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Abstract

Ramp metering, variable speed limits, and hard shoulder running control strategies have

been used for managing motorway traffic congestion. This thesis presents a modelling

and optimisation framework for all these control strategies. The optimal control prob-

lems that aim to minimise the travel delay on motorways are formulated based upon a

macroscopic cell transmission model with piecewise linear fundamental diagram. With

the piecewise linear nature of the traffic model, the optimal control problems are for-

mulated as linear programming (LP) and are solved by the IBM CPLEX solver. The

performance of different control strategies are tested on real scenarios on the M25 Mo-

torway in England, where improvements were observed with proper implementation.

With considering of the uncertainties in traffic demand and characteristics, this thesis

also presents a robust modelling and optimisation framework for dynamic motorway

traffic. The proposed robust optimisation aims to minimise both mean and variance of

travel delays under a range of uncertain scenarios. The robust optimisation is formulated

as a minimax problem and solved by a two stage solution procedure. The performances

of the robust ramp metering are illustrated through working examples with traffic data

collected from the M25 Motorway. Experiments reveal that the deterministic optimal

control would outperform slightly the robust control in terms of minimising average

delays, while the robust controller gives a more reliable performance when uncertainty

is taken into account. This thesis contributes to the development and validation of

dynamic simulation, and deterministic and robust optimisation.
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ô pre-set expected value for downstream occupancy in ALINEA



Chapter 1

Introduction

1.1 Background and Motivation

The performance of transport infrastructure is closely linked to the associated society’s

prosperity, economic growth and quality of life. Sustained growth in demand in virtually

all modes of transport places tremendous pressure on the infrastructure. This ever-

increasing demand for travel results in considerable congestion and economic loss in

many cities around the world. Traffic congestion has significant impacts on many related

important issues including energy consumption, public health, safety, environment, and

security. The grand challenge for the world’s major cities in the 21st century is to make

economic growth and sustainability compatible.

Traffic volume has grown rapidly over the last few decades in the United Kingdom [3].

Traffic congestion is a major bottleneck for economic and social development. It is

one of the key challenges for major cities around the world, especially for the United

1
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Kingdom (UK). The UK Eddington study [28] states that the monetary cost due to road

congestion will reach £22 billion (at 2002 prices) per annum for all road users by 2025,

in which 13 per cent of road traffic will be subjected to stop-and-go travel conditions. In

a report published in 2009, the UK Department for Transport (DfT) also suggests that

traffic congestion across the English road network as a whole will increase from 2003

levels by 27 per cent by 2025, and 54 per cent (67 per cent in the London road network)

by 2035. This represents an average increase in time spent travelling of 9 per cent (6

seconds) for each kilometre travelled [3].

Continuous construction of new roads will not be a sustainable solution to traffic con-

gestion due to the increasingly constrained financial, physical, and environmental con-

ditions. Consequently, governments, businesses, and research teams around the world

want to explore alternative ways to effectively utilise and manage existing road infras-

tructure. In fact, adding new infrastructure may induce more demand for travel and

hence is not an effective option. Therefore, a sustainable solution for mitigating conges-

tion calls for the effective management of the existing infrastructure through appropriate

control methods. This study investigates the modelling and optimisation framework for

dynamic motorway traffic.

1.2 Review of Traffic Models

A traffic model is a mathematical representation that is used to describe and estimate

the behaviour of traffic flow. The importance of a traffic model for effective transport

management is highlighted in Kotsialos and Papageorgiou [52]. Various traffic models

have been developed in the past decades. Traffic models can be broadly categorised into
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microscopic and macroscopic paradigms according to the level of detail. Microscopic

models simulate the traffic behaviour of individual vehicles, while macroscopic models

represent traffic at an aggregated level. Details of different models are presented below.

1.2.1 Microscopic models

Microscopic models simulate the traffic behaviour of each vehicle and their laws are

drawn from cognitive studies, artificial intelligence, and measurements with the use of in-

vehicle devices. Some established examples of microscopic models include AIMSUN [16],

DRACULA [63], Paramics [97] and VISSIM [87]. The car-following models are typical

microscopic models with the consideration of interaction between adjacent vehicles. In

a car-following representation [49], the motion of a group of vehicles by supporting that

the motion of the foremost vehicle is known and then applying the model to calculate

that each successive vehicle. The general form of car-following models conforms to that

of stimulus-response. This can be expressed in broad terms as:

Response(later) = Sensitivity × Stimulus(now) (1.1)

where the stimulus is defined by the velocity difference between adjacent vehicles, and

the response refers to the current action (e.g. acceleration and braking) of the following

vehicle [47], and the sensitivity is a parameter specifying how the following drivers react

to this action.

Different forms of sensitivity give rise to different car-following models. Various car-

following models are prepared in the literature, including Gazis-Herman-Rothery (GHR)
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models, Safety distance or Collision avoidance models, Linear models, and Psychophys-

ical or Action point models. The simplest stimulus-response relationship of GHR model

[18] is as follows:

an(t+ T ) = µ1

(
vn−1(t)− vn(t)

)
(1.2)

The response [an(t+T )] depends linearly in the stimulus [vn−1(t)−vn(t)]. In particular,

the sensitivity is supposed to independent of both speed and spacing, and is the same for

acceleration as it is for braking. The response [an(t+ T )] is the acceleration of the nth

vehicle at time t + T , and T is the duration of the lag between stimulus and response,

which due to the driver’s behaviour (such as perception, interpretation, evaluation and

action) or the vehicle’s mechanical lag. The notation µ1 is the sensitivity coefficient

which is a constant. The stimulus [vn−1(t) − vn(t)] is the relative speed of the nth

vehicle to its front vehicle n− 1 at the time t.

The stimulus-response type car-following model has been modified by many researchers

since 1950s [12]. Gazis et al. [30] propose a further modification of the GHR model such

that the distance between adjacent vehicles is considered in the sensitivity of the model.

Edie [29] modifies the GHR model by considering that the speed of the leading vehicle

will also influence the following vehicle. The general form of the GHR model can be

written as:

an(t+ T ) = µ2
vn(t+ T )l

sn(t)m
(
vn−1(t)− vn(t)

)
(1.3)

where the response [an(t+ T )] is the acceleration of the nth vehicle at time t+ T . The

stimulus [vn−1(t)− vn(t)] is same as the stimulus used in Equation 1.2. The sensitivity

[µ2
vn(t+ T )l

sn(t)m
] considers the speed of the vehicle and the distance between adjacent

vehicles, where sn(t) is the spacing in front of vehicle n at time t, and vn(t + T ) is the
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speed of the nth vehicle at time t + T , and µ2 is the sensitivity coefficient. Different

combinations of m and l have been investigated by some researchers (e.g. May and

Harmut [69]; Ozaki [76]). May and Harmut [69] consider a range of possibilities of m

and l, and they found that the best fit for motorway data was achieved with values

m = 0.8, l = 2.8, and for traffic in tunnels with values m = 0.6, l = 2.1. However, it is

difficult to choose a uniform value of m and l to fit all traffic conditions.

The original formulation of safety distance or collision avoidance models dates to 1959

[51]. The collision avoidance model considers the following vehicle keeping the minimum

safe following distance. Gipps [32] develops the model by considering several mitigating

factors. Since then, the collision avoidance model is widely used in simulation.

The other kind of microscopic model is Cellular automata models [104] which use dis-

cretised time and space. A set of local rules are defined to describe the relationship

between the centre cell and its neighbouring cells in the isotropic case. The rules of

Cellular automata models can be modified intuitively and flexibly by considering dif-

ferent traffic conditions. Cellular automata models can be divided into two categories:

one is the basic one-dimensional Cellular automata models suitable for motorway traffic

such as rule-184 model [103] and NS model [71], and the other two-dimensional Cellular

automata models (e.g. BML4 model [11]) are suitable for urban network traffic. Cellular

automata models retain non-linear behaviour and some physical characteristics of traffic

flow, and those models are easier to simulate on the computer.
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1.2.2 Macroscopic models

In contrast to microscopic models, macroscopic models represent traffic dynamics in

terms of aggregated quantities: flow, density and mean speed of traffic. The relation-

ship between density and flow is known as the fundamental diagram (see Figure 1.1).

The fundamental diagram plays an important role in modelling the dynamics of traffic

propagation.

Figure 1.1: Fundamental diagram

The fundamental diagram should be able to represent traffic in all possible states: free

flow, at capacity and congested. In general, the function of fundamental diagram Φ is

assumed to be concave and is defined for density ρ ∈ [0, ρ̄], where ρ̄ is the jam density
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which is the maximum density of traffic that can be achieved at the corresponding

location. The maximum value of flow observed on the diagram is regarded as the capacity

at that location, which is Q as shown in Figure 1.1. The density at which the capacity

flow is observed is called the critical density ρ̊, in which Φ is increasing for all ρ < ρ̊ and

Φ is decreasing for ρ > ρ̊. The data with a density value higher than critical density

are classified as congested data, which are characterised by the fact that an increase in

density will induce a decrease in flow which is because of the speed reduction due to

the onset of congestion at high densities. Data points associated with a density lower

than critical density are regarded as free flow. Traffic in a free flow state generally

proceeds with a relatively steady speed known as the free flow speed. As a result, the

flow increases as the density of traffic increases.

A number of functional forms for fundamental diagram have been proposed in the lit-

erature to model this fundamental relationship between traffic flow and density. Some

well-known ones include Greenshields [36], Greenberg [35], and Edie [29]. Moreover,

Carey and Bowers [14] present a comprehensive review of different fundamental dia-

grams adopted for traffic flow modelling. Newell [73] proposes the use of a piecewise

linear fundamental diagram (triangular shape) in his seminal paper on traffic flow the-

ory, which is then adopted by Daganzo [23] in his cell transmission model formulation.

As pointed out by Papageorgiou et al. [80]; Lo [64]; Kotsialos and Papageorgiou [52] and

many others, a macroscopic traffic model should incorporate the fundamental diagram

of traffic flow in order to produce plausible estimations. Based upon the fundamen-

tal diagram of traffic, macroscopic traffic models can further be distinguished into two

approaches: first order models and higher order models.



Chapter 1. Introduction 8

Lighthill and Whitham [61], and Richards [90] propose a pioneering first order macro-

scopic model of traffic flow which is called a kinematic wave model. The kinematic wave

model is also known as the Lighthill-Whitham-Richards (LWR) model. They applied

the method of fluid dynamics to the traffic flow by making an analogy with traffic flow

and continuous fluid. The model considers two spatiotemporal variables f(x, t) and

ρ(x, t), which represent the flow and density at location x along a road section at time

t respectively.

Consider a stretch of motorway, the number of vehicles flowing from x to x+ ∆x during

time interval [t, t + ∆t]. At time t the traffic density on this section is ρ(x, t), and at

time t + ∆t the traffic density on this section is ρ(x, t) −∆ρ. The negative sign of the

∆ρ represents the congested traffic condition because that a increase in traffic density

will induce a decrease in flow under heavy traffic. The traffic flows into the section at a

rate of f(x, t), and flows out of the section at a rate of f(x, t) + ∆f . Suppose no entries

and exists in this section, then the rate of change in the number of vehicles should equal

to the net flow into this section as follows:

(
ρ(x, t)−

(
ρ(x, t)−∆ρ

))
∆x =

(
f(x, t)−

(
f(x, t) + ∆f

))
∆t (1.4)

Simplifying the Equation 1.4 gives,

∆ρ∆x = −∆f∆t (1.5)

that is,

∆ρ

∆t
+

∆f

∆x
= 0 (1.6)
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Then to take limit,

∂ρ(x, t)

∂t
+
∂f(x, t)

∂x
= 0 (1.7)

The conservation law (Equation 1.7) presented above assumes the traffic on a homoge-

neous motorway without entering and exiting traffic. However, in reality, the motorway

always has on-ramps and off-ramps, we extend the conservation law to model such in-

homogeneitoes. The revised conservation law (Equation 1.8) describes the number of

vehicles in the road section during a time interval equals to the total vehicles that have

entered the road section by that time minus the total vehicles that have exited the

section by the same time.

∂ρ(x, t)

∂t
+
∂f(x, t)

∂x
= r(x, t)− s(x, t) (1.8)

for all x and t, where r(x, t) and s(x, t) are the exogenous inflow (e.g., on-ramp or main

road inflow) and outflow (e.g., off-ramp or main road outflow) at (x, t) respectively.

Following Equation 1.8, the LWR model assumes that the traffic flow f(x, t) adjusts

instantaneously to the associated traffic density ρ(x, t) through a predefined fundamental

diagram function Φ as follows:

f(x, t) = Φ
(
ρ(x, t)

)
(1.9)

As a first order model, the speed v(x, t) = f(x, t)/ρ(x, t) is assumed to adjust to the

associated traffic density instantaneously (see further discussion in Papageorgiou [77]).

The LWR model has been one of the most widely accepted models due to its plausibility

and simplicity. However, it is not easy to solve the LWR model analytically. A number
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of numerical schemes have been proposed for solving the LWR model. Daganzo [23]

develops the cell transmission model (CTM), which discretises the LWR model over

time and space. The cell transmission model divides the road network into a collection

of sub-sections or cells whose length is equal or greater than the distance travelled by a

single vehicle on the free flow speed in one time step. Lebacque [57] demonstrates that

CTM is an application of the Godunov scheme [33], which is an established discretisation

method for solving partial differential equations with discontinuous solutions. The cell

transmission model (CTM) proposed by Daganzo [23] remains one of the most efficient

discretisation schemes due to its simplicity and credibility, which will be discussed in

details in Section 2.2.

A major criticism of the LWR model is its implicit assumption of unrealistically high

acceleration and deceleration of vehicles through Equation (1.9) and its incapability of

capturing a complex phenomenon such as capacity drop and stop-and-go wave [105].

Further discussion on LWR model can be found in Nagel and Nelson [70]. In an attempt

to remedy the deficiency of first order models, Payne [88] develops a second order model,

which considers the transient dynamics of acceleration and deceleration, and drivers

reaction time during the state transition. The second order models consider the dynamic

of speed. Therefore, a change in the downstream density influences the speed of the

upstream after a period of time.

1.2.3 Discussion

Microscopic models have been adopted in many practical applications, where they are

able to describe fine details of traffic flow in the real world. The primary advantage of
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microscopic models is that the individual vehicle motion can be modelled. Neverthe-

less, calibrating microscopic models can be extremely expensive, as they require a huge

amount of data and manpower in order to collect and capture the fine details of traffic

flow to be modelled, and it hinders them from system wide applications and optimisa-

tion. Moreover, some information such as drivers’ reaction times and decision rules on

lane-changing behaviour are latent and may never be observable.

In contrast to microscopic models, macroscopic models are simpler due to the fewer

model parameters involved. Macroscopic models represent traffic dynamics in terms of

aggregated quantities: flow, density and mean speed of traffic. In general, the required

data for macroscopic models can be readily obtained from standard surveillance infras-

tructure such as loop detectors, cameras and other kinds of fixed sensors. Moreover,

macroscopic models are much more computationally efficient than their microscopic

counterparts, while actually not sacrificing too much accuracy considering the fact that

the amount of data required to fully calibrate microscopic models are often not obtain-

able in practice. This makes macroscopic models a feasible candidate for large-scale

applications in the real world.

Compared with the first order macroscopic models, the second order macroscopic models

can reproduce more complex traffic phenomena because the dynamic speed is adopted

in the second order models. However, Daganzo [25] identifies several deficiencies of sec-

ond order models including the possibility of violation of causality and negative flows.

Moreover, the calibration of second order models involve determination of additional pa-

rameters such as acceleration/deceleration rates, and drivers’ reaction time. Considering

desirable mathematical properties and computational efficiency, this study adopts the

first order macroscopic model (CTM) to represent traffic dynamics in the optimisation
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framework.

1.3 Current Practice of Traffic Control

Over the past decades, significant advances have been made by introducing appropriate

traffic control strategies to make the best use of existing motorways [2]. This section

reviews those control strategies that are used for motorways such as ramp metering,

variable speed limits (VSL), and hard shoulder running (HSR).

1.3.1 Ramp metering

Ramp metering has been proved to be effective in reducing traffic congestion and travel

time. It has been used in the United Kingdom, United States, Germany, France and

other parts of the world (see Bellemans et al. [6]; Haj-Salem et al. [39]; Harbord [41]; Zhang

and Levinson [110]). Researchers have developed various ramp metering strategies. De-

tails can be found in Papageorgiou and Kotsialos [78] which provides a comprehensive

review on ramp metering.

Wattleworth [102] proposes a fixed-time ramp metering strategy. However, it leads ei-

ther to overload of the main road flow or underutilisation of the motorway due to the

dynamic variations of traffic conditions, which were not taken into account. To accom-

modate the temporal variation of traffic, traffic responsive ramp metering strategies were

developed. Traffic responsive ramp metering are based on real time measurements from

loop detectors or other kinds of sensors installed in the motorway. Ramp metering can

further be classified into local and coordinated ramp metering. Figure 1.2 shows the
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typical configuration of traffic responsive ramp metering system. Loop detectors (the

rectangle in Figure 1.2) are installed in the on-ramp and main road of the motorway.

The control device gathers data (e.g. traffic flow, speed and occupancy) from loop de-

tectors and processes the information. Then the traffic lights can be set according to

the current traffic condition.

Figure 1.2: Configuration of responsive ramp metering system

Local ramp metering strategies make use of measurements from the vicinity of a single

ramp. Most prominent examples of local ramp metering strategies are the demand-

capacity (DC) and the occupancy (OCC) strategies. The control rule of the demand-

capacity strategy [68] is shown as follows:

r(k) =


Q− fin(k − 1) if oout(k) < o̊

rmin else

(1.10)

where r(k) is the ramp inflow over simulation time step k, Q is the downstream capacity

of the on-ramp, oout(k) and o̊ are the occupancy measurement over simulation time
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step k and the critical occupancy at the downstream of the on-ramp respectively. The

notation fin(k − 1) is the upstream motorway flow measurement of the on-ramp over

simulation time step k−1, and rmin is the pre-set minimum value of the on-ramp inflow.

Figure 1.3 shows the demand-capacity strategy is an open loop control strategy which

is sensitive to various disturbances [78].

Figure 1.3: Demand-capacity ramp metering strategy

(Source: Papageorgiou 2000 [78])

The occupancy strategy (e.g. ALINEA) is similar to the demand-capacity strategy, but

it replies on downstream occupancy measurements of the on-ramp. The ALINEA [82]

strategy and its variations are feedback control schemes (as shown in Figure 1.4) target-

ing a set-point for the downstream occupancy. ALINEA regulates the ramp inflow r(k)

according to the downstream measurement of main road occupancy oout(k − 1) of the

on-ramp as follows:

r(k) = r(k −∆c) +Kr

(
ô− oout(k − 1)

)
(1.11)
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where r(k) is the ramp inflow over simulation time step k, Kr is the control gain,

oout(k) is the occupancy measurement over simulation time step k, ∆c is the control

period governing the frequency of updating the ramp metering strategy, r(k − ∆c) is

the ramp inflow over time step k−∆c, and ô is a pre-set target occupancy value at the

downstream of the on-ramp, which is typically set as the associated critical occupancy

[83]. If the measured downstream occupancy is less than (greater than) the required

downstream occupancy, the new ramp metering rate is increased (decreased) on the

basis of the last ramp metering rate. This ramp metering strategy measures only the

downstream occupancy, so it requires fewer measurements than any other local ramp

metering strategies.

Figure 1.4: ALINEA ramp metering strategy

(Source: Papageorgiou 2000 [78])

Kerner [50] develops an alternative ramp metering strategy (ANCONA). In three-phase

traffic theory, the traffic is classified into free-flow (F), synchronised flow (S), and wide

moving jam (J). ANCONA will not restrict the on-ramp inflow when bottleneck under
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free-flow (F) traffic, therefore the on-ramp inflow r(k) is as follows:

r(k) = λ(k) (1.12)

where λ(k) is the traffic demand that wants to enter the network, and r(k) is the actual

demand that enters the network.

