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groups
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Abstract

Let G be a finite group with integral group ring A = Z[G]. The syzygies Q,.(Z)
are the stable classes of the intermediate modules in a free A-resolution of the
trivial module. They are of significance in the cohomology theory of G via the
‘co-represention theorem’ H"(G,N) = Hompe(2-(Z), N). We describe the
Q,(Z) explicitly for the dihedral groups Dyy42, so allowing the construction
of free resolutions whose differentials are diagonal matrices over A.
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Let A denote the integral group ring A = Z[G] of a finite group G. We say that
A-modules M, M’ are stably equivalent (written M ~ M’ ) when M & A® = M’ @ A°
for some integers a, b > 0. Let

(F) L i O L2 AN RN N

be a resolution over A of the trivial module Z in which each F, is a finitely generated
free module. The syzygy modules (J,)1<, of F are the intermediate modules

J. = Im(0,) = Ker(d,_1).

The stable syzygy €2,.(Z) is then defined to be the stable class [J,] of any such J,.
It is a standard consequence of Schanuel’s Lemma (cf [6] pp. 121-122) that Q,(Z) is
independent of the particular choice of (F). These stable modules are of significant
interest in the cohomology theory of finite groups G; for example, they ‘co-represent’
cohomology in the sense that

Hr(Ga N) = HomDer(Qr(Z)v N)

where Der denotes the derived module category of A (cf [5] Chap 4).
In this paper we give an explicit description of the stable syzygies €2,.(Z) for the
dihedral groups

Dipiz = (z,y | 2 =1,¢9* = 1, yzy ' = 2™).

Taking X, = Zfio 2%, we shall show:
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([ Eay—-1®y+1] r=0 mod4

(z—Dy—-1D]dly—1 r=1 mod4

(A) Q.(Z) ~
ey +1] & [y +1] r=2 mod4
L [@-Dy+D]ely—1 r=3 mod4
where for ay,...,a,, € A, [ag,...,q,] denotes the stable class of the right ideal

[Oél,...,Oém) = {ZOQ)\,L | Al,...,)\mEA}.

r=1

Repetition with period four is to be expected for, as is well known ([5], [9]), the
dihedral groups Dg,.2 have cohomological period four. By contrast, periodicity is
not shared by the dihedral groups of order 4n and for these groups (cf [7]) the task
of describing the syzygies is far more difficult and increases steadily with r

Taken in conjunction with periodicity the above description allows for the con-
struction of free resolutions of an especially simple type. Thus we shall show that
Dy, 1o admits a ‘diagonalised’ free resolution of period four;

(), ., (52

* y— y +y—
(B) 0Z5A Y ApAa Y Oy

AN H5 T ASZ 0.

We may contrast this with the rather more complicated resolutions considered in
[4]. The possibility of constructing diagonal resolutions for more general groups than
cyclic groups was first raised in the thesis of Strouthos [8] who gave a diagonal reso-
lution for the smallest non-abelian group, namely the dihedral group of order six.

§1 : Basis calculations :

In what follows A will denote the integral group ring Z[Dy, 2], and Z the two-
sided ideal Z = Z(Dy,.2) = Ker(e) where € : Z[Dy,12] — Z is the augmentation
homomorphism €(g) = 1 for g € Dy,o. Throughout we work only with right mod-
ules which are also lattices over A; that is, A-modules whose underlying additive group
is free abelian of finite rank. Such a right A-lattice M determines a representation
pu G — GLg(M) by pu(g)(m) = m-g~".

For any finite group G the operation of taking inverses induces a canonical invo-
lution on Z|[G]

1 Z[G) - Z[G) Zagg = Zagg_l-

We note that A contains the group ring Z[Cs,,1] where Cs,; is the cyclic group of
order 2n + 1 having generator x. This subring contains some distinguished elements
which play a special role in our calculations. On defining

2n n—1
Y, = E x 0 = E x"
r=0 r=0



we note that
(1.1) 6 = 62"+,
(1.2) X, is central in A;
Given a, f € A we denote by [«), [«, 8) the right ideals

[a) = {aX | X e A}
[Oé,ﬂ) = {aA+ﬁ/¢|)\,/L€A}

We stress that any ideal in A is a A-lattice. In what follows we shall frequently use:

Proposition 1.3 : Let {E,}ycu be a Z-basis for the free abelian group A and let
B C A be an additive subgroup such that rkz(B) < m. Suppose also that there
exists a subset ® C W such that |®| = m and Ey € B for each ¢ € ®; then

i) rkz(B) = m;

ii) {Ey}sco is a Z-basis for B;
iii) A/B is torsion free.

