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Abstract

Let G be a finite group with integral group ring Λ = Z[G]. The syzygies Ωr(Z)
are the stable classes of the intermediate modules in a free Λ-resolution of the
trivial module. They are of significance in the cohomology theory of G via the
‘co-represention theorem’ Hr(G,N) = HomDer(Ωr(Z), N). We describe the
Ωr(Z) explicitly for the dihedral groups D4n+2, so allowing the construction
of free resolutions whose differentials are diagonal matrices over Λ.
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Let Λ denote the integral group ring Λ = Z[G] of a finite group G. We say that
Λ-modules M , M ′ are stably equivalent (written M ∼M ′ ) when M ⊕Λa ∼= M ′ ⊕Λb

for some integers a, b ≥ 0. Let

(F) . . .
∂n+2→ Fn+1

∂n+1→ Fn
∂n−→ . . . . . .

∂2→ F1
∂1−→ F0

∂0→ Z→ 0

be a resolution over Λ of the trivial module Z in which each Fr is a finitely generated
free module. The syzygy modules (Jr)1≤r of F are the intermediate modules

Jr = Im(∂r) = Ker(∂r−1).

The stable syzygy Ωr(Z) is then defined to be the stable class [Jr] of any such Jr.
It is a standard consequence of Schanuel’s Lemma (cf [6] pp. 121-122) that Ωr(Z) is
independent of the particular choice of (F). These stable modules are of significant
interest in the cohomology theory of finite groups G; for example, they ‘co-represent’
cohomology in the sense that

Hr(G,N) = HomDer(Ωr(Z), N)

where Der denotes the derived module category of Λ (cf [5] Chap 4).
In this paper we give an explicit description of the stable syzygies Ωr(Z) for the

dihedral groups

D4n+2 = 〈x, y | x2n+1 = 1, y2 = 1, yxy−1 = x2n〉.

Taking Σx =
∑2n

r=0 x
s, we shall show:
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(A) Ωr(Z) ∼



[Σx, y − 1]⊕ [y + 1] r ≡ 0 mod 4

[(x− 1)(y − 1)]⊕ [y − 1] r ≡ 1 mod 4

[Σx, y + 1]⊕ [y + 1] r ≡ 2 mod 4

[(x− 1)(y + 1)]⊕ [y − 1] r ≡ 3 mod 4

where for α1, . . . , αm ∈ Λ, [α1, . . . , αm] denotes the stable class of the right ideal

[α1, . . . , αm) = {
m∑
r=1

αiλi | λ1, . . . , λm ∈ Λ}.

Repetition with period four is to be expected for, as is well known ([5], [9]), the
dihedral groups D4n+2 have cohomological period four. By contrast, periodicity is
not shared by the dihedral groups of order 4n and for these groups (cf [7]) the task
of describing the syzygies is far more difficult and increases steadily with r

Taken in conjunction with periodicity the above description allows for the con-
struction of free resolutions of an especially simple type. Thus we shall show that
D4n+2 admits a ‘diagonalised’ free resolution of period four;

(B) 0→ Z
ε∗→ Λ

(
∂+3
y−1

)
−→ Λ⊕ Λ

(
∂+2 0

0 y+1

)
−→ Λ⊕ Λ

(∂+1 , y−1)
−→ Λ

ε→ Z→ 0.

We may contrast this with the rather more complicated resolutions considered in
[4]. The possibility of constructing diagonal resolutions for more general groups than
cyclic groups was first raised in the thesis of Strouthos [8] who gave a diagonal reso-
lution for the smallest non-abelian group, namely the dihedral group of order six.

§1 : Basis calculations :
In what follows Λ will denote the integral group ring Z[D4n+2], and I the two-

sided ideal I = I(D4n+2) = Ker(ε) where ε : Z[D4n+2] → Z is the augmentation
homomorphism ε(g) = 1 for g ∈ D4n+2. Throughout we work only with right mod-
ules which are also lattices over Λ; that is, Λ-modules whose underlying additive group
is free abelian of finite rank. Such a right Λ-lattice M determines a representation
ρM : G→ GLZ(M) by ρM(g)(m) = m · g−1.

