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Abstract 

 

The use of improved covariance matrix estimators as an alternative to the sample 

covariance is considered an important approach for enhancing portfolio 

optimization. In this thesis, we propose the use of sparse inverse covariance 

estimation for Markowitz minimum variance portfolio optimization, using 

existing methodology known as Graphical Lasso [16], which is an algorithm used 

to estimate the inverse covariance matrix from observations from a multivariate 

Gaussian distribution.  

We begin by benchmarking Graphical Lasso, showing the importance of 

regularization to control sparsity. Experimental results show that Graphical Lasso 

has a tendency to overestimate the diagonal elements of the estimated inverse 

covariance matrix as the regularization increases.  To remedy this, we introduce a 

new method of setting the optimal regularization which shows performance that 

is at least as good as the original method by [16].  

Next, we show the application of Graphical Lasso in a bioinformatics gene 

microarray tissue classification problem where we have a large number of genes 

relative to the number of samples.  We perform dimensionality reduction by 

estimating graphical Gaussian models using Graphical Lasso, and using gene 

group average expression levels as opposed to individual expression levels to 

classify samples. We compare classification performance with the sample 

covariance, and show that the sample covariance performs better. 

Finally, we use Graphical Lasso in combination with validation techniques that 

optimize portfolio criteria (risk, return etc.) and Gaussian likelihood to generate 

https://en.wikipedia.org/wiki/Multivariate_gaussian_distribution
https://en.wikipedia.org/wiki/Multivariate_gaussian_distribution
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new portfolio strategies to be used for portfolio optimization with and without 

short selling constraints.  We compare performance on synthetic and real stock 

market data with existing covariance estimators in literature, and show that the 

newly developed portfolio strategies perform well, although performance of all 

methods depend on the ratio between the estimation period and number of stocks, 

and on the presence or absence of short selling constraints.   

 

 

 

 

 

 

 

 

 

 

 

 

 



   

vii 
 

Contents 

 

 

1 Introduction 1 

1.1 Background .......................................................................................................... 1 

1.2 Motivation............................................................................................................. 2 

1.3 Contribution ......................................................................................................... 3 

1.4 The Organization of  the Thesis .................................................................... 5 

 

 

PART I: Benchmarking the Graphical Lasso 

 

2 Evaluation of the Graphical Lasso Algorithm 8 

 

                     2.1   Introduction to the Sparse Inverse Covariance .................................... 8 

                     2.2   Undirected Graphical Models ................................................................... 10  

                              2.2.1   Graphical Gaussian Model ............................................................. 12 

                              2.2.2   The Benefits of Sparsity ................................................................. 13  

                              2.2.3   Inexact Methods for the Inverse Covariance Estimation .. 14  

                                           2.2.3.1   Covariance Selection Discrete Optimization ........ 14 

                                           2.2.3.2   Neighborhood Selection with the Lasso ................. 15 

                              2.2.4   Exact Methods for the Inverse Covariance Estimation ...... 17  

                                           2.2.4.1   L1-penalised Methods .................................................... 17 

                     2.3   Introduction to the Graphical Lasso ....................................................... 19  

                              2.3.1   A Synthetic Data Experiment ....................................................... 20 



   

viii 
 

                                                                                                   Contents       

 

                              2.3.2   A Method for Penalty Selection  .................................................. 24 

                     2.4   A New Method for Penalty Selection ...................................................... 26  

                              2.4.1   The Model ............................................................................................ 26 

                              2.4.2   Generating Synthetic Data ............................................................ 28 

                              2.4.3   Performance Measure  ................................................................... 29 

                     2.5   Experiment Results ....................................................................................... 30 

                              2.5.1   Model 1 Results ................................................................................. 30 

                              2.5.2   Model 2 Results ................................................................................. 36 

                     2.6   Summary ........................................................................................................... 41  

   

3 Graphical Lasso Application to Bioinformatics  43 

 

             3.1   Introduction ..................................................................................................... 44  

                      3.1.1   DNA Microarray Data Characteristics ...................................... 47  

                                           3.1.1.1   The Curse of Dimensionality ....................................... 47 

                                           3.1.1.2   Noise and Data Normalization ................................... 47 

             3.2   Graphical Models and Gene Microarray Data ..................................... 48 

             3.3   Microarray Data Analysis using Graphical Lasso .............................. 51 

                      3.3.1   The Data ............................................................................................... 52  

                      3.3.2   Microarray Classification Problem Definition ....................... 54  

                      3.3.3   The Proposed Method ..................................................................... 55  

                      3.3.4   Data Pre-processing: Centering the Data ................................ 55  

                      3.3.5   Choosing the Regularization ........................................................ 58 



   

ix 
 

                                                                                                   Contents       

  

                      3.3.6   k-Nearest Neighbor Graphs to Visualize Interaction .......... 60  

                      3.3.7   Supervised Learning Methodology ............................................ 64 

                                           3.3.7.1   Linear Least Squares Regression Classifier .......... 65 

                                           3.3.7.2   Ridge Regression Classifier ......................................... 66 

             3.4   Two-class Classification to Identify Tissue Samples ........................ 67  

                      3.4.1   Methodology ....................................................................................... 67 

                      3.4.2   Linear Least Squares Regression Classification Results ... 68 

                       3.4.3   Ridge Regression Classification Results ................................. 70  

             3.5   One-versus-all Classification to Identify Tissue Samples .............. 72  

                      3.5.1   Methodology ....................................................................................... 73  

                      3.5.2   Linear Least Squares Regression Classification Results ... 73 

                      3.5.3   Ridge Regression Classification Results .................................. 75  

             3.6   Using Random Genes to Identify Tissue Samples ............................. 76 

                      3.6.1   Two-class Classification to Identify Tissue Samples........... 77  

                                           3.6.1.1   Ridge Regression Classification Results ................. 77 

                      3.6.2   One-versus-all Classification to Identify Tissue Samples . 79  

                                           3.6.2.1   Ridge Regression Classification Results ................. 79 

                     3.7   Summary ........................................................................................................... 82  

 

 

 

 



   

x 
 

                                                                                                   Contents 

 

PART II: Graphical Lasso Application to Finance 

 

4 Graphical Lasso and Portfolio Optimization 85 

 

                     4.1   Markowitz Mean-Variance Model ........................................................... 85 

                     4.2   Efficient Frontier ........................................................................................... 86  

                              4.2.1   Mathematical Notations ................................................................. 87 

                     4.3   Linear Constraints ......................................................................................... 91  

                     4.4   Global Minimum-Variance Portfolio Optimization ........................... 93  

                     4.5   Limitations of the Markowitz Approach ............................................... 95 

                     4.6   Synthetic Data Experiment ........................................................................ 96  

                              4.6.1   Generating Synthetic Data ............................................................ 97  

                              4.6.2   Methodology ....................................................................................... 98 

                              4.6.3   Graphical Lasso Portfolio Strategies .......................................101 

                              4.6.4   Performance Measures ................................................................103 

                                           4.6.4.1   Predicted Risk .................................................................103 

                                           4.6.4.2   Realized Risk ...................................................................103 

                                           4.6.4.3   Empirical Risk .................................................................104 

                                           4.6.4.4   Realized Likelihood ......................................................104 

                                           4.6.4.5   Empirical Likelihood ....................................................104 

                                           4.6.4.6   Sparsity Level and Zero-overlap .............................105 

                     4.7   Experiment Results ..................................................................................... 105  

                              4.7.1   Long-short Portfolio Results ...................................................... 105  



   

xi 
 

                                                                                                   Contents 

 

                                           4.7.1.1   Realized Risk ...................................................................106 

                                           4.7.1.2   Empirical Risk .................................................................109 

                                           4.7.1.3   Empirical and Realized Likelihood .........................110 

                                           4.7.1.4   Portfolio Measures Correlation Analysis .............112 

                              4.7.2   Long-only Portfolio Results ........................................................114 

                                           4.7.2.1   Realized Risk ...................................................................115 

                                           4.7.2.2   Empirical Risk .................................................................117 

                                           4.7.2.3   Empirical and Realized Likelihood .........................119 

                                           4.7.2.4   Portfolio Measures Correlation Analysis .............121 

                     4.8   Summary ......................................................................................................... 122  

 

5 Covariance Estimation and Portfolio Optimization: A 

Comparison between Existing Methods and the New Sparse 

Inverse Covariance Method                                                                    125              

  

                      5.1   Covariance and Mean-Variance Portfolio Optimization ..............125 

                      5.2   Covariance Estimation: Existing Methods ........................................126 

                               5.2.1   Direct Optimization ...................................................................... 126  

                               5.2.2   Spectral Estimators ...................................................................... 127  

                                           5.2.2.1   The Single Index Model ............................................... 127  

                                           5.2.2.2   Random Matrix Theory Models ...............................127 

                               5.2.3   Shrinkage Estimators ................................................................... 129  

 



   

xii 
 

                                                                                                   Contents 

 

                                           5.2.3.1   Shrinkage to Single Index ........................................... 131  

                                           5.2.3.2   Shrinkage to Common Covariance ......................... 131  

                                           5.2.3.3   Shrinkage to Constant Correlation ......................... 132  

                      5.3   Experiment on Stock Market Data ....................................................... 132  

                               5.3.1   Data  .................................................................................................... 133  

                               5.3.2   Methodology ....................................................................................133 

                               5.3.3   Performance Measures ...............................................................135 

                                           5.3.3.1   Sharpe ratio .....................................................................135 

                      5.4   Experiment Results .................................................................................... 136  

                              5.4.1   Long-short Portfolio Results ...................................................... 136  

                                           5.4.1.1   Realized Risk ...................................................................137 

                                           5.4.1.2   Expected Return of the Portfolio .............................141 

                                           5.4.1.3   Sharpe ratio .....................................................................145 

                              5.4.2   Long-only Portfolio Results ........................................................148 

                                           5.4.2.1   Realized Risk ...................................................................148 

                                           5.4.2.2   Expected Return of the Portfolio .............................152 

                                           5.4.2.3   Sharpe ratio .....................................................................154 

                     5.5   Summary ......................................................................................................... 157  

 

6 Conclusion and Future work 160 

 

                      6.1   Conclusion ..................................................................................................... 160  

                      6.2   Future work ..................................................................................................164 



   

xiii 
 

Appendices 166 

 

Bibliography 253 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

xiv 
 

List of Figures 

 

Fig. 2.1    Example of a sparse undirected graph............................................................... 11 

Fig. 2.2    Example of an undirected graphical model ..................................................... 11 

Fig. 2.3    Original sparse precision versus Graphical Lasso solution (ρ=0.1) ....... 21 

Fig. 2.4    Original sparse precision versus Graphical Lasso solution (ρ=0.4) ....... 22 

Fig. 2.5    Original sparse precision versus Graphical Lasso solution (ρ=1) ........... 23 

Fig. 2.6    Original sparse precision versus Graphical Lasso solution (ρ=2) ........... 23 

Fig. 2.7     Model 1 error between Graphical Lasso and Modified Graphical Lasso 

(p=10) ................................................................................................................................................ 30 

Fig. 2.8     Model 1 optimal penalty for Graphical Lasso and Modified Graphical 

Lasso (p=10)  .................................................................................................................................. 30 

Fig. 2.9    Model 1 error between Graphical Lasso and Modified Graphical Lasso 

(p=30)  ............................................................................................................................................... 31 

Fig. 2.10    Model 1 optimal penalty for Graphical Lasso and Modified Graphical 

Lasso (p=30) ................................................................................................................................... 32 

Fig. 2.11    Model 1 error between Graphical Lasso and Modified Graphical Lasso 

(p=50)  ............................................................................................................................................... 32 

Fig. 2.12   Model 1 optimal penalty for Graphical Lasso and Modified Graphical 

Lasso (p=50)  .................................................................................................................................. 33 

Fig. 2.13    Model 1 error between Graphical Lasso and Modified Graphical Lasso 

(p=70)  ............................................................................................................................................... 34 

Fig. 2.14   Model 1 optimal penalty for Graphical Lasso and Modified Graphical 

Lasso (p=70)  .................................................................................................................................. 34 



   

xv 
 

                                                                                       List of Figures  

 

Fig. 2.15   Model 2 error between Graphical Lasso and Modified Graphical Lasso 

(p=10) ................................................................................................................................................ 36 

Fig. 2.16   Model 2 optimal penalty for Graphical Lasso and Modified Graphical 

Lasso (p=10)  .................................................................................................................................. 36 

Fig. 2.17   Model 2 error between Graphical Lasso and Modified Graphical Lasso 

(p=30)  ............................................................................................................................................... 37 

Fig. 2.18   Model 2 optimal penalty for Graphical Lasso and Modified Graphical 

Lasso (p=30) ................................................................................................................................... 38 

Fig. 2.19   Model 2 error between Graphical Lasso and Modified Graphical Lasso 

(p=50)  ............................................................................................................................................... 38 

Fig. 2.20   Model 2 optimal penalty for Graphical Lasso and Modified Graphical 

Lasso (p=50)  .................................................................................................................................. 39 

Fig. 2.21   Model 2 error between Graphical Lasso and Modified Graphical Lasso 

(p=70)  ............................................................................................................................................... 40 

Fig. 2.22   Model 2 optimal penalty for Graphical Lasso and Modified Graphical 

Lasso (p=70)  .................................................................................................................................. 40 

 

Fig. 3.1    DNA microarray image ............................................................................................. 44 

Fig. 3.2    Acquiring the gene expression data from DNA microarray ...................... 45 

Fig. 3.3    The distribution of the microarray data samples before centering  ...... 57 

Fig. 3.4    The distribution of the microarray data samples after centering ........... 57 

Fig. 3.5    Sparsity of estimated Precision (ρ=1)  ............................................................... 58 



   

xvi 
 

                                                                                       List of Figures  

 

Fig. 3.6    Sparsity of estimated Precision (ρ=3) ................................................................ 59 

Fig. 3.7    Sparsity of estimated Precision (ρ=10) ............................................................. 59 

Fig. 3.8    Covariance k-NN graph – 3 total sub-networks ............................................. 62 

Fig. 3.9    Precision (ρ=1) k-NN graph – 20 total sub-networks .................................. 63 

Fig. 3.10 Precision (ρ=3) k-NN graph – 14 total sub-networks .................................. 64 

 
Fig. 4.1    The efficient frontier ................................................................................................. 91 

Fig. 4.2    Portfolio rebalancing periods ................................................................................ 98 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

xvii 
 

List of Tables 

 

Table 3.1    Tissue types and the distribution of the 255 tissue samples ................ 54 

Table 3.2    Structure of the Precision as regularization ρ is increased ................... 60 

Table 3.3    LLS two-class average classification results ................................................ 68 

Table 3.4    LLS two-class covariance classification results .......................................... 69 

Table 3.5    LLS two-class precision (ρ=1) classification Results ............................... 69 

Table 3.6    LLS two-class precision (ρ=3) classification Results ............................... 70 

Table 3.7    Ridge regression two-class average classification results ..................... 70 

Table 3.8    Ridge regression two-class covariance classification results ............... 71 

Table 3.9    Ridge regression two-class precision (ρ=1) classification results ...... 71 

Table 3.10  Ridge regression two-class precision (ρ=3) classification results ..... 72 

Table 3.11  LLS one-versus-all average classification results ..................................... 74 

Table 3.12  LLS one-versus-all classification results ...................................................... 74 

Table 3.13  Ridge regression one-versus-all average classification results ........... 75 

Table 3.14  Ridge regression one-versus-all classification results ............................ 76 

Table 3.15  Two-class average classification results for the precision and 

covariance classifiers with random gene replacement .................................................. 78 

Table 3.16  Ridge regression two-class average classification results for the 

precision and covariance classifiers without random gene replacement  ............. 78 

Table 3.17  Ridge regression one-versus-all average classification results for the 

precision and covariance classifiers with Random gene replacement .................... 79 

Table 3.18  Ridge regression one-versus-all average classification results for the 

precision and covariance classifiers without random gene replacement .............. 79 



   

xviii 
 

                                                                                       List of Tables 

 

Table 3.19  Ridge regression one-versus-all classification results for the 

covariance classifier with and without random gene replacement  ......................... 81 

Table 3.20  Ridge regression one-versus-all classification results for precision 

(ρ=1) with and without random gene replacement ........................................................ 81 

Table 3.21  Ridge regression one versus all classification results for precision 

(ρ=3) with and without random gene replacement ........................................................ 82 

 

Table 4.1    Long-short portfolio average realized risks ..............................................106 

Table 4.2    Long-short portfolio 3 months realized risks ...........................................107 

Table 4.3    Long-short portfolio 6 months realized risks ...........................................107 

Table 4.4    Long-short portfolio 1 year realized risks..................................................108 

Table 4.5    Long-short portfolio 2 years realized risks ...............................................108 

Table 4.6    Long-short portfolio average empirical risks ...........................................109 

Table 4.7    Long-short portfolio 3 months empirical risks ........................................109 

Table 4.8    Long-short portfolio 1 year empirical risks ...............................................110 

Table 4.9    Long-short portfolio 2 years empirical risks.............................................110 

Table 4.10  Long-short portfolio average empirical and realized likelihoods ....110 

Table 4.11  Long-short portfolio 3 months empirical and realized likelihoods .111 

Table 4.12  Long-short portfolio 1 year empirical and realized likelihoods .......111 

Table 4.13  Long-short portfolio 2 years empirical and realized Likelihoods ....112 

Table 4.14  OLS multiple linear regression results on portfolio measures ..........113 

Table 4.15  Long-only portfolio average realized risks ................................................115 



   

xix 
 

                                                                                       List of Tables 

 

Table 4.16  Long-only portfolio 3 months realized risks ............................................115 

Table 4.17  Long-only portfolio 6 months realized risks ............................................116 

Table 4.18  Long-only portfolio 1 year realized risks ...................................................116 

Table 4.19  Long-only portfolio 2 years realized risks .................................................116 

Table 4.20  Long-only portfolio average empirical risks .............................................117 

Table 4.21  Long-only portfolio 3 months empirical risks ..........................................118 

Table 4.22  Long-only portfolio 1 year empirical risks ................................................118 

Table 4.23  Long-only portfolio 2 years empirical risks ..............................................118 

Table 4.24  Long-only portfolio average empirical and realized likelihoods ......119 

Table 4.25  Long-only portfolio 3 months empirical and realized likelihoods ...119 

Table 4.26  Long-only portfolio 1 year empirical and realized likelihoods .........120 

Table 4.27  Long-only portfolio 2 years empirical and realized likelihoods .......120 

Table 4.28  OLS multiple linear regression results on portfolio measures ..........121 

 

Table 5.1    Long-short portfolio average realized risks (all methods) ..................138 

Table 5.2    Long-short portfolio 3 months realized risks ...........................................139 

Table 5.3    Long-short portfolio 1 year realized risks..................................................139 

Table 5.4    Long-short portfolio 2 years realized risks ...............................................140 

Table 5.5    Long-short portfolio average portfolio return (all methods) .............142 

Table 5.6    Long-short portfolio 3 months portfolio return ......................................143 

Table 5.7    Long-short portfolio 1 year portfolio return .............................................143 

Table 5.8    Long-short portfolio 2 years portfolio return ...........................................144 



   

xx 
 

                                                                                       List of Tables 

 

Table 5.9  Long-short portfolio average Sharpe ratio (all methods) ......................145 

Table 5.10  Long-short portfolio 3 months Sharpe ratio .............................................146 

Table 5.11  Long-only portfolio 1 year Sharpe ratio .....................................................146 

Table 5.12  Long-only portfolio 2 years Sharpe ratio ...................................................147 

Table 5.13  Long-only portfolio average realized risks (all methods) ...................148 

Table 5.14  Long-only portfolio 3 months realized risks ............................................149 

Table 5.15  Long-only portfolio 1 year realized risks ...................................................150 

Table 5.16  Long-only portfolio 2 years realized risks .................................................150 

Table 5.17  Long-only portfolio average portfolio return (all methods) ..............152 

Table 5.18  Long-only portfolio 3 months portfolio return ........................................153 

Table 5.19  Long-only portfolio 1 year portfolio return ..............................................153 

Table 5.20  Long-only portfolio 2 years portfolio return ............................................154 

Table 5.21  Long-only portfolio average Sharpe ratio ..................................................155 

Table 5.22  Long-only portfolio 3 months Sharpe ratio ...............................................155 

Table 5.23  Long-only portfolio 1 year Sharpe ratio .....................................................156 

Table 5.24  Long-only portfolio 2 years Sharpe ratio ...................................................156 

 

 

 

 

 

 



   

xxi 
 

List of Abbreviations 

 

cDNA complementary deoxyribonucleic acid 

DNA deoxyribonucleic acid 

ERM empirical risk minimization 

GGM graphical Gaussian model  

GLasso                   Graphical Lasso 

GMVP global minimum variance portfolio 

i.i.d independent and identically distributed 

k-NN k-Nearest Neighbours 

Lasso least absolute shrinkage and selection operator 

LLS linear least squares 

LOESS locally weighted scatter plot smoothing  

loo leave-one-out 

MISE mean integrated squared error 

ML maximum likelihood 

MLE maximum likelihood estimate 

mRNA                    messenger ribonucleic acid 

MSE mean squared error  

MV mean-variance 

NSS no short selling 

NYSE New York stock exchange 

OLS ordinary least squares 

RMT random matrix theory 



   

xxii 
 

                                                                          List of Abbreviations 

 

RNA ribonucleic acid 

SI single index 

S&P Standard & Poor 

SS short selling 

UIN unique identification number 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

xxiii 
 

List of Symbols 

 

A adjacency matrix 

|| ∙ ||𝐹 Frobenius norm 

| ∙ | matrix determinant 

𝐶0 capital to be invested 

𝐶𝑒𝑛𝑑                        capital at the end of the investment period 

𝑫 diagonal matrix of variances of 𝜀𝑖 

∈ belongs to 

𝜖 noise (random error) 

𝜀𝑖(𝑡) idiosyncratic stochastic term at time t 

𝑓(𝑡) index return at time t 

𝑓𝑥 probability density function of the random variable x 

𝑓𝒙𝒚 joint probability density function of the random variables x and  

𝑁 number of samples 

𝑖 number of assets 

𝑰 identity matrix 

Q shrinkage covariance estimate 

𝑅𝑒𝑚𝑝 empirical risk 

𝑟𝑓 risk-free rate 

𝑟𝑖(𝑡) stock return for asset i at time t 

𝑅𝑖 return on asset 𝑖 

𝑅𝑃  total portfolio return 

𝑝 number of variables 



   

xxiv 
 

                                                                                      List of Symbols 

 

𝑠 portfolio risk 

𝑺  empirical (sample) covariance matrix 

T training set 

𝑻 shrinkage target matrix 

V validation set 

w weight vector 

𝑤𝑖 amount invested in asset 𝑖 

X matrix of samples 

XC matrix of samples that have been centered 

𝒙 vector of a single sample 

𝒚 vector of output labels for all samples 

𝑦 single output label for a particular sample 

𝝁 mean vector 

Σ empirical (sample) covariance matrix 

Σ-1, 𝜴, 𝑿, Θ inverse covariance (precision) matrix 

𝜷 vector of estimated regression coefficients 

 𝜆, 𝛾 ridge regression penalty parameter 

⫫ independence 

∀ for all 

𝜌 Graphical lasso regularization (penalty) parameter 

σ  uniform noise magnitude 

𝜇𝑃, 𝑟̅  portfolio expected return 



   

xxv 
 

                                                                                      List of Symbols 

 

𝜎 portfolio variance 

𝜎𝑃
2 variance of portfolio return 

𝜆 portfolio risk-aversion parameter 

Ф range of Graphical Lasso regularization amounts 

𝛼 shrinkage intensity 

𝜎𝑃 portfolio standard deviation 

𝜎𝑖𝑗 covariance between the returns of asset 𝑖 and 𝑗 

𝜎𝑖𝑖 variance on the return of asset 𝑖 

 

  
 



   

1 
 

Chapter 1  
 
 
 
Introduction 
 
 
1.1 Background 
 
The Markowitz mean-variance model (MV) has been used as a framework for optimal 

portfolio selection problems.  In the Markowitz mean-variance portfolio theory, one 

models the rate of returns on assets in a portfolio as random variables.  The goal is 

then to choose the portfolio weighting factors optimally. In the context of the 

Markowitz theory, an optimal set of weights is one in which the portfolio achieves an 

acceptable baseline expected rate of return with minimal volatility, which is 

measured by the variance of the rate of return on the portfolio. Under the classical 

mean-variance framework of Markowitz, optimal portfolio weights are a function of 

two parameters: the vector of the expected returns on the risky assets and the 

covariance matrix of asset returns.  Past research has shown that the estimation of 

the mean return vector is a notoriously difficult task, and the estimation of the 

covariance is relatively easier.   Small differences in the estimates of the mean return 

for example can result in large variations in the portfolio compositions.   Also, the 

inversion of the actual sample covariance matrix of asset returns is usually a poor 

estimate especially in high dimensional cases and is rarely used since the portfolios 

it produces often are practically worthless, with extreme long and short positions [1].  

The presence of the estimation risk in the MV model parameters makes its application 
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limited.  Therefore it is of great importance to investigate ways of estimating the MV 

input parameters accurately. 

 

1.2 Motivation 
 

Markowitz portfolio selection requires estimates of (i) the vector of expected returns 

and (ii) the covariance matrix of returns [1, 2].  Finance literature in the past mostly 

focused on the estimation of the expected returns rather than the estimation of 

covariance.  It was generally believed that in a mean-variance optimization process, 

compared to expected returns, the covariance is more stable and causes fewer 

problems, and therefore it is less important to have good estimations for it.  Past 

research has shown that it is actually more difficult to estimate the expected returns 

vector than covariances of asset returns [3].  Also, the errors in estimates of expected 

returns have a larger impact on portfolio weights than errors in estimates of 

covariances [3].  For these reasons, recent academic research has focused on 

minimum-variance portfolios, which rely solely on estimates of covariances, and thus, 

are less vulnerable to estimation error than mean-variance portfolios [4].   Many 

successful proposals to address the first estimation problem (the estimation of the 

vector of expected returns) exist now.   Over 300 papers have been listed [5] on the 

first estimation problem, so it is fair to say that a lot of research has been done on 

improving the estimation of the returns.  In comparison, much less research has been 

done on the second estimation, the estimation of the covariance matrix of asset 

returns [1].  With new developments in technology and optimization, there has been 

growing interest in improving the estimation of the covariance matrix for portfolio 
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selection.  Recent proposals by [6-14] among others, show that this topic is currently 

gathering significant amount of attention [1]. 

Despite all the research efforts, the problem of parameter uncertainty remains largely 

unsolved.  It has been shown that the simple heuristic 1/N portfolio also known as 

the Naïve portfolio, outperforms the mean-variance portfolio and most of its 

extensions [15].  The finding has led to a new wave of research that seeks to develop 

portfolio strategies superior to the Naïve portfolio and to reaffirm the practical value 

of portfolio theory [15].  Despite the recent interests in improving the estimation of 

the covariance matrix of asset returns, there still remains many areas for further 

investigation.  There has been very little work in literature on deriving estimators of 

the inverse covariance matrix directly, in the context of portfolio selection. Most 

research has focused on improving estimation of the covariance matrix and then 

inverting these estimates to compute portfolio weights, and it is well known that 

inversion of the covariance matrix produces very unstable estimates. In this respect, 

it is of great importance to develop efficient estimates of the inverse covariance 

matrix.  The research in this thesis studies several issues related to obtaining a better 

estimate of the covariance matrix of asset returns in the context of the Markowitz 

portfolio optimization.  

 

1.3 Contribution 
 

The research in this thesis focuses on the application of machine learning methods 

for Markowitz mean-variance portfolio optimization. Using existing methodology 

known as Graphical Lasso, which is an algorithm used to estimate the precision matrix 
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(inverse covariance matrix) from observations from a multivariate Gaussian 

distribution, we first evaluate the performance of this sparse inverse covariance 

estimator on synthetic data.  We perform experiments to show the importance of 

regularization and introduce a new method of setting the regularization parameter 

that results in performance that is at least as good as the original method by [16]. 

Next, we show the application of Graphical Lasso in a bioinformatics gene microarray 

tissue classification problem where we have a large number of genes relative to the 

number of samples.  We present a method for dimensionality reduction by estimating 

graphical Gaussian models using Graphical Lasso, and using gene group average 

expression levels as opposed to individual expression levels to classify samples. We 

compare classification performance with the sample covariance, and show that 

Graphical Lasso does not appear to perform gene selection in a biologically 

meaningful way, though the sample covariance does. 

Lastly, we create new Graphical Lasso portfolio strategies by applying validation 

methodology to optimize certain portfolio criteria (realized risk, portfolio return and 

portfolio Sharpe ratio) in the Markowitz mean-variance framework. By optimizing 

three different portfolio criteria, we come up with three new portfolio strategies and 

evaluate their performance using both real and synthetic data.  We additionally come 

up with two new portfolio strategies based on Gaussian likelihood, which we use as a 

performance measure in the synthetic stock data experiment.  We account for the 

presence of short-sale restrictions, or the lack thereof, on the optimization process 

and study their impact on the stability of the optimal portfolios.  Using real and 

synthetic stock market data, we show that Gaussian likelihood is an effective way to 

https://en.wikipedia.org/wiki/Multivariate_gaussian_distribution
https://en.wikipedia.org/wiki/Multivariate_gaussian_distribution
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select optimal regularization based on results that show that the Graphical Lasso 

portfolio strategy that uses Gaussian likelihood to select the optimal regularization 

consistently performs the best compared to all other proposed Graphical Lasso 

strategies. From the real data results, we show that the new sparse portfolio 

strategies offer portfolios that are less risky than the methods that use the maximum 

likelihood estimate (MLE), the Naïve equally weighted portfolio method and other 

popular covariance estimation methods, even in the presence of short selling 

constraints.  Lastly, we demonstrate the importance of regularization accuracy and 

show how this affects portfolio performance.  

 

1.4 The organization of this Thesis 
 
This thesis is divided into two parts: 

i. Part I: Benchmarking the Graphical Lasso 

ii. Part II: Applications to Finance 

 

Appendix A provides the mathematical background knowledge necessary for this 

thesis and should be reviewed before the chapters. In the Benchmarking the Graphical 

Lasso, we focus on the evaluation of Graphical Lasso on synthetic data.  To that end, 

we perform experiments showing the ability of Graphical Lasso to recover structure 

in chapter 2.  We emphasize the importance of regularization and introduce a new 

way of setting the regularization parameter, which leads to performance at least as 

good as the original way of setting the regularization proposed by [16]. In chapter 3, 

we apply Graphical Lasso to Bioinformatics gene microarray data by generating 
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graphical Gaussian models which are used to perform supervised classification tasks 

of identifying tissue samples.   

Subsequently, we proceed to the Applications to Finance part, where we present in 

chapter 4, the basics of Markowitz minimum-variance portfolio optimization and the 

formal definition of the Markowitz mean-variance (MV) model.  We propose new 

portfolio strategies by using validation techniques that optimize certain portfolio 

criteria, and evaluate these new strategies on synthetic data.  In chapter 5, we discuss 

the estimation risk of the MV model as well as several current methods used to 

address the estimation risk of the covariance of asset returns.  We perform an in-

depth comparative analysis of our newly proposed portfolio strategies against other 

existing methodology for the estimation of the covariance matrix for Markowitz 

minimum variance portfolio optimization on stock market data. 

We conclude the thesis with chapter 6 which summarises results from all 

experiments and suggests future directions for research.   
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Part I:  Benchmarking the Graphical Lasso 
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Chapter 2 
 
 
 
Evaluation of the Graphical Lasso Algorithm 

This chapter introduces the Graphical Lasso algorithm, which is the methodology that 

is used in this thesis to recover the sparse structure of multivariate Gaussian data. We 

begin by evaluating Graphical Lasso’s performance on synthetic data, where the true 

inverse covariance matrix used to generate the data is known, and show the 

algorithm’s ability to recover structure.  We show the importance of regularization 

for optimal structure recovery, and demonstrate a way to select the penalty 

parameter for regularization, which is important for creating portfolio strategies in 

chapter 4 and 5 for Markowitz minimum variance portfolio optimization. Lastly, we 

introduce a new method of penalty selection for regularization and compare this new 

method’s performance to the original method for penalty selection proposed by [16].   

 

2.1 Introduction to the Sparse Inverse Covariance 
 
The multivariate Gaussian distribution is used in many real life problems to represent 

data.  As a consequence, recovering the parameters of this distribution from data is a 

central problem. Analyses of interactions and interrelationships in Gaussian data 

involve finding models, structures etc., which explain the data and allow for 

interpretation of the data [17].  For a small number of variables, the interpretation of 

resulting hypothesized models is relatively straightforward due to the small number 
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of possible interactions [18].  For higher dimensional data, problems arise due to the 

fact that the number of interactions increases as the dimensionality of the data 

increases. As a result of this, the ease of interpretation becomes an increasingly 

important aspect in the search for suitable models.  In such situations it is therefore 

natural to think in terms of conditional independences between variables and subsets 

of variables [19].  

Undirected graphical models offer a way to describe and explain the relationships 

among a set of variables, a central element of multivariate analysis [17].  The 

‘principle of parsimony’ dictates that we should select the simplest graphical model 

that adequately explains the data [16,19,20,21,22].  The celebrated ‘principle of 

parsimony’ has long ago been summoned for large covariance or inverse covariance 

matrices because it allows for easier interpretation of data.   Knowing the inverse 

covariance (precision) matrix of a multivariate Gaussian – denoted by both  𝜮−1 and 

X in this thesis – provides all the structural information needed to construct a 

graphical model of the distribution. A non-zero entry in the precision matrix 

corresponds to an edge between two variables. The basic model for continuous data 

assumes that the observations have a multivariate Gaussian distribution with mean 

𝜇 and covariance matrix 𝜮. If the ijth component of 𝜮−1 is zero, then variables with 

indices i and j are conditionally independent, given the other variables.  Thus, it makes 

sense to impose and L1 penalty for the estimation of  𝜮−1 to increase its sparsity [16].  
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2.2 Undirected Graphical Models 
 
A graph consists of a set of vertices (nodes), along with a set of edges joining some 

pairs of vertices [18]. In graphical models, each vertex represents a random variable, 

and the graph gives a visual way of understanding the joint distribution of the entire 

set of random variables [18].  They can be useful for either unsupervised or 

supervised learning.  In an undirected graph, the edges have no directional arrows. 

We restrict our discussion to undirected graphical models, also known as Markov 

random fields.  In these graphs, the absence of an edge between two vertices has a 

special meaning: the corresponding random variables are conditionally independent, 

given the other variables [18].  Figure A.5 shows an example of a graphical model for 

a flow-cytometry dataset with p = 11 proteins, measured on N = 7466 cells, from [23].  

Each vertex of the graph corresponds to the real-valued expression level of a protein.  

The network structure was estimated assuming a multivariate Gaussian distribution, 

using the Graphical Lasso procedure discussed in the subsequent sections.    

Sparse graphs have a relatively small number of edges, and are convenient for 

interpretation. They are useful in a variety of domains, including genomics and 

proteomics, where they provide rough models of cell pathways.  The edges in a graph 

are parametrized by values or potentials that encode the strength of the conditional 

independence between the random variables at the corresponding vertices.   
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Figure 2.1   Example of a sparse undirected graph, estimated from a flow cytometry 

dataset, with p = 11 proteins measured on N = 7466 cells. The network structure was 
estimated using the Graphical Lasso.  

 

The main challenges in working with graphical models are model selection (choosing 

the structure of the graph), estimation of the edge parameters from data, and 

computation of marginal vertex probabilities and expectations, from their joint 

distribution.  The other major class of graphical models, the directed graphical models, 

known as Bayesian networks, in which the links have a particular directionality 

(indicated by arrows), will not be studied in this thesis.  A brief overview of both 

directed and undirected graphs can be found in [24]. 

 

Figure 2.2  Example of an undirected graphical model. Each node represents a random 
variable, and the lack of an edge between nodes indicates conditional independence. 

For example, in the graph, c and d are conditionally independent, given b. 
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2.2.1   Graphical Gaussian Model 
 
Here we consider Markov random fields where all the variables are continuous.  The 

Gaussian distribution is almost always used for such graphical models, because of its 

convenient analytical properties. We assume that the observations have a 

multivariate Gaussian distribution with mean  𝝁  and covariance matrix 𝜮 . The 

Gaussian distribution has the property that all conditional distributions are also 

Gaussian.  The inverse covariance matrix 𝜮−1 contains information about the partial 

covariances between the variables; that is, the covariances between pairs i and j, 

conditioned on all other variables.  In particular the ijth component of 𝚯 = 𝜮−1  is 

zero, then variables i and j are conditionally independent, given the other variables.    

We now examine the conditional distribution of one variable versus the rest, where 

the role of 𝚯  is explicit.  Suppose we partition 𝑋 = (𝑍, 𝑌)  where 𝑍 = (𝑋1, . . . , 𝑋𝑝) 

consists of the first 𝑝 − 1 variables and 𝑌 = 𝑋𝑝 is the last.  Then we have the 

conditional distribution of  𝑌 given 𝑍 [25] 

 

𝑌|𝑍 = 𝑧~𝑁(𝜇𝑌 + (𝑧 − 𝜇𝑍)
𝑇𝚺𝑍𝑍

−1𝜎𝑍𝑌, 𝜎𝑌𝑌 − 𝜎𝑍𝑌
𝑇 𝚺𝑍𝑍

−1𝜎𝑍𝑌),                         (2.1) 

where we have partitioned 𝜮 as 

𝜮 = (
𝚺𝑍𝑍 𝜎𝑍𝑌
𝜎𝑍𝑌
𝑇 𝜎𝑌𝑌

)                                                     (2.2) 

 

The conditional mean in (2.1) has exactly same form as the population multiple linear 

regression of Y on Z, with regression coefficient β = 𝚺𝑍𝑍
−1𝜎𝑍𝑌.  If we partition 𝚯 in the 

same way, since 𝚺𝚯 = 𝐈 standard formulas for partitioned inverses give  



   

13 
 

𝜃𝑍𝑌 = −𝜃𝑍𝑌 ∙ 𝚺𝑍𝑍
−1𝜎𝑍𝑌,                                               (2.3) 

 

where 1/𝜃𝑌𝑌 = 𝜎𝑌𝑌−𝜎𝑍𝑌
𝑇 𝚺𝑍𝑍

−1𝜎𝑍𝑌 > 0. Hence 

β = 𝚺𝑍𝑍
−1𝜎𝑍𝑌 

                                                                          = −𝜃𝑍𝑌/𝜃𝑌𝑌  

 

Thus 𝚯 captures all the second-order information (both structural and quantitative) 

needed to describe the conditional distribution of each node given the rest, and is the 

so-called “natural” parameter for the graphical Gaussian model 1[18]. 

Another (different) kind of graphical model is the covariance graph or relevant 

network, in which vertices are connected by bidirectional edges if the covariance 

(rather than the partial covariance) between the corresponding variables is nonzero. 

The covariance graph however will not be studied in this thesis.  

 

2.2.2   The Benefits of Sparsity 

As pointed out in Appendix A section A.5.2.2, Lasso regularization is beneficial in that 

it provides an increase in prediction accuracy and allows for better interpretation.  

The Graphical Lasso is a method of sparse inverse covariance estimation, which offers 

the same benefits that lasso does for linear regression.  This variable reduction 

capability is particularly important in portfolio optimization, where investors prefer 

                                                        
1 The distribution arising from a Gaussian graphical model is a Wishwart distribution. This is a 
member of the exponential family, with canonical or “natural” parameter 𝚯 = 𝜮−1. 
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to invest in a smaller basket of stocks, and also in bioinformatics, when visualizing 

gene microarray data.     

 

2.2.3   Inexact Methods for the Inverse Covariance Estimation 

2.2.3.1   Covariance Selection Discrete Optimization  

Covariance selection was first introduced by [20] as a technique for reducing the 

number of parameters in the estimation of the covariance matrix of a multivariate 

Gaussian population [20]. The belief was that the covariance structure of a 

multivariate Gaussian population could be simplified by setting elements of the 

inverse covariance matrix to be zero.  Covariance selection aims at discovering the 

conditional independence restrictions (the graph) from a set of independent and 

identically distributed observations [20]. One main current of thought that underlies 

Covariance selection is the ‘principle of parsimony’ in parametric model fitting. This 

principle suggests that parameters should only be introduced sparingly and only 

when the data indicate they are required [18].  Parameter reduction involves a 

tradeoff between benefits and costs.  If a substantial number of parameters can be set 

to null values, the amount of noise in a fitted model due to errors of estimation is 

substantially reduced. On the other hand, errors of misspecification are introduced if 

the null values are incorrect.  Every decision to fit a model involves an implicit balance 

between these two kinds of errors [18, 20]. 

Covariance selection relies on the discrete optimization of an objective function.  

Usually, greedy forward or backward search is used.  In forward search, the initial 

estimate of the edge set is empty, and edges are added to the set until a time where 
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an edge addition does not appear to improve fit significantly.  In backward search, the 

edge set consists of all off-diagonal elements, and then edge pairs and dropped from 

the set one at a time, as long as the decrease in fit is not significantly large. The 

selection (deletion) of a single edge in this search strategy requires an MLE fit for 

O(p2) different models [20].  

The forward/backward search in covariance selection is not suitable for high-

dimensional graphs in the multivariate Gaussian setting because if the number of 

variables p becomes moderate, the number of parameters p(p+1)/2 in the covariance 

structure becomes large.  For a fixed sample size N, the number of parameters per 

data point increases (p+1)/2 as p increases.  Using the technique proposed by [20], 

model selection and parameter estimation are done separately.  The parameters in 

the precision matrix are typically estimated based on the model selected.  Thus, 

parameter estimation and model selection in the Gaussian graphical model are 

equivalent to estimating parameters and identifying zeros in the precision matrix 

[26]. Applications of this sort of problem ranges from inferring gene networks, 

analyzing social interactions and portfolio optimization. 

This sort of exhaustive search is computationally infeasible for all but very low-

dimensional models and the existence of the MLE is not guaranteed in general if the 

number of observations is smaller than the number of nodes (variables). 

 

2.2.3.2    Neighborhood Selection with the Lasso 

To remedy the problems that arise from high dimensional graphs and computational 

complexity, [27] proposed a more computationally attractive method for covariance 
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selection for very large Gaussian graphs. They take the approach of estimating the 

conditional independence restrictions separately for each node in the graph. They 

show that the neighborhood selection can be cast into a standard regression problem 

and can be solved efficiently with the Lasso [16].  They fit a Lasso model to each 

variable, using the others as predictors.   

The component (𝜮−1)
𝑖,𝑗

 is then estimated to be non-zero if either the estimated 

coefficient of variable i on j, or the estimated coefficient of variable j on i, is non-zero 

(alternatively, they use an AND rule).  They show that this approach consistently 

estimates the set of non-zero elements of the precision matrix. Neighborhood 

selection with the Lasso relies on optimization of a convex function, applied 

consecutively to each node in the graph. This method is more computationally 

efficient than the exhaustive search technique proposed by [20]. They show that the 

accuracy of the technique presented by [20] in covariance selection is comparable to 

the Lasso neighborhood selection if the number of nodes is much smaller than the 

number of observations. The accuracy of the covariance selection technique breaks 

down, however, if the number of nodes is approximately equal to the number of 

observations, in which case this method is only marginally better than random 

guessing. Neighborhood selection with the Lasso does model selection and parameter 

estimation separately.  The parameters in the precision matrix are typically estimated 

based on the model selected.  

The discrete nature of such procedures often leads to instability of the estimator 

because small changes in the data may result in very different estimates [28].  The 
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neighborhood selection with the lasso focuses on model selection and does not 

consider the problem of estimating the covariance or precision matrix.  

 

2.2.4   Exact Methods for the Inverse Covariance Estimation 

2.2.4.1    L1- penalised methods 

A penalized likelihood method that does model selection and parameter estimation 

simultaneously in the Gaussian graphical model was proposed by [22]. The authors 

employ an L1 penalty on the off-diagonal elements of the precision matrix.  The L1 

penalty, which is very similar to the Lasso in regression [29], encourages sparsity and 

at the same time gives shrinkage estimates.  In addition, it is ensures that the estimate 

of the precision matrix is always positive definite.  The method presented by [22] is 

said to be more efficient due to the incorporation of the positive definite constraint 

and the use of likelihood, though a little slower computationally than the 

neighborhood selection method proposed by [21] due to this same constraint.  They 

show that because the approach of [27] does not incorporate the symmetry and 

positive-definiteness constraint in the estimation of the precision matrix, therefore 

an additional step is needed to estimate either the covariance or precision matrix.  

[22] show that their objective function is non-trivial but similar to the determinant-

maximization problem [17, 22], and can be solved very efficiently with interior-point 

algorithms. One problem with their approach was the memory requirements and 

complexity of existing interior point methods at the time, which were prohibitive for 

problems with more than tens of nodes.  
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A new approach of discovering the pattern of zeros in the inverse covariance matrix 

by formulating a convex relaxation to the problem was proposed by [30]. The authors 

derive two first-order algorithms for solving the problem in large-scale and dense 

settings. They don’t make any assumptions of known sparsity a priori, but instead try 

to discover structure (zero pattern) as they search for a regularized estimate. They 

present provably convergent algorithms that are efficient for large-scale instances, 

yielding a sparse, invertible estimate of the precision matrix even for N < p [30]. These 

algorithms are the smooth optimization method and block coordinate descent 

method for solving the Lasso penalized Gaussian MLE problem. The smooth 

optimization method is based on Nesterov’s first order algorithm [31] and yields a 

complexity estimate with a much better dependence on problem size than interior-

point methods. The second method recursively solves and updates the Lasso 

problem. They show that these algorithms solve problems with greater than a 

thousand nodes efficiently but in experimental work, they choose to only use the 

smooth optimization method which is based on Nesterov’s first-order algorithm and 

call their algorithm COVSEL. This method has an improved computational complexity 

of O(p4.5 ) than previous methods. 

A new method of estimating the inverse covariance was proposed by [16] using the 

block coordinate descent approach proposed by [30].  The authors go on to 

implement the block coordinate method pointed out by [30], and solve the Lasso-

penalized Gaussian MLE problem using an algorithm called Graphical Lasso.  Very fast 

existing coordinate descent algorithms enable them to solve the problem faster than 

previous methods, O(p3 ) [16].  Graphical Lasso maximizes the Gaussian log-likelihood 
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of the empirical covariance matrix S, through L1 (Lasso) regularization [16].  Through 

regularization, the method encourages sparsity in the inverse covariance matrix, and 

as a consequence, demonstrates a robustness to noise, a weakness that plagues the 

maximum likelihood approach [16]. In the context of portfolio selection, assuming a 

priori sparse dependence model may be interpreted as for example, assets belonging 

to a given class being related together while assets belonging to different classes are 

more likely to be independent.  In other words, a sparse precision corresponds to 

covariates that are conditionally independent, so given the knowledge of a given 

subset, the remainder are uncorrelated.   

 

2.3 Introduction to the Graphical Lasso 

Suppose we have N multivariate Gaussian observations of dimension p, with mean μ 

and covariance ∑. Following [67], Let X = ∑-1 be the estimated precision matrix and 

let S be the empirical covariance matrix, the problem is to maximize the log-likelihood 

by using a coordinate descent procedure to maximize the log-likelihood of the data 

[21] 

 

𝑿̂ = argmax
𝑿
𝑙𝑜𝑔(|𝑿|) − 𝑇𝑟𝑎𝑐𝑒(𝑿𝑺) − 𝜌‖𝑿‖1                                       (2.4) 

 

where S is a 𝑝 × 𝑝 empirical (sample) covariance matrix computed from observed 

data and X is a 𝑝 × 𝑝  symmetric and positive semi-definite matrix, which is the 

estimated precision matrix.  ‖𝑿‖1 is the sum of the absolute values of the elements in 
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𝑿. The term 𝜌‖𝑿‖1 is known as a regularization term and 𝜌 is known as the penalty 

parameter. |𝑿|  is the determinant of 𝑿  and 𝑇𝑟𝑎𝑐𝑒(𝑿𝑺)  is the sum of the diagonal 

elements of the matrix product of 𝑿𝑺. Appendix B presents a detailed description of 

the Graphical Lasso algorithm.   