We define elements FE,. € A by

E, = 2"—1 (1<r<2n) Eoir = (y—1)(2x"—1) (1 <r<2n)
Epy = y—1 By = 1

A has the canonical Z=basis {y?2® |0 < a < 1,0 < b < 2n}, starting from which we
proceed by elementary basis transformations to the following conclusions:

(1.4) {E.}i<r<ant2 is a Z-basis for A.
(1.5) {E,}i<r<ant1 is a Z-basis for 7.
Proposition 1.6 : {E,}1<,<4, is a Z-basis for [z — 1).

Proof : We may regard [x—1) as the induced module [x—1) = Z(Cany1)®z| A.

As A is a free module of rank 2 over Z[Cs, 1] we see that

Cant1]

(1.7)  1kz([z —1)) = 2rkz(Z(Cany1)) = 4n.

Clearly E, € [x — 1) for 1 < r < 2n whilst

2n—r

Eypr = (@77 =1y — B, = (2-1)()_a")y — E.
s=0

Either way, E, € [ — 1) for 1 <r < 4n so the result follows from (1.7) and (1.1).
O



Taking Cy = (y|y? = 1) then a similar argument to the above using the fact that
[y - 1) = I(Cz) Qz[0y) A shows that:

(1.8) {E2n+r}1§rr-§2n+1 is a Z-basis for [y — 1)

From the identities " —1 = (v — 1)/ 2°; ya' —1 = (2" —1) + (y — 1)a";
we observe that

(1.9) ZT=1[x-1) + [y—1).

As we shall see, the sum in (1.9) is far from being direct.

Proposition 1.10  {Es,,}1<r<2n is a Z-basis for [x —1)N[y —1).

Proof: From (1.9) we obtain an exact sequence
O=z—1)Ny—-1)—=xz-1dy—1)—=Z—0

from which, using (1.5), (1.6) and (1.8) we calculate that rkz([z —1)N[y—1)) = 2n.
However, from (1.6) and (1.8) we see that Eo,y, € [t —1) N[y —1) for 1 <r < 2n.
The result now follows from (1.3). O

82 : Decomposing the augmentation ideal :
We define elements 7, p, p € A as follows:

T = (" = 1)(y — 1)
(2.1) p = (y— D" —a") = (@"—a")(y+1)
p = (y—1(x—1)

Clearly p = p-2™™ and p = p-z" so that [p) = [p). We define
P=1I[r) ; R=][p)=1[p)

Evidently 7 = (z — 1){3" 1 2°}(y —1) €[z —1) so that:

(2.2) P C [z—1).

Proposition 2.3: R = [z —1)Ny—1).

Proof : Clearly p € [y —1) so that R C [y —1). However, p = (x—1){—2"(y+1)}
so that R C [x —1). Hence R C [x—1)N[y—1). To show the opposite inclusion
note that Eo,p 1 = p € Rand Eopypy1 = Eopr1-{1+2x+...+2"} so that By, € R
for 1 <r <2n. Hence [x —1)N[y—1) C R. O

Theorem 2.4 : The ideal [x — 1) decomposes as a direct sum
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z—1) = P + R.
Proof : Put Q = [z —1)/R and consider the canonical exact sequence
*) O—>R<—>[ac—1)—h>Q—>O.
It suffices to show that (*) splits over A; in turn, it suffices then to show that

(**) the natural map f restricts to an isomorphism f§: P — Q.

As R has the Z-basis {Eo,+r }1<r<2, Which extends to a basis for A then @ is torsion
free. Furthermore, it follows from (1.6), (2.8) that:

(***) {t(E,)}1<r<on is a Z-basis for Q.

Recall that 7 = (2" — 1)(y — 1). Define # = mz"™ so that 7 = 72" and
[7) = [r) = P. A straightforward calculation shows that

T=@-D+E-DE-1)-@F-a""-1).