For any finite group G the operation of taking inverses induces a canonical invo-
lution on Z[G]

: Z[G] → Z[G] ;
∑

agg =
∑

agg
−1.

We note that Λ contains the group ring Z[C2n+1] where C2n+1 is the cyclic group of
order 2n+ 1 having generator x. This subring contains some distinguished elements
which play a special role in our calculations. On defining

Σx =
2n∑
r=0

xr ; θ =
n−1∑
r=0

xr

2



we note that

(1.1) θ = θxn+2 ;

(1.2) Σx is central in Λ;

Given α, β ∈ Λ we denote by [α), [α, β) the right ideals

[α) = {αλ | λ ∈ Λ}
[α, β) = {αλ+ βµ | λ, µ ∈ Λ}.

We stress that any ideal in Λ is a Λ-lattice. In what follows we shall frequently use:

Proposition 1.3 : Let {Eψ}ψ∈Ψ be a Z-basis for the free abelian group A and let
B ⊂ A be an additive subgroup such that rkZ(B) ≤ m. Suppose also that there
exists a subset Φ ⊂ Ψ such that |Φ| = m and Eφ ∈ B for each φ ∈ Φ; then

i) rkZ(B) = m;

ii) {Eφ}φ∈Φ is a Z-basis for B;

iii) A/B is torsion free.

We define elements Er ∈ Λ by{
Er = xr − 1 (1 ≤ r ≤ 2n) E2n+r = (y − 1)(xr − 1) (1 ≤ r ≤ 2n)
E4n+1 = y − 1 E4n+2 = 1

Λ has the canonical Z=basis {yaxb |0 ≤ a ≤ 1, 0 ≤ b ≤ 2n}, starting from which we
proceed by elementary basis transformations to the following conclusions:

(1.4) {Er}1≤r≤4n+2 is a Z-basis for Λ.

(1.5) {Er}1≤r≤4n+1 is a Z-basis for I.

Proposition 1.6 : {Er}1≤r≤4n is a Z-basis for [x− 1).

Proof : We may regard [x−1) as the induced module [x−1) = I(C2n+1)⊗Z[C2n+1]Λ.
As Λ is a free module of rank 2 over Z[C2n+1] we see that

(1.7) rkZ([x− 1)) = 2rkZ(I(C2n+1)) = 4n.

Clearly Er ∈ [x− 1) for 1 ≤ r ≤ 2n whilst

E2n+r = (x2n+1−r − 1)y − Er = (x− 1)(
2n−r∑
s=0

xs)y − Er.

Either way, Er ∈ [x − 1) for 1 ≤ r ≤ 4n so the result follows from (1.7) and (1.1).
2
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Taking C2 = 〈y | y2 = 1〉 then a similar argument to the above using the fact that
[y − 1) ∼= I(C2)⊗Z[C2] Λ shows that:

(1.8) {E2n+r}1≤r≤2n+1 is a Z-basis for [y − 1).

From the identities xr − 1 = (x− 1)
∑r−1

s=0 x
s ; yxr − 1 = (xr − 1) + (y − 1)xr;

we observe that

(1.9) I = [x− 1) + [y − 1).

As we shall see, the sum in (1.9) is far from being direct.

Proposition 1.10 {E2n+r}1≤r≤2n is a Z-basis for [x− 1) ∩ [y − 1).

Proof: From (1.9) we obtain an exact sequence

0→ [x− 1) ∩ [y − 1)→ [x− 1)⊕ [y − 1)→ I → 0

from which, using (1.5), (1.6) and (1.8) we calculate that rkZ([x− 1)∩ [y− 1)) = 2n.
However, from (1.6) and (1.8) we see that E2n+r ∈ [x− 1) ∩ [y − 1) for 1 ≤ r ≤ 2n.
The result now follows from (1.3). 2

§2 : Decomposing the augmentation ideal :
We define elements π, ρ, ρ̃ ∈ Λ as follows:

(2.1)


π = (xn − 1)(y − 1)

ρ = (y − 1)(xn+1 − xn) = (xn − xn+1)(y + 1)

ρ̃ = (y − 1)(x− 1)

Clearly ρ̃ = ρ · xn+1 and ρ = ρ̃ · xn so that [ρ) = [ρ̃). We define

P = [ π) ; R = [ ρ ) = [ ρ̃ ).