The existence of the penalty term 𝜌 is what encourages sparsity in the estimated 

precision matrix.  The practical challenge is to decide how many and which non 

diagonal entries in the precision should be set to zero.  The Graphical Lasso presents 

questions such as how to select the penalty term  𝜌? When does Graphical Lasso 

perform well? These questions will be addressed in this thesis as they relate to the 

Markowitz global minimum variance portfolio optimization problem.   

 

2.3.1   A Synthetic Data Experiment 

We begin with a small synthetic example showing the ability of Graphical Lasso to 

recover the sparse structure from a noisy matrix.  Using the same data generation 

example for generating synthetic data as [30], the sparse structure is recovered at 

different regularizations ρ = (0.1, 0.4, 1, 2). The purpose of this is to see how the 

optimization solution changes as the regularization parameter, ρ, is increased.  

Starting with a sparse matrix A, we obtain S by adding a uniform noise of magnitude 

σ = 0.1 to A-1.  In Figure 2.3, Figure 2.4, Figure 2.5 and Figure 2.6, the sparsity pattern 

of A and the optimization solution are shown. The blue colour represents positive 

numbers while the red represents negative numbers.  The magnitude of the number 

is also illustrated by the intensity of the colour, with darker colours representing 

higher magnitudes and vice versa. 
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The purpose of this experiment is to illustrate the very important problem the 

Graphical Lasso method presents, which is how to effectively select the correct 

regularization.  From Figure 2.3, Figure 2.4, Figure 2.5 and Figure 2.6, it is evident that 

the selection of the right amount of regularization is crucial to getting the right 

solution.  This issue of how to select the right penalty will be addressed in this thesis 

as it relates to the Markowitz portfolio optimization problem in chapters 4 and 5.  

 
Figure 2.3 Original sparse precision versus Graphical Lasso optimization solution at 

regularization (ρ = 0.1). 
 

 
Figure 2.3 shows the Graphical Lasso solution at a regularization of 0.1.  This solution 

appears to be very close to the original sparse precision.  The diagonal elements are 

estimated correctly and majority of the off-diagonal elements are also estimated 

correctly in the solution.  In Figures 2.4, Figure 2.5 and Figure 2.6, we illustrate what 

happens as we increase the regularization amount. 
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Figure 2.4 Original sparse precision versus Graphical Lasso optimization solution at 

regularization (ρ = 0.4). 
 

 
 
 
 
Figure 2.4 shows the Graphical Lasso solution at a regularization of 0.4.  We can see 

that the solution is worse.  The diagonal elements are estimated larger, indicated by 

a darker diagonal, while a lot of off-diagonal elements disappear.  By nature of the 

Graphical Lasso, as the regularization amount increases, the off-diagonals are shrunk 

closer to zero and this is evident in Figure 2.4.  We now look at solutions for even 

higher regularization amounts in Figure 2.5 and Figure 2.6. 
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Figure 2.5 Original sparse precision versus Graphical Lasso optimization solution at 

regularization (ρ = 1). 

 
Figure 2.6 Original sparse precision versus Graphical Lasso optimization solution at 

regularization (ρ = 2). 
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Figure 2.5 shows the Graphical Lasso solution at a regularization of 1 while Figure 2.6 

shows the solution at a regularization of 2.  We can see the solution gets worse as the 

regularization amount increases.   In Figure 2.6, the off diagonal elements completely 

disappear, leaving very strong diagonal elements.    

This experiment shows the importance of selecting the correct regularization 

amount, while also illustrating the issue of over-regularization, where the off-

diagonal elements are shrunk too much while the diagonal elements are estimated 

too largely as the regularization amount is increased. This issue of over-

regularization is addressed in section 2.4, where we introduce a new method of 

selecting the regularization by separately choosing regularization amounts for 

diagonal and off-diagonal elements.   

 

2.3.2   A Method for Penalty Selection 

Recall that Graphical Lasso solves the optimization problem given by 

 

 max
𝑿
  𝑙𝑜𝑔(|𝑿|) − 𝑇𝑟𝑎𝑐𝑒(𝑿𝑺) − 𝜌‖𝑿‖1                                     (2.5) 

 

where the optimal value of the penalty term 𝜌  must somehow be approximated.  

There are several ways that have been presented in literature on how to set the 

penalty 𝜌 .  One method called the “regression” approach fits Graphical Lasso to a 

portion of the data, and uses the penalized regression model for testing in the 

validation set [16].  Another method called the “likelihood” approach involves 

training the data with Graphical Lasso and evaluating the log-likelihood over the 



   

25 
 

validation set [16].  In chapter 4, we present new validation methods for selecting the 

penalty 𝜌  to obtain estimates of the inverse covariance matrix for mean-variance 

portfolio optimization. 

This section demonstrates a method for approximating the optimal value of the 

penalty 𝜌.  The method involves drawing a portion of data points from the training 

set to form a validation set and assessing the solution produced by Graphical Lasso 

for a number of different values of 𝜌  on this validation set.  We let T denote the 

training set and V denote the validation set. 

 

Algorithm 2.1 Penalty Selection  

  1: Select V ⊂ T   
  2: T’ ≔ T \ V 
  3: Ф  ≔ { 𝜌1, 𝜌2, … , 𝜌𝑛}   
  4:  for all 𝜌𝑖 ϵ  Ф do 
  5:    𝑿̂𝑖   = Graphical Lasso (T’, 𝜌𝑖  ) 
  6:    𝛶𝑖   = Fitness of Solution (V, 𝑿̂𝑖  ) 
  7:  end for 
  8:  Select 𝜌∗ = 𝜌𝑖  corresponding to maximal 𝛶𝑖  
  9:   𝑿̂* = Graphical Lasso ( T,  𝜌∗ )   
    

 

In this thesis, the calculation of the fitness of each 𝑿̂𝑖  is achieved through the 

“Likelihood” approach that is offered by [16].  In this approach, the fitness of the 

solution of 𝑿̂𝑖   is equal to the log-likelihood given in (2.5) in which the empirical 

covariance matrix 𝐒𝑉  is calculated from the validation set V, providing unseen (to 

Graphical Lasso) information. 

 

 Fitness of Solution (V,  𝑿̂𝑖  ) = 𝑙𝑜𝑔(|𝑿̂|) − 𝑇𝑟𝑎𝑐𝑒(𝑿̂𝑖  𝐒𝑉 ) − 𝜌‖𝑿̂𝑖‖1                (2.6)             
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This thesis and the original Graphical Lasso paper [16] use a type of validation called 

k-fold cross-validation in which the training set T is randomly partitioned into k 

validation subsets V1,….,k  each of size 
|𝑇|

𝑘
  leaving k corresponding training sets T’1,….,k  

each of size 
(𝑘−1)|𝑇|

𝑘
 .   Algorithm 3.1 is then applied k times to each Vi and T’i, and the 

final selected  𝜌∗ is the average over the results of the k runs.   Through k-fold cross-

validation it is hoped to minimize overfitting of the training set T.  In this thesis, we 

use k = 5 folds (while the original paper [16] uses k = 10 folds) as a compromise 

between running time and overfitting.  

 

 

2.4 A New Method for Penalty Selection 

From the experiment in section 2.3.1, it is evident that as the regularization amount 

ρ increases, the off-diagonal element values decrease, while the diagonal elements 

increase. There is evidence of overestimation of the diagonal elements as the solution 

becomes more sparse. To remedy this problem, the idea of using two different 

penalties is considered; one penalty for the diagonal elements, and the other for the 

off-diagonal elements. 

 

2.4.1   The Model 

Graphical Lasso maximizes the L1- log likelihood equation, 

 

𝑙𝑜𝑔(|𝑿|) − 𝑇𝑟𝑎𝑐𝑒(𝑿𝑺) − 𝜌‖𝑿‖1                                        (2.7) 



   

27 
 

To correct the problem of overestimation of the diagonal, expression (2.7) is modified 

to the following 

 

𝑙𝑜𝑔(|𝑿|) − 𝑇𝑟𝑎𝑐𝑒(𝑿𝑺) − 𝜌1‖𝑿‖1{𝑖≠𝑗} − 𝜌2‖𝑿‖1{𝑖=𝑗}                       (2.8) 

 

From (2.8) we can see that two different penalties will be chosen; one for the off-

diagonal elements (𝜌1), and the other for the diagonal elements (𝜌2).  This new 

algorithm will be referred to as the Modified Graphical Lasso. 

To approximate the penalties 𝜌 , 𝜌1  and 𝜌2, a method involving cross validation is 

used.  This method, described in section 2.3.2, Algorithm 2.1 involves drawing a 

portion of data points from the training set to form a validation set and assessing the 

solution produced by both Graphical Lasso and the Modified Graphical Lasso for a 

number of different values of 𝜌, 𝜌1 and 𝜌2 on the validation set.  

The possible regularizations amounts chosen for 𝜌, 𝜌1 and 𝜌2 are the same range of 

20  different values from 0 to 1000.  For the Modified Graphical Lasso, all possible 

combinations of 𝜌1  and 𝜌2  are considered. The optimal choice of 𝜌 , 𝜌1  and 𝜌2  are 

picked based on maximum likelihood/largest fitness.  The fitness of the solution  𝑿̂   is 

equal to the log-likelihood given in (2.7) and (2.8), in which the empirical covariance 

matrix is calculated using the validation set.   

 

Fitness of the Graphical Lasso solution is given by 

              𝑙𝑜𝑔(|𝑿̂|) − 𝑇𝑟𝑎𝑐𝑒(𝑿̂𝐒𝑉) − 𝜌‖𝑿̂‖1                                 (2.9) 
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Fitness of the Modified Graphical Lasso solution is given by  

  

              𝑙𝑜𝑔(|𝑿̂|) − 𝑇𝑟𝑎𝑐𝑒(𝑿̂𝐒𝑉) − 𝜌1‖𝑿̂‖1{𝑖≠𝑗} − 𝜌2‖𝑿̂‖1{𝑖=𝑗}                 (2.10) 

 

Synthetic data experiments are performed to show how the Modified Graphical Lasso 

performs compared to the Graphical Lasso, and the results are shown in the 

subsequent sections. 5-fold cross validation is used to train and test the data and 

calculate the likelihood and the optimal regularizations.  We use the Moore-Penrose 

pseudoinverse (introduced in Appendix A) as a baseline method for comparison.  

 

2.4.2   Generating Synthetic Data 

To implement the new penalty selection method, synthetic data is generated 

according to the following models: 

 

 Model 1: A sparse model taken from [22] 

(X)i,i = 1, (X)i,i-1= (X)i-1,i =0.5, and 0 otherwise. 

The diagonal elements of X are equal to 1 and the elements next to each               

diagonal entry equal to 0.5. All other elements are equal to 0.    

 

 Model 2: A dense model taken from [22] 

(X)i,i = 2,  (X)i,i’ = 1 otherwise. 

The diagonal entries of X are equal to 2 and all other elements are equal to 1.    
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For each model, we simulated i.i.d Gaussian samples of sizes (𝑁 = 5, 10, 20, . . . , 100) 

and for different variables sizes (p =10, 30, 50, 70) according to Algorithm 4.1. 

  

2.4.3   Performance Measure 

The performance of the original Graphical Lasso is compared to the Modified 

Graphical Lasso across different variable (p =10, 50, 70) and sample sizes (N = 5 to 

100).  For both the sparse and dense models, we know the true precision,  𝑿 .  

Algorithm 2.1 is used to approximate the optimal 𝜌∗ , 𝜌1∗  and  𝜌2∗ ,  and the 

corresponding optimal estimated precision, 𝑿̂ . The difference between 𝑿̂  and 𝑿  is 

then quantified using the Frobenius norm ‖𝑿̂ − 𝑿‖
𝐹

,  defined for an M x N matrix A as 

 

||𝑨||𝐹 = √∑∑𝑨𝑚𝑛2
𝑁

𝑛=1

𝑀

𝑚=1

 

 

Using the pseudoinverse as a baseline method for comparison, we expect that the 

Graphical Lasso and Modified Graphical Lasso will both perform better than the 

baseline pseudoinverse method for the sparse model.  This is due to the fact that by 

nature, Graphical Lasso assumes a sparse model, and in such situations is expected to 

be a better approximation of the actual inverse covariance matrix than ordinarily 

inverting the covariance matrix or using its pseudoinverse.   For the dense model, we 

expect the pseudoinverse to perform well especially at very high sample sizes relative 

to the number of variables. 
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2.5 Experiment Results 
 

2.5.1 Model 1 Results 

A sparse model: (X)i,i = 1, (X)i,i-1= (X)i-1,i =0.5, and 0 otherwise. 
 

 

Figure 2.7 Model 1 error between Graphical Lasso and Modified Graphical Lasso  
(p =10). 

 

 
 

Figure 2.8 Model 1 optimal penalty for Graphical Lasso and Modified Graphical Lasso 
(p =10). 
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From Figure 2.7, it appears that at certain sample sizes, the Modified Graphical Lasso 

performs better than the original Graphical Lasso, having lower error. Statistical 

hypothesis tests (t-tests) are performed to verify these results and are presented in 

Appendix E.  For better viewing, we present the actual values of the error and optimal 

regularizations for the Modified Graphical Lasso, the Graphical Lasso and the 

pseudoinverse in Appendix E also.  Based on the results of the hypothesis tests in 

Appendix E Table E.1, for the sparse model at 𝑝 = 10 , the two methods perform 

essentially the same, except when 𝑁 > 70  where the original Graphical Lasso 

performs statistically significantly better than the modified Graphical Lasso.  The 

pseudoinverse performs worse than the Graphical Lasso and Modified Graphical 

Lasso as expected in this sparse scenario, although its performance gets better as the 

number of samples increase.    

 
 

 
 

Figure 2.9 Model 1 error between Graphical Lasso and Modified Graphical Lasso 
 (p =30). 
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Figure 2.10 Model 1 optimal penalty for Graphical Lasso and Modified Graphical Lasso 

(p=30). 
 
 

 

 
Figure 2.11 Model 1 error between Graphical Lasso and Modified Graphical Lasso 

 (p =50). 
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Figure 2.12 Model 1 optimal penalty for Graphical Lasso and Modified Graphical Lasso 

(p=50). 
 

Figure 2.9 shows the error across different samples for the sparse model when p=30, 

while Figure 2.11 shows the error across different samples for the sparse model when 

p=50.  In these two figures, the Modified Graphical Lasso method appears to perform 

better than the Graphical Lasso method.  Statistical hypothesis tests in Appendix E 

Table E.3 and Table E.5 however show that the two methods perform essentially the 

same across all samples, and both methods perform better than the pseudoinverse 

across all sample sizes.  We now examine a larger variable size (p=70). 
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Figure 2.13 Model 1 error between Graphical Lasso and Modified Graphical Lasso  
(p =70). 

 

 
 

Figure 2.14 Model 1 optimal penalty for Graphical Lasso and Modified Graphical Lasso 
(p =70). 
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Figure 2.13 shows the error across different sample sizes for the sparse model when 

p=70. In this figure, the Modified Graphical Lasso method appears to perform better 

than the Graphical Lasso method.  Statistical hypothesis tests in Appendix E Table E.7 

however show that the two methods perform essentially the same across all samples, 

and both methods perform better than the pseudoinverse in general.   

Figure 2.8, Figure 2.10, Figure 2.12 and Figure 2.14 show the optimal regularization 

as the sample size increases for the sparse model when p=10, p=30, p=50 and p=70 

respectively. From these figures, we can see that the optimal regularization for the 

Graphical Lasso method is almost always an intermediate value between the optimal 

off-diagonal and diagonal regularizations for the Modified Graphical Lasso method 

across all sample sizes. 

Based on the experiment in section 2.3.1 which showed the over-estimation of the 

diagonal elements as the regularization increases, we expected that for the Modified 

Graphical Lasso, a higher regularization will be needed for the diagonal elements, 

while a lower regularization will be needed for the off-diagonal elements, however, 

our results go against our hypothesis. Our results across all variable and sample sizes 

show that for the Modified Graphical Lasso method, the off-diagonal optimal 

regularization is higher than that of the diagonal elements. 
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2.5.2    Model 2 Results 

A dense model: (X)i,i = 2,  (X)i,i’ = 1 otherwise 
 

 
Figure 2.15 Model 2 Error between Graphical Lasso and Modified Graphical Lasso  

(p =10). 
 
 

 
Figure 2.16 Model 2 Optimal penalty for Graphical Lasso and Modified Graphical Lasso 

(p =10). 
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Figure 2.15 shows the error across different samples for the dense model when p=10. 

From Figure 2.15, it appears that at most sample sizes, the Modified Graphical Lasso 

performs better than the original Graphical Lasso, having lower error. Statistical 

hypothesis tests in Appendix E Table E.9 however show that the original Graphical 

Lasso method performs statistically significantly better than the Modified Graphical 

Lasso when 𝑁 > 30. When 𝑁 < 30, the two methods perform essentially the same.  

The pseudoinverse performs better than both the Graphical Lasso and Modified 

Graphical Lasso when 𝑁 > 30 as expected in the dense scenario, with its performance 

getting better as the number of samples increase.    

 

 
Figure 2.17 Model 2 Error between Graphical Lasso and Modified Graphical Lasso  

(p =30). 
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Figure 2.18 Model 2 Optimal penalty for Graphical Lasso and Modified Graphical Lasso 
(p =30). 

 
 
 

 

Figure 2.19 Model 2 error between Graphical Lasso and Modified Graphical Lasso  
(p =50). 
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Figure 2.20 Model 2 optimal penalty for Graphical Lasso and Modified Graphical Lasso 
(p =50). 

 
 
Figure 2.17 shows the error across different samples for the dense model when p=30, 

while Figure 2.19 shows the error across different samples for the sparse model when 

p=50.  In these two figures, the Modified Graphical Lasso method appears to perform 

better than the Graphical Lasso method.  Statistical hypothesis tests in Appendix E 

Table E.11 and Table E.13 however show that the two methods perform essentially 

the same across all samples. When p=30, both methods perform better than the 

pseudoinverse as seen in Appendix E Table E.11 when 𝑁 < 70. When p=50, Appendix 

E Table E.13 shows that both methods perform better than the pseudoinverse when 

𝑁 > 30. We now look at performance when p=70. 
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Figure 2.21 Model 2 error between Graphical Lasso and Modified Graphical Lasso  
(p =70). 

 

 
Figure 2.22 Model 2 optimal penalty for Graphical Lasso and Modified Graphical Lasso 

(p =70). 
 

 
 
As we increase the variable size to p=70 for the dense model, Figure 2.21 shows the 

error across different sample sizes for the dense model when p=70. In this figure, the 
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Modified Graphical Lasso method appears to perform better than the Graphical Lasso 

method.  Statistical hypothesis tests in Appendix E Table E.15 however show that the 

two methods perform essentially the same across all samples, and both methods 

perform better than the pseudoinverse when 𝑁 > 40.   

Figure 2.16, Figure 2.18, Figure 2.20 and Figure 2.2 show the optimal regularization 

as the sample size increases for the dense model when p=10, p=30, p=50 and p=70 

respectively. From these figures, we can see that the optimal regularization for the 

Graphical Lasso method is always an intermediate value between the optimal off-

diagonal and diagonal regularizations for the Modified Graphical Lasso method 

across all sample sizes. 

Once again, based on the experiment in section 2.3.1 which showed the over-

estimation of the diagonal elements as the regularization increases, we expected that 

for the Modified Graphical Lasso, a higher regularization will be needed for the 

diagonal elements, while a lower regularization will be needed for the off-diagonal 

elements, however, our results go against our hypothesis. Our results across all 

variable and sample sizes show that for the Modified Graphical Lasso method, the off-

diagonal optimal regularization is higher than that of the diagonal elements. 

 

2.6 Summary 

In this chapter, we presented the Graphical Lasso algorithm which is the method that 

we use to estimate all sparse inverse covariances for application in bioinformatics 

and finance problems in this thesis.  We showed the importance of regularization in 

section 2.3.1 and presented existing methods for approximating the optimal penalty 
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parameter in section 2.3.2.  We pointed out a characteristic of Graphical Lasso to over-

estimate the diagonal elements as the regularization amount increased, and 

presented a new method to remedy this problem by using two different penalties in 

section 2.4.1.  We presented the results of this new method known as the ‘Modified 

Graphical Lasso’, which showed performance that was essentially the same as the 

original Graphical Lasso performance when 𝑝 > 10 on synthetically generated data 

from sparse and dense inverse covariance models. 

For the sparse model, the Graphical Lasso and Modified Graphical Lasso performed 

better than the pseudoinverse across all variable and sample sizes, while for the 

dense model, the pseudoinverse showed improved performance and performed as 

well or better than the Graphical Lasso and Modified Graphical Lasso methods at 

various instances, especially when the sample sizes were very high relative to the 

number of variables.  These results were consistent with our hypothesis, where we 

expected the Graphical Lasso and Modified Graphical Lasso to perform better than 

the pseudoinverse when the data comes from a sparse model.  In such scenarios, the 

Graphical Lasso is known to be a better approximation of the inverse covariance 

matrix than actually inverting the sample covariance matrix or using the 

pseudoinverse.  Based on our results shown in section 2.3.1, we hypothesized that for 

the Modified Graphical Lasso, a higher regularization would be needed for the 

diagonal elements to remedy the diagonal over-estimation problem, while a lower 

regularization would be needed for the off-diagonal elements. However, our results 

went against our hypothesis.  Our results were optimal when the off-diagonal 

elements had a higher regularization than the diagonal-elements.   
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Chapter 3 

 
 
Graphical Lasso Application to Bioinformatics   

Machine learning and data mining have found a multitude of successful applications 

in microarray analysis, with gene clustering and classification of tissue samples being 

widely cited examples [32]. Deoxyribonucleic acid (DNA) microarray technology 

provides useful tools for profiling global gene expression patterns in different 

cell/tissue samples. One major challenge is the large number of genes 𝑝 relative to the 

number of samples N. The use of all genes can suppress or reduce the performance of 

a classification rule due to the noise of non-discriminatory genes [33]. Selection of an 

optimal subset from the original gene set becomes an important pre-step in sample 

classification [33]. 

In this chapter, we propose the use of the sparse inverse covariance estimator, 

Graphical Lasso, which was introduced in chapter 2 to estimate the inverse 

covariance matrix even when  𝑁 < 𝑝.  The estimated sparse inverse covariance is 

used for dimensionality reduction and to classify tissue samples given gene 

microarray data.  
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3.1 Introduction 

DNA microarrays enable scientists to study an entire genome’s expression under a 

variety of conditions. The advent of DNA microarrays has facilitated a fundamental 

shift from gene-centric science to genome-centric science [34]. 

 

 

Figure 3.1 DNA microarray image. 
 

DNA microarrays are typically constructed by mounting a unique fragment of 

complementary DNA (cDNA) for a particular gene to a specific location on the 

microarray [34]. This process is repeated for N genes. The microarray is then 

hybridized with two solutions, one containing experimental DNA tagged with green 

fluorescent dye, the other containing reference or control DNA tagged with red 

fluorescent dye [34].  
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Figure 3.2 Acquiring the gene expression data from DNA microarray. 
 
 

DNA microarrays are composed of thousands of individual DNA sequences printed in 

a high density array on a glass microscope slide using a robotic arrayer as shown in 

Fig. 3.2. The relative abundance of these spotted DNA sequences in two DNA or RNA 

samples may be assessed by monitoring the differential hybridization of the two 

samples to the sequences on the array [34]. For mRNA samples, the two samples are 

reverse-transcribed into cDNA, labeled using different fluorescent dyes mixed (red-

fluorescent dye and green-fluorescent dye). After the hybridization of these samples 

with the arrayed DNA probes, the slides are imaged using a scanner that makes 

fluorescence measurements for each dye [34]. The log ratio between the two 

intensities of each dye is used as the gene expression data [35-37]. 

Traditionally, genes have been studied in isolation in an attempt to characterize their 

behavior [34]. While this technique has been successful to a limited extent, it suffers 

from several fundamental drawbacks. The most significant of these drawbacks is the 
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fact that in a real biological system, genes do not act alone; rather, they act in concert 

to affect a particular state in a cell [34]. As such, examining cells in isolation offers a 

perturbed and very limited view of their function [34]. DNA microarrays allow a 

scientist to observe the expression level of tens of thousands of genes at once. Rather 

than considering individual genes, a scientist now has the capability of observing the 

expression level of an entire genome.   

The power of DNA microarrays is a double-edged sword: to handle the enormous 

amount of data being generated by microarray experiments, we need sophisticated 

data analysis techniques to match [34]. More specifically, we need to extract 

biologically meaningful insights from the morass of DNA microarray data, and apply 

this newly gained knowledge in a meaningful way. The types of information scientists 

want to extract from DNA microarray data can be regarded as patterns or regularities 

in the data [34]. One important application of gene expression data is classification of 

samples into categories. For example, a scientist may want to discover which samples 

belong to particular tissue or which samples belong to healthy/unhealthy patients.  

They may also want to know which genes are co-regulated, or attempt to infer what 

the gene expression regulator pathways are [34]. Alternatively, a doctor may want to 

know if the gene expression profile of an unhealthy patient can help predict an 

optimal treatment. In combination with classification methods, other machine 

learning techniques are designed to extract such patterns which can be useful for 

supporting clinical management decisions for individual patients, e.g. in oncology. 

Standard statistic methodologies in classification or prediction do not work well 
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when the number of variables p (genes) is much larger than the number of samples N 

which is the case in gene microarray expression data [34]. 

 

3.1.1   DNA Microarray Data Characteristics 

While offering unprecedented research opportunities, DNA microarray data also 

present a new set of challenges. There are a variety of challenges facing scientists who 

attempt to work with DNA microarray data [34]. 

 

3.1.1.1    The Curse of Dimensionality 

One of the main challenges in dealing with microarray data is the dimensionality of 

the data [34]. If we represent a 10,000-gene microarray experiment as a vector, we 

are forced to work in 10,000-dimensional space. For an algorithm to work effectively, 

it must be able to deal robustly with the dimensionality of this feature space. In some 

cases, the curse of dimensionality is offset by having a large number of samples to use 

in data analysis [34]. Unfortunately, it is often the case that microarray data sets are 

composed of tens or hundreds of samples, not thousands as one would hope. Machine 

learning algorithms must thus be able to deal not only with high dimensional data, 

but relatively small data sets from which to learn [34].  

 

3.1.1.2    Noise and Data Normalization 

Another fundamental challenge in dealing with DNA microarray data is data 

normalization [34]. Due to technical limitations, the constant of proportionality 

between the actual number of mRNA samples per cell and the relative amount 
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measured by a microarray experiment is unknown, and will vary across microarray 

experiments [34]. This variance introduces noise to experiments, and requires that 

we normalize microarray data by multiplying array results by an appropriate factor. 

Understanding the normalization process is key, as it will affect the ability to 

determine whether a gene’s varying expression level is meaningful or simply a 

byproduct of noise [34].  

 
 

3.2 Graphical Models and Gene Microarray Data 
 
DNA microarrays remain a powerful tool for identifying changes in gene expression 

between different environmental conditions or developmental stages [38]. 

Coordinated regulation of gene expression is typically studied by identifying groups 

of genes with correlated changes in mRNA abundance across different experimental 

conditions [38]. Recently, gene co-expression networks have become a more and 

more active research area [39-42]. Recent computational methods attempt to 

reconstruct networks of gene regulation from global expression patterns [38].  A gene 

co-expression network is essentially a graph where nodes in the graph correspond to 

genes, and edges between genes represent their co-expression relationship [38]. 

Traditionally, several clustering techniques have been studied in literature, but such 

methods neglect gene neighbor relations (such as topology) in the networks [41].  In 

order to elucidate functional interaction, and as a basis for subsequent clustering and 

network inference, a popular strategy in bioinformatics is to compute the standard 

Pearson correlation between any two genes [43]. If the correlation coefficient exceeds 
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a certain a priori specified threshold, then an edge is drawn between the appropriate 

genes. The resulting graph is called a “relevance network” where missing edges denote 

marginal independence [43]. In statistical terminology, this type of network model is 

also known as a “covariance graph model”. However, for understanding gene 

interaction, this approach is only of limited use. 

For instance, a high correlation coefficient between two genes may be indicative of 

either (i) direct interaction, (ii) indirect interaction, or (iii) regulation by a common 

gene.  In learning a genetic network from data we need to be able to distinguish 

among these three alternatives. Therefore, for constructing a “gene association 

network” where only direct interactions among genes are depicted by edges, another 

framework is needed: “graphical Gaussian models” (GGMs) [43]. The key idea behind 

GGMs is to use partial correlations as a measure of conditional independence between 

any two genes. This overcomes the edge identifiability problems of standard 

correlation networks [43]. Consequently, GGMs (also known as “covariance selection” 

or “concentration graph” models) have recently become a popular tool to study gene 

association networks. Note that GGMs and the covariance graph models are only 

superficially similar approaches. However, both conceptually as well as practically, 

they constitute completely different theories [43]. 

Graphical models [26, 44] are promising tools for the analysis of gene interaction 

because they allow the stochastic description of net-like association and dependency 

structures in complex highly structured data. At the same time, graphical models offer 

an advanced statistical framework for inference. In theory, this makes them perfectly 

suited for modeling biological processes in the cell such as biochemical interactions 
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and regulatory activities [43]. However, the practical application of graphical models 

in systems biology is strongly limited by the amount of available experimental data. 

This apparent paradox arises as today’s high-throughput facilities allow to investigate 

experimentally a greatly increased number of features while the number of samples 

has not, and cannot, similarly be increased [43]. For instance, in a typical microarray 

data set, the number of genes p will exceed by far the number of sample points N. This 

poses a serious challenge to any statistical inference procedure, and also renders 

estimation of gene regulatory networks an extremely hard problem [43]. This is 

corroborated by a recent study on the popular Bayesian network method where [45] 

demonstrated that this approach tends to perform poorly on sparse microarray data.   

In this chapter, we focus on sparse graphical Gaussian models for modeling genome 

data. These are similar to the bioinformatics community widely applied “relevance 

networks” in that edges indicate some degree of correlation between two genes. 

However, in contrast to correlation networks, GGMs allow one to distinguish direct 

from indirect interactions, i.e. whether gene A acts on gene B directly or via mediation 

through a third gene C [43]. More precisely, GGMs are based on the concept of 

conditional independence. In this respect, GGMs behave similarly as Bayesian 

networks. However, unlike the latter, GGMs contain only undirected edges, hence 

they do not suffer from a restriction inherent in Bayesian networks, namely that they 

can only be applied to network graphs without feedback loops, i.e. directed cycles 

[43]. [46] show how Gaussian graphical models are useful in gene expression data. 

The notion of sparsity of graphical models for gene expression data reflects the view 

that patterns of variation in expression for a gene, G, will be well predicted by those 
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of a relatively small subset of other genes.  Beyond parsimony, this embodies a view 

that transcriptional regulation of a single gene or pathway component is generally 

defined by a small set of regulatory elements [46].   

Unfortunately, a number of difficulties arise when the standard graphical Gaussian 

modeling concept is applied for the analysis of high-dimensional data such as from a 

microarray experiment [43]. First, classical GGM theory [26] may only be applied 

when N > p, because otherwise the sample covariance and correlation matrices are 

not well conditioned, which in turn prevents the computation of partial correlations. 

Moreover, often there are additional linear dependencies between the variables, 

which leads to the problem of multicollinearity [43]. This, again, renders standard 

theory of graphical Gaussian modeling inapplicable to microarray data. Second, the 

statistical tests widely used in the literature for selecting an appropriate GGM (e.g. 

deviance tests) are valid only for large sample sizes, and hence are inappropriate for 

the very small sample sizes present in microarray data sets. In this case, instead of 

asymptotic tests, an exact model selection procedure is required [43]. Note that the 

small N large p problem affects both GGMs and relevance networks [43]. In particular, 

the standard correlation estimates are not valid for small sample size N, a fact that 

appears to have gone largely unnoticed in the bioinformatics community [43]. 

 

 
3.3 Microarray Data Analysis using Graphical Lasso 
 
In this section, we propose the use of the sparse inverse covariance estimator, 

Graphical Lasso, for gene microarray data analysis.  We create graphical Gaussian 
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models, which we use to perform the supervised classification task of identifying 

tissue samples.     

 

3.3.1   The Data 

Background information of patient recruitment strategy and subsequent 

transcriptional profiling was carried out at University College London Hospital 

(Principal Investigator: Dr. Mahdad Noursadeghi, Infection and Immunity, University 

College London). The data was generously provided by Professor Benjamin Chain and 

Dr. Nandi Simpson (Infection and Immunity, University College London). 

 
Participants were recruited at the University College London Hospital for a study 

program. The cohort consisted of UK participants who were given Unique 

Identification Numbers (UIN) by the research nurse at the end of the study leading to 

the data being anonymized. The microarray data set consists of 255 cell samples 

isolated and/or cultured from human white blood cells (in all cases healthy human 

volunteers). Each sample is associated with gene expression levels of 4100 genes and 

from 1 of 11 different human tissue types under varying stimuli and exposure times. 

In the microarray data representation, each row represents a sample and each 

column represents a gene. Gene selection was performed by [47] such that the genes 

whose variances across all samples that were within the top 90% quartile were those 

chosen out of a total of 40,000 genes, reducing the gene size to 4100. The basis for 

selecting 4100 genes out of 40,000 is that, these genes showed the highest variation 

across all the samples, and with gene expression data, the most important dynamics 
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are the ones with the largest variance. Such differentially expressed genes are viewed 

as potential candidates that may provide clues to the behavior of a system under a 

given perturbation.  

The microarray data was then processed using a previously developed pipeline by 

[47]. In the paper, the authors have described and validated a series of data extraction, 

transformation and normalization steps which are implemented through a package 

in R known as ‘agilp’. The raw data was pre-processed according to the following 

steps: 

1. Log2 transformation of the raw data. 

2. Data normalization using LOESS normalization (Local Regression, also 

known as Locally Weighted Scatter Plot Smoothing) i.e. the assumption is 

that most genes in a specific range of signal do not change. 

 

For ease of representation in the rest of this chapter, each gene will correspond to a 

number between 1 and 4100 and each tissue type will correspond to a class between 

1 and 11. The distribution of the tissue samples is shown in Table 3.1. 
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Class 
Corresponding 

Tissue Tissue Description 
No of 

Samples 

1 D4_MDDC 
Monocyte derived dendritic cells after 
4 days culture 

27 

2 DC 
Dendritic cells isolated directly from 
blood 

24 

3 MDDC 
Monocyte derived dendritic cells after 
7 days culture 

32 

4 MDM Monocyte derived macrophages 53 

5 BLOOD 
Unfractionated sample of white blood 
cells 

46 

6 M3DC 
Dendritic cells derived from Mutz3 
cell line 

15 

7 AM Alveolar macrophages 14 

8 HC 
HACAT cells ; a human keratinocyte 
tumour cell line 

16 

9 HL Hela cells : a cervical cancer cell line 12 

10 2T 
3T3 cells. A human transformed 
fibroblast line 

8 

11 HOS A  bone osteosarcoma line 8 

 
Table 3.1 The 11 different tissue types and the distribution of the 255 tissue samples 

 

 
 
3.3.2   Microarray Classification Problem Definition 
 
In a microarray classification problem, we are given a training dataset of N samples  

which we represent as a training dataset of N training sample pairs: {𝑥𝑖 , 𝑦𝑖  }, 𝑖 =

 1, . . . , 𝑁, where 𝑥𝑖 ∈ 𝑅
𝑝 is the i-th training sample, and 𝑦𝑖  is the corresponding class 

label, which is either +1 or -1.   

An important goal of the analysis of such data is to determine an explicit or implicit 

function that maps the points of the feature vector from the input space to an output 

space. This mapping has to be derived based on a finite number of data, assuming that 

a proper sampling of the space has been performed. If the predicted quantity is 
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categorical and if we know the value that corresponds to each element of the training 

set, then the question becomes how to identify the mapping that connects the feature 

vector and the corresponding categorical value.  

 

3.3.3   The Proposed Method 

Assuming a sparse model, we use Graphical Lasso to define graphical Gaussian 

models of varying sparsity in section 3.3.5.  We perform dimensionality reduction by 

running Graphical Lasso on the entire microarray data using a chosen regularization, 

which defines the corresponding graphical Gaussian model in section 3.3.6.  

Specifically, we use the k-nearest neighbor technique introduced in Appendix A 

section A.4.2 and defined in section 3.3.6 to reduce the dimensionality of the graphical 

Gaussian model or baseline covariance model (defined by the sample covariance).  

We then perform feature selection (introduced in Appendix A section A.2.1 and A.4.5) 

by treating connected components (sub-networks) in each model (graphical Gaussian 

model or covariance model) as individual features with the feature value being the 

average expression level of all the genes in a particular sub-network across all 

samples.  Using the new feature space, we perform supervised classification using 

regression. 

 

3.3.4   Data Pre-processing: Centering the Data  

Prior to the application of many multivariate methods, data are often pre-processed. 

This pre-processing involves transforming the data into a suitable form for the 

analysis. Among the different pre-processing methods, one of the most common 
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operations is well known as mean-centering.  Mean centering involves the 

subtraction of the variable averages from the data.  Since multivariate data is typically 

handled in matrix format with columns as variables, mean-centering is often referred 

to as column centering.  In mean-centering, one calculates the average value of each 

variable and then subtracts it from the data. This implies that each column will be 

transformed in such a way that the resulting variable will have a zero mean. In 

addition to the initial pre-processing steps applied to the microarray data by [47] and 

described in section 3.3.1, we performed column centering. Recalling that the 

microarray data consists of 4100 genes and 255 samples, let 𝐗  represent the 

microarray data where each row 𝑖 is a sample and each column 𝑗 is a gene.  The data 

centering is defined as follows  

  

              𝐗𝑐 = ∑ 𝐗𝑖,𝑗
255
𝑖=1 ∑ 𝐗̅𝑗

4100
𝑗=1 ,                                                 (3.1) 

where 𝐗̅𝑗  is the mean gene expression level for a particular gene 𝑗 and 𝐗𝑐 is the newly 

centered data. Figure 3.3 and Figure 3.4 show the distribution of the mean expression 

levels of all 4100 genes across all samples before and after centering the data.  

The final step in data pre-processing involved re-organizing the microarray data 

according to tissue samples i.e. samples belonging to the same tissue type were 

grouped together. 

 

 

 

 



   

57 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 The distribution of the microarray data consisting of 4100 genes and 255 
samples before centering. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3.4 The distribution of the microarray data consisting of 4100 genes and 255 
samples after centering. 

 

Mean gene expression level across all samples 

Mean gene expression level across all samples 
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3.3.5   Choosing the Regularization 

In order to visualize the interaction of the genes, we use Graphical Lasso to generate 

graphical Gaussian models representing the gene microarray data.  If we recall from 

chapter 2, one of the important prerequisites of Graphical Lasso is choosing the 

correct regularization amount. To choose the correct regularization to represent the 

microarray data set, we first look at how the sparsity pattern varies for randomly 

chosen regularizations of ρ=1 and ρ=3 and ρ=10 and choose to use two different 

regularizations of ρ=1 and ρ=3 for the rest of the experiments in this chapter.  The 

sparsity of the randomly chosen regularizations can be seen in Figure 3.5, Figure 3.6 

and Figure 3.7. 

 
 

 
 

Figure 3.5 Sparsity of estimated precision (ρ=1). 
 
 
 



   

59 
 

 
 

Figure 3.6 Sparsity of estimated precision (ρ=3). 

 
 
 

 
 

Figure 3.7 Sparsity of estimated precision (ρ=10). 
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In order to test the stability of the Graphical Lasso estimated precisions, we see how 

the structure of the precision is maintained as the regularization amount ρ is 

increased.  We start with a baseline precision and estimate a new precision at a higher 

regularization and see how many zeros are estimated correctly in the new precision.  

We vary the number of iterations from 10 to 250 and report the average results in 

Table 3.2.  The results remained constant regardless of the number of iterations 

performed.   

 

Baseline 
Precision 

New 
Precision 

No of zeros in 
baseline 

Identified Zeros 
from Baseline 

(%) 

Unidentified 
Zeros from 

Baseline (%) 
ρ=1 ρ=3 16437743 99.63 0.37 
ρ=1 ρ=10 16437743 99.98 0.02 
ρ=3 ρ=10 16720180 99.98 0.02 

 
Table 3.2 Structure of the Precision as regularization ρ is increased 

 

3.3.6   k-Nearest Neighbour Graphs to Visualize Gene Interaction 

Adjacency matrices, 𝑨 , are created from the estimated inverse covariance matrix 

following Algorithm 3.1.  

 

Algorithm 3.1 Building adjacency matrices 

  1: Given the estimated inverse covariance 𝑿̂, Let 𝑨 represent an adjacency matrix   
  2: for  𝑖 = 1: 4100   
  3:   for  𝑗 = 1: 4100   
  4:      if 𝑿̂𝑖,𝑗 ≠ 0     

  5:         𝑨𝑖,𝑗 = 1 and 𝑨𝑗,𝑖 = 1 

  6:      else  
  7:         𝑨𝑖,𝑗 = 0 and 𝑨𝑗,𝑖 = 0 

  8:       end if 
  8:   end for 
  9: end for 
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We additionally define an adjacency matrix 𝑨 for the baseline sample covariance by 

following Algorithm 3.1 and replacing 𝑿̂ with the sample covariance ∑. 

Next, k-nearest neighbor (k-NN) graphs are built by following Algorithm 3.2. We take 

the top 20 largest entries (in terms of magnitude) in both the sample covariance and 

estimated precisions and their 3 nearest neighbors(𝑘 = 3).  The idea behind this is to 

capture the strongest interactions in the sample covariance and estimated precisions, 

so as to avoid working with the entire graphs which are very large.   

 

Algorithm 3.2 Building k-nearest neighbour graph 

  1: Given adjacency matrix 𝑨 and 𝑘 = 3 
  2: Define new adjacency matrix 𝑨∗ for graph building 
  3: Define a matrix 𝒀 corresponding the top 20 𝑖, 𝑗 positions corresponding to the row  
  4: and column of the largest magnitudes in 𝑿̂ with 20 rows and 2 columns  
  5: for  𝑖 = 1: 20  
  6:    edge_pair = 𝒀(𝑖, : ) and is a vector containing the 𝑖, 𝑗 positions from 𝒀 
  7:    Let 𝒛 be the variable set corresponding to the top 3 shortest distances from        
  8:    𝑨(edge_pair ) to all other variables in 𝑨, where distance is the Euclidean  
  9:    distance defined in Appendix A equation (A.14).  
 10:     𝑨∗(edge_pair ) = 1 and 𝑨∗(edge_pair′ ) =  1 
 11:        for  𝑗 = 1: length(𝒛)  
 12:            𝑨∗edge_pair(1),𝒛(𝑗) = 1 and 𝑨∗𝒛(𝑗),edge_pair(1) = 1 

 13:        end for 
 14: end for 
 15: Use 𝑨∗ to build graph by drawing an edge between variables 𝑖 and 𝑗 if 𝑨𝑖,𝑗

∗ = 1.  

 16: The edge 𝑨𝑖,𝑗
∗  is red if  𝑿̂𝑖,𝑗 > 0 and black if  𝑿̂𝑖,𝑗 < 0 

 
‘:’ represents all the rows or all the columns in a matrix and ′ represents the     
symmetric counterpart of an edge i.e. the symmetric counterpart of edge (𝑖, 𝑗) is (𝑗, 𝑖) 
 

 

We build k-nearest neighbour graphs corresponding to the estimated precisions and 

sample covariance of the microarray data.  These graphs can be seen in Figure 3.8, 
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Figure 3.9 and Figure 3.10. The graph in Figure 3.8 for the baseline sample covariance 

is built by following Algorithm 3.2 and replacing 𝑿̂ with the sample covariance ∑. 

In the figures, node names correspond to the gene row entries in the original 

microarray data (a number between 1 and 4100).  Red edges represent positive 

values in the precision/covariance matrix while black edges represent negative 

values.   

 

 

Figure 3.8 k-nearest neighbor graph (𝑘 = 3) built from the microarray 
data sample covariance. Each node number represents a gene (genes are 
annotated from 1 to 4100). This graph shows 3 separate sub-networks. 
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Figure 3.9 k-nearest neighbor graph (𝑘 = 3) built by running Graphical Lasso on the 

microarray data at a regularization of ρ=1. Each node number represents a gene 
(genes are annotated from 1 to 4100). This graph shows 20 separate sub-networks.  
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Figure 3.10 k-nearest neighbor graph (𝑘 = 3) built by running Graphical Lasso on the 
microarray data at a regularization of ρ=3. Each node number represents a gene 

(genes are annotated from 1 to 4100). This graph shows 14 separate sub-networks.  
 

 

3.3.7   Supervised Learning Methodology 

To use the graphical Gaussian models and the covariance model presented in section 

3.3.6 for the tissue classification task, we follow the methodology described in section 

3.3.3. Specifically, we use the graphs in Figure 3.8, Figure 3.9 and Figure 3.10, which 

represent the microarray data with its dimension reduced. For each graph, we 

perform feature selection by treating connected components (sub-networks) as 

individual features, with the feature value being the average expression level of all 

the genes in a particular sub-network across all samples.   
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By doing this, we end up with a feature vector for the covariance which consists of 3 

features representing the average expression levels of each of the 3 sub-networks in 

the k-nearest neighbour graph in Figure 3.8 across all 255 samples.  For the estimated 

precision at ρ=1, we end up with a feature vector which consists of 20 features 

representing the average expression level of each of the 20 networks in the k- nearest 

neighbour graph in Figure 3.9 across all 255 samples.  For the estimated precision at 

ρ=3, we end up with a feature vector which consists of 14 features representing the 

average expression levels of each of the 14 networks in the k- nearest neighbour 

graph in Figure 3.10 across all 255 samples. 

We are essentially reducing the dimensionality of the problem from a 4100 

dimensional problem with 255 samples to a 3 dimensional problem for the 

covariance, a 20 dimensional problem for the precision at ρ=1 and a 14 dimensional 

problem for the precision at ρ=3. These feature vectors will be used in regression for  

classification, where 𝑥 ∈ 𝑅𝑑 is the feature vector and 𝑦 ∈ 𝑅 is the tissue label.   

 

3.3.7.1   Linear Least Squares Regression Classifier   

Fit a function 𝑔(𝒙) through a set of samples S = {(𝑥1, 𝑦1), (𝑥2, 𝑦2),…… . . (𝑥𝑙 , 𝑦𝑙)},  

where 𝒙 ∈ 𝑅𝑝 and 𝑦 ∈ 𝑅  

We look for: 

𝑦𝑖 ≅ 𝑔(𝒙𝑖) = 𝒙𝑖
𝑇𝒘 

The weight vector that minimizes the mean of the squared errors on all training 

samples is: 
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𝒘∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤
1

𝑙
∑(𝒙𝑖

𝑇𝒘− 𝑦𝑖)
2

𝑙

𝑖=1

 

 

Using the notation 𝐗 = (𝒙1 𝒙2………𝒙𝑙)
𝑇 , a matrix containing training sample 

vectors as its rows, the cost function can be rewritten as:  

 

𝒘∗ = (𝐗𝑇𝐗)−1𝐗𝑇𝒚 

 

A detailed description of linear least squares regression can be found in Appendix A 

section A.5. 

 

3.3.7.2   Ridge Regression Classifier 

Fit a function 𝑔(𝒙) through a set of samples S = {(𝑥1, 𝑦1), (𝑥2, 𝑦2),…… . . (𝑥𝑙 , 𝑦𝑙)},  

where 𝒙 ∈ 𝑅𝑝 and 𝑦 ∈ 𝑅  

We look for: 

𝑦𝑖 ≅ 𝑔(𝒙𝑖) = 𝒙𝑖
𝑇𝒘 

 

Using the notation 𝐗 = (𝒙1 𝒙2………𝒙𝑙)
𝑇 , a matrix containing training sample       

vectors as its rows, the cost function can be rewritten as:  

 
𝒘∗ = (𝐗𝑇𝐗 + 𝛾𝑙𝑰)−1𝐗𝑇𝒚, 

 

where 𝛾 is the penalty parameter and 𝑰 is a 𝑝 × 𝑝 identity matrix.  