Hence g(m) = t(F4) and hence §(7-2") = g(F;-2"). However

E, = E1-{> =}
s=0
so that 2(By) = 57 {3 52%)).
Thus § : P — @ is surjective and rkz(P) > 2n. However 7w -y = —7 so that

P = spang{m-2" |0 <r <2n}. Moreover 7 - ¥, = 0 so that
P = spang{m-2" |1 <r <2n}

and so rkz(P) < 2n. Thus rkz(P) = 2n = 1kz(Q). As §: P — @ is surjective then
1: P — @ is an isomorphism as required. O

We note that in the course of the above proof we established:
(2.5) {7 2"}1<,<2n is a Z-basis for P.
As a consequence of (2.5) we have:
(2.6) PnNnR = {0}
Corollary 2.7 : The augmentation ideal Z decomposes as an internal direct sum
I =[r)+ [y-1)
Proof : By (1.9) wehave Z = [x—1) + [y—1) so that, by (2.4),
I =P + R + [y—1).
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However R=[z—1)N[y—1) C [y — 1) so that
T =P + [y—1).

Now P C [x—1) sothat PN[y—1) C PNnjz—1)N[y—1) C PNR. As PNR = {0}
then PNy—1) = {0}and Z = [r) + [y —1). O

It follows from (2.7) that Z/[r) is torsion free. As A/Z = Z then :

(2.8) A/[n) is torsion free.

83 : Characterising the modules P and R.
We have defined the module P using a quite specific description, namely :

Po=[(" =1y —1).

In practice, it is useful to be able to recognise when a given A-module is isomorphic to
P without being identical to the above model. Thus consider the following properties
of a A-lattice M:

M(—=) : there exists _ € M such that {¢_ - 2" | 1 <r < 2n} is a Z-basis for M
and for which p_ -y = —¢_ ;

M(X) : the identity m - 3, = 0 holds for each m € M,

We recall that P = [r) where 7 = (2" —1)(y —1). As X, is central and
(™ — 1)X, = 0 then P satisfies M(X). Furthermore 7 = (2" — 1)(y — 1) satisfies
m-y = —mand, by (2.5), {7m-2" }1<,<2n is a Z-basis for P. Thus P also satisfies M(—).

These two properties characterize P up to A-isomorphism, as if M satisfies M(—)
and M(X) then {¢p_ - 2" | 1 <r < 2n} is a Z-basis for M and the correspondence

gives an isomorphism of A-modules M —» P; that is:
(3.1) M = P if and only if M satisfies M(—) and M(X).
There is a corresponding characterisation of R in terms of the following property:

M(+) : there exists ¢, € M such that {¢, - 2" | 1 < r < 2n} is a Z-basis for M
and for which ¢, -y = @,.

We recall that R = [p) where p = (2" —2"™)(y + 1). The module R evidently
satisfies M(+) and M(X). Moreover, p € R satisfies p-y = p in consequence of
which R = spang{p-2" : 0 <r <2n—1}. A similar argument to the above shows:



(3.2) M =R if and only if M satisfies M(+) and M(X).
These criteria enable us to recognise non-obvious isomorphs of P, R; for example:

Proposition 3.3 : Let a,b € Z be such that a — b is coprime to 2n + 1; then
[(z* —2)(y - 1)) = P

Proof : If k € Z put m(k) = (2F —1)(y — 1), so that P = [r(n)). Consider the A-
module automorphism A : A — A given by

Az) = ab- 2.

Then X : [r(a—0b)) — [(z*—2%)(y—1) is a A-isomorphism. As [r(k)) clearly satisfies
M(Y) it suffices to show that m(k)) satisfies M(—) when k is coprime to 2n + 1.

Thus suppose that k is coprime to 2n + 1 so that, in particular, z* generates
Coni1. As n is also coprime to 2n + 1 then x" also generates Cy, 1. Hence there
is an automorphism o : Dy,1o — Dynyo with the properties that a(z") = 2* and
aly) = y. Let an. : A — A be the ring automorphism induced by «. Then
a,(m) = m(k) so that a,(P) = [m(k)). Hence rkz([r(k)) = 2n. However as

m(k —m(k)

)y
then [7(k)) = spang{m(k) -2°|0<s S 2n}. However m(k) -3, = 0 so that, as
|1

"
rkz([7r(k)) = 2n then {m(k) -2° |1 < s < 2n} is a Z-basis for [r(k)). Thus [r(k))
satisfies M(—) as required. O

A similar argument yields the corresponding statement for R:

Proposition 3.4: Let a,b € Z be such that a — b is coprime to 2n + 1; then
(2% —2®)(y+1)) = R

84: The modules K, L:
We define K = [¥,,y—1) and L = [X,,y + 1) ; we claim

Proposition 4.1 : rkz(K) = 2n+ 2 and A/K is torsion free.