Evidently π = (x− 1){
∑n−1

s=0 x
s}(y − 1) ∈ [x− 1) so that:

(2.2) P ⊂ [x− 1).

Proposition 2.3: R = [x− 1) ∩ [y − 1).

Proof : Clearly ρ̃ ∈ [y− 1) so that R ⊂ [y− 1). However, ρ = (x− 1){−xn(y+ 1)}
so that R ⊂ [x− 1). Hence R ⊂ [x− 1) ∩ [y − 1). To show the opposite inclusion
note that E2n+1 = ρ̃ ∈ R and E2n+r+1 = E2n+1 ·{1+x+ . . .+xr} so that E2n+r ∈ R
for 1 ≤ r ≤ 2n. Hence [x− 1) ∩ [y − 1) ⊂ R. 2

Theorem 2.4 : The ideal [x− 1) decomposes as a direct sum
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[x− 1) = P +̇ R.

Proof : Put Q = [x− 1)/R and consider the canonical exact sequence

(*) 0→ R ↪→ [x− 1)
\→ Q→ 0.

It suffices to show that (*) splits over Λ; in turn, it suffices then to show that

(**) the natural map \ restricts to an isomorphism \ : P
'−→ Q.

As R has the Z-basis {E2n+r}1≤r≤2n which extends to a basis for Λ then Q is torsion
free. Furthermore, it follows from (1.6), (2.8) that:

(***) {\(Er)}1≤r≤2n is a Z-basis for Q.

Recall that π = (xn − 1)(y − 1). Define π̃ = πxn+1 so that π = π̃xn and
[π̃) = [π) = P . A straightforward calculation shows that

π̃ = (x− 1) + (y − 1)(x− 1)− (y − 1)(xn+1 − 1).

Hence \(π̃) = \(E1) and hence \(π̃ · xr) = \(E1 · xr). However

Er = E1 · {
r−1∑
s=0

xs}

so that \(Er) = \(π̃ · {
∑r−1

s=0 x
s}).

Thus \ : P → Q is surjective and rkZ(P ) ≥ 2n. However π · y = −π so that
P = spanZ{π · xr | 0 ≤ r ≤ 2n}. Moreover π · Σx = 0 so that

P = spanZ{π · xr | 1 ≤ r ≤ 2n}

and so rkZ(P ) ≤ 2n. Thus rkZ(P ) = 2n = rkZ(Q). As \ : P → Q is surjective then
\ : P → Q is an isomorphism as required. 2

We note that in the course of the above proof we established:

(2.5) {π · xr}1≤r≤2n is a Z-basis for P .

As a consequence of (2.5) we have:

(2.6) P ∩R = {0}.

Corollary 2.7 : The augmentation ideal I decomposes as an internal direct sum

I = [π) +̇ [y − 1).

Proof : By (1.9) we have I = [x− 1) + [y − 1) so that, by (2.4),

I = P + R + [y − 1).
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However R = [x− 1) ∩ [y − 1) ⊂ [y − 1) so that

I = P + [y − 1).

Now P ⊂ [x−1) so that P ∩ [y−1) ⊂ P ∩ [x−1)∩ [y−1) ⊂ P ∩R. As P ∩R = {0}
then P ∩ [y − 1) = {0} and I = [π) +̇ [y − 1). 2

It follows from (2.7) that I/[π) is torsion free. As Λ/I ∼= Z then :

(2.8) Λ/[π) is torsion free.

§3 : Characterising the modules P and R.
We have defined the module P using a quite specific description, namely :

P = [(xn − 1)(y − 1)).