 

A detailed description of ridge regression can be found in Appendix A section A.5.2.1. 
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3.4 Two-class Classification to Identify Tissue Samples 
 
We perform two-class (binary) classification, where we try and distinguish a 

particular tissue sample from each of the other 10 tissue samples.  For each class k, 

training is done on class k versus all the remaining 10 classes individually using the 

labels {-1, 1}.  Class k is given the positive label while the other classes being 

considered are given the negative label. To train, 2/3 of the 255 samples are used and 

called 𝑿𝑡𝑟𝑎𝑖𝑛 and, 𝒚𝑡𝑟𝑎𝑖𝑛.  The 2/3 training samples are picked by randomly selecting 

2/3 of class k samples and 2/3 of all other remaining samples, ensuring that there are 

enough training and testing samples from class k. The selection process is random 

and guarantees that 2/3 of class k is always selected. The remaining 1/3 samples are 

the test samples and are called 𝑿𝑡𝑒𝑠𝑡 and 𝒚𝑡𝑒𝑠𝑡.  For regression, the labels {-1, 1} create 

a decision boundary at the origin, where positive regression results will correspond 

to the positive class while negative regression results will correspond to the negative 

class. 

 

3.4.1   Methodology 

Using linear least squares (LLS) and ridge regression, we perform supervised 

classification following Algorithm 3.3, and the number of correctly classified tissue 

types are averaged over 300 iterations and reported in Table 3.4, Table 3.5 and Table 

3.6.  For ridge regression, the optimal penalty parameter 𝛾∗ is set by using leave-one-

out cross validation (introduced in Appendix A section A.4.3) on the training set and 

choosing 𝛾 with the minimum mean squared error on the validation set. The weight 

vector is calculated following section 3.3.7.2. 
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Algorithm 3.3 Supervised classification methodology 

 1: Given: 𝑿𝑡𝑟𝑎𝑖𝑛, 𝒚𝑡𝑟𝑎𝑖𝑛, 𝑿𝑡𝑒𝑠𝑡, 𝒚𝑡𝑒𝑠𝑡 
 2: Minimize sum of squares on training data: 𝑿𝑡𝑟𝑎𝑖𝑛, 𝒚𝑡𝑟𝑎𝑖𝑛 
 3: If linear least squares regression:  𝒘∗ = (𝑿𝑡𝑟𝑎𝑖𝑛

𝑇𝑿𝑡𝑟𝑎𝑖𝑛)
−1𝑿𝑡𝑟𝑎𝑖𝑛

𝑇𝒚𝑡𝑟𝑎𝑖𝑛 
 4: Do prediction on test data, 𝑿𝑡𝑒𝑠𝑡, 𝒚𝑡𝑒𝑠𝑡, using 𝒘∗ 
 5:                                  𝒚̂ = 𝑿𝑡𝑒𝑠𝑡𝒘

∗ = (𝑿𝑡𝑒𝑠𝑡
𝑇𝑿𝑡𝑒𝑠𝑡)

−1𝑿𝑡𝑒𝑠𝑡
𝑇𝒚𝑡𝑒𝑠𝑡 

 6:   Report average classification success rate over 300 iterations 
 
* Correct classification if 𝒚̂ > 0 and incorrect classification if 𝒚̂ < 0 
* Success rate is defined as the number of correctly classified tissue samples 
 

 

 

3.4.2 Linear Least Squares Regression Classification Results  

 
 

Covariance (%) Precision (ρ=1) (%) Precision (ρ=3) (%) 

95.91 96.77 97.64 
 
Table 3.3 LLS two-class average classification results for the precision and covariance 
classifiers. The average represents the percentage of correctly classified tissue samples 

for all 11 tissue types.   
 

We present the overall average binary classification results for all tissue 

combinations in Table 3.3 for the covariance and precision models.  From Table 3.3, 

it is evident that the two estimated precisions appear to perform slightly better than 

the sample covariance.  The difference however is minute, and so we can conclude 

that the precisions perform at least as well as the covariance classifier. For a more 

detailed look, Table 3.4, Table 3.5 and Table 3.6 show each binary classification result 

for the covariance and estimated precisions.  
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 1 2 3 4 5 6 7 8 9 10 11 

1  92.98 56.17 94.85 100.00 99.74 100.00 100.00 100.00 100.00 100.00 

2 92.90  94.86 94.91 100.00 99.59 100.00 100.00 100.00 100.00 100.00 

3 55.65 94.28  95.02 100.00 98.92 97.77 100.00 99.98 100.00 100.00 

4 95.10 94.56 95.28  99.10 100.00 86.88 99.96 99.97 99.97 100.00 

5 100.00 100.00 100.00 99.06  100.00 100.00 100.00 100.00 100.00 100.00 

6 99.86 99.87 99.00 100.00 100.00  100.00 100.00 98.52 96.88 98.33 

7 100.00 100.00 97.92 88.06 100.00 99.97  100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 99.99 100.00 100.00 100.00  96.33 100.00 100.00 

9 100.00 100.00 100.00 100.00 100.00 98.89 100.00 96.44  61.62 55.33 

10 100.00 100.00 100.00 100.00 100.00 96.67 100.00 100.00 63.62  56.61 

11 100.00 100.00 100.00 100.00 100.00 98.67 100.00 100.00 54.52 55.00  

            

Table 3.4 LLS two-class classification results for the covariance classifier. Each row 
represents the positive tissue class and each column represents the negative tissue 

class. The results reported are the percentage of correctly classified tissue samples of 
each row tissue type versus each of the other 10 tissue types.     

 
  

           

 1 2 3 4 5 6 7 8 9 10 11 

1  94.22 83.78 91.93 99.29 98.17 98.36 100.00 99.18 98.69 98.64 

2 94.41  98.04 99.71 99.99 99.31 98.79 100.00 99.72 99.55 99.12 

3 83.77 98.26  96.69 99.32 99.79 98.52 99.56 99.82 99.60 99.31 

4 91.99 99.88 97.07  99.77 98.00 96.35 100.00 99.95 99.78 99.84 

5 99.18 100.00 99.45 99.81  99.83 99.63 99.80 100.00 99.46 99.35 

6 97.88 99.18 99.54 98.06 99.88  92.53 96.77 87.41 90.88 87.50 

7 98.52 99.23 98.52 96.81 99.75 94.30  90.83 93.78 91.54 91.08 

8 99.90 99.97 99.71 100.00 99.78 97.37 90.73  88.81 96.13 95.33 

9 99.51 99.50 99.76 99.94 99.98 87.85 94.11 91.30  91.95 91.38 

10 98.64 99.03 99.52 99.78 99.57 89.75 93.67 97.71 93.43  89.89 

11 98.14 99.36 99.05 99.81 99.56 88.38 92.58 96.21 89.95 89.28  

            

Table 3.5 LLS two-class classification results for the precision (ρ=1) classifier. Each 
row represents the positive tissue class and each column represents the negative tissue 
class. The results reported are the percentage of correctly classified tissue samples of 

each row tissue type versus each of the other 10 tissue types.   
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 1 2 3 4 5 6 7 8 9 10 11 

1  88.37 69.53 94.12 100.00 98.90 99.95 100.00 100.00 100.00 100.00 

2 88.00  89.84 97.64 100.00 99.87 99.54 100.00 100.00 100.00 99.79 

3 70.00 89.88  95.25 100.00 98.40 99.85 99.54 99.93 99.95 99.88 

4 93.93 97.83 94.76  99.35 99.52 99.61 99.84 99.94 100.00 99.92 

5 100.00 100.00 100.00 99.27  100.00 100.00 100.00 98.23 99.63 98.76 

6 98.69 99.56 98.06 99.20 100.00  99.13 100.00 97.85 98.96 96.04 

7 99.98 99.67 99.77 99.65 100.00 99.37  99.97 99.78 93.92 94.21 

8 100.00 100.00 99.48 99.86 100.00 100.00 100.00  99.70 98.71 99.63 

9 100.00 100.00 100.00 99.86 98.44 97.81 99.56 99.78  86.24 91.33 

10 100.00 100.00 99.93 99.92 99.65 99.25 91.29 99.67 87.10  91.00 

11 100.00 99.97 99.86 99.95 98.80 97.17 94.42 99.79 88.76 90.94  

 

Table 3.6 LLS two-class classification results for the precision (ρ=3) classifier. Each 
row represents the positive tissue class and each column represents the negative tissue 
class. The results reported are the percentage of correctly classified tissue samples of 

each row tissue type versus each of the other 10 tissue types.   
 

Table 3.4, 3.5 and 3.6 show that the covariance and precisions perform essentially 

equally.  These individual results are consistent with the average performance in 

Table 3.3.  

 

3.4.3   Ridge Regression Classification Results 

We perform ridge regression classification and report the overall average 

performance in Table 3.7.  The results show that the precisions perform slightly 

better than the covariance.   

 

Covariance (%) Precision (ρ=1) (%) Precision (ρ=3) (%) 
93.68 98.52 98.36 

  
Table 3.7 LLS two-class average classification results for the precision and covariance 
classifiers. The average represents the percentage of correctly classified tissue samples 

for all 11 tissue types.   
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 1 2 3 4 5 6 7 8 9 10 11 

1  88.20 53.75 95.17 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2 88.22  94.47 94.44 100.00 99.95 100.00 100.00 100.00 100.00 100.00 

3 53.82 94.68  95.39 100.00 99.88 98.63 100.00 100.00 100.00 100.00 

4 95.17 95.00 95.09  99.45 100.00 88.32 99.91 100.00 99.94 99.94 

5 100.00 100.00 100.00 99.43  99.95 100.00 100.00 100.00 100.00 100.00 

6 100.00 99.90 99.88 100.00 99.95  100.00 100.00 100.00 100.00 100.00 

7 100.00 100.00 98.75 88.68 100.00 100.00  100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 99.91 100.00 100.00 100.00  55.56 62.50 62.50 

9 100.00 100.00 100.00 99.88 100.00 100.00 100.00 55.59  57.14 57.14 

10 100.00 100.00 100.00 99.94 100.00 100.00 100.00 62.50 57.14  49.89 

11 100.00 100.00 100.00 99.84 100.00 100.00 100.00 62.50 57.14 49.89  
 
Table 3.8 Ridge regression two-class classification results for the covariance classifier. 
Each row represents the positive tissue class and each column represents the negative 

tissue class. The results reported are the percentage of correctly classified tissue 
samples of each row tissue type versus each of the other 10 tissue types.   

 

    

 
 
 
     

 
  

 1 2 3 4 5 6 7 8 9 10 11 

1  96.16 73.37 94.90 100.00 99.90 100.00 100.00 100.00 100.00 100.00 

2 96.67  93.75 95.13 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3 74.50 94.25  94.13 100.00 98.21 98.83 100.00 100.00 100.00 100.00 

4 94.77 95.00 93.98  97.98 95.65 95.13 96.58 96.50 96.17 96.24 

5 100.00 100.00 100.00 98.04  100.00 100.00 100.00 100.00 100.00 100.00 

6 99.93 100.00 98.15 95.28 100.00  100.00 100.00 100.00 100.00 100.00 

7 99.98 100.00 98.92 95.06 100.00 100.00  100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 96.22 100.00 100.00 100.00  100.00 100.00 100.00 

9 100.00 100.00 100.00 96.26 100.00 100.00 100.00 100.00  100.00 100.00 

10 100.00 100.00 100.00 95.76 100.00 100.00 100.00 100.00 100.00  100.00 

11 100.00 100.00 100.00 96.60 100.00 100.00 100.00 100.00 100.00 100.00  
 

Table 3.9 Ridge regression two-class classification results for the precision (ρ=1) 
classifier. Each row represents the positive tissue class and each column represents the 

negative tissue class. The results reported are the percentage of correctly classified 
tissue samples of each row tissue type versus each of the other 10 tissue types.   
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 1 2 3 4 5 6 7 8 9 10 11 

1  91.02 69.75 94.85 100.00 95.48 100.00 100.00 100.00 100.00 100.00 

2 91.53  90.60 94.99 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3 69.18 90.61  94.43 100.00 96.29 99.44 100.00 100.00 100.00 100.00 

4 94.78 94.50 94.36  99.01 96.06 97.96 98.71 99.64 99.51 99.89 

5 100.00 100.00 100.00 99.03  100.00 100.00 98.40 98.09 98.00 98.28 

6 95.38 100.00 95.60 96.88 100.00  100.00 100.00 100.00 100.00 100.00 

7 100.00 100.00 99.40 97.64 100.00 100.00  100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 98.33 98.53 100.00 100.00  100.00 100.00 100.00 

9 100.00 100.00 100.00 99.30 98.16 100.00 100.00 100.00  99.95 100.00 

10 100.00 100.00 100.00 99.56 98.13 100.00 100.00 100.00 99.71  100.00 

11 100.00 100.00 100.00 99.86 98.28 100.00 100.00 100.00 100.00 100.00  

 
Table 3.10 Ridge regression two-class classification results for the precision (ρ=3) 

classifier. Each row represents the positive tissue class and each column represents the 
negative tissue class. The results reported are the percentage of correctly classified 

tissue samples of each row tissue type versus each of the other 10 tissue types.   
 
 

 
Individual binary classification performance shown in Table 3.8, Table 3.9 and Table 

3.10 show that the precision classifiers have more cases where they achieve perfect 

classification for particular binary tissue combinations compared to the covariance.  

For the cases where the covariance matrix performs worse than the precision 

classifiers, its performance appears to be significantly worse.   

 
 
3.5  One-versus-all Classification to Identify Tissue Samples 

 
For the one-versus-all classification, we follow the same methodology presented in 

section 3.4 of using the sub-networks in each of the different graphical models to 

calculate average expression levels across all sample to be used as features.  

 

 



   

73 
 

3.5.1   Methodology 

We follow similar methodology as the binary classification except that the training 

and test sets are divided differently. For each class k, training is done on class k versus 

all the remaining 10 classes, using the labels {-1, 1}.  Class k is given the positive label 

while all other classes are given the negative label. To train, 2/3 of the 255 samples 

are used and called 𝑿𝑡𝑟𝑎𝑖𝑛  and , 𝒚𝑡𝑟𝑎𝑖𝑛 .  The 2/3 training samples are picked by 

randomly selecting 2/3 of class k samples and 2/3 of all other remaining samples, 

ensuring that there are enough training and testing samples from class k. The 

selection process is random and guarantees that 2/3 of class k is always selected. The 

remaining 1/3 samples are the test samples and are called 𝑿𝑡𝑒𝑠𝑡  and 𝒚𝑡𝑒𝑠𝑡 . The 

number of correctly classified tissue types are averaged over 300 trials and the 

results are reported in Table 3.11, Table 3.12, Table 3.13, and Table 3.14.  

 

3.5.2   Linear Least Squares Regression Classification Results 

 

For the one-versus-all classification problem, the average results for linear least 

squares classification shows that the precision classifiers do not perform better than 

the covariance classifier, as shown in Table 3.11. We look at individual tissue 

classification results and test to see if the mean classification performance of each 

precision classifier is different from the mean performance of the covariance 

classifier using hypothesis tests (t-tests) which are presented in Appendix E table 

E.19 and Table 3.12. Results are statistically significant at the 1% level when ‘**’ is 

present and significant at the 5% level when ‘*’ is present.  For all hypothesis tests in 

this thesis, we would use the same ‘**’ and ‘*’ to show statistical significance levels.  
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Covariance (%) Precision (ρ=1) (%) Precision (ρ=3) (%) 

64.37 61.59 62.10 
 

Table 3.11 LLS one-versus-all average classification results for the precision and 
covariance classifiers. The average represents the percentage of correctly classified 

tissue samples for all 11 tissue types.   
 

Class Tissue Covariance Precision (ρ=1) Precision (ρ=3) 

  Correct(%) std  Correct(%) std  Correct(%) std  

1 D4_MDDC 56.68 4.74 56.07 2.49 59.25 2.71 

2 DC 58.35 4.19 60.78 3.11 58.93 2.57 

3 MDDC 66.83 2.82 63.28 2.89** 61.19 2.48** 

4 MDM 89.69 1.44 82.16 2.44** 83.73 2.16** 

5 BLOOD 84.94 2.40 89.81 2.46 88.13 2.26 

6 M3DC 48.65 5.74 55.63 2.78 55.99 2.71 

7 AM 55.24 6.35 57.42 2.84 57.49 2.44 

8 HC 69.20 3.50 60.35 3.12** 64.58 2.81* 

9 HL 62.56 4.50 54.57 2.99* 54.21 3.01* 

10 2T 58.02 4.84 48.20 2.89* 50.07 2.82* 

11 HOS 57.91 4.72 49.20 2.89* 49.50 3.14* 
 

Table 3.12 LLS one-versus-all classification results for the precision and covariance 
classifiers. Each row represents the positive tissue class.  The results reported are the 

percentage of correctly classified tissue samples of each row tissue type versus all 
other 10 tissue types.   

 
 

From Table 3.12, it is evident that the performance of each classifier is a lot worse 

than the binary classification results which implies that it appears to be more difficult 

for each classifier to distinguish a particular tissue from all the other tissue samples 

considered at the same time, rather than one tissue distinguished from another tissue. 

Also, the results for the tissue classification for the precisions are statistically 

significant for 6 out of the 11 tissue types, and for each of these scenarios, the 

covariance always performs better than the precision classifiers.  We can conclude 
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that the covariance is a better classifier than the precision classifiers in the one-

versus-all cases when linear least square regression is used. 

 

3.5.3   Ridge Regression Classification Results  

The ridge regression average classification results in Table 3.13 show improved 

performance from the linear least squares classification results.  This is as expected, 

and consistent with the results from the binary classification problem in section 3.4.  

This time around, the precisions appear to perform slightly better on average than 

the covariance classifier, and we test to see if this is true by performing hypothesis 

tests (t-tests) and present results in in Appendix E table E.20 and Table 3.14.  

 

 

Covariance (%) Precision (ρ=1) (%) Precision (ρ=3) (%) 
65.25 67.39 68.34 

  
Table 3.13 Ridge regression one-versus-all average classification results for the 
precision and covariance classifiers. The average represents the percentage of 

correctly classified tissue samples for all 11 tissue types.   
 
 

Like the linear least squares classifier, individual tissue classification performance is 

a lot worse than the binary classification performance, once again implying that it 

appears to be more difficult for each classifier to distinguish a particular tissue from 

all the other tissue samples considered at the same time, rather than one tissue 

distinguished from another tissue. 

Results in Table 3.14 and Appendix E table E.20 show that 3 out of the 11 tissue for 

the precision (ρ=1) and for 2 out of the 11 tissue types for the precision (ρ=3) 
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classification problems are statistically significant, and for each of these scenarios, the 

covariance always performs better than the precision classifiers. For the other 8 and 

9 tissue classification tasks for each precision respectively, we can say that the 

covariance and precision classifiers perform essentially the same.  From these results, 

we can conclude that the covariance is a better classifier than the precision classifiers 

in the one-versus-all cases when ridge regression is used. 

 

 

Class Tissue Covariance Precision (ρ=1) Precision (ρ=3) 

  Correct(%) std  Correct(%) std  Correct(%) std  

1 D4_MDDC 66.45 2.81 56.69 3.57** 62.70 2.80** 

2 DC 57.47 4.02 61.82 2.69 61.87 2.74 

3 MDDC 66.72 2.75 64.38 2.86* 66.29 2.36 

4 MDM 89.83 1.54 84.01 2.01** 85.22 2.13** 

5 BLOOD 84.70 2.20 94.98 1.92 89.83 2.24 

6 M3DC 54.11 5.95 57.76 2.78 54.43 2.64 

7 AM 49.19 5.76 59.58 3.51 55.59 2.60 

8 HC 68.55 3.29 70.75 3.08 71.42 3.13 

9 HL 63.37 4.10 62.92 4.58 68.23 4.42 

10 2T 59.22 5.16 61.30 4.96 70.11 5.10 

11 HOS 58.13 5.07 67.12 5.24 66.04 6.40 
 

Table 3.14 Ridge regression one-versus-all classification results for the precision and 
covariance classifiers. Each row represents the positive tissue class.  The results 

reported are the percentage of correctly classified tissue samples of each row tissue 
type versus all other 10 tissue types.   

 
 
 

3.6 Using Random Genes to Identify Tissue Samples 

 
In an attempt to see if the estimated covariance and precisions perform gene selection 

in such a way that they are biologically meaningful, we replace the genes in the k-
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nearest neighbour graphs in section 3.3.4 with randomly selected genes, while 

maintaining the topology of the graphs. The purpose of this is to see if by performing 

the same classification experiments as in section 3.4 and 3.5, we are able to predict 

tissue types more or less accurately. If gene selection is done in a biologically 

meaningful way, we will expect that classification performance will decrease when 

the optimally chosen genes are replaced with randomly selected genes for both the 

covariance and precision classifiers. Section 3.4 and section 3.5 show that the ridge 

regression classifiers perform better than the linear least squares regression 

classifiers, therefore, for this experiment, we only use ridge regression for 

classification. Results from the one-versus-all classification as well as the binary 

classification are presented in the subsequent tables.  We compare classification 

results between the classifiers with randomly replaced genes, and the original 

classifiers from section 3.4 and section 3.5.  

 

 
3.6.1 Two-class Classification to Identify Tissue Samples   

Following section 3.4, we perform binary classification, where we try and distinguish 

a particular tissue sample from each of the other 10 tissue samples.   

 

3.6.1.1   Ridge Regression Classification Results   

Table 3.15 presents the average results of the binary classification problem using 

ridge regression, when we have random gene replacement.  Table 3.16 shows the old 

classification results using ridge regression without the random gene replacement. 
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We expect the results with the random gene effect to be worse, compared to the past 

results in Table 3.16.   

 

Covariance (%) Precision (ρ=1) (%) Precision (ρ=3) (%) 
86.89 98.23 97.57 

 
Table 3.15 Ridge regression two-class average classification results for the precision 

and covariance classifiers. The average represents the percentage of correctly 
classified tissue samples for all 11 tissue types when random genes are used to replace 

the genes selected from the precision and covariance models.   
 
 
 

Covariance (%) Precision (ρ=1) (%) Precision (ρ=3) (%) 
93.68 98.52 98.36 

 
Table 3.16 Ridge regression two-class average classification results for the precision 

and covariance classifiers. The average represents the percentage of correctly 
classified tissue samples for all 11 tissue types using the genes selected from the 

precision and covariance models.   
 

By comparing Table 3.15 and Table 3.16, it appears that the classifiers with the 

random gene replacement perform worse only for the covariance classifier. 

Individual binary classification results are presented in Appendix C. This implies that 

the gene selection process for the covariance classifier appears to be biologically 

meaningful, however, we do not have enough evidence to make the same claim for 

the precision classifiers.  More detailed individual binary classification results can be 

found in Appendix C. 
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3.6.2 One-versus-all Classification to Identify Tissue Samples  

Following section 3.5, we perform one-versus-all classification, where we try and 

distinguish a particular tissue sample from all the other 10 tissue samples.   

 

3.6.2.1   Ridge Regression Classification Results 

Table 3.17 presents the average results of the one-versus-all classification problem 

using ridge regression, with the random gene replacement.  Table 3.18 shows the old 

classification results using ridge regression. We expect the results with the random 

gene replacement to be worse when compared to the past results in Table 3.18. 

 

Covariance (%) Precision (ρ=1) (%) Precision (ρ=3) (%) 

58.38 67.34 67.82 
 

Table 3.17 Ridge regression one-versus-all average classification results for the 
precision and covariance classifiers. The average represents the percentage of 

correctly classified tissue samples for all 11 tissue types when random genes are used 
to replace the genes selected from the precision and covariance models.   

 
 
 

 

Covariance (%) Precision (ρ=1) (%) Precision (ρ=3) (%) 

65.25 67.39 68.34 
 

Table 3.18 Ridge regression one-versus-all average classification results for the 
precision and covariance classifiers. The average represents the percentage of 

correctly classified tissue samples for all 11 tissue types using the genes selected from 
the precision and covariance models.   

 
 

By comparing Table 3.17 and Table 3.18, we see the same performance pattern as the 

binary classification problem and it is evident that once again that only the covariance 
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classifier with the random gene replacement appears to perform worse than the old 

covariance classifier without random gene replacements. These results support our 

earlier conclusion that the covariance appears to be the only model with biologically 

meaningful gene selection in the k-nearest neighbour graphs. We perform hypothesis 

tests (t-tests) to verify this and present the results in in Appendix E table E.21, Table 

E.22, Table E.23 and report individual tissue classification results in Table 3.19, Table 

3.20 and Table 3.21.  

From Table 3.19, the covariance performance with random gene replacement 

performs statistically significantly worse in 6 out of the 11 tissue classification 

problems. For the precision classification performance in Table 3.20 and Table 3.21, 

we only see statistically significantly better performance for the precision (ρ=3) 

classifier and for only 1 out 11 tissue classification problems. From these results, we 

can conclude that the covariance appears to be the only model performing gene 

selection in a biologically meaningful way.  
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Class Tissue 
Covariance without 

Random Effect 
Covariance with 
Random Effect 

  % correct std dev % correct std dev 

1 D4_MDDC 66.45 2.81 53.88 2.59** 

2 DC 57.47 4.02 53.93    3.17* 

3 MDDC 66.72 2.75 60.36 2.45** 

4 MDM 89.83 1.54 66.49 2.37** 

5 BLOOD 84.70 2.20 72.88 2.40** 

6 M3DC 54.11 5.95 53.89    2.67 

7 AM 49.19 5.76 50.75    2.69 

8 HC 68.55 3.29 49.90 2.55** 

9 HL 63.37 4.10 63.20    2.82 

10 2T 59.22 5.16 58.75    2.92 

11 HOS 58.13 5.07 58.20    2.83 
 

Table 3.19 Ridge regression one-versus-all classification results for the covariance 
classifier with and without random gene replacement. Each row represents the 

positive tissue class.  The results reported are the percentage of correctly classified 
tissue samples of each row tissue type versus all other 10 tissue types.   

 
 
 

Class Tissue 
Precision (ρ=1) without 

Random Effect 
Precision (ρ=1) with 

Random Effect 

  % correct std dev % correct std dev 

1 D4_MDDC 56.69 3.57 56.72 2.96 

2 DC 61.82 2.69 62.09 3.09 

3 MDDC 64.38 2.86 64.42 2.61 

4 MDM 84.01 2.01 84.13 1.98 

5 BLOOD 94.98 1.92 94.24 2.10 

6 M3DC 57.76 2.78 58.85 3.09 

7 AM 59.58 3.51 58.83 3.17 

8 HC 70.75 3.08 69.66 3.57 

9 HL 62.92 4.58 62.51 4.33 

10 2T 61.30 4.96 62.39 4.31 

11 HOS 67.12 5.24 66.93 3.93 
 

Table 3.20 Ridge regression one-versus-all classification results for the precision (ρ=1) 
classifier with and without random gene replacement. Each row represents the 

positive tissue class.  The results reported are the percentage of correctly classified 
tissue samples of each row tissue type versus all other 10 tissue types.   
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Class Tissue 
Precision (ρ=3) without 

Random Effect 
Precision (ρ=3) with 

Random Effect 

  % correct std dev % correct std dev 

1 D4_MDDC 62.70 2.80 62.75    2.78 

2 DC 61.87 2.74 62.97    2.73 

3 MDDC 66.29 2.36 67.00 2.46** 

4 MDM 85.22 2.13 84.12 2.07** 

5 BLOOD 89.83 2.24 88.26    2.68 

6 M3DC 54.43 2.64 55.01    2.64 

7 AM 55.59 2.60 58.49    3.01 

8 HC 71.42 3.13 69.73 3.13** 

9 HL 68.23 4.42 64.24    4.71* 

10 2T 70.11 5.10 68.26    4.88* 

11 HOS 66.04 6.40 65.23    4.90* 
 
Table 3.21 Ridge regression one-versus-all classification results for the precision (ρ=3) 

classifier with and without random gene replacement. Each row represents the 
positive tissue class.  The results reported are the percentage of correctly classified 

tissue samples of each row tissue type versus all other 10 tissue types.   
 

 
 

3.7 Summary 
 
In this chapter, we applied Graphical Lasso to a gene microarray dataset in order to 

classify tissue samples.  Graphical Lasso was used to generate graphical Gaussian 

models, which we used to reduce the dimensionality of the problem by selecting 

features from the graphs which corresponded to the average expression levels of each 

sub-network in a particular graphical model.  We performed binary as well as one-

versus-all classification using both linear least squares regression and ridge 

regression.  

In general, the binary classification results showed improvement in classifying tissue 

samples correctly compared to the one-versus-all classification for both the 

covariance and precision classifiers.  Biologically, samples from the same tissue tend 
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to have similar expression levels, so it makes sense that the binary classification 

would lead to a reduction in noise, and hence, better performance. For the binary 

classification, the precision classifiers performed at least as good as the covariance 

classifier when linear least squares regression was used while the precision 

classifiers performed slightly better than the covariance classifier when ridge 

regression was used. For the one-versus-all classification the covariance always 

performed better than the precision classifiers.  

When random genes were used to replace the optimally selected genes in the k-

nearest neighbour graphs and used to perform the same classification tasks, on 

average, for the covariance, these new classifiers performed significantly worse, 

while for the precisions, the performance was essentially the same.  These results 

showed that the covariance appeared to be the only model performing gene selection 

in a biologically meaningful way. For the precision classifiers, we can conclude that 

given any number of random genes and gene expression levels, this information is 

enough to correctly classify tissue types of randomly picked samples.   

In conclusion, we expected Graphical Lasso to produce k-nearest neighbour graphs 

that were biologically meaningful, however this was not the case. Classification 

performance showed that only the covariance appeared to produce k-nearest 

neighbour graphs that were biologically meaningful.  
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Part II:   Graphical Lasso Application to 

Finance 
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Chapter 4  
 
 
 
Graphical Lasso and Portfolio Optimization  

This chapter provides the background knowledge on Markowitz mean-variance 

portfolio optimization for this thesis.  It starts with a formal definition of the 

Markowitz mean-variance (MV) model.  It illustrates the estimation risk of the MV 

model.  Additionally, we discuss several current methods used to address the 

estimation risk of the covariance of asset returns.  Finally, the use of Graphical Lasso 

for covariance estimation in the mean-variance framework is illustrated using 

artificially generated stock market data. 

 
 
4.1 Markowitz Mean-Variance Model 
 
The traditional objective of active portfolio management is to consistently deliver 

excess return against a benchmark index with a given amount of risk.  The benchmark 

in question could be one of the traditional market indices, such as the Standard & 

Poor’s (S&P) 500 Index and the Russell 2000 Index, or a cash return such as Treasury 

bill rate [48].  To be successful, one must rely on four key components in the 

investment process.  First is the alpha model, which predicts the relative returns of 

stocks within a specified investment.  The second component is a risk model that 

estimates the risks of individual stocks and the return correlations among different 

stocks.  The third piece is a portfolio construction methodology to combine both 
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return forecasts and risk forecasts to form an optimal portfolio. Lastly, one must have 

the portfolio implementation process to execute all trades [48].  Return and risk are 

two inherent characteristics of any investment.  The return of an uncertain 

investment is best described by a probability distribution.  For stocks, the normal 

(Gaussian) distribution or lognormal distribution are normally used to model asset 

returns.  

The classical Markowitz portfolio framework [2], defines portfolio risk as the variance 

of the portfolio return, and seeks a portfolio weight vector 𝒘,  with the highest 

expected return.  Similarly, for a given level of expected return, 𝜇𝑃, a rational investor 

would choose the portfolio with the lowest risk.  In other words, given a target value 

𝜇𝑃 for the mean return of a portfolio, Markowitz characterizes an efficient portfolio 

(MV efficient), if there is no portfolio having the same expected return with a lower 

risk. 

 

4.2 Efficient Frontier 
 

The efficient frontier is the curve that shows all efficient portfolios in a risk-return 

framework. An efficient frontier is defined as the portfolio that maximizes the 

expected return for a given amount of risk (variance of the portfolio return), or the 

portfolio that minimizes the risk subject to a given expected return. An investor will 

always invest in an efficient portfolio. If he desires a certain a certain amount of risk, 

the most logical thing to do would be to aim for the highest possible expected return.  
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If on the other hand, he wants a specific expected return, he would want to achieve 

this with the minimum possible amount of risk.   

 

We make the following definitions: 

N= number of assets. 

𝐶0= capital to be invested. 

𝐶𝑒𝑛𝑑= capital at the end of the investment period. 

𝑅𝑃= total portfolio return. 

𝜇𝑃= expected return of the portfolio. 

𝜎𝑃
2= variance of the portfolio return. 

𝑟𝑖= rate of return on asset 𝑖. 

𝜇𝑖= expected rate of return on asset 𝑖. 

𝜎𝑖𝑗= covariance between the returns of asset 𝑖 and 𝑗.   

𝜎𝑖𝑖= variance on the return of asset 𝑖. 

𝚺 = [

𝜎11 ⋯ 𝜎1𝑁
⋮ ⋱ ⋮
𝜎𝑁1 ⋯ 𝜎𝑁𝑁

] = matrix of covariances of 𝑟. 

 𝑤𝑖= amount invested in asset 𝑖. 

 

4.2.1 Mathematical Notations 

Suppose an investor desires to invest in a portfolio that contains 𝑁 assets.  Let 𝜇 𝜖 𝑅𝑁 

be the mean vector with 𝜇𝑖 as the mean return of asset 𝑖, 1 ≤ 𝑖 ≤ 𝑁, and 𝑤 𝜖 𝑅𝑁 be the 

decision vector with 𝑤𝑖 as the weight of holding in the 𝑖𝑡ℎ asset.   
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The portfolio expected return 𝜇𝑃 is the weighted average of individual asset returns 

given by 

  
𝜇𝑃 = ∑ 𝜇𝑖𝑤𝑖 = 𝝁

𝑇𝒘𝑁
𝑖=1                                                             (4.2) 

  

The variance and covariance of individual assets are characterized by a 𝑁 -by-𝑁 

positive semi-definite matrix 𝚺, such that 

  

  𝚺 = [

𝜎11 ⋯ 𝜎1𝑁
⋮ ⋱ ⋮
𝜎𝑁1 ⋯ 𝜎𝑁𝑁

] ,                                                          (4.3) 

   

where 𝜎𝑖𝑖 is the variance on the return of asset 𝑖, and 𝜎𝑖𝑗 is the covariance between 

the returns of asset 𝑖 and 𝑗.   

 

Therefore, the variance of portfolio return, 𝜎𝑃
2 , can be calculated by 

  

𝜎𝑃
2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗 = 𝒘

𝑇𝚺𝒘𝑁
𝑗=1

𝑁
𝑖=1                                       (4.4) 

  
To calculate the efficient frontier we have to minimize the risk given some expected 

return.  The objective function is the function that has to be minimized, which is the 

variance of the portfolio return given by   

  

𝑣𝑎𝑟(𝐶𝑒𝑛𝑑) = 𝑣𝑎𝑟(𝐶0 + 𝑅𝑃) = 𝑣𝑎𝑟(𝑅𝑃) = 𝑣𝑎𝑟(𝒓
𝑇𝒘) = 𝒘𝑇𝚺𝒘                 (4.5) 

  

where 𝐶𝑒𝑛𝑑 is the capital at the end of the investment period, 𝐶0 is the capital that can 

be invested, 𝑅𝑃 is the total portfolio return, 𝒓𝑇 is the vector of the rate of return on all 

assets, 𝒘 is the vector of portfolio weights and 𝚺 is the covariance of asset returns. 
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There are two constraints that must hold for minimizing this objective function. First, 

the expected return must be fixed, because we are minimizing risk given this return. 

This fixed portfolio mean is defined by 𝜇𝑃. The second constraint is that we can only 

invest the capital we have at this moment, so the amounts we invest in each single 

asset must add up to this amount 𝐶0. This gives the following two constraints: 

 

                                   𝝁𝑇𝒘 = 𝜇𝑃        and         𝟏̅𝑇𝒘 = 𝐶0 

where 𝟏̅ is an N-dimensional vector of ones.  

 

We are looking for the investment with minimum variance, so we have to solve the 

following problem [49]: 

 min 
𝒘
   𝒘𝑇𝚺𝒘                                                                    (4.6) 

                                                  s.t.      𝑨𝑇𝒘 = 𝐵 

with  

𝑨 = (𝝁     𝟏̅)     and     𝑩 = (𝜇𝑃
𝐶0
) 

We use Lagrange method to solve this system. We get the following conditions, where 

𝜆0 is the Lagrange multiplier: 

{
2𝚺𝒘 + 𝑨𝜆0 = 0

𝑨𝑇𝒘 = 𝑩
                 with                𝜆0 = (

𝜆1
𝜆2
)                       (4.7) 

 

Solving the first equation (4.7) for 𝒘  gives, with a redefinition of the vector 𝜆 =

−1 2𝜆0⁄  

𝒘 = 𝚺−1𝑨𝜆 
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So the second equation of (4.7) becomes  

𝑨𝑇𝚺−1𝑨𝜆 = 𝑩         ⇒        𝜆 = (𝑨𝑇𝚺−1𝑨)−1𝑩 = 𝑯−1𝑩  

where 𝑯 = (𝑨𝑇𝚺−1𝑨) and 𝑯𝑇 = (𝑨𝑇𝚺−1𝑨)𝑇 = 𝑨𝑇(𝚺−1)𝑇𝑨 = 𝑯, so 𝑯 is a symmetric 

(2 × 2)-matrix. Filling in these expressions in the variance formula, we get  

  

𝑣𝑎𝑟(𝑅𝑃) =   𝒘
𝑇𝚺𝒘 =   𝒘𝑇𝚺𝚺−1𝑨𝜆 =   𝒘𝑇𝑨𝜆 = (𝑨𝑇)𝑇𝑯−1𝑩 = 𝑩𝑇𝑯−1𝑩 

We have seen that 𝑯 is a symmetric (2 × 2)-matrix, so suppose that  

𝑯 = (
𝑎 𝑐
𝑏 𝑑

)    ⇒       𝑯−1 =
1

𝑎𝑐 − 𝑏2
(
𝑐 −𝑏
−𝑏 𝑎

) 

Define 𝑑 = det(𝑯) = 𝑎𝑐 − 𝑏2.  Because 𝑯 = (𝑨𝑇𝚺−1𝑨) it is easy to see that: 

𝑎 = 𝝁𝑇𝚺−1𝝁, 

𝑏 = 𝝁𝑇𝚺−1𝟏̅ = 𝟏̅𝚺−1𝝁, 

𝑐 = 𝟏̅Σ−1𝟏̅, 

𝑑 = 𝑎𝑐 − 𝑏2. 

 

We will show that the parameters 𝑎, 𝑐 and 𝑑 are positive: Because we have assumed 

that the covariance matrix 𝚺  is positive definite, the inverse matrix 𝚺−1  is also 

positive definite [49]. This means that 𝒙𝑇𝚺−1𝒙 > 0 for all nonzero (𝑁 × 1)-vectors 𝒙, 

so it is clear that  

𝑎 > 0,               𝑐 > 0 

But also (𝑏𝝁 − 𝑎𝟏̅)𝑇𝚺−1(𝑏𝝁 − 𝑎𝟏̅) = 𝑏𝑏𝑎 − 𝑎𝑏𝑏 − 𝑎𝑏𝑏 + 𝑎𝑎𝑐 = 𝑎(𝑎𝑐 − 𝑏2) = 𝑎𝑑 >

0, and because 𝑎 > 0 we know that 

𝑑 > 0 

With the definition of H our expression for the variance becomes  
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𝑣𝑎𝑟(𝑅𝑃) =
1

𝑑
(𝜇𝑃 𝐶0) (

𝑐 −𝑏
−𝑏 𝑎

) (
𝜇𝑃
𝐶0
) 

=
1

𝑑
(𝑐𝜇𝑃

2 − 2𝑏𝐶0𝜇𝑃 + 𝑎𝐶0
2) 

 

This gives the expression for the efficient frontier in a risk-return framework [49]. 

Note that the upper half of the efficient frontier in Figure 4.1 is the efficient set, 

because portfolios at the lower half can be chosen on the upper half so more return is 

obtained with the same level of risk. The formula for the efficient frontier is given by 

[49]. 

 

 

 

 

 

 

 

                                                                    
Figure 4.1 The efficient frontier 

 

4.3 Linear Constraints 

In real investment practice, in order to capture real world restrictions on 

investments, there are several constraints that need to be considered [48].  One may 
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want to ensure the portfolio turnover is at a certain specified level.  Another 

constraint is the holding constraint for stocks, which has several variations.  For 

example, one may require that any individual stock holding in a portfolio be no more 

than a certain percentage of the portfolio.  In terms of active weights, one may require 

that any individual active weight be less than a certain percentage.  These constraints 

are aimed at controlling the specific risk of individual holdings and limiting the 

damage that the poor performance of any single stock can inflict on the total portfolio 

[48].  There may need to be other constraints such as transaction costs and trading 

size limits on certain assets.   

Markowitz optimization typically gives both positive and negative portfolio weights 

and, especially for large portfolios, it usually gives large negative weights for a certain 

number of assets [48]. A negative weight corresponds to a short selling position 

(selling an asset without owning it) and it is sometimes difficult to implement in 

practice or forbidden. For this reason it is common practice to impose constraints to 

the portfolio weights in the optimization procedure. When one adds constraints on 

the range of variation of the 𝑤𝑖𝑠 , the optimization problem cannot be solved 

analytically, and quadratic programming must be used. Quadratic programming 

algorithms are implemented in most numerical programs, such as Matlab or R [50]. 

In the following experiments, we will consider the portfolio optimization problem 

both with and without the no short selling constraint. The second constraint we 

consider is ensuring that all money available for the investment is allocated [48].  

Both constraints are mathematically defined as 
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Short sales restriction: 

𝑤𝑖 ≥ 0     ∀ 𝑖 

 

Using all available money in investment: 

 

∑𝑤𝑖 = 1

𝑁

𝑖=1

 

 

4.4 Global Minimum-Variance Portfolio Optimization 

It has been discussed in chapter 1 that expected stock returns are hard to estimate, 

and lead to estimation errors that result in suboptimal portfolio performance.  Several 

papers [57,59] suggest avoiding the estimation of expected returns and instead, 

assume that all stocks have equal expected returns.  Under this assumption, all stock 

portfolios differ only with respect to their risk.  Therefore, the only efficient stock 

portfolio is the one with the smallest risk i.e. the global minimum variance portfolio. 

The composition of the global minimum variance portfolio (GMVP) depends only on 

the covariance matrix of stock returns.  Since the covariance matrix can be estimated 

much more precisely than the expected returns, the estimation risk of the investor is 

expected to be reduced.  The global minimum variance portfolio is the stock portfolio 

with the lowest return variance for a given covariance matrix 𝚺.   

Suppose an investor desires to invest in a portfolio with the least amount of risk.  He 

doesn’t care about his expected return, he only wants to invest all his money with the 

lowest possible amount of risk.  Because he will always invest in an efficient portfolio, 
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he will choose the portfolio on the efficient frontier with minimum standard 

deviation. At this point, also the variance is minimal.  That is why this portfolio called 

the global minimum variance portfolio. The global minimum variance portfolio can 

be calculated by minimizing the variance subject to the necessary constraint that an 

investor can only invest the amount of capital he has, also known as the budget 

constraint.  The minimization is [49] 

 

 min 
𝑤
   𝒘𝑇𝚺𝒘                                                                    (4.8) 

                                                  s.t.      𝟏̅𝑇𝒘 = 𝐶0 

Using Lagrange to solve this set, we get 

{
2𝚺𝒘 + 𝟏̅𝜆0 = 0

𝟏̅𝑇𝒘 = 𝐶0
                 with                𝜆0 a constant                     (4.9) 

 

Solving the first equation (4.9) for 𝒘 gives, with a new constant 𝜆 = −1 2𝜆0⁄  

𝒘 = 𝚺−1𝟏̅𝜆 

 

Using this expression for 𝑤 in the second equation of (4.9) gives 

 

𝟏̅𝑇𝚺−1𝟏̅𝜆 = 𝐶0         ⇒        𝜆 =
𝐶0

𝟏̅𝑇𝚺−1𝟏̅
=
𝐶0
𝑐

 

where 𝑐 = 𝟏̅𝑇𝚺−1𝟏̅  is defined as the element ℎ22  in the matrix H in the previous 

section. Filling in this expression for 𝜆 in the above expression for 𝑤 gives  

 

𝒘𝐺𝑀𝑉𝑃 = 𝚺
−1𝟏̅  

𝐶0

𝑐
                                                                (4.10) 
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(4.10) is the portfolio allocation when an investor desires minimum risk. Clearly, the 

application of the GMVP does not require the estimation of the problematic mean 

return and therefore it is less sensitive to estimation risk than the traditional mean 

variance portfolio by Markowitz.  The GMVP is appealing since its weights are merely 

determined by the inverse covariance matrix and not the means.  Given that the 

estimation errors in the means are typically large [54], the GMVP is an attractive 

alternative to the Markowitz mean-variance portfolio.  It is important to note that the 

choice of using the GMVP is not a limiting one, as this portfolio is characterized by an 

out-of-sample Sharpe ratio (the ratio between the portfolio return and it standard 

deviation, a key portfolio performance measure) which is as good as that of other 

efficient portfolios [55,56,57].   

 
 
4.5 Limitations of the Markowitz Approach 

The Markowitz model presents several reasons for its impracticality.  The first is the 

sheer number of necessary input parameters.  We need an estimate of the expected 

return and the risk of each asset, plus estimates of the correlation between each pair 

of securities.  This is a total of 2𝑁 + 𝑁 × (𝑁 − 1)/2 values.  All of these values cannot 

be known exactly and they change over time. [48].  

The parameters of the MV model are the asset mean returns and the covariance 

matrix of returns.  The true values of these parameters are unknown in practice and 

investors traditionally estimate them using historical data.  Generally, a sample of 𝑇 

historical returns on risky assets, i.e., a set of observations 𝐽𝑇 = {𝑅1, … , 𝑅𝑇}  is 
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available for estimation.  The traditional practice employs the Maximum Likelihood 

(ML) estimators under the assumption that T > N in order to ensure the non-

singularity of the sample covariance matrix [58]: 

 

𝜇̂𝑃 =
1

𝑇
∑ 𝑅𝑇
𝑇
𝑡=1  ,                                                                    (4.11) 

 

𝜮̂ =
1

𝑇
∑ (𝑅𝑇 − 𝜇̂)(𝑅𝑇 − 𝜇̂ )

𝑇𝑇
𝑡=1  ,                                      (4.12) 

 

Due to the estimation error introduced in the estimation process, the estimated 

parameters can have large errors. Therefore, the resulting portfolio weights fluctuate 

substantially and out-of-sample performance of these portfolios can be quite poor 

[58].   

 

4.6 Synthetic Data Experiment 

As pointed out in chapter 2, the Graphical Lasso is a method of sparse inverse 

covariance estimation, which offers the same benefits that Lasso does for linear 

regression.  This variable reduction capability is particular important in portfolio 

optimization, where investors prefer to invest in a smaller basket of stocks. The 

present work in this chapter deals with parameter uncertainty by applying the 

Graphical Lasso methodology for the estimation of the inverse covariance matrix that 

aims to improve portfolio performance.  

In order to evaluate the proposed sparse precision approach, we apply Graphical 

Lasso to artificially created stock financial daily return time series.  In the 

experiments, we estimate covariance matrices of stock returns and use the 
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covariance estimates for portfolio optimization.  The realized risks, empirical risks, 

realized likelihoods and empirical likelihoods are compared for the different 

covariance estimates and would be defined in section 4.6.4.   

 

4.6.1 Generating Synthetic Data 

To simulate synthetic data, we follow the properties of the dataset used in [50] and 

similarly, chapter 5, that consists of the daily returns of N = 90 highly capitalized 

stocks traded at NYSE and included in the NYSE US 100 Index. For these stocks, the 

closing prices are available in the eleven year period from 1 January 1997 to 31 

December 2007, which is equivalent to 2761 trading days. 

We generate the artificial stock data from a true inverse covariance solution from the 

NYSE stock data.  This inverse covariance 𝚺−1∗  is generated by running Graphical 

Lasso on 2 years’ worth of randomly selected stock returns at a regularization of 𝜌 =

9.9 × 10−5, producing a Graphical Lasso inverse covariance matrix solution with a 

sparsity level of 75.10% (24.90% density).  Details of the stock data can be found in 

chapter 5 and [50]. Following the pattern of the stock market data used in chapter 5 

which has stock returns of𝑁 = 90  NYSE stocks over 𝑝 = 2761  trading days, we 

simulate independent multivariate Gaussian samples from the distribution 𝚺−1∗.  This 

data generation technique is described in Algorithm 4.1.   
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Algorithm 4.1 Synthetic data generation from a known inverse covariance  

  1: Given: N=2761, p=90, 𝚺̂−1 = 𝚺−1∗ 
  2:         𝚺̂ = (𝚺−1∗)−1 
  3: Generate random samples from a standard Gaussian using Matlab function     
  4: ‘@randn’ 
  5:         X1 = randn (N, 𝑝) 
  6: Multiply the samples by a square root of the covariance matrix using ‘@chol’ 
  7:         X2 = X1*chol(𝚺̂) 
  8:  The final data X2 is an 𝑁 × 𝑝 matrix drawn from the covariance 𝚺̂ = (𝚺−1∗)−1 
    

 

 

4.6.2 Methodology 

 

                  

  A    B               C D  

                 

t0-3  t0-2  t0-1  t0  t0+1  
 

Figure 4.2 Portfolio Rebalancing Periods. 