Proof : Put Ky, = {(1 —y)a(z) | a(z) € Z[Cay11]} C K. We note that

(y—1)z*-y = —(y— 1)z

from which it follows that K is a A-submodule of K. Moreover, as

2n

s=0

it follows that K is spanned over Z by { (y — 1)z* | 0 < s < 2n} U {¥,}. However,
starting from the canonical basis for A and proceeding by elementary basis transfor-
mations, it is easy to see that {(y — 1)a" |0 <r <2n}U{E,}U{z* | 1 < s < 2n}
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is a Z-basis for A. It follows from (1.3) that {(y — 1)z* | 0 < s < 2n} U{X,} is a
Z-basis for K and A/K is torsion free O

For future reference we note that we have also shown:
(4.2) {(y—1)z*|0<s<2n}U{3,}is a Z-basis for K.
Proposition 4.3 K is monogenic, generated by (1 — )0 + X, y;

Proof : It is clear that (1 —y)0 + X,y € [X,,y — 1). However, the identity

{L=p)f+ Sy} 2" (1—y) = (y-1)
shows that (y — 1) € [(1 —y)f + X,y). Thus (y —1)0 € [(1 — y)0 + X,y). Hence
Sey € [(L—y)f + Xoy) and so 5y = {Sey} -y € [(1—9)0 + o). O

Now put Ly = {(y+ 1)a(z) | a(x) € Z[Co,41]} C L; similarly to (4.1) we have:
Proposition 4.4 : rkz(L) = 2n+ 2 and A/L is torsion free.

Furthermore:

(4.5) {(y+1)z*|0<s<2n}U{X,}is a Z-basis for L.

Noting that {(1+y)0 — Xy} 2" (y+1) = —(y+ 1) an analogous argument to
(4.3) then shows that:

Proposition 4.6 L is monogenic, generated by (1 + y)0 — X,y.

85 : Two diagonal resolutions :
Define elements in A as follows

G = 1=y + ¥, -y;
0f = (@ —a2)(y-1);
O = (1+y)f — %u-y;
0 = (@' —a)(y+1)

and put 9 = 9, ; we have a sequence repeating with period four infinitely in both
directions:

+ + + + + +
(ST) R O N N N N W A W G W G

We shall show that (ST) is exact. To do this first observe that:



Proposition 5.1 : 979 = 0.
Proof : From the above definitions we see that 959 = A+ B where
A = (Q=-pb —2)(y-1) ; B = Syl —z)y—1)
As X, is central in A and ¥, (2" —z) = 0 it follows that B = 0.
To show that A = 0 we first note that
A = (1—y)y{fa"T = 0z} + (y — 1){f2"*" — bz}

— (y— D{(E7T — b2) + (62" — )}

However, by (1.1), 6 = 62"*? so that fzntl = @2"*2z" = fz and likewise

Ozt = fx. As required we have A = 0. O
A similar proof shows that

(5.2) 005 = 0.

From the fact that y?> = 1 and that 3, is central in A it follows that:

(5.3) 9705 = 0;

(5.4) 0fof = 0.

Proposition 5.5: A/[0)) is torsion free for each r.

Proof : Let 7 : A — A be the A-isomorphism 7(\) = xzA. Then 7 induces an
isomorphism A/[r) — A/[r(7)). However 7(m) = 0y and A/[r) is torsion free, by
(2.8). Thus A/[0]) is torsion free.

To show that A/[07) is torsion free, put v = (z — 1)(y + 1). Then 7"(v) = —p
so that A/[v) is torsion free by (1.3), (1.10) and (2.3). Observing that n is coprime
to 2n+1, let & : Dypyo — Dayyio be the automorphism a(zx) = 2" ; a(y) = y and
let i, : A — A be the ring automorphism induced from a. Then 7o a,(v) = 85 so
that A/[05) is torsion free.

