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Alongshore variations in coastline curvature or offshore depth profile can create localised
regions of shelf wave propagation with modes decaying outside these regions. These
modes, termed localised continental shelf waves (`CTWs) here, exist only at certain
discrete frequencies lying below the maximum frequency for propagating shelf waves.
The purpose of this paper is to obtain these frequencies and construct, both analytically
and numerically, and discuss `CTWs for shelves with arbitrary alongshore variations
in offshore depth profile and coastline curvature. If the shelf curvature changes by a
small fraction of its value over the shelf section of interest or a alongshore perturbation
in offshore depth profile varies slowly over the same length scale then `CTWs can be
constructed using WKBJ theory. Two subcases are described: (i) if the propagating
region is sufficiently long that the offshore structure of the `CTW varies appreciably
alongshore then the frequency and alongshore structure are found from a sequence of local
problems; (ii) if the propagating region is sufficiently short that the alongshore change in
offshore structure of the `CTW is small then the alongshore modal structure is given in
an explicit uniformly valid form. A separate asymptotic theory is required for curvature
perturbations to shelves that are otherwise straight rather than curved. Comparison with
highly accurately numerically determined `CTWs shows that both theories are extremely
accurate with the WKBJ theory having a significantly wider range of applicability and
remaining accurate even when the underlying shelf curvature is small. An idealised model
for the generation of `CTWs is also suggested. A localised time-periodic wind stress
generates an evanescent continental shelf wave in the far-field of a localised mode where
the coast is almost straight and the response on the shelf is obtained numerically. If
the forcing frequency is close to that of an `CTW then the wind stress excites energetic
motions in the region of maximum curvature, creating a significant localised response far
from the forcing region.

1. Introduction

Most theories of continental shelf waves (CSWs) are based on the assumption that the
coast is straight and the offshore depth profile is uniform in the alongshore direction al-
though in practice there may be significant alongshore variations in offshore depth profile
and coastline curvature. The local behaviour of a CSW of fixed frequency is determined
to leading order (in the slowness of alongshore variations) by the local shelf geometry
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and Grimshaw (1977) and Huthnance (1987) discuss the slow changes in offshore pro-
file and speed of propagating modes as a shelf varies slowly alongshore (the adiabatic
transmission case of Rodney & Johnson (2014)). Sufficiently large variations in off-shore
depth profile or coastline curvature can however change any mode from propagating to
evanescent (and even small geometry changes can do so for waves with frequencies just
below “cut-off”, as noted below). Changes in shelf geometry can thus create localised
regions of shelf wave propagation with modes decaying outside these regions. Shelf wave
disturbances trapped in such regions will be described here as localised continental shelf
waves (`CSWs). Importantly, `CTWs occur only at certain discrete frequencies, lying
below the maximum frequency for waves propagating on the shelf and determined, in
barotropic flow, solely by the geometry of the shelf in the region of support of the `CTW.
The localisation of the modes is closely related to the behaviour of the group velocity
and relies on bi-directional energy propagation in the localisation region. For barotropic
flows on straight coasts with offshore depth profile H(y), Huthnance (1975) shows that
provided (1/H)dH/dy is bounded for all y then the group velocity cg → c = ω/k as
k → 0, where ω and k are the nondimensional frequency and wavenumber respectively,
and cg < 0 for some range of k > 0 (as in Figure 2). In general, the dispersion curves
have a local maximum “cut-off” frequency, corresponding to the maximum frequency of
propagation along the shelf. At frequencies below cut-off, modes carry energy in both
directions whereas at frequencies above cut-off, modes are evanescent. Sufficiently strong
variations in off-shore depth profile or coastline geometry can locally increase the local
cut-off frequency, thereby creating a region where a mode propagates energy in both
directions but is cut-off in the far-field. The size of the propagating region imposes a
constraint on the wavenumbers of the propagating waves and through the dispersion
relation thus constrains the frequencies of these `CTWs to certain discrete values below
cut-off.

It seems highly likely that `CTWs have already been observed and described. Gordon
& Huthnance (1987) report observations over a 3-year period of currents and winds
at two stations on the Scottish continental shelf near the shelf break east and west of
the Shetland Islands. They observed two types of response to severe winter storms: a
“quasi-steady response” of an along-isobath current that flowed so long as the wind
blew and a sub-inertial “oscillatory response” at the “resonant” frequency (or local cut-
off frequency here). Both responses were barotropic. They note that both responses
seemed to be lowest-mode CSWs but from different places on the dispersion curve. They
identified the quasi-steady response as a low-frequency, low-wavenumber CSW and the
oscillatory response as a zero-group-velocity (i.e. maximum frequency) CSW. Gordon
& Huthnance (1987) note that the oscillatory response is in fact at a slightly lower-
than-resonant frequency and comment that this may be due to variable topography and
friction. They further observe that the Wyville-Thomson Ridge and Norwegian Trench
provide barriers to the propagation of CSWs at each end of the observation region and
so would increase responsiveness to local forcing. This lower-than-resonant frequency
mode has precisely the form of the `CSWs described here, having a frequency lying
just below the local cut-off frequency but above the cut-off frequency in the far-field.
The suggestion here is that Gordon & Huthnance (1987) have correctly described the
essential dynamics of their remarkable observations but that the resonance they observe
is not exactly with the mode drawn from the continuous spectrum whose group velocity
vanishes at the observation point (and so would be different at each observation point
due to the varying geometry) but rather with the discrete frequency of a fundamental
mode `CSW whose propagating section contains the observation point. The response
of a resonantly forced `CSW has the same frequency at each point within its region
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of support and so spectra at different stations within the region of support would be
expected to show peaks at the same frequency. This appears consistent with the data for
oscillation period in figure 6 of Gordon & Huthnance (1987) where all currents meters
at all depths for both stations are combined. Subsequent numerical modelling (Heaps
et al. 1988) reinforced the interpretation of the observations as wind-forced CSWs but,
by taking a shelf profile that did not vary alongshore, precluded the possibility of `CSWs.

A slightly less clear-cut example may be given by the numerical study of Neetu et al.
(2011) who consider the response of the coastal region off the Makran coast of Pakistan
to an offshore earthquake on the continental shelf. The instantaneous shift in bottom
topography, near a narrow shelf region, forces a localised disturbance, with maximum
amplitude near the region of maximum shelf slope gradient, which persists for the du-
ration of their numerical simulations (10hrs) with at least 25% of the total energy in
the computational domain concentrated in the localised disturbance, suggesting that the
instantaneous shift in bottom topography transfers energy into a lowest mode `CSW.

Existence proofs, asymptotic expansions and numerical computations for `CSWs are
given in Johnson et al. (2006), Postnova & Craster (2008), Kaoullas & Johnson (2010)
and Johnson et al. (2012). All these studies use an approximate Neumann boundary con-
dition at the shelf-ocean boundary. The purpose of this paper is to introduce a different
asymptotic expansion where the small parameter is the fractional change in curvature
of the coastal boundary over the section of interest. The offshore profile is also allowed
to vary over the same scale and the shelf-ocean boundary condition is taken to be ei-
ther of the standard approximate Dirichlet or Neumann conditions, an accurate mixed
condition or the full open ocean condition. Accurate explicit `CSWs solutions are found
for relatively short along-shore variations. The asymptotic results of Postnova & Craster
(2008) and Johnson et al. (2012) are generalised to arbitrary offshore depth profiles with
alongshore variations in coastline curvature as well as incorporating the full open-ocean
boundary condition. Accurate numerical solutions demonstrate that the expansion based
on fractional curvature change is more accurate in a number of cases than the expansion
about straight coasts, even when the curvature is small. A numerical example of a re-
motely wind-forced `CSW is given as a model for the dynamics observed by Gordon &
Huthnance (1987). For simplicity the flow here are taken to be barotropic, in accord with
the observations of Gordon & Huthnance (1987). Rodney & Johnson (2012) show both
analytically using WKBJ theory and numerically using a full three-dimensional spectral
method that localised coastal trapped waves can be found over weakly and moderately
stratified shelves with arbitrary vertical density profiles and alongshore variations in shelf
width or shelf-slope gradient. For sufficiently strong stratification all coastal trapped
waves propagate in the same direction (Huthnance 1978) and so no localised modes ex-
ist. In this regime propagating coastal trapped waves incident on a region where waves
of their frequency are evanescent cannot be reflected and instead transform into coherent
vortices (Rodney & Johnson 2014).