In practice, it is useful to be able to recognise when a given Λ-module is isomorphic to
P without being identical to the above model. Thus consider the following properties
of a Λ-lattice M :

M(−) : there exists ϕ̂− ∈ M such that {ϕ− · xr | 1 ≤ r ≤ 2n} is a Z-basis for M
and for which ϕ̂− · y = −ϕ̂− ;

M(Σ) : the identity m · Σx = 0 holds for each m ∈M ;

We recall that P = [π) where π = (xn − 1)(y − 1). As Σx is central and
(xn − 1)Σx = 0 then P satisfies M(Σ). Furthermore π = (xn − 1)(y − 1) satisfies
π·y = −π and, by (2.5), {π·xr}1≤r≤2n is a Z-basis for P . Thus P also satisfiesM(−).
These two properties characterize P up to Λ-isomorphism, as if M satisfies M(−)
and M(Σ) then {ϕ̂− · xr | 1 ≤ r ≤ 2n} is a Z-basis for M and the correspondence

ϕ̂− 7→ π ;
2n∑
r=1

ϕ̂+ · xr 7→
2n∑
r=1

π · xr

gives an isomorphism of Λ-modules M
'−→ P ; that is:

(3.1) M ∼= P if and only if M satisfies M(−) and M(Σ).

There is a corresponding characterisation of R in terms of the following property:

M(+) : there exists ϕ̂+ ∈ M such that {ϕ+ · xr | 1 ≤ r ≤ 2n} is a Z-basis for M
and for which ϕ̂+ · y = ϕ̂+.

We recall that R = [ρ) where ρ = (xn − xn+1)(y + 1). The module R evidently
satisfies M(+) and M(Σ). Moreover, ρ ∈ R satisfies ρ · y = ρ in consequence of
which R = spanZ{ρ ·xr : 0 ≤ r ≤ 2n− 1}. A similar argument to the above shows:
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(3.2) M ∼= R if and only if M satisfies M(+) and M(Σ).

These criteria enable us to recognise non-obvious isomorphs of P , R; for example:

Proposition 3.3 : Let a, b ∈ Z be such that a − b is coprime to 2n + 1; then
[(xa − xb)(y − 1)) ∼= P .

Proof : If k ∈ Z put π(k) = (xk − 1)(y − 1), so that P = [π(n)). Consider the Λ-
module automorphism λ : Λ→ Λ given by

Λ(z) = xb · z.

Then λ : [π(a−b)) '−→ [(xa−xb)(y−1) is a Λ-isomorphism. As [π(k)) clearly satisfies
M(Σ) it suffices to show that π(k)) satisfies M(−) when k is coprime to 2n+ 1.

Thus suppose that k is coprime to 2n + 1 so that, in particular, xk generates
C2n+1. As n is also coprime to 2n + 1 then xn also generates C2n+1. Hence there
is an automorphism α : D4n+2 → D4n+2 with the properties that α(xn) = xk and
α(y) = y. Let α∗ : Λ → Λ be the ring automorphism induced by α. Then
α∗(π) = π(k) so that α∗(P ) = [π(k)). Hence rkZ([π(k)) = 2n. However as

π(k) · y = −π(k)

then [π(k)) = spanZ{π(k) · xs | 0 ≤ s ≤ 2n}. However π(k) · Σx = 0 so that, as
rkZ([π(k)) = 2n then {π(k) · xs | 1 ≤ s ≤ 2n} is a Z-basis for [π(k)). Thus [π(k))
satisfies M(−) as required. 2

A similar argument yields the corresponding statement for R:

Proposition 3.4: Let a, b ∈ Z be such that a − b is coprime to 2n + 1; then
[(xa − xb)(y + 1)) ∼= R.

§4: The modules K, L :
We define K = [Σx, y − 1) and L = [Σx, y + 1) ; we claim

Proposition 4.1 : rkZ(K) = 2n+ 2 and Λ/K is torsion free.