 

Let 𝑡0−3, 𝑡0−2, . . , 𝑡0+1 be portfolio rebalancing times and let A, B+C and D be the time 

periods between each consecutive rebalancing period illustrated in Figure 4.2.  We 

assume that period A, B + C and D are of equal size, each consisting of T days.  Period 

B consists of 80% of consecutive stock data between 𝑡0−1 and 𝑡0, which is equivalent 

to 80% of T days, while period C consists of 20% of consecutive stock data between 

𝑡0−1 and 𝑡0, equivalent to 20% of T days. We call the 𝑇 days preceding 𝑡0 (period B+C) 

the in-sample training period and the 𝑇 days after 𝑡0 (period D) the out-of-sample test 

period.   For example, if we assume that we are at time 𝑡0, at this point in time, the 
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portfolio is selected by choosing the optimal weights that solve the global minimum 

variance optimization problem with and without short selling constraints, using the 

estimated covariance, 𝑺(𝐸𝑆𝑇) , from the in-sample training period (B + C) in figure 

(4.2).  Specifically, we solve these two optimizations: 

 

min  
𝑤

𝒘𝑇 𝑺(𝐸𝑆𝑇)𝒘                                                       (4.13) 

                                                                     s.t: (1) ∑ 𝑤𝑖 = 1𝑖  

                  (2) 𝑤𝑖 ≥ 0     ∀ 𝑖 

 

min   
𝑤

𝒘𝑇 𝑺(𝐸𝑆𝑇)𝒘                                                      (4.14) 

                                                                      s.t: (1) ∑ 𝑤𝑖 = 1𝑖    

 

Problem (4.13) is the global minimum variance optimization problem with short 

selling constraints which gives rise to long-only portfolios. Problem (4.14) is the global 

minimum variance problem without any restrictions on short selling, which gives rise 

to long-short portfolios.   

The input to the optimization problem is the estimated covariance matrix 𝑺(𝐸𝑆𝑇) 

calculated using the in-sample training period and obtained using one of the portfolio 

strategies that will be described in section 4.6.3. We call 𝑺𝐸𝑀𝑃  the empirical 

covariance matrix.  In accordance with [50], we focus on the global minimum variance 

portfolio, since we are only interested in comparing the performance of different 

covariance estimators in portfolio selection and ignore estimation errors of asset 
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returns. The output of the global minimum optimization problem with the 

appropriate constraints is the optimal weight vector 

 

𝒘(𝐸𝑆𝑇) = 𝑎𝑟𝑔min
𝒘
𝒘𝑇𝑺(𝐸𝑆𝑇)𝒘                                          (4.15) 

 

The time window T is varied on a wide range. In our empirical study, we use seven 

different time windows T of 1, 2, 3, 6, 9, 12, and 24 months. There are 20 trading days 

in a month, therefore we select the portfolio monthly (T = 20), bimonthly (T = 40), 

quarterly (T = 60), every six-months (T = 125), every nine-months (T = 187), yearly 

(T = 250), and biannually (T = 500). We use a rolling window style whereby the 

previous out-of-sample test period becomes the current in-sample training period 

and so forth. Since the total number of trading days is 2761, we consider 131, 65, 43, 

13, 21, 10, and 8 portfolio optimizations for the time horizon T equal to 1, 2, 3, 6, 9, 

12, and 24 months, respectively (for the 24 months case, in order to improve the 

statistics, following [50], we repeat the optimization process starting from 1 January 

1998).  

To evaluate portfolio performance, we estimate the covariance matrix in the in-

sample training period using all the different portfolio strategies that will be 

discussed in section 4.6.3 to calculate the optimal portfolio weights and evaluate them 

in the future out of sample testing period. We repeat this optimization at each 

rebalancing period using a rolling window style and report the average annualized 

performance using the annualization factors found in Appendix G Table G.1.   

 



   

101 
 

4.6.3 Graphical Lasso Portfolio Strategies 

Recall that the L1 log-likelihood equation that the Graphical Lasso maximizes is 

defined by  

argmax
𝑿
   𝑙𝑜𝑔(|𝑿|) − 𝑇𝑟𝑎𝑐𝑒(𝑿𝑺) − 𝜌‖𝑿‖1,                                         (4.16) 

 

where the optimal value of the penalty term 𝜌 must somehow be approximated.  We 

present validation methods for selecting the penalty parameter 𝜌  to obtain estimates 

of the inverse covariance matrix that are optimal under certain portfolio performance 

criteria.  

 

The Graphical Lasso strategies are:  

i. GLassoMIN REALIZED RISK  

ii. GLassoMAX LIKELIHOOD-2 

iii. GLassoMAX LIKELIHOOD 

iv. GLassoORACLE 

 

We refer to Figure 4.2 for the following portfolio strategy descriptions: 

 

GLassoMIN REALIZED RISK 

We obtain different covariance estimates for period B data using Graphical Lasso with 

different regularizations, 𝜌.  The optimal regularization, 𝜌∗, is selected by optimizing 

for certain portfolio criteria in period C (e.g. GLassoMIN REALIZED RISK selects the optimal 

regularization that maximizes the portfolio realized risk in period C).  The sparsity 
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pattern for this optimal regularization is chosen and the covariance is re-estimated 

using period B data again to select the optimal covariance  𝑺(𝐸𝑆𝑇) . This method 

calculates Predicted risk and Empirical risk on period B data. Realized risk is 

calculated on period D. These portfolio measures are covered in section 4.6.4. 

 

GLassoMAX LIKELIHOOD-2 

We obtain different covariance estimates for period B and C data using Graphical 

Lasso with different regularizations, 𝜌.  The regularization with the highest likelihood 

in periods B + C is chosen as the optimal regularization, 𝜌∗. This method calculates 

predicted risk on periods B and C. Empirical risk is calculated on period B (for equality 

to other methods). Realized risk is calculated on period D. 

 

GLassoMAX LIKELIHOOD 

We obtain different covariance estimates for period B data using Graphical Lasso with 

different regularizations, 𝜌.  The regularization with the highest likelihood in period 

C is chosen as the optimal regularization, 𝜌∗. This method calculates predicted risk on 

periods B. Empirical risk is also calculated on period B (for equality to other 

methods). Realized risk is calculated on period D. 

 
GLassoORACLE  

This method estimates the optimal precision in period B based on sparsity level 

equality to the true precision. Using the estimated precision, we obtain an estimate 

for the optimal covariance matrix 𝑺(𝐸𝑆𝑇). This method calculates Predicted risk and 
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Empirical risk on period B. Realized risk is calculated on period D. Note that period C 

is ignored 

 

 

4.6.4 Performance Measures 

To evaluate the performance of the different portfolio strategies, we compare the 

portfolio risks (predicted, realized and empirical), likelihoods (empirical and 

realized) sparsity levels and sparsity structure.  

  
4.6.4.1 Predicted Risk 

The predicted risk is calculated using 𝑺(𝐸𝑆𝑇), which is estimated using the training 

period (time period T before the rebalancing point).  The predicted risk can be seen 

as the learned quality of the estimated covariance on period B (period B+C for 

GLassoMAX LIKELIHOOD-2) for the chosen regularization and is defined as 

  
  

𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = √𝒘(𝐸𝑆𝑇)𝑺(𝐸𝑆𝑇) 𝒘(𝐸𝑆𝑇)                                          (4.17) 

  
 
4.6.4.2 Realized Risk 

The realized risk is calculated using the empirical covariance 𝑺𝐸𝑀𝑃 which is estimated 

using the test period (time period T after the rebalancing point). A portfolio is said to 

be less risky than another when its realized risk is smaller.  Based on the portfolio 

strategies defined in section 4.6.3, the realized risk is calculated on period D. 

  

 𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 = √𝒘(𝐸𝑆𝑇)𝑺𝐸𝑀𝑃 𝒘(𝐸𝑆𝑇)                                          (4.18) 
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4.6.4.3 Empirical Risk 

The empirical risk is calculated using the empirical covariance 𝑺𝐸𝑀𝑃  which is 

estimated in the training period (time period T before the rebalancing point). 

  

𝑠𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 = √𝒘(𝐸𝑆𝑇)𝑺𝐸𝑀𝑃 𝒘(𝐸𝑆𝑇)                                          (4.19) 

  
The empirical risk for our portfolio strategies is calculated on period B. This is the 

actual performance on the empirical data on period B and can be seen as a regularized 

version of the predicted risk. We will expect that this is lower than the realized risk, 

which is into the future. 

 

4.6.4.4 Realized Likelihood 

Recall that the Gaussian log likelihood for a single observation 𝑥 is 
 
 

ln(𝐿) = −
1

2
ln (|∑|) −

1

2
(𝒙 − 𝝁)𝑇∑−1(𝒙− 𝝁)−

𝑘

2
ln(2𝜋),             (4.20) 

 

where k is the number of variables and ∑ =𝑺(𝐸𝑆𝑇)∗  

The realized likelihood is the sum of the log likelihoods of all the samples in the test 

period D. 

 

4.6.4.5 Empirical Likelihood 

Following the definition of the Gaussian log likelihood of a single observation 𝒙 given 

in (4.20), the empirical likelihood is the sum of the log likelihoods of all the samples 

in the training period B. 
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4.6.4.6 Sparsity Level and Zero-overlap  

The sparsity level is the percentage of zero entries in the estimated inverse 

covariance.  The zero-overlap on the other hand is the accuracy of the estimated 

inverse covariance in terms of matching the sparsity structure (correct zero pattern) 

of the true inverse covariance. In this experiment, we look at the average sparsity 

level and zero-overlap of the estimated inverse covariance for each portfolio strategy 

to see if there is a correlation between the sparsity and zero-overlap and portfolio 

performance.  We also compare performance as the estimated sparsity deviates from 

the true sparsity level of the inverse covariance used to generate the stock data.  

 

4.7 Experiment Results 

In this section, we present the results obtained from repeated portfolio optimization 

by using the portfolio strategies derived from using the Graphical Lasso validation 

techniques presented in section 4.6.3.   For ease of representation in the results, we 

refer to the long-short portfolios as having ‘short selling allowed’ (S.S) and the long-

only portfolio as those with the ‘no short selling constraint’ (N.S.S).  

 

4.7.1 Long-short Portfolio Results 

The average long-short portfolio results over all possible rebalancing periods 

(excluding 1 month and 2 months) are presented in Tables 4.1, Table 4.6 and Table 

4.10, while each individual rebalancing period result can be found in Appendix D.  We 

exclude the 1 month and 2 month results due to the fact that the maximum likelihoods 

at those periods are not defined because the estimated covariances are not invertible.  
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For the realized risk results, to assess the statistical robustness of the difference 

observed between a given portfolio strategy and the GLassoORACLE portfolio strategy, 

for individual rebalancing periods, we report hypothesis test (t-test) results 

evaluating whether the observed difference between realized risks (𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑
GLassoORACLE −

𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑
GLassoNON−ORACLE) has mean value equal to zero for individual rebalancing periods.  

We test for statistical significance at the 1% and 5% levels.  Details of the hypothesis 

test can be found in Appendix E Table E.17. The result is significant at the 5% level 

when the symbol ‘*’ is present, and is significant at the 1% level when the symbol ‘**’ 

is present. 

 

4.7.1.1 Realized Risk 

Average S.S 

Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 5.51 0.08 6.57 0.10 60.17 64.98 

GLassoMAX LIKELIHOOD-2 5.44 0.05 6.52 0.09 54.09 58.49 

GLassoMAX LIKELIHOOD 5.60 0.04 6.70 0.10 78.36 85.12 

GLassoORACLE 5.65 0.04 6.54 0.09 75.09 81.61 

 
Table 4.1   Long-short portfolio average realized risks 

 

In general, we expect the predicted risks to be lower than the realized risks, which 

holds for all portfolio strategies in Table 4.1.  For the realized risk, the oracle method, 

GLassoORACLE, having been fed the correct sparsity level, is expected to perform very 

well, possibly performing best.  From Table 4.1, all the methods except for GLassoMAX 

LIKELIHOOD seem to perform very closely to one another.  The GLassoMAX LIKELIHOOD-2 has 
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the lowest realized risk, which is good, and we can say that it performs at least as well 

as the GLassoORACLE method, which is what we want. We look at individual rebalancing 

period performance.  

  

3 months S.S 

Predicted 

Risk(%) 

std 

dev 

Realized 

Risk(%) 

std 

dev 

Sparsity 

(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 4.91 0.13 7.32 0.12** 59.42 62.34 

GLassoMAX LIKELIHOOD-2 4.58 0.05 7.24 0.10 44.46 46.44 

GLassoMAX LIKELIHOOD 5.40 0.03 7.47 0.13** 83.21 87.67 

GLassoORACLE 5.47 0.04 7.04 0.11 75.09 79.07 

 
Table 4.2   Long-short portfolio 3 months realized risks 

 
 

6 months S.S 

Predicted 

Risk(%) 

std 

dev 

Realized 

Risk(%) 

std 

dev 

Sparsity 

(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 5.49 0.07 6.71 0.11** 64.22 68.55 

GLassoMAX LIKELIHOOD-2 5.36 0.06 6.63 0.09 48.74 51.73 

GLassoMAX LIKELIHOOD 5.57 0.04 6.79 0.09** 79.58 85.38 

GLassoORACLE 5.65 0.04 6.60 0.09 75.09 80.43 

 
Table 4.3   Long-short portfolio 6 months realized risks  

 
  
For the 3 months and 6 months rebalancing periods, results are consistent with the 

average results in terms of predicted risks. All predicted risks are smaller than the 

realized risks for all the different methods. Table 4.2 and Table 4.3 show that at the 3 

month and 6 month rebalancing periods, the oracle method and the likelihood 

method, GLassoMAX LIKELIHOOD-2 perform essentially the same in terms of realized risks. 

The other two methods, GLassoMIN REALIZED RISK and GLassoMAX LIKELIHOOD have realized risks 
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that are statistically significantly higher than the realized risks of the oracle method, 

so we can say these two methods perform worse than the oracle method.  

  

1 year S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 5.68 0.08 6.27 0.11 59.70 65.16 

GLassoMAX LIKELIHOOD-2 5.79 0.06 6.19 0.10** 57.22 62.22 

GLassoMAX LIKELIHOOD 5.68 0.04 6.41 0.12** 77.17 84.74 

GLassoORACLE 5.73 0.04 6.33 0.11 75.11 82.46 

 
Table 4.4   Long-short portfolio 1 year realized risks 

 
  

2 year S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 5.80 0.05 6.12 0.07 53.44 59.53 

GLassoMAX LIKELIHOOD-2 5.82 0.04 6.13 0.07** 66.67 74.75 

GLassoMAX LIKELIHOOD 5.75 0.03 6.19 0.07 72.85 81.94 

GLassoORACLE 5.69 0.02 6.25 0.07 75.11 84.57 

 
Table 4.5   Long-short portfolio 2 years realized risks  

 
  
For the 1 year and 2 year periods, results in Table 4.4 and Table 4.5 show that the 

likelihood method, GLassoMAX LIKELIHOOD-2, achieves statistically significantly lower 

realized risks than the oracle method. At 1 year, GLassoMAX LIKELIHOOD achieves a realized 

risk which is statistically significantly worse than the oracle method. For the 2 year 

period, the oracle method and all other methods except for GLassoMAX LIKELIHOOD-2 

perform equally. For all rebalancing periods, the likelihood method that uses 2 

periods for training always performs better than the likelihood method that uses 1 

period and it appears that the likelihood method, GLassoMAX LIKELIHOOD-2, improves as 

T gets larger.   
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4.7.1.2 Empirical Risk 

Average S.S 

Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 5.51 0.08 5.18 0.14 6.57 0.10 60.17 64.98 

GLassoMAX LIKELIHOOD-2 5.44 0.05 4.86 0.07 6.52 0.09 54.09 58.49 

GLassoMAX LIKELIHOOD 5.60 0.04 5.88 0.08 6.70 0.10 78.36 85.12 

GLassoORACLE 5.65 0.04 5.59 0.07 6.54 0.09 75.09 81.61 

 
Table 4.6   Long-short portfolio average empirical risks 

 

From the definition of empirical risk, we expect that the empirical risk will be lower 

than the realized risk.  The realized risk is essentially calculated using the same 

optimally selected regularization to estimate the portfolio weights, but on future data. 

The average results in Table 4.6 shows that this is always true for all the Graphical 

Lasso methods.  We check to see if these results are consistent over time by looking 

at individual rebalancing periods.   

  
 

3 months S.S 

Predicted 

Risk(%) 

std 

dev 

Empirical 

Risk (%) 

std 

dev 

Realized 

Risk(%) 

std 

dev 

Sparsity 

(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 4.91 0.13 4.13 0.21 7.32 0.12 59.42 62.34 

GLassoMAX LIKELIHOOD-2 4.58 0.05 3.29 0.06 7.24 0.10 44.46 46.44 

GLassoMAX LIKELIHOOD 5.40 0.03 5.87 0.09 7.47 0.13 83.21 87.67 

GLassoORACLE 5.47 0.04 4.97 0.07 7.04 0.11 75.09 79.07 

 
Table 4.7   Long-short portfolio 3 months empirical risks 
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1 year S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 5.68 0.08 5.54 0.17 6.27 0.11 59.70 65.16 

GLassoMAX LIKELIHOOD-2 5.79 0.06 5.46 0.09 6.19 0.10 57.22 62.22 

GLassoMAX LIKELIHOOD 5.68 0.04 5.94 0.09 6.41 0.12 77.17 84.74 

GLassoORACLE 5.73 0.04 5.85 0.09 6.33 0.11 75.11 82.46 

 
Table 4.8   Long-short portfolio 1 year empirical risks 

 
 
 

2 year S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 

overlap 
(%) 

GLassoMIN REALIZED RISK 5.80 0.05 5.63 0.06 6.12 0.07 53.44 59.53 

GLassoMAX LIKELIHOOD-2 5.82 0.04 5.74 0.05 6.13 0.07 66.67 74.75 

GLassoMAX LIKELIHOOD 5.75 0.03 5.85 0.05 6.19 0.07 72.85 81.94 

GLassoORACLE 5.69 0.02 5.92 0.06 6.25 0.07 75.11 84.57 

 
Table 4.9   Long-short portfolio 2 years empirical risks 

 
  
Results in Appendix D show that the empirical risk is always smaller than the realized 

risk at all rebalancing periods and can be seen in Table 4.7, Table 4.8 and Table 4.9. 

The difference between the empirical risks and realized risks appears to be larger for 

𝑇

𝑁
< 1, with the 3 months results showing the largest difference.   

  
  
4.7.1.3 Empirical and Realized Likelihood 
 

Average S.S 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 6.57 0.10 60.17 64.98 52.17 48187.15 49763.63 

GLassoMAX LIKELIHOOD-2 6.52 0.09 54.09 58.49 57.27 48154.77 49961.80 

GLassoMAX LIKELIHOOD 6.70 0.10 78.36 85.12 39.28 48449.65 49146.59 

GLassoORACLE 6.54 0.09 75.09 81.61 41.94 48447.75 49266.49 

 
Table 4.10   Long-short portfolio average empirical and realized likelihoods 
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We expect that there will be some correlation between the realized likelihood and 

portfolio performance in terms of realized risk.  We also expect that the Graphical 

Lasso method that maximizes Gaussian likelihood using 2 periods for training will 

have the highest likelihood, which is the case in Table 4.10.  The average results in 

Table 4.10 also show that although the performance is not perfectly correlated with 

the realized likelihood, the oracle and likelihood methods, GLassoORACLE and GLassoMAX 

LIKELIHOOD, have the highest realized likelihoods. The empirical likelihood on the other 

hand shows perfect correlation with portfolio performance. We look at some 

individual rebalancing period results from Appendix D to see if there is consistency 

in performance.   

 

3 months S.S 

Realized 

Risk(%) 

std 

dev 

Sparsity 

(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 

Realized 

Likelihood 

Empirical 

Likelihood 

GLassoMIN REALIZED RISK 7.32 0.12 59.42 62.34 47.03 12657.11 14599.16 

GLassoMAX LIKELIHOOD-2 7.24 0.10 44.46 46.44 59.69 12566.99 15053.35 

GLassoMAX LIKELIHOOD 7.47 0.13 83.21 87.67 26.97 13333.21 13784.95 

GLassoORACLE 7.04 0.11 75.09 79.07 33.94 13321.53 14064.92 

 
Table 4.11   Long-short portfolio 3 months empirical and realized likelihoods 

 

 

1 year S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 6.27 0.11 59.70 65.16 54.73 53668.56 55178.46 

GLassoMAX LIKELIHOOD-2 6.19 0.10 57.22 62.22 55.89 53737.92 55290.66 

GLassoMAX LIKELIHOOD 6.41 0.12 77.17 84.74 43.08 53854.40 54590.93 

GLassoORACLE 6.33 0.11 75.11 82.46 44.55 53864.81 54681.56 

 
Table 4.12   Long-short portfolio 1 year empirical and realized likelihoods 
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2 year S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 6.12 0.07 53.44 59.53 63.25 107779.65 109590.02 

GLassoMAX LIKELIHOOD-2 6.13 0.07 66.67 74.75 55.69 107929.11 109179.59 

GLassoMAX LIKELIHOOD 6.19 0.07 72.85 81.94 52.40 107930.82 108926.92 

GLassoORACLE 6.25 0.07 75.11 84.57 51.19 107911.28 108815.31 

 
Table 4.13   Long-short portfolio 2 years empirical and realized Likelihoods 

 
 

Individual rebalancing period results are consistent with the average results, showing 

that although the portfolio realized risk is not perfectly correlated with the realized 

likelihood, the oracle and likelihood methods always have the highest realized 

likelihoods. The empirical likelihood on the other hand shows no correlation with 

portfolio performance, but in almost all instances, the likelihood method that uses 2 

periods for training, GLassoMAX LIKELIHOOD-2, always has the highest empirical likelihood 

as expected. More correlation analyses will be performed in section 4.7.1.4 

additionally using hypothesis tests. 

 

4.7.1.4 Portfolio Measures Correlation Analysis 

In order to better understand the results from the synthetic experiment, we look at 

the results over all rebalancing periods for each Graphical Lasso portfolio strategy 

and see if there is a correlation between the sparsity, zero-overlap, empirical 

likelihood and realized likelihood with portfolio performance (realized risk). We 

perform an OLS multiple linear regression (introduced in  Appendix A section A.5.3) 

using STATA where the realized risk is treated as the dependent variable and sparsity, 

zero-overlap, empirical likelihood and realized likelihood as the independent 
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variables for all portfolio strategies. We estimate the regression coefficients for each 

predictor variable (sparsity, zero-overlap etc.) and perform hypothesis tests (t-test) 

testing if these coefficients are equal to zero. Results are presented in Table 4.14.  

------------------------------------------------------------------------------------- 

       Realized risk|Coefficient(𝛽) Std.Err.  t-stat  p-value    [95% Conf. Interval] 

--------------------+---------------------------------------------------------------- 

           Sparsity |   .5950606    .078562     7.57   0.000     .4306284    .7594929 

        Zero-overlap |  -.4870172   .0690815    -7.05   0.000    -.6316065    -.342428 

 Realized likelihood |  -.0011408   .0002808    -4.06   0.001    -.0017284   -.0005531 

Empirical likelihood |   .0011537   .0002816     4.10   0.001     .0005643     .001743 

            constant |   .0768646   1.415855     0.05   0.957    -2.886553    3.040282 

------------------------------------------------------------------------------------- 

Table 4.14   OLS multiple linear regression and t-tests showing portfolio realized risk 
predicted using sparsity, zero-overlap, empirical likelihood and realized likelihood for 

the different Graphical Lasso portfolio strategies 
 

Table 4.14 presents the multiple regression results where each 𝛽 is the associated 

regression coefficient for a particular predictor variable. From Table 4.14, the OLS 

multiple regression model is given by  

𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑖𝑠𝑘 = 0.0769 + 0.5951 Sparsity − 0.4870 Zero_overlap 

− .0011 Realized likelihood + .0012 Empirical likelihood    

  

From Table 4.14, the p-value for sparsity is less than 0.05, and the coefficient is 

positive, therefore, at the 5% level of significance, the higher the sparsity, the higher 

the portfolio realized risk. The p-value for zero-overlap is less than 0.05, and the 
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coefficient is negative, therefore at the 5% level of significance, the higher the zero-

overlap, the lower the portfolio realized risk. The p-value for realized likelihood is 

less than 0.05, and the coefficient is negative, therefore at the 5% level of significance, 

the higher the realized likelihood, the lower the portfolio realized risk. Lastly, the p-

value for empirical likelihood is less than 0.05, and the coefficient is positive, 

therefore at the 5% level of significance, the higher the empirical likelihood, the 

higher the portfolio realized risk. 

 

4.7.2 Long-only Portfolio Results 

Following section 4.7.1, the average long-only portfolio results over all possible 

rebalancing periods (excluding 1 month and 2 months) are presented in Tables 4.15, 

Table 4.20 and Table 4.24, while each individual rebalancing period result can be 

found in Appendix D. For the realized risk results, to assess the statistical robustness 

of the difference observed between a given portfolio strategy and the GLassoORACLE 

portfolio strategy, for individual rebalancing periods, we report hypothesis test (t-

test) results evaluating whether the observed difference between realized risks 

(𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑
GLassoORACLE − 𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑

GLassoNON−ORACLE  )  has mean value equal to zero for individual 

rebalancing periods.  The results of these hypothesis tests are presented in E Table 

E.18. 
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4.7.2.1 Realized Risk 

  

Average N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 6.10 0.09 7.10 0.12 58.82 63.56 

GLassoMAX LIKELIHOOD-2 6.10 0.08 7.03 0.11 54.09 58.49 

GLassoMAX LIKELIHOOD 6.08 0.06 7.21 0.11 78.36 85.12 

GLassoORACLE 6.17 0.06 7.08 0.11 75.09 81.61 

  
Table 4.15   Long-only portfolio average realized risks 

 

Like the long-short portfolio, we expect the predicted risks to be lower than the 

realized risks, which holds for all portfolio strategies in Table 4.15. The oracle 

method, GLassoORACLE, is expected to perform very well, possibly performing best.  

From Table 4.15, the GLassoMAX LIKELIHOOD-2 method has the lowest risk, so it is safe to 

conclude that this method performs at least as well as the oracle method. The other 

methods, GLassoMIN REALIZED RISK and GLassoMAX LIKELIHOOD appear to have realized risks that 

are higher than that of the oracle method. We check to see individual rebalancing 

period performance using hypothesis tests to check for statistical significance in 

performance differences.  

 

  

3 months N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 5.46 0.11 7.76 0.13** 56.05 58.82 

GLassoMAX LIKELIHOOD-2 5.40 0.08 7.62 0.12 44.46 46.44 

GLassoMAX LIKELIHOOD 5.77 0.05 7.88 0.14** 83.21 87.67 

GLassoORACLE 5.94 0.06 7.53 0.12 75.09 79.07 
 

Table 4.16   Long-only portfolio 3 months realized risks 
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6 months N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 6.05 0.09 7.16 0.14** 62.73 66.88 

GLassoMAX LIKELIHOOD-2 6.04 0.09 7.06 0.12** 48.74 51.73 

GLassoMAX LIKELIHOOD 6.03 0.07 7.26 0.13** 79.58 85.38 

GLassoORACLE 6.15 0.07 7.11 0.12 75.09 80.43 
 

Table 4.17   Long-only portfolio 6 months realized risks  
 

  

1 year N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 6.35 0.08 6.85 0.12 63.35 69.18 

GLassoMAX LIKELIHOOD-2 6.38 0.07 6.79 0.10** 57.22 62.22 

GLassoMAX LIKELIHOOD 6.20 0.06 6.98 0.11** 77.17 84.74 

GLassoORACLE 6.26 0.05 6.92 0.10 75.11 82.46 
 

Table 4.18   Long-only portfolio 1 year realized risks 
 

 

2 year N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 6.41 0.07 6.75 0.08 54.16 60.43 

GLassoMAX LIKELIHOOD-2 6.40 0.05 6.74 0.08** 66.67 74.75 

GLassoMAX LIKELIHOOD 6.32 0.04 6.79 0.08 72.85 81.94 

GLassoORACLE 6.25 0.03 6.83 0.09 75.11 84.57 
 

Table 4.19   Long-only portfolio 2 years realized risks 
 
 

At 6 months, 1 year and 2 years, only the GLassoMAX LIKELIHOOD-2 performs statistically 

significantly better than the oracle method. At 3 months, 6 months and 1 year, the 

GLassoMAX LIKELIHOOD method performs statistically significantly worse than the oracle 

method. From these results, we can conclude that GLassoMAX LIKELIHOOD-2 performs 

better than GLassoMAX LIKELIHOOD in general. The GLassoMAX LIKELIHOOD-2 achieves an even 

better performance than the long-short portfolio problem without the short selling 
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constraint.  At the 3 months rebalancing period, the oracle method and GLassoMAX 

LIKELIHOOD-2 perform the same while at the 6 months rebalancing period, GLassoMAX 

LIKELIHOOD-2 has a statistically significantly better realized risk than the oracle method. 

For both the 3 months and 6 months rebalancing periods, GLassoMAX LIKELIHOOD and 

GLassoMIN REALIZED RISK  have statistically significantly worse realized risks than the oracle 

method. At 1 year, all methods except the likelihood methods perform essentially the 

same as the oracle method. At 2 years, all methods perform same as the oracle method 

except for the GLassoMAX LIKELIHOOD-2 which achieves a statistically significantly better 

realized risk than the oracle method. In general, the GLassoMAX LIKELIHOOD-2 method 

performs very well despite not using any additional information about realized risks 

and the true sparsity level, which shows that using likelihood to select the correct 

regularization is a very promising method.   

 

4.7.2.2 Empirical Risk 

 

Average N.S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 6.10 0.09 5.98 0.11 7.10 0.12 58.82 63.56 

GLassoMAX LIKELIHOOD-2 6.10 0.08 5.81 0.09 7.03 0.11 54.09 58.49 

GLassoMAX LIKELIHOOD 6.08 0.06 6.48 0.09 7.21 0.11 78.36 85.12 

GLassoORACLE 6.17 0.06 6.26 0.09 7.08 0.11 75.09 81.61 

 

Table 4.20   Long-only portfolio average empirical risks 
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Like the long-short portfolio results, the empirical risk is lower than the realized risk 

as seen in Table 4.20, which is what we expect. We check to see if these results are 

consistent over time by looking at individual rebalancing periods from Appendix D.   

 

3 months N.S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 5.46 0.11 5.10 0.17 7.76 0.13 56.05 58.82 

GLassoMAX LIKELIHOOD-2 5.40 0.08 4.67 0.10 7.62 0.12 44.46 46.44 

GLassoMAX LIKELIHOOD 5.77 0.05 6.36 0.10 7.88 0.14 83.21 87.67 

GLassoORACLE 5.94 0.06 5.70 0.10 7.53 0.12 75.09 79.07 

 
Table 4.21   Long-only portfolio 3 months empirical risks 

 
 

1 year N.S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 6.35 0.08 6.32 0.09 6.85 0.12 63.35 69.18 

GLassoMAX LIKELIHOOD-2 6.38 0.07 6.23 0.07 6.79 0.10 57.22 62.22 

GLassoMAX LIKELIHOOD 6.20 0.06 6.55 0.07 6.98 0.11 77.17 84.74 

GLassoORACLE 6.26 0.05 6.48 0.07 6.92 0.10 75.11 82.46 

 
Table 4.22   Long-only portfolio 1 year empirical risks 

 
 

2 year N.S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 6.41 0.07 6.40 0.03 6.75 0.08 54.16 60.43 

GLassoMAX LIKELIHOOD-2 6.40 0.05 6.45 0.05 6.74 0.08 66.67 74.75 

GLassoMAX LIKELIHOOD 6.32 0.04 6.52 0.06 6.79 0.08 72.85 81.94 

GLassoORACLE 6.25 0.03 6.57 0.06 6.83 0.09 75.11 84.57 

 
Table 4.23   Long-only portfolio 2 year empirical risks 

 
 

Results in Appendix D show that the empirical risk is always lower than the realized 

risk at all rebalancing periods and can be seen in Table 4.21, Table 4.22 and Table 
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4.23. The difference between the empirical risks and realized risks appears to be 

larger for  
𝑇

𝑁
< 1, with the 3 months results showing the largest difference.   

 
 
4.7.2.3 Empirical and Realized Likelihood 
 
  
  

Average N.S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-
zero 

overlap 
(%) 

Realized 
Likelihood 

Empirical 
Likelihood 

GLassoMIN REALIZED RISK 7.10 0.12 58.82 63.56 53.37 48127.37 49802.66 

GLassoMAX LIKELIHOOD-2 7.03 0.11 54.09 58.49 57.27 48154.77 49961.80 

GLassoMAX LIKELIHOOD 7.21 0.11 78.36 85.12 39.28 48449.65 49146.59 

GLassoORACLE 7.08 0.11 75.09 81.61 41.94 48447.75 49266.49 

 
Table 4.24   Long-only portfolio average empirical and realized likelihoods 

 
 

Like the long-short portfolio results, the average results in Table 4.24 show that 

although the performance is not perfectly correlated with the realized likelihood, the 

oracle and likelihood methods, GLassoORACLE and GLassoMAX LIKELIHOOD, have the highest 

realized likelihoods. The empirical likelihood also shows perfect correlation with 

portfolio performance like the long-short portfolio case. We look individual 

rebalancing period results to see if there is consistency in performance.   

   

 

3 months N.S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 7.76 0.13 56.05 58.82 50.09 12464.87 14720.15 

GLassoMAX LIKELIHOOD-2 7.62 0.12 44.46 46.44 59.69 12566.99 15053.35 

GLassoMAX LIKELIHOOD 7.88 0.14 83.21 87.67 26.97 13333.21 13784.95 

GLassoORACLE 7.53 0.12 75.09 79.07 33.94 13321.53 14064.92 
  

Table 4.25   Long-only portfolio 3 months empirical and realized likelihoods 



   

120 
 

1 year N.S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 6.85 0.12 63.35 69.18 52.05 53780.21 55081.61 

GLassoMAX LIKELIHOOD-2 6.79 0.10 57.22 62.22 55.89 53737.92 55290.66 

GLassoMAX LIKELIHOOD 6.98 0.11 77.17 84.74 43.08 53854.40 54590.93 

GLassoORACLE 6.92 0.10 75.11 82.46 44.55 53864.81 54681.56 
  

Table 4.26   Long-only portfolio 1 year empirical and realized likelihoods 
 

 

2 year N.S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 6.75 0.08 54.16 60.43 63.07 107762.24 109537.14 

GLassoMAX LIKELIHOOD-2 6.74 0.08 66.67 74.75 55.69 107929.11 109179.59 

GLassoMAX LIKELIHOOD 6.79 0.08 72.85 81.94 52.40 107930.82 108926.92 

GLassoORACLE 6.83 0.09 75.11 84.57 51.19 107911.28 108815.31 

 
Table 4.27   Long-only portfolio 2 years empirical and realized likelihoods 

 
 

Individual rebalancing period results verify our conclusion from the average results, 

and also are the same as the long-short portfolio results.  Although the portfolio 

realized risk is not perfectly correlated with the realized likelihood, the oracle and 

likelihood methods always have the highest realized likelihoods. The empirical 

likelihood on the other hand shows no correlation with portfolio performance, but in 

almost all instances, the likelihood method that uses 2 periods for training, GLassoMAX 

LIKELIHOOD-2, always has the highest empirical likelihood as expected. More correlation 

analyses will be performed in section 4.7.2.4 additionally using hypothesis tests. 
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4.7.2.4 Portfolio Measures Correlation Analysis 

Like the long-short portfolio problem, we look at the results over all rebalancing 

periods for each Graphical Lasso portfolio strategy and see if there is a correlation 

between the sparsity, zero-overlap, empirical likelihood and realized likelihood with 

portfolio performance (realized risk). We perform an OLS multiple linear regression 

(detailed in Appendix A) using STATA, where the realized risk is treated as the 

dependent variable and sparsity, zero-overlap, empirical likelihood and realized 

likelihood as the independent variables for all portfolio strategies. We estimate the 

regression coefficients for each predictor variable (sparsity, zero-overlap etc.) and 

perform hypothesis tests (t-test) testing if these coefficients are equal to zero. Results 

are presented in Table 4.14. 

------------------------------------------------------------------------------------- 

       Realized risk|Coefficient(𝛽)  Std. Err.   t    P>|t|     [95% Conf. Interval] 

--------------------+---------------------------------------------------------------- 

           Sparsity |   .5758099   .0736858     7.81   0.000     .4215837    .7300361 

        Zero-overlap |  -.4722801   .0651268    -7.25   0.000    -.6085921   -.3359681 

 Realized likelihood |   -.001087   .0002415    -4.50   0.000    -.0015926   -.0005815 

Empirical likelihood |   .0011011   .0002423     4.54   0.000     .0005938    .0016083 

            constant |   .8298601   1.237367     0.67   0.511    -1.759978    3.419699 

------------------------------------------------------------------------------------- 

Table 4.28   OLS multiple linear regression and t-tests showing portfolio realized risk 
predicted using sparsity, zero-overlap, empirical likelihood and realized likelihood for 

the different Graphical Lasso portfolio strategies  
 

Table 4.28 presents the multiple regression results where each 𝛽 is the associated 

regression coefficient for a particular predictor variable. Using STATA, the OLS 
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multiple linear regression is fit and the model with the associated t-test results are 

shown in Table 4.28. The OLS multiple regression model is given by  

𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑖𝑠𝑘 = 0.8299 + 0.5758 Sparsity − 0.4723 Zero_overlap 

− .0011 Realized likelihood + .0011 Empirical likelihood    

 

From Table 4.28, the p-value for sparsity is less than 0.05, and the coefficient is 

positive, therefore at the 5% level of significance, the higher the sparsity, the higher 

the portfolio realized risk. The p-value for zero-overlap is less than 0.05, and the 

coefficient is negative therefore at the 5% level of significance, the higher the zero-

overlap, the lower the portfolio realized risk. The p-value for realized likelihood is 

less than 0.05, and the coefficient is negative, therefore at the 5% level of significance, 

the higher the realized likelihood, the lower the portfolio realized risk. The p-value 

for empirical likelihood is less than 0.05, and the coefficient is positive, therefore at 

the 5% level of significance, the higher the empirical likelihood, the higher the 

portfolio realized risk. These results are consistent with the long-short portfolio case. 

 

4.8 Summary 

In order to apply the sparse inverse covariance estimation methodology in Finance, 

we performed Markowitz global minimum variance portfolio optimization using 

Graphical Lasso on synthetically generated stock market data from a known inverse 

covariance.  Using validation techniques, we optimized certain portfolio criteria, and 

come up with new portfolio strategies, which we compared to a benchmark portfolio 
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strategy, GLassoORACLE, that estimates the inverse covariance with identical sparsity 

level as the true inverse covariance. We used this oracle method as a baseline method 

for performance evaluation. We evaluated portfolio performance of all the different 

portfolio strategies across different rebalancing periods with and without short 

selling constraints. 

Our results for the long-short portfolio problem and long-only portfolio problem 

were almost identical.  They both resulted in predicted risks that were smaller than 

realized risks at all rebalancing periods.  For the long-short portfolio problem and the 

long-only portfolio problem, the likelihood method, GLassoMAX LIKELIHOOD-2 achieved 

statistically significantly best realized risks from 6 months and above.  The two other 

competing methods, GLassoMIN REALIZED RISK and GLassoMAX LIKELIHOOD achieved statistically 

significantly worse realized risks than the oracle method at almost all the rebalancing 

periods.  Performance of the GLassoMAX LIKELIHOOD-2 was even better with the addition 

of the short selling constraint.  

The realized risk and empirical risk are essentially calculated using the same 

optimally selected regularization to estimate the portfolio weights, but the realized 

risk is calculated on future data. For this reason, we expected the realized risk to be 

larger than the empirical risk, and this was true for both the long-short and long-only 

portfolios.  The difference between the empirical risks and realized was larger for  

𝑇

𝑁
< 1, with the 3 months results showing the largest difference.  

For both the long-short portfolios and the long-only portfolios, GLassoMAX LIKELIHOOD-2  

almost always had the highest empirical likelihood as expected. We saw a positive 

correlation with sparsity and portfolio realized risk, a negative correlation with zero-
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overlap and portfolio realized risk, and a negative correlation between realized 

likelihood and portfolio realized risk. These results were as expected.  

In summary, our results showed that the likelihood method, GLassoMAX LIKELIHOOD-2, 

performed very well despite not using any additional information about realized risks 

and the true sparsity level, which shows that using likelihood to select the correct 

regularization for Graphical Lasso is a very promising method and should be explored 

further.   
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Chapter 5 
 
 
 
Covariance Estimation and Portfolio Optimization: 

A Comparison between Existing Methods and the 

New Sparse Inverse Covariance Method 

 

5.1 Covariance and Mean-Variance Portfolio Optimization  

There are different applications of covariance matrices in portfolio optimization that 

have been studied in literature. We present some of the popular covariance 

estimators used in the Markowitz mean-variance portfolio optimization problem in 

literature and compare the new method of sparse inverse covariance estimation 

presented in chapter 4.  Using the newly developed sparse portfolio strategies from 

chapter 4, we perform an in-depth comparative analysis against existing methods 

when applied to a stock market portfolio optimization problem. In addition to the 

existing methods in literature, we also compare performance with the Naïve baseline 

method, which is the equally weighted portfolio.  We look at how the different 

methods perform in terms of portfolio realized risk, portfolio expected return and 

portfolio Sharpe ratio.  
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5.2 Covariance Estimation: Existing Methods  

5.2.1 Direct Optimization 

The sample covariance matrix estimator is the simplest covariance estimator of N 

asset returns. For an estimation time horizon of length T, the number of available data 

is 𝑁 × 𝑇.  A very common circumstance in portfolio selection is that the number of 

assets N is of the same order of magnitude or larger than the estimation time horizon 

T. The sample covariance matrix suffers from two main deficiencies. Firstly, when the 

number of observations is less than the number of assets N, the sample covariance 

matrix is not full rank, hence it is not invertible. Secondly, even if the sample 

covariance is full rank, its inverse only provides a biased estimator of the inverse 

population covariance matrix. As suggested in literature [59], in the portfolio 

optimization problems, we use the Moore-Penrose pseudoinverse, also called the 

generalized inverse [60], of the covariance matrix for  𝑇 < 𝑁 .  Replacing the inverse 

of the covariance matrix with the pseudoinverse in the optimization problem allows 

one to get a unique combination of portfolio weights.  It should be noted that when 

𝑇 < 𝑁 , the optimization problem remains undetermined and the pseudoinverse 

solution is just a natural choice among the infinite undetermined solutions to the 

portfolio optimization problem [50].   

In the same regime 𝑇 < 𝑁 , the problem does not arise for the other covariance 

estimators that will be presented subsequently, because they typically give positive 

definite covariance matrices for any value of 𝑇/𝑁 including  
𝑇

𝑁
< 1 [50]. 
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5.2.2 Spectral Estimators 

The first class of methods includes three different estimators of the covariance 

matrix, which make use of the spectral properties of the correlation matrix.  The 

fundamental idea behind the spectral estimators is that the eigenvalues of the sample 

covariance matrix carry different information depending on their value [50]. 

 

5.2.2.1 The Single Index Model 

The first method we consider is Sharpe’s single index (SI) model [59, 61-63].  In this 

model, for a set of stocks 𝑖 = 1,… ,𝑁, stock returns 𝑟𝑖(𝑡) are described by the set of 

linear equations [9,64-66] 

 

𝑟𝑖(𝑡) = 𝛽𝑖𝑓(𝑡) + 𝜀𝑖(𝑡),                                                            (5.1) 

 

where returns are given by the linear combination of a single random variable, the 

index 𝑓(𝑡),  and an idiosyncratic stochastic term 𝜀𝑖(𝑡) .  The parameters 𝛽𝑖  can be 

estimated by linear regression of stock return time series on the index return.  The 

covariance matrix associated with the model is 𝑺(𝑆𝐼) = 𝜎00𝜷𝜷
𝑇 +𝑫, where 𝜎00 is the 

variance of the index, 𝛽 is the vector of parameters 𝛽𝑖, and D is the diagonal matrix of 

variances of 𝜀𝑖.  This method will be referred to hereafter as SI. 

 

5.2.2.2 Random Matrix Theory Models 

The other two spectral methods make use of Random Matrix Theory (RMT) [60, 61, 

67].  If the N variables of the system are independently and identically distributed 
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with finite variance 𝜎2 , then in the limit 𝑇,𝑁 → ∞,  with a fixed ratio 𝑇/𝑁 , the 

eigenvalues of the sample covariance matrix are bounded from above by  

 

𝜆𝑚𝑎𝑥 = 𝜎
2 (1 +

𝑁

𝑇
+ 2√

𝑁

𝑇
),                                                (5.2) 

 

where 𝜎2=1 for correlation matrices.  In most practical cases, one finds that the 

largest eigenvalue 𝜆1of the sample correlation matrix of stocks is inconsistent with 

RMT, i.e. 𝜆1 ≫ 𝜆𝑚𝑎𝑥 . In fact, the largest eigenvectors is typically identified with the 

market mode [50].  To cope with this, [61] propose to modify the null hypothesis of 

RMT so that system correlations can be described in terms of a one factor model 

instead of a pure random model.  Under such less restrictive null hypothesis, the value 

of 𝜆𝑚𝑎𝑥 is still given by (5.2), but now 𝜎2 = 1 − 𝜆1/𝑁.   

We consider two different methods that apply RMT to the covariance estimation 

problem. These methods reduce the impact of eigenvalues smaller than 𝜆𝑚𝑎𝑥 onto the 

estimate of portfolio weights.  The first method which will be referred to hereafter as 

‘RMT-0’, was proposed by [68], while the second method was proposed by [69] and 

will be referred to as ‘RMT-M’.  

 

i. RMT-0 

One diagonalizes the sample correlation matrix and replaces all eigenvalues 

smaller than 𝜆𝑚𝑎𝑥  with 0.  One then transforms back the modified diagonal 

matrix in the standard basis obtaining the matrix 𝑯(𝑅𝑀𝑇−0) . The filtered 
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correlation matrix 𝑪(𝑅𝑀𝑇−0)  is obtained by simply forcing the diagonal 

elements of 𝑯(𝑅𝑀𝑇−0) to 1.  Finally, the filtered covariance matrix 𝑺(𝑅𝑀𝑇−0) is 

the matrix of elements 𝜎𝑖𝑗
(𝑅𝑀𝑇−0)

= 𝑐𝑖𝑗
(𝑅𝑀𝑇−0)

√𝜎𝑖𝑖𝜎𝑗𝑗 , where 𝑐𝑖𝑗
(𝑅𝑀𝑇−0)

 are the 

entries of 𝑪(𝑅𝑀𝑇−0) and 𝜎𝑖𝑖 𝑎𝑛𝑑 𝜎𝑗𝑗  are the sample variances of variables i and 

j respectively [50, 68]. 

 

ii. RMT-M 

This method proposed by [69] diagonalizes the sample correlation matrix and 

replaces all the eigenvalues smaller than 𝜆𝑚𝑎𝑥 with their average value.  Then 

one transforms back the modified diagonal matrix in the original basis 

obtaining the matrix 𝑯(𝑅𝑀𝑇−𝑀) of elements ℎ𝑖𝑗
(𝑅𝑀𝑇−𝑀)

.  It is important to note 

that replacing the eigenvalues smaller than 𝜆𝑚𝑎𝑥  with their average value 

preserves the trace of the matrix.  Finally, the filtered correlation matrix 

𝑪(𝑅𝑀𝑇−𝑀)is the matrix of elements 𝑐𝑖𝑗
(𝑅𝑀𝑇−𝑀)

= ℎ𝑖𝑗
(𝑅𝑀𝑇−𝑀)

/√ℎ𝑖𝑖
(𝑅𝑀𝑇−𝑀)

ℎ𝑗𝑗
(𝑅𝑀𝑇−𝑀)

. 