The problem is formulated in §2 with the two asymptotic techniques for calculating
the frequencies of `CSWs presented in §3. Modes are described in §3.1 for slow changes
in shelf geometry of a shelf whose underlying curvature is nonzero using classical WKBJ
theory. The discussion is subdivided into two separate parameter regimes: if the propa-
gating region is long (§3.1.1) modes are constructed using traditional WKBJ connection
formulae but if the propagating region is sufficiently short (§3.1.2) then modes are ob-
tained explicitly. The two subcases are subsequently distinguished as the long WKBJ
(`WKBJ) and short WKBJ (sWKBJ) approximations. Section 3.2 analyses the case of
slow changes in curvature when the underlying shelf is straight and of fixed arbitrary
offshore profile. In §3 the offshore modal structure is of horizontal scale commensurate



4 J. T. Rodney and E. R. Johnson

with the scale of offshore depth variation and the slow variation in the WKBJ analysis
is alongshore. This differs from the WKBJ analysis in Shen et al. (1968) for non-rotating
free-surface waves and for rotating, stratified edge waves in Zhevandrov (1991), Smith
(2004) and Adamou et al. (2007) where the alongshore profile is fixed and the waves are
short compared to the scale of offshore variations. Topography varying slowly in both
horizontal directions is considered for non-rotating free-surface waves by Keller (1958),
short topographic Rossby waves in Smith (1970), trapped modes in quantum rings by
Gridin et al. (2004) and Bruno-Alfonso & Latgé (2008), trapped modes in elastic plates
by Gridin et al. (2005) and trapped modes in slowly-varying acoustic waveguides by
Biggs (2012). The quantum, elastic plate and acoustic problems are more straightfor-
ward than the shelf-wave problem in that the modal structure across the waveguide for
corresponding forward- and backward-propagating modes is the same whereas in general
the long forward-propagating shelf wave mode has cross-shelf structure different from
the backward-propagating short shelf wave. Importantly, at the critical station where
the group velocity vanishes, the cross-shelf structures of the forward and backward shelf
modes coincide. As verification for the asymptotic schemes modes are calculated numer-
ically in §4 using highly efficient spectral approximations. The numerical methods allow
for arbitrary offshore depth boundary conditions and depth profiles, including profiles
that are discontinuous at the shelf ocean boundary, such as the classical exponential
depth profile of Buchwald & Adams (1968), and offer an extension to the numerical
methods presented in Postnova & Craster (2008) and Johnson et al. (2012). The numer-
ical and asymptotic solutions are then used to discuss the effects of coastline curvature
and alongshore variations in offshore depth profile on `CSWs in §5. Section 6 considers
generation of shelf waves by wind forcing and shows that a significant response can occur
far from the forcing region when trapped modes are excited. The results are discussed
briefly in §7.

2. Formulation

Barotropic CSWs are governed by the topographic Rossby wave equation (Rhines
1969a)

∇ · (H−1∇Ψt) + f ẑ · ∇Ψ×∇H−1 = 0. (2.1)

The boundary condition at the impermeable coast is

Ψ = 0, y = 0. (2.2)

Let ∂D denote the shelf-ocean boundary. Various approaches have been used to reduce
the problem to consideration of the shelf alone by applying an approximate boundary
condition on ∂D. Requiring the normal component of velocity to vanish, accurate in the
short wave limit, gives the Dirichlet boundary condition

Ψ = 0, on ∂D, (case I). (2.3)

Requiring the tangential component of velocity to vanish, accurate in the long wave limit,
gives the Neumann boundary condition, the vanishing of the normal derivative,

Ψn = 0, on ∂D, (case II). (2.4)

Boundary conditions (2.3) and (2.4) give lower and upper bounds, respectively, for the
frequencies of trapped oscillations in open domains (Johnson 1989) and have the advan-
tage that the corresponding frequencies often be obtained as explicit formulae for simple
topography. They are extensively used in numerical computations as they are straightfor-
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Figure 1. The curvilinear coordinate system (σ, η). The solid line denotes the coast (Dirichlet
boundary condition) and the dashed line represents the shelf-ocean boundary.

ward to implement with Heaps et al. (1988) using (2.3). Since `CTWs have frequencies
near cutoff an accurate (as shown in §5.1) approximate boundary condition is the mixed
boundary condition

Ψn + kcΨ = 0, on ∂D, (case III) (2.5)

where kc, the wavenumber at cutoff for an approximating straight coast, determines the
offshore decay scale. The unapproximated open ocean boundary condition is simply that
disturbances vanish at large offshore distances, i.e.

Ψ→ 0, y →∞, (case IV). (2.6)

The analysis below applies for all boundary conditions (2.2)–(2.6), combined as

Ψ = 0 on y = 0, BΨ = 0 on ∂D, (2.7)

with ∂D referring to the coastal waveguide, for boundary conditions (2.3)–(2.5), or the
semi infinite ocean, for (2.6), where it is understood that all calculations are performed on
the interval y ∈ [0,∞) with disturbances vanishing exponentially at infinity. All solutions
below, at all orders in the expansion parameters, satisfy the homogeneous boundary
conditions (2.7) and so for brevity these are not repeated, with the understanding that
Ψ in (2.7) is replaced by the function under discussion.

Consider temporally periodic solutions of the form

Ψ(x, y, t) = Re{Φ(x, y)exp(−iωft)}, (2.8)

where ω is the non-dimensional frequency. Substituting (2.8) into (2.1) then gives

ω∇ · (H−1∇Φ) + i ẑ · ∇Φ×∇(H−1) = 0, (2.9)

subject to (2.7).

3. Slowly varying shelf geometry and coastline curvature

3.1. An underlying curved coast

Consider a smoothly curving shelf and follow Johnson et al. (2006) by introducing curvi-
linear coordinates (σ, η), as in Figure 1, with σ arc length along the coast, η the coordinate
offshore, and γ(σ) the signed curvature of the coast. Let L be a typical length scale asso-
ciated with each position σ = constant along the coast. Let `∗ be the alongshore length
scale over which these parameters vary. The small parameter in the expansion below is
then taken to be

ε =
`∗

γ

∂γ

∂σ
. (3.1)

This does not require the shelf to be narrow compared to `∗: small ε means that the
curvature changes by only a small fraction of its value along the section of shelf sup-
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porting the `CTW. In the limit ε→ 0 the geometry reduces to an island of fixed radius,
1/γ. In this limit, provided the shelf profile does not vary too strongly, modes propagate
freely around the entire island (Rhines 1969b). Trapped modes in the asymptotic limit
0 < ε� 1 require a section of increased curvature (or increased slope or coast-shelf-break
displacement, Johnson & Kaoullas 2011) where the local frequency ω is only of order ε
above the cutoff frequency ω0. Then at some distance of order `∗ from the propagating
region the wave becomes cutoff and evanescent permitting a trapped `CTW. The geom-
etry outside the region of support of the `CTW is immaterial to the trapping (except for
the possibility of tunnelling, Stocker & Johnson 1991, discussed below): once the wave
becomes evanescent at cut-off its energy flux falls to zero and energy is reflected giving
a trapped mode. There are two distinct cases. Firstly, ε could fall to zero outside the
trapping region. The two arms of the shelf outside the trapping region would then rejoin
giving an `CTW trapped on a section of the coast of an island. Alternatively, the shelf
arms could straighten, corresponding to γ → 0 and ε → ∞. Since the `CTW is already
evanescent, with zero energy flux, in this region the effect on the trapped mode is negligi-
ble. Other variations in shelf geometry lie between these two and thus give trapping with
significant tunnelling only in the unlikely possibility that the shelf after cut-off rapidly
returns to a geometry that allows propagating waves at the `CTW frequency.

