that protein sequences adopt can be categorised into various
families, based on common features. At present, the number of different
protein folds found in nature appears to be remaining relatively constant,
suggesting that there are only a specific number of structure types that have
been used for the native landscape. This leads to questions as to why a
substantial amount of fold types have not been used. Do these ‘dark matter’
folds possess some property that makes them difficult to utilise, or has

evolution simply not had time to explore all of the possible fold space?

Advances in structure prediction are allowing us to predict accurate 3D
models of proteins, solely from their primary sequence. The other side of
this coin is; are we able to program a sequence that will adopt a desired
structure? There has been success by using fragments of known proteins
and repurposing or mutating them to engineer novel functionalities, but
ideally we would like to build chosen folds completely de novo from first
principles. There may be no such fragments that can be repurposed for a
novel fold topology, and so utilizing this approach may place boundaries on
what is possible. Some new folds may only be accessible through complete

de novo design, and so it is important to attempt to make advances to this
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end. The field of coiled-coil design is the best understood, and huge efforts
have been made to produce completely de novo designs. That this can be
done is hugely exciting and encourages us to delve deeper into more

structure types to see if similar success can be found.

In this thesis, I begin by using established design methodologies to try and
produce some novel topologies for folds containing both a-helices and 3-
sheets. This would help to discern how well previous successes generalise
to other fold types. I then attempt to probe the general rules that govern
solubility and foldedness of protein structures, in the hopes of elucidating

general principles that can be used to optimise the design processes.
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2. Methods
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This section aims to outline the general methods that apply to most chapters
of the thesis. Since the exact protocols vary between chapters, it is meant to
offer a broad view of the techniques that are consistent across most. For
specifics on a method used, the “Methods” section within each chapter

should be consulted.

2.1 Computational

2.1.1 Comparative modelling

During our investigations, we rely on comparative modelling in order to
produce a 3D prediction of the structure that our designed sequence is likely
to adopt. By predicting the structure before experimentally testing our
designs, we can computationally screen sequences in order to cut down on
experimental time and cost. The predicted model can be compared to the
template structure that we are aiming for, to give us an indicator of how
well we think that design should perform. Our comparative modelling
processes to produce these predictive models were carried out according to
the guidelines provided by Baker et al*>4748, Because we are using the
Rosetta program for both design and prediction, we thought it prudent to
double-check our predictions using the I[-TASSER modelling suite40. I-
TASSER and Rosetta have consistently been the highest scoring platforms in
recent years at CASP?°? and we found a high level of agreement between the
two systems when predicting our designs. All predictive protocols followed
the guidelines provided by each program manual and further details should

be taken from them if elaboration is required.

2.1.2 Ab initio prediction

We also employ ab initio prediction methods quite heavily in this thesis. For
some of our protein designs, especially ones with novel folds, there are not
any solved structures that can be used as a template. Therefore, to avoid

biasing towards native structures, we used an ab initio method of prediction.
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By doing this, we level the playing field for our novel designs when
compared to native comparison predictions. Again, standard protocols for
ab initio structure prediction were used and the relevant literature can be
consulted for specific details>. Comparative modelling is also used after ab

initio predictions, as a final checkpoint for potentially good designs.

2.1.3 Rosetta design

Closely linked to the ab initio structure prediction protocol in Rosetta is the
protein design capabilities that it possesses. By using its rotamer libraries
as a sampling method and the energy function to score the new structure,
Rosetta can attempt to find an optimal fit for a non-native amino acid in a
given residue position. The protocols provided allow a user to select one or
more positions that should be redesigned, as well as specify the types of
residues that are permissible at that location (e.g. only allowing the system
to choose from hydrophobic resides in the core)100. There have already
been successes using this technique for protein design including the
production of new disease therapeutics?1101102 gelf-assembling
peptides103104 novel enzymes?%105 and even completely redesigned

sequencesi? or novel folds?7.7°.

The specifics of our design protocols are explained in greater depth within

the chapters in which they are relevant.

2.1.4 TM-scoring

When predicting the structure of proteins, it is important to have a method
of establishing how close any two given structures are to each other. For
example, if a reasonable redesign of a native sequence has been found then
it would be useful to make a prediction of what the new sequence’s
structure would look like and then compare this to the structure that the
original native sequence adopts. This would give an indication of whether

the new design is computationally valid.
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Traditionally, root mean square deviation (RMSD) and the Global Distance
Test (GDT) are the measures that have been used for this purpose. RMSD
measures the average distance between equivalent atoms in the model and
the templatel%7, whereas the GDT measures how many alpha-carbons of the
model fall within a defined distance cut-off from the templatel. Both of
these methods have a power-law dependence on protein size, leading to
some inconsistencies in how they treat different proteins'%. They are also
very sensitive to outlier regions, such as loops or terminals, which may not
be well-predicted110111 and so a higher RMSD may be found even if the rest
of the model is in strong agreement. Both of these techniques are
susceptible to noise and since we are interested in the global folds of the
proteins we produce (which may have quite a bit of noise), we used the

template-modelling score (TM-score) as a comparison method.

TM-scoring aims to rescale structural modelling errors so that the impact of
outlier regions on the overall score is minimized, and is also independent of
sizel09. The score is given between 0 and 1, with better templates having
higher scores (a perfect model-template comparison will have a score of
“1”). Generally speaking, random similarities are below 0.17 TM-score, a
significant portion of structure is correctly modelled at 0.35 and the same

fold is judged at >0.559112,

2.1.5 Baselines of prediction and TM-scoring

To gain a baseline to test our designs against, we performed a quick ab initio
structure prediction (1,000 models) on 100 native sequences and then
compared the average TM-score of these predicted models to the known
structures. For comparison, we also predicted the same number of models
for random sequences and then mapped these back onto random structures
of equivalent size (Figure 8). For the random sequences mapped onto
random structures of equivalent size, the average TM-score across all 1,000

models was around 0.12. This suggests that there is no real correlation
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between structures, which is expected. For the native structure predictions,
the distribution seems centred about 0.39. This is not perfect, as we would
like to have a TM-score >0.50 but this is one of the limitations of purely
relying on the ab initio structure prediction method. There is still a high
degree of structural similarity between the average prediction model and
the native structure (>0.35). We now have values to aim for during our
design experiments. If our designs are tending towards a value around 0.12,
then we know our designs need more improvements. However, the closer

we get to being at a >0.35 level, the more native-like our designs will be.
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Figure 8. The density of average TM-score over 1,000 predicted models for
100 native and random structure-sequence combinations. The ab initio
protocol was used to make predictions for a native sequence-structure
pairing or a random sequence predicted, and then mapped back onto a
random structure of equivalent size. The random pairings had an average
TM-score about 0.12, while the natives had a much higher score of 0.39.
This gives us a baseline to aim for when designing new sequences. A higher
average TM-score after prediction will mean that our sequences are more
native-like.
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To offer a structural view, examples are provided of structures at 0.12 and
0.35 TM-score to the original (Figure 9). The 0.12 TM-score structure (Fig
9B) has hardly any similarity to the original 3CHY structure (Fig 9A). With
the 0.35 TM-score model (Fig 9C), global similarities can be seen between
the two. Three helices are relatively well formed, with some packing of the
beta strands in the centre of the structure. However, the termini of the
protein are not predicted well (blue and red sub-structures in the diagram)
and do not exist as the tightly packed helices they are supposed to. Again,
the structures are not perfect due to the limitations of the ab initio
prediction process. The models produced should still be sufficient enough
to offer a quick insight into how our designs are doing when compared to

native sequences.
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Figure 9. Illlustration of different TM-scores. A) The original 3CHY
structure with well defined global fold and substructures. B) A model that
has 0.12 TM-score to the 3CHY template. There are no real commonalities
between the prediction and the template structure with substructures and
the global fold missing. C) A 0.35 TM-score model. There are quite a few
common substructures such as well-formed helices and some packing of
the beta strands into the core of the protein. However, the terminal ends
(represented by red and blue sections) are not well formed. A higher TM-
score is indicative of a higher structural agreement between model and
template.

In all chapters of this thesis, the ab initio structure prediction offers an
initial stage for optimisation, as we can run this relatively quickly, and then

full comparative modelling is used to ensure a greater level of accuracy.



2.1.6 Definition of core residues (POPS)

Our definitions for “core” positions were any residue that has an alpha-
carbon with a relative surface accessible surface area (rSASA) of 0.30 (or
30%). To obtain the rSASA for each residue position, we used the program
POPS113, The 30% exposure cut-off seems to pick out the correct core

residues, even ones packed on the inside of helices (Figure 10).

A B

Figure 10. Diagram showing core and surface residues picked out on the
3HCY fold. A 30% rSASA was used to define the boundary between core
and surface residues. Residue positions less than 30% exposed were
classed as “core” (red) and the remaining positions are “surface” (blue).
This exposure definition picks out residues in the middle of the protein as
“core”, with the positions on the inside of helices also chosen. A) Shows
the backbone view of the 3CHY fold to enable a better view inside the
protein. B) Shows the backbone atoms as shells, to better illustrate the
packing.
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2.2 Experimental

2.2.1 Gene synthesis

Constructs taken through for experimental testing were first generated as
60-mer overlapping primers (designed with an in-house program) and
pieced together using the Thermodynamically Balanced Inside-Out (TBIO)
gene synthesis method!14 with KOD polymerase (New England Biolabs, UK).
The constructs also had specific sequences on the termini, to allow them to
be used for ligation independent cloning. These sequences were 5’-
TACTTCCAATCCATG-3’ added to the 5’ end of the upstream primer and 5’-
TATCCACCTTTACTGTTA-3’ added to the 5" end of the downstream primer.
The necessity of these is explained further in Section 2.2.3. Codon bias for
expression in E. Coli was taken into account while designing primers for our

designed proteins.

2.2.2 Agarose gel electrophoresis

DNA preparations were analyzed by electrophoresis on a 2% agarose gel
made with Tris-Acetate-EDTA (TAE) buffer containing 0.2 mg/ml ethidium
bromide for 30 minutes at 180 V. DNA loading buffer was added to DNA at a
ratio of 1:5. DNA was visualized by exposure to UV radiation and the size of
DNA fragments was determined through comparison with standard markers

(Bioline Hyperladder I).

2.2.3 Ligation Independent Cloning (LIC)

Genes were transformed into E. Coli BL-21 gold (DE3) cells (Agilent
Technologies, UK) through the use of ligation independent cloning (LIC).
This technique utilizes the 3’->5’ exonuclease activity of the T4 DNA
polymerase to generate complementary base overhangs in vector and insert.
The vector and insert are then mixed, added to competent cells, and heat-

shocked for a very efficient transformation process.
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We used a pNIC28-Bsa4 vector that possesses Kanamycin resistance, a N-
terminal Hise purification tag, and a TEV protease cleavage site (Structural
Genomics Consortium, UK). The vector also contains the SacB gene
surrounded by two Bsal cleavage sites (Figure 11A) and a T7 promoter
upstream of this. The SacB protein converts sucrose to a toxic product,
meaning that when it is present in a cell, that cell will die. The idea is to use
Bsal restriction to release the SacB gene and insert a desired fragment in its
place (Figure 11B). If a plasmid is not cut effectively and the SacB gene not
removed, growing cells in the presence of sucrose will select these cells out
of the population. 5 pg of vector was treated with 2.5 pl of Bsal (10 U/ pl) in
5ul of 10X New England Biolabs buffer 3 (NEB3) for 1 hour at 50 °C, and

linearization of the plasmid was confirmed by running on a 1% agarose gel.

Next, the vector was treated with T4 DNA polymerase (Qiagen, UK) in the
presence of dGTP. Because of the 3’->5’ exonuclease activity of this enzyme,
bases are removed from both 3’ ends until the first guanine (G) is reached.
When a guanine is reached, the polymerase activity of the enzyme will take
over due to an excess of this base in the reaction buffer (Figure 11C). 600
ng of the Bsal-digested vector was incubated in a reaction mixture (2 pl 10X
NEB3 buffer, 0.5 ul 100 mM dGTP, 1ul 100 mM DTT, 0.2 pl 100X BSA, 0.4 ul
of 3 U/ul T4 DNA polymerase) for 30 min at 22 °C to allow T4 treatment to
occur, before being heated to 75 °C for 20 min to inactivate the polymerase.
0.2 pmol of our synthesized genes also underwent this protocol, with exactly
the same volumes and conditions, but with dCTP in place of dGTP. This
gives us complementary overhangs that can be annealed before
transformation occurs (Figure 11D). 1 pl of the treated vector mixture was
added to 2 pl of the insert mixture, with addition of 1 ul EDTA (25 mM), and

incubated for 15 min at 22 °C to allow annealing.
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Cleavage site Bsal

A) 5' - GT ACT TCC AAT|CCATGG AGA CCG GGT CTC OAG TAAAGG TGG ATACG - 3’
3 - CATGAAGG TTA GGT ACC TCT GGC SacB gene CCA GAG GTC ATIT TCC ACC TCT GC - 5'
Bsal Cleavage site
Bsal treatment
of plasmid
5 - GT ACT TCC AAT CCATGGAGA CCG GGTCTCC AG TAAAGG TGGATACG -3
B) SacB gene
3'-CATGAAGG TTAGGTA CCTCT GGC CCAGAG GTC AT TTCCACCTCTGC-5'
T4 treatment
of plasmid
C) 5-G AG TAAAGG TGG ATACG - 3'
3'-CATGAAGG TTAGGTA GC-5
Annealing with
T4- treated insert
5'- GTACT TCC AAT CCAT AG TAAAGG TGGATACG - 3'
D) Gene of interest
3'- CATGAAGG TTAGGTA TCATTTCCACC TCTGC - 5'

Fully formed plasmid

Figure 11. LIC protocol for preparing vectors to be used in
transformations. A) The pNIC-Bsa4 vector has a SacB gene surrounded
by two Bsal cleavage sites. This SacB gene produces a protein that
converts sucrose to a product that is toxic to the cells. B) Upon Bsal
treatment, the SacB gene is released, linearizing the plasmid and leaving
the ends open for T4 polymerase treatment. In the presence of dGTP,
the 3’-5’ exonuclease activity of the T4 enzyme will remove bases from
the 3’ end. This stops at the first guanine base (G) because there is an
excess of this base in the reaction buffer and so the polymerase activity
of the enzyme will take over. Bases that will be removed are marked in
red. C) After T4 treatment of the vector, we are left with overhangs that
can be used to anneal to a different insert that has complementary
sequences. D) Complementary T4-treatment of an insert can generate
these overhangs and allow plasmid formation and transformation into
cells without the need to ligate the different fragments together.

After annealing, a standard transformation protocol was used to put the
constructs into BL21-gold (DE3) cells. 1 pl of the annealing mixture was
added to 50 pl of competent cells and incubated on ice for 30 min. The cells
were then heat-shocked for 45 seconds at 42 °C before quickly being places
back on ice for a further 2 min. Cells then recovered in 200 ul of SOC
medium (2% (w/v) tryptone, 0.5% yeast extract, 0.05% NaCl, 20 mM
glucose) at 37 °C for 1 hour before being plated on agar plates containing
5% sucrose and 50 pg/ml Kanamycin. If cells had not taken up the plasmid,

they would not have possessed Kanamycin resistance and so would be killed
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off. Similarly, any cells that had taken up uncut plasmid where the SacB
gene was still present would be sensitive to the sucrose in the agar plates.
This allowed us to pick only colonies that had taken up the plasmid with the

correct inserts, and reduced the number of false-positives.

A single bacterial colony from each agar plate was picked and taken into 10
ml of Luria Bertani medium (LB - 1% (w/v) tryptone, 0.5% yeast extract,
0.5% (w/v) NaCl), again containing 50 pg/ml Kanamycin. This was
incubated at 37 °C, 200 rpm for ~5 hours. After making bacterial stocks for
future use (Section 2.2.4), plasmid was then recovered from cells using a
QIAGEN Plasmid Mini Kit (following the protocols outlined by the
manufacturer) and sequences verified externally by the GATC company to

ensure that the correct inserts were present.

2.2.4 Bacterial stocks

To ensure we had consistent stocks for future use, frozen bacterial stocks
were made. 500 pl of bacterial culture was added to 500 pl of 50% glycerol

in a 2 ml cryovial and gently mixed. This was then stored at -80 °C.

2.2.5 Protein expression

10 ml of LB culture media (1% (w/v) tryptone, 0.5% yeast extract, 0.5%
(w/v) NaCl) containing 50 pg/ml was inoculated with transformed BL21-
gold (DE3) cells containing the appropriate sequence verified plasmid. This
was left to grow at 37 °C, 200 rpm to an ODegoo of 0.6 and then protein
expression was induced with 1 mM IPTG overnight at 25 °C, 200 rpm11.

In the case of proteins for NMR experiments, cells were grown in PG
minimal medium (50 mM Na;HPO4, 50 mM KH2PO4, 2 mM MgSO0,, 0.2X trace
metals, 0.5% glucose) containing isotope labelled ammonium sulphate-1>N;

(Cambridge Isotope Laboratories, UK) in place of LB media.
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2.2.6 Protein purification

Cells were pelleted by centrifugation at 3,000 RPM for 10 minutes, the
supernatant removed and the pellet resuspended in 20 mM Tris-HCl (pH
7.7) at 10 °C for 15 min. Once pellets were fully resuspended, cells were
lysed using 60 mM Tris-HCl (pH 7.7), 90 mM Imidazole (pH 8), 900 mM
NaCl, 0.6% OTG, 30% glycerol, 30 mM MgS04, 4 U/ml DNase I, 3 mM TCEP
and 0.3 mM PMSF for 15 min at 4°C with shaking. The resulting lysates
were then spun at 5,900 rpm for 1 hour at 4 °C in order to pellet cell debris
and insoluble protein aggregates. After centrifugation, the proteins were

purified on a Ni?*-NTA affinity column as per the manufacturers instructions

(Qiagen, UK).

2.2.7 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis

5 ul of NuPAGE LDS Sample Buffer (Invitrogen) was added to 15 ul aliquots
of protein sample, and heated at 90 °C for 5 min. Protein samples and Mark
12 protein standards (Invitrogen) were loaded onto a NuPAGE 4-12% Bis-
Tris Gels (Invitrogen). Gels were run at 180 V for 35 min in NuPAGE MES
SDS Running buffer (Invitrogen). Protein bands were visualised by staining

Coomassie blue (Invitrogen).

An example of what we would class as “soluble” protein is given in Figure
12. In the whole cell lysate of Design 1, there is a clear band at the
appropriate size to indicate that our design is expressed. The band
indicating our expressed protein is still present in the soluble fraction after
centrifugation. This suggests that the protein doesn’t precipitate out of
solution, and is therefore soluble. For Design 2, the whole cell fraction again
shows that our protein is expressed in the cells. However, the band is
lacking from the soluble fraction for this design and this indicates that this

design is not soluble, forming aggregates that precipitate out of solution.

44



Ladder Design 1 Design 2

(kDa) |;Ihole Sol |Whole Sol|

55.4

36.5

21.5

14.4

Figure 12. Example of what we define as “soluble” and “insoluble” proteins,
shown on an SDS-PAGE gel with Coomassie Blue staining. Design 1 is a
soluble protein, with a band of appropriate size present in both the whole
cell and soluble fractions. This indicates that it does not form aggregates
and therefore doesn’t precipitate out of solution. Design 2 shows an
insoluble protein where the protein is expressed, as seen in the “whole”
cell lysate but not soluble. The lack of a band in the “soluble” lane of the
gel suggests that the protein forms aggregates, precipitates out of solution
and then is removed by the centrifugation step.

2.2.8 Size exclusion chromatography (SEC)

Apparent soluble designs were purified and tested for foldedness using a
size exclusion chromatography (SEC) column with pore size 10 kDa or 20
kDa, depending on the backbone. Superdex 75 (GE Healthcare, UK) columns
were equilibrated with buffer (20 mM MES pH 6.5, 50 mM NaCl, 1 mM
TCEP) on an AKTA purifier 10 (GE Healthcare, UK) with a flow rate of 1
ml/min. 5 ml of sample was injected onto the column and eluted in 1 ml
fractions, with absorbance tracked at a wavelength of 280 nm. Samples

were collected and analysed via SDS-PAGE (Section 2.2.7).