When synchronised flow (S) is measured at the bottleneck, ANCONA starts to control

the on-ramp inflow based on main road speed measurements. The detected average

speed vdec and predefined predefined congestion speed vcon are used to define the traffic

condition. If vdec ≤ vcon, ANCONA reduces the on-ramp inflow as follows:

r(k) = λ1(k) < λ(k) (1.13)

When the reduced on-ramp inflow applied for a period of time, the traffic condition will

return to free-flow (F) indicated by vdec > vcon. ANCONA increases on-ramp inflow by

introducing a greater on-ramp inflow λ2(k) which is λ2(k) > λ1(k).

Local ramp metering strategies operate the motorway traffic depending on the local mea-

surements, therefore the controllers performance independently at different locations. In

order to achieve greater efficiency, coordinated ramp metering strategies are developed

to coordinate local ramp metering actions for the global motorway system rather than a

single junction. Coordinated ramp metering strategies make use of measurements over

a region of motorway to control all metered ramps included therein [86].

A number of coordinated ramp metering approaches have been proposed in the liter-

ature. Kotsialos and Papageorgiou [53] and Papamichail et al. [86] present a model
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predictive framework for coordinated ramp metering based on a second order model

(METANET), which considers capacity drop and transient behaviour of traffic conges-

tion. Hegyi et al. [43] solve this problem based on METANET model. Gomes and

Horowitz [34] propose a deterministic ramp metering optimiser based on a cell trans-

mission model (CTM) [23] and formulate it as a linear programming. Kurzhanskiy and

Varaiya [54] presente a CTM-based performance evaluation tool which is called TOPL

[19] (TOPL is mainly a macroscopic performance evaluation tool which does not involve

optimisation). Therefore, optimal ramp metering strategies need to be developed for

motorway networks.

There are also some other rule based coordinated control systems such as HERO [85]

(an extension of ALINEA) and others (see Zhao et al. [111] and Zhang and Levinson

[108]). Rule based ramp metering control strategies are useful to a certain situation on

the road. Most of the control systems are based upon a traffic model and the importance

of a reliable model of traffic to effective transport management has been highlighted in

Kotsialos and Papageorgiou [52]. This study adopts a model based optimiser for deriving

coordinated ramp metering strategy.

1.3.2 Variable speed limits

Variable speed control schemes adjust the speed limit according to the current traffic

condition with variable message signs (see Figure 1.5). The objective is to improve

mobility through managing the formulation of congestion and smoothing traffic flows,

as well as safety through reducing the variance in speed. Variable speed limits (VSL)

can be regarded as main road metering, which reduce the incoming flow on the main



Chapter 1. Introduction 18

road. Moreover, reducing speed as traffic density approaching critical value also helps

to prevent breakdown as empirical study shows that the journey times remain constant

under VSL even with increased traffic volume and reduced speed [41]. Several simulation

studies present the influence of VSL on traffic. Hadiuzzaman and Qiu [38] report VSL

is an effective control method during congested periods. Hegyi et al. [44] test VSL on a

hypothetical network based on a second-order traffic model (METANET), which shows

total travel time decreased as VSL eliminate the effect of a shock wave. In addition to

mobility, it is also revealed that VSL have a positive impact on safety and mobility (Lee

et al. [58]). Empirical study has also been conducted in the Netherlands by van den

Hoogen and Smulders [99], who analyse the result of VSL on the A2 Motorway in the

Netherlands, which indicates VSL are useful to control traffic flow and unsafe driving

behaviour.

Figure 1.5: Variable speed limits in operation

(Source: UK Highways Agency, Feb 14, 2007)
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In this study, we develop a mathematical tool for minimising the total travel delay of a

motorway system through determining a set of optimal VSL. The formulation extends

[34] by considering main road variable speed control and formulating the corresponding

optimisation problem as a mixed integer linear programming (MILP). This study also

includes analyses on the sensitivity of the optimal control solutions with respect to

different assumptions of changes in traffic characteristics under reduced speed limits.

1.3.3 Hard shoulder running

The hard shoulder is originally designed for managing incidents on motorways. Hard

shoulder running (HSR) is a strategy which increases the motorway capacity by opening

the hard shoulder to road users as a traffic lane during peak periods or accidents. This

control can be operated temporarily through the utilisation of the variable message signs

mounted on overhead gantries (see Figure 1.6). In practical applications, HSR is only

used when the speed limit is reduced to at least 60 mph [4] with the consideration of

safety.

Hard shoulder running has been used in a number of European motorways. A pilot

scheme involving the HSR operates in Birmingham since 2006 on the M42 Motorway

over a 17 km stretch between Junctions 3A and 7. The signs and signals on the managed

M42 Motorway inform drivers of the speed limit in operation and the availability of hard

shoulder lane. The results show that it is a cost-effective way to increase throughput

along congested road sections, and an additional 15 per cent reduction in travel time is

observed [100]. Cohen [21] presents the effect of using HSR on the capacity and speed
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Figure 1.6: Operation of hard shoulder running on the M42 Motorway

(Source: ITS International 2009)

based on the traffic data collected from the A86 Motorway in Paris. Geistefeldt [31]

summarises the effect of temporary hard shoulder running in the German federal state

of Hesse. In addition, Samoili et al. [91] investigate the lane flow distribution based

on the data collected from a Swiss motorway section. As discussed above, significant

advances have been made by introducing HSR to make the best use of the motorway over

recent decades. However, little research has been conducted in mathematical analysis

of HSR. This study develops a mathematical tool for minimising the total travel delay

of a motorway system through HSR.
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1.4 Research Contributions

This thesis develops a mathematical tool for optimising the performance of motorway

through modelling and regulating the traffic flowing on it. Unlike usual practice that

relies on computational expensive microscopic simulations, the tool developed herein

adopts a macroscopic representation of traffic flow which is called cell transmission model

(CTM). We demonstrate how one can use traffic data collected from standard loop de-

tection systems to develop and calibrate a CTM-based model of a specific road network.

The CTM traffic model is parsimonious and piecewise linear which allows us to formu-

late the corresponding system optimisation as a linear programming (LP) problem or

Mixed Integer Linear Programming (MILP). It is known that LP problems can be solved

by established solution algorithms such as SIMPLEX or interior-point methods for the

global optimal solution, and Mixed Integer Linear Programming (MILP) can be solved

by using a branch-and-bound algorithm for the global optimal solution. The concept is

illustrated through a real case study of UK M25 Motorway. To the best of our knowl-

edge, this is one of the few systemic studies on motorway modelling and optimisation

using real scenario data. By considering the demand and supply uncertainty, the robust

ramp metering is developed. The optimal solution calculated can provide useful insights

and guidance on how we should manage traffic flow on motorway in order to maximise

the corresponding efficiency. The main contributions of this thesis are as follows:

1. it contributes to the development and validation quick and reliable traffic models

and algorithms to process raw traffic flow data collected from motorways;

2. it contributes to the development of effective optimisation algorithms to derive

optimal ramp metering based on the sensor measurements and model estimations;
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3. it contributes to the sensitivity of optimal ramp control solutions with respect to

different scenario configuration and model assumptions. We provide a numerical

examples and results using our optimal model regarding the effectiveness of ramp

metering with respect to network configuration and separation of ramps. Moreover,

the sensitivity analysis of the weighting parameter in the objective function is

presented;

4. it contributes to the development of the optimal control formulation and solution

for variable speed limits and hard shoulder running operations. We adopt a Mixed

Integer Linear Programming (MILP) approach and demonstrate the optimal speed

control and hard shoulder solutions over a range of scenarios including a real case

of M25 Motorway in the UK;

5. it contributes to the analyses of variables speed limits operations with different

assumptions on fundamental diagram transformation. It is interesting to observe

that the effectiveness of variable speed limits depends heavily on changes in ca-

pacity rather than changes in shape of the fundamental diagrams;

6. it contributes to the motorway of traffic management with the consideration of

uncertainties in traffic demand and characteristics. We do not only apply ex-

isting optimisation methods (e.g. [64]; [114]; [34]), which seek optimal control

strategies where the travel demands and fundamental diagrams are considered to

be deterministic. The paper extends these existing optimisation formulations to

incorporate the uncertainties in demand flows and the set-valued fundamental di-

agrams under congested situation. We present how the uncertainties of the traffic

variables can be specified by using likelihood region (Ω) and how the robust op-

timisation can be solved an iterative two-stage solution algorithm. The robust
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optimisation model for dynamic motorway traffic control is novel and has never

been seen in the literature.

1.5 Thesis Outline

This thesis is organised as follows:

Chapter 2 reviews cell transmission model, and demonstrates the use of traffic data

collected from standard loop detection systems for calibrating the fundamental diagram.

Chapter 3 presents an optimisation framework for motorways through ramp metering

maximising. The concept is illustrated through a case study of the M25 Motorway in

the UK.

Chapter 4 presents an optimisation framework with variable speed limits, hard shoulder

running, ramp metering with variable speed limits, and integrated control strategies.

The concept is also illustrated through a case study of the M25 Motorway in the UK.

Chapter 5 presents a robust ramp metering optimisation framework for a motorway

system with uncertainties in traffic demand and characteristics. The uncertainties are

quantified through set-valued functions.

Chapter 6 provides some concluding remarks and a future research plan.





Chapter 2

Modelling of Motorway Traffic

2.1 Introduction

In this chapter, we discuss modelling of dynamic road traffic flow. The chapter is or-

ganised as follows: Section 2.2 begins with an introduction of cell transmission model

(CTM); Section 2.3 discusses the processing of the raw traffic data collected from stan-

dard loop detection system. Section 2.4 presents the model calibration procedure with

loop detector data. Section 2.5 provides some concluding remarks.

2.2 Cell Transmission Model

The cell transmission model is a finite difference approximation of the first order LWR

model proposed by Daganzo [23]. Under the cell transmission formulation, the road

section is discretised into a collection of sub-sections or ‘cells’ as shown in Figure 2.1.

25
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Figure 2.1: Discretisation of a road section

The cells are numbered from the upstream 1 to the downstream I in the figure. The

first cell (main source) is connected to a main road demand λ0(k). Moreover, each cell i

can also be associated with an external incoming flow λi(k) (e.g. an on-ramp) and an

external outgoing flow si(k) (e.g. an off-ramp) at each simulation time step k. In the cell

transmission formulation, traffic dynamics are characterised by flow and density. The

evolution of traffic flow and density is governed by the principles of flow conservation

and propagation.

Define fi(k) the traffic outflow from cell i during time step k, and hence fi−1(k) (outflow

from upstream cell i − 1) will be the inflow to cell i during the same time step k. The

density in cell i at the following time step k+1 can then be updated by the conservation

equation as follows:

ρi(k + 1) = ρi(k) +
∆t

∆xi

(
fi−1(k)− fi(k) + ri(k)− si(k)

)
(2.1)

where ∆t denotes the length of simulation time step, and ∆xi represents the length of

cell i. fi(k) is the traffic outflow from cell i during time step k, and ρi(k) is the density

in the cell i during time step k. ri(k) and si(k) represent the actual on-ramp inflow and
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off-ramp outgoing flow during time step k respectively.

It is noted that Equation (2.1) indeed is a discretised version of Equation (1.8). The time

step size ∆t is set such that ∆t ≤ min
i

∆xi
vi

, where min
i

∆xi
vi

refers to the smallest ratio

of cell length to the associated free flow speed along the section. The above condition

is known as the Courant-Friedrichs-Lewy (CFL) condition [22], which is used to ensure

the numerical stability and non-negativity of traffic quantities by constraining the traffic

to not travel further than the length of the cell in one simulation time step.

By assuming a piecewise linear fundamental diagram (see Figure 2.2), the cell transmis-

sion rule calculates the outflow from cell i within time step k, which can be updated

under the given cell density as follows:

fi(k) = min{viρi(k), Qi, Qi+1, wi+1

(
ρ̄i+1 − ρi+1(k)

)
} (2.2)

where fi(k) is the traffic outflow from cell i during time step k, and ρi(k) is the density

in the cell i during time step k. The notations vi, wi+1, and ρ̄i+1 are free flow speed,

shockwave speed and jam density respectively. The notation Qi denotes the capacity

flow at cell i which corresponds to the maximum flow that can leave cell i, and Qi+1

represents the capacity flow at cell i + 1 which corresponds here to the maximum flow

that can enter cell i+ 1. The inclusion of both capacity flows at adjacent cells is due to

the consideration of a non homogeneous section where different locations hold different

capacities.

Equation (2.2) can be regarded as a piecewise linear approximation of Equation (1.9).

When there is no congestion, the traffic moves from one cell to the next cell at free
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Figure 2.2: Triangle shaped fundamental diagram

flow speed vi. The quantity
(
viρi(k)

)
represents the total traffic flow travels from

cell i to cell i + 1. The notation wi+1 denotes the backward shockwave speed specified

by the fundamental diagram at the downstream cell i + 1, and ρ̄i+1 is the jam density

at cell i + 1. The quantity
(
wi+1

(
ρ̄i+1 − ρi+1(k)

) )
specifies the available space for

incoming traffic at the downstream cell i+ 1 during time step k. The above formulation

covers both congested and uncongested regimes. It is known that the minimum operator

in Equation (2.2) can be formulated as Linear Programming (Lo [64]; Ziliaskopoulos

[114]; Lo [65]; Gomes and Horowitz [34], and others). It will be discussed in Chapter 3.

The form of outflow Equation (2.2) is due to the assumption of the piecewise linear

fundamental diagram shown in Figure 2.2. This linearity assumption facilitates the
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development of several efficient algorithms for cell based estimation and optimisation

(see examples: Daganzo [23]; Gomes and Horowitz [34]; Kurzhanskiy and Varaiya [54]).

However the outflow function can be generalised as:

fi(k) = min{Si(k), Ri+1(k)} (2.3)

where Si(k) is the send flow function, which represents the traffic demand advancing

from upstream i to downstream i + 1. Ri+1(k) is regarded as the receive flow func-

tion, which means the available space in the downstream cell i + 1. This general form

of outflow allows the different forms of the fundamental diagram used in the CTM in-

cluding the ‘inversed-λ’ shaped fundamental diagram, which also exhibits a capacity

drop (capacity drop is known as a reduction in discharge flow after queue formation ob-

served at downstream of an active bottleneck [17]) as non-linear ones like Greenshields

[36]; Underwood [98]; Edie [29].

2.3 Traffic Data

In this study, data for calibrating the traffic model are obtained through the Motorway

Incident Detection and Automatic Signalling (MIDAS) double-loop detection system.

This section describes how to process the raw MIDAS data. The MIDAS dataset contains

traffic flow, occupancy (e.g. percentage of time that the loop detector is occupied in each

time interval), and speed [48], which are measured directly from double-loop detectors.

The MIDAS system consists of inductive loop detectors at 500-metre intervals installed

on all lanes. The data are processed and stored in 1-min intervals in csv files. You can
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request the access to the Highways Agency MIDAS data via the Mott MacDonald help

desk by providing a brief description of your research project and some contact details.

2.3.1 Flow

Flow (f) is defined as the number of vehicles passing a point in a given time period.

The MIDAS system classifies flow data into the following two kinds:

• Flow over different categories: fc denotes the average flow of category c. The

traffic flow data are categorised under MIDAS into four categories according to

the detected vehicle length:

1. Category 1: Vehicles with a length less than 5.2 metres (e.g. Car or small

van);

2. Category 2: Vehicles with a length between 5.2 metres and 6.6 metres (e.g.

Large van);

3. Category 3: Vehicles with a length more than 6.6 metres and less than 11.6

metres (e.g. Rigid HGV);

4. Category 4: Vehicles with a length greater than or equal to 11.6 metres (e.g.

Articulated HGV).

• Flow on different lanes: fl denotes the average flow on lane l, and the maximum

number of lanes is 7. Then the flow of the given road section can be calculated

from lane flow or category flow by using the following formula:

f =
L∑
l=1

fl =
4∑
c=1

fc (2.4)
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where L refers to the number of lanes at the corresponding road section, and

c = 1, 2, 3, 4 refers to the vehicle category as discussed above.

2.3.2 Occupancy

Occupancy (o) is defined as the proportion of time during which a single point on a road

is covered by vehicles where 0 ≤ o ≤ 1, where 0 means there is no vehicle occupied the

loop detector, and 1 means the loop detector is fully occupied during the interval. Then

the mean occupancy of the given road section can be calculated as:

o =

L∑
l=1

ol

/
L (2.5)

where ol refers to the occupancy on the lane l of the corresponding road section, and L

is the number of lanes at the corresponding road section.

2.3.3 Speed

Speed (v) is defined as the distance of a vehicle travelling on the road per unit time.

With the double-loop configuration, the speed of each vehicle can be measured directly

as the spacing between two loop detectors (which is 5 metres) divided by the time gap

between the vehicles’ detection at two loop detectors [41]. Then the mean speed of the

given road section can be calculated as:

v =
L∑
l=1

vlfl

/
L∑
l=1

fl (2.6)
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where vl refers to the speed on lane l of the corresponding road section, fl denotes the

average flow on lane l, and L is the number of lanes at the corresponding road section.

2.3.4 Density

Density (ρ) reflects the proximity of vehicles on the road. It is defined as the number of

vehicles occupying a given length of lane or road section at a specified time instant. Like

all other fixed loop detection information systems, MIDAS can only observe temporal

occupancy but not spatial density, which will be required for calibrating the fundamental

diagram. Following Papageorgiou and Vigos [79] and others, density can be calculated

from the occupancy by using the following formula (see Appendix A):

ρ =
o

Lv + Ld
(2.7)

where o is the measured occupancy ( 0 ≤ o ≤ 1 ) from the corresponding detector, and

Ld is the length of the detector (which is taken as 2 metres), and Lv is an estimation of

average vehicle length (in metres) passing the corresponding location.

The length of the corresponding vehicle can be estimated by multiplying its speed with

the average duration of the ‘on’ time (i.e. the period when the loop is occupied by a

vehicle) of the loops. The average vehicle length at each 1-min interval is estimated as:

Lv =
4∑
c=1

fcLvc

/
4∑
c=1

fc (2.8)

where c = 1, 2, 3, 4 refers to the vehicle category under MIDAS as discussed in Section

2.3.1; fc is flow of vehicles in category c measured during the corresponding time interval;
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Lvc is the average vehicle length (in metres) in category c where Lv1 = 5.2 metres,

Lv2 = 5.9 metres, Lv3 = 9.1 metres, and Lv4 = 11.6 metres are taken in this study [5].

2.4 Model Calibration

Traffic herein is described in terms of the basic quantities such as flow, speed and density,

which are introduced in the previous Section 2.3, which underlies the fundamental di-

agram. Measurements from loop detectors allow fundamental diagram to be estimated

for the corresponding road section. In this section, we will look at how to calibrate

piecewise linear fundamental diagram in the CTM with the loop detector data. Cal-

ibrating CTM will be equivalent to determining the underlying fundamental diagram.

For the piecewise linear fundamental diagram in the CTM, we can divide and calibrate

the fundamental diagram in three components: free flow line, capacity, and congested

line. The associated critical density and jam density can be derived accordingly after

obtaining the three lines.

As an illustration, Figure 2.3 shows a scatter plot of flow-density data collected at detec-

tor station (4936A) on the M25 Motorway (direction: clockwise) in the United Kingdom.

The data are collected over 2 weekdays ( 2 September 2014 (Tuesday) and 3 September

2014 (Wednesday)) through MIDAS [1] loop detection system in the United Kingdom.

To reduce noise in the dataset, the data are processed into 5-min averages (MIDAS

stores 1-min data). The detector station (4936A), which consists of 6 lanes, is located

at the downstream of the on-ramp at Junction 14 and the upstream of the off-ramp at

Junction 15. Junction 14 connects to London Heathrow (LHR) Airport and Junction 15

is a busy interchange with the M4 Motorway in the west of the Greater London Area.
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This study adopts a calibration procedure developed by Dervisoglu et al. [26]. Details

of calibration procedure is presented below.
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Figure 2.3: Empirical scatter plot of traffic flow and density

(Detector Station: 4936A on M25-clockwise [2 and 3 September 2014])

2.4.1 Step 1: Free flow line

For each detector station, a speed threshold for extracting data points in the free flow

state from the dataset should be defined. The speed threshold can be a fixed value

(e.g. 70 mile/hr, as adopted in Bickel et al. [10] and Dervisoglu et al. [26]). Alterna-

tively, the speed threshold can also be set as a percentile (e.g. 85th percentile) of all

measured speeds. From a statistical perspective, the latter is a more robust classifi-

cation, as it reduces the impact of potential outliers due to extreme conditions such
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as weather, incidents or detector failure. Moreover, the corresponding speed threshold

is site-dependent, which is preferable as different locations can have different free flow

speeds due to different speed limits.