Introduce ξ = εσ and let ξ′ = ξ/L and η′ = η/L, where L is the shelf width, then,
allowing also for depth profiles varying alongshelf over the length scale of ε−1, the non-
dimensional governing equations (dropping the primes) are,

ω[ε2κ2Φξξ + Φηη − ε2(κ3ηγξ + κ2βξ)Φξ − (βη − κγ)Φη] + iεκ(βξΦη − βηΦξ) = 0, (3.2)

subject to (2.7). Here β(ξ, η) = lnH(ξ, η), and κ = (1 + ηγ)−1.

3.1.1. The long WKBJ approximation

For typical rectilinear depth profiles on a straight coast, such as the exponential profile
of Buchwald & Adams (1968), there is a maximum frequency of propagation ωmax so
that for ω < ωmax there are two roots for the wavenumber corresponding to two waves
with unidirectional phase propagation and bi-directional energy propagation. The energy
propagation associated with the long waves propagates with the phase whereas the energy
associated with the short waves propagates in the opposite direction. Once the frequency
exceeds ωmax the two solutions for the wavenumber form a complex conjugate pair and
the modes are evanescent. Alongshore variations in shelf geometry or coastline curvature
mean that a CSW mode can propagate, as a superposition of two waves carrying energy
in opposite directions, within some finite region of the coast but be evanescent outside
this region. This prompts the ansatz

Φ(ξ, η) = φ+(ξ, η)exp
[
iS+(ξ)/ε

]
+ φ−(ξ, η)exp

[
iS−(ξ)/ε

]
, (3.3)

where each term in (3.3) is an independent solution of (3.2). Expanding the amplitudes
in powers of ε, i.e.

φ± =

j=∞∑
j=0

εjφj
±(ξ, η), (3.4)

and substituting (3.3) and (3.4) into (3.2) leads to a hierarchy of equations. The leading
order, of order ε0, gives

ω[φ±0ηη − (βη − κγ)φ±0η] + [βηκS
±
ξ − ωS

±
ξ

2
κ2]φ±0 = 0, (3.5)
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and the next order, of order ε, gives

ω[φ±1ηη − (βη − κγ)φ±1η] + [βηκS
±
ξ − ωS

±
ξ

2
κ2]φ±1 = −ωi2κ2S±ξ φ

±
0ξ − iωκ2S±ξξφ

±
0 +

iωκ3ηγξφ
±
0 + iωκ2βξS

±
ξ φ
±
0 + iκβηφ

±
0ξ − iκβξφ

±
0η. (3.6)

System (3.5), (2.7) is precisely the system that determines the local dispersion relation
at each station γ = constant along the coast.

Let ψ(ξ, η)± be the two local eigenmodes, with corresponding eigenvalues k± (k+ >
k−), of the problem in the cross section D(ξ) = {(ξ, η) : 0 6 η 6 ∂D} of the waveguide:-

ω[ψ±ηη − (βη − κγ)ψ±η ] + [βηκk
± − ωk±2

κ2]ψ± = 0, (3.7)

subject to (2.7), where the ψ± are normalised so that∫ ∂D

0

H−1κψ±
2
dη = 1. (3.8)

Then φ±0 can be expressed as an undetermined multiple of the local eigenmodes ψ± i.e.

φ±0 (ξ, η) = f±0 (ξ)ψ±(ξ, η), (3.9)

with the functions S±ξ given by the two roots k±(ξ) for the wavenumber. It is convenient
to introduce P (ξ), Q(ξ) defined as

P (ξ) = 1
2 [S+(ξ) + S−(ξ)] = 1

2

∫ ξ

[k+(τ) + k−(τ)] dτ, (3.10)

Q(ξ, ξ0) = 1
2 [S+(ξ)− S−(ξ)] = 1

2

∫ ξ

ξ0

[k+(τ)− k−(τ)] dτ. (3.11)

Then P gives the uni-directional (fast) phase and Q is proportional to the (slow) group
velocity (which vanishes at the turning points defined by k+ = k−). The lower limit of
integration in (3.11), the phase reference level (Heading 1962; Berry & Mount 1972), is
determined by the location of the transition points where the group velocity cg = 0. Since
the phase P is uni-directional and continuous over the whole domain the matching of P
across the singular regions requires only multiplication by an arbitrary complex constant
of modulus one. Therefore the lower limit of integration has been omitted from (3.10) and
the localised CSW can be regarded as a mode with a uni-directional phase propagating
through a slowly varying envelope defined by the direction of energy propagation. An
expression for the group velocities c±g of the propagating waves follows from multiplying
(3.7) by (κH)−1ψ± and integrating over the region 0 6 η 6 ∂D, to give

A± − 2ωk± = c±g I
±, (3.12)

where

A± =

∫ ∂D

0

βηH
−1ψ±

2
dη, I± = k±

2
+

∫ ∂D

0

(κH)−1(ψ±η )2 dη. (3.13)

The inhomogeneous eigenvalue problem (3.6), (2.7) is solvable if the RHS of (3.6)
is orthogonal to the eigenfunctions of the corresponding homogeneous adjoint operator
(Nayfeh 1993). Instead of constructing the adjoint problem, the operator on the LHS can
be transformed into self-adjoint form by multiplying by (κH)−1. The eigenfunctions of
the transformed self adjoint operator are then ψ±. Multiplying (3.6) by (κH)−1ψ± and
integrating across the shelf gives the solvability condition

2(A± − 2ωS±ξ )f0ξ + (A± − 2ωS±ξ )ξf0 = 0, (3.14)
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which for the propagating modes gives the conservation of the alongshore kinetic energy
flux,

2c±g I
±f0ξ + (c±g I

±)ξf0 = 0, (3.15)

with solution, to within an arbitrary multiplicative constant,

f±0 = |c±g I±|−1/2. (3.16)

For the evanescent modes f0 is given by

f±0 = [A± − 2ωS±ξ ]−1/2, (3.17)

so that f0 remains on the same branch of its complex square root (since A and S are
complex in the evanescent regions).