The covariance matrix 𝑺(𝑅𝑀𝑇−𝑀) to be used in the portfolio optimization is the 

matrix of elements 𝜎𝑖𝑗
(𝑅𝑀𝑇−𝑀)

= 𝑐𝑖𝑗
(𝑅𝑀𝑇−𝑀)

√𝜎𝑖𝑖𝜎𝑗𝑗 , where 𝜎𝑖𝑖 𝑎𝑛𝑑 𝜎𝑗𝑗  are again 

the sample variances of variables i and j respectively [50, 69].   

 

5.2.3 Shrinkage Estimators 
 
The shrinkage estimators comprise of linear shrinkage methods.  Linear shrinkage is 

a well-established technique in high-dimensional inference problems, when the size 

of data is small compared to the number of unknown parameters in the model [50]. 
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In such cases , the sample covariance matrix is the best estimator in terms of actual 

fit to the data, but it is suboptimal because the number of parameters to be fit is larger 

than the amount of data available[65,70].  The idea is to construct a more robust 

estimate Q of the covariance matrix by shrinking the sample covariance matrix S to a 

target matrix T, which is typically positive definite and has a lower variance.  The 

shrinking is obtained by computing 

 
𝑸 = 𝛼𝑻 + (1 − 𝛼)𝑺,                                                         (5.3) 

 

where 𝛼 is a parameter named the shrinkage intensity.  

 

Optimal Shrinkage Intensity 
 
Following [50], as 𝛼̂∗ (the optimal shrinkage intensity), we use the unbiased estimate 

analytically calculated in [71].  It is well known that the optimal shrinkage intensity, 

𝛼̂∗, may be determined analytically. Specifically [71] derived a simple theorem for 

choosing ∝̂∗ that guarantees minimal MSE without the need of having to specify any 

underlying distributions and without requiring computationally expensive 

procedures such as cross validation [71].  Each shrinkage method will be associated 

with an analytical formula for the optimal shrinkage intensity and will be presented 

subsequently.   

 We consider three different shrinkage estimators from literature. Each one is 

characterized by a specific target matrix. 
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5.2.3.1 Shrinkage to Single Index  
 
The shrinkage to single index method estimates the covariance matrix of stock 

returns by an optimally weighted average of two existing estimators: the sample 

covariance matrix and the single-index covariance matrix.   

This method uses the target matrix 𝑻 = 𝑺(𝑆𝐼) = 𝜎00𝜷𝜷
𝑇 +𝑫 , i.e., the single index 

covariance matrix discussed in section (5.2.2.1).  This target was first proposed in the 

context of portfolio optimization by [6]. 

 

𝑡 = 𝑠(𝑆𝐼) 

 

𝛼̂∗ =
∑ 𝑉𝑎𝑟(𝑠𝑖) − 𝐶𝑜𝑣(𝑡𝑖, 𝑠𝑖)
𝑁
𝑖=1

∑ 𝐸[(𝑡𝑖 − 𝑠𝑖)]
𝑁
𝑖=1

 

 

5.2.3.2 Shrinkage to Common Covariance  
 
This method uses the target matrix T, where the diagonal elements are all equal to 

the average of sample variances, while non-diagonal elements are equal to the 

average of sample covariances.  With this method, the heterogeneity of stock 

variances and of stock covariances is minimized [65].  This method has been 

proposed for the analysis of bioinformatics data in [71] and used in the analysis of 

financial data in [65]. 

𝑡𝑖,𝑗 = {
𝑣 = 𝑎𝑣𝑔(𝑠𝑖𝑖)         𝑖𝑓 𝑖 = 𝑗

𝑐 = 𝑎𝑣𝑔(𝑠𝑖𝑗)        𝑖𝑓 𝑖 ≠ 𝑗
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𝛼̂∗ =
∑𝑖≠𝑗𝑉𝑎𝑟̂(𝑠𝑖𝑗) + ∑𝑖𝑉𝑎𝑟̂(𝑠𝑖𝑖)

∑𝑖≠𝑗(𝑠𝑖𝑗 − 𝑐)2 + ∑𝑖(𝑠𝑖𝑖 − 𝑣)2
, 

 

where 𝑣  is the average of sample variances and 𝑐  is the average of sample 

covariances. 

 

5.2.3.3 Shrinkage to Constant Correlation  
 
This method has a more structured target matrix T and is used in [7]. The estimator 

is obtained by first shrinking the correlation matrix by the sample standard 

deviations.  The constant correlation target T is a matrix with diagonal elements equal 

to one, and off-diagonal elements equal to the average sample correlation between 

the elements of the system.   

  

𝑡𝑖,𝑗 = {
𝑠𝑖𝑖         𝑖𝑓 𝑖 = 𝑗

𝑟̅√𝑠𝑖𝑖𝑠𝑗𝑗        𝑖𝑓 𝑖 ≠ 𝑗
 

 

𝛼̂∗ =
∑𝑖≠𝑗𝑉𝑎𝑟̂(𝑠𝑖𝑗) − 𝑟̅𝑓𝑖𝑗)

∑𝑖≠𝑗(𝑠𝑖𝑗 − 𝑟̅√𝑠𝑖𝑖𝑠𝑗𝑗)2
 , 

 

where 𝑟̅ is the average of sample correlations. 

 
 
 
5.3 Experiment on Stock Market Data 
 
In order to evaluate the proposed sparse precision approach, we apply Graphical 

Lasso to financial daily return time series.  In the experiments, we estimate 
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covariance matrices of stock returns using both the Graphical Lasso portfolio 

strategies and the covariance estimators used in literature. The realized risk, portfolio 

return and Sharpe ratio are compared for the different covariance estimates.  We also 

compare performance with the Naïve baseline method, which is the equally weighted 

portfolio. 

 

5.3.1 Data 

The dataset follows that used in [50] and consists of the daily returns of N = 90 highly 

capitalized stocks traded at NYSE and included in the NYSE US 100 Index.  For these 

stocks, the closing prices are available in the eleven year period from 1 January 1997 

to 31 December 2007.  The ticker symbols of the investigated stocks are AA, ABT, AIG, 

ALL, APA, AXP, BA, BAC, BAX, BEN, BK, BMY, BNI, BRK-B, BUD, C, CAT, CCL, CL, COP, 

CVS, CVX, D, DD, DE, DIS, DNA, DOW, DVN, EMC, EMR, EXC, FCX, FDX, FNM, GD, GE, 

GLW, HAL, HD, HIG, HON, HPQ, IBM, ITW, JNJ, JPM, KMB, KO, LEH, LLY, LMT, LOW, 

MCD, MDT, MER, MMM, MO, MOT, MRK, MRO, MS, NWS-A, OXY, PCU, PEP, PFE, PG, 

RIG, S, SGP, SLB, SO, T, TGT, TRV, TWX, TXN, UNH, UNP, USB, UTX, VLO, VZ, WAG, WB, 

WFC, WMT, WYE, XOM.  As a reference index in the SI model and in the shrinkage to 

single index model, we use the Standard & Poor’s 500 index, which is a widely used 

broadly-based market index.  

 

5.3.2 Methodology 

We extend the work done by [50] by carrying out a comparative performance analysis 

of the newly proposed sparse inverse covariance portfolio strategies from chapter 4 
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with the covariance estimators presented in section 5.2.  We follow the methodology 

from section 4.6.2, where at time 𝑡0 the portfolio is selected by choosing the optimal 

weights that solve the global minimum variance optimization problem with and 

without short selling constraints.   

Specifically, we solve the global minimum variance optimization problem without 

short selling constraints which gives rise to long-short portfolios, and with short 

selling constraints which gives rise to long-only portfolios. The input to the 

optimization problem is the estimated covariance matrix 𝑺(𝐸𝑆𝑇) calculated using the 

𝑇  days preceding 𝑡0  (in-sample training period) and obtained with one of the 

methods (i.e. Direct Optimization, SI, Graphical Lasso etc.).  We call 𝑺(𝐸𝑀𝑃) the 

empirical covariance matrix (same as the one used in the Direct Optimization 

method). Like the synthetic data experiment, the portfolio performance is evaluated 

𝑇  days after 𝑡0  (the out-of-sample test period). Following the synthetic data 

experiment, we use seven different time windows T of 1, 2, 3, 6, 9, 12, and 24 months.  

 

In summary, the covariance estimators that have been presented and the newly 

proposed strategies from chapter 4 that will be evaluated during this experiment are 

as follows. 

i. Direct Optimization: Markowitz direct optimization with the sample 

covariance matrix 

ii. Single Index (SI) model: The Single Index model 

iii. RMT-0: A random matrix theory estimator 

iv. RMT-M: A random matrix theory estimator 
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v. Shrinkage_SI: Shrinkage to Single Index  

vi. Shrinkage_Cov: Shrinkage to common covariance 

vii. Shrinkage_Corr: Shrinkage to constant correlation 

viii. Naïve: This is the equally weighted portfolio described in this section.  

ix. GLassoMIN REALIZED RISK: Graphical Lasso method that optimizes realized risk  

x. GLassoMAX RETURN: Graphical Lasso method that optimizes portfolio return 

xi. GLassoMAX SHARPE: Graphical Lasso method that optimizes Sharpe ratio 

xii. GLassoMAX LIKELIHOOD-2: Graphical Lasso method that optimizes Gaussian 

likelihood using 2 periods for training 

xiii. GLassoMAX LIKELIHOOD: Graphical Lasso method that optimizes Gaussian 

likelihood using 1 period for training 

 
Note the addition of 2 new portfolio strategies, GLassoMAX RETURN and GLassoMAX SHARPE 

which follow the exact same methodology as GLassoMIN REALIZED RISK in chapter 4, only 

optimizing different portfolio criteria (portfolio return and Sharpe ratio). 

 

5.3.3 Performance Measures 

To evaluate the performance of the different covariance estimators, we compare 

portfolio realized risk (defined in chapter 4 section 4.6.4.2), portfolio expected return 

(defined in section 4.2.1) and the Sharpe ratio which will be described subsequently.  

 

5.3.3.1 Sharpe ratio 

 The Sharpe ratio is a ratio of return versus risk, which our goal is to maximize 

[54,57,58].  The higher the Sharpe ratio is, the more return an investor is getting per 
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unit of risk.  The lower the Sharpe ratio is, the more risk the investor is shouldering 

to earn additional returns.  Thus, the Sharpe ratio ultimately “levels the playing field” 

among different portfolios by indicating which are shouldering excessive risk.  

 

The Sharpe ratio is defined as   

 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 =  
𝜇𝑃 − 𝑟𝑓

𝜎𝑃
, 

 

where 𝜇𝑃  is the expected portfolio return, 𝑟𝑓  is the risk-free rate and 𝜎𝑃  is the 

portfolio standard deviation. For the experiments in this chapter, we assume that 

there is no risk free asset, therefore we only consider the return of the portfolio.  

 

5.4 Experiment Results 

In this section, we present the results obtained from repeated portfolio optimization 

using the covariance estimators described in section 5.3 and the newly proposed 

Graphical Lasso covariance estimators.  The average annualized results over all 

possible rebalancing periods are presented in the subsequent tables, while the results 

for each rebalancing period can be found in Appendix F.  

 

5.4.1 Long-Short Portfolio Results  

For the long-short portfolio, we expect the Markowitz Direct Optimization method to 

not perform well in terms of realized risk especially when 𝑇 < 𝑁, since this problem 
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is unconstrained, allowing the portfolio to take on large long and short positions.  We 

expect that the newly proposed Graphical Lasso methods will perform better. Also, it 

is generally believed that the longer the out of sample period, the less stable the 

Markowitz Direct Optimization portfolios [50], so we expect the sparse methods to 

give rise to less risky portfolios for the longer rebalancing periods. 

Additionally, we expect that amongst the Graphical Lasso methods that optimize 

certain portfolio criteria in the validation period (e.g. maximize portfolio return), 

when compared to other validation methods with the exception of the likelihood 

methods, each method that optimizes certain portfolio criteria will perform the best 

compared to the other validation methods that optimize other portfolio criteria.   

 

5.4.1.1 Realized Risk 

We look at the average performance over all rebalancing periods for all the methods 

in literature that we discussed and compare performance to the average performance 

of the newly proposed Graphical Lasso methods in Table 5.1.   
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Average S.S 
Predicted 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Direct Optimization 603.31 28.05 612.16 28.76 
SI 5.45 0.28 12.27 0.96 
RMT-0 6.12 0.42 11.87 0.95 
RMT-M 6.18 0.42 11.77 0.94 
Shrinkage_SI 33.57 13.22 32.15 10.22 
Shrinkage_Cov 11.46 0.71 12.18 0.85 
Shrinkage_Corr 7.61 0.53 12.31 1.00 
Naïve 16.02 1.05 15.81 1.10 
GLassoMAX RETURN 5.77 0.57 12.31 0.87 

GLassoMIN REALIZED RISK 6.24 0.45 11.78 0.91 
GLassoMAX SHARPE 5.84 0.56 12.26 0.89 
GLassoMAX LIKELIHOOD 6.16 0.52 11.63 0.83 
GLassoMAX LIKELIHOOD-2 6.23 0.52 11.78 0.86 

 
Table 5.1   Long-short portfolio average realized risks (all methods) 

 

For the long-short portfolio problem, the summary table over all rebalancing periods, 

Table 5.1, shows that on average Markowitz Direct Optimization is not stable and 

results in portfolios with extremely large realized risks.  The proposed sparse 

Graphical Lasso estimator that maximizes the Gaussian likelihood using 1 period for 

training and another period for validation (GLassoMAX LIKELIHOOD) performs the best.  It 

gives the least risky portfolios than all other methods.  One of the random matrix 

methods, RMT-M, achieves the second best realized risk, with the other likelihood 

method (GLassoMAX LIKELIHOOD-2) and the validation method that optimizes for realized 

risk (GLassoMIN REALIZED RISK) achieving the third best realized risks. We now look at 

some individual rebalancing period results from Appendix F to see if the results are 

consistent over time.  
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3 months S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Direct Optimization 1410.62 76.06 1421.58 76.44 
SI 5.12 0.24 11.47 0.63 
RMT-0 5.27 0.25 11.34 0.63 
RMT-M 5.33 0.26 11.27 0.62 
Shrinkage_SI 5.35 0.29 11.51 0.57 
Shrinkage_Cov 11.73 0.65 12.00 0.60 
Shrinkage_Corr 6.97 0.38 11.77 0.65 
Naïve 15.67 0.85 15.80 0.85 
GLassoMAX RETURN 5.23 0.27 11.88 0.68 
GLassoMIN REALIZED RISK 5.55 0.31 11.41 0.58 
GLassoMAX SHARPE 5.34 0.27 11.85 0.69 
GLassoMAX LIKELIHOOD 5.68 0.31 11.24 0.58 
GLassoMAX LIKELIHOOD-2 5.55 0.27 11.42 0.60 

 
Table 5.2   Long-short portfolio 3 months realized risks  

 

 

 

1 year S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Direct Optimization 6.97 0.63 13.63 1.25 
SI 5.94 0.41 13.16 1.32 
RMT-0 7.18 0.67 12.35 1.24 
RMT-M 7.24 0.68 12.23 1.23 
Shrinkage_SI 7.59 0.70 12.35 1.09 
Shrinkage_Cov 10.54 0.91 12.07 1.07 
Shrinkage_Corr 8.33 0.81 12.78 1.20 
Naïve 16.20 1.43 16.09 1.43 
GLassoMAX RETURN 6.63 0.82 12.03 0.98 
GLassoMIN REALIZED RISK 6.67 0.62 12.03 1.17 
GLassoMAX SHARPE 6.81 0.88 11.96 0.99 
GLassoMAX LIKELIHOOD 7.06 0.87 11.79 1.11 
GLassoMAX LIKELIHOOD-2 7.31 0.92 11.92 1.11 

 
Table 5.3   Long-short portfolio 1 year realized risks  
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2 years S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Direct Optimization 9.09 0.68 14.02 2.01 
SI 6.71 0.27 14.31 1.58 
RMT-0 8.71 0.70 13.63 1.78 
RMT-M 8.77 0.69 13.42 1.75 
Shrinkage_SI 9.26 0.69 13.54 1.87 
Shrinkage_Cov 11.07 0.75 12.96 1.47 
Shrinkage_Corr 9.86 0.75 13.99 2.13 
Naïve 17.34 1.26 15.76 1.51 
GLassoMAX RETURN 8.16 1.18 13.76 1.55 
GLassoMIN REALIZED RISK 8.50 0.68 12.89 1.59 
GLassoMAX SHARPE 8.10 1.17 13.77 1.55 
GLassoMAX LIKELIHOOD 8.41 0.90 12.40 1.28 
GLassoMAX LIKELIHOOD-2 8.79 0.92 12.82 1.49 

 
Table 5.4   Long-short portfolio 2 years realized risks  

 

From Appendix F, Table 5.2, Table 5.3 and Table 5.4, it is evident that for all the 

methods, realized risks increase as T increases. We also see that the Direct 

Optimization method performs badly when 𝑇 < 𝑁. At 3 months, which is the crossing 

point when the estimated covariance goes from singular to non-singular, the realized 

risk of the Direct Optimization method becomes extremely large.  It gets even larger 

as T decreases, as evident in our 1 month and 2 months results in Appendix F.  At the 

lower rebalancing periods, 1 and 2 months, the non-Graphical Lasso methods, with 

the exception of the Direct Optimization method, perform better than the Graphical 

Lasso methods.  From 3 months and higher, the performance of the Graphical Lasso 

methods pick up, with the Graphical Lasso likelihood method, GLassoMAX LIKELIHOOD, 

consistently achieving the best realized risk at every rebalancing period higher than 

2 months.  These results support our hypothesis where we expect that the sparse 
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Graphical Lasso methods will give rise to less risky portfolios at longer rebalancing 

periods, and also have lower realized risks than the Direct Optimization method. 

In general, all Graphical Lasso strategies perform better than the Direct Optimization 

and Naïve methods at all rebalancing periods. Compared to the other covariance 

estimation methods from literature (excluding Direct Optimization and the Naïve 

method), all Graphical Lasso strategies perform better than 2 out of 6 of these 

methods at the 1 month rebalancing period. At the 2 month rebalancing period, the 

best performing Graphical Lasso strategy, GLassoMAX LIKELIHOOD, performs better than 

4 of the 6 methods from literature.  From 3 months all the way to 2 years, GLassoMAX 

LIKELIHOOD performs better than all the 6 methods from literature.   These results show 

that the Graphical Lasso portfolio strategies appear to be very competitive, especially 

the GLassoMAX LIKELIHOOD, which is always the best performing Graphical Lasso strategy. 

 

5.4.1.2 Expected Return of the Portfolio 

In terms of portfolio return, we expect the sparse estimator which optimizes portfolio 

return to perform the best amongst the other Graphical Lasso strategies that optimize 

portfolio criteria.  
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Average S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Direct Optimization 603.31 28.05 612.16 28.76 341.89 172.27 

SI 5.45 0.28 12.27 0.96 8.88 3.38 

RMT-0 6.12 0.42 11.87 0.95 9.86 3.38 

RMT-M 6.18 0.42 11.77 0.94 9.63 3.36 

Shrinkage_SI 33.57 13.22 32.15 10.22 25.70 20.65 

Shrinkage_Cov 11.46 0.71 12.18 0.85 9.58 3.28 

Shrinkage_Corr 7.61 0.53 12.31 1.00 9.43 3.60 

Naïve 16.02 1.05 15.81 1.10 8.88 4.03 

GLassoMAX RETURN 5.77 0.57 12.31 0.87 8.73 3.13 

GLassoMIN REALIZED RISK 6.24 0.45 11.78 0.91 8.96 3.26 

GLassoMAX SHARPE 5.84 0.56 12.26 0.89 8.92 3.16 

GLassoMAX LIKELIHOOD 6.16 0.52 11.63 0.83 8.68 3.05 

GLassoMAX LIKELIHOOD-2 6.23 0.52 11.78 0.86 8.81 3.17 

 
Table 5.5   Long-short portfolio average portfolio return (all methods) 

 
 

Amongst the Graphical Lasso methods that optimize portfolio criteria, we expect the 

one that maximizes portfolio return to have the highest return.  However our results 

show a different performance.   The other two Graphical Lasso methods that optimize 

realized risk and Sharpe ratio perform better. We now look at some individual 

rebalancing period results from Appendix F to see if the results are consistent over 

time.  
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3 months S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Direct Optimization 1410.62 76.06 1421.58 76.44 913.54 439.05 
SI 5.12 0.24 11.47 0.63 7.16 3.39 
RMT-0 5.27 0.25 11.34 0.63 6.24 3.41 
RMT-M 5.33 0.26 11.27 0.62 6.23 3.39 
Shrinkage_SI 5.35 0.29 11.51 0.57 8.12 3.53 
Shrinkage_Cov 11.73 0.65 12.00 0.60 8.84 3.18 
Shrinkage_Corr 6.97 0.38 11.77 0.65 6.28 3.41 
Naïve 15.67 0.85 15.80 0.85 10.15 4.88 
GLassoMAX RETURN 5.23 0.27 11.88 0.68 6.56 3.48 
GLassoMIN REALIZED RISK 5.55 0.31 11.41 0.58 7.69 3.26 
GLassoMAX SHARPE 5.34 0.27 11.85 0.69 6.74 3.52 
GLassoMAX LIKELIHOOD 5.68 0.31 11.24 0.58 7.15 3.13 
GLassoMAX LIKELIHOOD-2 5.55 0.27 11.42 0.60 6.80 3.20 

 
Table 5.6   Long-short portfolio 3 months portfolio return 

 
 
 
 
 

1 year S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Direct Optimization 6.97 0.63 13.63 1.25 12.21 3.50 
SI 5.94 0.41 13.16 1.32 11.05 3.39 
RMT-0 7.18 0.67 12.35 1.24 15.43 3.37 
RMT-M 7.24 0.68 12.23 1.23 14.89 3.38 
Shrinkage_SI 7.59 0.70 12.35 1.09 12.15 3.24 
Shrinkage_Cov 10.54 0.91 12.07 1.07 10.66 3.09 
Shrinkage_Corr 8.33 0.81 12.78 1.20 12.63 3.45 
Naïve 16.20 1.43 16.09 1.43 9.35 4.16 
GLassoMAX RETURN 6.63 0.82 12.03 0.98 11.17 2.50 
GLassoMIN REALIZED RISK 6.67 0.62 12.03 1.17 10.64 3.31 
GLassoMAX SHARPE 6.81 0.88 11.96 0.99 11.63 2.72 
GLassoMAX LIKELIHOOD 7.06 0.87 11.79 1.11 11.14 3.09 
GLassoMAX LIKELIHOOD-2 7.31 0.92 11.92 1.11 11.52 3.01 

 
Table 5.7   Long-short portfolio 1 year portfolio return 
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2 years S.S 
Predicted 
Risk (%) 

std 
dev 

Realized 
Risk (%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Direct Optimization 9.09 0.68 14.02 2.01 12.36 3.33 
SI 6.71 0.27 14.31 1.58 13.38 2.42 
RMT-0 8.71 0.70 13.63 1.78 15.13 3.32 
RMT-M 8.77 0.69 13.42 1.75 14.54 3.33 
Shrinkage_SI 9.26 0.69 13.54 1.87 12.80 3.29 
Shrinkage_Cov 11.07 0.75 12.96 1.47 11.74 2.97 
Shrinkage_Corr 9.86 0.75 13.99 2.13 12.69 3.55 
Naïve 17.34 1.26 15.76 1.51 8.05 3.70 
GLassoMAX RETURN 8.16 1.18 13.76 1.55 11.83 3.09 
GLassoMIN REALIZED RISK 8.50 0.68 12.89 1.59 12.51 2.92 
GLassoMAX SHARPE 8.10 1.17 13.77 1.55 11.99 3.09 
GLassoMAX LIKELIHOOD 8.41 0.90 12.40 1.28 11.28 2.41 
GLassoMAX LIKELIHOOD-2 8.79 0.92 12.82 1.49 11.96 2.85 

 
Table 5.8   Long-short portfolio 2 years portfolio return 

 

 

From Table 5.6, the 3 months result shows the Direct Optimization method giving 

extremely high portfolio returns due to unstable covariance estimation. At the 1 

month and 3 months rebalancing periods, the Naïve method gives the highest 

portfolio return.  At 6 months and 9 months in Appendix F, the Direct Optimization 

method gives the highest portfolio return.  For 1 year and 2 year periods, the random 

matrix method, RMT-0, gives the highest portfolio return. In general, for every 

rebalancing period, the non-Graphical Lasso methods perform better than the 

Graphical Lasso methods and the Naïve method, except at 𝑇 < 𝑁, where the Naïve 

method gives the best portfolio returns.  
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5.4.1.3 Sharpe Ratio 

In terms of Sharpe ratio, we expect the sparse Graphical Lasso estimator which 

optimizes Sharpe ratio to perform the best amongst the other Graphical Lasso 

strategies that optimize portfolio criteria.     

 

Average S.S 
Predicted 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 603.31 28.05 612.16 28.76 0.70 
SI 5.45 0.28 12.27 0.96 0.68 
RMT-0 6.12 0.42 11.87 0.95 0.78 
RMT-M 6.18 0.42 11.77 0.94 0.77 
Shrinkage_SI 33.57 13.22 32.15 10.22 0.66 
Shrinkage_Cov 11.46 0.71 12.18 0.85 0.76 
Shrinkage_Corr 7.61 0.53 12.31 1.00 0.72 
Naïve 16.02 1.05 15.81 1.10 0.54 
GLassoMAX RETURN 5.77 0.57 12.31 0.87 0.96 
GLassoMIN REALIZED RISK 6.24 0.45 11.78 0.91 1.01 

GLassoMAX SHARPE 5.84 0.56 12.26 0.89 0.99 
GLassoMAX LIKELIHOOD 6.16 0.52 11.63 0.83 1.00 
GLassoMAX LIKELIHOOD-2 6.23 0.52 11.78 0.86 1.00 

 
Table 5.9   Long-short portfolio average Sharpe ratio (all methods) 

 

 
Table 5.9 shows that the Graphical Lasso methods appear to give portfolios with 

higher Sharpe ratios than the non-Graphical Lasso methods. We expect the Graphical 

Lasso method that optimizes Sharpe ratio to perform best when compared to the 

other Graphical Lasso methods that optimize portfolio criteria, but results show that 

the Graphical Lasso strategy that optimizes realized risk performs the best. We now 

look at individual average Sharpe ratio performance over all rebalancing periods for 

all the methods in Appendix F.    
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3 months S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 1410.62 76.06 1421.58 76.44 0.62 
SI 5.12 0.24 11.47 0.63 0.60 
RMT-0 5.27 0.25 11.34 0.63 0.53 
RMT-M 5.33 0.26 11.27 0.62 0.53 
Shrinkage_SI 5.35 0.29 11.51 0.57 0.68 
Shrinkage_Cov 11.73 0.65 12.00 0.60 0.71 
Shrinkage_Corr 6.97 0.38 11.77 0.65 0.51 
Naive 15.67 0.85 15.80 0.85 0.62 
GLassoMAX RETURN 5.23 0.27 11.88 0.68 0.95 
GLassoMIN REALIZED RISK 5.55 0.31 11.41 0.58 1.04 
GLassoMAX SHARPE 5.34 0.27 11.85 0.69 1.00 
GLassoMAX LIKELIHOOD 5.68 0.31 11.24 0.58 1.00 
GLassoMAX LIKELIHOOD-2 5.55 0.27 11.42 0.60 0.97 

 
Table 5.10   Long-short portfolio 3 months Sharpe ratio  

 

 

 

 

1 year S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 6.97 0.63 13.63 1.25 0.87 
SI 5.94 0.41 13.16 1.32 0.81 
RMT-0 7.18 0.67 12.35 1.24 1.20 
RMT-M 7.24 0.68 12.23 1.23 1.17 
Shrinkage_SI 7.59 0.70 12.35 1.09 0.95 
Shrinkage_Cov 10.54 0.91 12.07 1.07 0.86 
Shrinkage_Corr 8.33 0.81 12.78 1.20 0.95 
Naive 16.20 1.43 16.09 1.43 0.56 
GLassoMAX RETURN 6.63 0.82 12.03 0.98 1.01 
GLassoMIN REALIZED RISK 6.67 0.62 12.03 1.17 1.04 
GLassoMAX SHARPE 6.81 0.88 11.96 0.99 1.08 
GLassoMAX LIKELIHOOD 7.06 0.87 11.79 1.11 1.08 
GLassoMAX LIKELIHOOD-2 7.31 0.92 11.92 1.11 1.11 

 
Table 5.11   Long-short portfolio 1 year Sharpe ratio  
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2 years S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 9.09 0.68 14.02 2.01 0.83 
SI 6.71 0.27 14.31 1.58 0.90 
RMT-0 8.71 0.70 13.63 1.78 1.05 
RMT-M 8.77 0.69 13.42 1.75 1.03 
Shrinkage_SI 9.26 0.69 13.54 1.87 0.89 
Shrinkage_Cov 11.07 0.75 12.96 1.47 0.87 
Shrinkage_Corr 9.86 0.75 13.99 2.13 0.84 
Naive 17.34 1.26 15.76 1.51 0.50 
GLassoMAX RETURN 8.16 1.18 13.76 1.55 0.93 
GLassoMIN REALIZED RISK 8.50 0.68 12.89 1.59 1.10 
GLassoMAX SHARPE 8.10 1.17 13.77 1.55 0.94 
GLassoMAX LIKELIHOOD 8.41 0.90 12.40 1.28 1.03 
GLassoMAX LIKELIHOOD-2 8.79 0.92 12.82 1.49 1.04 

 
Table 5.12   Long-short portfolio 2 years Sharpe ratio  

 

 

Table 5.10, Table 5.11 and Table 5.12 all show similar results to the average results. 

Across all rebalancing periods, the Graphical Lasso strategies consistently result in 

Sharpe ratios > 0.9. It is well known that financial institutions typically want Sharpe 

ratios > 1 because it is believed that if this is so, an investor is making money most of 

the time.  The Graphical Lasso strategies have many incidents of achieving Sharpe 

ratios > 1, which are significantly higher than the Sharpe ratios of the non-Graphical 

Lasso strategies, as evident in Appendix F, Table 5.10, Table 5.11 and Table 5.12.  

The only times the non-Graphical Lasso strategies achieve Sharpe ratios > 1 are at the 

1 year and 2 year periods, when the RMT methods perform well, giving high Sharpe 

ratios.  
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5.4.2 Long-Only Portfolio Result 
 
Compared to the long-short portfolio results, our only different expectation is that 

with the addition of the no short-selling constraint, the performance of the Direct 

Optimization method should significantly improve because this constraint prevents 

this method from taking on extreme long and short positions.   

 

5.4.2.1 Realized Risk 

We look at the average performance over all rebalancing periods for all the methods 

in literature that we discussed and compare performance to the average performance 

of the newly proposed Graphical Lasso methods in Table 5.13 

 

Average N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Direct Optimization 8.11 0.59 11.75 1.01 
SI 7.30 0.46 12.28 0.96 
RMT-0 8.11 0.56 12.24 0.99 
RMT-M 8.04 0.56 12.20 0.98 
Shrinkage_SI 8.31 0.57 12.18 0.98 
Shrinkage_Cov 12.32 0.77 12.38 0.89 
Shrinkage_Corr 9.59 0.66 12.26 1.05 
Naive 16.02 1.05 15.81 1.10 
GLassoMAX RETURN 6.89 0.75 12.46 0.82 
GLassoMIN REALIZED RISK 7.33 0.53 12.12 0.90 

GLassoMAX SHARPE 6.98 0.74 12.59 0.92 
GLassoMAX LIKELIHOOD 7.66 0.68 11.94 0.85 
GLassoMAX LIKELIHOOD-2 7.88 0.69 12.11 0.91 

 
Table 5.13   Long-only portfolio average realized risks (all methods) 
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Results in Table 5.13 show that the Graphical Lasso methods on average achieve 

similar realized risks to the non-Graphical Lasso methods excluding the Naïve and 

Direct Optimization methods. The performance of the Direct Optimization method 

improves significantly, resulting in the best average realized risk. The second best 

realized risk is that of the proposed sparse Graphical Lasso estimator that maximizes 

the Gaussian likelihood using 1 period for training and another period for validation 

(GLassoMAX LIKELIHOOD). This result supports our hypothesis which states that we 

expect the Direct Optimization performance to significantly improve due to the 

addition of the no short selling constraint. We now look at some individual 

rebalancing period results from Appendix F to see if the results are consistent over 

time.  

 

3 months N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Direct Optimization 7.47 0.41 12.11 0.65 
SI 6.89 0.38 11.60 0.61 
RMT-0 7.35 0.41 11.64 0.61 
RMT-M 7.31 0.41 11.61 0.61 
Shrinkage_SI 7.60 0.41 11.60 0.61 
Shrinkage_Cov 12.43 0.68 12.16 0.63 
Shrinkage_Corr 9.11 0.50 11.65 0.67 
Naïve 15.67 0.85 15.80 0.85 
GLassoMAX RETURN 6.51 0.49 12.25 0.67 
GLassoMIN REALIZED RISK 7.30 0.44 11.69 0.63 
GLassoMAX SHARPE 6.71 0.48 12.07 0.68 
GLassoMAX LIKELIHOOD 7.19 0.44 11.46 0.61 
GLassoMAX LIKELIHOOD-2 7.41 0.46 11.66 0.62 

 
Table 5.14   Long-only portfolio 3 months realized risks  
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1 year N.S.S 
Predicted 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Direct Optimization 9.46 0.88 12.74 1.18 
SI 7.90 0.64 12.94 1.19 
RMT-0 9.18 0.84 12.82 1.24 
RMT-M 9.08 0.83 12.76 1.23 
Shrinkage_SI 9.35 0.85 12.63 1.15 
Shrinkage_Cov 11.69 1.01 12.23 1.08 
Shrinkage_Corr 10.05 0.98 12.83 1.23 
Naïve 16.20 1.43 16.09 1.43 
GLassoMAX RETURN 8.02 1.16 12.72 1.05 
GLassoMIN REALIZED RISK 7.96 0.93 12.31 1.11 
GLassoMAX SHARPE 8.02 1.16 12.80 1.05 
GLassoMAX LIKELIHOOD 8.30 1.05 12.17 1.09 
GLassoMAX LIKELIHOOD-2 8.63 1.10 12.35 1.12 

 
Table 5.15   Long-only portfolio 1 year realized risks  

 

2 years N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Direct Optimization 11.03 0.79 8.11 2.25 
SI 9.00 0.51 13.92 1.90 
RMT-0 10.67 0.78 14.18 2.14 
RMT-M 10.54 0.76 14.07 2.09 
Shrinkage_SI 10.90 0.77 14.02 2.18 
Shrinkage_Cov 12.30 0.83 13.23 1.63 
Shrinkage_Corr 11.43 0.83 14.27 2.37 
Naïve 17.34 1.26 15.76 1.51 
GLassoMAX RETURN 7.72 1.17 13.07 1.16 
GLassoMIN REALIZED RISK 8.64 0.46 13.19 1.64 
GLassoMAX SHARPE 8.11 1.18 14.22 1.80 
GLassoMAX LIKELIHOOD 9.63 1.03 12.68 1.35 
GLassoMAX LIKELIHOOD-2 10.09 1.03 13.35 1.68 

 
Table 5.16   Long-only portfolio 2 years realized risks  

 

Once again, at longer rebalancing periods, the realized risks for all methods except 

the direct optimization method, increase with T. From Appendix F, it is evident that 

for 𝑇 < 𝑁 , the Direct Optimization method has one of the highest realized risks, 

although significantly better than its performance for the long-short portfolio 
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problem.  All other methods perform essentially the same as they did in the long-short 

portfolio case.  The performance of the Graphical Lasso methods improves with 

increasing T.  Amongst all the Graphical Lasso methods, the likelihood method, 

GLassoMAX LIKELIHOOD, consistently achieves the best realized risk for all rebalancing 

periods except at 1 month.  Compared to all methods (including non-Graphical Lasso 

methods), this method (GLassoMAX LIKELIHOOD) always has the top 3 best realized risks. 

At the 1 year and 9 month rebalancing periods, it has the best realized risk compared 

to all other methods, but at the 2 year period, the Direct Optimization achieves the 

best performance.  

In general, across all rebalancing periods, the Naïve method achieves the worst 

performance.  For the 1 month, 2 months and 3 months rebalancing periods, the 

Direct Optimization method performs worse than all the Graphical Lasso strategies.  

From 6 months to 1 year, the Direct Optimization method performs worse than most 

Graphical Lasso strategies, but at the 2 year period achieves the best overall 

performance which is expected due to the large sample size and the addition of the 

no short selling constraint.   The methods from literature perform well, though not as 

good as the Graphical Lasso portfolio strategies.  The Graphical Lasso strategy 

(GLassoMAX LIKELIHOOD) consistently is in the top 2 best performers from 3 months to 2 

years.  For the 1 month period, this Graphical Lasso strategy does not perform well 

and most of the methods from literature perform better.  At 2 months, GLassoMAX 

LIKELIHOOD has the 3rd best realized risk, after 2 methods from literature.    
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5.4.2.2 Expected Return of the Portfolio  

Like the long-short portfolio results, the non-Graphical Lasso methods achieve higher 

portfolio returns than the Graphical Lasso methods as seen in Table 5.17. 

 

Average N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Direct Optimization 8.11 0.59 11.75 1.01 10.70 3.67 
SI 7.30 0.46 12.28 0.96 10.15 3.53 
RMT-0 8.11 0.56 12.24 0.99 10.29 3.57 
RMT-M 8.04 0.56 12.20 0.98 10.18 3.54 
Shrinkage_SI 8.31 0.57 12.18 0.98 10.50 3.50 
Shrinkage_Cov 12.32 0.77 12.38 0.89 9.59 3.39 
Shrinkage_Corr 9.59 0.66 12.26 1.05 10.00 3.58 
Naive 16.02 1.05 15.81 1.10 8.88 4.03 
GLassoMAX RETURN 6.89 0.75 12.46 0.82 9.20 3.20 
GLassoMIN REALIZED RISK 7.33 0.53 12.12 0.90 9.18 3.37 
GLassoMAX SHARPE 6.98 0.74 12.59 0.92 9.46 3.38 
GLassoMAX LIKELIHOOD 7.66 0.68 11.94 0.85 9.09 3.22 

GLassoMAX LIKELIHOOD-2 7.88 0.69 12.11 0.91 9.45 3.33 
 

Table 5.17   Long-only portfolio average portfolio return (all methods) 
 
 

The results in Table 5.17 show that the non-Graphical Lasso methods have higher 

portfolio returns than the Graphical Lasso methods.  Amongst the Graphical Lasso 

methods that optimize portfolio criteria, we expect the one that maximizes return to 

have the highest return, but this is not the case.  Like the long-short portfolio results, 

the Graphical Lasso method that optimizes Sharpe ratio performs best. We now look 

at some individual rebalancing period results from Appendix F to see if the results are 

consistent over time.  
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3 months N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio  
Return (%) 

std 
dev 

Direct Optimization 7.47 0.41 12.11 0.65 9.88 3.57 
SI 6.89 0.38 11.60 0.61 9.15 3.54 
RMT-0 7.35 0.41 11.64 0.61 8.18 3.63 
RMT-M 7.31 0.41 11.61 0.61 8.12 3.61 
Shrinkage_SI 7.60 0.41 11.60 0.61 9.15 3.40 
Shrinkage_Cov 12.43 0.68 12.16 0.63 9.82 3.51 
Shrinkage_Corr 9.11 0.50 11.65 0.67 7.45 3.18 
Naive 15.67 0.85 15.80 0.85 10.15 4.88 
GLassoMAX RETURN 6.51 0.49 12.25 0.67 8.23 3.41 
GLassoMIN REALIZED RISK 7.30 0.44 11.69 0.63 7.47 3.47 
GLassoMAX SHARPE 6.71 0.48 12.07 0.68 7.64 3.43 
GLassoMAX LIKELIHOOD 7.19 0.44 11.46 0.61 7.62 3.39 
GLassoMAX LIKELIHOOD-2 7.41 0.46 11.66 0.62 8.11 3.31 

 
Table 5.18   Long-only portfolio 3 months portfolio return 

 

 

1 year N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Direct Optimization 9.46 0.88 12.74 1.18 13.33 3.89 
SI 7.90 0.64 12.94 1.19 11.88 3.80 
RMT-0 9.18 0.84 12.82 1.24 13.54 4.01 
RMT-M 9.08 0.83 12.76 1.23 13.31 3.97 
Shrinkage_SI 9.35 0.85 12.63 1.15 12.99 3.83 
Shrinkage_Cov 11.69 1.01 12.23 1.08 10.70 3.34 
Shrinkage_Corr 10.05 0.98 12.83 1.23 13.50 4.08 
Naive 16.20 1.43 16.09 1.43 9.35 4.16 
GLassoMAX RETURN 8.02 1.16 12.72 1.05 12.60 3.51 
GLassoMIN REALIZED RISK 7.96 0.93 12.31 1.11 11.19 3.69 
GLassoMAX SHARPE 8.02 1.16 12.80 1.05 12.76 3.54 
GLassoMAX LIKELIHOOD 8.30 1.05 12.17 1.09 11.05 3.55 
GLassoMAX LIKELIHOOD-2 8.63 1.10 12.35 1.12 11.69 3.64 

 
Table 5.19   Long-only portfolio 1 year portfolio return 
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2 years N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Direct Optimization 11.03 0.79 8.11 2.25 13.12 4.23 
SI 9.00 0.51 13.92 1.90 13.12 3.80 
RMT-0 10.67 0.78 14.18 2.14 13.61 4.29 
RMT-M 10.54 0.76 14.07 2.09 13.56 4.22 
Shrinkage_SI 10.90 0.77 14.02 2.18 13.35 4.11 
Shrinkage_Cov 12.30 0.83 13.23 1.63 12.22 3.46 
Shrinkage_Corr 11.43 0.83 14.27 2.37 13.25 4.35 
Naïve 17.34 1.26 15.76 1.51 8.05 3.70 
GLassoMAX RETURN 7.72 1.17 13.07 1.16 10.04 2.56 
GLassoMIN REALIZED RISK 8.64 0.46 13.19 1.64 12.43 3.50 
GLassoMAX SHARPE 8.11 1.18 14.22 1.80 12.10 3.92 
GLassoMAX LIKELIHOOD 9.63 1.03 12.68 1.35 11.47 2.92 
GLassoMAX LIKELIHOOD-2 10.09 1.03 13.35 1.68 12.47 3.61 

 
Table 5.20   Long-only portfolio 2 years portfolio return 

 

 

Appendix F, Table 5.18, Table 5.19 and Table 5.20 show that at the individual 

rebalancing periods, we achieve the same performance as the average results, with 

the non-Graphical Lasso methods having higher portfolio returns than the Graphical 

Lasso methods.  

  

5.4.2.3 Sharpe Ratio 

Like the long-short portfolio results, the Graphical Lasso methods achieve higher 

Sharpe ratios than the non-Graphical Lasso methods as seen in Table 5.21.  
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Average N.S.S 
Pred 

Risk(%) 
std 
dev 

Realized 
Risk(%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 8.11 0.59 11.75 1.01 0.81 
SI 7.30 0.46 12.28 0.96 0.79 
RMT-0 8.11 0.56 12.24 0.99 0.80 
RMT-M 8.04 0.56 12.20 0.98 0.79 
Shrinkage_SI 8.31 0.57 12.18 0.98 0.82 
Shrinkage_Cov 12.32 0.77 12.38 0.89 0.75 
Shrinkage_Corr 9.59 0.66 12.26 1.05 0.77 
Naive 16.02 1.05 15.81 1.10 0.54 
GLassoMAX RETURN 6.89 0.75 12.46 0.82 0.99 

GLassoMIN REALIZED RISK 7.33 0.53 12.12 0.90 1.01 
GLassoMAX SHARPE 6.98 0.74 12.59 0.92 0.99 
GLassoMAX LIKELIHOOD 7.66 0.68 11.94 0.85 1.02 
GLassoMAX LIKELIHOOD-2 7.88 0.69 12.11 0.91 1.03 

 
Table 5.21   Long-only portfolio average Sharpe ratio 

 
 

We now look at individual average Sharpe ratio performance over all rebalancing 

periods for all the methods in Appendix F.    

 

3 months N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 7.47 0.41 12.11 0.65 0.78 
SI 6.89 0.38 11.60 0.61 0.76 
RMT-0 7.35 0.41 11.64 0.61 0.67 
RMT-M 7.31 0.41 11.61 0.61 0.67 
Shrinkage_SI 7.60 0.41 11.60 0.61 0.76 
Shrinkage_Cov 12.43 0.68 12.16 0.63 0.78 
Shrinkage_Corr 9.11 0.50 11.65 0.67 0.61 
Naive 15.67 0.85 15.80 0.85 0.62 
GLassoMAX RETURN 6.51 0.49 12.25 0.67 1.06 
GLassoMIN REALIZED RISK 7.30 0.44 11.69 0.63 1.01 
GLassoMAX SHARPE 6.71 0.48 12.07 0.68 1.02 
GLassoMAX LIKELIHOOD 7.19 0.44 11.46 0.61 1.01 
GLassoMAX LIKELIHOOD-2 7.41 0.46 11.66 0.62 1.02 

 
Table 5.22   Long-only portfolio 3 months Sharpe ratio  
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1 year N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 9.46 0.88 12.74 1.18 1.01 
SI 7.90 0.64 12.94 1.19 0.89 
RMT-0 9.18 0.84 12.82 1.24 1.02 
RMT-M 9.08 0.83 12.76 1.23 1.01 
Shrinkage_SI 9.35 0.85 12.63 1.15 1.00 
Shrinkage_Cov 11.69 1.01 12.23 1.08 0.85 
Shrinkage_Corr 10.05 0.98 12.83 1.23 1.02 
Naive 16.20 1.43 16.09 1.43 0.56 
GLassoMAX RETURN 8.02 1.16 12.72 1.05 1.08 
GLassoMIN REALIZED RISK 7.96 0.93 12.31 1.11 1.03 
GLassoMAX SHARPE 8.02 1.16 12.80 1.05 1.09 
GLassoMAX LIKELIHOOD 8.30 1.05 12.17 1.09 1.04 
GLassoMAX LIKELIHOOD-2 8.63 1.10 12.35 1.12 1.07 

 
Table 5.23   Long-only portfolio 1 year Sharpe ratio  

 

 

2 years N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 11.03 0.79 8.11 2.25 0.85 
SI 9.00 0.51 13.92 1.90 0.89 
RMT-0 10.67 0.78 14.18 2.14 0.89 
RMT-M 10.54 0.76 14.07 2.09 0.90 
Shrinkage_SI 10.90 0.77 14.02 2.18 0.88 
Shrinkage_Cov 12.30 0.83 13.23 1.63 0.88 
Shrinkage_Corr 11.43 0.83 14.27 2.37 0.85 
Naive 17.34 1.26 15.76 1.51 0.50 
GLassoMAX RETURN 7.72 1.17 13.07 1.16 0.86 
GLassoMIN REALIZED RISK 8.64 0.46 13.19 1.64 1.04 
GLassoMAX SHARPE 8.11 1.18 14.22 1.80 0.89 
GLassoMAX LIKELIHOOD 9.63 1.03 12.68 1.35 1.02 
GLassoMAX LIKELIHOOD-2 10.09 1.03 13.35 1.68 1.03 

 
Table 5.24   Long-only portfolio 2 years Sharpe ratio  

 

Appendix F, Table 5.22 Table 5.23 and Table 5.24 show that at the individual 

rebalancing periods, we achieve the same performance as the average results, with 

the Graphical Lasso methods consistently achieving higher Sharpe ratios than the 
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non-Graphical Lasso methods.  Amongst the Graphical Lasso methods that optimize 

portfolio criteria, we expect the one that maximizes Sharpe ratio to perform the best 

when compared to the other methods that optimize portfolio criteria, but this is only 

the case at some rebalancing periods e.g. 1 year.   