With the defined speed threshold, a data point is regarded as free flow if its associated

speed is higher than that of the speed threshold. The free flow part (left-hand side) of

the fundamental diagram typically exhibits a linear relationship with little variability

from the empirical findings [26]. Then the extracted flow density data are fitted by using

a standard linear regression method, which was regarded as the free flow line. The slope

of the free flow line gives the free flow speed (v) of traffic at that location. It often

requires this free flow line to pass though the origin of the flow-density plane reckoning

that the flow value should be zero when the density is zero (see Appendix B for a short

note on the constrained regression). The regression line for the free flow speed based on

the collected data is shown in Figure 2.4.

2.4.2 Step 2: Capacity

The capacity (Q) is taken as the maximum observed flow values at the detector station

observed over a period of time. The capacity line based on the collected data is shown

in Figure 2.5. Given capacity, the corresponding critical density (ρ̊) is determined as:

ρ̊ = Q/ v (2.9)

where free flow speed (v) is determined in Step 1. Recent empirical findings (Brilon

et al. [13]; Dervisoglu et al. [26] and Chow et al. [20]) suggest that the capacity is
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Figure 2.4: Estimation of free flow speed

(Detector Station: 4936A on M25-clockwise [2 and 3 September 2014])

a random variable which may vary depending on various external conditions such as

weather, composition of traffic, and approaching traffic states. This stochastic variation

of capacity will be discussed in Chapter 5.

2.4.3 Step 3: Congested line

After extracting the free flow data following Step 1, any remaining data points are

regarded as congested data if its density is higher than the critical density determined in

Step 2. Similar to capacity, the congested data often exhibits a high degree of variability,

which is due to the heterogeneity in vehicular speeds and drivers’ behaviour under

congested conditions (Ngoduy and Liu [74]; Ngoduy [75]). The variability in congested
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Figure 2.5: Estimation of capacity

(Detector Station: 4936A on M25-clockwise [2 and 3 September 2014])

data means fitting them with a function challenging. Further discussion of the variability

of the congested data will be presented in Chapter 5. The congested data can be fitted

by either linear or non-linear flow-density functions.

Greenshields et al. [37]; Greenberg [35]; Underwood [98] and many others fit the con-

gested data with a nonlinear flow-density function. Heydecker and Addison [46] recently

conduct an empirical study with the United Kingdom M25 Motorway data where they

analyse and investigate the goodness-of-fit of a number of models. Interestingly, it is

found that Underwood’s model can indeed produce a better fitting result than the tra-

ditional Greenberg’s and Edie’s models for congested traffic data. Moreover, it is found
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that the convex region in Underwood’s model helps to reproduce complex dynamic traf-

fic phenomenon like the stop-and-go waves (Heydecker and Addison [46]; Carey and

Bowers [14]). Furthermore, Underwood’s model does not have a jam density that will

drive the speed to be zero. However, this can easily be remedied by truncating the

flow-density function to a user-defined jam density. In fact, unlike urban networks, it is

extremely rare to observe a data point that is sustainably associated with a zero speed

on motorways. As reported in Heydecker and Addison’s empirical study, there is no

significant effect on traffic state estimation even when the model does not have a finite

jam density.

If the congested flow-density data are fitted by a linear function, then the slope of the

regression line will give the shockwave speed (w), which represents the average speed of

backward propagation of congestion. Jam density is the intersection of congested line and

density (horizontal) axis. The congested line can be derived by applying an ordinary least

square estimation on the congested dataset. To construct a closed fundamental diagram,

the congested line should be constrained such that it will pass through the capacity point

(ρ̊, Q). Should this constraint be removed, the corresponding fundamental diagram will

become ‘reverse-λ’ shaped with a discontinuity at (ρ̊, Q). This discontinuity can be

regarded as a capacity drop.

As an alternative to ordinary regression, Dervisoglu et al. [26] propose a trained regres-

sion approach to fit congested data. Trained regression is more robust than ordinary

regression in statistical science because it reduces the influence of outlier data. Differ-

ent from the ordinary regression, which looks at the expected values of the regressors,

trained regression considers the quantiles of the regressors and hence reduces the influ-

ence of outlying data due to slow moving heavy vehicles, unstable stop-and-go motions,
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and hardware failure.

Following the trained regression developed by Dervisoglu et al. [26], the congested data

along the density (horizontal) axis can be divided into a series of non-overlapping bins

(B = {B1, B2 ... Bi}), in which each bin Bi contains a certain number of data points (e.g.

Ni data points in Bi). Horizontally, each bin is represented by a ‘BinDensity’, which is

the average of all the density values in the bin. Vertically, each bin is represented by a

‘BinFlow’, which is the largest non-outlier flow value among the flow values in the bin.

Given the density-flow data points in the binBi = {(ρi1, fi1), (ρi2, fi2) . . . (ρiNi , fiNi)}.

Then, the ‘BinDensity’ and ‘BinFlow’ can be determined for the bin Bi as:

ρbi =

Ni∑
n=1

ρin

/
Ni (2.10)

fbi = max
fin
{fin|Bi, fin ∈ fin < Q3i + 1.5IQRi} (2.11)

where Q3i is the 75th percentile flow in the bin Bi. The notation IQRi represents the

inter-quantile range, which is defined as the difference between 25th percentile and 75th

percentile flow in the bin Bi with the number of data points (Ni).

For example, given 10 density-flow data points in the bin Bj . The 10 density values

and the corresponding 10 flow values as shown in Table 2.1. Then the mean of those 10

density values is 63.9 as follows:

BinDensity =

∑10
n=1 ρjn
10

= 63.9 (2.12)
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Table 2.1: Density-flow data points (ρjn, fjn) in the bin Bj

n 1 2 3 4 5 6 7 8 9 10

ρjn 62 65 82 70 72 57 64 60 61 46

fjn 6840 7240 8820 7320 7440 6180 7080 6600 6360 4920

The ‘BinFlow’ is set to be 7440 as shown in Equation 2.13, which is the ‘maximum

non-outlier’ within the bin Bj .

fbj = max
fjn
{fjn|Bj , fjn ∈ fjn < Q3j + 1.5IQRj}

= max
fjn
{fjn|Bj , fjn ∈ fjn < 7320 + 1.5× 960}

= max
fjn
{fjn|Bj , fjn ∈ fjn < 8760}

= 7440

(2.13)

Moreover, Figure 2.6 shows how to define the ‘BinDensity’ and ‘BinFlow’ and calibrate

the wave speed based on the collected data. The density-flow data points (measure-

ments) as shown in Figure 2.6 in a series of blue points. The left two vertical solid

lines represent the lower and upper bound of the density of the bin (B1 is shown in

the figure). The red points between two vertical solid lines represent the data in the

bin (B1), specifically the ‘BinDensity’ and ‘BinFlow’ on the horizontal and vertical axis

respectively.
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Figure 2.6: Trained regression

2.4.4 Review of procedure

Figure 2.7 shows a flow-density scatter plot at detector station (4936A) on the orbital

M25 Motorway in the UK on 2 and 3 September 2014. The data are collected over

2 weekdays (consists of 6 lanes) which is the same dataset used in Figure 2.3. The

data are first classified into ‘free flow’ and ‘congested’ portions based on a percentile-

based classification. A data point is recognised as ‘free flow’ if its speed is higher than

the 85th percentile of all measured speeds. Figure 2.7 shows the flow-density data in

free flow exhibiting a strong linear relationship which can be fitted by standard linear

regression. A constraint is added for the free flow data regression line, which needs to

pass through the origin. The slope of the free flow line gives the free flow speed v, which

is 100 km/hr. The capacity Q is determined as the maximum flow values observed,

which is 9000 veh/hr. Finally, congested line pass through the capacity point (ρ̊, Q),
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Figure 2.7: Calibrated fundamental diagram for CTM

(Detector Station: 4936A on M25-clockwise [2 and 3 September 2014])

and the slope of the congested line gives the wave speed -19 km/hr.

The free flow data can generally be fitted well with the linear regression function. The

free flow line (the red solid line in Figure 2.7) tends to overestimate the flow values

as they approach the capacity. It is due to the speed reduction as the traffic state

approaches congestion, while this speed reduction cannot be captured by the linear re-

gression function. The consequence of this will be an underestimate of the value of the

critical density and hence the congestion will be predicted to onset earlier than it actu-

ally does. To improve the estimation, one can adopt a modified fundamental diagram

which includes a non-linear region near the capacity (see for example, Skabardonis and

Geroliminis [93]).

The green dash line in Figure 2.7 shows the congested line. Data with density values
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higher than the critical density are classified as congested, which are characterised by

the fact that an increase in density will induce a decrease in flow. The intersection of

congested line and horizontal line (density axis) shows the jam density 540 veh/km.

The road section (detector station 4936A) contains 6 lanes. If we assume the average

legnth of the vehicle is 10 metres, then the jam density should be (1000 × 6)/10 = 600

vehicles. The calibrated jam density (540 veh/km) closes to the theoretical jam density

(600 veh/km). The congested data often exhibit a high degree of variability due to a

number of reasons such as heterogeneity in vehicular speeds and drivers’ behaviour under

congested condition (Ngoduy and Liu [74]; Ngoduy [75]). Some recent studies propose

the use of the set-valued function for regressing the congested data (e.g. Kurzhanskiy

and Varaiya [55]) while the discussion will be presented in Chapter 5.

2.5 Summary

This chapter consists of three parts. In the first part, we introduce the first order model

CTM in detail. In the second part, how to process the raw traffic data collected from

the MIDAS dataset is introduced, especially how to calculate the density based on the

measured occupancy. Then in the third part, how CTM can be calibrated with real

traffic data (MIDAS) is presented. The calibration procedure presented here consists

of three main steps: determining the free flow line, capacity, and congested line. The

free flow line can be determined with flow-density data under free flow which exhibits

a linear relationship. Capacity is taken as the maximum flow value observed over a

period of time, and trainted regression is used for the congested part. The modelling

and optimisation framework for ramp metering to be presented in following chapter.





Chapter 3

Optimisation of Ramp Metering

3.1 Introduction

We start with the optimisation model of motorway traffic through ramp metering strat-

egy. Ramp metering is a motorway control method to avoid onset of congestion through

limiting the access of ramp inflows into the main road of the motorway. The optimisation

model of ramp metering is developed based upon cell transmission model (CTM). With

the piecewise linear structure of CTM, the corresponding motorway traffic optimisation

problem can be formulated as a linear programming (LP) problem. It is known that LP

problem can be solved by established solution algorithms such as SIMPLEX or interior-

point methods for the global optimal solution. The commercial software (CPLEX) is

adopted in this study to solve the LP problem within reasonable computational time.

The concept is illustrated through a case study of the United Kingdom M25 Motorway.

The optimal solution provides useful insights and guidances on how to manage motorway

traffic in order to maximise the corresponding efficiency.

45
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This chapter is organised as follows: Section 3.2 introduces the performance indicators

that are used as objective function for optimal ramp metering. Section 3.3 presents

the formulation that is used to derive the optimal ramp metering for maximising the

efficiency of the motorway traffic. Section 3.4 explores the sensitivity analysis of the

distance between on-ramp and off-ramp. Section 3.5 explores the sensitivity analysis

of the balance parameter η between the main road delay and ramp delay. Section 3.6

presents the implementation of CTM and the optimal ramp metering will be illustrated

through a case study of the United Kingdom M25 Motorway. Section 3.7 provides some

concluding remarks.

3.2 Objective Function

A standard optimisation formulation consists of three components: objective function,

constraints, and decision variables. Formulating an optimisation problem for motor-

way operations first requires defining a sensible performance indicator as the objective

function. Some typical performance indicators include VDT (vehicle-distance-travelled),

VHT (vehicle-hours-travelled), and Delay (see Kurzhanskiy and Varaiya [54]).

1. VDT (unit: [veh-km]) is defined as the sum of the products of the vehicle with

the associated distance travelled. The VDT is a measure of the throughput of a

road section (or cell) during a particular time period. The higher the VDT is, the

more productive the system is, as that implies more traffic can be served in a given

time. Given the traffic flow fi(k) at a road section i of length ∆xi during the time

interval k of length ∆t, the associated VDT is calculated as:
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VDTi(k) = fi(k)∆xi∆t (3.1)

TTD (total-travel-distance) refers to the sum of VDT over a road section during

a particular time period. Following the definition of the VDT above, TTD is

calculated as:

TTD =

I∑
i=1

K∑
k=1

VDTi(k)

=

I∑
i=1

K∑
k=1

fi(k)∆xi∆t

(3.2)

2. VHT (unit: [veh-hr]) is defined as the sum of the products of the vehicle with the

associated travel time. The VHT is a measure of the efficiency of a road section

during a particular time period. The lower VHT is, the more efficient the system

is, as that implies traffic can be served in less time. Given the traffic density ρi(k)

at cell i of length ∆xi during time interval k of length ∆t, the associated VHT is

calculated as:

VHTi(k) = ρi(k)∆xi∆t (3.3)

TTT (total-travel-time) refers to the sum of VHT over a road section during

a particular time period. Following the definition of the VHT above, TTT is

calculated as:
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TTT =
I∑
i=1

K∑
k=1

VHTi(k)

=

I∑
i=1

K∑
k=1

ρi(k)∆xi∆t

(3.4)

It is noted that the ratio of VDT to VHT gives the mean speed of the traffic in

the road section.

3. Delay (unit: [veh-hr]) is one of the most effective ways to evaluate congestion level,

which can be derived from VDT and VHT as:

di(k) = VHTi(k)− VDTi(k)

vi

= ρi(k)∆xi∆t−
fi(k)∆xi∆t

vi

(3.5)

where vi is the free-flow speed of cell i.

If the delay function is adopted as the ramp metering objective fucntion, the

throughput will be increased. However, long queues may be created at some on-

ramps due to the objevtive function just considers the delay on the main road.

The equity of ramp metering is considerd in many literatures along with ramp me-

tering efficiency. Zhang and Levinson [109] adopt the weighted travel time as the

objective function to balance the efficiency and equity of ramp metering. Zhang

and Levinson [108] suggest that the leaset equitable one is the most efficient ramp

control. Levinson and Zhang [59] evaluate the data of eight weeks collected from

the case study with and without ramp metering for several representative motor-

ways in Twin cities. By considering various performance measures, they found
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that the ramp delay need to be considered even at the expense of overall motor-

way efficiency when the objective balance efficiency and equity of ramp meters.

In this study, the total system delay (TSD) is adopted as the objective function

for the ramp metering optimisation problem due to the ramp delay includs in the

objective function.

4. TSD (total-system-delay) is defined as the sum of total main road delay and ramp

delay in this study. For a road section during a particular time period, it is

calculated as:

TSD =
I∑
i=1

K∑
k=1

di(k) + η
J∑
j=1

K∑
k=1

lj(k)∆t (3.6)

where the first term

I∑
i=1

K∑
k=1

di(k) represents the total main road delay over the

whole road section (number of cells equals to I) during a particular time period

(number of simulation time steps equals to K). The second term
J∑
j=1

K∑
k=1

lj(k)∆t

represents the total ramp delay on all on-ramps (number of on-ramps equals to

J) during a particular time period. The parameter η adjusts the balance between

the main road delay and ramp delay. The sensitivity ananlysis of parameter η is

presented in Section 3.5.
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3.3 Ramp Metering Formulation

Ramp metering is one of the most widely used control methods, which aims to improve

the throughput on the main road through limiting access of traffic from on-ramps. This

section presents a model-based approach, which enhances the efficiency of motorway

operations through modelling and regulating the traffic flowing on it. There are some

important applications of the first-order macroscopic model (CTM) which were pre-

sented in the literature for traffic modelling and management. Lo [64] presents a novel

traffic signal control formulation, which developed through a mixed integer programming

technique. Ziliaskopoulos [114] presents a system optimum dynamic traffic assignment

problem as a linear programming problem based on CTM. Gomes and Horowitz [34]

show that the linearity of CTM enables formulating optimal ramp control problems as

a linear programming (LP) problem. In the CTM formulation, traffic dynamics are

characterised by flow and density in each cell at each time step. The evolution of traffic

flow and density is governed by the principles of flow conservation and propagation. It

is convenient (e.g. Gomes and Horowitz [34]) to specify the exit flow si(k) through a

split ratio βi, where 0 ≤ βi ≤ 1, to represent the proportion of traffic leaving the system

through the sink link i during time step k as shown in Figure 3.1.

Following this specification, the relationship between exit flow and outflow can be defined

as follows:

si(k) = βi
(
si(k) + fi(k)

)
(3.7)

where si(k) is the exit flow from cell i, and fi(k) denotes the outflow from cell i which

is the flow remaining in the system after deducting si(k). The notation ρi(k) represents

the density in cell i at time step k, and βi is the split ratio of cell i.
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Figure 3.1: Specification of outflow ratio

Equation 3.7 can be rearranged to obtain an expression of the exit flow as follows:

si(k) = fi(k)
(
βi/β̄i

)
(3.8)

where β̄i = 1− βi ≥ 0. Then si(k) + fi(k) can be rewrote as follows:

si(k) + fi(k) = fi(k)
(
βi/β̄i

)
+ fi(k) (3.9)

= fi(k)
(
(βi + 1− βi)/β̄i

)
(3.10)

= fi(k)/β̄i (3.11)

Substituting Equation 3.11 into Equation 2.1 gives:

ρi(k + 1) = ρi(k) +
∆t

∆xi

(
fi−1(k)− fi(k)/β̄i + rj(k)

)
(3.12)

where ∆t denotes the length of simulation time step, and ∆xi represents the length of

cell i. The notations ρi(k) and fi(k) are the density in cell i and the outflow from cell i
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respectively, and rj(k) is the actual ramp inflow that want enter the main road.

Given the cell density, the CTM calculates the outflow from cell i within time step k

by assuming a piecewise linear fundamental diagram as shown in Equation 2.2. If we

assume the exit flow is located at the end of the cell i, the Equation 2.2 can be revised

as follows:

fi(k) = min{ρi(k)viβ̄i, Qi, Qi+1, wi+1

(
ρ̄i+1 − ρi+1(k)

)
} (3.13)

where notations vi, wi+1, and ρ̄i+1 denote free flow speed, shockwave speed and jam

density respectively. The notation Qi is the capacity flow at cell i which corresponds

to the maximum flow that can leave cell i; Qi+1 is the capacity flow at cell i+ 1 which

corresponds here to the maximum flow that can enter cell i+ 1.

The minimum operator in Equation 3.13 can be reformulated as the following linear

programming (see Lo [64]; Gomes and Horowitz [34]):

min
(
− fi(k)

)
subject to:

fi(k) ≤ ρi(k)viβ̄i

fi(k) ≤ Qi

fi(k) ≤ Qi+1

fi(k) ≤ wi+1

(
ρ̄i+1 − ρi+1(k)

)

(3.14)

The above set of expressions (Equation 3.14) form the core of the optimisation problem.

This linearity facilitates the development of several efficient algorithms for cell based
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estimation and optimisation (see examples, Ziliaskopoulos [114]; Sun et al. [96]; Gomes

and Horowitz [34]; Sumalee et al. [95]).