Equation (3.15) shows that the WKBJ solutions break down in the neighbourhood of
the transition points c±g = 0, denoted here by ±ξc. Therefore in the interval (−ξc, ξc),
excluding the width of order ε2/3 near the endpoints (Bender & Orszag 1978), the first
order WKBJ solution is a superposition of the forward and propagating waves given by

Φ(ξ, η) =
{
α1f

−
0 ψ
−(ξ, η)exp

[
− i

ε
Q(ξ,−ξc)

]
+ α2f

+
0 ψ

+(ξ, η)exp
[ i

ε
Q(ξ,−ξc)

]}
exp
[ i

ε
P (ξ)

]
, (3.18)

where P and Q are given by (3.10) and (3.11) respectively. The solution decaying in
ξ < −ξc is

Φ(ξ, η) = C1f
−
0 ψ
−(ξ, η)exp

[ i

ε
P (ξ)− 1

ε
|Q(−ξc, ξ)|

]
. (3.19)

For ξ > −ξc, the WKBJ connection formula† (e.g (3.24) Berry & Mount (1972)) gives

Φ(ξ, η) = 2C1f
−
0 ψ
−(ξ, η)exp

[ i

ε
P (ξ)

]
cos
[1

ε
Q(ξ,−ξc)−

π

4

]
. (3.20)

Note that (3.20) is not of the form (3.18) for the entire interval (−ξc, ξc). To satisfy
both the connection formula and governing equations consider the overlap region defined
by −ξc + ε2/3 < ξ < −ξc + εδ where δ < 2/3. In this region |ξ − (−ξc)| is small so
[k+(ξ)− k−(ξ)]2 ∼ a(ξ − (−ξc)). Therefore S±ξ ∼ k(ξc)± a1/2(ξ − (−ξc))1/2, and

c±g I
± ∼ ∓ωa1/2(ξ − (−ξc))1/2. (3.21)

Thus

f±0 ∼ |ωa1/2(ξ − (−ξc))1/2|−1/2. (3.22)

Then matching (3.18) and (3.20) in the overlap region determines the constants α1 and
α2 as (Rodney & Johnson 2012),

α1 = C1exp(iπ/4), α2 = C1exp(−iπ/4). (3.23)

The solution decaying in ξ > ξc is given by

Φ(ξ, η) = C2f
+
0 ψ

+
0 (ξ, η)exp

[ i

ε
P (ξ)− 1

ε
|Q(ξ, ξc)|

]
. (3.24)

† The matching occurs where ε2/3 � |ξ − (−ξc)| � 1 so that [k+ − k−]2 ∼ a(ξ − (−ξc)),
where a > 0, and f−

0 ∼ |a(ξ − (−ξc))|−1/4 exp(iπ/4). The solution then takes the usual WKBJ
form and the standard propagating-to-evanescent connection formula applies.
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For ξ < ξc, the WKBJ connection formula gives

Φ(ξ, η) = 2C2f
+
0 ψ

+
0 (ξ, η)exp

[ i

ε
P (ξ)

]
cos
[1

ε
Q(ξc, ξ)−

π

4

]
. (3.25)

Matching (3.18) and (3.25) in the overlap region ξc−εδ < ξ < ξc−ε2/3 gives the constraint

1

ε
Q(ξc,−ξc) ∼ (n+ 1

2 )π +O(ε), n = 0, 1, 2, · · · , (3.26)

and C2 = (−1)nC1, for n from (3.26). Since Q and ξc depend on the frequency ω, equation
(3.26) determines the frequency of the localised continental shelf wave of alongshore mode
number n, as required. The integral in (3.26) increases as ξc →∞, giving an upper bound
on the total number of trapped modes

n 6
1

πε
lim
|ξc|→∞

Q(ξc,−ξc)− 1
2 . (3.27)

3.1.2. The short WKBJ approximation

Within regions of thickness ε2/3 about ξ = ±ξc the evanescent waves (3.19), (3.24) are
matched to the propagating modes (3.18) smoothly by Airy functions (Bender & Orszag
1978; Rodney & Johnson 2012) giving solutions with enhanced amplitudes near ξ = ±ξc
(as in Fig. 5b below). If the along-shore region where modes propagate is sufficiently
short (of order ε1/2, still long compared to the shelf width of order ε) then both turning
points lie within the matching region and waves propagate only within this region. For
smoothly varying shelves with propagating modes only near ξ = 0, the integrand in (3.11)
takes its maximum value at the origin. Thus define

∆ = 1
2 [k+(0)− k−(0)], (3.28)

so 2∆ gives the maximum difference between the left and right propagating waves (and
is of order ε1/2). Since the integrand vanishes at ξ = ±ξc,

Q(ξc,−ξc) =

∫ −ξc
ξc

∆[1− (ξ/ξc)
2]1/2 dξ = ∆ξcπ/2ε, (3.29)

and so the eigenrelation (3.26) for the nth alongshore mode becomes, to leading order,

∆ξc = (2n+ 1)ε, (3.30)

determining the frequencies of the trapped modes as both ξc and ∆ are functions of ω.
For this parameter regime the leading order trapped wave has the explicit expression

Φ(ξ, η) = C3ψ
±(0, η) exp

[
− i

ε
P (ξ)

]
X(ξ), (3.31)

where the envelope X(ξ) satisfies

ε2Xξξ + ∆2[1− (ξ/ξc)
2]X = 0, (3.32)

with solutions bounded as ξ →∞ only for frequencies satisfying (3.30) and given explic-
itly by the parabolic cylinder functions

X(ξ) = Hn[(2n+ 1)1/2(ξ/ξc)] exp[−(n+ 1
2 )(ξ/ξc)

2], (3.33)

where the Hn are the Hermite polynomials of order n.

3.2. An underlying straight shelf



10 J. T. Rodney and E. R. Johnson

The analysis in §3.1 applies to small variations in the curvature of a coast whose under-
lying local curvature is non-zero. If the underlying shelf is straight then γ = 0 in (3.1)
and so local curvature changes are no longer small compared to the underlying curvature.
Trapped modes may still be obtained by expanding about the structure and frequency of
the maximum frequency propagating mode on the shelf but the analysis differs. The small
parameter ε, which for the underlying curved shelf gives the non-dimensional alongshelf
length scale ε−1 for both the curvature changes and the cross-shelf profile changes, must
be taken to determine only the magnitude of the alongshore variations in bend angle,
with ε = 0 giving a straight coast. Follow Postnova & Craster (2008) and Johnson et al.
(2012) by initially taking the scale for γ to be ε and introducing the expansions

Φ(ξ, η) ∼ exp
{

iξµ/2ωε
}(
f0(ξ)ψc(η) + εψ1(ξ, η) + ε2ψ2(ξ, η) + · · ·

)
, (3.34)

ω−2 = ω−2c + ελ1 + ε2λ2 + · · · , (3.35)

where

µ =

∫ ∂D

0

βηH
−1ψc2 dη = 2ωckc, (3.36)

and ψc is the cut-off streamfunction, satisfying

ψcηη − βηψcη + (βηkc/ωc − kc2)ψc = 0, (3.37)

the boundary conditions (2.7), and normalised so∫ ∂D

0

H−1ψc2 dη = 1, (3.38)

with ωc and kc the straight coast cut-off frequency and cut-off wavenumber. Substituting
(3.34) and (3.35) into (3.2) leads to a hierarchy of equations. The leading order system
is satisfied automatically. The next order, of order ε, gives

ψ1ηη − βηψ1η + (βηkc/ωc − kc2)ψ1 = −γψcη − βηλ1ψc/2 + iFf0ξψc, (3.39)

subject to (2.7), with F(η) = ω−1c (βη − µ).
Multiplying (3.39) by H−1ψc and integrating over the domain 0 6 η 6 ∂D gives the

solvability condition

2γ

∫ ∂D

0

H−1ψcψcη dη + λ1µ = 0. (3.40)

Since the integrand in (3.40) is non-zero and γ varies with ξ, no choice of the number λ1
can satisfy (3.40) for all ξ and the curvature must be weakened by introducing γ = εγ̂.
This determines the alongshelf length scale for changes in the curvature as one order
higher in ε when the underlying shelf is straight compared with the curvature when the
underlying shelf is curved. The leading order equation is unchanged. However, equating
terms of order ε now gives