For the remaining two cases, observe that [0f ) = K and [0 ) = L. However, A/ K
is torsion free by (4.1) and A/L is torsion free by (4.4). O

Proposition 5.6 : rkz[Ker(9;")] = rkz[Im(9,",)] for 0 < r < 3.

Proof : Observe that

2n + 2 r even
(*) rkz[Im(9;))] =
2n r odd.



However tkz(Ker(9) = 4n + 2 — rkz(Im(9;"); on applying this to (*) we see that

2n r even
(**) rkz[Ker(9,")] =
2n+ 2 r odd.
On re-expressing (*) in the following form
2n r even
(**%) rkz[Im(9,)] =
2n + 2 r odd
the result follows immediately. O

Theorem 5.7: The sequence (ST) is exact.

Proof : From (5.1) - (5.4) we see that Im(d/,,) C Ker(9;) for 0 < r < 4.
From (5.6) it follows that each Ker(9;")/Im(9;,,) is finite. However, by (5.1) each
Ker(9,")/Im(9;t,,) is also torsion free and so Ker(d;") = Im(9d},) O

In addition to (S§*) we have another long exact sequence (S™) of period two;

(S7) S W oy W o N e WA WG W e

From (S%) and (§7) we may form another exact sequence, again repeating with
period four infinitely in both directions:
(82+ o) (afr 0) (agr 0)

(?)0* yfl) ((Z; yfl) 0 y+1 0 y—1 0 y+1
(S)oo ABA " — " ABA " — T ABA T — T AGA T — T AGA T —

The sequence (S) is a complete resolution of Dy, o in the sense of Tate [1]. We proceed
to modify (S) in a number of ways. Taking € : A — Z to be the augmentation map
and defining

+
D ABASADA 02:(65 y?rl)

we have the following sequence

(4.2)

0 wy+1
o

(F.5)

0 y+1
o

af o
(S) .. — ABA A®A A@A<—y>)A@A%A@AiA—E>Z—>O

which continues thereafter infinitely to the left with the same differentials as (S)s.
Noting that Ker(e) = Z and that, by (2.7),

I =Im)+[y-1=10)+ Imy-1) = Im(a)

10
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we see that:

(5.8)  Ker(e) = Im(0y).

To proceed we note the following identity.
(5.9) [(1—9)0+Zuylly—1) = (y—1).
Proposition 5.10 : Ker(0;) = Im(0y).

Proof : It is straightforward to check that 0,0, = 0 so it suffices to show that
Ker(0;) C Im(0,). Thus suppose that

() -

Then 8 (a) = —(y — 1)b. However, 95 0;” = 0 so that, by the identity of (5.9),
O (y—1b = {(1 -y +Z,yHy—1)b = (y—1)b = 0
Thus b = (y + 1)d for some d € A and 0 (a) = —(y—1)(y+1)d = 0. Hence

a = 05 (c) for some ¢ € A and

a Oy 0 c c

b 0 y+1 d d O
From the foregoing we see that:
(5.11) The sequence (S) is exact.

The sequence (S) is a free diagonal resolution of Dy, o of period four. There is,
however, an even simpler free resolution to be obtained. Thus if we now define

a—l—
O3 :AN—>ApA agz(yjl)
e:Z— A ; (1) = X, (1+vy)
we obtain the following finite sequence
(D) 0527 -A AN B 0A A -SZ 50

From the definition of J5 and the exactness of (S) it follows immediately that

11



(5.12)  Ker(02) = Im(05).
Proposition 5.13 :  Ker(ds) = Im(€").

Proof : It is straightforward to see that Im(e*) C Ker(d;). To establish the
reverse inclusion, suppose e € A satisfies 03(e) = (8) ; then

(2" — 2" (y+1)e = (y—1)e = 0.

In particular, e = (y + 1)f and so (2" — 2™)(y + 1)(y + 1)f = 0; that is
22"(x —1)(y+1)f = 0 or equivalently

(z-Dy+1)f =0
Write f = g(x) + h(z)y where g(x), h(x) € Z][Cs,41] so that
e = (I+y)f = alz)(1+y)

where a(z) = g(z) + h(z). As (z — 1e 0 then (z — l)a(zr) = 0 so that
a(x) = A\Y, andsoe = A (1+y) = €*(A\). Thus Ker(03) C Im(e*). O

In consequence of the foregoing we obtain the following, which is statement (B) of
the Introduction:

(5.14) The sequence (D)g, is exact.