In original CTM model, the traffic flow is determined by the available space of up-

stream and downstream. However, the linearisation of the original non-linear flow

propagation formulation caused the holding back problem [27] in the earliest analytical

formulation [114]. Because it does not require the solution to fall on the fundamental

diagram. Therefore, the vehicles will be held at some upstream cells even there is enough

space in the downstream cells. Gomes and Horowitz [34] introduce total-travel-distance

(TTD) to the objective function to eliminate the holding-back problem. Therefore, the

delay is adpted as the objective function because TTD is included. The motorway traffic

optimisation without ramp metering can be formulated as follows:

min
c

Z =
I∑
i=1

K∑
k=1

(
ρi(k)∆xi∆t−

fi(k)∆xi∆t

vi

)
(3.15)

subject to:

ρi(k + 1) = ρi(k) +
∆t

∆xi

(
fi−1(k)− fi(k)

β̄i
+ rj(k)

)
(3.16)

fi(k) ≤ ρi(k)viβ̄i (3.17)

fi(k) ≤ Qi (3.18)

fi(k) ≤ Qi+1 (3.19)

fi(k) ≤ wi+1

(
ρ̄i+1 − ρi+1(k)

)
(3.20)

rj(k) = λj(k) (3.21)
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where ∆t denotes the length of simulation time step, and ∆xi represents the length of

cell i. The notations vi, wi+1, and ρ̄i+1 are free flow speed, shockwave speed and jam

density respectively. The notation Qi is the capacity flow at cell i which corresponds

to the maximum flow that can leave cell i, and Qi+1 is the capacity flow at cell i + 1

which corresponds here to the maximum flow that can enter cell i+ 1. ρi(k) and fi(k)

are the density in cell i and the outflow from cell i respectively. λj(k) denotes the traffic

demand that wants to enter the system through on-ramp j during time step k, and rj(k)

is the actual demand that enters the system.

The constraint set (3.16 - 3.20) equivalents to the CTM as shown by Lo [64]; Gomes and

Horowitz [34] and others. The holding back problem [114] is addressed here due to the

[−fi(k)] term in the objective function which will maximise the outflow from each cell i

over time step k. As a consequent, at least one of the constraints (3.17 – 3.20) must be

binding. Constraints (3.17) and (3.18) can be regarded as the (demand) limitations on

outflow under free flow condition, while constraints (3.19) and (3.20) can be regarded as

the (supply) limitations on outflow under congested condition. Constraint (3.16) is the

conservation equation to update the density in cell i for next time step k+ 1. Moreover,

the constraint (3.21) shows the ramp inflow equals to the actual ramp demand, which

means there is no ramp control is applied on the road.

The formulation (3.15 - 3.21) is generic and applicable to the general case. Additional

constraints may be added for specific applications. For ramp metering, this study adopts

total-system-delay (TSD) as the objective function because ramp delay is considered.

However, it is noted that the choice of objective function is flexible where different objec-

tive functions can be used for different applications. The motorway traffic optimisation

with ramp metering can be formulated as follows:
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min
cr

Z =

I∑
i=1

K∑
k=1

(
ρi(k)∆xi∆t−

fi(k)∆xi∆t

vi

)
+ η

J∑
j=1

K∑
k=1

lj(k)∆t (3.22)

subject to:

ρi(k + 1) = ρi(k) +
∆t

∆xi

(
fi−1(k)− fi(k)

β̄i
+ rj(k)

)
(3.23)

fi(k) ≤ ρi(k)viβ̄i (3.24)

fi(k) ≤ Qi (3.25)

fi(k) ≤ Qi+1 (3.26)

fi(k) ≤ wi+1

(
ρ̄i+1 − ρi+1(k)

)
(3.27)

lj(k + 1) = lj(k) +
(
λj(k)− rj(k)

)
∆t (3.28)

lj(k) ≤ l̄j (3.29)

rj(k) ≤ r̄j (3.30)

rj(k) ≥ 0 (3.31)

rj(k) ≤ lj(k)

∆t
+ λj(k) (3.32)

rj(k) ≤
(
ρ̄j − ρj(k)

)∆xj
∆t

(3.33)

where ∆t denotes the length of simulation time step, and ∆xi represents the length of

cell i. The notations vi, wi+1, and ρ̄i+1 are free flow speed, shockwave speed and jam

density respectively. Qi is the capacity flow at cell i which corresponds to the maximum

flow that can leave cell i; Qi+1 is the capacity flow at cell i+ 1 which corresponds here

to the maximum flow that can enter cell i+ 1. ρi(k) and fi(k) are the density in cell i

and the outflow from cell i respectively. λj(k) denotes the traffic demand that wants to
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enter the system through on-ramp j during time step k, and rj(k) is the actual demand

that enters the system. The notation l̄j refers to the maximum ramp queue length at

on-ramp j, and the notation r̄j refers to ramp capacity at on-ramp j.

The optimisation problem seeks the optimal control policy cr to be implemented over

time k = 1, 2 . . .K and cells i = 1, 2 . . . I that minimises the total system delay Z in the

system. The first term

I∑
i=1

K∑
k=1

(
ρi(k)∆xi∆t−

fi(k)∆xi∆t

vi

)
is the main road delay in the

objective function (Equation 3.22), and the second term

J∑
j=1

K∑
k=1

lj(k)∆t is delays on the

boundary links. One will get a trivial solution: rj(k) = 0,∀j, k, which simply prohibits

any traffic from on-ramps entering the system if this second term
J∑
j=1

K∑
k=1

lj(k)∆t is

omitted. The notation η is a parameter that adjusts the balance between the main

road delay and ramp delay (boundary queues). The sensitivity analysis is presented in

Section 3.5. In this study, the value of η is set to be 1 indicating all road sections are

equally weighted.

For the ramp queue length, Equation (3.28) is used to capture the evolution of queues

lj(k) on on-ramps j = 1, 2 . . . J , where J is the total number of on-ramps. Moreover,

one may add a upper bound l̄j
(

Equation (3.29)
)

for some on-ramps to specify the

maximum queue length of the on-ramps such that an unacceptable long queue on the

on-ramp will not be obtained as an optimisation result.

For ramp inflow, Equations (3.30) and (3.31) are additional constraints on the control

variable rj(k) to ensure its upper bound and non-negativity respectively. Equations

(3.32) and (3.33) are constraints on ramp demand and main road space respectively.

Note that λj(k) does not necessarily equal to rj(k) due to various reasons including

gridlock which traffic cannot be freely flowing into the system but subject to downstream
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traffic condition. The difference between rj(k) and λj(k) can also be due to various

control strategies such as ramp metering (Gomes and Horowitz [34]) and variable speed

limits (Smulders [94]).

With the formulation presented above, the size of the optimal ramp metering problem

basically depends on the number of cells I and time steps K considered. Constraint

set (3.23 - 3.27) each gives a total of I ×K constraints. Moreover, the on-ramp inflow

and on-ramp queue constraint set (3.28 - 3.33) each gives an additional set of J × K

constraints with J on-ramps considered. Regarding the number of decision variables, it

varies under different scenarios.

The above LP problem can be solved by a number of established algorithms such as SIM-

PLEX or interior-point methods for global optimal solutions (Vanderbei [101]). Never-

theless, it is known that there is no guarantee that the optimal solution can be found in

polynomial time while the complexity of a LP problem basically depends on the number

of decision variables and constraints involved.

3.4 Effect of Off-ramp Position

This section explores the sensitivity of the performance of the optimal ramp metering

with respect to the distance between on-ramp and off-ramp. A corridor consisting of 25

cells with one on-ramp fixed at cell 20 and one off-ramp. The length of each cell (∆xi) is

500 metres, and the simulation time step (∆t) is 20 seconds. To test the effect of distance

between on-ramp and off-ramp, the location of the off-ramp varies from cell 2 to cell 18.

The main road and ramp demands are 3000 veh/hr and 1200 veh/hr respectively. In
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addition, the on-ramp capacity and maximum on-ramp queue are set to be 1500 veh/hr

and 60 vehicles respectively. The split ratio at the off-ramp is set to be 0.1. The same

free-flow speed (100 km/hr), capacity (3600 veh/hr) and jam density (240 veh/km) are

set for all cells. The simulation horizon is one hour, and the cool down period is 30

minutes. In order to compare the performance of different scenarios, the relative delay

reduction P is defined as:

P =
Dn −Dc

Dn
100% (3.34)

where Dn and Dc are total system delay (or main road delay) under no control case and

control case respectively.

Figure 3.2 shows the effectiveness of ramp metering with respect to the distance between

on-ramp and off-ramp. The horizontal axis is the distance between on-ramp and off-

ramp in terms of the number of cells between them. The left and right vertical axes

are the relative total delay (main road + ramp) reduction and relative main road delay

reduction respectively. Figure 3.2 shows that the relative total delay reduction (solid

line) reduces as the distance between the ramps increases and becomes insignificant when

the ramps are more than five cells apart. Moreover, the relative total delay reduction

not reduce to zero (0.005) when the distance between the on-ramp and off-ramp is 18

cells. This finding indeed supports the argument made in [78] which suggests that a

major benefit of ramp metering is due to the reduction of spillover of congestion at the

associated on-ramp to the upstream junction.

In this example, when the distance between the on-ramp and off-ramp pair is less than
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Figure 3.2: Performance of ramp metering

five cells, the congestion formed at the on-ramp at cell 20 could spill over to the off-ramp

at its upstream. Metering the on-ramp at cell 20 reduces the degree of spillover effect,

and hence the discharge of main road traffic through the off-ramp. Nevertheless, when

the two ramps are too far apart, for example beyond five cells, the congestion formed at

the on-ramp at cell 20 indeed cannot reach the location of the off-ramp even under no-

control case. As a result, metering the on-ramp does not have an impact on facilitating

the main road traffic discharge.

Without the benefit of reducing spillover congestion, it makes no difference from a

system perspective whether queuing up the traffic on the main road or on the ramp

(see Papageorgiou and Kotsialos [78]). Hence, no reduction in the total system delay
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will be observed under such cases as revealed in Figure 3.2. The relative main road

delay reduction (dotted line) has a similar trend to the relative total delay reduction,

but with some fluctuations over the trend. A possible reason is that the optimiser aims

to minimise the total system delay regardless of whether the reduction comes from the

main road or on-ramps. This can induce some instability in main road (and ramp) delay

calculations.

3.5 Sensitivity Analysis of Balance Parameter η

This section explores the sensitivity of the parameter η of the optimal ramp metering.

A corridor consisting of 25 cells with one on-ramp at cell 21 and one off-ramp at cell

19. The length of each cell (∆xi) is 500 metres, and the simulation time step (∆t) is 15

seconds. The on-ramp capacity and maximum on-ramp queue are set to be 1500 veh/hr

and 60 vehicles respectively. The split ratio at the off-ramp is set to be 0.15. The same

free-flow speed (100 km/hr), capacity (3600 veh/hr) and jam density (240 veh/km) are

set for all cells. The simulation horizon is 4 hours with the cool down period of 30

minutes.

Table 3.1: Delays of ramp metering with η higher than one (veh-hr)

η 1.0 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19

Ramp 166.65 163.31 163.29 163.26 163.25 163.20 163.11 162.86 0.16 0.00

Main 538.20 541.55 541.56 541.59 541.61 541.66 541.79 542.06 733.47 733.66

Total 704.85 704.85 704.85 704.86 704.86 704.87 704.88 704.92 733.63 733.66
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Figure 3.3: Delays of ramp metering with η lower than one

The optimal ramp metering control strategies are calculated with different value of η,

then the ramp metering control strategies are simulated on the same CTM simulation

platform, and the total system delay is calculated with the η of one. The balance

parameter η of main road delay and ramp delay is sensitive around one. Figure 3.3 and

Table 3.1 show the delays of ramp metering with the value of η lower than one and

higher than one respectively.

Figure 3.3 shows the main road delay and ramp delay of ramp metering. The horizontal

axis is the value of η between 0.97 and 1.0. The delays of η lower than 0.97 are not

shown in the figure due to the delays are constant for η ≤ 0.97. That means there is no

more space to store more vehicles to relieve the main road congestion even the lower η

gives more weight on main road delay. The left and right vertical axes are the main road
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delay and ramp delay respectively. Figure 3.3 shows that the main road delay (green

solid line with circles) reduces as the increases of η and becomes insignificant when the

η approach to one. On the contrary, the ramp delay (blue dotted line with squares)

has the opposite trend as shown in the figure. However the total system delay of ramp

metering is constant at the value of 704.85 veh-hr for η ≤ 1. Compared with no control

case (733.66 veh-hr), there is 28.8 veh-hr reduction on total system delay.

Table 3.1 shows the delays including ramp delay, main road delay and total system delay

with η equal and higher than one. The delays are nearly constant for 1 ≤ η ≤ 1.17.

That means η is not sensitive for the region η ∈ [1, 1.17]. However, the ramp delay

approach to zero for η > 1.17. The higher value of η means the system puts more weight

on ramp delay than on main road delay. It is important to note that the ramp delay

equals to zero under the extreme case (η = 1.19 in this case study). It is not worthwhile

to wait the vehicles on the ramp for the large η. Therefore, the vehicle is served when

it arrives the ramp. For η lower than one value (1.19 in this case), the total system

delay nearly no differece under different value of η, and the ramp delay reduces as the

value of η increases and becomes constant when η lower than one value. However, ramp

delay equals to zero for η higher than the particular value, then there is no metering on

ramps.
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3.6 Working Example

The London’s orbital M25 Motorway is one of the busiest roads in the United Kingdom,

which is used by 250,000 vehicles per day [92]. It is closely monitored and managed by

the Highways England. Therefore, the section of the London’s orbital M25 Motorway is

selected to illustrate overall calibration performance and test the optimal ramp metering

control strategy. Moreover, the clockwise direction is selected as it contains data of better

quality. The typical traffic at 18:00 on a Thursday is shown in Figure 3.4, which is the

screenshot of Google Map. The colour scale (green to red) represents the level of speed.

Figure 3.4 shows the congestion generally happened between Junctions 12 and 15 as

shown in red colour (slow traffic).

The map of the M25 Motorway between Junctions 10 and 16 is shown in Figure 3.5, and

the spatial-temperal traffic pattern on Thursday (4 September 2014) between Junctions

10 and 16 in clockwise direction is shown in Figure 3.6. The colour scale represents the

level of traffic density at the corresponding time and location, and the layout of the road

section is shown on the left of the figure. Figure 3.6 shows the heavy traffic is observed

around Junction 14. Therefore, we select the section of 12.5-km between Junctions 12

and 16 as a test site for the CTM simulation and optimal ramp metering. The section

covers two major interchanges: Junction 14 connected with Heathrow Airport; Junction

15 connected with the M4 Motorway to West England and Central London. The on-

ramps are located at cell 8 (Junction 13), cell 16 (Junction 14), cell 23 (Junction 15a)

and cell 24 (Junction 15b) respectively. The off-ramps are located at cell 4 (Junction

13), cell 10 (Junction 14) and cell 18 (Junction 15) respectively. The list of main road

detectors (with MIDAS index) and associated ramp detectors are shown in Table 3.2.
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Figure 3.4: UK M25 Traffic Speed

(Source: Google Map)
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Figure 3.5: UK M25 Motorway map - section between Junctions 10 and 16

Source: Highways England
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Figure 3.6: Observed density count plot - section between Junctions 10 and 16
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Table 3.2: The list of MIDAS detector stations between Junctions 12
and 16 on the UK M25 Motorway in clockwise direction

Cell
Number

MIDAS ID
(Main)

Lanes Remarks MIDAS ID
(Ramp)

Lanes

1 4866A 5

2 4871A 5

3 4876A 5

4 4879A 5 Off-ramp at Jct 13 4883J 2

5 4883A 4

6 4887A 4

7 4892A 4

8 4898A 5 On-ramp at Jct 13 4892K 2

9 4903A 5

10 4909A 5 Off-ramp at Jct 14 4912J 2

11 4912A 4

12 4916A 4

13 4919A 4

14 4923A 4

15 4927A 4

16 4932A 6 On-ramp at Jct 14 4926K 2

17 4936A 6

18 4941A 6 Off-ramp at Jct 15 4945J 3

19 4945A 3

20 4949A 3

21 4955A 3

22 4959A 3

23 4963A 3 On-ramp at Jct 15a 4959K* 2

24 4968A 4 On-ramp at Jct 15b 4963K 1

25 4972A 4

The ‘Lanes’ column refers to the number of lanes at the associated detector station.
The ‘Remarks’ column shows the location of the ramps, where ‘Jct’ means ‘Junction’.
‘*’ refers to part of the traffic flow that enter the system through the specially on-ramp.
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Following Daganzo [23] and Daganzo [24], the motorway stretch is divided into a series of

cells where the length of all cells ∆xi is 500 metres, which is the standard MIDAS detec-

tor spacing. The motorway stretch contains 25 detector stations, which are configured

such that the centre of upstream and downstream boundaries of each cell will coincide

with the location of the associated detector station. The on-ramps and off-ramps are

located in the beginning and the end of the cell respectively.

The time step size ∆t is set such that ∆t ≤ min
i

∆xi
vi

, where min
i

∆xi
vi

refers to the

smallest ratio of cell length to the associated free flow speed along the section. The

above condition is known as the Courant-Friedrichs-Lewy (CFL) condition [56]. This

condition is used to ensure the numerical stability by constraining the traffic flow not

to travel further than the length of the cell in one simulation time step. Consequently,

the simulation time step ∆t is set to 15-sec instead of 1-min as it stored in the dataset.

3.6.1 Without ramp metering

Each cell is characterised by a piecewise linear fundamental diagram which is calibrated

by the measurements at the associated detector. The detected flow of the upstream of

the first cell and each on-ramp are regarded as the input (demand) of the CTM model.

Moreover, each cell has an initial density according to the detected density. If the vehicle

cannot flow to the second cell when it arrives, the vehicle will wait at the first cell. We

assume the first cell has a enough space to queue all waited vehicles, and the waiting

time of the vehicle is counted in the total system delay. That means there is a point

queue at the first cell.



Chapter 3. Optimisation of Ramp Metering 69

A cross-validation is adopted to evaluate the estimation accuracy. The main road data

collected on days 2 and 3 September 2014 are used to derive the fundamental diagram,

while the on-ramp and main road demand on the day 4 September 2014 (Thursday) are

used to construct the boundary conditions. The simulated traffic density, which is 15-sec

resolution, is first aggregated into 5-min, and the measured density is also aggregated

into 5-min. Then the simulated density ρi(k) is compared with the measured density

ρ̂i(k) at each cell by using the mean absolute percentage error in density is defined as:

ε =
1

IK

I∑
i=1

K∑
k=1

∣∣∣∣ ρ̂i(k)− ρi(k)

ρ̂i(k)

∣∣∣∣ (3.35)

where K and I are the number of simulation time steps and cells respectively.

Figure 3.7 shows the density contour plots in which the colour scale represents the level

of traffic density at the corresponding time and location. The lower one in Figure 3.7

is the measured density calculated from measured occupancy, while the upper one is

modelled density produced by CTM simulation. The mean absolute percentage error ε

obtained from the CTM modelling conducted in this exercise is 11.5%. The part of the

error in density is due to the error associated with conversion of the measured occupancy

to density with Equation (2.7), in which the effective vehicle length L̄v may be over-

estimated. With the piecewise linear fundamental diagram, CTM cannot capture fine

details of the nonlinear traffic behaviours such as capacity drop, stop-and-go wave, and

acceleration-deceleration patterns. Nevertheless, the model can reproduce the general

pattern of the traffic congestion (associated with correct location and time) with simple

mathematical structure.
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Figure 3.7: Modelling result between Junctions 12 and 16 over one day

upper: modelled; lower: observed
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3.6.2 With ramp metering

The section of the motorway has been calibrated in Section 3.6.1 by using two days

data (2 and 3 September 2014), then this section tests the optimal ramp metering on

the calibrated section of the motorway with the data collected on 4 September 2014

(Thursday). The optimisation model is applied to manage afternoon peak hour traffic

[14:00 - 21:00] at the congested region. The size of the simulation time step is set to be

15-sec, which gives the total number of time steps K = 1680 for a 7 hours [14:00 - 21:00]

planning horizon. The optimal control problem is implemented and solved by IBM

ILOG CPLEX Optimisation Studio V12.5 running on a desktop computer with Intel

Core i5-2400 3.1GHz Processor, 4GB RAM, and Windows 7 64-bit operating system. It

takes about four minutes to solve.

To illustrate some fundamental features of the optimal solutions, the optimal ramp me-

tering policy that minimises the total delay along the section of motorway is considered.