ψ1ηη − βηψ1η + (βηkc/ωc − kc2)ψ1 = −βηλ1ψc/2 + iFf0ξψc, (3.41)

and the equivalent solvability condition to (3.40) gives to λ1 = 0 with the first order
system becoming

ψ1ηη − βηψ1η + (βηkc/ωc − kc2)ψ1 = iFf0ξ, (3.42)

subject to (2.7). This system can be solved using variation of parameters by introducing
a solution ψ̃0 of (3.37) independent of ψc so that

ψcηψ̃0 − ψ̃0ηψ
c = H. (3.43)
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The solution to (3.42) is then

ψ1 = f1(ξ)ψc + if0ξψ
c

∫ η

0

H−1Fψcψ̃0 dη − if0ξψ̃0

∫ η

0

H−1Fψc2 dη, (3.44)

where f1 gives an O(ε) correction to the leading order solution. The ray paths of low-
frequency topographic Rossby waves are determined by the geostrophic vector G =
h∇(f/h) (Smith 1970). Thus for depth profiles satisfying F ≡ 0 ray paths are parallel to
the coast and the imaginary terms in (3.44) vanish. For non-zero F the imaginary terms
on the right hand side of (3.44) can be regarded as an O(ε) phase shift to the wave (since
the ray paths are no longer parallel to the coast). The next order, of order ε2, gives

ψ2ηη − βηψ2η + (βηkc/ωc − kc2)ψ2 = −ψcf0ξξ − γ̂ψcηf0 − βηλ2ψcf0/2 + iFψ1ξ. (3.45)

In deriving (3.45), f1 in (3.44) has been absorbed into f0 with the extra terms on the right
side of (3.45) generated by this modification appearing only at higher order. Multiplying
(3.45) by H−1ψc and integrating over the domain 0 6 η 6 ∂D gives

(1 + I1)f0ξξ + (γ̂I2 + µλ2/2)f0 = 0, (3.46)

where

I1 =

∫ ∂D

0

H−1Fψcψ̃0

(∫ η

0

H−1Fψc2 dη
)
dη −

∫ ∂D

0

H−1Fψc2
(∫ η

0

H−1Fψcψ̃0 dη
)
dη.

(3.47)
and

I2 =

∫ ∂D

0

H−1ψcηψ
c dη. (3.48)

Solutions of (3.46) decaying exponentially at infinity determine the leading order wave
envelope f0(ξ) and eigenvalue correction λ2.

3.2.1. An explicit example

For the exponential topography

H(η) =

{
e2b(η−1) 0 6 η 6 1,

1 η > 1,
(3.49)

the function F ≡ 0 and the leading order eigenfunctions, ψc, can be found analytically.
For cases I, II and III

ψc = 2[α/(2α− sin 2α)]1/2eb(η−1) sinαη, (3.50)

where

case I : α = nπ, n = 1, 2, 3, · · · , (3.51)

case II : b tanα = −α, (3.52)

case III : (b+ kc) tanα = α. (3.53)

For the full open ocean boundary condition (2.6)

case IV : ψc =

{
Aeb(η−1) sinαη if 0 6 η 6 1,

A sin2 αe−kc(η−1) if η > 1.
(3.54)

where A = 2α1/2 sinα/(2− 2 sin 2α+ 2α sin2 α/kc)
1/2 and α =

√
2bkc/ω − (k2c + b2).



12 J. T. Rodney and E. R. Johnson

For curvature

γ̂ = (π/4) sech2 ξ, (3.55)

giving a total bend angle of επ/2, the solution of (3.46) is given by

f0 = coshm−s F (−m, 2s+ 1−m, s+ 1−m, (1− tanh(ξ)/2)), (3.56a)

λ2 = −2(s−m)2/µ, (3.56b)

where s = (
√

1 + πβ−1)/2,m is a non-negative integer, F is the confluent hypergeometric
function of degree m and β is given by

case I : β = b+ nπ(1− cos 2nπ)/(2nπ − sin 2nπ) (3.57)

case II : β = b+ α(1− cos 2α)/(2α− sin 2α), α tanα = −b, (3.58)

case III : β = b+ α(1− cos 2α)/(2α− sin 2α), (α+ kc) tanα = −b, (3.59)

case IV : β =
b(2α− sin 2α)

2α(1 + sin2 α/kc)− sinα
, α =

√
2bkc/ω − (k2c + b2). (3.60)

Here (3.58) is the result in Johnson et al. (2012).

4. The numerical method

To assess the accuracy of the approximations in §3 the various asymptotic solutions
are compared to numerical solutions of the differential eigenvalue problem (3.2) based
on highly accurate spectral discretisations. For the depth profile (3.49) and curvature
(3.55) with boundary conditions given by cases I, II and III the fast carrier wave with
exponent ibσ/ω can be factored out of the problem which can then be reduced to a
finite rectangular domain by applying an exponentially accurate nonlinear boundary
condition at some finite position along the shelf (Johnson et al. 2012). This nonlinear
problem is solved by the Newton-Kantorovich method (Boyd 2001) using Chebyshev
interpolation in both horizontal directions with rows in the discretised matrix eigenvalue
problem corresponding to the boundary nodes replaced by the appropriate discretised
boundary operator. In the similar acoustic waveguide problem Biggs (2012) follows Gridin
et al. (2005), using symmetry and Laguerre interpolation to treat the semi-infinite along-
waveguide direction directly. Both treatments are accurate and efficient although for
the present problem the discretisation in Johnson et al. (2012) seems to require smaller
matrices.

The full open ocean boundary condition requires different treatment. The first difficulty
arises from the inability to factor out the fast carrier wave and the non-trivial symmetry
condition even for symmetric waveguides. It is therefore more efficient to use a Hermite
interpolant in the alongshore direction, automatically incorporating exponential decay
and increasing resolution in the neighbourhood of the origin, as in Rodney & Johnson
(2012) and similar to the Laguerre interpolant of Biggs (2012). A further difficulty comes
from the discontinuity in the cross-waveguide depth profile at η = 1 which, untreated,
would significantly reduce spectral accuracy. This difficulty is overcome by separately
discretising the outer ocean (where βη = 0) and the shelf and then requiring that the local
interpolant and its normal derivative are continuous across the topographic discontinuity.
Since the open ocean decay scale of `CSWs is fast, of the order of the shelf width, Laguerre
interpolation is used in the open ocean, automatically incorporating exponential decay
as in Adamou et al. (2007) and Johnson & Rodney (2011). Points on the shelf are
resolved using Chebyshev functions in the offshore direction. The boundary conditions
at the coast and shelf-ocean boundary are incorporated into the discretised field equation
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Figure 2. Dispersion curves for the first propagating mode over the depth profile (5.1) with
g ≡ 1 and the full open ocean boundary condition (2.6) applied at infinity for (a) different values
of γ with b = 2; (b) different values of b with γ = 0.

by replacing rows in the discretised matrix problem corresponding to boundary points
with the appropriate boundary operator. The number of Chebyshev and Laguerre need
not be the same, especially if the function has significantly different behaviour in each
region, i.e. highly oscillatory on the shelf and slowly decaying offshore. For higher offshore
modes or steep shelves more resolution would be required in the shelf region. However
for the low offshore modes and depth profile described below it remains efficient to keep
the number of interpolation points the same. Discretising equation (3.2) using a hybrid
N -Laguerre, M -Hermite and N -Chebyshev scheme gives a 2NM × 2NM generalised
eigenvalue problem which can be solved by standard means.