In the event of all proteins being eluted in the void zone, a new buffer

containing 50 mM NaCl, 400 mM Urea and 200 mM MgSO4 was used with
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the same columns (after washing and re-equilibration) in order to disrupt

any potential aggregates that had formed?16.
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3. Design of novel folds
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3.1 Introduction

As highlighted previously, there are many unexplored regions in protein
fold space2¢. Given the reported successes in protein design using the
Rosetta program, we attempted to make some novel folds not yet found in
nature. Firstly, we identified some fold topologies that are not found in
solved PDB structures. To do this, we converted every structure in the PDB
into a topology string in order to give us a set of known full folds. Then, we
split each global topology into smaller fragments by progressively removing
a secondary structure element from each terminal of the protein. By doing
this, we had a representative set of full folds, as well as substructures
contained within them. We then chose two ideal forms?4, a 2-4-0 and a 2-4-
2 structure (Figure 13), and combinatorially generated all possible
topologies for these forms. By filtering out known topologies from the
selection, as well as ones with uncommon features (crossing loops, left-
handed connections, parallel connections, layer skips etc), we identified

potentially realistic novel fold topologies.

Figure 13. Ideal protein forms

A) used for investigation into novel
Q Q folds. A) A ferrodoxin-like, 2-4-0,

2-4-0 ~ structure. B) A rossmanoid fold

/\ /\ /\ /\ Ferrodoxin  yith a 2-4-2 format. All possible
pathways through the forms were

made. Then folds that are found

in the PDB were removed, along

B) with any topologies  with
O O uncommon features (crossing

loops, layer skips etc). This left us

/\ /\ /\ /\ 2-4-2 ~ with a list of novel folds that
Rossmanoid c,yld be investigated. The

representations shown are empty
O O forms, with no topologies shown
and no orientation implied for

any of the secondary structure
elements.




Once novel topologies were found, we employed a previously published
backbone construction program to create the scaffold of the fold117. We
then used Rosetta with a flexible backbone design protocol to find an
optimal sequence for this structure and attempted to experimentally
characterise them through solubility screening and nuclear magnetic

resonance (NMR) studies.

3.2 Methods

3.2.1 Novel topology identification

We began our search for novel folds by first generating a large number of
ideal forms according to prescribed lattice structures. These are essentially
the endpoints of secondary structure elements according to fold type24. We
then compared each of these forms to solved native structures in the PDB, in
order to understand which fold topologies are represented naturally. The
methods to do this have already been outlined in previous papers?4, so only
a general overview will be given here. Firstly, the native structure was
reduced to linear segments to give a “stick-like” representation of the
fold118, Graph matching was then used to pre-filter the closest forms!19,
followed by a more in-depth double-dynamic superposition algorithm to
score fits between native stick models and ideal forms'20. Once the best
scoring form had been found, connectivity between secondary structure
elements allowed us to obtain the global topology string for the native fold.
Global topology strings for folds were also split into smaller sub-topologies
to ensure maximal coverage. There are some potential problems with using
this method for B proteins with internal repetition ([3-trefoils, B-prisms etc)
or structures possessing orthogonal secondary structure elements.
However, these are relatively rare and our ideal form choices of 2-4-0 and 2-

4-2 are very well represented using this method.

Next, we combinatorially generated all possible topology strings contained

within our 2-4-0 and 2-4-2 ideal forms. Strings that were found in native

49



proteins were then eliminated, along with any that possessed uncommon
features such as crossing loops, left-handed connections, parallel
connections, or layer skips. This left us with a number of novel topologies
that have so far not been discovered in nature. From these, we chose 8

topologies for both the 2-4-0 (Figure 14) and 2-4-2 (Figure 15) folds.

- -

+B+0.-A+0.+A+1.-B+3.+B+1.-B+2

/3 5
// / N
y M

+B+0.-A+0.+A+1.-B+2.+B-1.-B+1 +B+0.-B-1.+A+0.-A-1.+B-3.-B-2
C C
- N - N
+B+0.-A+0.+A-1.-B-2.+B-1.-B-3 +B+0.-A+0.+A-1.-B-2.+B-3.-B-1
C 7 N
7/
C 7’
T N

+B+0.-B-2.+B-1.-A+0.+A+1.-B+1 +B+0.-B-2.+A+0.-B-1.4+B-3.-A-1

Figure 14. Topologies chosen for the 2-4-0 fold. We chose 8
topologies that were not observable in nature and attempted to
design and experimentally test them
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Figure 15. Topologies chosen for the 2-4-2 fold. Again, 8 topologies
unobservable in nature were chosen for our design studies.



3.2.2 Backbone construction

After identifying some novel topologies that we wanted to try and make, we
used a previously published de novo backbone construction method to
generate realistic structuresl’. In this, rough models are constructed using
distance geometry!21, with alpha-carbon models produced using idealized
secondary structure elements and random walks for loop regions. Coarse-
grain refinement of the structure is performed through modelling Cu-Cq
“virtual bonds”, pseudo-hydrogen bonding potentials and a structural
alphabet of angles between sets of backbone atoms!22. Finally, mainchain
atoms are added and optimised with a potential energy function combined
with a Monte Carlo sampling method that allows slight adjustments to

backbone torsion angles.

3.2.3 Flexible design process

Once we had constructed viable backbones, we attempted to find a suitable
sequence that would be able to fit onto the scaffold. We did this by using a
flexible backbone design protocol that iterates between steps of stochastic
rotamer packing and backbone relaxations. Previous papers have already
established that flexible design is a more successful method than keeping

the structure permanently fixed during the design process!23124,

Our flexible design protocol is separated into two stages. Firstly, we have a
fixed-backbone step that takes a stochastic approach, optimally packing
rotamers into a given structure without allowing minimal movement of the
protein backbonel%. Once a suitable structure has been designed onto this
fixed structure, the backbone is relaxed using the RosettaRelax protocol2>,
This allows small adjustments to the backbone torsion angles and attempts
to repack the whole protein to find the lowest energy state. By iterating
1,000 times between the fixed and relaxation protocols, we hoped to
produce a much more robust design method that would result in lower

energies and more stable sequences.
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In an attempt to direct our design process better and speed up the
conformational search through rotamers, we applied some constraints to
the amino acid selections possible at various locations. For residues with
less than 30% rSASA exposure of alpha carbons, we allowed only
hydrophobic residues to be selected in the hope of producing a more
realistic core. Cysteine was also excluded from all positions, to avoid
complications with unwanted disulphide bonds forming. Using these simple
constraints, in line with established methods, we generated 3,000 sequences
per backbone that were then filtered based upon various criteria (described
below) to ensure the most viable were taken forward for experimental

testing.

However, it has been suggested that the Rosetta fixed backbone design
protocol has a tendency to create a “patchy” surface on the protein, due to
potential inadequacies of the potential energy function!?6. Traditionally,
this has been solved by manually curating designs after-the-fact by visual
inspection and manually changing residues!?’. Some papers have even
suggested that up to one third of surface residues need to be re-optimised
through human intervention?8. Rather than manually curate our design
process, we wanted to automate it as much as possible and so attempted to
bias the amino acid selection on the surface by including a knowledge-based
potential (KBP). This consisted of searching the PDB of known structures
and gaining an average percentage representation for each amino acid on
the surface (except Cys). We used a set of 2,000 structures under 250

residues to gain these values (shown in Table 1).
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Residue(s) % representation on
surface
12
K 11
R,D 9
S, T,A 8
G 7
N,P,Q 6
H 3
F,ILLLMV,W,Y 1

Table 1. Percentage representation for each residue (except Cys) on the
surface of native proteins. A set of 2,000 native structures under 250
residues was used to obtain idealised percentage representations of
each residue on the surface. This was then used in an attempt to bias
our designs to produce a more realistic surface.

At each surface residue position in our designed backbone scaffold, we gave
the fixed backbone design a choice of 3 different amino acids in that
position. These 3 amino acids chosen for selection were decided based on
their percentage representation in real proteins. For example, a residue that
composes 10% of the surface of real proteins will have a 10% of being
selected as one of the 3 residues available for design. In restricting
selections this way, we hoped to recapitulate a more realistic surface while
still offering a reasonable variety at each position. Another 3,000 sequences
for each backbone were designed using this method and taken through to

the filtering stage.

An attempt to rectify the need for manual curation of designs was published
at a later datel?’, but we had already attempted to solve this problem

ourselves by this time.
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3.2.4 Design selection filters

After we had made our designs, they were subjected to a number of filters to
ensure that they looked as realistic as possible before we attempted to
experimentally test them. Backbone torsion and side chain angles were
checked with ProCheck!?? to ensure that the structures of the designs were
within normal ranges. Packing was checked with RosettaHoles3? and any

designs possessing voids on the interior of the protein were discarded.

We also filtered out any designs that were compositionally much different to
native proteins. Sorting amino acids by their physicochemical properties,
using the colour wheel outlined by Taylor in 1997131, we created 3 equally
sized groups. The “phobic” group contained Ala, Val, Ile, Leu, Met and Phe.
The “positive” group was Arg, Lys, His, Trp, Tyr, Asn and GIn. Finally, the
“negative” group consisted of Glu, Asp, Ser, Thr, Gly, Pro and Cys (Figure 16).
Although the labels are not directly representative of every amino acid in
the category (eg Pro being in the “negative” group), it still offers a coarse-
grain filter for weeding out bad designs and the labels are only used for the

sake of convenience.
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Figure 16. Colour wheel used for amino acid category definitions. Residues
are defined by their physicochemical properties, as defined by Taylor
(1997)131. These are then split into 3 almost equally sized groups, with
labels given to each group. These residue groups were then used to filter
out designs that were too far away from native compositions.

Using these categories, we then used a set of 2,000 proteins under 250
residues to discover what the representation for each grouping of residues
was in native proteins for the core and surface. Once we had composition
profiles for 2,000 native proteins, we set some restrictions that our designs
needed to fall into. The boundaries that 99% of real protein compositions

lay between are given in Table 2.
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Core (%) Surface (%)
Negative 0-30 18-52
Positive 0-33 26 - 55
Phobic 21-86 12-40

Table 2. Compositional boundaries for 99% of native sequences analysed,
used as a filter for potential designs. 2,000 native protein compositions
were analysed using the groupings outlined previously. Any designed
protein that fell outside these ranges of values was automatically
discarded as too compositionally different from natives. This acted as a
quick and simple selection filter for the number of designs we produced.

Any designs that had compositions outside of these range of values were
automatically discarded as unrealistic. Although this filter may be open to
criticism and potentially better groupings could have been used, we felt that
this offered a robust and easy method for discarding any designs that

strayed too far from a native-like composition.

On the sequences remaining after these sets of filters, we performed ab
initio structure prediction. The average TM-score to the template over
1,000 models was used as an indicator of how suitable the sequences were
for the structure. The top 100 sequences for each backbone were taken
through to a full comparative modelling stage, and the 6 with the highest

TM-score to template were then chosen to be tested experimentally.

3.2.5 Protein production technigues

Designed sequences were expressed by following the experimental
procedures outlined in the main methods (Section 2.2), with the difference
that the designs were fused to a GB1 solubility tag in an attempt increase the
yield of soluble protein!32. Adding a solubility tag can protect the peptide
during its folding, increasing the chances of it adopting a stable fold. It has

also been shown that previously insoluble protein domains can exist in
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solution when a GB1 tag is added!33, and it is our hope that this system will

provide the best chance for our novel proteins to exist.

When soluble designs were discovered, we purified directly with a His-Ni2*
column and then went straight to NMR analysis. There is no need to cleave
the solubility tag, as clear spectra can be obtained with it still fused to the

target protein134,

3.2.6 NMR

Cells were grown in PG minimal media in the presence of isotope labelled
ammonium sulphate as outlined in Section 2.2.5. After protein purification,
each protein was exchanged overnight into a buffer suitable for NMR studies

(20 mM MES pH 6.2, 100 mM NaCl, 1mM EDTA, 3 mM NaNs3, 0.5 mM TCEP).

NMR spectra were acquired at 298 K with a Bruker Advance II (operating at
a nominal 'H frequency of 700 MHz). A 2D H-15N heteronuclear single
quantum coherence (HSQC) spectroscopy data set was obtained for each
protein put forward into NMR trials. 1D and 2D spectra were obtained at a
variety of temperatures (20 °C, 25 °C, 30 °C, 35 °C and 40 °C) to fully
investigate any potential structure. All data were processed by using

NMRpipe/NMRDraw35 and analysed using CCPN Analysis, version 2136,

3.3 Results

To begin, we performed some computational analysis on the designs that
our process produced. This helped us to decide on which designs to test
experimentally for each backbone, as well as obtain some insight into how

our protocol was functioning.
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3.3.1 Over-compaction of structure

One of the fears we had for our design process was that it could potentially
result in a gradual over-compaction of our model. For instance, if a small
residue such as Ala is chosen at a location and then the structure is relaxed
and repacked, the repacking process could result in local steric constraints
that only allowed Ala (or small residues) to be picked at this location in
subsequent design iterations. This could lead to unrealistic sequences being
produced as more constraints were inadvertently added as the sequence
design protocol progressed. If this were happening, the radius of gyration
for our structure would get smaller as we advanced through more iterations
of sequence design. By checking the radius of gyration through design
iterations, we were able to establish that this is not the case (Figure 17).
Although there is an initial compaction after the first round of design, this is
only ~1% of the total radius. For comparison, when the normal backbone
relaxation and repacking protocol is run on solved crystal structures, a
compaction of between 5-7% is seen. After this initial compaction, the
radius of gyration remains constant for 2,000 iterations and so we can safely

say that our sequence design protocol is not over-compacting the structure.
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Figure 17. Radius of gyration for a designed protein remains steady as the
design process iterates. There is an initial compaction of ~1% in the first
few design iterations, but this is a negligible amount. Subsequent design
iterations see the radius of gyration remain constant, indicating that our
design process is not over-compacting the structure.

3.3.2 Predicted solubility of designed proteins

Because our KBP surface selection method was untested, we decided to
make one batch using it (36,000 designs leading to 96 experimentally tested
proteins), and another batch of designs with no restrictions on surface
residue selection. To try and gain some insight into how our surface biasing

was affecting compositions, we performed some pre-analysis.

Firstly, we used the ESPRESSO programi3’ to predict how soluble our
potential designs were. This uses a combination of 43 property-based
indicators, as well as motif-based predictors, that can help determine the
solubility of a protein in E. Coli expression systems138. We chose 250 protein

sequences from natives, and the same number from both an unrestricted
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and KBP design method. Using ESPRESSO, we gained an indication about
how our designs were performing. The native proteins seem to have a
solubility score of about 0.75, and our unrestricted surface design protocol
tends to have a slightly lower score with a peak at about 0.63 (Figure 18).
Although the unrestricted design protocol has a lower score, the sequences
generated by it are still predicted to be viable as any score above 0.5 is
classed as “soluble”. Using the KBP-based surface selection, we saw an
increase in predicted solubility with the peak being around 0.85. Our
distribution of solubility scores seems to be broader than native and
unrestricted design sequences, meaning we are potentially covering a wider

range of theoretical solubilities.

6 — unrestricted
natives

— KBP

o4 05 06 07 08 09 10
Solubility score
Figure 18. Distribution of solubility scores for surface design methods.
Using ESPRESSO, we gained solubility predictions for 250 native proteins
and the same number from each of our surface design processes. The
solubility of native proteins seems to centre around 0.75, with the

“unrestricted” surface design slightly lower at 0.62. Our KBP designs have
a higher predicted solubility than both, at 0.85.

3.3.3 Surface compositions of designed proteins

We also checked how the two surface design methods affected the general

composition of the proteins produced. Using the same amino acid
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categories as in our composition filters (“hydrophobic”, “positive” and
“negative”), we checked the percentage representation of each group and

compared them to native sequences (Figure 19).

Unrestricted KBP

- +

® - Natives
- Design

Surface

Core

- ) 2 -

Figure 19. Compositional analysis of our unrestricted and KBP surface
design protocols, compared to native sequences. Amino acids were
categorised into groups based on their physicochemical properties (“P” =
hydrophobic, “+” = positive, = negative). Compositions for an
unrestricted surface design process or using a KBP surface design were
compared to native sequences. The unrestricted design process did have
quite good overlap with natives, with solvent-exposed hydrophobic
residues reduced. Using the KBP, more hydrophobic residues appeared to
be present on the surface but the overall compositions of native sequences
were more closely mirrored. Core compositions for both remained much
the same, which was expected, as there should not have been any differing
selection criteria for those residues.

“« «

In general, both surface design methods appeared to produce many native-
like compositions. The unrestricted surface protocol generated designs that
had much less hydrophobic surfaces when compared to native sequences.

However, this may not be a problem, as most native proteins must
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accommodate interaction sites (possibly containing hydrophobic residues)
on their surface in order to perform their function. Because our designs are
merely scaffolds with no defined function, we can solely concentrate on
reducing potential aggregation sites. There could be a worry that having
oppositely charged residues on the surface could lead to increased
aggregation, which could affect the potential solubility of the protein.
However, in terms of actual charged residues (Asp/Glu/Lys/Arg), there was
no perceivable overrepresentation produced by the unrestricted protocol
when compared to the range of natives. Using a KBP surface design method
produced a greater diversity of surface compositions, which appeared to

closely mirror the distribution of natives.

Both design protocols produced an interesting selection of designs that we
took forward to experimental testing. The core compositions for both
methods look very native-like and appeared to stay the same between
protocols, which is to be expected, as the selection criteria for those residues
did not change between methods. Any designs that did not fall inside the
boundaries outlined in the methods were filtered out, but it is encouraging
that both methods are producing a high proportion of designs that are in the

native-like region of composition space.

3.3.4 Structure prediction

After passing through our selection filters, the final steps were to do a full
tertiary structure prediction using a purely ab initio method first and then
checking the highest scoring sequences with full comparative modelling.
The predicted models produced for some of our designs seemed to have
quite a high similarity to the target structure. Some predictions had close to
0.6 TM-score to the template we were aiming to design. A particularly high
scoring design, 0.58 TM-score between prediction and template, is seen in
Figure 20. Although the score isn’t perfect (a TM-score of 1 is the
maximum), the comparison between models appears to be very good. The

global fold is predicted very well, with all secondary structure elements well
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formed and in the correct positions. However, there are many differences
when atomistic detail is taken into account. The strands are consistent in
both models, but both helices have quite a large shift in the prediction
compared to what we were expecting. This has led to a reduced score, as
there are still quite a few disparities between the two models. Although we
would prefer to have an atomistic level of design, where all atoms are in the
exact place we designed them to be, we are still encouraged with the overall
agreement in prediction. There was no discernable difference in

predictability for either surface design protocol.

Figure 20. Stereo images showing the overall agreement of the predicted
structure of a designed sequence and the template we were designing for. The
predicted structure for some of our designs appeared to be very good, with
a good agreement in global structure when mapped back onto the scaffold
structure we were attempting to design. However, there are a few major
differences in the atomistic detail of the models. Although the strands are
well predicted, there is a shift in both helices and this has led to a slightly
lower TM-score of 0.58.
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3.3.5 Experimental testing results

In total, we took forward 96 designs using the KBP-based surface design
protocol and the same number made using an unrestricted surface design
method. These sequences had compositions that were comparable to native
sequences, along with good predicted solubility and structure prediction.
Each design was expressed with a GB1 solubility tag in BL21-gold E. Coli
cells and screened for solubility. Out of a total of 192 designs, 24 were
soluble from the KBP group and 18 were soluble from the “unrestricted”
group. The soluble designs were then purified using a Hise¢ tag on a Ni2*
column and NMR was performed. Protein expression and solubility
screening protocols are given in Section 2.2, and NMR conditions are given

in Section 3.2.6.