The problem consists of a total of 6,720 decision variables (ramp inflows, rj(k), in which

4 (on-ramps) × 1,680 (time-steps) = 6,720). It can be seen that there is a huge reduc-

tion in main road congestion and the associated main road delay reduces from 28,345

veh-hr to 21,829 veh-hr (see Table 3.3) corresponding to 23 % relative main road delay

reduction calculated by Equation (3.34). Nevertheless, the reduction in main road delay

is made at the expense of the additional queues induced on the on-ramps as shown in

Figure 3.9 at Junction 15. It is noted that the size of the ramp queues can be seen

reaching almost 500 vehicles at Junction 15. This implies the controller allows nearly

500 vehicles to spill over to London Heathrow Airport from the M25 Motorway, and this

is certainly not acceptable in reality.
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To produce applicable results, the maximum ramp queue constraint (Equation 3.29)

needs to be considered. The maximum allowable queue length l̄j at all on-ramps is set

to be 30 (veh) or 60 (veh), which means the situation where an optimal metering is ap-

plied at the on-ramps and the ramp queues are not allowed to exceed 30 or 60 vehicles.

In this case, a modest reduction in main road delay (see Table 3.3) is observed due to

the consideration of ramp queues. Figure 3.8 compares the main road density with and

without the optimal metering control, and the maximum queue length is set to be 60

vehicles at all on-ramps. The colour scale represents the level of traffic density at the

corresponding time and location. Figure 3.10 and 3.11 show the main road and ramp

delay profiles under different scenarios. Each point on the time series represents the total

system delay (unit: [veh-hr]) at the corresponding 15-sec simulation time interval. The

total system delay over the entire horizon can be derived by summing up all these 15-sec

interval delays. For the 30 maximum ramp queue ramp metering case, the main road

delay is 27,031 veh-hr, and the associated ramps’ delay is 484.00 veh-hr with metering

which gives a total system delay of 27,516 veh-hr, which is smaller than the original

28,345 veh-hr (2.9 %). Nevertheless, this metering policy is a more acceptable scheme

as the ramp queues are bounded below a reasonable maximum ramp queue as shown in

Figure 3.9.
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Figure 3.8: Comparison of main road densities (Three Junctions)

upper - no control; lower - metered (60 veh)
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Figure 3.9: Ramp queues under metering at Junction 15

upper-Junction 15a; lower-Junction 15b
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Figure 3.10: Comparison of main road delays

Figure 3.11: Comparison of ramp delays
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Table 3.3: Delays under different ramp metering strategies

Delay [veh-hr] Main Pm Ramp Total Pt

No Control 28,345 0.00 28,345

RM (l̄ = 30) 27,031 4.6 % 484.00 27,516 2.9 %

RM (l̄ = 60) 25,802 9.0 % 938.37 26,740 5.7 %

RM (l̄ = inf) 21,829 23 % 2,372.0 24,201 14.6 %

3.7 Summary

This chapter presents a mathematical framework that seeks the optimal ramp metering

strategy. Cell transmission model is calibrated with traffic data and implemented to

model a section of motorway. The validation result reveals the mean absolute percentage

error is 11.5 %. With the piecewise linear structure of CTM, the optimal ramp metering

problem can be formulated as a LP, which can be solved by a range of established

solvers for the global optimal solution. This LP formulation is applied to a scenario of

the M25 Motorway where an optimal ramp metering strategy is derived that minimises

the total system delay over a fixed space-time horizon. It is shown that optimal solutions

are obtainable through CPLEX in a reasonable computational time. We note that the

application to motorway traffic is only an illustration and the methodology is indeed

generally applicable for other transport networks. We also conduct a sensitivity analysis

on the effect of ramp separation on the effectiveness of the ramp metering.



Chapter 4

Optimisation of Variable Speed

Limits and Hard Shoulder

Running

4.1 Introduction

This chapter discusses the derivation of variable speed limits and hard shoulder running

strategies. Variable speed limits (VSL) aim to reduce congestion through homogenising

traffic flow by managing their speed. It is shown that VSL have a positive impact

on safety and mobility [58]. Hard shoulder running (HSR) increases road capacity by

providing an extra lane to road users at specific times, and HSR needs to be applied with

VSL because of safety reasons [4]. A pilot scheme involving HSR operates on the M42

Motorway around Birmingham. The results show that it is an effective way to increase

77
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throughput along congested road sections and an additional 15 per cent reduction in

travel time is observed [100]. This chapter extends the optimisation formulation to VSL

and HSR. The challenge associated with the optimisation formulation is how to capture

the transformation of a fundamental diagram under the control.

This chapter is organised as follows: Section 4.2 presents how to implement VSL on the

motorway. Section 4.3 describes HSR formulation and the integrated control strategy.

Section 4.4 presents the implementation of optimal VSL and HSR through a case study

of the United Kingdom M25 Motorway. Section 4.5 provides some concluding remarks.

4.2 Variable Speed Limits

4.2.1 Changes in fundamental diagram under VSL

Variable speed limits affect the traffic on motorways by adjusting the speed limits. The

challenge associated with the optimisation for VSL is how to capture the transformation

of the fundamental diagram under different speed limits. As discussed in Papageorgiou

et al. [84], Carlson et al. [15], and shown empirically in Heydecker and Addison [46], the

fundamental diagram at a specific location will be changed if the speed limit applied at

that location changes. Smulders [94] finds that when the speed limit (e.g. 60 mph or

50 mph) is used, the average free flow speed of traffic will be reduced while the capacity

will be increased slightly. The slight increase in capacity is due to the shorter headways

between adjacent vehicles with lower speed limit.
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Currently VSL are in operation on the M25 Motorway where there are four distinct

speed limits: 70 mph, 60 mph, 50 mph, and 40 mph. The 70 mph is the normal value,

while 60 mph and 50 mph are used for congestion management, and 40 mph is used

for serious congestion or incident. In addition to the traffic measurement, MIDAS also

records the operating time of speed limits on the motorway. With such information, the

relationship between VSL and the shape of the fundamental diagram can be explored.
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Figure 4.1: Changes in fundamental diagram under VSL with real data

Detector Station: 4936A, M25 (clockwise), 26 September 2012

The parameters used in the VSL optimisation are obtained by fitting the fundamental

diagram with the traffic data under different speed limits. Figure 4.1 presents an em-

pirical scatter plot of flow-density data collected from a loop detector station (4936A)

on the M25 Motorway (clockwise). The detector station, which consists of 6 lanes, and

is located at the downstream of the on-ramp at Junction 14 and the upstream of the
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off-ramp at Junction 15. The data are classified according to the speed limits (70 mph,

60 mph, 50 mph and 40 mph) in effect when they were collected. The solid and dash

lines in Figure 4.1 reveal the fundamental diagrams under 70 mph speed limit and 50

mph speed limit respectively. It is found that when the speed limit (e.g. 60 mph or

50 mph) applied on the motorway for congestion management, the average free flow

speed of traffic will be reduced while the capacity will be increased slightly [46, 94]. The

empirical observation here generally supports the assumption of the transformation of

fundamental diagram under VSL.

4.2.2 Optimisation of VSL

This section extends the optimisation formulation to VSL. The challenge associated

with the optimisation for VSL lies on capturing the transformation of the fundamental

diagram during the speed transition process. Carlson et al. [15] adopt a ‘scaling pa-

rameter’ α to model such a transformation of the fundamental diagram. Each value of

α (0 ≤ α ≤ 1) represents one particular speed limit and one particular fundamental

diagram generated from a family of exponential speed-density functions under a second-

order METANET modelling framework [81]. The objective of the variable speed control

problem is to seek the value of α over time and space such that the total delay in the

network within a predefined time horizon is minimised. Carlson’s formulation has been

producing a number of interesting insights on how one should deploy a variable speed

control policy. Nevertheless, Carlson et al. [15]’s optimal control formulation is non-

linear which has a non-linear objective function and a set of nonlinear constraints. As a
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result, global optimality cannot be guaranteed. Global optimality may not be an impor-

tant issue for practical applications. However, it is certainly a desirable property for a

theoretical study as the global optimal solution provides a convincing and indisputable

benchmark for comparing different implementation plans.

4.2.2.1 Variable speed limits with two speed limits

This study adopts a CTM based on mixed integer linear programming (MILP) formu-

lation for solving the optimal variable speed control problem. It starts with considering

only two admissible speed limits. It is similar to the case in the UK where there is a

nominal speed limit on motorways at 70 mph, and is reduced to 50 mph for conges-

tion management (Highways Agency [2]). In the model, a set of binary (0 - 1) decision

variables α1
i (k) are introduced to represent the choice between the nominal and reduced

speed limits, where α1
i (k) = 1 implies a reduced speed limit which is applied at cell i

during time step k; α1
i (k) = 0 means otherwise. The solution of the problem reveals the

optimal deployment of the corresponding speed control strategy over time and space.

With the binary variable α1
i (k), constraints (3.17 - 3.20), which are the constraints on

the outflow in CTM, are replaced for all i and k as constraints (4.3 - 4.10). Additional

constraints on the density conservation equation (Equation 3.16) and ramp inflow (Equa-

tion 3.21) are introduced in Chapter 3 . With the objective function (Equation 3.15),

the VSL optimisation problem can be formulated as follows:

min
cv2

Z =

I∑
i=1

K∑
k=1

(
ρi(k)∆xi∆t−

fi(k)∆xi∆t

vi

)
(4.1)
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subject to:

ρi(k + 1) = ρi(k) +
∆t

∆xi

(
fi−1(k)− fi(k)

β̄i
+ rj(k)

)
(4.2)

fi(k) ≤ ρi(k)vai β̄i + α1
i (k)M (4.3)

fi(k) ≤ Qai + α1
i (k)M (4.4)

fi(k) ≤ Qai+1 + α1
i+1(k)M (4.5)

fi(k) ≤ wai+1

(
ρ̄ai+1 − ρi+1(k)

)
+ α1

i+1(k)M (4.6)

fi(k) ≤ ρi(k)vbi β̄i +
(
1− α1

i (k)
)
M (4.7)

fi(k) ≤ Qbi +
(
1− α1

i (k)
)
M (4.8)

fi(k) ≤ Qbi+1 +
(
1− α1

i+1(k)
)
M (4.9)

fi(k) ≤ wbi+1

(
ρ̄bi+1 − ρi+1(k)

)
+
(
1− α1

i+1(k)
)
M (4.10)

rj(k) = λj(k) (4.11)

The optimal VSL policy cv2 is to be implemented over all cells and time steps that

minimise the total system delay Z in the system. The notation ∆t denotes the length

of simulation time step, and ∆xi represents the length of cell i. ρi(k) and fi(k) are the

density in cell i and the outflow from cell i respectively. λj(k) denotes the traffic demand

that wants to enter the system through on-ramp j during time step k, and rj(k) is the

actual demand that enters the system. Constraint (4.2) is the conservation equation to

update the density in cell i for next time step k + 1. Moreover, the constraint (4.11)

shows the ramp inflow equals to the actual ramp demand, which means there is no ramp

control is applied on the road.

The notationM represents a very large number where it is set to be 99,999; The notations
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(vai , Qai , w
a
i and ρ̄ai ) and (vbi , Q

b
i , w

b
i and ρ̄bi) are free flow speed, capacity, the shock wave

speed and jam density under normal and reduced speed limits respectively. Note that

when α1
i (k) = 0, it will disable the constraints (4.7) and (4.8). While with α1

i (k) = 1, the

fundamental diagram at cell i will be transformed through switching off constraints (4.3)

and (4.4), and switching on constraints (4.7) and (4.8). Considering safety reasons, the

VSL should not be changed too frequently because it will confuse drivers. The variable

speed limit interval is set to satisfy this constraint to ensure the VSL cannot change in

a period of time.

There are indeed a number of different assumptions on how the fundamental diagram

can be affected by VSL (see, for example, Hegyi [42]; Carlson et al. [15]; Heydecker

and Addison [46]), while it is fair to say there is no conclusion of which specification

is correct. The MILP formulation here relaxes such restrictions through the ‘Big-M’

binary constraint set, which allows arbitrary fundamental diagrams to be used under

different speed limits.

4.2.2.2 Variable speed limits with three speed limits

The formulation can further be extended to cover more choices of speed limit with addi-

tional binary variables and associated constraints. If one more speed limit is considered

in the study, at least two sets of binary (0 - 1) decision variables need to be introduced,

chosen from three kinds of fundamental diagrams (FDa, FDb and FDc). The nota-

tion FDa (vai , Qai , w
a
i and ρ̄ai ) represnts the fundamental diagram including all relavent

parameters under normal speed limit (e.g. 70 mph). The notations FDb (vbi , Q
b
i , w

b
i

and ρ̄bi) and FDc (vci , Q
c
i , w

c
i and ρ̄ci ) denote fundamental diagrams under higher speed
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limit (e.g. 60 mph) and lower speed limit (e.g. 50 mph) respectively. For example,

constraint set (3.17 - 3.20) can be replaced by the following constraint set (4.14 - 4.25)

to cover three different speed limits with a second binary variable α2
i (k) as follows:

min
cv3

Z =
I∑
i=1

K∑
k=1

(
ρi(k)∆xi∆t−

fi(k)∆xi∆t

vi

)
(4.12)

subject to:

ρi(k + 1) = ρi(k) +
∆t

∆xi

(
fi−1(k)− fi(k)

β̄i
+ rj(k)

)
(4.13)

fi(k) ≤ ρi(k)vai β̄i +
(
α1
i (k) + α2

i (k)
)
M (4.14)

fi(k) ≤ Qai +
(
α1
i (k) + α2

i (k)
)
M (4.15)

fi(k) ≤ Qai+1 +
(
α1
i+1(k) + α2

i+1(k)
)
M (4.16)

fi(k) ≤ wai+1

(
ρ̄ai+1 − ρi+1(k)

)
+
(
α1
i+1(k) + α2

i+1(k)
)
M (4.17)

fi(k) ≤ ρi(k)vbi β̄i +
(
1− α2

i (k)
)
M (4.18)

fi(k) ≤ Qbi +
(
1− α2

i (k)
)
M (4.19)

fi(k) ≤ Qbi+1 +
(
1− α2

i+1(k)
)
M (4.20)

fi(k) ≤ wbi+1

(
ρ̄bi+1 − ρi+1(k)

)
+
(
1− α2

i+1(k)
)
M (4.21)

fi(k) ≤ ρi(k)vci β̄i +
(
1− α1

i (k)
)
M (4.22)

fi(k) ≤ Qci +
(
1− α1

i (k)
)
M (4.23)

fi(k) ≤ Qci+1 +
(
1− α1

i+1(k)
)
M (4.24)

fi(k) ≤ wci+1

(
ρ̄ci+1 − ρi+1(k)

)
+
(
1− α1

i+1(k)
)
M (4.25)

rj(k) = λj(k) (4.26)

1 ≥ α1
i (k) + α2

i (k) (4.27)
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The optimal VSL policy cv3 is to be implemented over all cells and time steps that

minimise the total system delay Z in the system. The notation ∆t denotes the length

of simulation time step, and ∆xi represents the length of cell i. ρi(k) and fi(k) are the

density in cell i and the outflow from cell i respectively. The notations λj(k) and rj(k)

denote the traffic demand that wants to enter the system and the actual demand that

enters the system respectively. The constraint (4.26) shows the ramp inflow equals to

the actual ramp demand, which means there is no ramp control is applied on the road.

Moreover, constraint (4.13) is the conservation equation to update the density in cell i

for following time step k + 1.

The notation M represents a very large number where it is set to be 99,999. The notation

(vai , Qai , w
a
i and ρ̄ai ) represents free flow speed, capacity, the shock wave speed and jam

density under normal speed limit (70 mph). The notations (vbi , Q
b
i , w

b
i and ρ̄bi) and (vci ,

Qci , w
c
i and ρ̄ci ) are free flow speed, capacity, the shock wave speed and jam density under

higher and lower speed limits respectively. Note that α1
i (k) and α2

i (k) represent two set

of binary variables, so there are four combinations ([0,0], [0,1], [1,0], and [1,1]). Under

constraint 4.27, only three combinations ([0,0], [0,1], [1,0]) works. The first case is that

α1 = 0 and α2 = 0, constraints (4.18 - 4.25) will be disabled. Therefore, only constraint

(4.14 - 4.17) works. Constraint (4.18 - 4.21) works under α1 = 0 and α2 = 1. The last

case is that α1 = 1 and α2 = 0, which means only constraint (4.22 - 4.25) works. Unlike

the studies of Papageorgiou et al. [84] and Carlson et al. [15], one can capture different

kinds of transformation by setting appropriate values of parameters.
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4.2.2.3 Computational Complexity of VSL

The ‘Big-M’ formulations in constraint set (4.3 - 4.10) and constraint set (4.14 - 4.25)

enable the arbitrary transformation of the fundamental diagram under VSL. The more

constraints are introduced for three speed limits than two speed limits. It is known that

MILP can induce the ‘curse of dimensionality’ problem due to the combinatorial nature

of the problem (see Luenberger and Ye [67]). For example, consider three speed limits

case where there are the two binary variables [α1
i (k), α2

i (k)]; it implies there can be four

(2 × 2) combinations of them:
(

[0, 0] [0, 1] [1, 0] [1, 1]
)

and hence a larger solution

space and computational complexity. To analyse further the computational complexity,

suppose that Tn is the control period (typically 5 − 10 minutes for variable speed con-

trol purposes) that specifies how often the speed limit is being updated. Then further

consider Rn to be the number of these control periods in the optimisation problem.

As an illustration, if the control period Tn is set to be 5 minutes long, and seeking an

optimal speed control strategy over a one hour (60 minutes) time horizon, then Rn will

be 60 (minutes)/5 (minutes) = 12. Finally, the number of feasible VSL is defined as Vn.

Given these quantities, the total number of possible solutions Cn of the optimisation

problem is determined as:

Cn =
(
(Vn)Tn

)Rn = (Vn)TnRn (4.28)

The total number of possible solutions Cn grows exponentially with respect to Tn (cor-

responding to how often the control is updated) and Rn (corresponding to the length of

the optimisation planning horizon). This exponential growth rate of solution space is a
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typical feature of MILP problems, which implies one has to consider the problem formu-

lation (e.g. number of decision variables to involve) carefully as it can have a significant

impact on the corresponding computational time. With the increase in number of the

control interval and control region, the case number of three speed limits increases faster

than two speed limits, because the case number increases exponentially. For example,

we assume the same control period (T2 = T3 = 5 min) and the number of control periods

(R2 = R3 = 120/5 = 24 control horizon is set as 2 hours). Then the total number of pos-

sible solusions are C2 = 25∗24 = 2120 = 1.3292e+36 and C3 = 35∗24 = 3120 = 1.7970e+57

for two and three speed limits respectively. Because of the computation complexity of

the three variable speed limits, the ramp metering with two varibale speed limits is

illustrated in the following section.

4.2.2.4 Ramp metering with two variable speed limits

In real practice, the variable speed limit control is always applied with ramp metering.

By considering the ramp metering, which is introduced in Chapter 3, the ramp metering

with two variable speed limits (RMVSL) can be formulated as follows:

min
crv

Z =
I∑
i=1

K∑
k=1

(
ρi(k)∆xi∆t−

fi(k)∆xi∆t

vi

)
+ η

J∑
j=1

K∑
k=1

lj(k)∆t (4.29)

subject to:
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ρi(k + 1) = ρi(k) +
∆t

∆xi

(
fi−1(k)− fi(k)

β̄i
+ rj(k)

)
(4.30)

fi(k) ≤ ρi(k)vai β̄i + α1
i (k)M (4.31)

fi(k) ≤ Qai + α1
i (k)M (4.32)

fi(k) ≤ Qai+1 + α1
i+1(k)M (4.33)

fi(k) ≤ wai+1

(
ρ̄ai+1 − ρi+1(k)

)
+ α1

i+1(k)M (4.34)

fi(k) ≤ ρi(k)vbi β̄i +
(
1− α1

i (k)
)
M (4.35)

fi(k) ≤ Qbi +
(
1− α1

i (k)
)
M (4.36)

fi(k) ≤ Qbi+1 +
(
1− α1

i+1(k)
)
M (4.37)

fi(k) ≤ wbi+1

(
ρ̄bi+1 − ρi+1(k)

)
+
(
1− α1

i+1(k)
)
M (4.38)

lj(k + 1) = lj(k) +
(
λj(k)− rj(k)

)
∆t (4.39)

lj(k) ≤ l̄j (4.40)

rj(k) ≤ λj(k) (4.41)

rj(k) ≥ 0 (4.42)

rj(k) ≤ lj(k)

∆t
+ λj(k) (4.43)

rj(k) ≤
(
ρ̄j − ρj(k)

)∆xj
∆t

(4.44)

The optimal VSL policy crv is to be implemented over all cells and time steps that

minimise the total system delay Z in the system. The notation η is a parameter that

adjusts the balance between the main road delay and ramp delay (boundary queues). In

this study, the value of η is set to be 1 indicating all road sections are equally weighted.