For more general depth profiles (e.g. depth profile (5.1)) with the boundary conditions
(2.3)–(2.5) where no analytic expression for the fast carrier wave can be factored out,
the shelf is discretised using a N -point Chebyshev grid in the offshore direction with a
M -point Hermite grid in the alongshore direction. Again, the shelf-ocean boundary con-
ditions are implemented by replacing boundary points with the appropriate discretised
boundary operator with the Dirichlet condition at the coast incorporated by removing the
last row of the Chebyshev differentiation matrix giving an (N − 1)M × (N − 1)M gener-
alised eigenvalue problem. When using Hermite or Laguerre basis functions the accuracy
of the solution can be significantly improved by choosing the largest collocation point to
lie where the solution is smaller than some tolerance value. More detail on the scaling is
given in Johnson & Rodney (2011). In all results presented below the domain has been
chosen so that for sufficiently high resolution the solutions are resolution independent.

5. Geometric effects on localised modes

5.1. Alongshore variations in coastline curvature

As a CSW mode of fixed frequency propagates along a coastline with slowly varying
curvature its local characteristics are governed by the leading order system (3.7),(2.7)
which, at each position ξ =constant, reduces to an annular region with constant radius
of curvature γ−1. In general the local wavenumbers k± and corresponding eigenfunc-
tion ψ± of the eigensystem (3.7),(2.7) can be obtained only numerically but this is a
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ε n m ω`WKBJ
n,m ωSWKBJ

n,m ωN
n,m ω`WKBJ

n,m Error (%) ωSWKBJ
n,m Error (%)

1 0 1 0.6223209 0.6238417 0.6245099 0.35 0.11
1 1 1 0.5996494 0.6045072 0.6005319 0.09 0.66

0.5 0 1 0.6150118 0.6154626 0.6157768 0.12 0.05
0.5 1 1 0.6022400 0.6046173 0.6028139 0.10 0.30
0.1 0 1 0.6040366 0.6040576 0.6040894 0.009 0.005
0.1 1 1 0.6021330 0.6022942 0.6021764 0.007 0.020
0.05 0 1 0.6019275 0.6019329 0.6019421 0.0024 0.001
0.05 1 1 0.6011838 0.6012276 0.6011963 0.0021 0.052

Table 1. Numerical eigenfrequencies, ωN
0,1, and `WKBJ and sWKBJ eigenfrequencies,

ω`WKBJ
0,1 , ωsWKBJ

0,1 , calculated using (3.26), for the curvature function (5.2) with γ̄ = επ/2, giving
a total bend angle of π/2, and depth profile (5.1) with b = 2 and g ≡ 1, for varying ε, with the
full open ocean boundary condition (2.6) applied at infinity.

straightforward one-dimensional problem (Appendix A). Consider the depth profile

H(ξ, η) =

{
e2bg(ξ)(η−1) 0 6 η 6 1,

1 η > 1,
(5.1)

where g(ξ) controls the alongshore variation in shelf slope, which reduces to (3.49) when
g ≡ 1. Figure 2 shows the local dispersion curves, computed using the spectral method
in Appendix A, for the fundamental cross-shelf mode over the depth profile (5.1) with
g ≡ 1, for different values of the curvature γ and slope b. Larger positive curvature has
a similar effect to larger bottom slope, raising the cut-off frequency and so permitting
`CTWs encompassing the section of maximum curvature. This agrees with the result
in Johnson et al. (2012) that, in the small curvature limit, there is always an `CTW
associated with a region of positive curvature on an otherwise straight shelf (a “cape”)
but no `CTW exists associated with a region of negative curvature (a “bay”).
`CSWs can be characterised by their along-shore mode number n (with n = 0 cor-

responding to the fundamental mode) and cross-shelf mode number m. Denote the fre-
quency of the (n,m) mode by ωn,m, with corresponding eigenfunction Φn,m. Table 1
compares the `WKBJ eigenvalues, ω`WKBJ

n,m , calculated using (3.26); the sWKBJ eigen-

values, ωsWKBJ
n,m , calculated using (3.30); and the numerical eigenvalues, ωNn,m, for the

curvature function

γ = (γ̄/2) sech2 ξ, (5.2)

so that the total bend angle is γ̄/ε, and depth profile (5.1), with b = 2 and g ≡ 1, for
different values of ε, with full open ocean boundary condition (2.6) applied at infinity.
The WKBJ eigenvalues are indeed extremely accurate, to well within 1% of the numerical
solutions. As expected, the accuracy of the `WKBJ frequencies increases with alongshore
wavenumber, since the ratio of the variation in the wavelength to the variation in the
curvature increases as the number of alongshore modal oscillations increases (Bender &
Orszag 1978). The agreement with the full numerical solution even for ε = 1 is remarkable.
The accuracy of the sWKBJ frequencies decreases with alongshore wavenumber since the
length over which the modes propagate increases with alongshore wavenumber. Figure
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Figure 3. Eigenfunctions |Φ0,1| and |Φ1,1| (normalised to give maximum amplitude one at the
shelf-ocean boundary) for the curvature function (5.2) with γ̄ = επ/2, giving a total bend angle
of π/2, and ε = 0.1 (a,b) and ε = 1 (c,d) with the full open boundary condition (2.6) applied at
infinity. Darker shading corresponds to larger values of |Φ|.

Boundary condition ωA
0,1 ωN

0,1 Error (%)

Dirichlet (2.3) 0.53730826 0.53716854 0.026
Neumann (2.4) 0.65866358 0.65832036 0.052
Cut-off (2.5) 0.60076114 0.60054020 0.037
Full open-ocean (2.6) 0.59979897 0.59972509 0.012

Table 2. Numerical eigenfrequencies, ωN
0,1, and asymptotic eigenfrequencies, ωA

0,1, calculated
using (3.56b), for the weak curvature function (3.55), depth profile (3.49) with b = 2 and with
ε = 0.1, and so a total bend angle of π/20.

3 shows the modulus of the corresponding numerical eigenfunctions |Φ0,1| and |Φ1,1|
for ε = 0.1 (Figure 3(a,b)) and ε = 1 (Figure 3(c,d)). Most of the wave disturbance is
concentrated in the region of maximum curvature with modes decaying exponentially
along the straight section of coast. From Figure 3(c,d), it is clear that the alongshore
decay scale of the modes increases as the mode number increases. The frequencies of
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Method ω0,1 Error (%)

WKBJ analysis 0.59967995 0.007
Weak curvature analysis 0.59979897 0.012

Table 3. Comparison between the WKBJ eigenvalues, calculated using (3.26), and the asymp-
totic eigenvalues calculated using (3.56b) with λ2 given by (3.56b), for the weak curvature
function (3.55), depth profile (3.49) with b = 2 and ε = 0.1 and so a total bend angle of π/20.

`CSWs decrease with alongshore mode number with modes coupling to modes on the
straight section of coast with smaller value of Im k, and so decaying on a slower scale.