 

5.5 Summary 

In this chapter, we compared the performance of existing covariance estimators for 

portfolio optimization with the newly proposed Graphical Lasso methods on stock 

market data.  We evaluated portfolio performance across different rebalancing 

periods with and without short selling constraints. 

For both the long-short and long-only portfolios, our results showed that in general 

for all the methods, realized risks got worse, increasing as T increased, with the 

exception of the Direct Optimization method, which performed very well at 2 years in 

the long-only case .  The Direct Optimization method performed badly when 𝑇 < 𝑁, 

as expected, because the estimated covariance is singular at this point, causing it to 

take on extreme long and short positions, with the realized risks becoming worse the 

smaller  
𝑇

𝑁
  was.  

For the long-short portfolio case, across all rebalancing periods, all Graphical Lasso 

strategies always performed better than the Direct Optimization and Naïve methods 

in terms of realized risk.  In general, GLassoMAX LIKELIHOOD always achieved the best 

realized risk amongst all the other Graphical Lasso strategies except at the 1 month 

period. When 𝑇 < 𝑁 , the Graphical Lasso strategy, GLassoMAX LIKELIHOOD, performed 
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better than most of the methods from literature. When 𝑇 > 𝑁, the performance of the 

Graphical Lasso methods picked up, with the Graphical Lasso likelihood method, 

GLassoMAX LIKELIHOOD, consistently achieving the best realized risk compared to all the 

other methods (Naïve method, Direct Optimization method, methods from literature 

and the other Graphical Lasso methods).   

For the long-only case, GLassoMAX LIKELIHOOD always achieved the best realized risks 

amongst all the other Graphical Lasso methods except at the 1 month period, and the 

top 3 best realized risks compared to all the methods (non-Graphical Lasso methods 

included) for all rebalancing periods, except at 1 month.  The Graphical Lasso 

strategies always performed better than the Direct Optimization and Naïve methods 

except at the 2 year period, when the Direct Optimization method performed very 

well, achieving the lowest realized risk. When < 𝑁 , the Graphical Lasso strategies 

always performed better than the Direct Optimization and Naïve methods. Also, at 

this point ( 𝑇 < 𝑁 ), the methods from literature had similar realized risk 

performances as the Graphical Lasso strategies, with the winning method varying 

depending on the rebalancing period length.  When 𝑇 > 𝑁 ,  the Graphical Lasso 

strategies always performed better than the Direct Optimization and Naïve methods 

except at the 2 year period, where the Direct Optimization method had the best 

realized risk.  At this point, (𝑇 > 𝑁), the methods from literature performed well, but 

the Graphical Lasso strategy (GLassoMAX LIKELIHOOD) consistently performed better and 

was in the top 2 best performers from 6 months to 2 years.  

In terms of portfolio return and Sharpe ratio, for both the long-short and long-only 

portfolio cases, the Graphical Lasso methods always had the best Sharpe ratios, while 



   

159 
 

the non-Graphical Lasso methods always had the best portfolio returns. The addition 

of the no short selling constraint improved the Direct Optimization method 

significantly in terms of realized risks, with this method achieving the best realized 

risk at the 2 year rebalancing period.  Even with this improvement of the Direct 

Optimization realized risks, the Graphical Lasso strategies still performed better, 

except at the 2 year rebalancing period. The performance of all the other methods did 

not seem to be affected by the addition of the no short selling constraint.  

These results show that using likelihood appears to be a very promising method for 

choosing the optimal regularization for Graphical Lasso application in Markowitz 

portfolio optimization.  It has also been shown in experiment results that the 

proposed sparse Graphical Lasso strategies give rise to portfolios that are less risky, 

with higher Sharpe ratios than existing methods in literature.  
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Chapter 6 
 
 
 
Conclusion and Future work 
  
 
6.1 Conclusion 

In this research, we introduced the use of modern machine learning methods for 

Markowitz minimum variance portfolio optimization.  We began by identifying the 

covariance estimation problem that exists in real world financial and bioinformatics 

applications where we mostly deal with high dimensional data.  We addressed these 

issues by introducing the use of sparse inverse covariance estimation with the use of 

existing methodology known as ‘Graphical Lasso’. One important prerequisite of 

Graphical Lasso is to choose the optimal regularization, which we addressed by using 

several validation techniques. 

Initial synthetic data experiments showed the tendency of Graphical Lasso to over-

estimate the diagonal elements of the estimated inverse covariance, while shrinking 

the off-diagonal elements with increasing regularization.  To remedy this issue, we 

introduced a new way of setting the regularization by having two different 

regularizations for the diagonal and off diagonal elements of the estimated inverse 

covariance.  This was different from the original Graphical Lasso methodology in 

literature which typically uses a single regularization for the estimated inverse 

covariance.  We called our new methodology the ‘Modified Graphical Lasso’ and 

performed experiments on synthetic data generated from known sparse and dense 



   

161 
 

inverse covariance models.   The experiments used 5-fold cross-validation to estimate 

the inverse covariance on the data, and we quantified the difference between the 

estimated and actual inverse covariance using the Frobenius norm.  Results showed 

that the Modified Graphical Lasso performed at least as well as the original Graphical 

Lasso in the sparse and dense scenarios, across various variable (𝑝 > 10) and sample 

sizes.  Despite this performance, we chose to use the original Graphical Lasso for the 

bioinformatics and finance experiments in this thesis due to the high computational 

time requirements of the Modified Graphical Lasso.   

Next, we applied Graphical Lasso to the bioinformatics problem of identifying tissue 

samples given gene microarray data.  When Graphical Lasso was used to generate 

graphical Gaussian models to perform the supervised learning task of identifying 

tissue samples, the estimated precisions performed at least as well as the empirical 

covariance in some instances, and in other instances, the covariance performed 

better. In general there was no consistency in classification performance.  When we 

randomly replaced the genes in the graphical models for the estimated precisions and 

empirical covariance, we noticed a significant decrease in performance for only the 

empirical covariance.  From these results, we concluded that the empirical covariance 

appeared to be the only one performing gene selection in a biologically meaningful 

way.  In that respect, Graphical Lasso did not perform as expected. 

Moving on to financial applications which is central to this thesis, we first performed 

experiments on synthetic stock market data where the true inverse covariance was 

known.  We created portfolio strategies by using Graphical Lasso to optimize portfolio 

criteria (realized risk) and Gaussian likelihood and performed repeated Markowitz 
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global minimum variance portfolio optimization with and without short-selling 

constraints.  Our results showed that the Graphical Lasso likelihood method 

performed very well for both the long-short and long-only scenarios.  The likelihood 

method that uses 2 periods to train, consistently performed at least as good as the 

oracle method and in some instances, better than the oracle method that uses a priori 

knowledge of the true sparsity level of the inverse covariance used to generate the 

data.   

Lastly, we compared the newly developed Graphical Lasso portfolio strategies to 

existing covariance estimators used in literature for portfolio optimization.  Results 

showed that in the long-short portfolio case, the Graphical Lasso likelihood method 

that uses 1 period to train and the other to validate, consistently had the best realized 

risks compared to all other Graphical Lasso portfolio strategies. In general, the Direct 

Optimization method which uses the empirical covariance matrix as well as the 

Moore-Penrose pseudoinverse (when 𝑇 < 𝑁) performed badly from 3 months and 

lower, which is when 
𝑇

𝑁
< 1 .  This performance was expected due to the non-

singularity of the empirical covariance, causing the Direct Optimization portfolios to 

take extreme long and short positions.  Also, the addition of the no short-selling 

constraint in the long-only portfolio case, improved the Direct Optimization method 

significantly, though all other methods did not show any significant improvement.   

Experimental results showed that the Graphical Lasso methods gave rise to less risky 

portfolios when 𝑇 < 𝑁 in both the long-short and long-only portfolio cases than the 

Direct Optimization and Naïve methods, though not always better than the other 

methods from literature.  The Graphical Lasso methods always performed better than 
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the methods from literature in general when 𝑇 > 𝑁. When 𝑇 < 𝑁, for the long-short 

portfolio case, Graphical Lasso strategies performed better than the methods from 

literature in general.  For the long-only case, the performance of the methods from 

literature were more competitive with the Graphical Lasso strategies, achieving 

comparable realized risks, and the winning performance varied depending on the 

rebalancing period length. On average, for both the long-short and long-only 

scenarios, the Graphical Lasso methods always had significantly higher Sharpe ratios 

than the non-Graphical Lasso methods, while the non-Graphical Lasso methods 

always had higher portfolio returns than the Graphical Lasso methods.  These results 

were consistent across all rebalancing periods.  

Experimental results have shown that the proposed sparse Graphical Lasso strategies 

have lower realized risks in general than all other methods and higher Sharpe ratios 

because there is less variance in the portfolio returns of these Graphical Lasso 

strategies.  The implication for an investor is that these Graphical Lasso strategies 

(the winning likelihood method in particular) appear to give more stable returns 

(higher Sharpe ratios and lower realized risks). The proposed Graphical Lasso 

strategies may achieve less portfolio returns compared to the other strategies (Direct 

Optimization, Naïve and methods from literature), as evident in the experiment 

results in chapter 6, but their returns have been shown to be more stable.  This 

implies that the Graphical Lasso strategies, particularly the one that optimizes 

Gaussian likelihood, have less volatility than the other methods, which is a desirable 

quality for an investor whose ultimate goal is to achieve as much return as possible 

for the lowest level of risk.  It has been mentioned earlier that financial institutions 
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aim for Sharpe ratios > 1, and results in chapter 6 showed that the proposed sparse 

Graphical Lasso strategies consistently achieved this compared to the other non-

Graphical Lasso methods.   

It is well known that a lot of hedge funds are long-only funds, despite the fact that the 

idea of a hedge fund is to hedge risk by taking on both long and short positions.  These 

long-only hedge funds only buy with the hope that the market will continue to go up.  

There is more risk involved since short positions are not taken, but the reward is 

known to be more.  In general, for such a hedge fund wanting to invest in long-only 

portfolios, the Graphical Lasso strategies have been shown to be an attractive option 

based on the positive long-only results from chapter 6 (portfolios with lower risks 

and higher Sharpe ratios than other methods).    

In conclusion, Graphical Lasso as a sparse inverse covariance estimator performed 

well when used for Markowitz global minimum variance portfolio optimization, 

especially with regards to realized risk and Sharpe ratio.  Using Gaussian likelihood 

has been shown to be a good way to choose the optimal regularization, as this method 

always performed the best compared to all other Graphical Lasso methods, and also 

other methods in literature.   

 

6.2 Future work 

Extensions of the proposed Graphical Lasso portfolio methods include the use of a 

priori sparsity structure information in addition to sparsity level information in order 

to gain better insight as to how the accuracy of the estimation of the true inverse 
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covariance used to generate the data affects portfolio performance.   In chapter 5, we 

created an oracle method that uses a priori sparsity level knowledge to estimate the 

optimal regularization for the Graphical Lasso estimated inverse covariance.  Future 

work should extend this method to include the sparsity structure also (the exact zero 

positions in the inverse covariance).   

Concerning the existing shrinkage methods from literature, an analytical formula was 

used to calculate the optimal shrinkage intensity.  For a fairer comparison, in the 

future, similar validation techniques such as that used for Graphical Lasso optimizing 

portfolio criteria or Gaussian likelihood, can be used to set the optimal shrinkage 

intensity.   

Lastly, the global minimum variance portfolio with and without short-selling 

constraints have been the main focus of this research.  Future work should consider 

the addition of other constraints such as budget constraints and investment 

restrictions in order to see how the newly proposed methods perform in these 

situations.  Also, it will be interesting to consider the Markowitz mean-variance 

portfolio optimization problem which involves the estimation of the mean return to 

further explore the practical usefulness of the suggested sparse approach for 

estimating the covariance.   
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Appendix A                                                                                                  

 
 
Mathematical Background 
 
This appendix provides mathematical background knowledge necessary for this 

thesis.   

 

A.1    The Multivariate Gaussian distribution 
 
The Gaussian, also known as the normal distribution, is a widely used model for the 

distribution of continuous variables. In the case of a single variable 𝑥, the Gaussian 

distribution can be written in the form [17] 

 

𝑁(𝑥|𝜇, 𝜎2) =  
1

(2𝜋𝜎2)1/2
exp {−

1

2𝜎2
(𝑥 − 𝜇)2},                   (A.1) 

 

where 𝜇  is the mean and 𝜎2  is the variance. For a p-dimensional vector 𝒙,  the 

multivariate Gaussian distribution takes the form  

 

𝑁(𝒙|𝝁, 𝜮) =  
1

(2𝜋)𝑝/2|𝜮|1/2
exp {−

1

2
(𝒙 − 𝝁)𝑇𝜮−1(𝒙 − 𝝁)},                   (A.2) 

 

where μ is a p-dimensional mean vector, Σ is a 𝑝 × 𝑝  covariance matrix, and |𝚺| 

denotes the determinant of  Σ. 
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A.1.1   Maximum Likelihood for the Gaussian 
 
Given a data set 𝑿 = (𝒙1, . . . , 𝒙𝑁)

𝑇 in which the observations {𝒙𝑁} are assumed to be 

drawn independently from a multivariate Gaussian distribution, we can estimate the 

parameters of the distribution by maximum likelihood (ML). Maximum likelihood 

makes the assumption that the most reasonable values of the parameters are those 

for which the probability of the observed samples, X, are largest.  This derivation 

follows very closely to that found in [72].  Since the data set X are independently and 

identically distributed (i.i.d), the probability of observing the data set is the product 

of the probabilities of each sample point, and given by: 

 

𝑝(𝑿|𝝁, 𝜮) = ∏ 𝑁(𝑥𝑛|𝝁, 𝜮)
𝑁
𝑛=1                                            (A.3) 

  
We take the logarithm of the likelihood function yielding the log-likelihood function, 

as this will simplify the analysis.  Since the argument that maximizes a function 𝑓(𝑥) 

is equal to the argument that maximizes ln 𝑓(𝑥), the maximum likelihood solution is 

unaffected by taking the logarithm. The log-likelihood of the Gaussian is given by 

 

       ln 𝑝(𝑿|𝝁, 𝜮) = ln∏𝑁(𝒙𝑛|𝝁, 𝜮)

𝑁

𝑛=1

 

 

                = ln∏
1

(2𝜋)𝑝/2|𝜮|1/2
exp {−

1

2
(𝒙 − 𝝁)𝑇𝜮−1(𝒙 − 𝝁)}

𝑁

𝑛=1
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          = −
𝑁𝑝

2
𝑙𝑛(2𝜋) − 

𝑁

2
ln|𝜮| −

1

2
∑ (𝒙𝑛 − 𝝁)

𝑇𝜮−1(𝒙𝑛 − 𝝁)
𝑁
𝑛=1    (A.4) 

 

By a simple rearrangement, we can see that the likelihood function depends on the 

data set only through two quantities. 

 

Using the derivative of the log likelihood with respect to μ and setting this derivative 

to zero, we obtain the solution for the maximum likelihood estimate of the mean given 

by  

 

∑ 𝒙𝑛
𝑁
𝑛=1 ,                ∑ 𝒙𝑛𝒙𝑛

𝑇𝑁
𝑛=1                                            (A.5) 

 

These are known as the sufficient statistics for the Gaussian distribution.  

 

We consider the following matrix derivative rule given a vector 𝒂 and a scalar 𝑥:  

 

𝜕

𝜕𝒙
(𝑥𝑇𝒂) =

𝜕

𝜕𝒙
(𝒂𝑇𝑥) = 𝒂                                               (A.6) 

 

Following (A.6), the derivative of the log-likelihood with respect to 𝝁 is given by  

 

𝜕

𝜕𝝁 
ln 𝑝(𝑿|𝝁, 𝜮) =

1

𝑁
∑ 𝜮−1(𝒙𝒏 − 𝝁
𝑁
𝑛=1 )                            (A.7) 
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And setting this derivative to zero, we obtain the solution for the maximum likelihood 

estimate of the mean given by 

𝝁̂𝑀𝐿 =
1

𝑁
∑ 𝒙𝑛
𝑁
𝑛=1                                                      (A.8) 

 

(A.8) is the mean of the observed set of data points.  The maximization of (A.4) with 

respect to 𝜮 is given by  

 

𝜮̂𝑀𝐿 =
1

𝑁
∑ (𝒙𝒏 − 𝝁𝑀𝐿
𝑁
𝑛=1 )(𝒙𝒏 − 𝝁𝑀𝐿)

𝑇                 (A.9) 

 

(A.9) is simply the sample covariance matrix and involves 𝝁𝑀𝐿  because this is the 

result of a joint maximization with respect to 𝝁 and 𝚺. If we evaluate the expectations 

of the maximum likelihood solutions under the true distribution, we obtain the 

following results [72] 

 

𝐸[𝝁̂𝑀𝐿] = 𝝁                                                                         (A.10) 

 

    𝐸[𝚺̂𝑀𝐿] =
𝑁−1

𝑁
𝚺                                                                   (A.11) 

 

We can see that the expectation of the maximum likelihood estimate for the mean is 

equal to the true mean. However, the maximum likelihood estimate for the covariance  
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has an expectation that is less than the true value, hence it is biased. This bias can be 

corrected by defining a different estimator Σ̃ given by [72] 

 

Σ̃ =
1

𝑁−1
∑ (𝒙𝑛 − 𝝁𝑀𝐿
𝑁
𝑛=1 )(𝒙𝑛 − 𝝁𝑀𝐿)

𝑇                                  (A.12) 

 

From (A.9) and (A.11), the expectation of 𝚺̃ is equal to 𝚺. 

 

A.2   Introduction to Machine Learning 
 
We are in an era of big data.  For example, there are about 1 trillion web pages2; one 

hour of video is uploaded to YouTube every second, amounting to 10 years worth of 

content every day3.   This deluge of data calls for automated methods of data analysis, 

which is what machine learning provides.  Machine learning is defined as a set of 

methods that can automatically detect patterns in data, and then use the uncovered 

patterns to predict future data, or to perform other kinds of decision making under 

uncertainty [73].  Machine learning is programming computers to optimize a 

performance criterion using example data or past experience.  We have a model 

defined up to some parameters, and learning is the execution of a computer program 

to optimize the parameters of the model using training data or past experience [74].  

The model may be predictive to make predictions in the future, or descriptive to gain 

knowledge from data, or both [74].   

                                                        
2 http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html 
 
3 Source: http://www.youtube.com/t/press_statistics. 

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
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Machine learning uses the theory of statistics in building mathematical models, 

because the core task is making inference from a sample. The role of computer science 

is twofold: First, in training, we need efficient algorithms to solve the optimization 

problem, as well as to store and process the massive amount of data we generally 

have [74]. Second, once a model is learned, its representation and algorithmic 

solution for inference needs to be efficient as well [74].  In certain applications, the 

efficiency of the learning or inference algorithm, namely, its space and time 

complexity, may be as important as its predictive accuracy [74].   

 

 
A.2.1   Types of Machine Learning 
 
Machine learning is usually divided into two main types.  In the predictive or 

supervised learning approach, the goal is to learn a mapping from inputs 𝑥 to outputs 

𝑦, given a labelled set of input-output pairs Ɗ = {(𝒙𝑖, 𝑦𝑖)}𝑖=1
𝑁 .  Here Ɗ is called the 

training set, and N is the number of training samples [73]. 

In the simplest setting, each training input 𝒙𝑖 is a D-dimensional vector of numbers 

representing, say, the heights and weight of a person [73].  These are called features, 

attributes or covariates. In general, however, 𝒙𝑖 could be a complex structured object, 

such as an image, a sentence, an email message, a time series, a graph etc.  Similarly, 

the form of the output or response variable can in principle be anything, but most 

methods assume that  𝑦𝑖 is a categorical or nominal variable for some finite set, 𝑦𝑖 ∈

{1, . . . , 𝐶} (such as male or female), or that 𝑦𝑖 is a real-valued scalar (such as income  
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level). When 𝑦𝑖 is categorical, the problem is known as classification, and when 𝑦𝑖 is 

real-valued, the problem is known as regression.   

The second main type of machine learning is the descriptive or unsupervised learning 

approach [73].  Here we are only given inputs, Ɗ = {(𝒙𝑖)}𝑖=1
𝑁 , and the goal is to find 

“interesting patterns” in the data.  This is a much less well-defined problem, since we 

are not told what kinds of patters to look for, and there is no obvious error metric to 

use (unlike supervised learning, where we can compare our precision of  𝑦 for a given 

𝒙 to the observed value). 

 

A.3   Supervised Learning 
 
We introduce supervised learning which is the form of machine learning most widely 

used in practice [73] and used throughout this thesis. Firstly, we introduce the linear 

regression model which is linked to the graphical Gaussian models used in chapter 3 

that will be useful when we introduce the tissue classification problem using gene 

microarray data.  In particular, we use validation techniques, which will be 

introduced subsequently, when selecting the correct regularization amounts for the 

inverse covariance matrix estimation.    

 

A.3.1   Classification 
 
The goal in classification is to learn a mapping from inputs 𝒙 to outputs 𝑦, where 𝑦 ∈

{1, . . . , 𝐶}, with 𝐶 being the number of classes. If 𝐶 = 2, this is called binary  
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classification (in which case we assume 𝑦 ∈ {0,1} or alternatively 𝑦 ∈ {+1,−1}. If 𝐶 >

2, this is called multiclass classification.  If the class labels are not mutually exclusive 

(e.g., somebody may be classified as tall and strong), we call it multi-label 

classification, but this is best viewed as predicting multiple related binary class labels 

(a so-called multiple output model).  In this thesis, we only focus on binary 

classification.  

One way to formalize the problem is as a function approximation.  We assume that 

𝑦 = 𝑓(𝒙) for some unknown function 𝑓, and the goal of learning is to estimate the 

function 𝑓 given a labelled training set, and then to make predictions using 𝑦̂ = 𝑓(𝒙).  

We use the hat symbol to denote an estimate). Our main goal is to make predictions 

on novel inputs, meaning ones we have not seen before (this is called generalization), 

since predicting the response on the training set is easy.   

 

 

   

 

 
 
 
 
 
 
 

Figure A.1   Some labelled training examples of coloured shapes, along with 3 
unlabelled test cases.  Figure taken from [73]. 

 

                     yes                                              no 
 

                                           

    

              
              ?                      ?                   ?               
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                                       D features (attributes) 
       

 Color Shape Size (cm) 

   
N

 c
as

es
 Blue Square 10 

Red Ellipse 2.4 

Red Ellipse 20.7 

 
Figure A.2   Representing the training data as an 𝑁 × 𝐷 design matrix. Row 𝑖 

represents the feature vector 𝒙𝑖 . The last column is the label 𝑦𝑖 ∈ {0,1}. Figure taken 
from [73]. 

 
 
 
 
Consider the problem illustrated in Figure A.1. We have two classes of object which 

correspond to labels 0 and 1. The inputs are coloured shapes.  These have been 

described by a set of 𝐷 features or attributes, which are stored in an 𝑁 × 𝐷 design 

matrix 𝑿, shown in Figure A.2. The input features 𝒙 can be discrete, continuous or a 

combination of the two.  In addition to the inputs, we have a vector of training labels 

𝒚. 

In Figure A.1, the test cases are a blue crescent, a yellow circle and a blue arrow.  None 

of these have been seen before.  Thus we are required to generalize beyond the 

training set.  A reasonable guess is that the blue crescent should be 𝑦 = 1, since all 

blue shapes are labeled 1 in the training set.  The yellow circle is harder to classify, 

since some yellow things are labelled 𝑦 = 1 and some are labelled 𝑦 = 0, and some 

circles are labelled 𝑦 = 1 and some 𝑦 = 0. Consequently, it is not clear what the right  

 

Label 

1 

1 

0 
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label should be in the case of the yellow circle.  Similarly, the correct label for the blue 

arrow is unclear.  

 
A.3.2   Regression 
 
Regression is just like classification except the response variable is continuous.  

Figure A.3 shows a simple example: we have a single real-valued input 𝑥𝑖 ∈ ℝ. We 

consider a straight line to the data. Various extensions of this basic problem can arise, 

such as having high-dimensional inputs, outliers, etc.  Some examples of real world 

regression problems are:  

 Predict tomorrow’s stock market price given current market conditions and 

other possible side information. 

 Predict the age of a viewer watching a given video on YouTube. 

 Predict the temperature at any location inside a building using weather data, 

time, door, sensors, etc. 

 

Figure A.3   Linear regression on some data. 
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A.4   Some Basic Concepts in Machine Learning 
 
We provide an introduction to some key concepts in machine learning. 

 
A.4.1   Parametric vs Non-parametric Models 
 
In this thesis, we focus on probabilistic models of the form 𝑝(𝑦|𝒙)  (supervised 

learning).  There are a number of ways to define such models, but the most important 

distinction is this: does the model have a fixed number of parameters, or does the 

number of parameters grow with the amount of training data? The former is called a 

parametric mode, and the latter is called a non-parametric model [73].  Parametric 

models such as linear regression have the advantage of often being faster to use, but 

the disadvantage of making stronger assumptions about the nature of the data 

distributions [73].  Non-parametric models are more flexible, but often 

computationally intractable for large datasets [73].   

 

A.4.2   A Simple Non-parametric Classifier: k-Nearest Neighbours 
 
A simple example of a non-parametric classifier is the k-Nearest Neighbour (k-NN) 

classifier.  This simply “looks at” the k points in the training set that are nearest to the 

test input 𝒙, and accounts how many members of each class are in this set, and returns 

that empirical fraction as the estimate. More formally [73],  

 

𝑝(𝑦 = 𝑐|𝒙,Ɗ, 𝑘) =
1

𝑘
∑ 𝕀(𝑦𝑖 = 𝑐)𝑖∈𝑁𝑘(𝒙,Ɗ)                         (A.13) 

 



   

177 
 

                                                                                                  Appendix A 
 

where 𝑁𝑘(𝒙,Ɗ)  are the (indices of the) k nearest points to 𝒙  in Ɗ  and 𝕀(𝑒)  is the 

indicator function defines as follows: 

 

𝕀(𝑒) = {
1   𝑖𝑓 𝑒 𝑖𝑠 𝑡𝑟𝑢𝑒
  0   𝑖𝑓 𝑒 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒

 

 

This most common distance metric to use is Euclidean distance (which limits the 

applicability of the technique to real-valued data), although other metrics can be used 

[73].  The Euclidean distance between two samples 𝒙𝑗  and 𝒙𝑘 is given by: 

 

‖𝒙𝑗 − 𝒙𝑘‖ = (∑ (𝒙𝑙𝑗 − 𝒙𝑙𝑘)
2𝑝

𝑙=1 )
1 2⁄

,                          (A.14) 

 

where p is the dimension of the data.         

 

𝑥1 𝑥2 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ7 ℎ8 ℎ9 ℎ10 ℎ11 ℎ12 ℎ13 ℎ14 ℎ15 ℎ16 
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

 
Table A.1   With two inputs, there are four possible cases and sixteen possible Boolean 

functions. Taken from [74]. 
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A.4.3  Model Selection and Generalization  
 
We begin with the case of learning a Boolean function from examples [74]. In a 

Boolean function, all inputs and output are binary.  There are 2𝑑  possible ways to 

write  𝑑 binary values and therefore, with 𝑑 inputs, the training set has at most 2𝑑   

Examples.  As shown in Table A.1, each of these can be labeled 0 or 1, and therefore 

there are 2𝑑  possible Boolean functions of 𝑑 inputs. 

Each distinct training example removes half the hypotheses, namely, those whose 

guesses are wrong.  For example let us say we have 𝑥1 = 0, 𝑥2 = 1 and the ouput is 0; 

this removes ℎ5, ℎ6, ℎ7, ℎ8, ℎ13, ℎ14, ℎ15, ℎ16. This is one way to interpret learning: we 

start with all possible hypotheses and as we seed more training examples, we remove 

those hypothesis that are not consistent with the training data.  In the case of a 

Boolean function, to end up with a single hypothesis, we need to see all 2𝑑  training 

examples.  If the training set we are given contains only a small subset of all possible 

instances, as it generally does, i.e. if we know what the output should be for only a 

small percentage of the cases, the solution is not unique.  After seeing N example 

cases, there remains 2𝑑−𝑁  possible functions.  This is an example of an ill-posed 

problem where the data by itself is not sufficient to find a unique solution.         

The same problem also exists in other learning applications, in classification, and in 

regression.  As we see more training examples, we know more about the underlying 

function, and we carve out more hypotheses that are inconsistent from the hypothesis 

class, but we still are left with many consistent hypotheses.  So because learning is ill- 
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posed, and data itself is not sufficient to find the solution, we should make some 

extra assumptions to have a unique solution with the data we have.  The set of 

assumptions we make to have learning possible is called the inductive bias of the 

learning algorithm.  One way we introduce inductive bias is when we assume a 

hypothesis class Η. In learning the class of family car, there are infinitely many ways 

of separating the positive examples form the negative examples.  Assuming the shape 

of a rectangle is one inductive bias. In linear regression, assuming a linear function is 

an inductive bias, among all lines, choosing the one that minimizes squared error is 

another inductive bias.   

Thus learning is not possible without inductive bias, and now the question is how to 

choose the right bias.  This is called model selection, which is choosing between 

possible H.  In answering this question, we should remember that the aim of machine 

learning is rarely to replicate the training data. But the prediction for new cases.  That 

is we would like to be able to generate the right output for an input instance outside 

the training set, one for which the correct output is not given in the training set.  How 

well a model trained on the training set predicts the right output for new instances is 

called generalization. 

For best generalization, we should match the complexity of the hypothesis class H 

with the complexity of the function underlying the data. If H is less complex than the 

function, we have underfitting, for example, when trying to fit a line to data sampled 

from a third-order polynomial.  In such a case, as we increase the complexity, the 

training error decreases, but if we have H that is too complex, the data is not enough  
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to constrain it and we may end up with a bad hypothesis, ℎ ∈ 𝐻 , for example, when 

fitting two rectangles to data sampled from one rectangle. Or if there is noise, an 

overcomplex hypothesis may learn not only the underlying function but also the noise 

in the data, and may make a bad fit, for example, when fitting a sixth-order polynomial 

to noisy data sampled from a third-order polynomial.  This is called overfitting.  In 

such a case, having more training data helps but only up to a certain point. Given a 

training set and H, we can find ℎ ∈ 𝐻 that has the minimum training error but if H is 

not chosen well, no matter which ℎ ∈ 𝐻 we pick, we will not have good generalization. 

In all learning algorithms that are trained from example data, there is a trade-off 

between three factors: 

 The complexity of the hypothesis we fit to data, namely the capacity of the 

hypothesis class, 

 the amount of training data, and 

 the generalization error on new examples.  

 

As the amount of training data increases, the generalization error decreases. As the 

complexity of the model class H increases, the generalization error decreases first and 

then starts to increase.  The generalization error of an overcomplex H can be kept in 

check by increasing the amount of training data but only up to a point.   
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We can measure the generalization ability of a hypothesis, namely, the quality of its 

inductive bias, if we have access to data outside the training set.  We simulate this by 

dividing the training set we have into two parts.  We use one part for training (i.e. to 

fit the hypothesis), and the remaining part is called the validation set and is used to 

test the generalization ability.  That is, given a set of possible hypothesis classes 𝐻𝑖, 

for each we fit the best ℎ𝑖 ∈ 𝐻𝑖  on the training set.  Then, assuming large enough 

training and validation sets, the hypothesis that is the most accurate on the validation 

set is the best one (the one that has the best inductive bias).  This process is called 

cross-validation.   

The idea behind cross-validation (CV) is simple: we split the training data into K folds; 

then, for each fold (run) 𝑘 ∈ {1, . . . , 𝐾}, we train on all the folds but the 𝑘′th, as shown 

in Figure A.4 [73]. We then compute the error averaged over all the folds, and use this 

as a proxy for the test error. (Note that each point gets predicted only once, although 

it will be used for training 𝐾 − 1 times) [73].  It is common to use 𝐾 = 5; this is called 

5-fold CV.  If we set 𝐾 = 𝑁, then we get a method called leave-one-out cross validation, 

or LOOCV, since in fold i, we train on all data cases except for i, and then test on i.   
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Figure A.4   Schematic of 5-fold cross validation. Figure from [73] 

 

Note that if we need to report the error to give an idea about the expected error of 

our best model, we should not use the validation error. We have used the validation 

set to choose the best model, and it has effectively become a part of the training set. 

We need a third set, a test set, containing examples not used in training or validation.   

 

A.4.4   Performance Evaluation  
 
It is important to have methods to evaluate the result of learning.  In supervised 

learning, the learned function is usually evaluated on a separate set of inputs and 

function values for them called the testing set [75].  A hypothesized function is said to 

generalize when it guesses well on the testing set.  Both mean-squared-error and the 

total number of errors are common measures [75].   
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Mean-squared-error (MSE) 

 

           𝑀𝑆𝐸̂(𝑥) =
1

𝑁
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))

2𝑁
𝑖=1                                  (A.15) 

                         

where 𝑦𝑖 is the actual label of the test set sample,𝑓(𝑥𝑖) is the predicted label of the 

test set sample and N is the number of samples in the test set. 

 

Misclassification Rate 

 

𝑒𝑟𝑟(𝑓, Ɗ) =
1

𝑁
 ∑ (𝑓(𝑥𝑖) ≠ 𝑦𝑖)
𝑁
𝑖=1                                (A.16) 

 

where 𝑓(𝒙) is our classifier, 𝑦𝑖  is the actual label of the test set sample,𝑓(𝑥𝑖) is the 

predicted label of the test set sample and N is the number of samples in the test set. 

 

A.4.5   Dimensionality Reduction  

 
Variable or feature selection [76,77] consists of selecting variables for a given 

prediction task.  It has become the focus of much research [76,78,79], particularly in 

bioinformatics [80]. The analysis of biological data for example, in particular 

microarray data, generally involves many irrelevant and redundant variables [76,81] 

and often comparably few training examples.  Microarray data also often contains 

noise.  Moreover, the expression levels of many probes may be highly correlated. Such 
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 a characteristic is explained by the co-regulation of many genes: it is assumed that 

similar patterns in gene expression profiles usually suggest relationships between 

genes [82].  Therefore, standard methods of supervised learning cannot be applied 

directly to obtain the parameter estimates.  Including all of the genes in the predictive  

model increases its variance and leads to poor predictive performance [83].   There 

are several reasons why it is of interest to reduce the dimensionality [74]: 

 In most learning algorithms, complexity depends on the number of input 

dimensions, p, as well as on the size of the data sample, N, and for reduced 

memory and computation, we are interested in reducing the dimensionality 

of the problem.    

 Simpler models are more robust on small datasets.  Simpler models have less 

variance, that is, they vary less depending on the particulars of a sample, 

including noise, outliers, and so forth.  

 When data can be explained with fewer features, we get a better idea about 

the process that underlies the data and this allows knowledge extraction. 

 

There are two main methods for reducing dimensionality: feature selection and 

feature extraction [74].  In feature selection, we are interested in finding k of p 

dimensions that give us the most information and we discard the other  𝑝 − 𝑘 

dimensions.  In feature extraction, we are interested in finding a new set of k 

dimensions that are combinations of the original 𝑝 dimensions.   
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A.4.6   Parametric Models for Classification and Regression 
 
The main way to combat the curse of dimensionality is to make some assumptions 

about the nature of the data distributions, (𝑝(𝑦|𝑥) for a supervised problem) [73]. 

These assumptions, known as inductive bias, are often embodied in the form of a 

parametric model, which is a statistical model with a fixed number of parameters 

[73]. 

 
A.5   Linear Models and Least Squares Regression 
 
The linear model has been a mainstay of statistics for the past couple of decades and 

remains one of our most important tools [18]. Given a vector of inputs 𝑿𝑇 =

(𝑋1, 𝑋2, . . . , 𝑋𝑝), we want to predict a real-valued output  𝑌. The linear model either 

assumes that the regression function 𝐸(𝑌|𝑋) is linear, or that the linear model is a 

linear approximation. The linear regression model has the form [18] 

 

𝑌̂ = 𝛽̂0 +∑ 𝑋𝑗𝛽̂𝑗
𝑝
𝑗=1                                                   (A.17) 

 

The term 𝛽̂0 is the intercept, also known as the bias in machine learning. Typically, we 

have a set of training data (𝑥1, 𝑦1). . . (𝑥𝑁 , 𝑦𝑁) from which to estimate the parameters 

𝛽̂. Each 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑝)
𝑇

is a vector of feature measurements for the ith case. 

Often it is convenient to include the constant variable 1 in 𝑿, include 𝛽̂0 in the vector 

of  coefficients 𝛽̂, and then write the linear model in vector form as an inner product   
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𝑌̂ = 𝑿𝑇𝛽̂,                                                            (A.18) 

 

 where 𝑿𝑇 denotes vector or matrix transpose (𝑿 being a column vector).  Here we 

are modelling a single output, so 𝑌̂ is a scalar; in general 𝑌̂ can be a 𝐾-vector, in which 

case 𝛽  would be a 𝑝 × 𝐾  matrix of coefficients.  In the (𝑝 + 1)-dimensional input-

output space, (𝑿, 𝑌̂) represents a hyperplane. If the constant is included in 𝑿, then the 

hyperplane includes the origin and is a subspace; if not, it is an affine set cutting the 

𝑌-axis at the point (0, 𝛽̂0). From now on, we assume that the intercept is included in 

𝛽̂.    

There are several methods of fitting the linear model to a set of training data, but by 

far the most popular method is that of least squares [18].  In this approach, we pick 

the coefficients 𝛽 to minimize the residual sum of squares [18] 

 

𝑅𝑆𝑆(𝛽) = ∑ (𝑦𝑖 – 𝑥𝑖
𝑇)2𝑁

𝑖=1                                        (A.19) 

 

𝑅𝑆𝑆(𝛽) is a quadratic function of the parameters, and hence its minimum always 

exists, but may not be unique [18]. The solution is easiest to characterize in matrix 

notation. We can write 

 

𝑅𝑆𝑆(𝛽) = ((𝒚 –𝑿𝛽)𝑇(𝒚 − 𝑿𝛽)),                                       (A.20) 
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Where 𝑿 is an 𝑁 × 𝑝 matrix with each row an input vector, and 𝒚 is an 𝑁-vector of the 

outputs in the training set.  Differentiating with respect to 𝛽  we get the normal 

equations  

 

𝑿𝑇(𝒚 –𝑿𝛽) = 0                                       (A.21) 

 

If 𝑿𝑇𝑿 is non-singular, then the unique solution is given by [18]  

 

𝛽̂ = (𝑿𝑇𝑿)−1 𝑿𝑇𝒚,                                       (A.22) 

 

And the fitted value at the ith input 𝑥𝑖  is 𝑦̂𝑖 = 𝑦̂(𝑥𝑖) = 𝑥𝑖
𝑇𝛽̂.  At an arbitrary input 𝑥0 

the prediction is 𝑦̂(𝑥0) = 𝑥0
𝑇𝛽̂ .  The entire fitted surface is characterized by 𝑝 

parameters 𝛽̂.   
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A.5.1   Subset Selection 
 
There are two reasons why we are often not satisfied with the least squares estimates 

[18]. 

 The first is prediction accuracy: the least squares estimates often have low bias 

but large variance.  Prediction accuracy can sometimes be improved by 

shrinking or setting some coefficients to zero. By doing so, we sacrifice a little 

bit of bias to reduce the variance of the predicted values, and hence may 

improve the overall prediction accuracy. 

 The second is interpretation. With a large number of predictors, we often 

would like to determine a smaller subset that exhibit the strongest effects.  In 

order to get the “big picture,” we are willing to sacrifice some of the small 

details. 

 

We describe a number of approaches to variable subset selection via the shrinkage 

method for controlling variance. 

 

A.5.2   Shrinkage Methods 
 
Shrinkage methods produce a model that is interpretable and has possibly lower 

prediction error than the full model, and because they are continuous, don’t suffer as 

much from high variability [18]. 
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A.5.2.1   Ridge Regression 
 
Ridge regression shrinks the regression coefficients by imposing a penalty on their 

size [18].  The ridge coefficients minimize a penalized residual sum of squares subject 

to a bound on the 𝐿2-norm of the coefficients: 

𝛽̂𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔min
𝛽
{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝
𝑗=1 )

2
+  𝜆 ∑ 𝛽𝑗

2𝑝
𝑗=1

𝑁
𝑖=1 }      (A.23) 

 

Here 𝜆 ≥ 0  is a complexity parameter that controls the amount of shrinkage: the 

larger the value of 𝜆, the greater the amount of shrinkage.  The coefficients are shrunk 

toward zero (and each other).  An equivalent way to write the ridge problem is 

 

𝛽̂𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔min
𝛽
∑ (𝑦𝑖 − 𝛽0 −∑ 𝑥𝑖𝑗𝛽𝑗

𝑝
𝑗=1 )

2𝑁
𝑖=1                       (A.24) 

                                                      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝛽𝑗
2 ≤ 𝑡𝑝

𝑗=1 ,                                          

 

which makes explicit the size constraint on the parameters.  There is a one-to-one 

correspondence between the parameters 𝜆 in (A.23) and 𝑡 in (A.24) [18].   Writing 

(A.23) in matrix form, we have [18] 

 

𝑅𝑆𝑆(𝜆) = (𝒚 − 𝑿𝛽)𝑇(𝒚 − 𝑿𝛽) +  𝜆𝛽𝑇𝛽,                            (A,25) 

 

The ridge regression solutions are easily seen to be  

 

𝛽̂𝑟𝑖𝑑𝑔𝑒 = (𝑿
𝑇𝑿 + 𝜆𝑰)−1𝑿𝑇𝒚,                                         (A.26) 
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where 𝑰 is the 𝑝 × 𝑝 identity matrix.  Notice that with the choice of quadratic penalty 

𝛽𝑇𝛽, the ridge regression solution is again a linear function of 𝑦.  The solution adds a 

positive constant to the diagonal of 𝑿𝑇𝑿 before inversion.  This makes the problem 

non-singular, even if 𝑿𝑇𝑿 is not of full rank, and this was the main motivation for 

ridge regression [84] and traditional descriptions of this method start with (A.26).  

However, starting from (A.23) and (A.24) gives insight into how it works [18] and 

provides a general framework in which the other regularization method (Lasso) 

introduced in the subsequent section can be integrated. 

 

A.5.2.2   The Lasso 
 
The Lasso (least absolute shrinkage and selection operator) is a shrinkage method 

like ridge, with subtle but important differences [18].  Ridge regression does not 

provide any interpretable model because it does not set any coefficients to zero.  To 

circumvent these issues, [29] introduced the Lasso, which minimizes the residual sum 

of squares subject to a bound on the 𝐿1-norm of the coefficients [18], 

 

𝛽̂𝐿𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔min
𝛽
∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝
𝑗=1 )

2𝑁
𝑖=1                       (A.27) 

                                                      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ |𝛽𝑗| ≤ 𝑡
𝑝
𝑗=1                                           

 

We can write the Lasso problem in the equivalent Lagrangian form 

 

𝛽̂𝐿𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔min
𝛽
{
1

2
∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝
𝑗=1 )

2𝑁
𝑖=1 + 𝜆∑ |𝛽𝑗|

𝑝
𝑗=1 }           (A.28) 
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Notice the similarity to the ridge regression problem (A.23) and (A.24): the 𝐿2 ridge 

penalty ∑ 𝛽𝑗
2𝑝

𝑗=1  is replaced by the 𝐿1  Lasso penalty ∑ |𝛽𝑗|
𝑝
𝑗=1 . This latter constraint 

makes the solutions nonlinear in the 𝑦𝑖, and as a consequence, a closed form solution 

does not exist as it does for ridge regression [18].  Computing a solution for the Lasso 

is a quadratic programming problem.  Due to the 𝐿1 penalty term, the Lasso solution 

will have some entries equal to zero for 𝜆 small enough, thus Lasso is a method of 

feature selection [83].  Feature selection is desirable because of a potential increase 

in accuracy, and by reducing the number of variables, the problem becomes easier to 

understand [18]. 

 

A.5.3   Multiple Linear Regression 

The linear model (A.17) with 𝑝 > 1 inputs is called the multiple linear regression 

model. The least squares estimates (A.22) for this model are best understood in terms 

of the estimates for the univariate (𝑝 = 1)  liner model, as we indicate in this section.   

Suppose first that we have a univariate model with no intercept, that is [18],  

 

𝒀 = 𝑿𝛽 + 𝜀                                                            (A.29) 

 

The least squares estimate and residuals are   

𝛽̂ =
∑ 𝑥𝑖𝑦𝑖
𝑁
1

∑ 𝑥𝑖
2𝑁

1
                                                              (A.30) 

𝑟𝑖 = 𝑦𝑖 − 𝑥𝑖𝛽̂ 
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In convenient vector notation, we let = (𝑦1, . . . , 𝑦𝑁)
𝑇 ,  𝒙 = (𝑥1, . . . , 𝑥𝑁)

𝑇 and define   

                                                          

〈𝒙, 𝒚〉 =∑𝑥𝑖𝑦𝑖

𝑁

𝑖=1

, 

= 𝒙𝑇𝒚                                                            (A.31) 

 

The inner product between 𝒙 and 𝒚4. Then we can write   

 

𝛽̂ =
〈𝒙,𝒚〉

〈𝒙,𝒙〉
                                                                  (A.32) 

𝒓 = 𝒚 − 𝒙𝛽̂ 

 This simple univariate regression provides the building block for multiple linear 

regression. Suppose next that the inputs 𝒙1, 𝒙2, . . . , 𝒙𝑝 (the columns of data matrix X) 

are orthogonal; that is 〈𝒙𝑗, 𝒚𝑘〉 = 0 for all 𝑗 ≠ 𝑘 .  Then it is easy to check that the 

multiple least squares estimates 𝛽̂𝑗  are equal to 〈𝒙𝑗 , 𝒚〉/〈𝒙𝑗 , 𝒙𝑗〉 - the univariate 

estimates.  In other words, when the inputs are orthogonal, they have no effect on 

each other’s parameter estimates in the model.  

Orthogonal inputs occur most often with balanced, designed experiments (where 

orthogonality is enforced), but almost never with observational data. Hence we will 

have to orthogonalize them in order to carry this idea further [18]. Suppose next that  

                                                        
4 The inner-product notation is suggestive of generalizations of linear regression to different metric 
spaces, as well as to probability spaces [18]. 
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we have an intercept and a single input 𝒙. Then the least squares coefficient of 𝒙 has 

the form  

𝛽̂1 =
〈𝒙 − 𝑥̅𝟏,𝒚〉

〈𝑿 − 𝑥̅𝟏,   𝑿 − 𝑥̅𝟏〉
,                                                              (A.33) 

 

where 𝑥̅ = ∑ 𝑥𝑖 𝑁⁄𝑖 ,  and 𝟏 = 𝒙0,  the vector of 𝑁  ones.  We can view the estimate 

(A.33) as the result of two applications of the simple regression (A.32). The steps are: 

1. Regress 𝒙 on 1 to produce the residual 𝒛 =  𝒙 − 𝑥̅𝟏; 

2. Regress 𝒚 on the residual z to give the coefficient 𝛽̂1 

 

In this procedure, “regress b on a” means a simple univariate regression of b on a 

with no intercept, producing coefficient 𝛾 = 〈𝒂, 𝒃〉/〈𝒂, 𝒂〉 and residual vector 𝒃 − 𝛾𝒂.  

We say that b is adjusted for a, or is “orthogonalized” with respect to a. 

Step 1 orthogonalizes 𝑥  with respect to 𝒙0 = 𝟏 . Step 2 is just a simple univariate 

regression, using the orthogonal predictors 𝟏 and 𝒛.   This recipe generalizes to the 

case of 𝑝 inputs, as shown in Algorithm A.1.  Note that the inputs 𝒛0, . . . , 𝒛𝑗−1 in step 2 

are orthogonal, hence the simple regression coefficients computed there are in fact 

also the multiple regression coefficients.  
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Algorithm A.1 Regression by Successive Orthogonalization 

  1: Initialize 𝒛0 = 𝒙0 = 𝟏 
   
  2: For 𝑗 = 1,2, . . . , 𝑝  

          Regress 𝒙𝑗  on 𝒛0, 𝒛1, . . . , 𝒛𝑗−1 to produce coefficients 𝛾ℓ𝑗 = 〈𝒛ℓ, 𝒙𝑗〉/〈𝒛ℓ, 𝒛ℓ〉, 

          ℓ = 0, . . . , 𝑗 − 1 and residual vector 𝒛𝑗 = 𝒙𝑗 − ∑ 𝛾𝑘𝑗𝒛𝑘
𝑗−1
𝑘=0  

 

  3:  Regress 𝒚 on the residual 𝒛𝑝 to give the estimate 𝛽̂𝑝 

    

 

The result of this algorithm is 

 𝛽̂𝑝 =
〈𝒛𝑝,𝒚〉

〈𝒛𝑝,𝒛𝑝〉
                                                              (A.33) 

 

Re arranging the residual in step 2, we can see that each of the 𝒙𝑗  is a linear 

combination of the 𝒛𝑘, 𝑘 ≤ 𝑗. Since the 𝒛𝑗  are all orthogonal, they form a basis for the 

column space of X, and hence the least squares projection onto this subspace is 𝒚̂. 