∆t denotes the length of simulation time step, and ∆xi represents the length of cell
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i. The notations ρi(k) and fi(k) are the density in cell i and the outflow from cell i

respectively. Constraint (4.30) is the conservation equation to update the density in cell

i for next time step k + 1.

The notation λj(k) denotes the traffic demand that wants to enter the system through

on-ramp j during time step k, and rj(k) is the actual demand that enters the system.

Equation (4.39) is used to capture the evolution of queues lj(k). Moreover, one may

add a upper bound l̄j
(

Equation (4.40)
)

for some on-ramps to specify the maximum

queue length of the on-ramps such that an unacceptable long queue on the on-ramp

will not be obtained as an optimisation result. For ramp inflow, Equations (4.41) and

(4.42) are additional constraints on the control variable rj(k) to ensure its upper bound

and non-negativity respectively. Equations (4.43) and (4.44) are constraints on ramp

demand and main road space respectively.

4.2.3 The effect of fundamental diagram specifications under VSL

It is found that capacity increases slightly when reduced speed limits are applied, while

free flow speed reduces under reduced speed limits. This section explores the effect of

different assumptions on the transformation of the fundamental diagram under different

speed limits. A hypothetical two-lane motorway corridor of 7 km is adopted here which

consists of 14 cells with a bottleneck at cell 8. The length of each cell is taken as 500

metres, and the simulation time is set to be 60 min with an extra 15 min cool down

period. Two kinds of main road demand are tested in this section. The Demand 1 is set

as 3000 veh/hr for the whole simulation horizon, and Demand 2 is set as the trapezoid-

shaped with the highest demand of 3400 veh/hr. All cells are assumed to have a common
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capacity (3600 veh/hr) and jam density (240 veh/km) except cell 8 where it takes a lower

capacity (2800 veh/hr) and jam density (180 veh/km) there. The nominal speed limit is

100 km/hr. The total delays with no control are 103.45 veh-hr and 111.41 veh-hr under

Demand 1 (steady demand) and Demand 2 (time-varying demand) respectively.

Two possible transformations of fundamental diagrams (FD′ and FD+) are considered

under reduced speed limits (see Figure 4.2). Both FD′ and FD+ consider a reduced

free flow speed and a slightly increased capacity as suggested by empirical observations

(Heydecker and Addison [46]). The FD′ transformation (long red dash lines) assumes

the jam density will remain the same, while the FD+ transformation (dotted lines)

assumes the shockwave speed (w) remains the same.

Figure 4.2: Changes in fundamental diagram under VSL

Figure 4.3 compares the total delay reduction gained from the optimal VSL with the two

transformations FD′ and FD+ under different settings. Scenarios are considered with
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6 different capacity settings where ‘1.00Q’ represents a case where there is no change

in capacity after reducing the speed limit, ‘1.01Q’ refers to the situation where the

capacity flow will be increased by 1% at the location where the speed limit is reduced,

and so on. Also considered here are two sets of binary speed limit settings in which

‘VSL90’ means the alternative (reduced) speed limit is 90 km/hr, while ‘VSL80’ means

the alternative (reduced) speed limit is 80 km/hr. The uneven dash and solid lines with

markers represent the percentage of reduced delay under Demand 1 when ‘VSL90’ and

‘VSL80’ are applied respectively. The solid and even dash lines represent the percentage

of reduced delay under Demand 2 when ‘VSL90’ and ‘VSL80’ are applied respectively.

Figure 4.3 shows a linear relationship between the capacity improvement under reduced

speed limit and the delay reduction. The interesting observation here is that it appears

different assumptions of fundamental diagram transformations do not have a significant

effect on the eventual performance of the variable speed control.

Table 4.1 further shows the performance of VSL with different spatial and temporal

granularity of control where the transformation fundamental diagram (FD′) is adopted.

In the table, the control interval represents how frequent the speed limit is updated.

This control interval represents the temporal granularity of the variable speed control

policy. The control region represents the number of cells with the same speed limit.

This control region represents the spatial granularity. The numbers in the table are

the total system delay (unit: [veh-hr]) under the optimal variable speed control derived

with corresponding combination of control region and interval settings. For example,

the number ‘76.94’ (veh-hr) in Table 4.1 is the total system delay under the steady

demand (Demand 1) optimal speed control with which the speed limit varies every

minute and every cell (500 metres), and so forth. It is observed that better performance
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Figure 4.3: Comparison of different transformations of fundamental diagram under
VSL

(left–FD
′
; right–FD+)

in terms of delay minimisation can be achieved with finer control (i.e. control derived

with smaller values of control interval and region). However, one should note that this

will have to come at the expense of computational effort as discussed previously. It

is also interesting to highlight that the benefit of using a finer control interval indeed

depends on the temporal variability of the demand. For example, Table 4.1 reveals that

using a finer control interval (1-min) virtually does not bring any additional benefit over

the coarser ones (30-min) when the demand profile is steady.
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Table 4.1: Performance of VSL with different space-time granularity

Delay Control Interval [min]

[veh-hr] Control
region

1 5 10 15 20 30

D
e
m

a
n

d
1

1 Cell 76.94 76.94 76.94 76.94 76.94 76.94

2 Cell 80.34 80.34 80.34 80.34 80.34 80.34

3 Cell 83.68 83.73 83.73 83.73 83.73 83.73

4 Cell 91.89 92.03 94.44 98.16 99.48 100.6

5 Cell 92.37 94.35 94.87 98.78 101.1 103.5

D
e
m

a
n

d
2

1 Cell 98.06 98.11 98.34 98.11 98.54 98.54

2 Cell 100.6 100.8 101.2 100.8 101.6 101.6

3 Cell 103.0 103.2 104.0 103.4 104.7 104.7

4 Cell 108.3 108.6 109.4 111.5 109.9 111.5

5 Cell 108.6 108.9 109.9 111.5 109.9 111.5
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4.3 Hard Shoulder Running

4.3.1 Changes in fundamental diagram under HSR

Hard shoulder running (HSR) increases road capacity by providing an extra lane to road

users. In real practice, HSR is always applied with reduced speed for safety reasons [4],

and the speed limit set to less than or equal to 50 mph. For simplicity, the following

discussion of HSR always operates with a speed limit control at 50 mph. The average

free flow speed of traffic will be reduced while the capacity will be increased slightly,

which is discussed in Section 4.2.1. The slight increase in capacity is attributed to the

shorter headways between vehicles under a lower speed limit. Therefore, the free flow

speed is reduced when the HSR (including the effect of VSL) applied on the motorway.

Moreover the capacity and the jam density increase significantly because an extra lane

will be used.

Figure 4.4 illustrates schematically the impact of HSR on the fundamental diagram.

The dash and solid lines represent the fundamental diagrams with and without HSR

respectively. The capacity and jam density are higher than no control case because an

extra lane (hard shoulder lane) opens for road users. The notations ( v∗, Q∗, w∗ and ρ̄∗)

and (v, Q, w and ρ̄) represent the free flow speed, capacity, wave speed and jam density

with and without HSR respectively.
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Figure 4.4: Changes in fundamental diagram under HSR

4.3.2 Optimisation of HSR

Similar to VSL control, this study adopts a CTM based mixed integer linear program-

ming (MILP) formulation for solving the HSR control policy. A set of 0 - 1 binary

decision variables µi(k) is introduced as indicators to choose between the fundamental

diagram with and without HSR. The solution of the problem reveals the optimal deploy-

ment of the corresponding HSR control strategy over time and space, which means the

best time and location to open the hard shoulder as an extra lane with VSL. With the

binary variable µi(k), constraints (3.17 - 3.20), which are the constraints on the outflow

in CTM, are replaced for all i and k as constraints (4.47 - 4.54):
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min
ch

Z =

I∑
i=1

K∑
k=1

(
ρi(k)∆xi∆t−

fi(k)∆xi∆t

vi

)
+ ζ

I∑
i=1

K∑
k=1

µi(k) (4.45)

subject to:

ρi(k + 1) = ρi(k) +
∆t

∆xi

(
fi−1(k)− fi(k)

β̄i
+ rj(k)

)
(4.46)

fi(k) ≤ ρi(k)viβ̄i + µi(k)M (4.47)

fi(k) ≤ Qi + µi(k)M (4.48)

fi(k) ≤ Qi+1 + µi+1(k)M (4.49)

fi(k) ≤ wi+1

(
ρ̄i+1 − ρi+1(k)

)
+ µi+1(k)M (4.50)

fi(k) ≤ ρi(k)v∗i β̄i +
(
1− µi(k)

)
M (4.51)

fi(k) ≤ Q∗i +
(
1− µi(k)

)
M (4.52)

fi(k) ≤ Q∗i+1 +
(
1− µi+1(k)

)
M (4.53)

fi(k) ≤ w∗i+1

(
ρ̄∗i+1 − ρi+1(k)

)
+
(
1− µi+1(k)

)
M (4.54)

rj(k) = λj(k) (4.55)

The optimal HSR policy ch is to be implemented over all cells and time steps that

minimise the total system delay Z in the system. The notation ∆t denotes the length

of simulation time step, and ∆xi represents the length of cell i. ρi(k) and fi(k) are the

density in cell i and the outflow from cell i respectively. λj(k) denotes the traffic demand

that wants to enter the system through on-ramp j during time step k, and rj(k) is the

actual demand that enters the system. The constraint (4.55) shows the ramp inflow

equals to the actual ramp demand, which means there is no ramp control is applied on

the road. Moreover, constraint (4.46) is the conservation equation to update the density

in cell i for next time step k + 1.
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The notation M represents a very large number where it is set to be 99,999; The notation

(vi, Qi, wi and ρ̄i) and (v∗i , Q
∗
i , w

∗
i and ρ̄∗i ) are free flow speed, capacity, the shock

wave speed and jam density without and with hard shoulder running respectively. The

notation µi(k) = 1 implies the HSR being opened at cell i during time step k; µi(k) = 0

means otherwise. If µ = 0, the constraints (4.51 - 4.54) will be disabled due to the big

number M .

In order to maximise the capacity along the motorway, the hard shoulder could be run

over the whole optimisation period. However, this will have to come at the expense

of safety. The objective function is adjusted according to this, with which the hard

shoulder optimisation problem. The last term in the objective function is the sum of

all HSR control variables, which increases with the number of HSR in operation. The

parameter ζ is the balance between the consideration of safety and capacity. A larger

ζ indicates that the more weight on safety. For the extreme case (ζ = 0), all available

hard shoulder lanes will be open all the time as that will provide maximum physical

capacity when no consideration is given to safety or incident management. The optimal

HSR control policy ch is to be implemented over all cells and time steps that minimised

the total system delay Z.

4.3.3 Optimisation of integrated control strategy

The integration of three control strategies including ramp metering, variable speed limits

and hard shoulder running is also considered in this study. The optimisation problem

for integrated control strategy is also formulated as a mixed integer linear programming

(MILP) problem. The integrated control optimisation problem can be formulated by
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considering all relevant ramp metering and HSR constraints as follows:

min
crvh

Z =
I∑
i=1

K∑
k=1

(
ρi(k)∆xi∆t−

fi(k)∆xi∆t

vi

)
+ η

J∑
j=1

K∑
k=1

lj(k)∆t+ ζ
I∑
i=1

K∑
k=1

µi(k)

(4.56)

subject to:

ρi(k + 1) = ρi(k) +
∆t

∆xi

(
fi−1(k)− fi(k)

β̄i
+ rj(k)

)
(4.57)

fi(k) ≤ ρi(k)viβ̄i + µi(k)M (4.58)

fi(k) ≤ Qi + µi(k)M (4.59)

fi(k) ≤ Qi+1 + µi+1(k)M (4.60)

fi(k) ≤ wi+1

(
ρ̄i+1 − ρi+1(k)

)
+ µi+1(k)M (4.61)

fi(k) ≤ ρi(k)v∗i β̄i +
(
1− µi(k)

)
M (4.62)

fi(k) ≤ Q∗i +
(
1− µi(k)

)
M (4.63)

fi(k) ≤ Q∗i+1 +
(
1− µi+1(k)

)
M (4.64)

fi(k) ≤ w∗i+1

(
ρ̄∗i+1 − ρi+1(k)

)
+
(
1− µi+1(k)

)
M (4.65)

lj(k + 1) = lj(k) +
(
λj(k)− rj(k)

)
∆t (4.66)

lj(k) ≤ l̄j (4.67)

rj(k) ≤ r̄j (4.68)

rj(k) ≥ 0 (4.69)

rj(k) ≤ lj(k)

∆t
+ λj(k) (4.70)

rj(k) ≤
(
ρ̄j − ρj(k)

)∆x

∆t
+ µj(k)M (4.71)

rj(k) ≤
(
ρ̄∗j − ρj(k)

)∆x

∆t
+
(
1− µj(k)

)
M (4.72)
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The optimal policy crvh is to be implemented over all cells and time steps that minimise

the total system delay Z. The notation ∆t denotes the length of simulation time step,

and ∆xi represents the length of cell i. ρi(k) and fi(k) are the density in cell i and the

outflow from cell i respectively. The notation M represents a very large number where

it is set to be 99,999; The notation (vi, Qi, wi and ρ̄i) and (v∗i , Q
∗
i , w

∗
i and ρ̄∗i ) are

free flow speed, capacity, the shock wave speed and jam density without and with hard

shoulder running respectively. Constraint (4.57) is the conservation equation to update

the density in cell i for next time step k + 1.

By considering the ramp metering, additional constraints on the ramp queue length

(constraints 4.66 - 4.67) should add to the HSR formulations. The notation l̄j is defined

as the maximum queue length on the ramps such that an unacceptable long queue on

the on-ramp will not be obtained as an optimisation result. Constraint (4.67) is the

conservation equation on the queue length, where λj(k) denotes the traffic demand that

wants to enter the system through on-ramp j during time step k, and rj(k) is the actual

demand that enters the system.

Moreover, constraints on the ramp inflow also need to be considered in the integrated

control strategy. The limitations on the maximum value, non-negativity and ramp de-

mand (constraints 4.68 - 4.70) remain the same in the ramp metering control. However,

the constraint on main road space (constraint 3.33) should be adapted due to the jam

density which could be changed when HSR is applied on the motorway (constraints 4.71

and 4.72). The notation r̄j refers to ramp capacity at on-ramp j.
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4.4 Working Example

The optimal control models are now applied to a case study with traffic data collected

from a 10-km section (between Junctions 13 and 15) of the orbital M25 Motorway

(direction: clockwise) in London, England. The section covers three on-ramps (one at

Junction 14 and two at Junction 15) and two off-ramps (one at Junction 14 and one

at Junction 15). The motorway stretch contains 20 detector stations with an average

spacing of 500 metres. The data were collected on 3 October 2012 (Wednesday). The

on-ramps are located at cell 10 (Junction 14), 17 (Junction 15a) and 18 (Junction 15b).

The off-ramps are located at cell 5 (Junction 14) and 15 (Junction 15). The length of the

simulation time step is set to be 15 seconds, which gives the total number of time steps

K = 720 over a three-hour evening peak period [17:00 - 20:00]. The optimal control

problems of VSL and HSR are implemented and solved by IBM ILOG CPLEX running

on the same desktop computer described previously.

4.4.1 Variable speed limits

The effectiveness of VSL for congestion management is discussed in this section. The

normal speed limit is 70 mph on motorways in United Kingdom, while a reduced speed

limit of 50 mph is considered as an alternative. Based upon empirical observations, it

can be assumed that the capacity is increased slightly by 1 per cent when a lower speed

limit (50 mph) is used.

Following real operations, the cells 4 to 19 are specified as the feasible VSL control region,

and the speed limit is updated every 5 minutes
(
equals to 20 (time steps) = 5× 60/15

)
.
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The problem hence consists of 504 VSL control variables
(
14 (cells) × 720 (3 hr)

20 (5 min)
= 504

)
,

and takes about 30 minutes to solve. Figure 4.5 shows the density contours with (right)

and without (left) VSL, the total system delay is reduced with VSL from 2145 veh-hr

to 1913 veh-hr (see Table 4.3). The main road delay reduction is not as great as the

ramp metering case (VSL: 1913 veh-hr versus RM:1757 veh-hr), while there is no extra

ramp delay induced with VSL. Considering the overall total system delay, VSL indeed

are able to produce a better performance than the ramp metering control (VSL: 1913

veh-hr versus Ramp metering: 2106 veh-hr).

Figure 4.5: Main road densities with and without VSL

left - no control; right - VSL

To gain further insight, Figure 4.6 depicts graphically the optimal VSL strategy in which

the white grids represent the location (cells) and time (VSL control intervals) where the

50 mph speed limit is used. In general, a lower speed limit will be adopted at congested
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regions to gain a slightly higher capacity. Moreover, it is expected that the gain in

discharge flow outweighs the reduction in speed as suggested by the overall reduction in

total delay.

Figure 4.6: VSL strategies

4.4.2 Hard shoulder running

An assumption here is that the lane with an extra hard shoulder will give an additional

700 vehicles per hour capacity to the corresponding road section under 50 mph speed

limit. In addition, the trade-off parameter ζ between efficiency and safety is set to be

0.3 veh-hr. Moreover, cells 14 to 19 are specified as the feasible HSR control region in

which HSR can be applied after the existing road configuration has been checked. Then

another assumption here is that the HSR control interval is 5 minutes (equals to 20 time
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steps), so that HSR strategies can be updated only every 5 minutes. Consequently, the

problem consists of 216 HSR control variables (6 (cells)× 720 (3 hr)

20 (5 min)
= 216), and takes

about 10 minutes to solve. Figure 4.7 compares the density contours with (right) and

without (left) HSR. The layout of the road section is shown on the left of the plots. The

main road delay reduces significantly from 214,5 veh-hr (no control case) to 595.2 veh-hr

(HSR case).

Figure 4.7: Main road densities with and without HSR

left - no control; right - HSR

The optimal solution shows that the hard shoulder is opened only at cell 18 during the

period from 17:00 to 18:50, with ζ = 0.3. To provide further insight into the sensitivity

of ζ on optimal hard shoulder operations, Table 4.2 summarises the performances of

HSR under different ζ. Capacity will be given a higher priority with a lower ζ adopted

and hence more hard shoulder lanes will be utilised. An extreme case is when ζ is set to

be zero, then hard shoulder lanes will be opened at all cells (cells 14 through 19) during
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the entire study period. Table 4.2 shows that cell 18 is the first location where the hard

shoulder will be used, and it is followed by cells 14 through 19. The sequence of hard

shoulder opening generally follows the sequence of the onset of congestion over space.

Table 4.2: Sensitivity analysis of ζ on HSR operations

Hard Shoulder Running by cell

ζ Total
Delay
veh-hr

14 15 16 17 18 19

≥0.20 574.7 N/A N/A N/A N/A 17:00-18:50 N/A

0.19 571.7 17:30-18:40 N/A N/A N/A 17:00-18:50 N/A

0.15 569.4 17:30-18:45 17:30-18:35 N/A N/A 17:00-18:50 N/A

0.14 569.4 17:30-18:40 17:30-18:40 N/A N/A 17:00-18:50 N/A

0.13 567.4 17:30-18:45 17:30-18:40 17:30-18:35 N/A 17:00-18:50 N/A

0.12 565.5 17:30-18:40 17:30-18:40 17:30-18:40 17:25-18:35 17:00-18:50 N/A

0.10 565.4 17:30-18:40 17:30-18:40 17:30-18:40 17:25-18:40 17:00-18:50 N/A

0.09 565.3 17:30-18:40 17:30-18:40 17:25-18:40 17:25-18:40 17:00-18:50 N/A

0.07 565.2 17:30-18:40 17:30-18:40 17:25-18:45 17:25-18:40 17:00-18:50 N/A

0.05 565.2 17:30-18:45 17:30-18:40 17:25-18:40 17:25-18:40 17:00-18:50 N/A

0.01 565.2 17:30-18:45 17:25-18:45 17:25-18:40 17:25-18:40 17:00-18:50 N/A

0.00 565.2 17:00-20:00 17:00-20:00 17:00-20:00 17:00-20:00 17:00-20:00 17:00-
20:00

Note: N/A = Not applicable as hard shoulder is not running in this cell.