Proof : Put K0 = {(1− y)a(x) | a(x) ∈ Z[C2n+1]} ⊂ K. We note that

(y − 1)xs · y = −(y − 1)x2n+1−s

from which it follows that K0 is a Λ-submodule of K. Moreover, as

Σxy =
2n∑
s=0

(y − 1)xs + Σx

it follows that K is spanned over Z by { (y − 1)xs | 0 ≤ s ≤ 2n} ∪ {Σx}. However,
starting from the canonical basis for Λ and proceeding by elementary basis transfor-
mations, it is easy to see that {(y − 1)xr | 0 ≤ r ≤ 2n} ∪ {Σx} ∪ {xs | 1 ≤ s ≤ 2n}
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is a Z-basis for Λ. It follows from (1.3) that {(y − 1)xs | 0 ≤ s ≤ 2n} ∪ {Σx} is a
Z-basis for K and Λ/K is torsion free 2

For future reference we note that we have also shown:

(4.2) {(y − 1)xs | 0 ≤ s ≤ 2n} ∪ {Σx} is a Z-basis for K.

Proposition 4.3 K is monogenic, generated by (1− y)θ + Σxy;

Proof : It is clear that (1− y)θ + Σxy ∈ [Σx, y − 1). However, the identity

{(1− y)θ + Σxy} · xn+1(1− y) = (y − 1)

shows that (y − 1) ∈ [(1 − y)θ + Σxy). Thus (y − 1)θ ∈ [(1 − y)θ + Σxy). Hence
Σxy ∈ [(1− y)θ + Σxy) and so Σx = {Σxy} · y ∈ [(1− y)θ + Σxy). 2

Now put L0 = {(y + 1)a(x) | a(x) ∈ Z[C2n+1]} ⊂ L; similarly to (4.1) we have:

Proposition 4.4 : rkZ(L) = 2n+ 2 and Λ/L is torsion free.

Furthermore:

(4.5) {(y + 1)xs | 0 ≤ s ≤ 2n} ∪ {Σx} is a Z-basis for L.

Noting that {(1 + y)θ − Σxy} · xn+1(y + 1) = −(y + 1) an analogous argument to
(4.3) then shows that:

Proposition 4.6 L is monogenic, generated by (1 + y)θ − Σxy.

§5 : Two diagonal resolutions :
Define elements in Λ as follows

∂+
0 = (1− y)θ + Σx · y ;

∂+
1 = (xn+1 − x)(y − 1) ;

∂+
2 = (1 + y)θ − Σx · y ;

∂+
3 = (xn+1 − x)(y + 1)

and put ∂+
4 = ∂+

0 ; we have a sequence repeating with period four infinitely in both
directions:

(S+) . . .
∂+1→ Λ

∂+0→ Λ
∂+3→ Λ

∂+2→ Λ
∂+1→ Λ

∂+0→ Λ
∂+3→ . . .

We shall show that (S+) is exact. To do this first observe that:
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Proposition 5.1 : ∂+
0 ∂

+
1 = 0.

Proof : From the above definitions we see that ∂+
0 ∂

+
1 = A+B where

A = (1− y)θ(xn+1 − x)(y − 1) ; B = Σxy(xn+1 − x)(y − 1).

As Σx is central in Λ and Σx(x
n+1 − x) = 0 it follows that B = 0.

To show that A = 0 we first note that

A = (1− y)y{θxn+1 − θx}+ (y − 1){θxn+1 − θx}

= (y − 1){(θxn+1 − θx) + (θxn+1 − θx)}.

However, by (1.1), θ = θxn+2 so that θxn+1 = θxn+2xn = θx and likewise
θxn+1 = θx. As required we have A = 0. 2

A similar proof shows that

(5.2) ∂+
2 ∂

+
3 = 0.

From the fact that y2 = 1 and that Σx is central in Λ it follows that:

(5.3) ∂+
1 ∂

+
2 = 0;

(5.4) ∂+
3 ∂

+
0 = 0.

Proposition 5.5: Λ/[∂+
r ) is torsion free for each r.