Since 𝒛𝑝 alone involves 𝒙𝑝 (with coefficient 1), we see that the coefficient (A.33) is the 

multiple regression coefficient of 𝒚  on 𝒙𝑝 . This key result exposes the effect of 

correlated inputs in multiple regression.  

The multiple regression coefficient 𝛽̂𝑗  represents the additional contribution of 𝒙𝑗  on 

𝒚, after 𝒙𝑗  has been adjusted for 𝒙0, 𝒙1, , . . . ,  𝒙𝑗−1, 𝒙𝑗+1, . . . , 𝒙𝑝. Algorithm A.1 is known 

as the Gram-Schmidt procedure for multiple regression, and is also a useful strategy 

for computing the estimates.  
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A.5.4   Matrix Inverse 

The 𝑛 × 𝑛 identitiy matrix 𝑰𝑛 is defined by column partitioning  

𝑰𝑛 = [𝑒1, . . . , 𝑒𝑛], 

 
where 𝑒𝑘 is the kth “canonical” vector: 

𝑒1= (0, . . . ,0⏟  
𝑘−1

, 1,0, . . . , 0⏟      
𝑛−𝑘

)

𝑇

 

 

The canonical vectors arise frequently in matrix analysis and if their dimension is 

ever ambiguous, we use superscripts, i.e., 𝑒𝑘
(𝑛)
∈ ℝ𝑛.   

If A and X are ℝ𝑛×𝑛 and satisfy 𝑨𝑿 = 𝑰, then X is the inverse A and is denoted by 𝑨−1. 

If 𝑨−1exists, then A is said to be nonsingular. Otherwise, we say 𝑨 is singular.  

 

A.5.4.1   Moore-Penrose pseudoinverse  

The Moore-Penrose pseudoinverse is a generalization of the inverse of a matrix and 

is defined for any matrix and is unique [85].  

If 𝑨 ∈ ℝ𝑚×𝑛 , then there exists a unique 𝑨+ ∈ ℝ𝑚×𝑛  that satisfies the four Penrose 

conditions:  

1. 𝑨𝑨+𝑨 = 𝑨 

2. 𝑨+𝑨𝑨+ = 𝑨+ 

3. (𝑨+𝑨)𝑇 = 𝑨+𝑨 

4. (𝑨𝑨+)𝑇 = 𝑨𝑨+ 

Furthermore, 𝑨+ always exists and is unique. 
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If A is nonsingular, then 𝑨+ = 𝑨−1 trivially satisfies the four equations and are the 

generalized inverse of A [86]. Since the pseudoinverse is known to be unique, it 

follows that the pseudoinverse of a nonsingular matrix is the same as the ordinary 

inverse.  A neat algebraic proof of the uniqueness of the pseudoinverse is given by 

[85], and a constructive proof is given by [87].  
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We consider a problem of fitting a large-scale covariance matrix to multivariate 

Gaussian data in such a way that the inverse is sparse, thus providing model selection. 

Beginning with a dense empirical covariance matrix, the maximum likelihood 

problem is solved with an 𝐿1-norm penalty term added to encourage sparsity in the 

inverse. 

 

A.1 Notation 

For a 𝑝 × 𝑝  matrix 𝑿, 𝑿 ≻ 0 means 𝑿  is symmetric and positive semi-definite; ‖𝑿‖ 

denotes the largest singular value norm, ‖𝑿‖1 the sum of the absolute values of its 

elements, and ‖𝑿‖∞ their largest magnitude. 

 

‖𝑿‖1 = |𝑥𝑖,𝑗| + ⋯+ |𝑥𝑖,𝑛|                                       (A.1) 

 

    ‖𝑿‖∞ = 𝑚𝑎𝑥(|𝑥𝑖,𝑗|,⋯ , |𝑥𝑖,𝑛|)                                   (A.2) 

 

A.2 Problem Setup 

Given 𝑥1⋯ , 𝑥𝑛 𝑁(𝝁, ∑),  where 𝑁(𝝁,∑)  represents a 𝑝 -dimensional multivariate 

Gaussian with mean vector 𝜇 ∈ ℝ𝑝 and covariance matrix ∑ ∈ ℝ𝑝×𝑝. Let 𝑺 ≥ 0 be the 

given empirical covariance matrix. Let the variable 𝑿 be our estimate of the inverse 

covariance matrix. 
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We consider the maximum likelihood problem, 

 

𝑓(𝑥) =
1

(2𝜋)
𝑛
2 |∑|

1
2

exp [−
1

2
(𝒙 − 𝝁)𝑇∑−1(𝒙 − 𝝁)],                     (A.3) 

where 𝒙 ∈ ℝ𝑛. 

 

Gaussian Likelihood Function: 

𝐿(𝝁,∑) = (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)∏𝑖=1
𝑛 |∑|−

1

2𝑒𝑥𝑝 [−
1

2
(𝑥𝑖 − 𝜇)

𝑇∑−1(𝑥𝑖 − 𝜇)]          (A.4) 

 

𝐿(𝜇, ∑) 𝛼 |∑|−
𝑛

2𝑒𝑥𝑝 [−
1

2
∑𝑖=1
𝑛 (𝑥𝑖 − 𝜇)

𝑇∑−1(𝑥𝐼 − 𝜇)]                      (A.5) 

 

Replace 𝜇 with 𝑥̅ = ∑𝑖=1
𝑛 𝑥𝑖.                                                                                     (A.6) 

 

Now find the ∑ that maximizes 𝐿(𝑥̅, ∑). We start by taking the 𝑙𝑜𝑔  of the function 

since it is easier to work with, as the 𝑙𝑜𝑔 is a strictly increasing function. 

 

𝑙𝑜𝑔[𝐿(𝑥̅, ∑)] = −
𝑛

2
𝑙𝑜𝑔|∑| −

1

2
∑𝑖=1
𝑛 (𝑥𝑖 − 𝑥̅)

𝑇∑−1(𝑥𝑖 − 𝑥̅)                          (A.7) 

 

𝑇𝑟𝑎𝑐𝑒(𝑨𝑩) = 𝑇𝑟𝑎𝑐𝑒(𝑩𝑨) when matrices A and B are shaped so that both products 

exist. 
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𝑙𝑜𝑔[𝐿(𝑥̅, ∑)] = −
𝑛

2
𝑙𝑜𝑔|∑| −

1

2
∑𝑖=1
𝑛 (𝒙𝑖 − 𝑥̅)

𝑇∑−1(𝒙𝑖 − 𝑥̅) 

         

                                𝛼 −
𝑛

2
𝑙𝑜𝑔|∑| −

1

2
∑𝑖=1
𝑛 𝑇𝑟𝑎𝑐𝑒(∑−1(𝒙𝑖 − 𝑥̅)(𝒙𝑖 − 𝑥̅)

𝑇) 

= −
𝑛

2
𝑙𝑜𝑔|∑| −

1

2
𝑇𝑟𝑎𝑐𝑒(∑−1∑𝑖=1

𝑛 [(𝒙𝑖 − 𝑥̅)(𝒙𝑖 − 𝑥̅)
𝑇])                     (A.8) 

 

Do a change of variable: 

 

∑ = 𝑿−1                                                    (A.9a) 

𝑿 = ∑−1                                                    (A.9b) 

 

S is the sample covariance. 

𝑺 =
1

𝑛
∑𝑖=1
𝑛 (𝒙𝑖 − 𝑥̅)(𝒙𝑖 − 𝑥̅)

𝑇                     (A.10) 

 

𝑙𝑜𝑔[𝐿(𝑥̅, ∑)] = −
𝑛

2
𝑙𝑜𝑔|𝑿−1| −

𝑛

2
𝑇𝑟𝑎𝑐𝑒(𝑿𝑺)               (A.11) 

     where |𝑿−1| =
1

|𝑿|
                                                                (A.12) 

 

Rewrite the log likelihood function: 

 

𝑙𝑜𝑔[𝐿(𝑥̅, ∑)] = −
𝑛

2
𝑙𝑜𝑔 (

1

|𝑿|
) −

𝑛

2
𝑇𝑟𝑎𝑐𝑒(𝑿𝑺)                 (A.13) 
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Rewrite the log likelihood function: 

 

𝑙𝑜𝑔[𝐿(𝑥̅, ∑)] =
𝑛

2
𝑙𝑜𝑔(|𝑿|) −

𝑛

2
𝑇𝑟𝑎𝑐𝑒(𝑿𝑺)                           (A.14) 

 

𝑙𝑜𝑔[𝐿(𝑥̅, ∑)] =
𝑛

2
[𝑙𝑜𝑔(|𝑿|) − 𝑇𝑟𝑎𝑐𝑒(𝑿𝑺)]                            (A.15) 

 

We want to choose 𝑥 that maximizes the log likelihood function. This is equivalent to 

(A.16): 

𝑚𝑎𝑥
𝑿≻0

{
𝑛

2
(𝑙𝑜𝑔(|𝑿|) − 𝑇𝑟𝑎𝑐𝑒(𝑿𝑺))}                                 (A.16) 

 

Rewrite the optimization problem without the constant term: 

 

𝑚𝑎𝑥
𝑿≻0

{(𝑙𝑜𝑔(|𝑿|) − 𝑇𝑟𝑎𝑐𝑒(𝑿𝑺))}                                          (A.17) 

(∑∗)−1 = 𝑿∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑿≻0

{(𝑙𝑜𝑔(|𝑿|) − 𝑇𝑟𝑎𝑐𝑒(𝑿𝑺))}                        (A.18) 

 

A.3 Problem Setup (Continued) 

We consider the penalized maximum likelihood problem, 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑿 ≻ 0

{𝑙𝑜𝑔(|𝑿|) − 𝑇𝑟𝑎𝑐𝑒(𝑿𝑺) − 𝜌‖𝑿‖1},                          (A.19) 
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where 𝑇𝑟𝑎𝑐𝑒(𝑿𝑺) denotes the scalar product between two symmetric matrices S and 

X, and the term ‖𝑿‖1 ≔ ∑𝑖,𝑗|𝑿𝑖,𝑗| penalizes nonzero elements of X.  (A.19) is a convex 

optimization problem because the objective function is concave on a set of positive 

definite matrices [3]. Here, the scalar parameter 𝜌 > 0  controls the size of the 

penalty, hence the sparsity of the solution. The penalty term involving the sum of 

absolute values of the entries of X is a proxy for the number of its non-zero elements. 

The classical maximum likelihood estimate of ∑ is recovered for 𝜌 = 0, and is simply 

S, the empirical covariance matrix. Due to noise in the data, however, S may not have 

a sparse inverse, even if there are many conditional independence properties in the 

underlying distribution. In the approach of the paper, we strike a tradeoff between 

maximality of the likelihood and the number of non-zero elements in the inverse 

covariance matrix, and this method is potentially useful for discovering conditional 

independence properties. Furthermore, for 𝑝 >> 𝑛,  the matrix S is likely to be 

singular. It is desirable for our estimate of ∑ to be invertible. It will be shown that the 

proposed estimator performs some regularization, so that our estimate is invertible 

for every 𝜌 > 0. 

 

lemma 1: Let ‖∙‖ be a norm on 𝑅𝑛. The associated dual norm, denoted ‖∙‖∗, is defined 

as, 

‖𝑧‖∗ = 𝑠𝑢𝑝{𝑧
𝑇𝑥: ‖𝑥‖ ≤ 1}                                    (A.20) 
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The dual of the 𝑙1-norm is the 𝑙1-norm given by, 

 

𝑠𝑢𝑝{< 𝑧, 𝑥 >: ‖𝑥‖∞ ≤ 1} = ∑𝑖=1
𝑛 |𝑧𝑖| = ‖𝑧‖1                             (A.21) 

 

𝑠𝑢𝑝{𝑧𝑇𝑥: ‖𝑥‖∞ ≤ 1} = ∑𝑖=1
𝑛 |𝑧𝑖| = ‖𝑧‖1                               (A.22) 

 

The dual of the 𝑙1-norm is the 𝑙1-norm given by 

 

           𝑠𝑢𝑝{< 𝑧, 𝑥 >: ‖𝑥‖1 ≤ 1} = ‖𝑧‖∞                                 (A.23) 

 

  𝑠𝑢𝑝{𝑧𝑇𝑥: ‖𝑥‖1 ≤ 1} = ‖𝑧‖∞                                  (A.24) 

 

By introducing a dual variable U, and using lemma 1, we write (A.19) as, 

 

𝑚𝑎𝑥
𝑿 ≻ 0

     
𝑚𝑖𝑛

‖𝑼‖∞ ≤ 𝜌
{𝑙𝑜𝑔|𝑿| − 𝑇𝑟𝑎𝑐𝑒(𝑿, 𝑺) − 𝑇𝑟𝑎𝑐𝑒(𝑿,𝑼)}            (A.25) 

 

 

This simplifies to, 

 

𝑚𝑎𝑥
𝑿 ≻ 0

     
𝑚𝑖𝑛

‖𝑼‖∞ ≤ 𝜌
{𝑙𝑜𝑔|𝑿| − 𝑇𝑟𝑎𝑐𝑒(𝑿, 𝑺 + 𝑼)},                     (A.26) 
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where ‖𝑼‖∞ denotes the maximal absolute value of the entries of U. This corresponds 

to seeking an estimate with maximal worst-case likelihood, over all component-wise 

bounded additive perturbations 𝑺 + 𝑼 of the empirical covariance matrix S. 

Obtain the dual problem by exchanging the max and min:. The inner optimization 

problem can be solved easily because it resembles the maximum likelihood problem. 

 

𝑚𝑖𝑛
‖𝑼‖∞ ≤ 𝜌

       
𝑚𝑎𝑥
𝑿 ≻ 0

   {𝑙𝑜𝑔|𝑿| − 𝑇𝑟𝑎𝑐𝑒(𝑿, 𝑺 + 𝑼)}                     (A.27) 

 

Solve the inner optimization problem of (A.27), 

 

𝑚𝑎𝑥
𝑿 ≻ 0

   {𝑙𝑜𝑔|𝑿| − 𝑇𝑟𝑎𝑐𝑒(𝑿, 𝑺 + 𝑼)}                                    (A.28) 

 

In the maximum likelihood problem, 

 

𝑎𝑟𝑔𝑚𝑎𝑥
𝑿

{𝑙𝑜𝑔|𝑿| − 𝑇𝑟𝑎𝑐𝑒(𝑿, 𝑺)} = 𝑺−1                              (A.29) 

 

From the MLE solution, we can see that the solution to (A.28) is given by, 
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𝑚𝑎𝑥
𝑿 ≻ 0

   {𝑙𝑜𝑔|𝑿| − 𝑇𝑟𝑎𝑐𝑒(𝑿, 𝑺 + 𝑼)} = (𝑺 + 𝑼)−1                   (A.30) 

So, 𝑿∗ = (𝑺 + 𝑼)−1                                           (A.31) 

 

Using solution (A.31), rewrite (A.27) as, 

 

𝑚𝑖𝑛
‖𝑼‖∞ ≤ 𝜌

       {𝑙𝑜𝑔|(𝑺 + 𝑼)−1| − 𝑇𝑟𝑎𝑐𝑒((𝐒 + 𝑼)−1, 𝑺 + 𝑼}               (A.32) 

 

After simplifying, this becomes, 

 

𝑚𝑖𝑛
‖𝑼‖∞ ≤ 𝜌

 {𝑙𝑜𝑔|(𝑺 + 𝑼)−1| − 𝑝}     𝑠. 𝑡:  𝑺 + 𝑼 ≻ 0                    (A.33) 

 

𝑙𝑜𝑔|𝑿−1| = −𝑙𝑜𝑔|𝑿|, so we can rewrite the optimization problem as, 

 

𝑚𝑖𝑛
‖𝑼‖∞ ≤ 𝜌

{−𝑙𝑜𝑔|(𝑺 + 𝑼)| − 𝑝}     𝑠. 𝑡:  𝑺 + 𝑼 ≻ 0                    (A.34) 

 

The diagonal elements of an optimal U are simply 𝑼̂𝑖𝑖 = 𝜌 . The corresponding 

covariance matrix estimate is ∑̂ ≔ 𝐒 + 𝑼̂. Note that 𝜌 is the number of variables. 
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A.2. BLOCK COORDINATE DESCENT METHOD 

An efficient algorithm for solving the above dual problem (A.27) is based on the block 

coordinate descent. 

 

A.2.1 Algorithm 

We describe a method for solving (A.34) by optimizing over one column and row of 

𝑺 + 𝑼 at a time. Let 𝑾≔ 𝑺+ 𝑼 be our estimate of the true covariance. The algorithm 

begins by initializing 𝑾0 = 𝑺 + 𝜌𝑰.  The diagonal elements of 𝑾0  are set to their 

optimal values, and are left unchanged in what follows. We can permute rows and 

columns of 𝑾, so that we optimizing over the last column and row. 

 

Partition 𝑾 and 𝑺 as, 

 

𝑾 = (
𝑾11 𝒘12
𝒘12
𝑇 𝑤22

)                                                (A.35) 

 

𝑺 = (
𝑺11 𝒔12
𝒔12
𝑇 𝑠22

),                                                    (A.36) 

where 𝒘12, 𝒔12𝜖 ℝ
𝑝−1.  
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Initialize 𝑾 to its optimal value: 𝑾0 = 𝑺 + 𝜌𝑰. Permute rows and columns of 𝑾 so 

that we are optimizing over the last column and row (due to symmetry). 

 

The update rule is found by solving the dual problem (A.34), with U fixed except for 

its last column and row. 

 

Rewrite the optimization problem (A.34), 

 

𝑚𝑖𝑛
𝑼
     {−𝑙𝑜𝑔|(𝑺 + 𝑼)| − 𝑝}     𝑠. 𝑡:  𝑺 + 𝑼 ≻ 0, ‖𝑼‖∞ ≤ 𝜌                (A.37a) 

 

𝑚𝑖𝑛
𝒘12

     {−𝑙𝑜𝑔 |
𝑾11 𝒘12
𝒘12
𝑇 𝑤22

| − 𝑝}      𝑠. 𝑡:     ‖𝒘12 − 𝒔12‖∞ ≤ 𝜌,𝑾 ≻ 0               (A.37b) 

𝑚𝑖𝑛
𝒘12

     {−𝑙𝑜𝑔 |
𝑾11 𝒘12
𝒘12
𝑇 𝑤22

|}      𝑠. 𝑡:     ‖𝒘12 − 𝒔12‖∞ ≤ 𝜌,𝑾 ≻ 0               (A.37c) 

𝑚𝑎𝑥
𝒘12

     {|
𝑾11 𝒘12
𝒘12
𝑇 𝑤22

|}      𝑠. 𝑡:     ‖𝒘12 − 𝒔12‖∞ ≤ 𝜌,𝑾 ≻ 0               (A.37d) 

 

lemma 2: Let 𝑴 be an 𝑛 × 𝑛 Hermitian matrix partitioned as, 

 

𝑀 = (
𝑴11 𝑴12

𝑴21 𝑀22
),                                                   (A.38) 
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in which 𝑴11  is square and nonsingular 𝑘 × 𝑘  block with 1 ≤ 𝑘 < 𝑛.  The Schur 

complement of 𝑴11 in 𝑴 is defined and denoted by, 

𝑴
𝑴11
⁄ = 𝑀22 −𝑴21𝑴11

−1𝑴12.                                         (A.39) 

 

lemma 3: Let 𝑴 be a square matrix partitioned as in lemma 1. If 𝑴11 is nonsingular, 

then, 

|𝑴| = |𝑴11| |
𝑴
𝑴11
⁄ |                                                        (A.40) 

 

Rewrite the optimization problem using lemma 2 and lemma 3, 

 

𝑚𝑎𝑥
𝒘12

     {|𝑾11| |𝒘22 −𝒘12
𝑇 𝑾11

−1𝒘12|}       𝑠. 𝑡:  ‖𝒘12 − 𝒔12‖∞ ≤  𝜌,𝑾 ≻ 0      (A.41) 

 

𝑤22  is largest when 𝑤22 = 𝑠22 + 𝜌  (initialized at the beginning of the algorithm). 

Therefore, (A.41) is solved by minimizing the expression 𝒘12
𝑇 𝑾11

−1𝒘12. 

 

Let 𝒚 = 𝒘12 

 

 𝒘̂12 ≔
𝑎𝑟𝑔𝑚𝑖𝑛
𝒚

{𝒚𝑇𝑾11
−1𝒚}      𝑠. 𝑡:  ‖𝒚 − 𝒔12‖∞ ≤  𝜌,𝑾 ≻ 0.             (A.42) 
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(A.42) is a box-constrained quadratic program (QP). We cycle through columns in 

order, solving a QP at each step. After each sweep through all columns, we check if the 

primal-dual gap is less than 𝜀, a given tolerance. 

 

Steps of the Algorithm: 

1) Cycle through the columns in order 

2) Compute 𝑾11
−1 

3) Solve the quadratic optimization problem (A.42) 

4) Repeat until the duality gap is less than 𝜀, a given tolerance 

 

The primal variable is related to 𝑾 by 𝑿 = 𝑾−1. 

The duality gap condition is then 𝑇𝑟𝑎𝑐𝑒(𝑺𝑿) +  𝜌‖𝑿‖1 ≤ 𝑝 +  𝜀. 

 

A.2.2 Connection to Lasso 

The dual of (A.42) is penalized least squares problem, often referred to as Lasso and 

is given by, 

 

𝑚𝑖𝑛
𝒙
      {𝒙𝑇𝑊11𝒙 − 𝒔12

𝑇 𝒙 + 𝜌‖𝒙‖1}                                             (A.43) 
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Proof: 

Rewrite (A.43) using dual norm definition in lemma 1 and using dual variable V, 

 

𝑚𝑖𝑛
𝒙
      {𝒙𝑇𝑾11𝒙 − 𝒔12

𝑇 𝒙 +max{𝒗𝑇𝒙  ∶ ‖𝑽‖∞ ≤ 𝜌}}                       (A.44)  

 

The first two terms in the minimization do not depend on the new dual variable V, so 

we can write (A.44) as,    

 

                                  
𝑚𝑖𝑛 
𝒙
   𝑚𝑎𝑥          {‖𝑽‖∞ ≤ 𝜌}𝒙

𝑇𝑾11𝒙 − (𝒔12 − 𝒗)
𝑇𝒙        (A.45a)                      

 

                                       
𝑚𝑖𝑛
𝒙
   

𝑚𝑎𝑥
‖𝑽‖∞ ≤ 𝜌

      {𝒙𝑇𝑾11𝒙 − (𝒔12 − 𝒗)
𝑇𝒙}              (A.45b) 

 

Take the dual by exchanging the max and min, 

 

𝑚𝑎𝑥
‖𝑽‖∞ ≤ 𝜌

      
𝑚𝑖𝑛
𝒙
         {𝒙𝑇𝑾11𝒙 − (𝒔12 − 𝒗)

𝑇𝒙}                                 (A.46) 

 

Solve the inner minimization problem analytically, 

∇𝑓(𝒙) = 0                                                           (A.47a) 
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∇𝒙𝒙
𝑇𝑾11𝒙 − (𝒔12 − 𝒗)

𝑇𝒙                                   (A.47b) 

 

2𝑾11𝒙 − (𝒔12 − 𝒗) = 0                                      (A.47c) 

 

2𝑾11𝒙 = 𝒔12 − 𝒗                                                (A.47d) 

 

𝒙 =
1

2
𝑾11
−1(𝒔12 − 𝒗)                                           (A.47e) 

 

Use the solution to the inner minimization problem in (A.46), 

 

𝑚𝑎𝑥
‖𝑽‖∞ ≤ 𝜌

{(
1

2
𝑾11(𝒔12 − 𝒗))

𝑇𝑾11(
1

2
𝒔12 − 𝒗)) − (𝒔12 − 𝒗)

𝑇(
1

2
𝑾11(𝒔12 − 𝒗))} (A.47) 

 

By simplifying the optimization problem becomes, 

 

𝑚𝑎𝑥
‖𝑽‖∞ ≤ 𝜌

{(
1

4
(𝒔12 − 𝒗)

𝑇𝑾11
−1𝑾11𝑾11

−1(𝒔12 − 𝒗) − (
1

2
(𝒔12 − 𝒗)

𝑇𝑾11
−1(𝒔12 − 𝒗))} 

 

𝑚𝑎𝑥
‖𝑽‖∞ ≤ 𝜌

    {−(
1

4
(𝒔12 − 𝒗)

𝑇𝑾11
−1(𝒔12 − 𝒗))}                        (A.48) 

 

Doing a variable substitution: 𝒚 = 𝒔12 − 𝒗, 
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𝑚𝑎𝑥
‖𝒚 − 𝒔12‖∞ ≤ 𝜌

      {−(
1

4
𝒚𝑇𝑾11

−1𝒚)}                           (A.49a) 

 

𝑚𝑖𝑛
‖𝒚 − 𝒔12‖∞ ≤ 𝜌

      {(
1

4
𝒚𝑇𝑾11

−1𝒚)}                             (A.49b) 

 

𝑚𝑖𝑛
‖𝒚 − 𝒔12‖∞ ≤ 𝜌

      {𝒚𝑇𝑾11
−1𝒚}                                   (A.49c) 

 

This proves that (A.42) and (A.43) are equal. 

 

Strong duality obtains so that (A.42) and (A.43) are equivalent. If we let 𝑸 denote the 

square root of 𝑾11, and 𝒃 =
1

2
𝑸−1𝒔12, then we write (A.43) as, 

 

𝑚𝑖𝑛
𝒙
        {‖𝑸𝒙 − 𝒃‖2

2 + 𝜌‖𝒙‖1}                                       (A.50) 

 

Proof: 

We want to show that (A.43) is equivalent to (A.50). Comparing (A.43) and (A.50), we 

need to show what values of 𝑸 and 𝒃 make the two equations equal. 

This is equivalent to showing that, 

 

‖𝑸𝒙 − 𝒃‖2
2 = 𝒙𝑇𝑾11𝒙 − 𝒔12

𝑇 𝑥                                   (A.51) 
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We start by expanding the right hand side of the equation, 

 

‖𝑸𝒙 − 𝒃‖2
2 = (𝑸𝒙 − 𝒃)𝑇(𝑸𝒙 − 𝒃)                           (A.52a) 

 

= 𝒙𝑇𝑸𝑇𝑸𝒙 − (2𝑸𝒃)𝑇𝒙 + ‖𝒃‖2                                (A.52b) 

 

Since we are minimizing over 𝑥, the term ‖𝒃‖2 can be dropped. 

𝑾11 is symmetric and positive definite, so it will have a square root 𝑸 that is also 

symmetric and positive definite. 

 

𝑸 = 𝑸𝑇                                                       (A.53) 

𝑸−1 exists because 𝑸 is positive definite. 

 

By symmetry of 𝑾11, we can write an eigenvalue decomposition. 

 

𝑾11 = 𝑼𝑳𝑼
𝑇                                                      (A.54a) 

 

𝑸 = 𝑼𝑳
1

2𝑼                                                       (A.54b) 

 

∴ 𝑸 = 𝑾11

1

2                                                           (A.54c) 
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By using the solution of 𝑸, we can find 𝒃, 

 

2𝑸𝒃 = 𝒔12                                                        (A.55a) 

 

𝒃 =
1

2
𝑸−1𝒔12                                                  (A.55b) 

 

∴ 𝒃 =
1

2
𝑾11

−
1

2𝒔12                                                 (A.55c) 

 

(A.50) is referred to as the penalized least-squares problem, often referred to as 

Lasso. 
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Appendix C 
 
Binary Classification Results for the Covariance matrix vs covariance matrix with 
randomly selected genes 
 

Covariance 
 

    % CORRECT      

 1 2 3 4 5 6 7 8 9 10 11 

1  88.20 53.75 95.17 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2 88.22  94.47 94.44 100.00 99.95 100.00 100.00 100.00 100.00 100.00 

3 53.82 94.68  95.39 100.00 99.88 98.63 100.00 100.00 100.00 100.00 

4 95.17 95.00 95.09  99.45 100.00 88.32 99.91 100.00 99.94 99.94 

5 100.00 100.00 100.00 99.43  99.95 100.00 100.00 100.00 100.00 100.00 

6 100.00 99.90 99.88 100.00 99.95  100.00 100.00 100.00 100.00 100.00 

7 100.00 100.00 98.75 88.68 100.00 100.00  100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 99.91 100.00 100.00 100.00  55.56 62.50 62.50 

9 100.00 100.00 100.00 99.88 100.00 100.00 100.00 55.59  57.14 57.14 

10 100.00 100.00 100.00 99.94 100.00 100.00 100.00 62.50 57.14  49.89 

11 100.00 100.00 100.00 99.84 100.00 100.00 100.00 62.50 57.14 49.89  

 
 
 

Random Effect 
 

    % CORRECT       

 1 2 3 4 5 6 7 8 9 10 11 

1  55.75 72.12 92.02 99.81 71.33 62.90 45.02 82.05 92.39 93.56 

2 55.55  64.84 87.78 100.00 79.33 59.87 66.82 96.94 98.24 98.88 

3 72.47 65.51  91.78 99.27 72.50 59.02 81.92 93.62 94.74 95.24 

4 91.74 87.65 91.66  87.13 94.12 93.83 93.99 93.79 94.16 93.71 

5 99.83 99.99 99.22 87.52  100.00 100.00 100.00 100.00 100.00 100.00 

6 70.64 80.51 73.58 93.90 100.00  85.27 69.23 97.89 99.50 100.00 

7 61.83 59.33 58.75 93.94 100.00 86.13  80.80 96.41 100.00 100.00 

8 44.31 66.92 82.54 94.20 100.00 69.13 80.07  100.00 100.00 100.00 

9 82.23 96.92 92.84 93.50 100.00 97.70 96.26 100.00  58.71 80.00 

10 91.22 98.18 94.57 93.51 100.00 99.67 100.00 100.00 58.05  53.83 

11 92.89 99.06 95.48 93.57 100.00 100.00 100.00 100.00 79.95 54.94  
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Binary Classification Results for the Precision (ρ=1) vs Precision (ρ=1) with randomly 
selected genes 

 
 

    % CORRECT       

 1 2 3 4 5 6 7 8 9 10 11 

1  96.16 73.37 94.90 100.00 99.90 100.00 100.00 100.00 100.00 100.00 

2 96.67  93.75 95.13 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3 74.50 94.25  94.13 100.00 98.21 98.83 100.00 100.00 100.00 100.00 

4 94.77 95.00 93.98  97.98 95.65 95.13 96.58 96.50 96.17 96.24 

5 100.00 100.00 100.00 98.04  100.00 100.00 100.00 100.00 100.00 100.00 

6 99.93 100.00 98.15 95.28 100.00  100.00 100.00 100.00 100.00 100.00 

7 99.98 100.00 98.92 95.06 100.00 100.00  100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 96.22 100.00 100.00 100.00  100.00 100.00 100.00 

9 100.00 100.00 100.00 96.26 100.00 100.00 100.00 100.00  100.00 100.00 

10 100.00 100.00 100.00 95.76 100.00 100.00 100.00 100.00 100.00  100.00 

11 100.00 100.00 100.00 96.60 100.00 100.00 100.00 100.00 100.00 100.00  

 
 
 

Random Effect 
 

    % CORRECT       

 1 2 3 4 5 6 7 8 9 10 11 

1  96.08 72.15 94.07 98.58 99.07 97.81 98.21 97.87 97.42 97.11 

2 95.96  94.40 94.87 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3 72.63 94.51  94.03 100.00 98.58 98.35 100.00 100.00 100.00 100.00 

4 93.72 94.88 94.06  98.22 95.77 95.26 96.42 96.24 96.06 96.44 

5 98.51 100.00 100.00 98.12  100.00 100.00 100.00 100.00 100.00 100.00 

6 98.95 100.00 98.08 95.74 100.00  100.00 100.00 100.00 100.00 100.00 

7 97.26 100.00 98.85 94.81 100.00 100.00  100.00 100.00 100.00 100.00 

8 97.52 100.00 100.00 96.33 100.00 100.00 100.00  100.00 100.00 100.00 

9 98.46 100.00 100.00 96.41 100.00 100.00 100.00 100.00  100.00 100.00 

10 97.42 100.00 100.00 96.25 100.00 100.00 100.00 100.00 100.00  100.00 

11 97.22 100.00 100.00 96.27 100.00 100.00 100.00 100.00 100.00 100.00  
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Binary Classification Results for the Precision (ρ=3) vs Precision (ρ=3) with 
randomly selected genes 
 

 
 

    % CORRECT       
 1 2 3 4 5 6 7 8 9 10 11 

1  91.02 69.75 94.85 100.00 95.48 100.00 100.00 100.00 100.00 100.00 

2 91.53  90.60 94.99 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3 69.18 90.61  94.43 100.00 96.29 99.44 100.00 100.00 100.00 100.00 

4 94.78 94.50 94.36  99.01 96.06 97.96 98.71 99.64 99.51 99.89 

5 100.00 100.00 100.00 99.03  100.00 100.00 98.40 98.09 98.00 98.28 

6 95.38 100.00 95.60 96.88 100.00  100.00 100.00 100.00 100.00 100.00 

7 100.00 100.00 99.40 97.64 100.00 100.00  100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 98.33 98.53 100.00 100.00  100.00 100.00 100.00 

9 100.00 100.00 100.00 99.30 98.16 100.00 100.00 100.00  99.95 100.00 

10 100.00 100.00 100.00 99.56 98.13 100.00 100.00 100.00 99.71  100.00 

11 100.00 100.00 100.00 99.86 98.28 100.00 100.00 100.00 100.00 100.00  

 
 
 
 

Random Effect 
 

    % CORRECT       

 1 2 3 4 5 6 7 8 9 10 11 

1  86.76 72.07 95.28 98.86 96.00 100.00 100.00 100.00 100.00 100.00 

2 86.90  92.21 95.58 98.67 94.90 100.00 100.00 100.00 100.00 100.00 

3 71.75 91.88  92.00 97.10 94.35 96.00 97.48 97.02 97.12 97.45 

4 95.15 96.01 91.68  97.40 95.17 95.41 97.48 97.56 97.52 97.30 

5 98.75 98.64 96.92 97.02  98.40 98.57 98.23 98.56 98.19 98.09 

6 96.00 95.54 94.85 95.36 98.23  100.00 100.00 100.00 100.00 100.00 

7 100.00 100.00 95.79 95.41 98.30 100.00  100.00 100.00 100.00 100.00 

8 100.00 100.00 96.69 97.23 98.40 100.00 100.00  100.00 100.00 100.00 

9 100.00 100.00 97.07 97.73 98.25 100.00 100.00 100.00  100.00 100.00 

10 100.00 100.00 96.90 97.60 98.39 100.00 100.00 100.00 100.00  100.00 

11 100.00 100.00 97.29 97.92 98.13 100.00 100.00 100.00 100.00 100.00  
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Long-short Portfolio Results 

Empirical and Realized Risk 
 

2 year S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 5.80 0.05 5.63 0.06 6.12 0.07 53.44 59.53 

GLassoMAX LIKELIHOOD-2 5.82 0.04 5.74 0.05 6.13 0.07** 66.67 74.75 

GLassoMAX LIKELIHOOD 5.75 0.03 5.85 0.05 6.19 0.07 72.85 81.94 

GLassoORACLE 5.69 0.02 5.92 0.06 6.25 0.07 75.11 84.57 

 
Table D.1   Long-short portfolio 2 years empirical and realized risks 

 

 

1 year S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 5.68 0.08 5.54 0.17 6.27 0.11 59.70 65.16 

GLassoMAX LIKELIHOOD-2 5.79 0.06 5.46 0.09 6.19 0.10** 57.22 62.22 

GLassoMAX LIKELIHOOD 5.68 0.04 5.94 0.09 6.41 0.12** 77.17 84.74 
GLassoORACLE 5.73 0.04 5.85 0.09 6.33 0.11 75.11 82.46 

 
Table D.2   Long-short portfolio 1 year empirical and realized risks 

 
 
 
 

9 months S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 5.67 0.05 5.41 0.12 6.44 0.07 64.09 69.33 

GLassoMAX LIKELIHOOD-2 5.64 0.05 5.15 0.05 6.42 0.07** 53.35 57.33 

GLassoMAX LIKELIHOOD 5.60 0.04 5.92 0.08 6.65 0.08** 79.01 85.89 
GLassoORACLE 5.71 0.04 5.70 0.06 6.50 0.07 75.06 81.52 

 
Table D.3   Long-short portfolio 9 months empirical and realized risks 
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6 months S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 5.49 0.07 5.19 0.15 6.71 0.11** 64.22 68.55 

GLassoMAX LIKELIHOOD-2 5.36 0.06 4.65 0.08 6.63 0.09 48.74 51.73 

GLassoMAX LIKELIHOOD 5.57 0.04 5.83 0.09 6.79 0.09** 79.58 85.38 
GLassoORACLE 5.65 0.04 5.51 0.09 6.60 0.09 75.09 80.43 

 
Table D.4   Long-short portfolio 6 months empirical and realized risks 

 
 
 
 

3 months S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 4.91 0.13 4.13 0.21 7.32 0.12** 59.42 62.34 

GLassoMAX LIKELIHOOD-2 4.58 0.05 3.29 0.06 7.24 0.10 44.46 46.44 

GLassoMAX LIKELIHOOD 5.40 0.03 5.87 0.09 7.47 0.13** 83.21 87.67 
GLassoORACLE 5.47 0.04 4.97 0.07 7.04 0.11 75.09 79.07 

 
Table D.5   Long-short portfolio 3 months empirical and realized risks 

 
 
 
 

2 months S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 4.46 0.13 3.31 0.19 7.60 0.12 60.53 63.07 
GLassoMAX LIKELIHOOD-2 3.89 0.03 2.23 0.05 7.57 0.12 45.81 47.55 
GLassoMAX LIKELIHOOD 5.34 0.03 5.66 0.06 7.87 0.11** 84.40 88.22 
GLassoORACLE 5.28 0.04 4.38 0.06 7.39 0.11 75.10 78.46 

 
Table D.6   Long-short portfolio 2 months empirical and realized risks 
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1 month S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 3.20 0.11 1.52 0.10 8.54 0.14 62.13 64.09 

GLassoMAX LIKELIHOOD-2 2.69 0.02 0.78 0.02 8.54 0.14 55.73 57.45 

GLassoMAX LIKELIHOOD 2.69 0.02 0.78 0.02 8.54 0.14 55.73 57.45 
GLassoORACLE 4.63 0.03 2.98 0.04 8.50 0.14 75.11 77.58 

 
Table D.7   Long-short portfolio 1 month empirical and realized risks 
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Empirical and Realized Likelihood 

 

2 year S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 6.12 0.07 53.44 59.53 63.25 107779.65 109590.02 

GLassoMAX LIKELIHOOD-2 6.13 0.07 66.67 74.75 55.69 107929.11 109179.59 

GLassoMAX LIKELIHOOD 6.19 0.07 72.85 81.94 52.40 107930.82 108926.92 
GLassoORACLE 6.25 0.07 75.11 84.57 51.19 107911.28 108815.31 

 
Table D.8   Long-short portfolio 2 years empirical and realized likelihoods 

 
 
 
 

1 year S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 6.27 0.11 59.70 65.16 54.73 53668.56 55178.46 

GLassoMAX LIKELIHOOD-2 6.19 0.10 57.22 62.22 55.89 53737.92 55290.66 

GLassoMAX LIKELIHOOD 6.41 0.12 77.17 84.74 43.08 53854.40 54590.93 
GLassoORACLE 6.33 0.11 75.11 82.46 44.55 53864.81 54681.56 

 
Table D.9   Long-short portfolio 1 year empirical and realized likelihoods 

 

 

9 months S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 6.44 0.07 64.09 69.33 49.41 40205.95 41510.30 

GLassoMAX LIKELIHOOD-2 6.42 0.07 53.35 57.33 56.70 40096.36 41855.82 

GLassoMAX LIKELIHOOD 6.65 0.08 79.01 85.89 38.97 40303.79 40995.59 
GLassoORACLE 6.50 0.07 75.06 81.52 41.82 40315.34 41160.91 

 
Table D.10 Long-short portfolio 9 months empirical and realized likelihoods 
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6 months S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 6.71 0.11 64.22 68.55 46.42 26624.48 27940.22 

GLassoMAX LIKELIHOOD-2 6.63 0.09 48.74 51.73 58.39 26443.48 28429.58 

GLassoMAX LIKELIHOOD 6.79 0.09 79.58 85.38 34.96 26826.03 27434.59 
GLassoORACLE 6.60 0.09 75.09 80.43 38.22 26825.81 27609.77 

 
Table D.11 Long-short portfolio 6 months empirical and realized likelihoods 

 
 
 
 

3 months S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 7.32 0.12 59.42 62.34 47.03 12657.11 14599.16 

GLassoMAX LIKELIHOOD-2 7.24 0.10 44.46 46.44 59.69 12566.99 15053.35 

GLassoMAX LIKELIHOOD 7.47 0.13 83.21 87.67 26.97 13333.21 13784.95 
GLassoORACLE 7.04 0.11 75.09 79.07 33.94 13321.53 14064.92 

 
Table D.12 Long-short portfolio 3 months empirical and realized likelihoods 

 

 

 

2 months S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 7.60 0.12 60.53 63.07 44.65 Inf Inf 

GLassoMAX LIKELIHOOD-2 7.57 0.12 45.81 47.55 57.51 7707.04 10594.81 

GLassoMAX LIKELIHOOD 7.87 0.11 84.40 88.22 23.72 8845.52 9251.25 
GLassoORACLE 7.39 0.11 75.10 78.46 31.97 8815.23 9554.85 

 

Table D.13 Long-short portfolio 2 months empirical and realized likelihoods 
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1 month S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 
Non-zero 

overlap (%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 8.54 0.14 62.13 64.09 41.13 Inf Inf 

GLassoMAX LIKELIHOOD-2 8.54 0.14 55.73 57.45 47.08 Inf Inf 

GLassoMAX LIKELIHOOD 8.54 0.14 55.73 57.45 47.08 Inf Inf 
GLassoORACLE 8.50 0.14 75.11 77.58 29.20 4303.05 5023.61 

 

Table D.14 Long-short portfolio 1 month empirical and realized likelihoods 
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Long-only Portfolio Results 

Empirical and Realized Risk 

 

2 year N.S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 6.41 0.07 6.40 0.03 6.75 0.08 54.16 60.43 

GLassoMAX LIKELIHOOD-2 6.40 0.05 6.45 0.05 6.74 0.08** 66.67 74.75 

GLassoMAX LIKELIHOOD 6.32 0.04 6.52 0.06 6.79 0.08 72.85 81.94 
GLassoORACLE 6.25 0.03 6.57 0.06 6.83 0.09 75.11 84.57 

 
Table D.15   Long-only portfolio 2 years empirical and realized risks 

 
 
 
 

1 year N.S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 6.35 0.08 6.32 0.09 6.85 0.12 63.35 69.18 

GLassoMAX LIKELIHOOD-2 6.38 0.07 6.23 0.07 6.79 0.10** 57.22 62.22 
GLassoMAX LIKELIHOOD 6.20 0.06 6.55 0.07 6.98 0.11** 77.17 84.74 
GLassoORACLE 6.26 0.05 6.48 0.07 6.92 0.10 75.11 82.46 

 
Table D.16   Long-only portfolio 1 year empirical and realized risks 

 
 
 
 

9 months N.S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 
GLassoMIN REALIZED RISK 6.21 0.10 6.11 0.13 6.98 0.12 57.83 62.50 
GLassoMAX LIKELIHOOD-2 6.28 0.09 6.03 0.10 6.92 0.12** 53.35 57.33 
GLassoMAX LIKELIHOOD 6.10 0.07 6.53 0.10 7.14 0.12** 79.01 85.89 
GLassoORACLE 6.23 0.07 6.37 0.09 7.01 0.12 75.06 81.52 

 
Table D.17   Long-only portfolio 9 months empirical and realized risks 

 
 
 
 



   

224 
 

                                                                                                  Appendix D 
 

 

6 months N.S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 6.05 0.09 5.97 0.14 7.16 0.14** 62.73 66.88 

GLassoMAX LIKELIHOOD-2 6.04 0.09 5.66 0.12 7.06 0.12** 48.74 51.73 

GLassoMAX LIKELIHOOD 6.03 0.07 6.43 0.10 7.26 0.13** 79.58 85.38 
GLassoORACLE 6.15 0.07 6.19 0.11 7.11 0.12 75.09 80.43 

 
Table D.18   Long-only portfolio 6 months empirical and realized risks 

 
 
 
 

3 months N.S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
risk (%) 

std 
dev 

Realized 
risk(%) 

std 
dev 

Sparsity 
(%) 

Zero 
Overlap 

(%) 
GLassoMIN REALIZED RISK 5.46 0.11 5.10 0.17 7.76 0.13** 56.05 58.82 
GLassoMAX LIKELIHOOD-2 5.40 0.08 4.67 0.10 7.62 0.12 44.46 46.44 
GLassoMAX LIKELIHOOD 5.77 0.05 6.36 0.10 7.88 0.14** 83.21 87.67 
GLassoORACLE 5.94 0.06 5.70 0.10 7.53 0.12 75.09 79.07 

 
Table D.19   Long-only portfolio 3 months empirical and realized risks 

 
 
 
 

2 months N.S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 4.99 0.11 4.25 0.15 8.13 0.12 57.04 59.36 

GLassoMAX LIKELIHOOD-2 4.72 0.06 3.72 0.09 8.14 0.13 45.81 47.55 

GLassoMAX LIKELIHOOD 5.67 0.05 6.11 0.07 8.24 0.13** 84.40 88.22 
GLassoORACLE 5.72 0.05 5.13 0.08 7.90 0.12 75.10 78.46 

 
Table D.20   Long-only portfolio 2 months empirical and realized risks 
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1 month N.S.S 
Predicted 
Risk(%) 

std 
dev 

Empirical 
Risk (%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

GLassoMIN REALIZED RISK 3.97 0.11 2.59 0.12 9.12 0.14 65.15 67.21 

GLassoMAX LIKELIHOOD-2 3.25 0.05 1.66 0.06 9.23 0.15 55.73 57.45 

GLassoMAX LIKELIHOOD 3.25 0.05 1.66 0.06 9.23 0.15 55.73 57.45 

GLassoORACLE 4.99 0.05 3.65 0.07 8.88 0.14 75.11 77.58 

 
Table D.21 Long-only portfolio 1 month empirical and realized risks 
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Empirical and Realized Likelihood 

2 year N.S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 6.75 0.08 54.16 60.43 63.07 107762.24 109537.14 

GLassoMAX LIKELIHOOD-2 6.74 0.08 66.67 74.75 55.69 107929.11 109179.59 

GLassoMAX LIKELIHOOD 6.79 0.08 72.85 81.94 52.40 107930.82 108926.92 
GLassoORACLE 6.83 0.09 75.11 84.57 51.19 107911.28 108815.31 

 
Table D.22 Long-only portfolio 2 years empirical and realized likelihoods 

 

 

1 year N.S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 6.85 0.12 63.35 69.18 52.05 53780.21 55081.61 

GLassoMAX LIKELIHOOD-2 6.79 0.10 57.22 62.22 55.89 53737.92 55290.66 

GLassoMAX LIKELIHOOD 6.98 0.11 77.17 84.74 43.08 53854.40 54590.93 
GLassoORACLE 6.92 0.10 75.11 82.46 44.55 53864.81 54681.56 

 
Table D.23 Long-only portfolio 1 year empirical and realized likelihoods 

 
 
 
 

 

9 months N.S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 6.98 0.12 57.83 62.50 54.20 40036.72 41693.77 

GLassoMAX LIKELIHOOD-2 6.92 0.12 53.35 57.33 56.70 40096.36 41855.82 

GLassoMAX LIKELIHOOD 7.14 0.12 79.01 85.89 38.97 40303.79 40995.59 
GLassoORACLE 7.01 0.12 75.06 81.52 41.82 40315.34 41160.91 

 
Table D.24 Long-only portfolio 9 months empirical and realized likelihoods 
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6 months N.S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 7.16 0.14 62.73 66.88 47.42 26592.77 27980.61 

GLassoMAX LIKELIHOOD-2 7.06 0.12 48.74 51.73 58.39 26443.48 28429.58 

GLassoMAX LIKELIHOOD 7.26 0.13 79.58 85.38 34.96 26826.03 27434.59 
GLassoORACLE 7.11 0.12 75.09 80.43 38.22 26825.81 27609.77 

 
Table D.25 Long-only portfolio 6 months empirical and realized likelihoods 

 
 
 
 

3 months N.S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 7.76 0.13 56.05 58.82 50.09 12464.87 14720.15 
GLassoMAX LIKELIHOOD-2 7.62 0.12 44.46 46.44 59.69 12566.99 15053.35 
GLassoMAX LIKELIHOOD 7.88 0.14 83.21 87.67 26.97 13333.21 13784.95 
GLassoORACLE 7.53 0.12 75.09 79.07 33.94 13321.53 14064.92 

 
Table D.26 Long-only portfolio 3 months empirical and realized likelihoods 

 
 
 
 

2 months N.S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 8.13 0.12 57.04 59.36 47.60 Inf Inf 

GLassoMAX LIKELIHOOD-2 8.14 0.13 45.81 47.55 57.51 7707.04 10594.81 

GLassoMAX LIKELIHOOD 8.24 0.13 84.40 88.22 23.72 8845.52 9251.25 
GLassoORACLE 7.90 0.12 75.10 78.46 31.97 8815.23 9554.85 

 
Table D.27 Long-only portfolio 2 months empirical and realized likelihoods 
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1 month N.S.S 
Realized 
Risk(%) 

std 
dev 

Sparsity 
(%) 

Zero- 
overlap 

(%) 

Non-zero 
overlap 

(%) 
Realized 

Likelihood 
Empirical 
Likelihood 

GLassoMIN REALIZED RISK 9.12 0.14 65.15 67.21 38.30 Inf Inf 

GLassoMAX LIKELIHOOD-2 9.23 0.15 55.73 57.45 47.08 Inf Inf 

GLassoMAX LIKELIHOOD 9.23 0.15 55.73 57.45 47.08 Inf Inf 
GLassoORACLE 8.88 0.14 75.11 77.58 29.20 4303.05 5023.61 

 
Table D.28 Long-only portfolio 1 month empirical and realized likelihoods 
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Statistical Hypothesis test (t-test) to test for the difference between 

two means 

 

The t-test is the statistical hypothesis test used in this thesis to determine if the mean 

value for two different groups are statistically significantly different from each other. 