Unfortunately, all of the designs that appeared to be soluble did not possess
tertiary structure that was visible through NMR studies (Figure 21). When
tertiary structure is present, each backbone N and H atom should have a
defined local chemical environment and therefore a particular chemical shift
associated with that environment. This would show as a well-defined peak
on the HSQC contour plot. Although we see some well-defined peaks in the
design-GB1 fusion (shown in green on the contour plot), most of these seem
to come from the well-folded GB1 solubility tag (shown in magenta). This
means that the peaks from our design are mostly in the large middle portion
of the spectrum, suggesting that our protein does not possess defined
tertiary structure. Were our designs to have more tertiary structure
interactions, they would be visible as defined peaks in the “fingerprint

region” surrounding the centre.
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Figure 21. 2D-HSQC NMR spectra of a desigh-GB1 fusion protein (green)
and the GB1 solubility tag by itself (magenta). The design-GB1 spectrum
shows some well-defined peaks, meaning there are well-defined local
chemical environments and therefore tertiary structure. Unfortunately,
the vast majority of these peaks appear to be from the GB1 solubility tag.
This suggests that our designed protein is in the large unfolded region in
the middle of the spectrum.

It is possible that our designs exist as molten globules, where the protein
does have formed secondary structures but they are not as closely packed as
they are in a fully folded globular state!3°. The lack of fixed tertiary
structure in these molten globules can result in an ensemble of native-like
structures that intra-convert on a very short time scale4?, potentially giving
a HSQC spectra similar to the one that we have seen for our designs. To
investigate this further, we could conduct circular dichroism (CD)
experiments, which show the proportion of a-helices and (-strands in a
given protein. If we do appear to have formed secondary structure elements
but no tertiary interactions discernable via NMR, this could suggest that we
are indeed making molten globules. If secondary structures are not visible

through CD, this would indicate that our protein is completely unfolded.
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Another possibility for investigating molten globules is by using a
hydrophobic fluorescent probe, such as 8-anilino-1-naphthalenesulfonic
acid (ANS). These probes have a much higher affinity for the molten-
globular states of proteins as compared with the unfolded or fully
compacted states4l. After establishing a baseline level of fluorescence from
the probe in the presence of our designed proteins, we could denature the
proteins and then perform a similar experiment. If fluorescence decreases
from the denatured proteins, we can infer that there must have been a
molten globular state present that is then unfolded. However, if the
readings from the probe remain constant then there is a good chance that

the protein already exists in an unfolded state.

Both of these techniques could give us information about how much
structure is actually present in our designs, which could potentially lead to
success by rounds of iterative redesign. However, this would most likely
involve manually specified target residues or other techniques that would
be specific to each individual protein. One of the aims for this thesis is to
investigate generally applicable design techniques that can be used for a
variety of fold types, and so we chose instead to focus the next sections on
attempting to uncover some general rules to improve the chances of success
for a broader scope of proteins. Future experiments in the lab may focus on
attempting to investigate potential molten globules, but we decided at this

point to explore broader concepts in successful protein design.

3.4 Discussion

Though there have already been numerous reported successes for protein
design, including the design of novel folds, we found it very hard to replicate
the results some groups have seen. We attempted to experimentally test a
total of 16 designs for 12 novel backbones and while some of them were
soluble, none showed any compact tertiary structure. Unfortunately, the
solubility data is not useful for investigating as the solubility tag used may

skew any information found. There have been reports that solubility tags
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can frequently cause false positives when looking at the solubility of a fused
proteinl42-144, Even if our designed proteins are unfolded, their
precipitation can be prevented by the presence of the folded and highly
soluble GB1 tag. The unfolded proteins can form the “core” of the aggregate
with a surrounding “shell” of soluble GB1, maintaining the aggregate in
solution. The solubility tag may be cleaved off, but it is our understanding
that if our designs are unfolded under the ideal conditions provided by

tagging, then this would still be the case without a tag.

Interestingly, the solubility predictor we used seemed to show no
correlation with experimental results. All the designs chosen to be taken
forward to lab testing were defined as “soluble” but only a small number of
these appeared to confirm this prediction, even with the use of a solubility
tag. Solubility prediction is a notoriously difficult field to tackle, and our
results seem to suggest that there is a long way to go before reliable
indicators are found. For this reason, we decided to exclude solubility
predictors from further experiments, as their usefulness is not particularly

apparent.

Our designs looked realistic to our eyes, with native-like sequence
compositions and good predictability. Given the successes seen by previous
studies, along with the encouraging computational analysis, we would have
expected our designs to perhaps possess more structure. However, we are
using a backbone construction method that is so far experimentally
untested. Coupled with a sequence design protocol that we do not know for
certain works, we appear to be competing on two fronts. Trying to design a
novel backbone and then a novel sequence to adopt that particular structure
are two confounding problems. In order to separate these problems, it may
be best firstly to have an established sequence design protocol that we have
demonstrated successfully and then trying to use this to design sequences

for a novel scaffold.
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As the next stage in our investigations into protein design, we attempted to
gain more insight into sequence design for known backbones using a
factorial analysis approach. This would allow us to choose some factors that
we believed to be important for sequence design and attempt to understand

whether they really have an impact on solubility and foldedness.

Because we were planning on testing a large number of designs in the next
stage, we decided to drop the GB1 solubility tag fusion. This would speed up
our screening process for designs, as less time would be spent chasing up
false positives on the solubility front. There is a danger that we will lose
false negatives (sequences which may have been folded with the solubility
tag that we otherwise miss), but the rate of these is thought to be far less
than the rate of false negatives. We were willing to sacrifice the few
potential designs folded with tags in order to better explore our factors in a

shorter amount of time.
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4. Factorial analysis of sequence design
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4.1 Introduction

Aiming to design a backbone completely de novo and then finding a suitable
sequence that would allow the protein to adopt that specific 3D
conformation proved to be very challenging, even given the successes
reported by the Baker group?7.7991104, [n order to simplify the problem
slightly, we decided to remove the backbone construction protocol and only
focus on the sequence design algorithm to see if we could garner some

insight into what would make a good sequence design.

To do this, we chose a factorial design of experiment (DoE) approach that
would allow us to see which factors were indicative of good design and give
us something to potentially optimise towards. We selected four native
proteins (1CC7, 1Q5V, 3CHY, 1E5D) with solved crystal structures and
attempted to redesign the sequence of these proteins to recapitulate the
adopted conformations. The 1CC7/1Q5V are homologues belonging to the
ferredoxin family, and 3CHY/1E5D are homologues with a Rossmanoid-like

structure (Figure 22).

A)

c * 1cc7 (72 residues)

* 1qg5v (Chain A, 84 residues)

B)

7’

YANVAYAN
\Gé

Figure 22. Diagram showing the topologies of the folds selected for
redesign. A) The ferredoxin fold adopted by 1CC7 and 1Q5V. B) 3CHY and
1E5D have a Rossmanoid-like structure. Solid lines indicate connections in
the foreground, with dashed lines representative of background loops.

* 3chy (128 residues)
* 1e5d (Chain A, 152 residues)
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4.2 Methods

4.2.1 Full factorial design of experiments

Factorial experiments can be used to investigate the impact of continuous or
categorical factors on a response variable when each factor has varying
levels. They can give insight into the main effects of each factor by
themselves, as well as whether there are interactions between factors (i.e. if

the effect of one factor depends on another factor).

For example, if we have a 2 factor (A and B) system with 2 levels (+ and -),
then each cell takes a different combination of factors at each level (AiB;),

with a different response in each cell (y¢). This is shown in Figure 23.

Factor A
+

Figure 23. Diagram illustrating
A-B- A+B- the  potential  experimental
om responsey, | responsey, conditions in a 2-factor system
— that has two levels for each
.8 factor. Both factors A and B can
— be at either the ‘+’ or ‘- level,

L | AB A.B iving 4 | i
b, +Dy giving 4 potential cells, with a

responsey, | responsey, response for each (y).
+

If we assume that the response variable output (y) is linearly dependent on
the effects of each factor/level combination, then the model will follow the

equation:
Ve = bo + baA + bpB + babAB
where y is the output, by is the intercept, A and B are coded variables

indicating the level of our factors (+1 or -1), and b; is the weighting

coefficient for each term, which implies how significant the effect of each
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factor is. As interactions are symmetrical, there is need for only one

interaction term.

We can expand this into a system of linear equations;

y1=bo + ba(-1) + by(-1) + bap(-1)(-1)
y2= bo + ba(+1) + by(-1) + bap(+1)(-1)
y3=bo + ba(-1) + bp(+1) + ban(-1)(+1)
4= bo + ba(+1) + bp(+1) + bap(+1)(+1)

This can be represented as the following matrix;

yi| = 1 1) 1) 1 bo
y2| = 1 +1) 1 (1| . |ba
E 1 (1) 1) 1 by
Va = 1 (+1) (+1) (+1) bab
y = X : b

We can then find a solution for vector b by using a least-squares model to
minimize the residuals between our input correlation matrix and the

correlation matrix reproduced by the factors.

b = (XTX)1XTy

In this way, we can gain weighting coefficients to describe the magnitude of

effect for each of our individual factors and their interactions.

4.2.2 Analysis of variance (ANOVA)

Another technique for measuring the effects of various factors is to do
analysis of variance (ANOVA). This compares the variability between groups
to the variability within groups to give an idea if there are any significant

factor (or interaction) effects.
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If we have a number (n) of individual responses (x) in each cell, as well as
each individual response value in each cell (x), there is a mean for each
combination of factors (X) and a marginal mean for each factor at the same
level. For example, when factor B is always at the “+” level, the marginal
mean for that given row will be Xa+ (i.e. the mean of Xap+ + Xa+p+) The

symbol “¢” denotes that the preceding factor can be at either at the “+” or

level. This is illustrated in Figure 24.

Marginal
FactorA | &

Figure 24. Visual

X X X ] explanation of

as} AB. AB. AB_ | marginal means.

I R ' Marginal means are

© present for each

A - - _ , factor when it

XA_B+ XA+B, xA.B+ remains at the

same level, e.g.

+; T when factor B is

. - - _ always at the “+”
;g : XA_B XA+B XA 8 level.

.........................................................

From these means, we can calculate the variance to compare between

groups and pick out any significant effects.

Definitions;

SSerror = Z(X- X)?

SSa=n; Z(Xi, - X, )? where i is factor A at both +1 and -1
SSe=n;X2(X-X )? and jis factor B at both +1 and -1.
SSaB = njj X(Xij - X, )% - SSa - SSs

SStotal = SSerror + SSa + SSp + SSap

dfa = (number of levels of factor A) - 1
dfg = (number of levels of factor B) - 1
dfag = (dfa)(dfs)

dferror = N — number of cells



dfiotai=n-1

Using the appropriate degrees of freedom (df) value for each square sum

(SS), we can obtain the corresponding mean square (MS) term.

MS; = SS; / df; where tis “A”, “B” or “AB”.
MSerror = SSerror / dferror

From these mean square terms, we can calculate an F-ratio which is a ratio
of the between group variability to the within group variability. If the F-ratio
is above the critical F-value for the given degrees of freedom, then the effect

shown by that factor is statistically significant.

Ft = MSt/ MSerror

4.2.3 Scalability

This approach to investigate multiple factors is not just restricted to 2x2
factorials. It can be expanded to approach problems with any number of
factors and levels, although doing so can increase the time it takes and cost

for experimentation.

4.2.4 Factorial analysis applied to sequence design

As mentioned previously, we have chosen a factorial approach to investigate
the impact that various factors have on producing viable protein sequence
designs. The factors we have chosen to use in our experiments are buried
(core) sequence divergence, surface sequence divergence, secondary
structure prediction accuracy and Rosetta energy score. We will have two
levels of each factor, labeled as “bad” (-) or “good” (+). This means that we
have 24 (= 16) cells in our experiment, and we have chosen to do 6 replicates
contained within each cell. It was our hope that we could make 96 proteins

(per backbone) with redesigned sequences, and screen them for solubility
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and foldedness levels to provide some suggestions for which factors would

signify a viable protein design.
To begin, we produced a broad range of designs (~36,000 for each
backbone) using the RosettaDesign flexible backbone protocol’4> , and

scored them on our various measures.

4.2.5 Definition of factors and levels

4.2.5.1 Rosetta enerqy

When producing protein designs with Rosetta, the program automatically
scores the design with its own internal scoring system. Among other things,
this involves weighting together measures such as the Lennard-Jones
attractive/repulsive  potentials, Lazaridis-Karplus solvation energy,
short/long range hydrogen bonding and many others (for a comprehensive
scoring overview, see the relevant papers#*04849). This single “Rosetta
energy score” indicates how stable a potential design should be, with a more

negative score corresponding to a lower free-energy state.

Our 36,000 designs almost produced a normal distribution of Rosetta
energy scores (Figure 25A) and so we split this in half, with the more
negative 50% defined as “good” (+) and the more positive 50% defined as

“bad" (_).

4.2.5.2 Secondary structure prediction accuracy

We thought that secondary structure prediction accuracy, obtained from the
primary sequence of each protein, would be important in scoring our
designs as it should be beneficial to have sets of residues which have a
strong predilection for adopting the correct secondary structure element.
Since we are designing new sequences for an already known structure

(solved by X-ray crystallography), we know the secondary structure
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definitions for each position (obtained by using DSSP14¢). To give a score of
how likely residues are to adopt these conformations at each location, we
ran PsiPred!%” in single sequence mode, which calculates secondary
structure predictions based on the intrinsic properties of the residues and
then compared this output to DSSP. Note; PsiPred is much more reliable
when presented with a multiple sequence alignment with which it can
perform machine learning techniques, but single sequence mode was used

to avoid biasing our designs towards known native structures.

Our theory is that sequences more likely to adopt the desired secondary
structure element will be predicted as such by PsiPred, and match DSSP
more frequently. We ran this comparison across all our potential designs
and represented secondary structure prediction accuracy as a percentage of
the whole protein. Again, this produced a normal distribution (Figure 25B)
and so we classed the highest scoring 50% as “good” (+) and the lowest

scoring 50% as “bad” (-).
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Figure 25. Density plot showing the distribution of the Rosetta energy and
secondary structure prediction accuracy factors. A) Each design is scored
by the Rosetta Design protocol, taking into account numerous different
energy terms. The more stable 50% of our designs were classified as
“good” (+), the lower 50% as “bad” (-). B) Secondary structure prediction
accuracy was obtained by comparing single sequence PsiPred output
against known DSSP secondary structure classifications. The highest
scoring 50% were “good” and the lower 50% were “bad”.

4.2.5.3 Core and surface composition

For our final factors, we thought that the composition of a protein, both in
the core and on the surface, could be an important factor in producing a
viable protein design. In order to investigate this, we needed to come up
with a new metric to test as a factor in our factorial experiment. We took a
subsample of 800 proteins under 200 residues from the PDB and found the
percentage representation of each amino acid in the core of each protein
and on the surface. “Core” residues were classified as residue positions that
had C-alphas with a relative solvent accessible surface area (rSASA) of less
than 0.3 on a skeletal Cax backbone. We then averaged each amino acid
frequency over the entire set to produce an “ideal” protein composition for

proteins under 200 residues. Each design was put through the same
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protocol and compared to the idealized composition model extracted from
real proteins using a modified Kullback-Leibler (KL) divergence for discrete
random variables148,

P(i)

DgL(P|Q) = Zp(ji)hl 0(i)’

[

where “P” is the frequency at which an amino acid (“i”) is found in the design

and “Q” is the frequency from the ideal composition of the PDB.

To simplify this in a worked example, let us imagine the core of a protein is
composed of only two amino acids. In native proteins of this world, 50% of
the core is Valine (Val) and 50% is Isoleucine (Ile). One of our designs is
significantly off the mark in percentage composition, with 95% Val and 5%

Ile. In this case, the KL-divergence would be;

o (].9:’) 0.05
Dy =0.95In — ).05In
0.5 (.5

= (0.4946

However, one of our other designs is closer to the idealized composition

with 80% Val and 20% Ile;

(.8 (.2
Dy =08In— + 0. 2ln — = 0.1927
(.5 (0.5

The composition that is compositionally closer to the “native” proteins has a

lower score, indicating less divergence from the observed model.

The KL divergence of each design will always be non-negative due to Gibb'’s
inequality. This states that for probability distributions P and Q, the
following statement is true (when pi=q;) since p; and q; are positive numbers

less than one;

- zpi log, pi < sz log, g
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By using KL divergence as a measurement for our designs, we obtained two
more distributions that could be split to produce our levels (Figure 26). Less
divergence from the ideal composition (a lower KL-score) was considered to

be “good” and more divergence was “bad”.
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Figure 26. Density plot showing the distribution of composition

divergences. An idealised composition model was constructed using 800
proteins under 200 residues from the PDB, with each design scored
against this model. More divergence from this model is classed as “bad”
(-), whereas less divergence is “good” (+).

4.2.6 Selection of designs to experimentally test

Now that we had 36,000 designs all scored and given designations in each
factor/level, we needed to pick which 96 of them to put through to
experimental trials. To gain the most information, the selection of designs
should be maximally spread out across all dimensions of factors. Each level
of a factor was binned into 6 equally spaced “compartments” (Figure 27),

and we chose the design set that gave us the highest maximum entropy;

Z pinl ”PL

)

“w__ )

where “p” is the number of designs chosen in a bin (“i").



For example;
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If a set was chosen that had the following selections;

Bin A B C D E F
Number of
selections 3 0 0 1 0 2

Then the entropy would be;

1 1
dIn—-+1In—-+2In—- = —4.68
3 1 2

If a more dispersed selection was made;

Bin A B C D E F
Number of
selections 1 1 1 1 1 1

Then the entropy would be;

1

6G-(1lln- 0
111

Therefore, the more dispersed selection would be put forward as the better

selection as it has the highest entropy.



We randomly selected 96 proteins from each backbone set containing
36,000 designs and summed the entropy of those selections across all
factors and levels, iterating this process 2,000 times to obtain the set with

the highest score.

4.2.7 Fractional factorials

Instead of committing to a full factorial analysis for all of our backbone
designs, we decided it would be more practical to do a fractional factorial
instead. This means that we can halve the number of experiments that are

needed, without losing most of the resolution for single and 2-factor effects.

A full factorial allows 2k parameters to be investigated, but higher order
interactions such as 3-factor and 4-factor are much more uncommon and
are usually less meaningful than main and 2-factor effects. If we make the
assumption that the contributions of higher order interactions are
negligible, then we can conduct a much quicker screening using this

fractional factorial without losing much investigative potential.

For example, if we are investigating 3 factors (A, B, C) at 2 levels (+/-) then
we can draw this as a cube with each vertex corresponding to an experiment

(Figure 28).

Figure 28. Illustration of a
cube where each vertex
corresponds to a set of
conditions for each experiment.

+ Each of the factors (A, B, C)
can be present at either a high

C level (+) or a low level (-).
+ Every vertex of the cube is

) B therefore a specific set of

conditions for each factor.
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To do a full factorial would require 23 experiments, but doing a 231

fractional factorial can cut the number of required experiments in half.

By intelligently selecting the experimental conditions to be tested, we can
obtain a lot of information with a reduced workload but not lose too much

resolution.

For instance, if we choose to test the red vertices on the cube and one factor
turns out to have no effect on the response variable, the experiment
collapses into a full factorial experiment for the remaining factors. If “A” has
no effect on the response, then it will not matter if “A” is at high or low
levels, and the cube will therefore collapse into a 2D representation with an
experiment performed at each factor combination of “B” and “C” (a full
factorial). This means that full factorials are embedded through each level

of a fractional factorial design (Figure 29).

Figure 29. A fractional
factorial experiment has

full factorials embedded
within it. If one of the
factors (A, B, C) in an
experiment has no effect
on the response variable,
then the cube can collapse
into a 2D full factorial
experiment for the
remaining factors.

To choose the correct bins that produce this type of balanced, collapsible
fractional factorial experiment, we need to use an aliasing structure. For our
hypothetical 3-factor experiment above, we begin by drawing a design table
for a 2-factor experiment, where all levels of factors are present. The levels
of “C” are then needed to produce a balanced experiment are defined as the

product of “A” and “B” (Table 3).
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A B C=AB
- - +
+ - -
+ + +

Table 3. Aliasing structure for a fractional factorial with 3 factors (A, B, C).
By performing experiments with the factor conditions outlined in this table,
we can produce a fractional factorial experiment. By using an aliasing
structure in this way, the effect of Factor C is confounded with the effect of
both A and B combined. However, losing this level of resolution allows us to
screen potential effects much more quickly.