Table 2 compares the numerical eigenfrequencies, ωN0,1, and the asymptotic eigenfre-

quencies, ωA0,1, calculated using expansion (3.34) with λ2 given by (3.56b), for the weak
curvature (3.55) and depth profile (3.49) with b = 2 and ε = 0.1, for boundary conditions
(2.3) – (2.6). The asymptotic eigenfrequencies are again extremely accurate, with the ab-
solute error well below 1% for all four boundary conditions. Eigenfrequencies calculated
using the full open-ocean condition (2.6) and the near-cutoff approximation (2.5) differ
by less than 0.2%, showing the high accuracy and thus usefulness of (2.5) when comput-
ing `CTWs. The cut-off and full-open-ocean eigenfrequencies lie above the Dirichlet but
below the Neumann eigenfrequencies as expected (Johnson 1989). Table 3 compares the
`WKBJ eigenvalues and the weak curvature eigenvalues (with error derived from the full
numerical eigenvalues) for the (0, 1) mode, for the weak curvature (3.55) and depth pro-
file (3.49), with b = 2, ε = 0.1 and the full open ocean boundary condition (2.6) applied
at infinity. The comparison shows that even for extreme values of (weak) curvature the
`WKBJ eigenvalues remain in close agreement with the full numerical solutions, and in
fact are more accurate than the eigenvalues derived from the method of §3.2, specifically
designed for small curvature.

5.2. Alongshore variations in offshore depth profile

The frequencies of CSWs are greatly affected by changes in the gradient of the shelf
slope. Figure 2(b) shows dispersion curves for the depth profile (5.1), with g ≡ 1 and
γ ≡ 0, for different values of b. The steepening of the shelf slope (i.e. increasing b) raises
the maximum frequency of propagation of the waves. Consider the depth function (5.1)
with local variation in shelf slope governed by

g(ξ) = 1 + a sech2(ξ), (5.3)

so that the maximum perturbation in shelf slope slope occurs at ξ = 0 and then disap-
pears as ξ →∞, with a > 0 corresponding to a submerged continental shelf ridge (Figure
4).

Table 4 compares the numerical eigenfrequencies, ωNn,m; the `WKBJ asymptotic eigen-

frequencies, ω`WKBJ
n.m ; and the sWKBJ asymptotic eigenfrequencies, ωsWKBJ

n.m , for the
Dirichlet boundary condition (2.3), the curvature function γ ≡ 0 and depth profile (5.1)
with g given by (5.3), a = π/4, b = 2 and ε = 0.1. Again the asymptotic eigenval-
ues are extremely accurate, with the relative error well below 1% with the accuracy
of the `WKBJ eigenvalues increasing, and that of the sWKBJ eigenvalues decreasing,
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Figure 4. Isobaths (left) and depth profiles (right) of the shelf with local perturbation on shelf
slope given by (5.1) and (5.3) with b = 2, a = π/4 and ε = 0.1. In the right panel the solid line
is the unperturbed far-field profile and the dashed line gives the maximally perturbed profile at
x = 0.

n m ωlWKBJ
n,m ωSWKBJ

n,m ωN
n,m ωlWKBJ

n,m Error (%) ωsWKBJ
n,m (%)

0 1 0.74592713354 0.74731643873 0.74622897501 0.041 0.146
1 1 0.73638853075 0.74035956138 0.73666455053 0.038 0.502
2 1 0.72709491820 0.73319417450 0.72734759086 0.025 0.804
0 2 0.49132433211 0.49212346055 0.49141433381 0.018 0.144
1 2 0.48589461389 0.48819280271 0.48598520243 0.019 0.454
2 2 0.48060618033 0.48427304639 0.48069715435 0.019 0.744
0 3 0.35276331546 0.35320772847 0.35279747803 0.010 0.116
1 3 0.34974439623 0.35103652602 0.34978095380 0.010 0.359
2 3 0.34678827097 0.34887658148 0.34682702395 0.011 0.591

Table 4. The `WKBJ and sWKBJ eigenfrequencies ω`WKBJ
n,m , ωsWKBJ

n,m generated by the asymp-

totic scheme, and numerical eigenfrequencies ωN
n,m for the depth profile (5.1), with g given by

(5.3), and the Dirichlet Boundary condition at the shelf-ocean boundary, with α = π/4, b = 2,
ε = 0.1

with alongshore wavenumber, n. The accuracy of the both the `WKBJ eigenvalues and
sWKBJ eigenvalues also increases with increasing offshore number, m. Higher offshore
modes propagate, locally, over a shorter alongshore distance. They are confined over a
shorter strip of shelf and the wavelength varies on a faster scale, compared to the varia-
tion in the curvature, and both the `WKBJ and sWKBJ approximations improve. For
boundary conditions (2.4) – (2.6) the accuracy of the `WKBJ eigenvalues mirrors the
accuracy shown in Table 4, and so these results are not displayed.

Table 5 compares the corresponding `WKBJ eigenvalues, ωn.m, with boundary con-
ditions (2.3)–(2.6). Comparison between the eigenfrequencies calculated using the cutoff
ocean boundary condition (2.5) and the full open ocean boundary condition (2.6) shows
agreement to well within 1% with accuracy increasing with alongshore mode number, as
the offshore decay scale approaches cut-off. Again the cut-off and full-open-ocean eigen-
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Figure 5. (a) Comparison between the modulus of the numerical eigenfunction with eigenvalue
ω0,1 (solid line) as a function of the coordinate ξ at y = 0.5, with the corresponding `WKBJ
(dot-dashed line) and sWKBJ eigenfunctions (dashed line, but indistinguishable from the nu-
merical solution), for the depth profile (5.1) with local slope perturbation (5.3) and the Dirichlet
boundary condition applied at the coast and shelf-ocean boundary. (b) As in (a) but for the
eigenvalue ω2,1. In both panels b = 2, ε = 0.1 and a = π/4.

frequencies lie above the Dirichlet but below the Neumann eigenfrequencies. Figure 5
compares `WKBJ (dot-dashed line), sWKBJ (dashed line) and numerical eigenfunctions
(solid line) |Φ0,1| and |Φn,m| (from Table 4), as a function of ξ in the cross section
y = 0.5. The caustics, located at ξ = ±ξc are represented by the dotted lines. Most of the
wave disturbance is concentrated above the maximum perturbation in shelf slope and
decays exponentially alongshore with the `WKBJ eigenfunctions becoming singular at
the caustics.
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n m ω`WKBJ,d
n,m ω`WKBJ,ne

n,m ω`WKBJ,c
n,m ω`WKBJ

n,m

0 1 0.74592713354 0.81177254069 0.78710428859 0.78142204593
1 1 0.73638853075 0.80268643367 0.77756478813 0.77201272489
2 1 0.72709491819 0.79380844819 0.76824798417 0.76282956175

Table 5. The `WKBJ eigenfrequencies ω`WKBJ,d
n,m (Dirichlet shelf-ocean condition (2.3)),

ω`WKBJ,ne
n,m (Neumann shelf-ocean condition (2.4)), ω`WKBJ,c

n,m (cutoff ocean condition (2.5)) and

ω`WKBJ
n,m (full open ocean boundary condition (2.6)), for the depth profile (5.1) and local slope

perturbation (5.3) with γ ≡ 0, a = π/4, b = 2, and ε = 0.1.