Proof : Let τ : Λ → Λ be the Λ-isomorphism τ(λ) = xλ. Then τ induces an

isomorphism Λ/[π)
'−→ Λ/[τ(π)). However τ(π) = ∂+

1 and Λ/[π) is torsion free, by
(2.8). Thus Λ/[∂+

1 ) is torsion free.
To show that Λ/[∂+

3 ) is torsion free, put υ = (x − 1)(y + 1). Then τn(υ) = −ρ
so that Λ/[υ) is torsion free by (1.3), (1.10) and (2.3). Observing that n is coprime
to 2n+ 1, let α : D4n+2 → D4n+2 be the automorphism α(x) = xn ; α(y) = y and
let α∗ : Λ → Λ be the ring automorphism induced from α. Then τ ◦ α∗(υ) = ∂+

3 so
that Λ/[∂+

3 ) is torsion free.
For the remaining two cases, observe that [∂+

0 ) = K and [∂+
2 ) = L. However, Λ/K

is torsion free by (4.1) and Λ/L is torsion free by (4.4). 2

Proposition 5.6 : rkZ[Ker(∂+
r )] = rkZ[Im(∂+

r+1)] for 0 ≤ r ≤ 3.

Proof : Observe that

(*) rkZ[Im(∂+
r )] =


2n+ 2 r even

2n r odd.
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However rkZ(Ker(∂+
r ) = 4n+ 2− rkZ(Im(∂+

r ); on applying this to (*) we see that

(**) rkZ[Ker(∂+
r )] =


2n r even

2n+ 2 r odd.

On re-expressing (*) in the following form

(***) rkZ[Im(∂+
r+1)] =


2n r even

2n+ 2 r odd

the result follows immediately. 2

Theorem 5.7: The sequence (S+) is exact.

Proof : From (5.1) - (5.4) we see that Im(∂+
r+1) ⊂ Ker(∂+

r ) for 0 ≤ r ≤ 4.
From (5.6) it follows that each Ker(∂+

r )/Im(∂+
r+1) is finite. However, by (5.1) each

Ker(∂+
r )/Im(∂+

r+1) is also torsion free and so Ker(∂+
r ) = Im(∂+

r+1) 2

In addition to (S+) we have another long exact sequence (S−) of period two;

(S−) . . .
y+1→ Λ

y−1→ Λ
y+1→ Λ

y−1→ Λ
y+1→ Λ

y−1→ Λ
y+1→ . . .

From (S+) and (S−) we may form another exact sequence, again repeating with
period four infinitely in both directions:

(S)∞ Λ⊕Λ

(
∂+0 0

0 y+1

)
−→ Λ⊕Λ

(
∂+3 0

0 y−1

)
−→ Λ⊕Λ

(
∂+2 0

0 y+1

)
−→ Λ⊕Λ

(
∂+1 0

0 y−1

)
−→ Λ⊕Λ

(
∂+0 0

0 y+1

)
−→ Λ⊕Λ.

The sequence (S) is a complete resolution ofD4n+2 in the sense of Tate [1]. We proceed
to modify (S) in a number of ways. Taking ε : Λ → Z to be the augmentation map
and defining

∂1 : Λ⊕ Λ→ Λ ; ∂1 = (∂+
1 , y − 1)

∂2 : Λ⊕ Λ→ Λ⊕ Λ ; ∂2 =

(
∂+

2 0
0 y + 1

)
we have the following sequence

(S) . .→ Λ⊕Λ

(
∂+1 0

0 y+1

)
−→ Λ⊕Λ

(
∂+0 0

0 y+1

)
−→ Λ⊕Λ

(
∂+3 0

0 y−1

)
−→ Λ⊕Λ

∂2→ Λ⊕Λ
∂1→ Λ

ε→ Z→ 0

which continues thereafter infinitely to the left with the same differentials as (S)∞.
Noting that Ker(ε) = I and that, by (2.7),

I = [π) +̇ [y − 1) = [∂+
1 ) +̇ Im(y − 1) = Im(∂1)
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we see that:

(5.8) Ker(ε) = Im(∂1).

To proceed we note the following identity.

(5.9) [(1− y)θ + Σxy](y − 1) = (y − 1).

Proposition 5.10 : Ker(∂1) = Im(∂2).