4.4.3 Integrated control strategy

To identify the performance of the integrated control, we assume the hard shoulder lane

gives an additional (about 700 veh/hr) capacity to the corresponding road section. The

trade-off parameter between efficiency and safety is also set to be 0.3 veh-hr. More-

over, cells 14 to 19 are specified as the feasible HSR and VSL (50 mph) control region.
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Figure 4.8 compares the no-control case (left) with the integrated control case (right)

where the three on-ramps are metered with maximum queue length (60 vehicles). The

colour scale represents the level of traffic density at the corresponding time and location.

The layout of the road section is shown on the left of the plots. Figure 4.8 shows the

integrated control strategy relieves traffic congestion. This reveals that the integrated

control strategy is effective in reducing the main road delay. Moreover, the hard shoulder

with 50 mph speed limit is only applied at cell 18 (see Table 4.2).

Figure 4.8: Main road densities with and without integrated control

left - no control; right - integrated control

The performance of the integrated strategy is better than separated controls as expected

because the integrated control obtains the most of benefit from each control strategy.

The Pm and Pt in Table 4.3 are the relative reduction on main road delay and total sys-

tem delay respectively as shown in Equation (3.34). By comparing the numerical results

in Table 4.3, it is found that the relative reduction on total system delay of RMVSL
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(12%) is approximately equal to the sum of the relative reduction on total system delay

under VSL (11%) and ramp metering (1.8%). The small difference (0.8%) comes from

the different ramp delay. The ramp delay of RMVSL (321.9 veh-hr) is lower than the

ramp delay of ramp metering (349.0 veh-hr). The integrated control strategy shows a

similar trend. Variable speed limits and HSR influence the character of the motorway

such as free flow speed and jam density, and ramp metering changes the congested lo-

cation (main road or ramp) and reduces the spill over. Therefore, VSL and HSR induce

more reduction on delay compared with ramp metering.

Table 4.3: Delays under different control strategies

Delay [veh-hr] Main Pm Ramp Total Pt

NO 2,145 0.00 2,145

RM 1,757 18 % 349.0 2,106 1.8 %

VSL 1,913 11 % 0.00 1,913 11 %

HSR 595.2 72 % 0.00 595.2 72 %

RMVSL 1,564 27 % 321.9 1,886 12 %

Integrated 359.5 83 % 198.7 558.2 74 %
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4.5 Summary

This chapter presents a optimisation framework that seeks an optimal VSL, HSR,

RMVSL, and integrated control strategies for motorway traffic management. The op-

timisation models are formulated based upon CTM. With the linearity of CTM, the

optimal control problems are formulated as a MILP problem and solved by CPLEX.

One may argue that the computational complexity associated with the MILP formula-

tion, in particular the issue of the ‘curse of dimensionality’ as the solution space increases.

Nevertheless, it should be noted that there are a number of efficient algorithms which

exist for solving MILP problems effectively. In particular, the speed control problem

presented here can be solved by using a branch-and-bound algorithm which is known to

be readily parallelized for the highly effective parallel computation. This chapter also

presents various analyses on the sensitivity of the effectiveness of the control strategies

with respect to different model settings and assumptions.

The optimisation control strategies are applied to a case study on the UK M25 Motorway.

The optimal control strategies are derived by minimising the total system delay, and

the solutions are obtained in a reasonable computational time. The results show that

all control strategies can effectively reduce total system delay. Hard shoulder running

appears very effective approach in reducing total system delay by providing an extra

physical lane to motorways. Nevertheless, engineers must be careful in balancing the

trade-off between mobility and safety, as HSR removes the buffer intended for incident

management. Moreover, an extra lane could imply an increase in travel demand, which

has not been considered in this chapter.





Chapter 5

Robust Optimisation of Ramp

Metering

5.1 Introduction

It is known that the traffic condition becomes unstable following the onset of congestion

[72]. Such traffic flow variability is a growing concern because of its implication on

travel reliability in particular during peak periods. This chapter presents a robust ramp

metering optimisation framework that incorporates the set-valued fundamental diagram.

In addition to the fundamental diagram, we also consider the uncertainty on the demand

side due to various measurement or estimation errors [45]. The robust optimisation is

formulated as a minimax problem based upon CTM, and solved by a two stage solution

procedure.

This chapter is organised as follows: Section 5.2 introduces the basic characteristics of

109
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traffic flow and the sources of uncertainty in traffic state estimation. Section 5.3 presents

a robust optimisation framework, which aims to minimise and stabilise travel delay

over a range of uncertain scenarios. The performances of different control policies are

illustrated and compared through working examples in Section 5.4. Finally, Section 5.5

provides some concluding remarks.

5.2 Characteristic of Road Traffic Flow

5.2.1 Set-valued fundamental diagram

In a traffic model, traffic characteristics are typically represented by a flow-density func-

tion, which is known as a fundamental diagram. Fundamental diagrams can be derived

by using standard loop detector data (MIDAS in England), which includes measure-

ments of flow (in vehicles per hour), density (in vehicles per kilometre), and speed (in

kilometres per hour). Figure 5.1 shows the flow-density scatter plot of data collected at

a detector station (4955A) on the M25 Motorway (clockwise) in the United Kingdom.

The detector station consisting of three lanes is located at the upstream of Junction 15

connecting with the London Heathrow (LHR) Airport. The data are collected over 5

weekdays from 24 September 2012 (Monday) to 28 September 2012 (Friday) and pro-

cessed into 5-min averages. The fundamental diagram can be obtained by the three

step calibration procedure (free flow line, capacity, and congested line) as described in

Chapter 2.

The main challenge of calibrating the fundamental diagram lies in representing the con-

gested data which exhibits a high level of uncertainty due to the underlying complicated
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Figure 5.1: Set-valued fundamental diagram

(Detector Station: 4955A, M25 (clockwise))

traffic dynamics (e.g. capacity drop). This highlights the difficulty of modelling dynamic

traffic with standard specifications of fundamental diagram to model traffic dynamics

especially under congested conditions. A number of studies have been conducted to

analyse and incorporate the uncertainty in congested traffic. Recently some studies have

been proposed using a stochastic traffic modelling framework to address this variability.

Estimating the probability distributions associated with these uncertain quantities is

shown to be difficult (Brilon et al. [13]; Chow et al. [20]). Brilon et al. [13] present the

stochastic concept of capacity based on a series of studies of German motorways. Ngo-

duy [75] also presents a stochastic fundamental diagram based on multi-class first-order

traffic model. The simulation result shows that the wide scattering in the flow-density

relationship is due to the random variations in driving behaviour. Sumalee et al. [95]

propose a stochastic version of CTM called SCTM. Nevertheless, their model requires
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pre-definition of various traffic state transitions and associated probabilities which are

not easy to determine and implement in practice. Moreover, the computational effort of

incorporating explicitly these probability distributions into optimisation framework has

also been shown to be demanding [112].

As an alternative, a set-valued fundamental diagram modelling approach is proposed

by Kurzhanskiy and Varaiya [55]. Following Kurzhanskiy and Varaiya [55], a value of

density in the congested region is associated with a range of flow values which bounded

a predefined interval without the need to specify the underlying probability distribution

function. This gives rise to an interval estimation of traffic flow in a congested situation

and it has been shown this interval estimation provides an important new insight to

traffic state estimation.

However, Kurzhanskiy and Varaiya [55] do not describe the calibration methods for

the set-valued fundamental diagram. The trained regression proposed in Chapter 2

is extended for the set-valued fundamental diagram. The congested data along the

density (horizontal) axis is partitioned into a series of non-overlapping bins containing

a certain number (e.g. 10 in this study) data points. Given the 10 density and flow

pairs in the bin: (f1, ρ1), (f2, ρ2), ..., (f10, ρ10). Horizontally, each bin is represented by a

‘BinDensity’, which is the average of the 10 density values in the bin. The formulation

is shown as follows:

BinDensity =
10∑
n=1

ρi

/
10 (5.1)

Vertically, each bin is represented by a range of flow which is bounded by the largest

and the smallest non-outlying flow values in the bin. Under the given flow values, the
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largest (BinFlow+) and smallest (BinFlow−) non-outlying values are looked for as:

BinFlow+ = max
fi
{fi|B, fi ∈ fi < Q3 + 1.5IQR} (5.2)

BinFlow− = min
fi
{fi|B, fi ∈ fi > Q1 + 1.5IQR} (5.3)

where Q1, Q3, and IQR are the 25th percentile flow, 75th percentile flow, and inter-

quantile range (i.e. difference between 25th percentile and 75th percentile flow values)

in the bin respectively. Two least-square estimations are performed on the [BinDensity

- BinFlow+] and [BinDensity - BinFlow−] pairs to obtain the upper and lower bounds

of the congested line. The corresponding capacity points (ρ̊+, Q+) and (ρ̊−, Q−) are

determined as the intersections of the upper congested line and lower congested line

with the free flow line. It is noted that here the constrained least estimation is not

adopted because the constraint requiring the congested line passing through a predefined

capacity point induces bias in the estimation.

Figure 5.1 shows the result of this set-valued (or interval) estimation at detector station

(4955A) at Junction 15 on the M25 Motorway. As shown in Figure 5.1, the capacity is

then regarded as an uncertain variable lying within a given range [Q−, Q+]. Likewise,

the jam density is also an uncertain variable lying in [ρ̄−, ρ̄+]. The set-valued funda-

mental diagram at other detector stations can be determined by using the same method,

and can be incorporated into the CTM simulation framework. With the set-valued fun-

damental diagram determined, interval estimates of flows [f−(k), f+(k)] and densities

[ρ−(k), ρ+(k)] can be derived from repeated CTM runs with the lower bound and upper

bound of the fundamental diagram parameters at each cell [55]. Therefore, the interval

estimates will be obtained rather than point estimates as discussed previously.



Chapter 5. Robust Optimisation of Ramp Metering 114

5.2.2 Demand uncertainty

In addition to the flow-density uncertainty, we also observe the demand uncertainty

which is due to the randomness in the estimation of traffic inflows to the motorway.

This can be due to transient variations, day-to-day variations in drivers’ behaviour, in-

cidents, and other special events (Heydecker [45]; Lo and Chow [66]; Yin [106]). The

uncertainty on the demand side can also be associated with the health and quality of the

on-site sensors. For example, it is not uncommon to find several percent error in flow

measurement due to the configuration of detectors and its alignment with traffic flow.

Moreover, for real time control purposes some short-term (e.g. 5 minutes) demand flow

prediction will be required, which will induce an additional prediction error [66]. Fur-

thermore, one would expect to see a severe underestimation of demand flows should any

associated detector(s) break down or malfunction unexpectedly, which is also common

in real life operations.

Figure 5.2 shows a scatter plot of 15-min on-ramp flow (Detector Station: 4959K) against

the 15-min main road discharge flow at detector station (4955A) at Junction 15. The

data are collected during the afternoon peak [17:30 - 19:00] over 20 weekdays from 10

September 2012 to 5 October 2012 through MIDAS. It is noted that the entire time

period is congested and this implies the main road traffic is flowing at capacity flow.

The scatter plot (Figure 5.2) shows a high degree of demand variability in which the

on-ramp flow varies over the range of [1,500 veh/hr - 2,500 veh/hr], while the discharge

flow varies over [4,000 veh/hr - 6,000 veh/hr]. The observed capacity variation in Figure

5.2 is consistent with the one observed from the fundamental diagram in Figure 5.1.

This demand variability should be captured in the design of control strategy.
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Figure 5.2: Demand variability
(Detector Station: 4955A, M25 (clockwise))

5.3 Robust Optimisation of Ramp Metering

5.3.1 Review of robust optimisation

A number of studies have been done to incorporate the stochasticity in traffic dynamics

into the modelling framework. It can be broadly categorised into stochastic programming

and robust optimisation. The difference between this stochastic programming and robust
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optimisation is that the stochastic programming considers the probability distribution

of the uncertainties instead of simply using upper and lower bounds. The objective of

this stochastic programming is then to minimise the total ‘expected’ delay instead of

the delay under the worst case scenario.

There have been a number of studies attempting to capture this stochastic variation in

congested traffic. Sumalee et al. [95] propose a stochastic version of CTM. Nevertheless,

[95]’s model requires pre-definition of various traffic state transitions (e.g. from free-flow

to congestion, and vice-versa) and associated probabilities which are not easy to deter-

mine and implement in practice. Such stochastic programming can come up with a more

efficient solution through taking explicitly the distribution of uncertainties into account.

Nevertheless, the computational process can be intractable as in principle the solution

algorithm will have to search through all possible realisations of the uncertain variables.

The computational effort hence can increase exponentially with additional variables, and

this phenomenon is known as the curse of dimensionality [89]. As discussed in [113], this

stochastic approach is theoretically elegant. However, it requires enumerating the set of

potential states.

Bertsimas et al. [9] present a comprehensive review of different robust optimisation in

theory and applications. Some researchers adopt the robust optimisation to incorporate

the uncertainty in traffic dynamics. Liu et al. [62] adopt the distributionally robust

optimisation to solve the on-line signal control problem. Han et al. [40] reformulate

the LWR-Emission problem as a mixed integer linear program (MILP) by using robust

optimisation, which minimise the expected vehicle delays and vehicle emission through

road network. Considering the practicality, we adopt an alternative approach proposed
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by Kurzhanskiy and Varaiya [54] and Kurzhanskiy and Varaiya [55]. In [55]’s formu-

lation, the fundamental diagram is considered to be uncertain in capacity, critical and

jam densities while the density state equation remains the same as the deterministic

case (Equation 2.1). The uncertainty in capacities, critical and jam densities is specified

by an interval. Kurzhanskiy and Varaiya [55] show that interval estimates of traffic

densities can be constructed by simulations with the upper and the lower bounds of the

set-valued fundamental diagram. Kurzhanskiy and Varaiya [55] also prove that their

stochastic version of CTM is monotonic and it can be reduced to the conventional de-

terministic form with zero uncertainty considered. Next section illustrates how to define

the likelihood region for uncertainty in traffic dynamics.

5.3.2 Likelihood region

Figure 5.3 shows the configuration of on-ramp. The λj and rj denote the traffic demand

that wants to enter the system and the actual demand that enters the system respec-

tively, and the road section is characterised by the fundamental diagram Φ consisting

of parameters (capacity: Q, wave speed: w, free flow speed: v and jam density: ρ̄).

Let λ = λj(k) be the collection of all demand flows from the on-ramps j at time step k,

and Φ denotes the set of fundamental diagrams of all cells i ∈ I. If we assume w and v

are constant values, the capacity Q represents the fundamental diagram Φ because the

jam density is the function of the capacity. Unlike Zhong et al. [112], we do not need to

specify the probability distributions of these demand flows and fundamental diagrams.

We only need to specify the upper and lower bounds for λ (demand) and Φ (supply)

within the likelihood set Ω. The corresponding size and geometry of Ω can be defined

based on on-site measurements and engineers’ judgement.
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Figure 5.3: Configuration of on-ramp

Then we define a likelihood region Ω as the union of all of these regions of uncertainty

in fundamental diagrams and demand flows. This likelihood region Ω can take various

shapes such as box, polyhedral, or ellipsoidal [8]. Different geometries reflect different

degree of correlation among the fundamental diagrams and demand flows over different

locations. Moreover, the size of this likelihood region Ω reflects the degree of uncertainty

that we wish to take into account in the optimisation. A larger Ω means the engineer is

more concerned about robustness than efficiency. A ‘point’ (or single-valued) Ω implies

no uncertainty is considered and the optimisation will be reduced to the conventional

deterministic one with no consideration given to robustness.

5.3.2.1 Box likelihood region

A box-constrained Ω implies that the random variables (λ,Φ) vary independently in

the intervals as follows:

Ωλj = [λminj , λmaxj ] (5.4)
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for all λj on the on-ramps j = 1, 2, ..., J , where λminj and λmaxj represent the minimum

and maximum possible values of λj respectively, and

ΩΦi = [Φmin
i , Φmax

i ] (5.5)

for all fundamental diagrams Φi on cells i = 1, 2, ..., I, where Φmin
i and Φmax

i represent

the two fundamental diagrams that will give the minimum and maximum possible values

of flow, respectively, based on a given value of density. The collection of all intervals

shown in Equation 5.4 and 5.5 gives a box-constrained likelihood set:

Ωb = Ωλ1 × Ωλ2 × · · · × ΩλJ × ΩΦ1 × ΩΦ2 × · · · × ΩΦI
(5.6)

Adopting the box-constrained set Ωb in robust optimisation will lead to the worst sce-

nario in which one will have the highest demand flows from all on-ramps and the lowest

discharge flows everywhere along the main road at all times, which marks of the red

solid circle in Figure 5.4. The box likelihood region is shown as the red solid rectangle

in Figure 5.5 with empirical data. The data used in Figure 5.5 is described in Section

5.2.2 as shown in Figure 5.2. Nevertheless, such a scenario will be too conservative for en-

gineering design purposes [8]. Moreover, a number of empirical studies (see Brilon et al.

[13], Chow et al. [20]) reveal the correlation between demand flows and capacity through

looking at the stochastic traffic breakdown events. However, this demand-capacity in-

teraction cannot be captured by the box-constrained Ωb because the correlation among

demand flows is not considered. Therefore, the other shaped uncertainty region need to

be considered.
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Figure 5.4: The geometry of Ω:

left: Box-constrained; right: Ellipsoidal-constrained

Figure 5.5: Uncertainty set with empirical data in box likelihood region
(Detector Station: 4955A, M25 (clockwise))
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5.3.2.2 Polyhedral likelihood region

The uncertainty set could be defined as a polyhedral region. A polyhedral set Ω im-

plies that the random variables (λ,Φ) within a finite number of linear constraints. For

example, we may include the inequality constraint as follows:

Ωλj 6 λmaxj (5.7)

ΩΦi 6 Φmax
i (5.8)

where λmaxj represents the maximum possible values of λj , and Φmax
i represents the

fundamental diagram that will give the maximum possible values of flow based on a

given value of density.

5.3.2.3 Ellipsoidal likelihood region

To derive a more practical control strategy, we use an ellipsoidal likelihood set. Defined

ϕ = (λ,Φ), where ϕ ∈ RI+J , is the combination of all random variables λ and Φ. The

ellipsoidal likelihood region Ωe is defined as a subset of ϕ that satisfies

I+J∑
s=1

(
ϕmaxs − ϕmins

2

)−2 (
ϕs − ϕ0

s

)2 ≤ θ2, (5.9)

where ϕs, s = 1, 2, . . . , I + J , is an element in ϕ, which can refer to λj or Φi; ϕ
0
s is

the expected (or nominal) value of ϕs (which, for example, can be the mean demand

flow from on-ramp j or the average capacity flow at a location i on the main road);
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ϕmaxs and ϕmins represent the corresponding maximum and minimum possible values

of ϕs respectively. The parameter θ ∈ [0, 1] reflects the degree of uncertainty taken

into account in optimisation [106]. This parameter θ can be regarded as a trade off

between efficiency and robustness. The larger θ is, the more preference is given to

consideration of robustness. On the other hand, θ = 0 reduces the robust optimisation

into conventional deterministic optimisation in which no uncertainty is considered. In

ellipsoidal-constrained set, the worst case is marked by the red rectangle in Figure 5.4.

It is noted that the empirical data fits the ellipsoidal region very well as shown in

Figure 5.6. The data used in Figure 5.6 is described in Section 5.2.2 as shown in Fig-

ure 5.2. Moreover the polyhedral region is more difficult to define than ellipsoidal region.

Therefore, the ellipsoidal likelihood set is adopted in this study and introduced in the

next section.

5.3.3 Robust ramp metering formulation

The deterministic optimisation described in Chapter 3 is extended to a robust formula-

tion that incorporates uncertainty in both demand and set-valued fundamental diagram.