Representing the 3-factor experiment as a linear representation of the

response would be;
yi = bO + baA + bbB + bcC + babAB + bacAC + bchC + babcABC

Therefore, for these 4 experiments, the matrix representation is;

[
bab bac bbc babc ( {":: \

b, b
()

Y3 + - + - — + - 4+ {’ub
Ya bac

Note that there is symmetry down the center of the matrix, so some columns

}
|
|
}
[
[
F
I-I/

f
f
|
|

f
f
f
f
f
f
f
f

are the same. These are aliases, and it means that there is a confounding
effect for each of these pairs. For example, the effects from column b, cannot
be separated from effects due to the 2-factor interaction bp.. There are

numerous other aliases that follow;

ba = bbc bb=bac bc=bab babc=b0 (lntercept)
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We can remove aliases by collapsing columns;

’/ 1 o - {)l.‘ L bn‘ be

’/2 o T - - bh‘ L bfl(‘
Y3 + - + - bb s (’m
.l/«l - T T T b(‘ L (’n‘b

A 4-factor fractional experiment such as ours will have the design table

given in Table 4.

A B C D=ABC
+ - -

+ - -

- - + +

+ - + -

- + -

+ + +

Aliasing structures;

ba=bbcd bb=bacd bc=babd bd=babc

bab=bcd bac=bbd bad=bbc

Table 4. Experiment design table for a fractional factorial experiment with
four factors (A, B, C, D) at two different levels (+/-). By using the
combinations of factor levels given in this table, we can reduce the
number of experiments needed to investigate the potential effects of our
factors. Some of the effects that factor combinations have on the output of
the experiment will be aliased with others, as shown below the table.

This means that main factor effects will be aliased with 3-factor effects and
2-factor effects will be aliased with each other. Since 3-factor effects are
very rare, the confounding with main effects should not be that significant (a
‘sparsity of effects’ assumption). For 2-factor effects, we will be able to tell
that there are 2-point interactions between factors but will not be able to

discern which specific factors are interacting. If there are significant 2-
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factor effects, it is always possible to carry out the other half of the

experiments to improve the resolution.

By doing only half of the experimental bins, but still with 6 replicates in
each, we hoped to gain some useful information in a much quicker way than
using full factorials. Once designs have been make, analysis was carried out
the same way, using factorial analysis and ANOVA, to compare the variance

within and between groups to see if there are any significant effects.

4.2.8 Experimental testing

Synthetic genes were constructed using the “Thermodynamically Balanced
Inside-Out” (TBIO) method14, with overlapping primers designed using an
in-house program. Genes were then inserted into a pNIC vector with a Hise
tag for subsequent Ni2* affinity purification and transformed into a BL21-
DE3 (gold) E. Coli strain for expression!15. Cells were lysed and centrifuged
at 20,000 rpm and solubility of designs was inferred from their presence in
the soluble fraction. Apparent soluble designs were tested for foldedness
using a size exclusion chromatography (SEC) column with pore size 10 kDa
or 20 kDa, depending on the backbone. After SEC, the plan was to put viable
designs through to CD and NMR and see what tertiary structural features we
could see. For full experimental protocols, see main methods chapter in

Section 2.2.

4.3 Results

4.3.1 1CC7 results (full factorial)

1CC7 was the first backbone that we decided to test, with a full complement
of 96 designs experimentally made and tested. Of those 96 designs, 22 were
still present in the soluble fraction after centrifugation but upon attempted
purification using SEC, all promising soluble designs were eluted in the void

zone (Figure 30).
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Figure 30. Elution profile that is representative of the 22 soluble designs
that were run through a SEC column of appropriate size. The native 1CC7
protein (red) is eluted after approximately 80 ml of elution volume,
suggesting that it is compact enough to enter the beads of the SEC column.
Our designs for the same backbone (blue) elute at a much lower volume,
in the so-called “void zone” which indicates that they are too large to enter
the pores of the beads and so do not exist in a compact, globular state.

Compact globular proteins would be able to pass through the small pores in
the beads of the SEC column, therefore taking longer to elute. This is seen in
Figure 30 where the native protein is made using our expression protocol
and elutes at around 80 ml. That our designs are eluted much sooner than
the native sequence suggests that the designed proteins exist in large
soluble aggregates that fall through the column without spending time
inside the beads. This could indicate that the proteins therefore do not exist
in a defined, compact 3D structure. Another possibility is that our proteins
are folded, but the monomers aggregate together. Upon seeing that our
proteins were eluted in the void zone, we re-ran the SEC experiments in a
buffer that was intended to disrupt any oligomerization (Section 2.2.8).
Even with this buffer, proteins eluted in the void zone in the same manner
as seen in Figure 30. Because of the oligomer-disrupting buffer had similar

results to the standard SEC protocol, we can assume that folded monomers
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aggregating together are not very likely. The most probable explanation is
that our proteins are unfolded and exist in an extended chain that cannot fit
through the pores of the SEC column, thereby eluting much quicker than the
folded state.

Analysis was carried out on the data, hoping to find some correlations
between factors and increased solubility. The results in Table 5 show that
the main effect for each factor, as well as 2-point interactions between
factors, are very small. As well as each parameter estimate being small, the
F-ratios are also below the critical F-value for our degrees of freedom (1 +
80 degrees gives a critical F-value of 3.96). All parameter estimates and F-
ratios for 3-factor and 4-factor interactions were 0. These low values
indicate that the data obtained from experiments did not produce any
significant signal, and we cannot propose any insight into which factors are
important for solubility. Unfortunately, since none of our designs were

folded, we could not obtain any information from that data either.
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Category | Soluble designs | Category | Soluble designs
---- 1 +--- 3
---+ 3 +--+ 1
--+- 0 +-+- 2
-—++ 1 +-++ 1
-t-- 1 +4-- 1
-+-+ 0 ++-+ 3
-++- 2 +++- 0
-+++ 1 ++++ 2

Category levels (+/-); buried divergence, surface divergence, secondary

structure prediction accuracy, Rosetta energy

Effect parameter Estimate of F-ratio
effect coefficient
Intercept 0.22
Buried divergence (bur) -0.04 0.87
Surface divergence (surf) 0.02 0.22
Secondary structure (ss) 0.04 0.87
Rosetta energy (energy) -0.02 0.22
bur*surf 0 0
bur*ss -0.02 0.22
surf*ss 0.04 0.87
bur*energy 0 0
surf*energy 0.02 0.22
ss*energy 0 0

Table 5. Results table and analysis for 1CC7 solubility data. The raw
solubility data appears relatively evenly distributed across all
combinations of levels of factors. Further analysis of this indicates that
parameter estimated for each factor, and 2-point interactions between
factors, are very low. The F-ratios obtained for each experimental bin are
also below the critical F-value (3.96) and so the parameter estimates are
not considered significant. All coefficients and F-ratios for 3-factor and 4-
factor interactions were O.

Because of the lack of information obtained from the full-factorial
experiment, we decided to employ a quicker screening method for main
factor effects and 2-point interactions when investigating the 3 remaining

backbones. This would allow us to halve the number of proteins
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experimentally tested, but still give us enough information to investigate

potentially interesting features.

4.3.2 3CHY, 105V and 1E5D fractional factorial experiments

Unfortunately, after making the balanced fractional factorial for each
remaining backbone, we only managed to obtain a sparse number of soluble
designs. For 1E5D we obtained 4 soluble designs, for 1Q5V only 3 were
soluble and for 3CHY 2 were soluble. Again, all of these apparently soluble
designs were eluted in the void zone upon SEC analysis and so were

assumed to be soluble aggregates.

Because of the small number of soluble designs in each batch, the
information gained from each of them is not very conclusive. In the
fractional factorial analysis for these batches, the effect estimates are very
low (<0.001) and not very significant (F-ratio < 1). This is hugely
disappointing and from an experiment with this large of a sample size (using
established method), we were expecting a much greater insight into the
rules of protein design. As a way to still utilize this very efficient “design of
experiments” approach, we decided to attempt to use computational

analysis as the response variable in a similar framework.

4.3.3 Predictability as a response variable

Given the lack of signal obtained from the experimental approach, we
turned to a computational method where the potential of the factorial
approach could be investigated using a response variable that could be
obtained more rapidly than observed solubility/folding. As a computational
proxy for folding, we used the degree to which the native structure could be
predicted using ab initio prediction with Rosetta*. The 1CC7 and 3CHY
folds were used for this full factorial investigation, with 300 designed
sequences in each experimental bin. We used the RosettaPredict protocol to

generate 40 predicted models per designed sequence and then compared
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each of these models to the 3D structural template we were aiming to use
the TM-scorel®. The average TM-score of each of these models was then
taken as a measure of predictability. 40 predicted models for each sequence
is a very low number, especially considering that standard Rosetta protocol
is to produce 10,000 designs with cluster analysis afterwards to find the
most populated states. However, the computational demands of this level of
detail are enormously high and are intractable for the number of designs we
have made. Our reasoning is that 40 models should be sufficient enough to
allow a general insight into how predictable our protein designs should be,
with the more predictable ones having a narrower (and therefore more
easily populated) energy landscape for a stable state. Having a lower
number of models to produce allows us to perform this experiment in a
realistic time frame and attempt to garner some information more easily. As
stated previously, predictability has already been used as an indicator for
more-viable designs’7.79149 and so we foresee no problems in using this as a

proxy to measure our design “fitness”.

4.3.3.1 Pre-analysis

In order to test whether our hypothesis was valid: that predictability was
correlated with a more viable design, we performed some pre-analysis.
Using our accelerated prediction protocol, we produced 40-model sets for
three different categories of proteins and then mapped each predicted
model onto a given structure. The average TM-score over all models was
used as an output of “predictability”. 350 individual protein sequences were
chosen to fit into the categories; “random”, “design” and “natives”. The
“native” category contained sequences under 150 residues with a known 3D
structure, and the predictions were mapped onto the solved PDB. The
“design” category included a subset taken from our sequence designs and
mapped against the template model we had designed them for. The
“random” group was obtained using a random generator of letters that are

in the amino acid alphabet and again mapped back onto the 3D template
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used for the “design” category. Figure 31 shows the distributions of

prediction accuracy.
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Figure 31. Density plot showing the average predictability for different
categories of sequence. Each sequence was run through our accelerated
prediction method, with 40 predicted models produced. Each of these
models was then mapped onto the expected 3D structure and the average
TM-score over all of these models was taken as the predictability of the
sequence. The blue line represents native sequences mapped onto their
known structure, and is the highest scoring. The red line indicates
designed sequences mapped onto the desired template structure and the
black line is random sequences mapped onto that same template
structure.

As expected, the native sequences have the highest prediction accuracy
(average TM-score) when mapped back onto their known 3D structures
with a peak at around 0.35. The designed sequences are not too far behind
in their distribution with a peak at 0.30 and the shape of the distributions
look fairly similar. When the random sequence predictions are mapped
back onto one of our templates, they give a very low score of 0.12 indicating

that they are not very well tailored to the template (as expected). These
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scores may seem generally low, but that is mainly due to the limitations of
ab  initio  structure  prediction50.151, We  avoided using
homology/comparative modeling in this case so as to not bias the native
predictions with sequence-structure information and to offer an even level

of comparison.

We also decided to look at native sequence recapitulation in our designs, as
we thought this could offer an insight into whether we were approaching
realistic designs. The logic behind this is that the closer a designed
sequence is to the native, the closer the structure should also be. If our
designs were far from the native sequence, it would not necessarily mean
that they could not adopt our targeted structure. In fact, sequences as low
as 15% identity can still adopt very similar 3D conformations!52153,
However, increased native sequence recapitulation (especially in the core
packing residues) is considered as another indicator of a more viable
designl5%. Some design algorithms have a native sequence recapitulation of
around 35 - 41% in the core, and 20 - 28% overall!5>. However, Baker et al
suggest slightly higher values of 50% recapitulation in core residues and

33% overall are good reference values23,
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Figure 32. Histogram of native sequence recapitulation for 3CHY redesigns.
Redesigns of the 3CHY protein appear to have very good native sequence
recapitulation. ~60% of core residues maintain the same identity, with
~30% recapitulation overall.

Native sequence recapitulation for our 3CHY redesigns seems very
acceptable, with around 60% of core residues being identical to the ones
found in the native sequence (Figure 32). Around 30% overall sequence
identity to the native is also acceptable and within the range we were aiming

for.
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Figure 33. Histogram of native sequence recapitulation for 1CC7 redesigns.
Redesigns of the 1CC7 protein appear to have very good native sequence
recapitulation. ~55% of core residues maintain the same identity, with
~30% recapitulation overall.

The native sequence recapitulation for 1CC7 also seems to be good, with
around 55% core identity to native and 30% overall (Figure 33). It is
important to note that perhaps there are potentially more options for
residues at the surface, as they can be less structurally integral than core
residues. Since some surface residues may be involved with the function of
the protein (e.g. binding surfaces) but not particularly critical in dictating

the fold, these may vary more in our designs.

Based on the average predictability of our designs, coupled with the degree
of native sequence recapitulation, we were encouraged that our design
protocol has produced designs that we believe to have a degree of realism

and viability.

4.3.3.2 Analysis

With 200 designs per bin (3,200 in total for each of the backbones), we

obtained the following information;
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1CC7

Effect parameter Estimate of effect F-ratio
(setas “good”/+) coefficient
Intercept 0.39
Buried divergence 0.018 1.42
(bur)
Surface divergence 0.014 0.92
(surf)
Secondary structure -0.032 4.51
(ss)
Rosetta energy 0.010 0.49
(energy)
bur*surf 0 0
bur*ss -0.010 1.00
surf*ss -0.039 6.955
bur*energy 0.010 0.47
surf*energy 0 0
ss*energy -0.039 6.71

Table 6. Analysis of full factorial 1CC7 experiment, where prediction
accuracy was the output. 200 designs for each bin were predicted using
Rosetta and then the predictive models were mapped back onto the target
structure. After obtaining a score for each model, the data was analysed
using previously outlined techniques (Sections 4.2.1 and 4.2.2). There are
some significant effects when secondary structure prediction accuracy is
at the “good” level, highlighted in green. An increased level of this factor
leads to a negative effect on predictability, shown by a negative effect
coefficient.

The data obtained from this experiment (Table 6) suggests that there could
be a main effect from the ss variable, with possible interactions also present
between ss*energy and surf*ss. The critical F-value for 1+3184 degrees of
freedom is 3.84, meaning that they are also significant (highlighted in
green). Surprisingly, the estimates for the magnitude of effect are all
negative. This means that when the ss variable is set to the “good” setting, it
has a negative impact on the predictability of a design. The negative impact
of having a “good” secondary structure score is also seen in every
interaction where this level is set (although it is not significant in the bur*ss

interaction). Each significant effect estimate seems to only subtract ~10%
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of the intercept value but when considered together, these effects could sum

to a sizable amount.

3CHY
Effect parameter Estimate of effect F-ratio
(setas “good”/+1) coefficient
Intercept 0.37
Buried divergence 0.015 0.51
(bur)
Surface divergence 0.030 2.74
(surf)
Secondary structure -0.035 3.94
(ss)
Rosetta energy 0.035 3.20
(energy)
bur*surf 0.025 1.39
bur*ss 0.011 0.26
surf*ss -0.015 0.51
bur*energy 0.016 0.57
surf*energy 0.015 0.55
ss*energy -0.048 7.59

Table 7. Analysis of 3CHY computational results. A similar pattern to the
1CC7 computational results is seen. The only significant effects (green) are
when secondary structure prediction accuracy is high. This leads to a
negative effect coefficient, meaning a higher level of this factor corresponds
to a poorer structure prediction.

A similar trend is seen in the 3CHY designs (Table 7). When the ss variable
is set to a “good” level, we see a significant main effect that contributes
negatively to the predictability and a significant interaction between

ss*energy.

A “good” setting for the ss variable means that there is a high degree of
correlation between the prediction of secondary structure by PsiPred (on a
single sequence) and the position definitions given by DSSP in the known 3D
model. Intuitively, we assumed that having amino acids that intrinsically
adopt the defined secondary structures for each residue position would be

beneficial. The more residues that are found in the preferred secondary
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structure, the more easily that structure would form and this could lead to a
more stable design. However, this appears to not be the case and
attempting to increase the secondary structure score for a design can have a
negative impact on predictability. A lot of information is missing from the
single sequence PsiPred secondary structure output, including local
environmental knowledge. The 3D context of each residue is hugely
important in producing stable protein folds and over-optimization of a 1D
sequence for a given set of secondary structures maybe ignores this aspect
too much. PsiPred not only uses intrinsic properties of amino acids, but also
Bayesian inference to deduce the conditional probability of the amino acid
forming a structure given that its immediate neighbours in the sequence
have already adopted that structure. However, the greater context of each
residue in 3D space is not represented at all. Having a large number of
residues that intrinsically form a desired structure does not necessarily
mean that sequence will have the required long-range interactions needed
to form a compacted protein. Designs with a high ss score may have less
predictability because they are less adept at forming the required contacts
in 3D space. It has been suggested that the conservation of sequence based
on secondary structure propensities without optimized tertiary interactions
to stabilize the global fold will not constitute a native-like fold!>6. Our
results seem to take this a step further and say that optimizing too far
towards secondary structure propensity can have a negative impact on the

viability of a design.
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4.4 Discussion

We have attempted to use the Rosetta Design protocol in a large-scale test to
investigate what makes a more successful protein design. Given past
successes reported when using the Rosetta Design protocol, we assumed
that valuable information could be obtained from screening a large number
of native redesigns to look for correlations in factors that we thought to be
important. Factorial analysis can be a very powerful tool for investigating
large numbers of factors, and fractional factorials can help to reduce the
time and cost of these screens. However, the sparse information obtained
when attempting these types of investigations in the field of protein design
meant that we could see no trends in what would constitute a “good”

redesign at the experimental level.

The designs we put forward during this investigation and attempted to
synthesize looked realistic by our measures, and to the design protocol used
to make them. They seemed energetically favorable, with some having a
high secondary structure prediction accuracy as well as low sequence
divergence. This experiment was still useful because now we have a
“negative” set of designs to probe for information on protein design. The
PDB is a depositary for successful protein structures but the sequences that
do not fold correctly are not present because they cannot conduct their
function and so are not conserved by evolution. Now we have a set of
proteins that look realistic to a number of measures, but have not adopted
the correct 3D conformation. If we look for more differences between this
large data set of unsuccessful designs and successful ones found in nature,
we may be able to glean some more indications of what is needed to push
our designs towards being better. This aspect will be elaborated more in

Chapter 6.

By using predictability as a proxy for viable designs, we attempted to
expand our experiment beyond what would have been possible in the given

time frame if we were only looking at experimental validation. The
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computational analysis of our design sets indicated that there could be a
potential negative contribution present when optimizing towards idealized
secondary structures. This has been touched upon by other groups in the
field, and may be a feature to take notice of when designing sequences in

future studies.