Proof : It is straightforward to check that ∂1∂2 = 0 so it suffices to show that
Ker(∂1) ⊂ Im(∂2). Thus suppose that

∂1

(a
b

)
= 0.

Then ∂+
1 (a) = −(y − 1)b. However, ∂+

0 ∂
+
1 = 0 so that, by the identity of (5.9),

∂+
0 (y − 1)b = {(1− y)θ + Σxy}(y − 1)b = (y − 1)b = 0

Thus b = (y + 1)d for some d ∈ Λ and ∂+
1 (a) = −(y − 1)(y + 1)d = 0. Hence

a = ∂+
2 (c) for some c ∈ Λ and

 a

b

 =

 ∂+
2 0

0 y + 1

 c

d

 = ∂2

 c

d

 .
2

From the foregoing we see that:

(5.11) The sequence (S) is exact.

The sequence (S) is a free diagonal resolution of D4n+2 of period four. There is,
however, an even simpler free resolution to be obtained. Thus if we now define

∂3 : Λ→ Λ⊕ Λ ; ∂3 =

(
∂+

3

y − 1

)
ε∗ : Z→ Λ ; ε∗(1) = Σx(1 + y)

we obtain the following finite sequence

(D)fin 0→ Z
ε∗−→ Λ

∂3−→ Λ⊕ Λ
∂2−→ Λ⊕ Λ

∂1−→ Λ
ε−→ Z→ 0.

From the definition of ∂3 and the exactness of (S) it follows immediately that
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(5.12) Ker(∂2) = Im(∂3).

Proposition 5.13 : Ker(∂3) = Im(ε∗).

Proof : It is straightforward to see that Im(ε∗) ⊂ Ker(∂3). To establish the
reverse inclusion, suppose e ∈ Λ satisfies ∂3(e) =

(
0
0

)
; then

(xn+1 − xn)(y + 1)e = (y − 1)e = 0.

In particular, e = (y + 1)f and so (xn+1 − xn)(y + 1)(y + 1)f = 0; that is
2xn(x− 1)(y + 1)f = 0 or equivalently

(x− 1)(y + 1)f = 0.

Write f = g(x) + h(x)y where g(x), h(x) ∈ Z[C2n+1] so that

e = (1 + y)f = α(x)(1 + y)

where α(x) = g(x) + h(x). As (x − 1)e = 0 then (x − 1)α(x) = 0 so that
α(x) = λΣx and so e = λΣx(1 + y) = ε∗(λ). Thus Ker(∂3) ⊂ Im(ε∗). 2

In consequence of the foregoing we obtain the following, which is statement (B) of
the Introduction:

(5.14) The sequence (D)fin is exact.

Observing that εε∗ = Σx(1 + y) we may repeat (D)fin infinitely to the left to obtain
another free resolution of D4n+2 with period four thus:

(D)∞ . . .
∂2−→ Λ⊕ Λ

∂1−→ Λ
Σx(1+y)−→ Λ

∂3−→ Λ⊕ Λ
∂2−→ Λ⊕ Λ

∂1−→ Λ
ε−→ Z→ 0.

§6 : The syzygies ΩD4n+2
r (Z):

Let Λ denote the integral group ring Λ = Z[G] of a finite group G. If M is a
Λ-module and

(F) . . .
∂n+2→ Fn+1

∂n+1→ Fn
∂n−→ . . . . . .

∂2→ F1
∂1−→ F0

∂0→M → 0

is a free resolution of M of finite type over Λ the syzygy modules (Jr)1≤r of F are
the intermediate modules Jr = Im(∂r) = Ker(∂r−1). The stable class [Im(∂r] is
independent of (F) and is written

ΩG
r (M) = [Im(∂r].
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From the resolution (D)∞ we can read off the syzygies Ωr(Z) ( = ΩD4n+2
r (Z)) directly:

(6.1) Ωr(Z) ∼



[Z] r ≡ 0 mod 4

[(xn+1 − x)(y − 1)]⊕ [y − 1] r ≡ 1 mod 4

[(1 + y)θ − Σxy]⊕ [y + 1] r ≡ 2 mod 4

[(xn+1 − x)(y + 1)]⊕ [y − 1] r ≡ 3 mod 4.