Ben-Tal and Nemirovski [7] analyse the some generic convex optimisation problems with

ellipsoidal uncertainty set. The robust optimisation can be formulated as a minimax

problem (Vanderbei [101]; Yin [106]; Li [60]), which not only minimises the travel delay,

but also minimises the associated delay variability. There is no standard algorithm to

solve the minimax optimisation problem. It is conventional to decompose and solve the

problem. Given the uncertainty range on demand and set-valued fundamental diagram,

the generally idea of the robust optimisation is to first seek the combination of demand
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Figure 5.6: Uncertainty set with empirical data in polyhedral likelihood region
(Detector Station: 4955A, M25 (clockwise))

and fundamental diagram that would gives the highest travel delay. Then, given this set

of demand and fundamental diagram, we seek the corresponding optimal ramp metering

that will give the lowest travel delay under this worst case scenario.

Given Ω, the robust optimisation can be now formulated as a minimax problem as:

min
c∗

max
λ,Φ

Z
(
c,λ,Φ

)
(5.10)

subject to:

λ,Φ ∈ Ω (5.11)

This optimisation problem is also subject to traffic dynamics constraints (3.23 - 3.33) as
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specified by CTM in addition to constraint (5.11). There is no straightforward solution

algorithm for solving the above optimisation problem. It is conventional to decompose

and solve the minimax problem as follows:

Step 0. Set the iteration counter n = 1;

Step 1. Given a set of demand flows λ and fundamental diagram Φ, a control policy c∗

to minimise the total delay Z is sought;

Step 2. Given the control policy c∗ determined in Step 1, a set of demand flows λ and

fundamental diagrams Φ are sought within the likelihood set Ω such that the total

system delay Z is maximised;

Step 3. If % =
||c∗n−c∗n−1||
||c∗n||

< δ then stop, where δ is a predetermined error tolerance.

Otherwise, let n = n + 1, go to Step 1.

Step 1 is essentially the same optimisation problem as described in Chapter 3. Step 2

involves maximisation of the linear total delay function Z over a constraint set Ω. It

can be verified that ellipsoidal constrained set are convex (quadratically-constrained)

in λ and Φ. The likelihood set constraint can hence be augmented into the objective

function through a Lagrangian multiplier. Consequently, the maximisation problem in

Step 2 become a convex (indeed quadratic) optimisation subject to linear constraints

which can be solved by standard gradient search algorithms. The two-step procedure

(Step 1 and Step 2) above will be run iteratively and it can be shown (see Yin and

Lawphongpanich [107]; Vanderbei [101], and others). To measure the convergence of the

two-stage solution algorithm, we define % =
||c∗n−c∗n−1||
||c∗n||

where ||.|| is the Euclidean norm,

c∗n is the vector containing all control variables (i.e. the on-ramp flows) computed at
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iteration n in the two-stage algorithm. The convergence proof relies on the assumption

that the sub-problems can be solved globally. The working examples shows the iteration

always takes less than 10 iterations for the minimax problem to converge (see Figure 5.8).

Then the process will converge to an optimal control policy c∗ which minimises the total

system delay Z under the worst scenario realised in Ω if global optimal solutions can be

found in both sub-problems.

5.4 Working Example

We select a 10-km section of the orbital M25 Motorway as described in Chapter 4. Each

cell is characterised by a piecewise linear fundamental diagram which is calibrated by

the measurements reported from the associated detector. The fundamental diagram

is derived from applying successive linear regressions on the free flow, capacity and

congested data as described in Chapter 2. The deterministic optimisation seeks an

optimal ramp metering strategy that minimises the total delay along the section in which

fundamental diagrams are considered to be single valued and there is no uncertainty in

the measured demand. The size of the simulation time step, ∆t, is set to be 15-sec,

which gives the total number of time steps K = 720 for the 3 hours [17:00 - 20:00]

planning horizon. The length ∆xi of each cell is 500 metres, which is the same as the

detector spacing. The maximum allowable queue length l̄j on all on-ramps is 60 vehicles.

The problem now consists of altogether 2,160 decision variables (ramp inflows, rj(k), in

which 3 (on-ramps) × 720 (time-steps) = 2,160). The optimisation is implemented and

solved by IBM ILOG CPLEX Optimisation Studio V12.5 running on the same desktop

computer described previously. The optimisation problem takes a computational time
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of about four minutes to solve.

Figure 5.7 compares the density contours under the ‘no control’ and ‘metered’ scenarios.

The layout of the road section is shown on the left of the figure. The optimisation reduces

the main road delay from original 2,145 veh-hr (with zero ramp delays) to 1,776 veh-hr

with the ramp queues bounded below a reasonable l̄j = 60 (veh). Moreover, the associ-

ated ramps’ delay is 332.6 veh-hr with ramp metering, which gives a total system delay

(i.e. main road + ramps) of 2,109 veh-hr, which is smaller than the original 2,145 veh-hr.

The reduction of a congestion spillover is around the off-ramp (cell 5) at Junction 14

(marked by the red rectangle in the figure). This indicates an overall system-wide benefit

from using the on-ramp control policy at cell 10 as it facilitates the discharge of traffic

at its upstream off-ramp cell 5.
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Figure 5.7: Comparison of main road densities (Two Junctions):

upper - no control; lower - metered
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Now the results of the robust optimisation are presented in which we consider uncer-

tainties which exist in on-ramp flows and fundamental diagrams. The formulation in-

troduced in Section 5.3 is now used to seek a robust control policy that minimises the

total system delay and associated variability under a range of scenarios. The network

setting is the same as the one presented above while capturing the effect of uncertainties.

The uncertainty of ±5% associated with demand flow λ measured at each on-ramps as

follows:

λminj (k) = 0.95λ̂j(k); λmaxj (k) = 1.05λ̂j(k) (5.12)

where the notations λ̂j(k) denote the measured value of λj(k) at time step k as reported

from the detectors.

The fundamental diagram Φ is specified by the free flow speed v, capacity Q, and jam

density ρ̄, with which other parameters such as shockwave speed w and critical density

ρ̊ can be deterministic. To incorporate the set value of the fundamental diagram, the

capacity and jam density are assumed with a ±5% estimation error along the main road.

Qmini = 0.95Q̂i Qmaxi = 1.05Q̂i (5.13)

ρ̄mini = 0.95ˆ̄ρi ρ̄maxi = 1.05ˆ̄ρi (5.14)

where the notation Q̂i and ˆ̄ρi denote the calibrated capacity and the jam density.

Given the bounds on λ and Q, the ellipsoidal likelihood set Ωe was then constructed for

the robust optimisation problem following Equation (5.9) where the design parameter

θ is taken as one. A robust ramp metering policy is derived by solving the minimax

optimisation problem with the two-stage algorithm. Figure 5.8 shows the convergence
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of the minimax problem. The horizontal (x) axis refers to the number of the iterations

and the vertical axis refers the total delay (objective function). The blue dotted line

with circles shows the total delay of the maximisation, and the green lines with triangles

represent the total delay of minimisation. It shows the minimax problem converge after

5 iterations for this study.

Figure 5.8: Convergence of minimax problem

The performance of different control strategies are compared over 11 levels of normal

demand values as shown in Figure 5.9. The horizontal (x) axis refers to the demand level

on which ‘100%’ is the situation where the simulating with all demands are measured

by detectors. ‘95%’ refers to a situation in which all demands are scaled down by 5%,

‘105%’ is the situation where all demands are scaled up by 5%, and so on. A demand
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multiplier less than ‘100%’ represents the situation in which the predicted demand is

being overestimated (i.e. the actual demand is lower than the design demand) and

vice versa. Under each scenario, 300 combinations of demand were randomly generated

within the associated Ωe. The ramp metering strategies are then simulated over these

11×300 = 3300 scenarios and the results. In Figure 5.9, each box represents the statistis

of total network (main road + ramps) delays. The middle line in each box represents

the median delay under the corresponding demand level, while the height of the box is

the interquartile range of the delays.

Figure 5.9: Comparison of total delay
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Figure 5.9 compares the performances of three control strategies including determin-

istic, deterministic∗, and robust. The deterministic control is running under normal

demand flows and capacity, while the deterministic∗ is the control strategy by running

a deterministic optimisation with all demand flows multiplied by 1.05, and all capac-

ities multiplied by 0.95. The deterministic∗ control represents the traditional ‘safety

factor’ based engineering approach in which relevant design parameters are scaled up or

down without running the robust optimisation. Note that the maximum ramp queue

constraint needs to be disabled when calculating this control strategy as the optimi-

sation will become infeasible with increased demands and decreased capacities due to

insufficient space in the system for storing all queues.

Figuer 5.9 reveals that the robust control generally outperforms the deterministic one

in particular when the demand is appropriately estimated. Moreover, the ramp delays

under robust ramp metering control are lower than those under deterministic control,

because an extra buffer on ramps is introduced when the robust ramp metering is cal-

culated. This reveals the advantage of robust control for incorporating potential uncer-

tainties in the overall system and protecting ramps in motorway. The Deterministic∗

strategy is shown to be very robust as it shows little variations as revealed by the box

sizes compared with the other two strategies due to the large buffer considered during

their deviation. However, as aforementioned, this Deterministic∗ control will be too

conservative and counter-productive.

Figure 5.10 highlights the cases (100 % - 105 %) when robust optimisation is more

effective. Figure 5.10 shows the total delay under deterministic control (upper one) and

robust control (lower one). The horizontal (x) axis refers to the total delay and the

vertical axis refers to the number of scenarios. Figure 5.10 reveals the robust control
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holds a lower mean total delay (around 2500 veh-hr) compared with the deterministic

control (around 2800 veh-hr). It is noted that the high total delay (e.g. 3500 veh-hr) of

robust control less than deterministic control.

Figure 5.10: Comparison of total delay for the cases (100 % - 105 %)

Figure 5.11 summarises all data points shown in Figure 5.9. Each box in Figure 5.11

contains statistics of 300 (scenarios) × 11 (demand levels) = 3,300 delay measures. It

can be seen that the deterministic control gives a slightly better average performance

(with a median delay of 2,243 veh-hr) than the robust control (which gives a median
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delay of 2,292 veh-hr). Nevertheless, the robust control gives a lower interquartile range

of delays ([1,682, 2,903] (veh-hr)) than the deterministic control ([1,574, 3,012] (veh-hr)).

Moreover, the maximum observed delay of robust control is also lower than that obtained

from deterministic control as shown in Figure 5.9. For the Deterministic∗ control, it

gives the lowest interquartile range of delay and highest median total delay among three

control strategies. However, this Deterministic∗ control will be too conservative and

counterproductive. As shown, the Deterministic∗ control performs worse than the other

two control strategies by shutting down ramps for an unnecessarily long time. This

suggests that the robust control is useful in stabilising the system when the actual

demand is higher than the expected value.
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Figure 5.11: Overall statistics



Chapter 5. Robust Optimisation of Ramp Metering 134

5.5 Summary

This chapter presents a robust modelling and optimisation framework for motorway

traffic where uncertainties in demand and capacity are explicitly considered. The opti-

miser aims to minimise both average and variance of total system delay over a range of

uncertain scenarios. The optimisation problem is formulated based upon CTM. With

the piecewise linear nature of CTM, the optimisation is formulated as a LP. The perfor-

mance of the optimiser is demonstrated through a set of working examples with traffic

data collected on the M25 Motorway in the UK. A deterministic optimisation was first

demonstrated which derives an optimal ramp metering policy that minimises the total

system delay over a fixed time horizon. The optimal ramp metering problem is solved

by using CPLEX and the optimal solution is tractable.

With uncertainty considered, robust optimisation is formulated as a minimax problem

and solved in two stages. The two-stage solution procedure first solves a control policy

that minimises the system delay given a set of demand and capacity settings. Then

with the control policy derived, the minimax solver seeks another set of demand and

capacity within a predefined likelihood region such that the system delay is maximised.

The two stages are run iteratively and the solution procedure converges in an optimal

control policy which minimises both system delay and the associated variability. A series

of simulation experiments reveal that the deterministic optimal control outperforms

slightly the robust control in terms of minimising average delay over a range of scenarios,

while the system performance is shown to be stabler with the robust control strategy

implemented.



Chapter 6

Concluding Remarks

6.1 Summary

This thesis investigates a mathematical tool for optimising the performance of motorway

through modelling and regulating the traffic flowing on it.

In Chapter 2, the thesis starts with an introduction of cell transmission model (CTM),

which describes the relationship and evolution of traffic flow and density over space

and time. The model is parsimonious and accurate in predicting traffic dynamics with

simple mathematical structure. Then how to process raw MIDAS data is presented.

Following this, the calibration of the fundamental diagram for dynamic traffic modelling

is presented, which is the core components for building effectiev traffic control system

in practice. The calibration procedure presented here consists of three main steps:

determining the free-flow line, capacity, and congested line iteratively. The free flow

line can be determined as flow-density data under free flow, which exhibits a linear

135
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relationship. Capacity is taken as the maximum flow value observed over a period of

time. The main challenge lies on the congested part, which exhibits a high level of

variability.

In Chapter 3, the thesis presents a linear modelling and optimisation framework for ramp

metering control on motorway traffic. We first present how CTM can be implemented

to model real world motorway. The accuracy of the model estimates is validated against

real traffic data collected from the M25 Motorway in the UK. The results show CTM

reproduces the general pattern of the traffic congestion associated with correct time and

location. The validation results presented reveal the mean absolute percentage error ε

obtained from the CTM modelling conducted in this exercise is 11.5% beyond in many

cases. With the piecewise linear structure of CTM, we further develop the motorway

ramp metering optimisation problem as a Linear Programming (LP) problem. The LP

optimisation problem can be solved by a range of established algorithms and computer

solvers for the global optimal solution. This LP formulation is applied to a scenario of UK

M25 Motorway where we derive an optimal ramp metering strategy that minimise the

total system delay over a fixed space-time horizon. It is shown that optimal solutions

are obtainable through CPLEX computer solver in a reasonable computational time.

The optimal solution provides useful insights and guidance on how we should manage

motorway traffic to maximise its efficiency.

In Chapter 4, a mathematical optimisation framework is presented for four motorway

control strategies including VSL, HSR, RMVSL, and integrated control strategies. The

optimisation models are formulated based upon the CTM which is known to be able

to produce reasonable traffic estimation with a parsimonious mathematical structure.

With the linearity of CTM, the optimisation can be formulated as MILP problems. The
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optimal control problems are solved by the CPLEX solver and the eventual solution

provides useful insights on how we should manage the motorway systems for effective

outcomes. The various analyses on sensitivity of the effectiveness of the control strategies

with respect to different model settings and assumptions also presented in this Chapter.

The optimisation models are applied to a real case scenario on UK M25 Motorway.

The solutions are obtainable in a reasonable computational time. The results show

that those control strategies can effectively reduce total system delay, especially the

integrated control strategy due to it benefits from each control strategy. By comparing

the numerical results (see Table 4.3), it is found that the reduction of total system delay

of integrated control (74%) is higher than each separate control. The ramp delay of

integrated control (198.7 veh-hr) is lower than the ramp delay of ramp metering control

(349.0 veh-hr). Hard shoulder running appears to be the effective approach in reducing

total system delay by providing an extra physical lane to motorways. Nevertheless,

engineers will have to be careful in balancing the trade-off between mobility and safety

as HSR reduced the buffer intended for incident management. One should note that

the application to this particular motorway is only for illustration purpose and the

methodology is generally applicable for other corridors or networks.

In Chapter 5, it presents a robust optimisation framework for motorway where un-

certainty in demand and traffic state estimation is explicitly considered. A set-valued

fundamental diagram formulation is applied to formulate a robust optimisation frame-

work of motorway traffic. The application of set-valued fundamental diagram opens up

new research directions in motorway traffic management with the consideration of uncer-

tainties associated with traffic dynamics. The optimiser aims to minimise and stabilise

total system delay. With uncertainty considered, the robust optimisation is formulated
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as a minimax problem and solved in two stages. The two-stage solution procedure first

solves for a control policy that minimises the total system delay with a set of given

demand and fundamental diagram settings. Then with the control policy derived, the

minimax solver seeks another set of demand and fundamental diagram settings within

a predefined likelihood region such that the system delay is maximised. The two stages

are run iteratively and it is shown that the solution procedure converges to an optimal

control policy which minimises both total system delay and the associated variability.

The results show that the robust control policy derived from the set-valued fundamen-

tal diagram helps to minimise both means and variances of travel delays over a range

of scenarios with stochastic demand and traffic characteristics. A series of simulation

experiments reveals that the system performance is shown to be much stabler with the

robust control strategy implemented.

6.2 Future Work

This section identifies several limitations of the work presented in this thesis and suggests

possible future research directions.

In this thesis, the modelling and optimisation framework presented here is for an offline

planning purpose. A rolling horizon optimisation framework will be studied for real time

applications. In order to use a rolling optimisation framework, the forecast for additional

periods in the future, and optimisation for several horizons needs to be finished in a

reasonable time.

The robust optimisation framework presented here is for ramp metering only. The VSL
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and HSR control strategies can also be extended to a stochastic framework, which takes

into account the uncertainties exist in demand and fundamental diagram. Because of the

combinatorial nature of MILP, solving deterministic VSL (30 min) and HSR (10 min)

problems take significantly longer than solving the ramp metering problem (4 min).

Therefore, developing more efficient solution algorithms will be a crucial step before

robust VSL and HSR formulations can be developed.

Moreover, as a first-order traffic model, CTM assumes arbitrarily large acceleration

and deceleration of vehicles with which flow dynamics can be adjusted instantaneously

according to the associated traffic density with the predefined fundamental diagram. By

ignoring the transient state transition, the current model cannot capture complex but

important dynamic behaviour such as capacity drop and stop-and-go traffic pattern [46].

Such transient behaviour of congestion is important when one designs more sophisticated

control strategies such as VSL (Papageorgiou et al. [84]; Carlson et al. [15]). Development

of an efficient and plausible modelling and optimisation framework for capturing and

managing the nonlinear traffic dynamics will be another important extension of the

current study.





Appendix A

Calculate Density from the

Occupancy Measurements

Assume that the average length of the vehicles is Lv, and the length of the detector is

Ld. Suppose the speed of vehicles is v , then the occupancy can be estimated as:

o =
n(Lv + Ld)

v∆t
(A.1)

where ∆t is sampling time interval (i.e. the frequency of occupancy is measured from

the detector), n is the number of vehicles passing the detector in ∆t. The quantity

(Lv + Ld)

v
represents the average time that a vehicle will spend on the detector.
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Rearranging Equation A.1, the occupancy can be expressed as:

o = (Lv + Ld)
f

v
(A.2)

as the flow rate f = n
∆t by definition.

The fundamental relationship (f = ρv) holds, then the occupancy can be expressed as:

o = (Lv + Ld)ρ (A.3)

Rearranging Equation A.3, the density can be expressed as:

ρ =
o

Lv + Ld
(A.4)



Appendix B

Constrained Regression

We aim to derive a linear regression model y′ = a0 + a1x from a set of data points:

(xi, yi) i = 1, 2, ..., n, where xi and yi are dependent variables whose value is found by

observation. In this case, xi is density and yi is flow. The y′ is the estimate of the true

value yi conditional on xi.

The linear regression model can be constructed by passing through a given point (x0, y0)

as:

y′i − y0

xi − x0
= a1 (B.1)

rearrange as

y′i = a1(xi − x0) + y0 (B.2)
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where a1 is the only parameter to be determined from data. The regression line is con-

strained by the given point (x0, y0). The a1 is determined by the least-square estimation

that aims to minimise the total squared error between the observed yi and estimated y′i

E =
n∑
i=1

(
y′i − yi

)2
=

n∑
i=1

(
a1(xi − x0) + y0 − yi

)2
(B.3)

where n is number of data points. The model parameter a1 can be determined such that

E is minimised, in which we can solve a1 from ∂E
∂a1

= 0

Hence,

n∑
i=1

(
a1(xi − x0) + y0 − yi

)(
xi − x0

)
= 0

⇒ a1 =

∑n
i=1(yi − y0)(xi − x0)∑n

i=1(xi − x0)2

(B.4)
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