Our investigations included predictability as a proxy measurement for the
viability of a design. However, we did not attempt to optimize towards a
higher score. By using a protocol to increase the overall computational
predictability of a design, we could hope that this would lead to an increase
in real-world stability and foldability. The subject of the next chapter will
address our attempts to produce higher TM-scoring and more consistent
sequences for our given folds using a genetic algorithm made for that

purpose.
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5. A genetic algorithm for protein design
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5.1 Introduction

In the previous chapter, we attempted to investigate a number of factors and
the impact they had on producing viable sequence redesigns for known
backbones. Unfortunately, the level of information obtained from
experimental testing was not ideal, with data too sparse to glean any
particularly useful information. After discovering this lack of information,
we used computational predictability as a proxy for judging viable sequence
designs in the hope that this would allow us to expand our sample size to
the point where interesting information could be seen. However, the only
relationship found through this was between increased secondary structure
prediction accuracy and a lower computational predictability. So far in our
studies, we have not made an attempt to directly optimise towards a greater
predictability. Since predictability is thought to closely mirror the real-
world foldedness of a protein?7.79149, it would seem reasonable to optimise
towards this as much as possible. To this end, we created a genetic
algorithm that starts with randomly generated, low-predictability sequences
and attempts to head towards increased predictability using a variety of
mutational techniques. We used the same 3CHY and 1CC7 target structures
as in the factorial design experiments, and attempted to produce highly
predictable sequences de novo. If successful native redesigns were found
using this methodology, we could then move on to designing sequences for

our novel folds.
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5.2 Methods

5.2.1 Basic genetic algorithm (GA)

To begin, we created a very basic genetic algorithm that mimics real-life
evolution (Figure 34). The input for the protocol is a set of 20 randomly
generated “parent” sequences. Two of these sequences are chosen to
produce two “children” sequences via 2-point recombination at random
positions. This can also result in 1-point recombination if the end of a
sequence is chosen as a break. Using the set of 20 parent sequences, 100
children per generation are created in this manner. After all children have
been produced, every location within a sequence can spontaneously
“mutate” to any other amino acid (except Cys) with a given probability. As a
measure of fitness for each sequence, 40 models are made using the ab initio
prediction method and then mapped onto the target structure before being
TM-scored. Again, this is rather a small number of models to make, but we
felt this to be a nice number to gain some insight into potential structures.
Minimizing the number of predictive models needed is especially important
for this method, as it is very computationally expensive. For a generation of
100 children sequences, it takes between 1 - 2 hours on 100 nodes for our
setup. This means that for a set of 250 generations, it can take anywhere

between 10 - 20 days for the protocol to run.

The 15 child sequences with the highest average TM-score are ranked as the
“most fit” and are put through as the parents for the next generation. Along
with the highest scoring children, the top 5 parents from the previous
generation are also maintained as seeds for the next generation. This cycle
of selection continues until the average TM-score appears to converge and
maintain a constant level. In this way, we optimise towards producing

designed sequences with a high degree of predictability.
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Figure 34. Schematic of the genetic algorithm protocol. The process starts
with 20 randomly generated parent sequences. Two of these are chosen,
break points are generated and recombination between these locations
results in 2 children sequences. This is repeated until 100 children are
produced. Each residue in the child sequence then has a given percentage
chance to mutate into any other amino acid (apart from Cys). 40 ab inito
predictions are then made for each child sequence and the average TM-
score of these to the target structure is taken as “fitness”. The fittest 15
children are taken through as the parental seeds for the next generation,
along with the 5 top scoring parents from the previous round. This
process continues until the average TM-score converges and no longer
improves between generations.

5.2.2 Rosetta GA

Rather than solely relying on chance mutations to improve the predictability
of a design, we also decided to make a version of the genetic algorithm that
possessed a more “intelligent” mutation operator. The same overall
methodology remained the same, with the only difference being that instead
of a random change at the mutated positions, RosettaDesign was used to
select an amino acid suitable for that location (again excluding Cys). In this
way, we hoped that our designs would be better directed and converge to a
better predictability in a shorter amount of time. The sequence to be
mutated was first threaded onto the target backbone, the whole structure
was relaxed and sidechain positions were then optimised. Then, rotamers

for all residues were tested at mutable locations and the amino
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acid/rotamer combination that gave the lowest energy state was accepted at

this position.

5.2.3 Dynamic GA

Another feature we thought could increase the rate of convergence was to
use dynamic mutation rates when selecting which positions to mutate. In
our basic protocol, each residue has the same probability to be chosen for
change at all times. However, if we already have part of a well-formed
structure then we do not want to necessarily make any changes within those
parts that predict well. By keeping well-predicted substructures constant
and mutating residues that are not in the correct positions, we may be able
to produce better sequence designs. SAP (Structural Alignment
Program)!57.158 js a structural comparison program that can offer an
indication on how similar local structures are in two models. Using the local
similarity score obtained from this program, we can weight our mutation
rate at each location based on how well that area is predicted. We can
assign a lower mutation rate to regions that are well predicted, and a higher
mutation rate to the locations that are not predicted very well in the hopes

that area will assume the correct structure more quickly (Figure 35).

Being able to adjust the mutation rate dynamically based on the previous
predictions would be quite hard to implement in our GA if we kept the
recombination step in our protocol. Breaking two different sequences and
knitting then back together is unlikely to maintain the predictability of
individual substructures, meaning that our adjusted mutation rates would
not be relevant for the next generation. For this reason, we modified our
protocol to not include the recombination step. A baseline mutation rate
was set to begin with, and the structures of the parent sequences were
predicted. Mutation rates were then adjusted based on the local similarity
score given by SAP. Areas of low local structural similarity, indicated by a
SAP score below 1 for that position, were given a mutation rate 4 times the

original baseline mutation rate. Regions with high similarity, and therefore
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good predictability, were given a reduced mutation rate of % the value of
the baseline mutation rate. Mutations then occurred, using RosettaDesign
for residue selection, according to the given probabilities (without any
recombination step) to produce children sequences. Structures for these
were then predicted and the 15 highest scoring were taken as parents of the

next generation, along with 5 parents from the previous seeds, with the

mutation rates adjusted accordingly for each location.

Figure 35. Stereo images illustrating local structure similarity scores
produced by SAP. A) The target model is shown as the red chain, whereas
the predicted model is shown as the blue chain. The helices are well
predicted, with a high degree of correct local structure present. However,
the strands for the predicted model are quite far from the target. B)
Coloured by the local similarity score produced by SAP, blue parts of the
structures indicate regions that have low similarity (score <1) and therefore
will possess a higher mutation rate for those locations in the next
generation. The areas that are not blue have a score greater than 1 and so
will have a severely reduced mutation rate in the next iteration of design in
the hopes that structure will be conserved.
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5.2.4 Setting a mutation rate

Setting the mutation rates correctly for our GAs is key to their performance.
Too low a mutation rate can mean that the method will take a long time to
converge, as only small changes are explored in each generation. Setting the
rate too high can mean that we do not get the convergence we want, as too
many positions change each generation and not enough consistency is
maintained. Therefore, we thought it prudent to run a few different GAs
with different mutation rates in order to choose the optimal one. We ran
both the basic GA and the RosettaDesign GA with mutation rates of 1%,
2.5% and 5% to see which led to the best convergence rate. For both
protocols, a 2.5% change to mutate each residue appeared to provide the
best convergence after 150 generations (Figure 36). After an initial 50
generations, the 2.5% mutation rate had a maximum average TM-score of
0.35, as opposed to the other two rates that were around 0.30 TM-score.
The lower mutation rate of 1% appears to still be improving just before the
run was completed, but the rate of convergence is much lower than the one
seen with a mutation rate of 2.5%. By the end of 150 generations, a 2.5%
mutation rate gives a maximum average TM-score of ~0.45 within a
generation and the 1% rate is still at ~0.35. The 5% rate is interesting, as it
initially appears to be comparable to the 1%. However, it seems to reach a
peak of ~0.35 and drop off afterwards. This could be due to the reason
stated earlier, that we do not maintain much consistency with a higher
mutation rate and so achieve lower scores by changing too many residues at
a time. Based on this information, we used the 2.5% mutation rate as a basis
for our GA methods. A similar pattern was seen for both the basic and

RosettaDesign GAs.
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Figure 36. The effect of different mutation rates in the basic genetic
algorithm. Different mutation rates were tested to investigate which had
the best convergence. All rates seem to offer some improvement to the
maximum average TM-score within a generation, but a 2.5% chance seems
to offer the highest score and in the lowest number of generations.

5.2.5 Experimental testing

We ran each of the GA variants for both the 1CC7 and 3CHY backbones to try
and produce realistic designs for the already known structures. From each
of these runs, we chose the 8 sequences that had the highest average TM-
score to the target model and took them through to experimental testing.
We followed the expression protocols previously outlined (Section 2.2), and
conducted experiments without solubility tag fusions. Checking the soluble
fraction of cell lysates, we were able to determine which designs to take

forward to SEC. SEC was first performed under the normal conditions,
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followed by a second round using the aggregation prevention buffer

outlined in the main methods.

5.3 Results

5.3.1 Random genetic algorithm

To begin with, we ran a basic genetic algorithm that had a random mutation
operator where a location was mutated to a different residue with a 2.5%
probability. There were no selection criteria for what types of residue
should be at given locations, just a random substitution if that location was
chosen. This means that we are heavily relying on the ab initio prediction

step to judge if a new sequence is more likely to adopt the correct structure.

The starting set of 20 randomly generated sequences has a low maximum
average TM-score, with the genetic algorithm starting at ~0.15 TM-score to
the target structure (Figure 37). The lower bound for native protein
predictability is around 0.30, with the higher bound being 0.45. The basic
GA reaches the lower bound after 30 generations, with 0.45 TM-score being
reached after a total of 100 generations. At this point, a plateau is reached
and the designs appear to stop improving in their predictability. As a
standard for well-designed proteins, we also used Top7 as a comparison.
Top7 is a previously de novo designed protein by the Baker group that is
very stable, has a high predictability and is robust to a significant number of
mutations?778159.160.  'We ran the Top7 sequence through our ab initio
prediction protocol to produce 40 models, and then compared each of these
to the known structure. The average TM-score between model and known
structure for Top7 was 0.50, higher than our GA managed to produce and
also better than all native proteins. As an aside, Top7 is known for it's
atomic-level prediction accuracy that means it should be predicted almost
perfectly with a TM-score of 1.0 when compared to the actual structure.
However, this is when using standard prediction protocols where 10,000

models are produced and the lowest energy cluster is chosen as the most
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viable structure. Since producing this many models would take a very large
amount of time, we used a drastically reduced set of 40 models to screen
proteins with the rationale that more stable proteins will adopt structures
close to the target even at this level. This means that the accuracy of
prediction will be severely hindered, but can still offer a good means to

assess a large number of sequences in a much shorter amount of time.
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Figure 37. Maximum average TM-score increases with generations in our
basic genetic algorithm. Randomly generated sequences produce a low
TM-score to the target model, but selecting the “fittest” sequences to take
through to seed the next generation quickly results in an increase in
scoring. By 30 generations, sequences are comparable to the lowest-
scoring native sequences mapped onto the respective known structures.
By 100 generations, designed sequences are at the same level of
predictability as the highest scoring natives and appear to plateau here for
the next 150 generations. However, the very stable Top7 protein has a
higher predictability than both the native proteins and all of our designed
sequences.

5.3.2 RosettaDesign GA

Using a random mutation operator seemed to work quite well, producing

sequences that have a level of predictability comparable to the highest
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scoring native sequences. In an attempt to improve the process, we used a
more “intelligent” mutation operator in the form of the RosettaDesign
protocol. In this situation, sequences are threaded onto the target structure
and then positions marked for mutation are assigned a new residue by using
rotamer libraries combined with a potential energy function. It was our
hope that using a directed method for residue selection would lead to an
increased rate of TM-score improvement and a final TM-score plateau that

was higher than using a random amino acid selection.

We ran our RosettaDesign GA and both of these hypotheses proved to be
true (Figure 38). Again, randomly generated sequences produced a low
maximum TM-score as a starting point, but scoring quickly improved as
more generations were made. After 30 generations, scores were already
within the range of “native” scores, a slight improvement in the rate of
increase when compared to the basic GA. The native scores were quickly
surpassed, and by 125 generations we had reached the level of
predictability that Top7 possesses. After this, our sequences plateaued at a
higher score of 0.54 for the remaining generations. These sequences are
predicted very well, and we would therefore expect them to be very stable

when we experimentally test them.
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Figure 38. Using a RosettaDesign mutation operator results in a quicker
TM-score increase and reaches a plateau at a higher level. The low starting
scores given by random sequences are quickly improved upon, with a TM-
score around 0.34 after 50 generations. This is in the middle of the
distribution of native scores, and so we would expect our sequences at
this point to be relatively realistic. After 125 generations, our sequences
have surpassed even the highest scoring native sequences and are
comparable with Top7. In the following 125 generations, designed
sequences score slightly higher than Top7 at ~0.53.

5.3.3 Dynamic GA

In order to increase the rate of improvement for designed proteins in
subsequent generations, we attempted to use a method that changed the
mutation rates at each location based upon how well that part of the
structure was predicted previously. Regions that were predicted incorrectly
had an increased mutation rate, whereas regions that were predicted
correctly when compared to the target structure had a reduced mutation
rate. We hoped that by doing this, well-designed regions would be

maintained through generations but structural features needing

Top7
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improvement would explore more sequence space in order to find a suitable

fit.

Using this method appeared to offer a dramatic increase in the rate of TM-
score improvement within the first few generations (Figure 39), with
designed sequences reaching native-like predictability in only 4 generations.
A steady increase in the maximum average TM-score is then seen as the GA
progresses, until a higher predictability than native sequences is obtained
after ~50 generations. By 100 generations, designs had a TM-score similar
to Top7. After this, scores increased slightly until a plateau was reached at

about 0.53.
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Figure 39. Using a dynamic mutation rate scaled to the local predictability in
that region, along with a RosettaDesign mutation operator, results in a quick
TM-score increase until a plateau is reached. After a low initial starting point
from randomly generated sequences, TM-score quickly improves so that
native-like predictability is attained within 4 generations. Native
predictability is surpassed after 50 generations, with Top7-like scores being
obtained by 100 generations. Much like in the design GA, a plateau is
reached at ~0.53 TM-score.
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The large increase in score for the first few generations is impressive, but
not too surprising. Because our process starts with randomly generated
sequences, they are not likely to have any similarity to the target structure.
This means that a considerable number of positions will have a high
mutation rate assigned to them, leading to redesign by the Rosetta protocol.
Having a very high mutation rate at numerous locations with is essentially
the same as attempting to redesign the majority of the structure, which we
have already performed during the factorial design experiments. When the
majority of positions are open for a complete redesign by Rosetta, the
average TM-score of the resulting proteins is around 0.30 (Figure 31) and
we also see this in the initial generations of our dynamic GA. When some
well-predicted regions of structure begin to form in the designed sequences
and mutation rates are lowered again, the normal GA process seems to take
over and optimise towards increasing the TM-score until a plateau is

reached.

5.3.4 Sequence recapitulation

As mentioned previously, we can assume that prediction accuracy and
native sequence recapitulation are good proxies for viable protein designs.
We are already optimising towards a better predictability with our GAs, but
it would also be interesting to investigate how native sequence

recapitulation changes as more generations are made.

When using a random mutation operator, where any residue can be
replaced with any other residue, there doesn’t seem to be any increase in
native sequence recapitulation with generation progression (Figure 40).
Although average TM-score increases as the method progresses, sequence
identity to the native remains below 10%. One of the reasons for this could
be that residues with similar properties to native are being placed in the
locations to be mutated, giving a similar effect on predictability but without

having exact identity.
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Figure 40. Native sequence recapitulation for each designed sequence in
a generation when using a random mutation operator. Although the
average TM-score of designed sequences increases between generations,
native sequence recapitulation appears to remain below 10%.

When using a RosettaDesign mutation operator to make residue selections
based on energy minimization and structural information, native sequence
recapitulation can be seen to increase with more generations (Figure 41).
TM-score increases as the method progresses and it appears that sequence
identity also follows the same trend. After 150 generations, a peak of 0.5
TM-score is reached and there is a 40% sequence identity to the native at
this point. Between 150 and 250 generations, when the TM-score plateau is
reached, native sequence recapitulation also appeared to remain constant at
~40% (not shown). By the end of our design process, we obtain a slightly
higher total sequence recapitulation than the 33% suggested by Baker in
previous work as being indicative of a viable design81.123. There was no
difference in the pattern when using either the RosettaDesign GA or the
dynamic GA, possibly because they both used the same mutation operators

to make residue selections.
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Figure 41. Native sequence recapitulation for each designed sequence in a
generation when using the RosettaDesign mutation operator. As TM-score
increases with generations, so too does the level of native sequence
recapitulation. By the end of 150 generations, TM-score and sequence
identity are both higher than previously published protocols.

5.3.5 Comparative modelling predictions

For each of the designs we chose to put forward into experimental testing,
we first decided to use the comparative modelling method of structure
prediction to see how well the sequences would perform. We are already
using an ab initio method of prediction to direct our designs in their
predictability, but we still thought it prudent to also use a more robust
prediction method alongside it. There are some problems with ab initio
methods, and using the comparative modelling as an additional step is a

good check to see if we are drifting too far from real structures.

For the random mutation operator GAs, comparative modelling produced
structures that were very close to the targets we were aiming for (Figure
42A). The global fold is good, with all secondary structure elements in the
correct places. However, there is still some shifting in the frames of the
helices that makes the atomistic detail of our designs not quite the same as

the target. Overall, even using a random mutation operator in our GA allows
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us to produce semi-realistic designs when it comes to comparative
modelling prediction outputs with a TM-score of between 0.67 - 0.76 to the

target structure.

Using the RosettaDesign mutation operator in our GA also appeared to
produce designs that were very close to the native structure (Figure 42B).
With a TM-score of 0.83 - 0.91 of prediction model to target structure, these
designs are very high scoring when using comparative modelling. There are
some minor differences in some loop regions, but the majority of backbone
atoms are predicted to be in the correct place and the shifts seen when using
the random mutation operator are not present. Again, there was no real

difference seen when using the RosettaDesign or dynamic GA.

Based on the encouraging results from both ab initio and comparative
modelling prediction methods, we continued with our experiments to test

our designs in the lab.
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Figure 42. Stereo images demonstrating the comparative modelling results
of designs produced using the GA method. A) Comparative modelling of
designs made using the GA with a random mutation operator seems to
generate models that are quite close to the target structure (TM-score =
0.76). There is some frame shifts in the helices, so atomistic detail is
missing, but the global fold is correctly predicted and secondary
structures are generally in the right place. B) Using a RosettaDesign
mutation operator leads to a predicted model that almost has atomistic
detail (TM-score = 0.91). There are some slight differences in the
locations of some loops, but backbone atoms are almost all in the same
place as in the target model.

5.3.6 Experimental testing

For each of our genetic algorithm protocols (random, RosettaDesign and
dynamic), we chose the 8 sequences for each backbone that had the highest
ab initio TM-score to the target structure and experimentally tested these

for solubility (Table 8).
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Backbone GA variant

Basic Design Dynamic
1CC7 0 2 2
3CHY 0 1 1

Table 8. Raw results for solubility of designs in each GA category. 8
different sequences were expressed in E. Coli and only a very small
number of these were soluble. No designs produced by using the “basic”
GA were soluble, and only a very small number were soluble from the
“Design” and “Dynamic” GAs.

Unfortunately, only a total of 6 designs (out of 48 tested) were soluble from
this experiment and these were all from using the RosettaDesign mutation
operator. When these 6 designs were taken forward to the size exclusion
chromatography step for further purification and characterisation, they
eluted in the void zone (similar to what was seen in Figure 30). This
indicates that again, the designs we have produced exist as soluble
aggregates rather than globular proteins and are not likely to adopt the

correct structure.

5.4 Discussion

Our experiments so far have used structure prediction as a proxy for viable
designs when varying a number of other factors but have not focused on
directly improving predictability. Using a genetic algorithm approach, we
attempted to optimise the TM-score between predicted structure of a
sequence and the target model. As a mutation operator, we used either a
random method of residue selection or a more directed selection with the
RosettaDesign forcefield. We began all our genetic algorithm variations
with random sequences, so TM-scores start off low but then steadily
increase with each generation until a plateau is reached and no more
improvement is seen. Interestingly, regardless of the GA process used, TM-

score improvement is complete by 150 generations.
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The basic version of our GA was able to produce sequences that were
comparable to the best-scoring native sequences, but not quite as good as
the very stable Top7 protein. Changing the mutation operator and using a
dynamic mutation rate improved upon this early success, to quickly surpass
natives and even Top7 scores. Each of the GAs also generated sequences
that looked very good when using a comparative modelling approach to
predict the structure. Predicted models had a TM-score between 0.67 - 0.91
when compared to the target structure, which is a very good score and
suggests that the structures have a high degree of similarityl12. The
templates picked our by the comparative modelling protocol to predict our
sequences were all mainly 3CHY-like proteins, which is encouraging as it

means we are getting close to the native sequence and structures.