This description can be simplified; as n is coprime to 2n+ 1 then by (3.3) and (3.4)

[(xn+1 − x)(y − 1)) ∼= P ; [(xn+1 − x)(y + 1)) ∼= R

whilst from (4.3) and (4.6) we have [(1 + y)θ − Σxy) ∼= L. Thus

(6.2) Ωr(Z) ∼



[Z] r ≡ 0 mod 4

[P ]⊕ [y − 1] r ≡ 1 mod 4

[L]⊕ [y + 1] r ≡ 2 mod 4

[R]⊕ [y − 1] r ≡ 3 mod 4.

Reading off the syzygies from the resolution (S) gives a slightly different expression
for Ω4(Z); recalling from (4.3) that [(1− y)θ + Σxy) ∼= K, then

(6.3) Ω4(Z) ∼ [K]⊕ [y + 1].

Comparing the expressions for Ω4(Z) in (6.1) and (6.3) we find that :

(6.4) [Z] = [K]⊕ [y + 1].

Together with (6.4), the isomorphisms [(1 − y)θ + Σxy) ∼= K, [(x − 1)(y − 1)) ∼= P ,
[(1 + y)θ − Σxy) ∼= L, [(x − 1)(y + 1)) ∼= R show that (6.2) is equivalent to the
statement (A) of the Introduction.

The decomposition (6.4) illustrates a somewhat paradoxical aspect of the theory of
stable modules, namely that whilst a module (in this case the trivial module Z) may
be indecomposable, its stable class may decompose non-trivially. This phenomenon
seems first to have been pointed out, though without an explicit example, in the
paper of Gruenberg and Roggenkamp ([3] Proposition 1). They attribute the original
observation to E.C. Dade ([3] p. 153).
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§7 : Relations between the modules :
If M , N are Λ-lattices the tensor product M⊗N is defined by imposing the group

action (m⊗ n) · g = m · g⊗ n · g on the abelian group M ⊗Z N . Extending this in
an obvious way to stable modules it is well known and straightforward to show that

(7.1) Ωk(Z)⊗ Ωl(Z) = Ωk+l(Z).

This suggests corresponding relations between the modules K, P , L, R. For example,
the relation Ω1(Z)⊗Ω1(Z) = Ω2(Z) suggests a stable equivalence P ⊗ P ∼ L. This
is indeed the case. More precisely, the author’s student John Evans has shown that
(cf [2]), under tensor product, the relations amongst the modules K,P, L,R are given
by the following table.

(7.2)

⊗ K P L R

K K ⊕ Λn+1 P ⊕ Λn L⊕ Λn+1 R⊕ Λn

P P ⊕ Λn L⊕ Λn−1 R⊕ Λn K ⊕ Λn−1

L L⊕ Λn+1 R⊕ Λn K ⊕ Λn+1 P ⊕ Λn

R R⊕ Λn K ⊕ Λn−1 P ⊕ Λn L⊕ Λn−1

Thus under the operation of tensor product one may view the stable modules [K],[P ],[L],[R]
as a cyclic group of order 4 generated either by [P ] or [R], with [K] as identity.

There are corresponding duality statements. Over an arbitrary finite group one
has Ωr(Z)∗ = Ω−r(Z). However in the special case G = D4n+2 the syzygies have
period four, Ωr(Z) = Ωr+4(Z) so that

(7.3) Ω∗r(Z) = Ω4−r(Z).

In fact the corresponding relations already hold at the level of modules, namely

(7.4) K∗ ∼= K;

(7.5) L∗ ∼= L;

(7.6) P ∗ ∼= R;

(7.7) R∗ ∼= P .

One should perhaps stress that no two of K,P, L,R are isomorphic. In fact, given
that D4n+2 has cohomological period four, no two of K,P, L,R are stably isomorphic.

F.E.A. Johnson

Department of Mathematics

University College London

Gower Street, London WC1E 6BT, U.K.

e-mail address : feaj@math.ucl.ac.uk
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