Observing that ee* = ¥,(1 + y) we may repeat (D)g, infinitely to the left to obtain
another free resolution of Dy, o with period four thus:

1+y

D)oe . BAGA AN B A 2 AN A Z 0.

§6 : The syzygies QP+2(Z):
Let A denote the integral group ring A = Z|[G] of a finite group G. If M is a
A-module and

(F) e Ot Oy L NG RN Y N

is a free resolution of M of finite type over A the syzygy modules (J,)i<, of F are
the intermediate modules J, = Im(d,) = Ker(d,_;). The stable class [Im(d,] is
independent of (F) and is written

QE(M) = [Im(d,].

12



From the resolution (D)., we can read off the syzygies Q,.(Z) (= QP#+2(Z)) directly:

( [Z)] r=0 mod4

[(z" —2)(y—D]®y—1 r=1 mod4
(6.1) 0 (Z) ~
(1+y)0 — X,y @y + 1] r=2 mod4

. (" —2)(y+1)] @ [y — 1] r=3 mod 4.

This description can be simplified; as n is coprime to 2n + 1 then by (3.3) and (3.4)

(@ —2)(y-1)=P ; [ -2)(y+1) =R

( Z) r=0 mod4

[Pl®y—1 r=1 mod4
(6.2) 0.(2) ~
[L]@y+1] r=2 mod4

[Rl®[y—1 r=3 modd4.

\

Reading off the syzygies from the resolution (S) gives a slightly different expression
for Q4(Z); recalling from (4.3) that [(1 —y)0 + X,y) = K, then

(6.3) U(Z) ~ [Kloy+1]
Comparing the expressions for €4(Z) in (6.1) and (6.3) we find that :
(6.4) [Z] = [K]a@y+1].

Together with (6.4), the isomorphisms [(1 —y)0 + X,y) = K, [(x — 1)(y — 1)) = P,
(1+y)0 —2y) = L, [(r—1)(y +1)) = R show that (6.2) is equivalent to the
statement (A) of the Introduction.

The decomposition (6.4) illustrates a somewhat paradoxical aspect of the theory of
stable modules, namely that whilst a module (in this case the trivial module Z) may
be indecomposable, its stable class may decompose non-trivially. This phenomenon
seems first to have been pointed out, though without an explicit example, in the
paper of Gruenberg and Roggenkamp ([3] Proposition 1). They attribute the original
observation to E.C. Dade ([3] p. 153).
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87 : Relations between the modules :

If M, N are A-lattices the tensor product M ® N is defined by imposing the group
action (m®mn)-g = m-g®n-g on the abelian group M ®z N. Extending this in
an obvious way to stable modules it is well known and straightforward to show that

(7.1) W%(Z) @ (Z) = Ui(Z).

This suggests corresponding relations between the modules K, P, L, R. For example,
the relation Q4 (Z) ® Q(Z) = Q9(Z) suggests a stable equivalence P @ P ~ L. This
is indeed the case. More precisely, the author’s student John Evans has shown that

(cf [2]), under tensor product, the relations amongst the modules K, P, L, R are given
by the following table.

(& K | P | L | R |
K| KaeA" | PaAr Le A" | Re Ar
(7.2) Pl PoA” LoA"™ T [Ra A" Ko A ]
L|LaA"" | ReA Ka At | Pe A"
R | Ro A" KaA! | P A" Lo At

Thus under the operation of tensor product one may view the stable modules [K1,[P],[L],[R]
as a cyclic group of order 4 generated either by [P] or [R], with [K] as identity.

There are corresponding duality statements. Over an arbitrary finite group one
has Q,.(Z)* = Q_,(Z). However in the special case G = Dy, 1o the syzygies have
period four, Q,.(Z) = ,,4(Z) so that

(7.3) 0N(Z) = Qu(Z).

In fact the corresponding relations already hold at the level of modules, namely
(74) K*=K;

(7.5) L*=1L;

(7.6) P*=R;

(7.7) R*=P.

One should perhaps stress that no two of K, P, L, R are isomorphic. In fact, given
that Dg,12 has cohomological period four, no two of K, P, L, R are stably isomorphic.
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