The predictability of sequences produced by the basic GA was comparable
with that of the best native sequences, but native sequence recapitulation
remained at a low level and it is hard to judge exactly what this may mean.
The same fold topology may be adopted by sequences with very little exact
identity52153, However, using native sequence recapitulation as a proxy for
viable designs can be invaluable in helping to screen a multitude of different
sequences as the entire process of computational design and structural
characterisation is very involved and time-consuming. We know that the
native sequence for that given structure is already a suitable one, given that
it already exists in nature. The closer we can get to this should be a good
measure of how well our design process is doing. When using the
RosettaDesign mutation operator in our GAs, we can see an increase in
recapitulation as the generations progress. This means that it is possible to
get closer to the native sequence using the design method and maybe we
would expect these designs to be performing better than when just using the
basic GA. We give the RosettaDesign GA some context as to where residues
are located in the structure when making a selection, whereas the basic GA
randomly attempts to fit a different residue in. This means that the

RosettaDesign protocol uses structural information unavailable to the basic
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version to guide the amino acid selection process at a residue position, and
this may lead to improved recapitulation through better understanding of

the steric environment at that location.

Since both the ab initio and comparative modelling predictions appeared to
be very good, we would have perhaps expected our sequences to perform
better under experimental testing. For the RosettaDesign and dynamic GAs,
we also had a high level of native sequence recapitulation. Unfortunately,
very few of our designed sequences were soluble and none of them seemed
to possess a fully compacted tertiary structure that could pass into the pores
of a correctly sized size exclusion column. This suggests predictability and
native-like sequences are not the only criteria that need to be met in order
to produce viable designs. There could be other factors that we have not
taken into account when producing our designs, and our understanding of

the process could do with improvement.

There is also a lot of room for improvement in the GA method itself. We
chose to parameterise it by using values that we thought were reasonable
(e.g. making 40 predicted models to score for fitness, or scaling the mutation
rate in the dynamic GA by a factor of 4). Although the values that we chose
appeared to allow the GA to function properly and produce realistic designs,
there is still a lot of optimization that may improve overall performance.
Typically, these types of parameters are investigated with multiple runs of a
GA and the best performing are chosen to be the final values. However, as
mentioned previously, a typical GA run can take anywhere between 10 and
20 days on 100 computer nodes. This is a huge amount of time and rather
than spend an excessive amount of time performing multiple runs for
parameter optimization when we were unsure the methodology would even
work, we selected what we thought were reasonable parameters and
pressed forward to synthesizing proteins as soon as possible. In the end, we
did produce proteins that looked realistic to all of our computational
measures but met with no experimental success. Perhaps then it was an

informed choice to leave the complete optimization of the GA for a later
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date, when we have more of an indication about what comprises a truly

viable design.

In all of our experiments so far, we have produced protein designs that look
realistic to a number of measures and are predicted very well by state-of-
the-art prediction programs. Unfortunately, we have met with little success
as few have been soluble and none have been folded. On the positive side,
we now have a large number of viable-looking designs that we thought
would adopt correct structures but do not. As mentioned previously, there
are only ‘good’ sequences in nature as the ones that do not fit will be
discarded by evolution. We now have a set of 480 total designs that we have
experimentally tested but do not possess the correct tertiary structure. If
we compare some parameters of this set to a similar number of native
proteins (that will adopt the correct structure), we may be able to obtain
some insight into what the differences are. This will be the subject of the

next chapter.
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6. Machine learning for improved design
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6.1 Introduction

In our studies so far, we have attempted to make viable protein designs
through a number of different protocols. We have used established
sequence design protocols to investigate the effect of various factors on
solubility and foldedness for both novel and native structures. We also
proposed a new method for design, using a genetic algorithm to optimise
towards producing sequences that are predicted to closely resemble the
target structure. Using our assorted techniques, we have produced a total
of 480 sequence designs that look realistic to our eyes and to numerous
computational measures. Unfortunately, none of the designs synthesized so
far appeared to possess a true defined globular structure. In an attempt to
glean more information from these failed attempts at protein design, we
compared them to a set of real proteins of known structure. By taking
equivalent subsets of proteins from each group and defining attributes for
each member, we could apply machine learning techniques to discern a
difference between the two groups. Upon finding dissimilarities, we
attempted to direct our design process to a previously untested area of
attribute space. Once designs fitting these parameters were produced, we
again looked at native sequence recapitulation and predictability but this
time added molecular dynamics simulations as a further test of stability.

Proteins were then tested experimentally, without the use of a solubility tag.
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6.2 Methods

6.2.1 J48 decision tree

To enable us to determine some decision rules and better direct our design
process to areas that could be interesting, we created a J48 decision tree
using the Weka data analytics programlél. This method is a Java-
implemented version of the C4.5 algorithm62 that generates decision trees
which can be used for classification. For a training set (S) of classified
samples, each sample (x) has a number of attributes (y) (x1i, X2i, X3i...Xyi). For
each iteration of the C4.5 algorithm, it iterates through each unused
attribute of set S and calculates the information gain (entropy) of that
attribute. The attribute with the largest information gain is chosen to split
the set by that attribute to produce a subset of data. For example, if we have

a simple data set;

Attribute 1 Attribute 2 Class
A True 1
A True 1
B True 1
A False 2
B False 2

Table 9. Example training set for machine learning techniques. If a set of
data has two different “Attributes” and a resultant “Class”, machine
learning techniques can be used to attempt to find commonalities that
exist within a class.

Then the total entropy for the set (S) is;
k
Info(S) = =) ((freq(Ci,S)/|S]).In(freq(Ci, S)/|S]))
=1
where freq(C;,S) is the number of the set that belong to class C; (out of k

possible classes) and /S/ is the number of samples in set S.
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Info(S) =-(3/5) In (3/5) - (2/5) In (2/5)
=0.6730

To find the entropy of attribute y, we must first partition the set in

accordance with n outcomes of the attribute test. On this partitioned set (T),

the following equation can be applied;

mn

Info,(T) =Y ((|Ti| /T).info(T;))
1=1
Entropy of attribute 1;

Infoy1(T) = 3/5 (-2/3 In (2/3)) - 1/3 In (1/3))
+2/5(-1/21n (1/2) - 1/2In (1/2))
= 0.6592

Entropy of attribute 2;

Infoy2(T) =3/5(-3/31In (3/3) - 0/31n (0/3))
+2/5(-0/21n(0/2)-2/21n(2/2))
=0
From this, we can estimate the information gain from each attribute (y) by;

Gain(Y') = Info(S) — Info,(T)

Attribute 1 information gain = 0.6730 - 0.6592 = 0.0138
Attribute 2 information gain = 0.6730 - 0 = 0.6730

Because the information gain is much higher for attribute 2, we would

choose this as our first splitting node. This is fairly obvious from the data,

but is a good illustration of how the method works.
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Once a node has been formed, the process recurs for each subset. The
process can stop when every element in the subset belongs to the same
class. This branch is then turned into a leaf of the tree and labelled with the
class that belongs here. The method can also stop when there is no
significant information gain for attributes, but there are still mixed classes.
In this case, the branch is turned into a leaf and labelled with the most
common class. Once the tree is completed, the C4.5 restrospectively prunes
the tree, discarding one or more subtrees and replacing them with leaves
that simplify the decision tree. This is useful because large decision trees
can be difficult to understand if each node has a specific context established

by the outcomes of antecedent nodes.

To define tests at each node of the tree, the C4.5 can use one of two
algorithms. There is a “standard” test for use on a discrete attribute with
one outcome and branch for each possible value of the attribute being
tested. However, if an attribute (Y) has continuous numeric values, a binary

test with the outcomes Y < Z or Y = Z can be used with a threshold value (2).

To define the threshold Z, the samples in the set are first sorted by the
values of the attribute being considered (e.g. v1, vz, v3 ... vim). Any threshold
value lying between vi and vi+1 will have the same effect of dividing cases
into those whose value of attribute lies in {v1, vz ... vi} and those whose value
is in {vi+1, Vi+2 ... vm}. Thus, there are only m-1 splits, all of which can be
examined systematically to obtain an optimal split. Although it is usual in
other methods to take the midpoint of (vi, vi+1) as the threshold, the C4.5

algorithm chooses the lower value (vi).
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For example, if we have a set;

Attribute 1 Class

10 1
71

20 1
72

30 1
73

40 2

Total entropy of set=-3/41n(3/4)-1/41n (1/4) = 0.5623

Entropy of each threshold value;
Z1=1/4(-1/1In(1/1)-0/11n (0/1))
+3/4(-2/3In(2/3)-1/31n(1/3))
=0.4774

Z2=2/4(-2/21n(2/2)-0/11n (0/1))
+2/4(-1/21n (1/2) - 1/21n (1/2))
= 0.3466

Z3=3/4(-3/31n (3/3) - 0/31n (0/3))
+1/4(-0/11n (0/1) - 1/11n (1/1))
=0

Information gain for each threshold;

Z1=0.5623 -0.4774 = 0.0849
Z2=0.5623 - 0.3466 = 0.2157
Z3=0.5623-0=0.5623

From this data, we can see that threshold Z3 gives the most information gain
and is therefore the most optimal split for attribute that defines class group.

Again, this is obvious from the data but serves as an illustrative example.
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This technique works the same way for much larger and complicated

datasets.

We used this method to try and discover some new information, using 480
native proteins as one class (“viable”) and our unfolded designs as another
(“not viable”). We kept the same factors as used previously in the factorial
experiment (surface divergence, buried divergence, secondary structure
prediction accuracy and Rosetta energy score) but this time kept each as
continuous variables instead of having “good” and “bad” categories. To this,
we also added ab inito and comparative modelling accuracies for each
sequence-structure relationship. Although we have already investigated
these variables in some way, keeping the continuous variables should allow
a more in-depth look at how they affect the viability of designs. If they
didn’t offer up any information, more attributes could be added to the
investigation to gain more insight. 480 proteins of comparable size to our
designs (70 - 130 residues) were taken and analysed as the “viable” set of

sequences.

10-fold cross validation was used to verify our J48 method. This means that
the data is partitioned into 10 equal subsets, with a single subsample
retained as the validation data for testing the model produced by the 9 other
training sets. The cross validation is then repeated 9 more times, with each
of the subsets used as the validation set once. The performance of the 10

classifiers is then averaged and this is given as the overall model.

6.2.2 A genetic algorithm to direct design

After finding information indicating a difference between our designs and
native proteins, we would be able to assign potential new designs into the
correct category of “viable” or “not viable”. This would be useful, but we still
may waste time making a multitude of designs that do not possess the
correct level of attributes to be viable. To increase the number of designs

that fell into the right category, we used a version of our genetic algorithm
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that had a modified objective function. Instead of optimising solely towards
predictability, a point is given for each attribute level that is within the
range of the “native” sequence scores. Optimisation of the process is then
just towards having the most collective points. We used this modified
fitness function in both the RosettaDesign (Section 5.2.2) and dynamic
(Section 5.2.3) versions of the genetic algorithm to produce native-looking
designs for the 3CHY backbone, based on the information we obtained in the

previous analysis.

6.2.3 Experimental testing

When realistic designs had been produced, we chose 12 sequences at
random that scored the maximum points in the fitness function of the
genetic algorithm. We then expressed these in E. Coli and screened for

solubility and foldedness (protocols in Section 2.2).

6.2.4 Computational testing

At the same time as we were experimentally testing our designed sequences,
we also tested our designs computationally. This involved structure
prediction methods, both ab initio and comparative modelling, as used
previously, but molecular dynamics (MD) simulations were also added. By
employing MD, we hoped to achieve some insight into the stability and

behaviour of the designed sequences that we were testing.

For each designed structure, we began with an equilibration stage that
started at a temperature of 10 K and ramped up to 300 K over 20,000 steps.
During this time, harmonic restraints were applied to the alpha-carbons
with a spring constant of 10 kcal/mol. After equilibration had been
completed, we had a production stage of MD, with constraints removed, for
20 ns. We checked the progression of our structure both visually, to see if
there were any movements of secondary structures, and looked at total

root-mean square deviation (RMSD) over the whole structure to see how
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much global change there had been. We performed these experiments using

the AMBER163 (99SB-ILDN164) force field.

6.3 Results

6.3.1 Decision tree

In order to try and compare our group of unfolded designs to folded native
structures, we applied a J48 machine learning algorithm to construct a
decision tree that attempts to categorise different classes based on their
defined attributes. The 7 attributes we chose to investigate were buried and
surface composition divergences, secondary structure prediction accuracy,
Rosetta energy score, ab initio prediction scores, and comparative modelling
scores. For each of the 480 proteins in each group, the levels of these
attributes were calculated and then analysed using the Weka data analytics

program.

The decision tree produced by the J48 algorithm indicated that there were
some criteria that seemingly led to either “viable” or “not viable” sequences
(Figure 43). There are some leaves with mixed classes, such as when buried
divergence is less than or equal to 490 and secondary structure prediction
accuracy is above 71, which means that we have explored this area already
with designed sequences that were not folded. These types of leaves can
potentially be separated into more subtrees, but this would involve adding
more and more specific criteria for each instance rather than finding a
general trend for each class. One leaf stands out from the rest as unexplored
by our design process, with a large number of viable native sequences (173)
but only 2 designed sequences. It would be interesting to explore this area
more, as it appears that we have not fully covered the full range of native
sequence properties. This leaf has two criteria that seem intuitive, buried
divergence is kept below 490 and Rosetta score is also quite negative.
However, secondary structure prediction accuracy being below 71 is

something that we would not have expected. It would be safe to assume
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that having residues possessing a higher propensity of adopting the correct
secondary structures would be a beneficial step in creating viable protein
designs. This does not appear to be the case, with sequences scoring higher
than 71 classed as “not viable”. This is very similar to the pattern we saw in
the factorial design experiments in Chapter 4. Also of interest is the lack of
prediction scores in the decision making process. Neither ab initio nor
comparative modelling scores are found as nodes for splitting the two
classes, indicating that there is very low information gain in these two
attributes. As we have already seen in previous chapters, our designs
predict about the same as native sequence-structure relationships and so it
is no surprise then that these two attributes do not offer any usefulness to
segregate the groups. Surface divergence also only makes an appearance
towards the bottom of the tree, and results in quite mixed leaves. This
suggests that it may be less important than the preceding nodes, but may

still offer some information when looking at more specific cases.

As stated previously, one branch of the tree appears to stand out as densely
populated with viable sequences with very few designed sequences present
in that region. This could offer a new place to look for viable sequence
designs for our proteins, and so we took the criteria outlined by the decision

tree and used them as the fitness function for our genetic algorithm.
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Figure 43. 48 decision tree showing the various criteria for classifying
native “viable” sequences and our “not viable” designs. There are numerous
leaves that result in mixed classes, indicating that we have covered this
area of attribute space with our previous designs. The mixed leaves may
be split into smaller subtrees, but the rules governing each of these get
very specific for each individual sequence. However, there is a leaf at the
far left of the tree that is highly enriched in “viable” sequences. With only
two designed sequences present in this area, it could be interesting to
make more sequences that fit into this category to see if they are folded.
The criteria for this leaf are a low buried compositional divergence and a
low Rosetta energy score, which are expected. The other criterion is to
have a secondary structure prediction accuracy of less than 71, which is
slightly counterintuitive. Both ab initio and comparative modelling scores
do not factor into the decision making process and so there is low
information gain between the classes in this respect (i.e. the groups of
scores are too similar)
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6.3.2 Sequence design outputs

Using machine learning to classify “viable” and “not viable” sequences, we
gained some insight into which attribute regions we had explored and which
we had not. One of the main discoveries was that there is a large group of
“viable” designs with a certain criteria, and we have only produced two
designs that fit into this branch. To direct our designs towards this space,
we took the decision rules for this branch and used them in our
RosettaDesign genetic algorithm fitness function. For each rule that was
met, the sequence scored a point. The rules were that the sequence must
have a buried composition divergence below 490, a secondary structure
prediction score below 71 and a Rosetta energy score below -252. By
selecting the sequences scoring the most points within a generation as
parents for the next generation, we hoped to produce designs that explored

an area we have not explored.

Again, starting the GA with random sequences initially provides very low
scores, with the best scoring sequence having only one target rule met
(Figure 44). After a few generations, the best sequence tends to score an
increased 2 points. By 100 generations, the maximum of 3 points is reached
and all of the decision criteria are fulfilled by some designs. Although there
does seem to be a slight trend towards an increasing points score, the
trajectory of designs appears to contain a lot more noise than previously
seen. This is most likely because we are working with a point-scoring
binary system. Even small changes may affect the levels of the continuous
attributes being optimised towards. If our designs are close to the boundary
of the decision rule, changing just a few residues could knock the scoring

down for that sequence.
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Figure 44. A genetic algorithm directed towards designing proteins in a
specific region of attribute space. The rules that resulted in a large number
of viable sequences in the leaf of the decision tree were used in a points-
scoring system for the fitness function of a genetic algorithm. Each time a
rule was met by a sequence, a point is scored and the highest scoring
sequences are taken through as parents for the next generation. This
method started off with a set of random sequences that scored very low,
the maximum scoring sequence only meeting one rule. Soon, two rules
were met and the sequences started scoring more highly. After 100
generations, sequences meeting all the decision rules were produced. The
process appears to be less efficient than our previous GAs, but in this case
we are dealing with binary decision boundaries and it is easier to disrupt a
previously good score with fewer changes.

Along with a general trend of increasing score with generation times, we can
also see that there is an increase in the average points scored for all
sequences in a generation (Figure 45). Initially, average score for a
sequence in the first generation is hovering around 1. This is to be expected,
as they are just randomly generated sequences with no design performed on

them yet. The first 100 generations still have a low score, indicating that the
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sequences scoring 2 points in this time (in the previous graph) are quite
rare. After 100 generations, the average score for sequences in a generation
begins increasing, and still appears to do so even after 350 generations.
This suggests that we are indeed optimising towards a better score with

increasing generations, but at a relatively slow pace.
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Figure 45. Average score for each sequence increases with generations.
After starting off with every sequence having a low score for the first 100
generations, the GA appears to result in a generally increasing average
score as more generations are produced.

We also thought it a good idea to check how this design method, with the
modified fitness function, performed with regards to native sequence
recapitulation. As before, the closer we are to reproducing the native
sequence (especially core residues), then the better we can assume our
designs to be. As generations progressed, the maximum level of native
sequence recapitulation increased both in the core and overall (Figure 46).
The first 100 generations saw the greatest rate of increase, with both core

and total recapitulation reaching much higher levels. At this point, the total
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recapitulation appears to reach a plateau and remain around 25-30% for the
next 250 generations. Core recapitulation appears to steady at about 40%
between generations 100-200, before starting to increase again from 200-
350. At the end of 350 generations, the core recapitulation is at ~55% and
still looks to be on a slight upward trajectory. Overall, there is a promising

similarity to native sequence both in the core and in total.
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Figure 46. Maximum sequence recapitulation increases with generations.
Initially there is hardly any similarity between the native sequence and
our randomly generated ones. However, in the first 100 generations, a
large increase is seen in both core and overall similarity. This then
plateaus for total residues, and remains at ~25-30% for the remainder.
Core similarity also seems to plateau between generations 100-200 at
around 40%, but starts increasing again after 200 generations. By the end
of the run, it has reached ~55% and still appears to be increasing.

Our aim was to produce designs that fell into three specific selection criteria
outlined by the decision tree analysis, and our process has appeared to do
that. From the selection of sequences scoring the maximum number of

points, we chose 12 to take forward to both experimental and
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computational testing to see what information could be obtained. The 12
we chose were also taken from generations after 250 iterations. We thought
this to reasonable, as they also scored highly on native sequence

recapitulation.