6. The response to localised forcing

Inviscid barotropic motion over continental shelves forced by a wind stress τ is governed
(Adams & Buchwald 1969) by the inhomogeneous form of (2.1)

∇ · (H−1∇Ψt) + f ẑ · ∇Ψ×∇H−1 = ẑ · ∇ × (τ/H). (6.1)

In the curvilinear co-ordinates (σ, η), consider a localised, time-periodic wind-stress curl
given by

ẑ · ∇ × (τ/H) = (πa2)−1/2H−1 exp[−(σ − σ0)2/a2] cos(ωft), (6.2)

with non-dimensional frequency ω, centred about σ = σ0 with width a and reducing
along-shelf to the Dirac delta function as a → 0. For simplicity take the topography to
be the exponential shelf of (3.49) and the boundary conditions to be (2.2), (2.4), following
Adams & Buchwald (1969). Then the high wavenumber carrier wave can be factored out
by introducing the reduced streamfunction φ(σ, η), defined by

Ψ(x, y, t) = Re{exp[−i(ωft+ bσ/ω)]φ(σ, η)}. (6.3)

This gives the forced form of equation (3.2), in terms here of the unscaled alongshore
coordinate σ,

κ2φσσ+φηη+[κ3ηγσ+2i(b/ω)κ2ηγ]φσ−(2b−pγ)φη+[(b/ω)2(2κ+κ2)− i(b/ω)κ3ηγσ]φ

= i(ωfa
√
π)−1 exp[−(σ − σ0)2/a2 + ibσ/ω], (6.4)

which can be solved numerically by similar spectral methods to those above. To allow a
smaller computational domain a boundary condition can be applied at moderate σ by
noting that, for a given frequency,

φ(ξ, η)→ Ae±|kω|σ+b(η−1) sinαη, as σ → ∓∞, (6.5)

where A is an undetermined constant, α is given by (3.52), and kω = [b2/ω2−(α2+b2)]1/2,
so

φσ ∓ |kω|φ→ 0, as σ → ±∞. (6.6)

The non-constant coefficient system formed by equation (6.4), boundary conditions (2.2)
and (2.4) and far-field conditions (6.6) applied at σ = ±σL, forming the ends of the
computational domain, is approximated pseudo-spectrally, as in §4, on a two-dimensional
grid of N Chebyshev points across the shelf and M Chebyshev points along the shelf
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Figure 6. The ratio of local energy in the curved region to local energy in the forcing region as a
function of frequency. The largest response occurs at frequencies close to that of the fundamental
`CSW, ω = ωN

0,1, shown dashed.

giving a linear system of (N−1)M equations in (N−1)M unknowns which can be solved
by standard methods.

The vertically-integrated time-averaged kinetic energy density per unit mass for the
motion can be written as

〈E〉 = 〈1/(2H)
∣∣∇Ψ

∣∣2〉 = 1/(2H)
∣∣∇(e−ibσ/ωφ)

∣∣2, (6.7)

and so a measure of the local time-averaged kinetic energy on the numerical grid can be
defined by

E(σ, LE) = 1
2

M∑
i

N∑
j

∣∣∇[φ(σi, ηj)e
−ibσi/ω]

∣∣2/H(σi, ηj), (6.8)

where the dashed alongshore sum is only over those points σi satisfying |σi−σ| 6 LE with
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Figure 7. The response, |φ|, normalised to have maximum value unity, for a forcing frequency
close to that of the fundamental `CSW for curved and straight coasts. Although both shelves
are forced at the same station of σ = σ0 = 60 the maximum response occurs at the forcing
region for the straight coast and at the region of maximum curvature for the curved coast

the localisation length, LE , chosen to be of order the decay scale of any trapped mode.
Figure 6 shows the ratio of the local kinetic energy in the region of maximum curvature
to the local kinetic energy in the neighbourhood of the forcing as a function of the forcing
frequency for curvature (5.2) with ε = 0.1, γ̄ = ε2π/2, giving a total bend angle of π/20,
σ0 = 60, a = 1 and localisation length LE = 20. The ratio has a narrow peak in this
frequency range centred on the frequency ω = ωN0,1 of the fundamental `CSW (Table

2). As the system is linear and undamped the resonant response precisely at ω = ωN0,1
is infinite. Shelf waves in the forcing region are evanescent at these frequencies and so
away from the `CSW resonance the relative energy in the curved region is negligible.
Figure 7 shows the absolute value of the frequency response, |φ| at ω = 0.65832 (differing
from ωN0,1 by approximately 10−5) when the coast is curved and when it is straight,
normalised to give maximum amplitude one, with darker shading corresponding to larger
values of |φ|. For a curved coast the wave disturbance is concentrated in the region of
maximal curvature, even though the source is located far alongshore at σ = σ0 = 60. For
a straight coast the response is evanescent and the linear response decays exponentially
away from the source. In practice nonlinearity and dissipation would broaden and weaken
resonances, in line with the observations of Gordon & Huthnance (1987), and also tend
to constrain the area over which remote wind stress could force `CSWs, although the
long decay scale of near-resonant evanescent waves would oppose this.

7. Discussion

Two asymptotic methods have been presented to obtain the frequency and spatial
structure of localised continental shelf waves, `CSWs, on arbitrarily curved coastal waveg-
uides with irregular depth profiles. For significantly curved coastlines or coastlines with
a alongshore-varying offshore profile solutions are constructed using a WKBJ method.
For almost-straight coastlines the weak curvature theory of Postnova & Craster (2008)
and Johnson et al. (2012) is extended to include arbitrary offshore depth profiles and
ocean boundary conditions. Direct comparisons between both asymptotic methods and
a spectrally-convergent numerical method show that both asymptotic methods are ex-
tremely accurate. Comparison between the WKBJ eigenvalues and the almost-straight
expansion eigenvalues in the limit of weak curvature shows that the WKBJ eigenvalues
remain accurate, even in the weak curvature limit when the almost-straight expansion
would be expected to outperform.

It has been shown that a localised alongshore wind stress oscillating at the `CSW fre-
quency, on a straight section of coast, can resonantly excite an `CSW in a geographically
localised curved region far from the forced region. The energy of the `CSWs is trapped
and so the specific, discrete `CSW frequencies, determined solely by the shelf geometry in
barotropic flow, may appear as the same pronounced peaks in the low frequency spectra
of randomly-forced coastal flows along the section of shelf supporting the `CSW (Gor-
don & Huthnance 1987; Schwing 1989; Stocker & Johnson 1991). The distinctive feature
of an `CSW would be that its frequency would lie below cut-off everywhere within its
region of support and that all stations within the region of support would show the same
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frequency peaks even when the local geometry differed. The observations described by
Gordon & Huthnance (1987) appear to show these characteristics.

A. Numerical solution for the local alongshore wavenumber k(ξ)

The quadratic eigenvalue problem (3.7), (2.7) is recast as a linear eigenvalue problem
by introducing q = kψ to give

ω[ψηη − (βη − κγ)ψη] = k(ωκ2q − βηκψ), (A.1a)

q = kψ, (A.1b)

subject (2.7). To avoid excessively large computational domains the decay condition (2.6)
can be applied at the shelf-ocean edge by noting that the solution to (A.1a) in the flat
outer ocean βη = 0 is given by

ψouter = (1 + γη)−k/γ , (A.2)

with Rek > 0, thus continuity of ψ and ψη at the shelf-ocean boundary η = ηL gives

(1 + γη)ψη = −kψ, η = ηL. (A.3)

Discretising (A.1a) subject to (2.2) and (A.3) on an N-point Chebyshev grid, using
differential operator matrices following Trefethen (2000), gives a 2(N − 1) × 2(N − 1)
(where the Dirichlet boundary condition has been accounted for by removing the last
row of the Chebyshev differentiation matrix) linear generalised eigenvalue problem(

L1 0
0 I

)(
ψ
q

)
= k

(
−L2 L3

I 0

)(
ψ
q

)
, (A.4)

where L1 is the discrete form of the LHS of (A.1a) with the first row replaced with the
discrete form of the LHS of (A.3), −L2 is the discrete form of the second term on the
RHS of A.1a, with the first row replaced by the first rows of the (N − 1) × (N − 1)
negative identity matrix and L3 is discrete form of the first term on the RHS of (A.1a),
with the first row replaced by zeros. The matrices I and 0 are the (N − 1) × (N − 1)
identity matrix and (N − 1)× (N − 1) null matrix, respectively.
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