6.3.3 Structure prediction

We also thought it useful to still check how each sequence fared when the
tertiary structure was predicted by both ab initio and comparative
modelling methods. When ab initio prediction was used, TM-scores to the
target model were between 0.40 - 0.52 for all of the designed sequences.
This is similar to the level that we have seen previously with some of our GA
methods. The comparative modelling scored higher than this, with designs
having a TM-score between 0.63 - 0.72 (Figure 47). The level of accuracy for
these prediction is again very high, with the global fold being recognised but

still with minor differences in the exact atomistic details

Figure 47. An example of the prediction accuracy of one of the best designs
produced by this method. The global fold is predicted well through
comparative modelling, but there are some shifts in the exact atomistic
details. This results in a TM-score to the target template of 0.72.
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6.3.4 Molecular Dynamics (MD)

We also performed MD simulations on some of our sequence designs to
attempt to understand how stable they would be under normal conditions
and to potentially pinpoint any possible problems in the structure. Each
designed sequence taken from the GA was threaded onto the 3CHY
backbone, and then the structure was relaxed before energy minimization
was performed with Rosetta. These threaded structures were then
equilibrated with the water molecules, and then simulated for 20 ns as a
production stage. During these 20 ns, RMSD from the original structure was
taken as a measure of stability. If a large RMSD occurred after a short time,
we could assume that the protein would not be very stable. If RMSD
remained relatively constant, then we could assume that the structure is

quite stable.

As a control, we simulated the native 3CHY sequence and structure for 20 ns
under the same conditions as we were using for our designs. This would
give us a baseline that we could compare the behaviour of our designs to.
The native 3CHY protein seemed very stable under our simulated
conditions, with the RMSD from the original structure never reaching above
0.2 A (Figure 48). The movement of the structure appears to remain
constant throughout the length of the simulation, with not much variability.
Most of the designs tested unfortunately seemed to have a much higher
RMSD than the native. Designs 1, 2, and 3 all seemed to have a large starting
RMSD and appear to have increases that suggest some unfolding of the
structure. For Design 1, this happens very early, with an increase of 0.2 A
after only 5 ns. Designs 2 and 3 also have an increase at around 10 - 12 ns,
but this is of significantly less magnitude than Design 1. Design 4 has a high
starting RMSD, but the structure appears to remain around this level for the
duration of the simulation. This implies that although our starting structure
may not be perfect to begin with (a large ask for any design process) the
structure adopted in the simulation is relatively stable and there is no

unfolding event.
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Figure 48. RMSD from starting structure over 20ns of molecular dynamics
simulations for the native 3CHY protein and four of our sequence designs.
The 3CHY protein has a low RMSD from starting structure, indicating that
it is stable under our MD simulation. All of our designs seem to have a
large RMSD from the starting structure, and most of them have large
increases that indicate an unfolding event. For Design 1, this happens at 5
ns and for Designs 2 and 3, this happens between 10 - 12 ns. Although
Design 4 has a quite a high RMSD from the starting structure, it doesn’t
seem to have an unfolding event suggesting that although the starting
structure may not be perfect, the structure it adopts under simulated
conditions is relatively stable.

The differences between the starting and ending structures for the native
3CHY were hardly noticeable upon visual inspection, with slight differences
only visible in some loop regions (Figure 49A). For the designs that show an
increase in RMSD during the simulation, there does appear to be an
unfolding of one of the terminal helices (Figure 49B). The helix breaks into
two, with one part drifting to a position orthogonal to the other. This causes
a large instability in the protein, as now the hydrophobic core is exposed

and could lead to unfolding. One of our designs doesn’t follow this trend and
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although RMSD from the starting structure is high, there doesn’t seem to be

any unfolding and the structure is relatively stable (Figure 49C).

A)

Figure 49. Stereo-images showing overlap between start (red) and end
(blue) structures for native 3CHY and our designs. A) The native 3CHY
shows very little difference in structure after the full simulation. Minor
differences are seen between two structures, mainly in the loop regions.
B) For most of our designs, there is an unfolding event where the terminal
helix breaks and half adopts a position orthogonal to the rest. This leads
to instability and can cause unfolding due to the hydrophobic core now
being exposed. C) For Design 4, a large difference is seen between the two
structures but the global fold is retained. There are no unfolding events,
suggesting that even though there is a high RMSD, the structure adopted is
arelatively stable one.
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We only subjected 4 of the 12 designs to MD simulations, as they were run
in parallel with the experimental testing. In the time it took to produce our
proteins in the lab and screen then, we only managed a third of the

simulations we intended to do.

6.3.5 Experimental testing

The 12 designs we chose from the design method were also taken through
to experimental testing in the lab. They were expressed as outlined
previously, without the use of a solubility tag and sequence verified

externally.

Unfortunately, all of the designs tested did not appear to be soluble. After
expression in BL21 cells, cells were lysed and the whole/soluble fractions
ran on an SDS-PAGE gel. All of the 12 designs were expressed in the cells
and were present as a band of the appropriate size, but were not seen in the

soluble fraction (Figure 50).

Ladder
(kDa) Whole Sol

Figure 50. Example of the level of
solubility shown by our designs. Our

55.4 designed sequences were present
as a band at appropriate size
36.5 (~17kDa) in the whole cell fraction,
indicating that they were being
expressed properly. However, no
31 designs were present in the soluble
fraction after centrifugation. These
results suggest that the designs
21.5 aggregate and the resulting
precipitate is removed in the pellet
upon centrifugation.
14.4
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The fact that none of the designed sequences were soluble suggests that

they are not properly folded, so aggregate and precipitate out of solution.

6.4 Discussion

In this chapter, we aimed to find some potential differences between
“viable” real sequences and “not viable” designed sequences that we have
made previously. We used a ]48 machine learning algorithm to investigate 6
different attributes and produce a decision tree to categorise the two
classes. Of the various attributes used, both methods of structure prediction
(ab initio and comparative modelling) did not seem to offer any information
gain between classes. This does not mean that predictability is not a
necessity for good designs, more that both of the categories were equal in
their overall levels of these two attributes. Surface composition divergence
also appeared to only have some information in specific instances and did
not seem to be a major decision node between classes. This is slightly
intuitive, as divergence from a model surface could be less important for
sequences. Surface residues are not usually as vitally important as core
residues for dictating the fold of a protein and so are more amenable to
variation. The three main factors for making distinctions between classes
were buried composition divergence, Rosetta energy score and secondary
structure prediction accuracy. A particular leaf of the tree appeared to be
unexplored by our design processes and so we attempted to direct a genetic
algorithm to this area to see if we could produce more viable sequences.
This leaf had a low buried sequence divergence and a low Rosetta energy
score, which is to be expected. The cores of proteins are usually very well
conserved and mostly hydrophobic, meaning that more divergence from a
standard model could severely disrupt the fold. Rosetta energy is a relative
measure of the stability of the protein so a more negative score correlates
with a more stable fold. Unexpectedly, the leaf with a high proportion of
viable sequences has a low secondary structure prediction accuracy. We
have seen this trend before in the computational analysis of the factorial

experiments, where a higher secondary structure prediction accuracy
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correlates with a worse predictability score. In this analysis, a similar
pattern is seen where a high secondary structure prediction accuracy (>71)
branches away from the “viable” designs and produces a leaf containing
mainly “not viable” classes. Other groups have suggested that secondary
structure propensities are not sufficient for viable protein structures, as the
local 3D environment of each residue position is not considered!>¢. We have
seen that optimising secondary structures had a negative effect on
structures in the factorial analysis (Chapter 4), and a similar effect is seen

here.

Perhaps one criticism of our investigations in this chapter is that our “not
viable” set contains quite a high proportion of the same fold-types, whereas
the “viable” natives potentially cover a larger area of fold space. This is true,
but the aim of this experiment was to gain some insight into the general
rules that could possibly govern viable protein sequences and can be
applied in a greater context. After the experiments, we did check to see how
the process would have changed if we would have just used 3CHY-like folds
for comparisons and the results were strikingly similar (Figure 51). 48
homologues of the 3CHY fold were chosen as the “viable” set and 48 of our
re-designs for the 3CHY structure were the “not viable” group. The first two
nodes splitting the groups are secondary structure prediction accuracy and
buried compositional divergence, both following the same trend of lower
levels leading to a leaf of “viable” sequences. Rosetta energy is missing as a
decision node, whereas it was present in the process previously. Again,
surface divergence seems to potentially have some information but only a
small part in the decision making method. Of the new designs we made and
then took forward to experimental investigation in this chapter (shown in
red), 9 fell into the leaf containing all “viable” sequences. The remaining 3
sequences had slightly higher secondary structure prediction accuracy than

65 and so fell into a slightly different branch of the tree.
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Figure 51. Smaller, more simple decision tree made by using 48 native
3CHY homologues as “viable” and 48 3CHY sequence redesigns as “not
viable”. The pattern seems similar to the general trend in the larger
decision tree. Secondary structure prediction accuracy and buried
divergence seem to have a large impact on where sequences fall. Rosetta
energy is missing from this tree, indicating that there is no information
gain between the groups, as are prediction accuracies. There is a leaf
containing mainly “viable” sequences present on the far left, and the
majority of the sequences we made during this experiment still fall into
this category (shown in red)

The molecular dynamics simulations offered up some interesting results.
Out of the 4 designed sequences tested, 3 of them suggested that the
structures were not stable and had some unfolding at a particular helix each
time. This is information that hasn’t been captured anywhere else.
Structure prediction methods failed to see any problems with this helix and
indicated that all secondary structures should be well formed. The other
design that was tested had quite a bit of RMSD from the starting structure
but the structure that it adopted seemed stable, with no unfolding present.
However, although this structure performed well in every aspect, it was still
not soluble under lab conditions. We have started looking at MD
simulations quite late in the project, and due to time constraints we have not
had a chance to investigate this aspect fully. The results gained from just 4
simulations hint that there could be a lot more to look at, and given more

time it could be valuable to pursue this further.
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During this experiment, we were still having problems producing soluble
proteins for further investigation. If our designs are falling at the first
hurdle and precipitating when screened for solubility, there is not much else
afterwards that we can examine. To overcome this problem, a solubility tag
could be used again when expressing our designs in the bacterial cells.
Solubility tags are useful for increasing solubility for proteins that can be
difficult to produce under normal conditions. The use of tags was dropped
in the previous experiments because they gave a high level of false-positive
results, leading to a lot of wasted time chasing up designs in large screening
processes. Now that our experimental testing sets are reduced in number,
we could explore our potential designs in more depth. Adding solubility
tags or screening different expression conditions to try and increase the
amount of information gained from each experiment is much more tractable
if we have smaller sets of proteins to test. In the large-scale batches
containing 48+ proteins, screening would have been very time consuming
for potentially little gain but now these types of investigations would be
easier. Unfortunately, due to time constraints on the project, we had to end
our investigations here without pursuing more data from proteins under

different conditions.
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7. Design of a Leucine-Rich Repeat and

production by peptide synthesis
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7.1 Introduction

In the past 50 years, advances in chemical peptide synthesis have meant
that its use is now becoming more commonplace in biological research and
drug development!®5, Besides being able to produce peptides found in
biological systems, chemical peptide synthesis allows a high degree of
freedom in the types of molecules produced. At a time when synthetic
biology is realizing the potential for introducing non-canonical amino acids
into a system!66-168 peptide chemistry offers a means to introduce new
modifications much more easily than modification of the genetic codel%®. In
order to begin to understand the potential benefits of applying these
methods to synthetic biology and protein design, we attempted to make a

single 28-residue Leucine-Rich Repeat (LRR) segment that we had designed.

LRRs, like other repeat proteins, are composed of highly regular consecutive
structural units that stack to form elongated domains!7?. The structural
motif of LRRs is highly conserved across the whole family, principally
containing a B-strand followed by a helix lying in an antiparallel fashion!7?
(Figure 52A). These individual units, ranging from 20 - 30 residues in
length, stack together to form an elongated domain with a continuous
hydrophobic core and large interaction surfaces’? (Figure 52B). The large
interaction surfaces provided by repeat proteins has led nature to adopt
them as scaffolds to support a wide range of protein-protein interactions73.
In particular, the innate immune system relies heavily on LRRs are the

primary method for target recognition’4.
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A)

Figure 52. Leucine-Rich Repeat (LRR) protein structures. A) An individual
unit of an LRR protein is somewhere between 20-30 residues and contains
a [3-strand, followed by a helix linked in an antiparallel fashion. B) These
individual units link together to form an extended domain with a
hydrophobic core and large binding surfaces.

Because of their intrinsic modularity, high stability and potential for
interface engineering, repeat proteins have attracted much attention as
alternative scaffolds to antibodies!7>176 and as building blocks of protein

nanomaterials!?77.178,

There have already been multiple efforts to design repeat proteins with the
main emphasis on creating consensus repeat proteinsl’?-181 varying the
number of repeat modules®?, or fusing naturally occurring repeat proteins
together!83, So far, nobody has managed to produce a single LRR repeat unit
that can be linked together to form a stable protein without the use of
terminal capping repeats. It is our aim in this chapter to condense the LRR
sequences of the ribonuclease inhibitor (RI) protein into a single repeat, use
Rosetta to design the remaining non-consensus residues, and then produce
the resulting peptide using chemical synthesis. There has already been
some success redesigning the RI protein using consensus sequences, but
they rely on having two different repeats linked together in an alternating
manner!’l, We hope to improve on this published data by taking it a step

further and condensing to a single repeat.

Because of the modularity of repeat proteins, we see chemical peptide
synthesis as an ideal route to produce the single repeats before attempting

to link them together.
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7.2 Methods

7.2.1 Design of a single LRR unit

The ribonuclease inhibitor (RI) protein is an LRR protein, which has 16

individual 28-mer repeat units stacked together to form a horseshoe-shaped

domain (Figure 53).

similarities exist between each one.

ol
¥
:;7 &
> ‘
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We began by decomposing all individual unit repeat sequences into the most
conserved residues, along with maintaining all positions where Leu was
present (Figure 54). Upon reaching a general sequence across all RI repeats,
we then compared this sequence to the alternating repeats that had
previously been successfull’l. Any residues in consensus were kept in our
sequence, with the remaining positions being redesigned using Rosetta. 3D
models were constructed for the design stages by taking one of the RI LRRs
and copying the structure to form a 7-mer repeat. Onto this 7-mer scaffold,
the sequence was threaded onto each repeat. Identical positions for each

repeat were designed simultaneously so whenever a residue changed in one

Each unit varies in exact sequence, but striking

Figure 53. The ribonuclease
inhibitor protein structure. 16
individual LRR wunits are
linked together to form a
horseshoe domain. The
sequences for each repeat are
slightly different, but there is
a high degree of similarity
between all of them.

repeat, the equivalent residue changed in each of the other repeats.
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Figure 54. Design workflow for the single LRR repeat. We began by
decomposing the most regular repeats from the ribonuclease inhibitor
protein into a consensus sequence. This was then compared to the
previously designed “A” and “B” units'’1, and the residues in agreement
were maintained. Positions not in agreement were left open to redesign
by Rosetta. The resulting sequence underwent compositional analysis,
following which charges were rebalanced and energy minimization
performed to produce the final sequence for production in the lab.

The same compositional analysis used previously was performed on the
resulting sequence, where amino acids are grouped based on their
properties (Positive = Y,W,H,R,K,N,Q; Negative = E,D,S,T,G,P,C; Hydrophobic
= AV,LLLLM,F). The total composition of our sequence was compared against
a set of 1000 native proteins under 100 residues, and we found that our LRR
was on the border of realistic sequences (Figure 55). To address this, we
performed charge rebalancing by modifying previous non-consensus
positions. The final sequence then underwent energy minimization through

Rosetta, before being taken forward to synthesis in the lab.
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Figure 55. Compositional analysis of LRR designs compared to native
sequences. Total compositional analysis revealed that our original LRR
design (green) was on the boundary of native-like sequences (red). We
modified some non-conserved residues in order to rebalance the charges,
and the resulting sequence was much closer to realistic sequences (blue).

Classification of residues; “P” = hydrophobic, “+” = positive, “-“ = negative.

7.2.2 Solid phase peptide synthesis (SPPS)

Solid phase peptide synthesis was first introduced by Merrifield in the early
1960s184, and numerous developments since then have pushed the method
to the forefront of synthetic peptide productioni¢5, The C-terminus of a
peptide is linked to a solid polymeric support via a linker, and synthesis
proceeds through the sequential addition of amino acids in a C- to N-
terminal manner. Amino acids have protected sidechains, to prevent side-
reactions, along with initially protected a-amine groups. For each new cycle
of residue addition, the protection of the N-terminal amine is removed and a
new fully protected residue is coupled. When the full sequence has been
synthesized in this progressive manner, the full peptide is cleaved from the

resin and can be fully deprotected!®> (Figure 56). We chose to use an
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automated Fmoc/tBu protocol that has previously been established and for

a greater understanding of the exact chemistry, the relevant literature can

be consulted!65:185,186,

solid
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Figure 56. Basic methodology of solid-phase peptide synthesis. The first
residue is coupled to a polymeric support via a linker region. Residues
begin by having two different protecting groups for the a-amine and the
sidechain. The N-terminal amine is deprotected, allowing addition of a
second fully protected residue and the peptide grows in size. Rounds of
deprotection and coupling occur until the full peptide segment is
synthesized, after which the peptide is cleaved from the resin and
sidechains are deprotected.

Even with protecting groups on the residues, problems can still occur with
the synthesis of a full peptide. In a perfect scenario, the peptide and
polymer chains would be fully solvated as extended chains (Figure 57A).
However, multiple problems can occur that result in an incomplete
synthesis. Among the possibilities for bad scenarios: the peptide chains
could be intramolecularly aggregated while the polymer is solvated (Figure
57B), the peptide chains could be well solvated whilst the polymer
backbone is poorly solvated (Figure 57C), or the peptide chains could be
intermolecularly aggregated but the polymer solvated (Figure 57D). All of

these cases are less mobile and accessible than the optimal solution and so
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reduce reaction rates or lead to truncation of the peptide. The intrinsic
properties of the peptide sequence itself govern which scenario will take

place for a given “difficult peptide”.
A) )7\(& B)

") "\

Figure 57. Potential scenarios during peptide synthesis. A) The perfect
scenario, when peptide (red) and polymer (black) chains are fully
solvated. B) Peptide chains are intra-molecularly aggregated, polymer
backbone is solvated. C) Peptide chains are solvated, polmer backbone
poorly solvated. D) Peptide chains are inter-molecularly aggregated,
polymer is solvated. All scenarios except for “A” are less accessible and
mobile, resulting in lower reaction rates or incomplete synthesis.
The major contributor to aggregation of “difficult peptides” is inter-chain
backbone hydrogen bonding between growing peptide chains (Figure
57D)187. Backbone protection techniques have arisen to combat this type of
aggregation, removing potential hydrogen bonding by temporary protection
of the secondary amide bond®. The introduction of proline into
aggregating sequences has been shown to prevent inter-chain associations
by removing backbone hydrogen bonds!8°. This has led to commercially
available ‘pseudoprolines’ (Figure 58A), which allow the synthesis of
previously intractable peptides®?. These can be introduced with great
convenience as dipeptide building blocks, but are limited to positions
containing X-Ser or X-Thr!°l. Another form of backbone protection is

through addition of a Hmsb auxiliary (2-hydroxy-4-methoxy-5-
methylsulfinyl benzl, Figure 58B). This again offers temporary protection of
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the secondary amide bond to reduce association of peptides during
synthesis, but has less specific circumstances for use compared to

pseudoprolines?8é,

A) B) OH

R1 #O
)\(N NHR
FmocHN R
i H,CO

0o
07 “OH St

Figure 58. The structures of two auxiliaries used in backbone protection
methods. A) Pseudoprolines can be used in some limited circumstances. R
= H, Ser; R = CH3, Thr. B) 2-hydroxy-4-methoxy-5-methylsufinyl benzyl
(Hmsb) can be used in a wider variety of situations.

The efficiency of synthesis can be assessed by analytical reverse-phased
high-pressure liquid chromatography (RP-HPLC) on a reversed-phase
column, followed by matrix-assisted laser desorption/ionization (MALDI)

mass spectrometry (MS).

7.2.3 Peptide synthesis (automated protocol)

Standardized automated protocols were used for Fmoc/tBu peptide
synthesis18.  Peptides were prepared using HCTU/DIEA (CS Bio 336
automated synthesizer) activation for Fmoc/tBu chemistry. A Rink amide
resin was used as the solid support for the synthesis (100 mg, 72 umol).
Fmoc deprotection was performed using 20% piperidine in DMF in two
stages with an initial 3 min followed by 7 min deprotection. All coupling
reactions were performed with 10-fold excess Fmoc-Amino acid-
OH/HCTU/DIEA for 30 min. The backbone protecting group was introduced
in two steps. The salicylaldehyde dissolved in DMF (0.01 M) was added to
peptide-resin for two 30 min cycles, followed by DMF wash cycle. This gave
a strong yellow colour to the resin indicating imine formation. Reduction

with NaBHy4 dissolved in DMF (0.1 M, filtered w/ PVDF 0.2 pm) was then
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performed by two 15-min-cycles followed by thorough DMF wash. The next
amino acid following insertion of the backbone protecting group was
coupled to the alkylated amino group, as previously, and followed by a 10
min DCM wash, 1 hour shaking in DCM, 10 min DMF wash, and 30 min
shaking in DMF.

All Fmoc amino acids and pseudoprolines used in these experiments were

sourced from Merck Millipore, UK.

7.2.4 Peptide characterization (HPLC and MS)

Peptides were prepared as outlined in the previous section. After synthesis,
cleavage was performed by addition of TFA/TMSBr/EDT (10:1:0.25) for 1
hour. Following peptide cleavage, the TFA-cleavage cocktail was filtered,
filtrate sparged (nitrogen) and peptides were precipitated with Et;0 (Na-
dried, 4 °C) before being freeze-dried. Peptides were purified by semi-
preparative HPLC on a RP-C18 column (22 x 250 mm, Vydac) using linear
gradients of CH3CN in 0.1 % TFA/H20 with a flow rate of 10 mL.min1. HPLC
gradients were prepared using solvent A (0.1% TFA in H20) and solvent B
(90 % CH3CN in 0.1 % TFA). Detection was performed at 214 nm. Peptides
were characterized by MALDI-TOF MS on a BRUKER microflex (ion positive
linear and reflector mode) using CHCA matrix (10 mgmL?1 in

CH3CN/H20/TFA, 50:50:0.1).

7.2.5 Circular Dichroism (CD)

CD measurements were performed using a Jasco J-715 spectropolarimeter
fitted with a cell holder thermostatted by a PTC 348-WI Peltier unit. Far-UV
spectra were recorded at 20 °C over a range of A 195 - 235 nm, using 1 mm
fused silica cuvettes (Hellma) with peptide concentrations of 100/250/500
uM diluted in 10 mM potassium phosphate buffer. Spectra were typically
recorded with 0.2 nm resolution and baseline corrected by subtraction of
the appropriate buffer spectrum. The results were reported as mean

residue ellipticity, calculated using the Jasco Spectra Analysis Tool.
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Thermal denaturation experiments were performed at a fixed wavelength of
221 nm in a 2 mm fused silica cuvette (Hellma) with a 250 uM protein
sample, again diluted in 10 mM potassium phosphate. The temperature
ranged from 2 - 70 °C and was controlled by a Jasco PTC-348WI Peltier
system. Data were converted to mean residue ellipticity, again using Jasco

Spectral Analysis Tool.

CD specta prediction was obtained using the DichroCalc web tool, which can
give an estimate of the CD spectra expected from a given PDB file. For the

in-depth methodology, see relevant literaturel92.

7.2.6 Fragment condensation

For large peptide chains, fully protected peptide segments can be coupled
together to make a chain larger than can be produced by SPPS. This is
known as convergent solid-phase peptide synthesis (CSPPS). Firstly, the
fully protected segments are synthesized by normal SPPS. After cleavage
from the resin, the segments are kept fully protected (apart from the C-
terminal where the linker used to be) to avoid any off-target reactions in the
subsequent coupling stages193. The fully protected segments are isolated
and characterised, usually by RP-HPLC and MALDI-MS to ensure they have a
high purity for the coupling stages. Segment condensation then begins with
a single peptide chain bound to a coupling resin, to which further segments
are added using a number of amide bond forming methods!?4. Solubility of
the protected peptides plays a vital role in enabling characterisation
through RP-HPLC, along with having a major impact on how efficient the
coupling reaction will be. Diffusion of reactants into the support matrix is
essential, meaning solubility of a fragment is key but unfortunately not

consistently predictable for any designed peptide!>.

When we have produced our peptide and characterised a single repeat, it is
our intention to link these individual units together using CSPPS methods

and produce a full repeat protein.
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7.3 Results

7.3.1 LRR synthesis

To check if our design was one of these “difficult peptides”, we first
attempted to synthesise the full sequence with traditional Fmoc SPPS
methodologies and tBu protecting groups!8>. After synthesis, we cleaved the
peptide from the resin and deprotected the sidechains using TFA. We then
characterised purity by HPLC (Figure 59A) before analysing fractions with
MALDI-MS (Figures 59B, 59C).
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Figure 59. Synthesis of LRR using standard Fmoc/tBu solid phase peptide
synthesis techniques. A) Analytical HPLC traces of the crude product
indicated that there were two main species of peptide present in the
sample. Mass spectrometry of F1 (B) and F2 (C) indicated that neither
fraction contained the peptide we were attempting to make. The
calculated mass of the desired peptide was 3054.6 m/z in the protonated
form, and 3077.6 in the presence of Naz*.

4000
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Using standard SPPS techniques did not appear to be sufficient to produce
our designed LRR, with analytical HPLC and MS suggesting that incomplete
synthesis was a problem. In an attempt to combat this, we used a Hmsb
auxiliary towards the N-terminal end of the peptide (Figure 60A). The crude
product contained 4 four different species of peptide (Figure 60B).
Calculated mass of the peptide with H* is 3054.6 m/z, with Na* is 3077.6
m/z. With the backbone protection group still present, masses change to
3252.6m/z [H*] and 3274.6 m/z [Na*]. MS analysis showed that the peptide
by itself was present (Figure 60F), along with a species where the backbone
protecting group had not been cleaved off (Figure 60E). However, there
were other incomplete species present (Figure 60C + 60D) and the crude

was not very pure.
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Figure 60. Synthesis of LRR using a single Hmsb backbone protection group.
A) Insertion site for the backbone protecting group. B) Analytical HPLC of
crude product shows four species of peptide. The peptide (F) was present
in peak F1, and also with the Hmsb group still present in F2 (E). However,
the crude wasn’t pure and there were other species present in peaks F3 and
F4 (C + D). The calculated mass of the desired peptide was 3054.6 m/z [H*],
and 3077.6 m/z [Na?*]. With the backbone protection group still present,
mass was calculated at 3252.6 m/z [H*], 3274.6 m/z [Na?*]. Peptide was
cleaved from the resin with TFA/TMSBr/EDT (10:1:0.25)
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There were improvements in the synthesis when using a single Hmsb
backbone protection group, but there is still a lot of room for improvement
to increase purity. To offer further backbone protection, and hopefully a
more pure synthesis, we added two pseudoproline residues to our already
Hmsb-protected peptide (Figure 61A). By adding these pseudoprolines, we
protect a large area of the peptide from forming hydrogen bonding and
therefore synthesis is more pure. Under milder cleavage conditions, two
species are seen by HPLC (Figure 61B) and pure segment is seen under
slightly different cleavage conditions (Figure 61C). Subsequent MS of each
fraction shows that F1 contains the peptide with the Hmsb group (Figure
61D) and F2 is the peptide by itself (Figure 61E).
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Figure 61. Synthesis of LRR using pseudoprolines and Hmsb backbone
protection groups. A) Locations of backbone protection groups (red =
pseudoproline, blue = Hmsb). B) Analytical HPLC of crude product shows
two species of peptide. Peptide was cleaved with TFA/TES/H20 (10:5:0.5)
C) HPLC of cleavage under different conditions shows a pure species.
TFA/TMSBr/TA/EDT (10:1:0.5:0.25) D) F1 contains the peptide with the
Hmsb protecting group. E) F2 contains the unprotected peptide.
Calculated mass of the desired peptide was 3054.6 m/z [H*], and 3077.6
m/z [Naz*]. With the backbone protection group still present, mass was
calculated at 3252.6 m/z [H*], 3274.6 m/z [Na2*]
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7.3.2 Structural information from a single repeat

Now that we had made a pure sample of our peptide, we characterised any

potential secondary structure of the monomer by circular dichroism (CD).
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Figure 62. C(ircular dichroism analysis of single LRR repeat. A) CD spectra
obtained at various concentrations of peptide suggests that the single repeat
LRR could possess some ordered secondary structure. CD scans are the same,
independent of concentration, indicating that individual units are not
associating together. B) When compared to the predicted CD spectra of a
single unit, the signal (especially around ~222 nm) is much less prominent
than it should be for a fully folded monomer. This implies that there is less
secondary structure content than expected. C) A thermal scan of a 250 uM
solution at 221 nm did indicate that there was some secondary structure
present, which was lost upon heating.
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CD spectra obtained for the single LRR unit suggests that it does possess
some secondary structure content (Figure 62A). Signal from random coils
are seen in the 195 - 210 nm range, and the mean residue ellipticity in this
region of our spectra indicates that this type of conformation is present in
our synthesized peptide. However, there is also some signal present around
222 nm. This region is characteristic of helical content in a protein, hinting
that there could be some secondary structure formation. This is further
supported by a thermal scan of the 250 uM sample (Figure 62C). Signal at
the 221 nm wavelength is lost upon heating of the peptide, meaning that the
secondary structure content is reduced as higher temperatures are reached.
We also used DichroCalc!?? to predict the anticipated spectrum of our
peptide, based on the PDB of the designed monomer (Figure 62B). Judging
from the spectra prediction, if the monomer possessed the exact correct
structure then we would expect to see a stronger signal in the 210 - 225 nm
region. However, our design protocol aimed to produce an extended LRR
with multiple units linked together. When the single unit is in solution,
hydrophobic regions will be exposed to solvent that would otherwise be
packed into the core of the extended protein. Having exposed hydrophobes
will reduce the formation of accurate secondary and tertiary structure, but
the effect of this should be minimised when repeats are linked together and
there is a tightly packed core. That we see some helical content at ~222 nm
is therefore still encouraging and we hope that by linking more units

together, we will discover the exact desired conformation.

Another interesting feature is that the CD spectra obtained at various
concentrations are all very similar (Figure 62A). This suggests that the
spectra obtained are independent of concentration and so there is no
association of individual units. We may have hoped for some associating
behaviour that would be characteristic of self-assembling peptides, but that
does not appear to be the case and our peptide remains as a monomer even
if concentration is increased. Again, this is not completely discouraging as

we designed the individual unit to be part of a larger protein. It is our hope
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that by linking repeats together via convergent peptide synthesis, we can

still produce an extended LRR protein.

7.3.3 Producing a fully protected peptide segment

As stated previously, performing convergent solid-phase peptide synthesis
to link fragments of peptides together requires the fragments to be fully
protected and also highly soluble. We therefore attempted to construct a
segment using solid-phase synthesis and then cleave only the linker region,
leaving the sidechain and N-terminal amine protecting groups intact. Using
the same Hmsb and pseudoproline locations as in the previous experiments,
we synthesised a new batch of LRR single repeat peptide but cleaved using
only TFE/DCM (1:1). This meant that the C-terminal linker was cleaved to
release the peptide from the resin, but all other protecting groups were
maintained (Figure 63A). The fully protected peptide appeared to be highly
soluble in water, meaning it could also be characterised by RP-HPLC.
Analytical RP-HPLC traces of the crude product showed it to be quite pure
(Figure 63B), and collecting the fractions containing only our peptide
increased the purity for use in coupling experiments (Figure 63C). MS of the
pure product showed a peak at the correct mass (Figure 63D), further

confirming the purity of our peptide.
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Figure 63. Synthesis of the fully protected LRR single repeat unit. A) The fully
protected peptide was made with two pseudoprolines and one Hmsb
backbone protection groups. B) RP-HPLC of the crude product suggested a
very clean and efficient reaction. C) Collection of fractions containing our
target peptide only allowed a much purer sample to be obtained for use in
coupling. D) MS also confirmed the purity of our peptide, with a peak
observed at the correct mass. Calculated mass of fully protected peptide =
5630.9 m/z [Na?+].

Now that we have produced a fully protected single repeat unit of our LRR,
we can begin to look at ways to start coupling the segments and hopefully
produce an extended repeat protein. Currently, we are looking at which
particular methods and resins can be used for this purpose and hope to

produce and characterise a 7-mer, before extending the protein even

further.
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7.4 Discussion

LRRs are very interesting targets for protein design, as they are composed of
repeating units of relatively simple complexity. Their modularity makes
them attractive candidates for production through peptide chemistry, and
the options to add non-canonical residues or functional groups could
expand functions beyond what is currently seen in nature. We attempted to
design a single repeat LRR that could be able to be linked together to

produce the extended repeat protein.

We have found a way, using pseudoprolines and Hmsb backbone protection
groups, to produce a pure peptide with high efficiency. Early results for the
design produced by this method are encouraging, with the single repeat unit
containing some secondary structure that is lost upon a thermal scan. We
have also produced a large quantity (~1 g) of fully protected peptide that is
very soluble in water. The next stage of experimentation is to start
developing an efficient coupling setup by finding a suitable resin to use as
the solid state matrix, finding out the optimal loading ratio of initial peptide,

and defining which method of amide bond formation to use.

Very recently, while our experiments were ongoing, there were a series of
papers in quick succession that addressed the same topic as we were
investigating49.196, Starting from backbones created de novo, simultaneous
sequence design was performed on all repeats in the structures using the
Rosetta program and sequence constraints derived from multiple sequence
alignments. They produced a large number of designs for various repeat
proteins, including LRRs, which had a high success rate when tested
experimentally (80% soluble, 40% folded). Another paper also elaborated
on the control of repeat protein curvature, allowing the shape of binding
surface to be designed®’. This involved producing self-compatible building
blocks that were extended into repeats, with these linked together by
‘junction modules’ to produce a curvature with atomic level accuracy to the

design.
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The generalised protocol outlined by Baker for producing repeat protein
designs seems very similar to ours, using consensus design coupled with
Rosetta. However, they bring in full multiple sequence alignments where
we have just used consensus design for our specific protein. One potential
downfall of our protocol may be that peptide synthesis is still very time-
consuming. Although automated synthesisers have made it much less
hands-on to produce peptides, 100 mg of a single segment for us takes about
a week. Baker et al used more traditional methods of recombinant protein
expression of synthetic genes and may have been able to screen much more
designs in the same amount of time by doing this. However, as mentioned
before, chemical synthesis does allow much greater control over the protein
produced (with regards to ease of difficult functional groups being added)

and this could be an advantage for us by using this method in the future.
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8. Conclusions
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The field of protein design is one with huge potential for a variety of
different areas. There have been many recent advances that have started
pushing design to the forefront of modern technology, with other groups

reporting success with published methods.

In total, we have made ~500 novel protein sequences using methods based
on protocols that have been successful for other people and yet we have met
with very limited success. Only a handful of our proteins throughout this
thesis appeared to be soluble, and we have been unable to produce any fully
folded structures. The NMR experiments in Chapter 3 could warrant further
investigation, as it is possible that these proteins may exist as molten
globules. If we perform some further experiments (such as ANS binding or
CD spectrometry) and determine if this is the case, we could potentially
modify some of these sequences to try and find a completely folded

structure.

More molecular dynamics (MD) experiments could also be useful for future
design experiments. By all other computational measures, including tertiary
structure prediction, the designs we produced looked very similar to native
proteins. The MD experiments in Chapter 6 contradicted all of the other
computational measures within that chapter, and seemed to be the only
correct indicator of the actual outcome. MD simulations have a much more
complex energy function than structure prediction, but this comes at the
cost of hugely increased computational time. However, since structure
prediction techniques do not appear to offer a useful indicator of success
and MD simulations do, it might be worth investing that extra time in the
hope of creating better designs. Because we were so focused on creating
fully folded proteins, we have not attempted to glean as much information
as we potentially could have. CD spectra for unfolded designs could still
offer some information about how close we are to making better protein
sequences. If more secondary structure content is present in some designs
than others, then these designs can be seen to be heading in the right

direction and so we could try to optimize towards this. We may be able to

170



do this in an incremental fashion, improving structural content with each

design round, rather than going straight for completely folded designs.

We can also speculate on some broad conclusions about the experiments we
have performed. Although the targets we have tried to design sequences for
may appear simplistic and rather small, they are still more complex than
some of the previous successes in protein design so far. As outlined at the
start of this thesis, large success has been had designing de novo proteins
that have a high degree of symmetry or easily definable parameters (e.g.
helical bundles)?376. Perhaps the backbones that we have been trying to
design sequences for are more difficult than we would have anticipated. We
chose the ferrodoxin and Rossman folds as the basis for most of our design
studies because the sequence space around these are highly populated in
nature, leading us to assume that the structure itself is quite robust.
However, finding a de novo sequence to fold into the correct backbone has
proven immensely challenging. In future studies, it may be worthwhile
attempting to concentrate on finding a defined protocol for more simplistic

folds and expanding on any potential success we may have.

We have predominately used the Rosetta program for our designs, and this
was because of the apparent success of other groups using simple protocols
to produce very good results. In our hands, this has not been the case and
perhaps it would be prudent to start investigating other design
methodologies. Numerous different attempts have been made at creating
design protocols81198-202 and concentrating on the just one may have
restricted our efforts. From our experiments, it is looking more and more
likely that Rosetta is not ready to be used for generalised design problems
and instead should be treated as a program that may have some success in
bespoke instances, with a lot of optimisation needed to make it work for a
particular problem. We have applied the standard Rosetta protocols,
outlined by the developers of the program, and have had no success with
tackling our design problems. Perhaps with more focus on an individual

protein using targeted mutations and the manual curation of designs, we
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could have produced a fully folded protein. We could also make some
changes to the weighting functions of the Rosetta program itself, and see if
that could make any different to the success of our experiments. There is a
large Rosetta community online (called Rosetta Commons293) aimed at
allowing people to discuss the methods that they have implemented and the
outcomes of those experiments. There is a wealth of information contained
on the forum, but each instance appears to use slightly different weighting
parameters or methodologies for each instance. Again, this is indicative of
Rosetta not being a generalised method but more of a tool that needs a lot of
optimization to work for a particular problem. Rather than following the
guidelines outlined by the developers of the program, perhaps we could
have more success by attempting to modify Rosetta in some way. This could

be one of the directions the lab could take in the future.

Rosetta is one of the foremost design programs available today, yet it is still
very difficult to use successfully and appears not to be applicable to general
design problems. This is disappointing, but past successes should still be
taken into account. There have been successful designs by members of
other groups in the field but, if anything, our research highlights just how far
the technology needs to progress before we can get consistent results from
using this specific program. Perhaps our ambitions were too high, aiming
for a broad design protocol and uncovering some rules for successful design,
but the information we produced is still valuable. Despite encouraging
computational results throughout our studies, experimental success was
sparse, at best, and the gap between in silico and in vitro understanding is

still some way from being bridged.

At the end of the thesis, we investigated the potential role peptide synthesis
has in the synthetic biology field by producing a single-repeat LRR that can
be linked together to form an extended protein. An individual unit was
chemically synthesised and showed potentially encouraging results from CD
analysis, suggesting that there may be some secondary structure forming

already. Experiments are still on-going to define which coupling conditions
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will be best for creating an extended repeat protein and we are hopeful of
making an extended LRR. Although peptide synthesis does appear to offer
more control over a given protein, we were “beaten” to the LRR re-design
aspect of the project by groups that had used a more traditional in vitro
expression approach. Traditional biological methods are still much higher
throughput than peptide synthesis methods, and it may have been useful to

stick to these when testing our LRR experimentally.
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