We let 𝑥̅1 represent the mean value of group 1, 𝑥̅2 represent the mean value of group 

2,  𝑁1 be the sample size of group 1, 𝑁2 be the sample size group 2, 𝑠1 be the standard 

deviation of group 1 values and 𝑠2 be the standard deviation of group 2 values.   

 

Null hypothesis:                      𝐻0: 𝑥̅1 − 𝑥̅2 = 0 

 

Alternative hypothesis:         𝐻𝐴: 𝑥̅1 − 𝑥̅2 ≠ 0 

 

t-statistic for independent means (pooled) =  
𝑥̅1−𝑥̅2

√(
(𝑁1−1)𝑠1

2+(𝑁2−1)𝑠2
2

𝑁1+𝑁2−2
)(

1

𝑁1
+
1

𝑁2
)

 

 

If the two standard deviations for group 1 and group 2 are not similar (one is more 

than twice of the other), then the unpooled t-statistic is used. 

 

t-statistic for independent means (unpooled) =  
𝑥̅1−𝑥̅2

√(
𝑠1
2

𝑁1
+
𝑠2
2

𝑁2
)

 

 

The t-statistic is used to determine the p-value. Experiments are performed at 

significance levels of 𝛼 = 1% and 𝛼 = 5%. Results statistically significant at the 1%  
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level are represented with the symbol ‘**’ while results statistically significant at the 

5% level are represented with the symbol ‘*’. 

 

 Decision  

p ≤ 𝛼  Result is statistically significant; reject 𝐻0 

p > 𝛼  Result is not statistically significant; fail to reject 𝐻0 

 

where p is the p-value. 
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Chapter 2 t-test results  

Model 1 Results 

A sparse model: (X)ii = 1, (X)i,i-1= (X)i-1,i =0.5, and 0 otherwise. 

 

Sample 
Size 

GLasso 
Error std 

Modified 
GLasso Error std 

Pseudoinverse 
Error std t-stat p-value 

5 3.24 0.22 3.16 0.24 3.66 0.34 -0.58963 0.71415 
10 2.21 0.44 2.45 0.46 395.29 2367.99 1.16391 0.12983 
20 1.61 0.27 1.64 0.50 9.95 5.46 0.24744 0.40295 
30 1.36 0.23 1.24 0.27 4.44 1.63 -1.87668 0.96720 
40 1.22 0.19 1.11 0.23 2.95 0.94 -2.25225 0.98644 
50 1.04 0.16 1.05 0.24 2.46 0.66 0.24279 0.40434 
60 0.98 0.13 1.02 0.24 2.08 0.50 0.97522 0.16572 
70 0.91 0.13 0.97  0.20* 1.78 0.44 2.03894 0.02168 
80 0.87 0.14 0.92  0.19* 1.52 0.35 1.79007 0.03768 
90 0.82 0.13 0.88    0.20** 1.43 0.33 2.43523 0.00793 

100 0.77 0.12 0.89    0.20** 1.37 0.31 5.04824 0.00000 

 
Table E.1 Error between Graphical Lasso and Modified Graphical Lasso (p =10) 

 

 

 

Sample 
size 

GLasso                            
(Optimal ρ) 

Modified GLasso                     
(Off-Diagonal Optimal ρ)  

Modified GLasso                    
(Diagonal Optimal ρ)  

5 2.83 7.51 1.51 

10 0.58 1.41 0.25 
20 0.24 0.45 0.02 

30 0.17 0.19 0.01 
40 0.13 0.12 0.01 

50 0.10 0.08 0.01 
60 0.08 0.06 0.01 
70 0.07 0.04 0.01 
80 0.07 0.03 0.01 
90 0.06 0.03 0.01 

100 0.05 0.02 0.01 

 

Table E.2 Optimal penalty for Graphical Lasso and Modified Graphical Lasso (p=10) 
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Sample 
Size 

GLasso 
Error std 

Modified 
GLasso 
Error std 

Pseudoinverse 
Error std t-statistic p-value 

5 6.27 0.16 6.21 0.19 6.66 0.01 -0.51470 0.68966 
10 4.77 0.44 4.66 0.44 6.49 0.04 -0.58364 0.71665 
20 3.80 0.30 3.37 0.37 10.71 3.13 -4.10819 0.99990 
30 3.20 0.24 2.56 0.24 1364.39 3245.91 -10.16021 1.00000 
40 2.83 0.29 2.12 0.24 61.91 28.42 -11.78619 1.00000 
50 2.57 0.23 1.87 0.18 23.75 5.49 -16.90823 1.00000 
60 2.41 0.22 1.69 0.17 14.30 2.42 -20.15201 1.00000 
70 2.28 0.22 1.57 0.14 10.44 1.61 -22.25229 1.00000 
80 2.10 0.20 1.47 0.12 8.64 1.10 -23.74518 1.00000 
90 1.99 0.20 1.42 0.12 7.18 0.86 -22.93527 1.00000 

100 1.85 0.18 1.35 0.11 6.18 0.67 -23.39206 1.00000 

 
Table E.3 Error between Graphical Lasso and Modified Graphical Lasso (p =30) 

 
 
 
 

Sample 
size 

GLasso                            
(Optimal ρ) 

Modified GLasso                     
(Off-Diagonal Optimal ρ)  

Modified GLasso                    
(Diagonal Optimal ρ)  

5 7.19 20.53 4.02 
10 1.10 1.54 0.27 
20 0.47 0.70 0.01 
30 0.32 0.41 0.01 
40 0.25 0.28 0.01 
50 0.21 0.21 0.01 
60 0.19 0.17 0.01 
70 0.17 0.14 0.01 
80 0.15 0.12 0.01 
90 0.13 0.10 0.01 

100 0.12 0.09 0.01 

 
 

Table E.4 Optimal penalty for Graphical Lasso and Modified Graphical Lasso (p=30) 
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Sample 
Size 

GLasso 
Error std 

Modified 
GLasso 
Error std 

Pseudoinverse 
Error std t-statistic p-value 

5 8.29 0.15 8.25 0.17 8.63 0.00 -0.43453 0.66231 
10 6.77 0.54 6.46 0.20 8.59 0.01 -1.71174 0.94794 
20 5.42 0.40 5.12 0.38 8.20 0.04 -2.41614 0.98970 
30 4.79 0.35 4.11 0.30 10.84 1.43 -8.11342 1.00000 
40 4.34 0.44 3.32 0.38 51.88 14.05 -11.09239 1.00000 
50 3.98 0.30 2.91 0.17 2854.55 1916.77 -21.98789 1.00000 
60 3.66 0.31 2.58 0.30 144.90 67.82 -19.60404 1.00000 
70 3.36 0.10 2.26 0.16 53.71 8.60 -48.69923 1.00000 
80 3.25 0.15 2.08 0.16 30.70 3.75 -48.80764 1.00000 
90 3.12 0.22 1.95 0.13 23.42 2.67 -43.87422 1.00000 

100 2.86 0.25 1.84 0.14 17.90 1.58 -35.22075 1.00000 

 
Table E.5 Error between Graphical Lasso and Modified Graphical Lasso (p =50) 

 
 
 
 
 

Sample 
size 

GLasso                            
(Optimal ρ) 

Modified GLasso                     
(Off-Diagonal Optimal ρ)  

Modified GLasso                    
(Diagonal Optimal ρ)  

5 12.57 29.55 7.85 

10 1.52 1.91 0.24 
20 0.61 1.02 0.01 

30 0.44 0.62 0.01 
40 0.35 0.41 0.01 
50 0.30 0.33 0.01 
60 0.24 0.25 0.01 
70 0.21 0.21 0.01 

80 0.20 0.18 0.01 
90 0.19 0.16 0.01 

100 0.16 0.13 0.01 

 
Table E.6 Optimal penalty for Graphical Lasso and Modified Graphical Lasso (p=50) 
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Sample 
Size 

GLasso 
Error std 

Modified 
GLasso 
Error std 

Pseudoinverse 
Error std t-statistic p-value 

5 9.90 0.15 9.85 0.20 10.22 0.00 -0.37339 0.64072 
10 8.62 0.38 7.94 0.14 10.21 0.00 -5.22296 0.99997 
20 7.19 0.43 6.53 0.15 10.02 0.00 -6.48907 1.00000 
30 6.32 0.17 5.73 0.38 9.62 0.04 -7.70994 1.00000 
40 5.21 0.14 4.28 0.19 11.54 0.25 -24.79665 1.00000 
50 5.46 0.04 4.16 0.40 24.85 3.07 -22.77702 1.00000 
60 4.92 0.29 3.51 0.15 133.67 51.45 -33.03166 1.00000 
70 4.22 0.23 3.04 0.36 4863.33 2779.00 -23.15923 1.00000 
80 4.02 0.28 2.74 0.27 264.87 50.26 -29.61906 1.00000 
90 3.98 0.19 2.60 0.14 80.59 11.33 -55.48635 1.00000 

100 3.90 0.11 2.52 0.13 55.01 8.91 -80.39420 1.00000 

 

Table E.7 Error between Graphical Lasso and Modified Graphical Lasso (p =70) 
 
 
 
 

Sample 
size 

GLasso                            
(Optimal ρ) 

Modified GLasso                     
(Off-Diagonal Optimal ρ)  

Modified GLasso                    
(Diagonal Optimal ρ)  

5 14.70 42.61 9.70 

10 1.98 2.44 0.08 

20 0.84 1.22 0.01 

30 0.56 0.86 0.01 

40 0.37 0.51 0.01 

50 0.38 0.44 0.01 

60 0.32 0.34 0.01 

70 0.24 0.28 0.01 

80 0.21 0.21 0.01 

90 0.21 0.21 0.01 

100 0.21 0.20 0.01 

 
Table E.8 Optimal penalty for Graphical Lasso and Modified Graphical Lasso (p=70) 
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Model 2 Results 

A dense model: (X)ii = 2,  (X)ii’ = 1 otherwise 
 

 

Sample 
Size 

GLasso 
Error std 

Modified 
GLasso 
Error std 

Pseudoinverse 
Error std t-statistic p-value 

5 10.22 0.17 10.07 0.14 11.32   0.47 -1.52302 0.91687 
10 9.98 0.31 10.01 0.38 575.76 2880.04 0.19345 0.42439 
20 9.88 0.23 9.91 0.11 22.33   15.36 0.52623 0.30089 

30 9.80 0.22 9.90 0.09 9.48   6.07 2.30429 0.01240 
40 9.65 0.31 9.91 0.08 6.72 3.64** 5.13619 0.00000 
50 9.32 0.59 9.83 0.41 5.46 2.75** 5.01933 0.00000 

60 8.86 1.09 9.82 0.47 4.53 2.18** 6.26457 0.00000 
70 8.64 1.19 9.83 0.15 3.74 1.85** 8.30091 0.00000 

80 7.94 1.51 9.70 0.65 3.32 1.47** 9.57562 0.00000 
90 7.06 1.55 9.54 0.95 2.97 1.15** 12.94158 0.00000 

100 6.81 1.54 9.18 1.37 2.89 1.08** 11.49822 0.00000 

 

Table E.9 Error between Graphical Lasso and Modified Graphical Lasso (p =10) 
 
 
 
 

Sample 
size 

GLasso                            
(Optimal ρ) 

Modified GLasso                     
(Off-Diagonal Optimal ρ)  

Modified GLasso                    
(Diagonal Optimal ρ)  

5 0.61 1.92 0.28 
10 0.36 0.93 0.10 
20 0.24 0.69 0.02 
30 0.18 0.58 0.01 

40 0.14 0.52 0.01 

50 0.09 0.42 0.01 

60 0.07 0.36 0.01 
70 0.06 0.29 0.01 
80 0.04 0.24 0.01 
90 0.02 0.19 0.01 

100 0.02 0.15 0.01 

 
Table E.10 Optimal penalty for Graphical Lasso and Modified Graphical Lasso (p=10) 
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Sample 
Size 

GLasso 
Error std 

Modified 
GLasso 
Error std 

Pseudoinverse 
Error std t-statistic p-value 

5 30.19 0.13 30.09 0.08 31.44 0.00 -1.46842 0.90991 
10 30.19 0.14 30.04 0.16 31.37 0.01 -2.19657 0.97930 
20 30.14 0.11 29.96 0.06 33.80 2.03 -6.81487 1.00000 
30 30.13 0.09 29.96 0.05 2552.45 6364.53 -9.30352 1.00000 
40 30.09 0.08 29.95 0.04 160.52 113.90 -9.57063 1.00000 
50 30.07 0.08 29.96 0.04 78.30 41.67 -8.39318 1.00000 
60 30.03 0.07 29.96 0.03 40.16 16.11 -7.58635 1.00000 
70 30.06 0.06 29.97 0.03 28.01 11.42 -11.43926 1.00000 
80 30.03 0.07 29.97 0.03 25.88 10.64 -7.92087 1.00000 
90 30.02 0.08 29.97 0.03 20.61 8.05 -5.61654 1.00000 

100 30.01 0.08 29.97 0.03 17.55 6.34 -4.93610 1.00000 

 

Table E.11 Error between Graphical Lasso and Modified Graphical Lasso (p =30) 
 
 
 
 

Sample 
size 

GLasso                            
(Optimal ρ) 

Modified GLasso                     
(Off-Diagonal Optimal ρ)  

Modified GLasso                    
(Diagonal Optimal ρ)  

5 0.60 2.86 0.26 
10 0.47 1.56 0.07 
20 0.35 1.16 0.01 
30 0.30 0.89 0.01 
40 0.25 0.72 0.01 
50 0.22 0.68 0.01 
60 0.20 0.67 0.01 
70 0.19 0.64 0.01 
80 0.18 0.60 0.01 
90 0.17 0.54 0.01 

100 0.16 0.50 0.01 

 
Table E.12 Optimal penalty for Graphical Lasso and Modified Graphical Lasso (p=30) 
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Sample 
Size 

GLasso 
Error std 

Modified 
GLasso Error std 

Pseudoinverse 
Error std t-statistic p-value 

5 50.21 0.10 50.11 0.07 51.47 0.00 -1.85269 0.94947 
10 50.22 0.11 50.04 0.07 51.44 0.00 -4.36492 0.99981 
20 50.21 0.07 49.97 0.05 51.36 0.03 -12.42399 1.00000 
30 50.21 0.05 49.97 0.04 52.15 0.46 -21.59777 1.00000 
40 50.17 0.08 49.97 0.03 75.92 14.70 -14.45059 1.00000 
50 50.11 0.08 49.97 0.03 13557.13 47805.89 -12.02228 1.00000 
60 50.09 0.04 49.98 0.02 362.30 158.79 -18.13701 1.00000 
70 50.10 0.04 49.98 0.02 175.15 83.26 -23.02482 1.00000 
80 50.11 0.03 49.98 0.02 102.75 33.24 -30.95300 1.00000 
90 50.11 0.03 49.98 0.02 77.11 30.73 -30.40423 1.00000 

100 50.11 0.03 49.98 0.02 61.31 21.26 -35.28482 1.00000 

 

Table E.13 Error between Graphical Lasso and Modified Graphical Lasso (p =50) 
 
 
 
 

Sample 
size 

GLasso                            
(Optimal ρ) 

Modified GLasso                     
(Off-Diagonal Optimal ρ)  

Modified GLasso                    
(Diagonal Optimal ρ)  

5 0.63 3.46 0.27 
10 0.50 1.90 0.06 

20 0.39 1.21 0.01 
30 0.35 1.08 0.01 

40 0.29 0.81 0.01 
50 0.24 0.69 0.01 
60 0.22 0.67 0.01 
70 0.21 0.66 0.01 

80 0.20 0.66 0.01 
90 0.20 0.62 0.01 

100 0.19 0.58 0.01 

 
Table E.14 Optimal penalty for Graphical Lasso and Modified Graphical Lasso (p=50) 

 

 

 

 

 



   

238 
 

                                                                                                  Appendix E 
 

 

Sample 
Size 

GLasso 
Error std 

Modified 
GLasso 
Error std 

Pseudoinverse 
Error std t-statistic p-value 

5 70.19 0.09 70.11 0.05 71.48 0.00 -1.82305 0.94712 
10 70.22 0.12 70.03 0.06 71.47 0.00 -4.41110 0.99983 
20 70.21 0.06 69.97 0.04 71.41 0.00 -15.60250 1.00000 
30 70.24 0.04 69.97 0.03 71.37 0.02 -28.82724 1.00000 
40 70.22 0.06 69.99 0.02 71.96 0.41 -22.67870 1.00000 
50 70.13 0.07 69.98 0.02 77.73 1.97 -14.54820 1.00000 
60 70.10 0.05 69.98 0.02 147.31 48.48 -16.46651 1.00000 
70 70.11 0.04 69.98 0.02 11918.77 12649.67 -25.49720 1.00000 
80 70.12 0.02 69.98 0.02 688.80 420.89 -44.59990 1.00000 
90 70.13 0.02 69.99 0.02 302.43 80.86 -58.47538 1.00000 

100 70.14 0.01 69.98 0.02 212.32 64.56 -73.38807 1.00000 

 

Table E.15 Error between Graphical Lasso and Modified Graphical Lasso (p =70) 
 
 
 
 

Sample 
size 

GLasso                            
(Optimal ρ) 

Modified GLasso                     
(Off-Diagonal Optimal ρ)  

Modified GLasso                    
(Diagonal Optimal ρ)  

5 0.63 3.85 0.27 

10 0.51 2.10 0.05 
20 0.39 1.22 0.01 
30 0.36 1.18 0.01 

40 0.33 0.96 0.01 
50 0.26 0.76 0.01 

60 0.22 0.67 0.01 
70 0.21 0.67 0.01 
80 0.21 0.66 0.01 

90 0.21 0.69 0.01 

100 0.21 0.65 0.01 

 
Table E.16 Optimal penalty for Graphical Lasso and Modified Graphical Lasso (p=70) 
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Chapter 4 t-test results for the synthetic data experiment 

Hypothesis t-tests are performed to determine if the mean realized risk for the 

proposed Graphical Lasso strategies perform significantly differently from the 

baseline oracle method. We compare the mean realized results of the GLassoORACLE 

method to all the other methods {GLassoMIN REALIZED RISK, GLassoMAX LIKELIHOOD-2, 

GLassoMAX LIKELIHOOD} and present the results. GLassoORACLE is treated as group 1 while 

the competing Graphical Lasso strategy is treated as group 2.  

 

Long-Short Portfolio Results (S.S) 
 

Rebalancing period Method t-statistic p-value 

2 months GLasso (C.VMIN REAL RISK) 8.10719 0.00000 

  GLasso (C.VMAX LIKELIHOOD-2) -7.07561 1.00000 

  GLasso (C.VMAX LIKELIHOOD) 19.02842 0.00000 

3 months GLasso (C.VMIN REAL RISK) 13.73468 0.00000 

  GLasso (C.VMAX LIKELIHOOD-2) -10.65159 1.00000 

  GLasso (C.VMAX LIKELIHOOD) 20.36420 0.00000 

6 months GLasso (C.VMIN REAL RISK) 8.47403 0.00000 

  GLasso (C.VMAX LIKELIHOOD-2) -2.04683 0.97914 

  GLasso (C.VMAX LIKELIHOOD) 15.70695 0.00000 

9 months GLasso (C.VMIN REAL RISK) -7.97720 1.00000 

  GLasso (C.VMAX LIKELIHOOD-2) 10.77498 0.00000 

  GLasso (C.VMAX LIKELIHOOD) 20.13784 0.00000 

1 year GLasso (C.VMIN REAL RISK) -5.73926 1.00000 

  GLasso (C.VMAX LIKELIHOOD-2) 15.06257 0.00000 

  GLasso (C.VMAX LIKELIHOOD) 7.88193 0.00000 

2 years GLasso (C.VMIN REAL RISK) -26.86037 1.00000 

  GLasso (C.VMAX LIKELIHOOD-2) 25.15037 0.00000 

  GLasso (C.VMAX LIKELIHOOD) -12.34491 1.00000 

 
Table E.17 Synthetic data long-short portfolio hypothesis test results 
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Long-Only Portfolio Results 
 

Rebalancing period Method t-statistic p-value 

2 months GLasso (C.VMIN REAL RISK) 8.53684 0.00000 

  GLasso (C.VMAX LIKELIHOOD-2) -8.72794 1.00000 

  GLasso (C.VMAX LIKELIHOOD) 12.46691 0.00000 

3 months GLasso (C.VMIN REAL RISK) 9.58933 0.00000 

  GLasso (C.VMAX LIKELIHOOD-2) -4.00367 0.99995 

  GLasso (C.VMAX LIKELIHOOD) 14.50693 0.00000 

6 months GLasso (C.VMIN REAL RISK) 2.93595 0.00182 

  GLasso (C.VMAX LIKELIHOOD-2) 3.65735 0.00016 

  GLasso (C.VMAX LIKELIHOOD) 9.45577 0.00000 

9 months GLasso (C.VMIN REAL RISK) -2.49365 0.99346 

  GLasso (C.VMAX LIKELIHOOD-2) 7.56108 0.00000 

  GLasso (C.VMAX LIKELIHOOD) 9.78853 0.00000 

1 year GLasso (C.VMIN REAL RISK) -7.20203 1.00000 

  GLasso (C.VMAX LIKELIHOOD-2) 14.13637 0.00000 

  GLasso (C.VMAX LIKELIHOOD) 6.70122 0.00000 

2 years GLasso (C.VMIN REAL RISK) -15.57531 1.00000 

  GLasso (C.VMAX LIKELIHOOD-2) 17.08919 0.00000 

  GLasso (C.VMAX LIKELIHOOD) -7.95821 1.00000 

 
Table E.18 Synthetic data long-only portfolio hypothesis test results 

 
 

 

 

 

 

 

 

 

 

 



   

241 
 

                                                                                                  Appendix E 
  

Chapter 3 t-test results  

Hypothesis t-tests are performed to determine if the mean classification performance 

of the two estimated precisions are significantly different from the mean performance 

of the covariance classifier.  

 

Class Tissue Precision (ρ=1) Precision (ρ=3) 

    t-statistic p-value t-statistic p-value 
1 D4_MDDC 0.34179 0.36848 -1.4121 0.91146 

2 DC -1.3172 0.89553 -0.3337 0.62824 
3 MDDC 2.91589 0.00427 4.98107 3.6E-05 

4 MDM 11.2758 2.5E-13 9.74043 1.1E-11 
5 BLOOD -5.4881 1 -3.7477 0.99959 
6 M3DC -2.4472 0.97994 -2.5857 0.98384 

7 AM -0.7008 0.74834 -0.7396 0.75966 
8 HC 4.22057 0.00146 2.30161 0.02517 

9 HL 2.95773 0.01268 3.08466 0.01077 
10 2T 3.01725 0.01963 2.45819 0.03491 
11 HOS 2.72585 0.02633 2.56949 0.03101 

 
Table E.19 One-versus-all LLS classification performance t-tests results of the 

significance in the difference between the mean performance of the covariance 
classifier and the mean performances of the precision classifiers 

 

Class Tissue Precision (ρ=1) Precision (ρ=3) 

    t-statistic p-value t-statistic p-value 
1 D4_MDDC 6.44474 4.1E-06 2.83599 0.00596 
2 DC -2.5437 0.9883 -2.5581 0.98862 

3 MDDC 1.95605 0.03229 0.39355 0.34904 
4 MDM 9.75153 1.1E-11 7.44124 6.2E-09 

5 BLOOD -13.635 1 -6.3282 1 
6 M3DC -1.2427 0.87543 -0.1099 0.54241 
7 AM -3.4443 0.99562 -2.2645 0.97333 
8 HC -1.0916 0.8466 -1.4132 0.90235 
9 HL 0.14641 0.4442 -1.6123 0.92098 

10 2T -0.5034 0.67941 -2.5999 0.96997 
11 HOS -2.1356 0.95021 -1.678 0.91567 

 
Table E.20 One-versus-all ridge regression classification performance t-tests results of 

the significance in the difference between the mean performance of the covariance 
classifier and the mean performances of the precision classifiers 
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Hypothesis t-tests are performed to determine if the mean classification performance 

of the covariance and precision classifiers with random gene replacement is 

significantly different. 

 
 

Class Tissue Covariance with Random Effect 
    t-statistic p-value 
1 D4_MDDC 9.86774 1.7E-08 
2 DC 1.95578 0.03537 
3 MDDC 5.72722 6.6E-06 
4 MDM 35.0352 0 
5 BLOOD 14.0608 1.6E-14 
6 M3DC 0.07543 0.47086 
7 AM -0.5487 0.70091 
8 HC 10.0186 4.2E-06 
9 HL 0.06833 0.47387 

10 2T 0.1373 0.44871 
11 HOS -0.0209 0.50783 

 
Table E.21 Ridge regression classification performance t-tests results when random 

genes are used to replace optimally selected genes in the covariance k-NN graph 

 
 

Class Tissue Precision (ρ=1)  with Random Effect 
    t-statistic p-value 
1 D4_MDDC -0.0194 0.50762 
2 DC -0.1864 0.5726 
3 MDDC -0.0343 0.5135 
4 MDM -0.1804 0.57106 
5 BLOOD 1.00724 0.16122 
6 M3DC -0.5864 0.71311 
7 AM 0.35459 0.36603 
8 HC 0.51693 0.3096 
9 HL 0.1301 0.45037 

10 2T -0.2873 0.60593 
11 HOS 0.05024 0.48117 

 
Table E.22 Ridge regression classification performance t-tests results when random 
genes are used to replace optimally selected genes in the Precision (ρ=1) k-NN graph 
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Class Tissue Precision (ρ=3)  with Random Effect 
    t-statistic p-value 
1 D4_MDDC 0.34179 0.36848 
2 DC -1.3172 0.89553 
3 MDDC 2.91589 0.00427 
4 MDM 11.2758 2.5E-13 
5 BLOOD -5.4881 1 
6 M3DC -2.4472 0.97994 
7 AM -0.7008 0.74834 
8 HC 4.22057 0.00146 
9 HL 2.95773 0.01268 

10 2T 3.01725 0.01963 
11 HOS 2.72585 0.02633 

 
Table E.23 Ridge regression classification performance t-tests results when random 
genes are used to replace optimally selected genes in the Precision (ρ=3) k-NN graph 
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Long-short Portfolio Results 

Realized Risk, Portfolio Return and Sharpe Ratio 
 

2 years S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 9.09 0.68 14.02 2.01 12.36 3.33 0.83 
SI 6.71 0.27 14.31 1.58 13.38 2.42 0.90 
RMT-0 8.71 0.70 13.63 1.78 15.13 3.32 1.05 
RMT-M 8.77 0.69 13.42 1.75 14.54 3.33 1.03 
Shrinkage_SI 9.26 0.69 13.54 1.87 12.80 3.29 0.89 
Shrinkage_Cov 11.07 0.75 12.96 1.47 11.74 2.97 0.87 
Shrinkage_Corr 9.86 0.75 13.99 2.13 12.69 3.55 0.84 
Naïve 17.34 1.26 15.76 1.51 8.05 3.70 0.50 
GLassoMAX RETURN 8.16 1.18 13.76 1.55 11.83 3.09 0.93 
GLassoMIN REALIZED RISK 8.50 0.68 12.89 1.59 12.51 2.92 1.10 
GLassoMAX SHARPE 8.10 1.17 13.77 1.55 11.99 3.09 0.94 
GLassoMAX LIKELIHOOD 8.41 0.90 12.40 1.28 11.28 2.41 1.03 
GLassoMAX LIKELIHOOD-2 8.79 0.92 12.82 1.49 11.96 2.85 1.04 

 
Table F.1   Long-short portfolio 2 years realized risks, portfolio return and Sharpe ratio 

 

 

1 year S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 6.97 0.63 13.63 1.25 12.21 3.50 0.87 
SI 5.94 0.41 13.16 1.32 11.05 3.39 0.81 
RMT-0 7.18 0.67 12.35 1.24 15.43 3.37 1.20 
RMT-M 7.24 0.68 12.23 1.23 14.89 3.38 1.17 
Shrinkage_SI 7.59 0.70 12.35 1.09 12.15 3.24 0.95 
Shrinkage_Cov 10.54 0.91 12.07 1.07 10.66 3.09 0.86 
Shrinkage_Corr 8.33 0.81 12.78 1.20 12.63 3.45 0.95 
Naïve 16.20 1.43 16.09 1.43 9.35 4.16 0.56 
GLassoMAX RETURN 6.63 0.82 12.03 0.98 11.17 2.50 1.01 
GLassoMIN REALIZED RISK 6.67 0.62 12.03 1.17 10.64 3.31 1.04 
GLassoMAX SHARPE 6.81 0.88 11.96 0.99 11.63 2.72 1.08 
GLassoMAX LIKELIHOOD 7.06 0.87 11.79 1.11 11.14 3.09 1.08 
GLassoMAX LIKELIHOOD-2 7.31 0.92 11.92 1.11 11.52 3.01 1.11 

 
Table F.2   Long-short portfolio 1 year realized risks, portfolio return and Sharpe ratio 
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9 months S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 6.26 0.52 14.72 1.52 12.45 4.35 0.80 
SI 5.89 0.41 12.57 1.24 8.86 3.26 0.67 
RMT-0 6.90 0.56 11.78 1.11 10.82 3.19 0.88 
RMT-M 6.96 0.57 11.68 1.11 10.46 3.10 0.85 
Shrinkage_SI 7.28 0.60 11.95 1.04 10.60 3.39 0.85 
Shrinkage_Cov 10.80 0.84 11.98 1.04 9.53 3.29 0.76 
Shrinkage_Corr 8.17 0.71 12.22 1.10 11.14 3.63 0.87 
Naïve 16.28 1.33 15.92 1.41 9.28 3.90 0.56 
GLassoMAX RETURN 6.37 0.82 12.05 0.96 10.52 2.54 1.03 
GLassoMIN REALIZED RISK 6.90 0.61 11.60 1.08 9.81 2.86 1.04 
GLassoMAX SHARPE 6.55 0.76 11.83 1.00 11.08 2.66 1.14 
GLassoMAX LIKELIHOOD 7.02 0.74 11.49 1.06 9.54 2.73 1.03 
GLassoMAX LIKELIHOOD-2 7.10 0.75 11.54 1.06 9.82 2.93 1.04 

 
Table F.3   Long-short portfolio 9 months realized risks, portfolio return and Sharpe ratio 

 

 

 

6 months S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 4.23 0.30 18.15 1.53 14.93 5.25 0.77 
SI 5.52 0.33 12.05 0.92 9.45 3.50 0.75 
RMT-0 6.10 0.42 11.91 0.96 8.25 3.15 0.66 
RMT-M 6.17 0.43 11.80 0.95 8.19 3.13 0.66 
Shrinkage_SI 6.41 0.43 11.72 0.82 10.34 3.22 0.85 
Shrinkage_Cov 10.77 0.76 11.73 0.80 10.73 2.99 0.88 
Shrinkage_Corr 7.51 0.53 12.05 0.88 10.30 3.46 0.82 
Naïve 15.71 1.16 15.94 1.17 9.47 3.25 0.57 
GLassoMAX RETURN 5.62 0.51 12.66 0.97 8.37 2.69 0.94 
GLassoMIN REALIZED RISK 6.11 0.48 11.41 0.84 8.47 2.78 0.98 
GLassoMAX SHARPE 5.65 0.52 12.53 0.99 7.92 2.55 0.88 
GLassoMAX LIKELIHOOD 6.29 0.53 11.45 0.83 8.70 2.64 1.00 
GLassoMAX LIKELIHOOD-2 6.43 0.53 11.52 0.85 8.75 2.74 1.01 

 
Table F.4   Long-short portfolio 6 months realized risks, portfolio return and Sharpe ratio 
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3 months S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) std dev 

Sharpe 
Ratio 

Direct Opt 1410.62 76.06 1421.58 76.44 913.54 439.05 0.62 
SI 5.12 0.24 11.47 0.63 7.16 3.39 0.60 
RMT-0 5.27 0.25 11.34 0.63 6.24 3.41 0.53 
RMT-M 5.33 0.26 11.27 0.62 6.23 3.39 0.53 
Shrinkage_SI 5.35 0.29 11.51 0.57 8.12 3.53 0.68 
Shrinkage_Cov 11.73 0.65 12.00 0.60 8.84 3.18 0.71 
Shrinkage_Corr 6.97 0.38 11.77 0.65 6.28 3.41 0.51 
Naïve 15.67 0.85 15.80 0.85 10.15 4.88 0.62 
GLassoMAX RETURN 5.23 0.27 11.88 0.68 6.56 3.48 0.95 
GLassoMIN REALIZED RISK 5.55 0.31 11.41 0.58 7.69 3.26 1.04 
GLassoMAX SHARPE 5.34 0.27 11.85 0.69 6.74 3.52 1.00 
GLassoMAX LIKELIHOOD 5.68 0.31 11.24 0.58 7.15 3.13 1.00 
GLassoMAX LIKELIHOOD-2 5.55 0.27 11.42 0.60 6.80 3.20 0.97 

 
Table F.5   Long-short portfolio 3 months realized risks, portfolio return and Sharpe ratio 

 
 
 
 
 

2 month S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 1395.44 66.88 1408.71 67.39 763.53 375.40 0.52 
SI 4.79 0.19 11.37 0.60 7.23 3.99 0.60 
RMT-0 4.80 0.19 11.13 0.52 7.45 3.81 0.64 
RMT-M 4.87 0.20 11.07 0.52 7.40 3.79 0.64 
Shrinkage_SI 67.97 44.44 54.61 30.46 58.46 36.92 0.25 
Shrinkage_Cov 12.18 0.57 12.10 0.55 8.98 3.85 0.71 
Shrinkage_Corr 6.59 0.30 11.81 0.59 7.15 3.84 0.57 
Naïve 15.50 0.74 15.65 0.75 8.48 4.17 0.52 
GLassoMAX RETURN 4.75 0.23 11.87 0.57 6.91 3.96 0.93 
GLassoMIN REALIZED RISK 4.98 0.24 11.55 0.54 6.80 3.86 0.93 
GLassoMAX SHARPE 4.75 0.23 11.88 0.60 7.35 4.03 0.95 
GLassoMAX LIKELIHOOD 5.11 0.22 11.35 0.53 6.95 3.77 0.91 
GLassoMAX LIKELIHOOD-2 4.83 0.16 11.54 0.55 6.83 3.89 0.89 

 
Table F.6   Long-short portfolio 2 months realized risks, portfolio return and Sharpe ratio 

 
 

 
 

 



   

247 
 

                                                                                                  Appendix F 
 
 
 
 

1 month S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return 

(%) 
std 
dev 

Sharpe 
Ratio 

Direct Optimization 1390.55 51.25 1394.29 51.22 664.19 375.00 0.47 
SI 4.15 0.12 11.00 0.42 5.05 3.73 0.44 
RMT-0 3.84 0.11 10.94 0.39 5.74 3.42 0.51 
RMT-M 3.90 0.12 10.91 0.39 5.71 3.41 0.51 
Shrinkage_SI 131.13 45.38 109.37 35.70 67.45 90.98 0.18 
Shrinkage_Cov 13.10 0.47 12.44 0.42 6.62 3.58 0.52 
Shrinkage_Corr 5.87 0.20 11.56 0.45 5.80 3.89 0.48 
Naïve 15.45 0.57 15.49 0.57 7.38 4.17 0.47 

GLassoMAX RETURN 3.62 0.13 11.90 0.39 5.73 3.64 0.96 

GLassoMIN REALIZED RISK 4.98 0.24 11.55 0.54 6.80 3.86 0.93 

GLassoMAX SHARPE 3.68 0.12 11.97 0.39 5.71 3.56 0.94 

GLassoMAX LIKELIHOOD 3.56 0.07 11.69 0.39 5.96 3.56 0.94 

GLassoMAX LIKELIHOOD-2 3.56 0.07 11.69 0.39 5.96 3.56 0.94 
 

Table F.7   Long-short portfolio 1 month realized risks, portfolio return and Sharpe ratio 
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Long-only Portfolio Results 

Realized Risk, Portfolio Return and Sharpe Ratio 

 

2 years N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 11.03 0.79 8.11 2.25 13.12 4.23 0.85 
SI 9.00 0.51 13.92 1.90 13.12 3.80 0.89 
RMT-0 10.67 0.78 14.18 2.14 13.61 4.29 0.89 
RMT-M 10.54 0.76 14.07 2.09 13.56 4.22 0.90 
Shrinkage_SI 10.90 0.77 14.02 2.18 13.35 4.11 0.88 
Shrinkage_Cov 12.30 0.83 13.23 1.63 12.22 3.46 0.88 
Shrinkage_Corr 11.43 0.83 14.27 2.37 13.25 4.35 0.85 
Naïve 17.34 1.26 15.76 1.51 8.05 3.70 0.50 
GLassoMAX RETURN 7.72 1.17 13.07 1.16 10.04 2.56 0.86 
GLassoMIN REALIZED RISK 8.64 0.46 13.19 1.64 12.43 3.50 1.04 
GLassoMAX SHARPE 8.11 1.18 14.22 1.80 12.10 3.92 0.89 
GLassoMAX LIKELIHOOD 9.63 1.03 12.68 1.35 11.47 2.92 1.02 
GLassoMAX LIKELIHOOD-2 10.09 1.03 13.35 1.68 12.47 3.61 1.03 

 
Table F.8   Long-only portfolio 2 years realized risks, portfolio return and Sharpe ratio 

 
 
 

1 year N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 9.46 0.88 12.74 1.18 13.33 3.89 1.01 
SI 7.90 0.64 12.94 1.19 11.88 3.80 0.89 
RMT-0 9.18 0.84 12.82 1.24 13.54 4.01 1.02 
RMT-M 9.08 0.83 12.76 1.23 13.31 3.97 1.01 
Shrinkage_SI 9.35 0.85 12.63 1.15 12.99 3.83 1.00 
Shrinkage_Cov 11.69 1.01 12.23 1.08 10.70 3.34 0.85 
Shrinkage_Corr 10.05 0.98 12.83 1.23 13.50 4.08 1.02 
Naïve 16.20 1.43 16.09 1.43 9.35 4.16 0.56 
GLassoMAX RETURN 8.02 1.16 12.72 1.05 12.60 3.51 1.08 
GLassoMIN REALIZED RISK 7.96 0.93 12.31 1.11 11.19 3.69 1.03 
GLassoMAX SHARPE 8.02 1.16 12.80 1.05 12.76 3.54 1.09 
GLassoMAX LIKELIHOOD 8.30 1.05 12.17 1.09 11.05 3.55 1.04 
GLassoMAX LIKELIHOOD-2 8.63 1.10 12.35 1.12 11.69 3.64 1.07 

 
Table F.9   Long-only portfolio 1 year realized risks, portfolio return and Sharpe ratio 
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9 months N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 9.27 0.82 12.08 1.04 10.84 3.53 0.86 
SI 7.80 0.63 12.32 1.13 10.57 3.27 0.82 
RMT-0 8.99 0.77 12.12 1.08 10.72 3.14 0.85 
RMT-M 8.90 0.76 12.07 1.07 10.54 3.12 0.84 
Shrinkage_SI 9.14 0.78 11.99 1.03 10.73 3.38 0.86 
Shrinkage_Cov 11.88 0.94 12.06 1.04 9.05 3.26 0.72 
Shrinkage_Corr 10.01 0.90 12.05 1.07 11.34 3.47 0.90 
Naïve 16.28 1.33 15.92 1.41 9.28 3.90 0.56 
GLassoMAX RETURN 7.47 1.06 12.41 0.96 11.31 3.27 1.08 
GLassoMIN REALIZED RISK 7.92 0.71 11.92 1.06 10.24 3.17 1.01 
GLassoMAX SHARPE 7.49 0.95 12.29 0.99 11.45 3.10 1.10 
GLassoMAX LIKELIHOOD 8.35 0.94 11.86 1.04 10.09 3.06 1.02 
GLassoMAX LIKELIHOOD-2 8.50 0.96 11.91 1.05 10.21 3.19 1.03 

 
Table F.10   Long-only portfolio 9 months realized risks, portfolio return and Sharpe ratio 

 
 
 
 

6 months N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 8.57 0.63 11.85 0.87 10.64 2.94 0.86 
SI 7.40 0.52 11.98 0.86 11.10 3.00 0.89 
RMT-0 8.27 0.62 11.83 0.86 9.11 2.92 0.74 
RMT-M 8.20 0.61 11.81 0.86 9.04 2.88 0.73 
Shrinkage_SI 8.48 0.61 11.69 0.87 10.37 2.73 0.85 
Shrinkage_Cov 11.79 0.84 11.84 0.85 9.91 2.81 0.80 
Shrinkage_Corr 9.48 0.71 11.86 0.93 9.47 2.69 0.76 
Naïve 15.71 1.16 15.94 1.17 9.47 3.25 0.57 
GLassoMAX RETURN 6.57 0.80 12.76 0.94 8.27 2.69 0.87 
GLassoMIN REALIZED RISK 7.38 0.61 11.75 0.88 9.15 2.82 1.03 
GLassoMAX SHARPE 6.62 0.80 12.63 0.94 8.40 2.71 0.89 
GLassoMAX LIKELIHOOD 7.63 0.72 11.71 0.87 9.06 2.66 1.01 
GLassoMAX LIKELIHOOD-2 7.97 0.75 11.72 0.87 9.18 2.68 1.02 

 
Table F.11   Long-only portfolio 6 months realized risks, portfolio return and Sharpe ratio 
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3 months N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 7.47 0.41 12.11 0.65 9.88 3.57 0.78 
SI 6.89 0.38 11.60 0.61 9.15 3.54 0.76 
RMT-0 7.35 0.41 11.64 0.61 8.18 3.63 0.67 
RMT-M 7.31 0.41 11.61 0.61 8.12 3.61 0.67 
Shrinkage_SI 7.60 0.41 11.60 0.61 9.15 3.40 0.76 
Shrinkage_Cov 12.43 0.68 12.16 0.63 9.82 3.51 0.78 
Shrinkage_Corr 9.11 0.50 11.65 0.67 7.45 3.18 0.61 
Naïve 15.67 0.85 15.80 0.85 10.15 4.88 0.62 
GLassoMAX RETURN 6.51 0.49 12.25 0.67 8.23 3.41 1.06 
GLassoMIN REALIZED RISK 7.30 0.44 11.69 0.63 7.47 3.47 1.01 
GLassoMAX SHARPE 6.71 0.48 12.07 0.68 7.64 3.43 1.02 
GLassoMAX LIKELIHOOD 7.19 0.44 11.46 0.61 7.62 3.39 1.01 
GLassoMAX LIKELIHOOD-2 7.41 0.46 11.66 0.62 8.11 3.31 1.02 

 
Table F.12   Long-only portfolio 3 months realized risks, portfolio return and Sharpe ratio 

 
 
 
 

2 month N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return (%) 

std 
dev 

Sharpe 
Ratio 

Direct Optimization 6.61 0.33 12.22 0.60 9.43 3.78 0.73 
SI 6.51 0.30 11.63 0.59 9.28 3.89 0.75 
RMT-0 6.82 0.32 11.54 0.57 9.65 3.68 0.79 
RMT-M 6.80 0.32 11.51 0.57 9.58 3.67 0.79 
Shrinkage_SI 7.02 0.32 11.57 0.56 10.31 3.65 0.85 
Shrinkage_Cov 12.73 0.60 12.40 0.58 9.74 3.73 0.75 
Shrinkage_Corr 8.84 0.41 11.59 0.60 8.57 3.72 0.70 
Naïve 15.50 0.74 15.65 0.75 8.48 4.17 0.52 
GLassoMAX RETURN 6.39 0.38 11.92 0.56 7.76 3.75 1.05 
GLassoMIN REALIZED RISK 6.50 0.35 11.87 0.56 7.78 3.50 1.00 
GLassoMAX SHARPE 6.30 0.38 11.98 0.56 7.40 3.75 1.00 
GLassoMAX LIKELIHOOD 6.89 0.34 11.56 0.56 8.36 3.65 1.10 
GLassoMAX LIKELIHOOD-2 6.92 0.35 11.65 0.55 8.52 3.56 1.11 

 
Table F.13   Long-only portfolio 2 months realized risks, portfolio return and Sharpe ratio 
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1 month N.S.S 
Predicted 
Risk(%) 

std 
dev 

Realized 
Risk(%) 

std 
dev 

Portfolio 
Return 

(%) 
std 
dev 

Sharpe 
Ratio 

Direct Optimization 4.38 0.24 13.11 0.52 7.64 3.74 0.56 
SI 5.60 0.20 11.60 0.44 5.98 3.45 0.50 
RMT-0 5.48 0.21 11.57 0.42 7.20 3.33 0.61 
RMT-M 5.49 0.21 11.54 0.42 7.13 3.32 0.60 
Shrinkage_SI 5.72 0.21 11.76 0.43 6.57 3.38 0.54 
Shrinkage_Cov 13.39 0.48 12.74 0.44 5.67 3.60 0.44 
Shrinkage_Corr 8.20 0.29 11.56 0.47 6.44 3.55 0.53 
Naïve 15.45 0.57 15.49 0.57 7.38 4.17 0.47 
GLassoMAX RETURN 5.56 0.22 12.12 0.44 6.20 3.24 0.92 
GLassoMIN REALIZED RISK 5.58 0.22 12.13 0.43 6.02 3.43 0.92 
GLassoMAX SHARPE 5.60 0.22 12.11 0.44 6.48 3.23 0.94 
GLassoMAX LIKELIHOOD 5.65 0.21 12.12 0.45 5.98 3.31 0.94 
GLassoMAX LIKELIHOOD-2 5.65 0.21 12.12 0.45 5.98 3.31 0.94 
 

Table F.14   Long-only portfolio 1 month realized risks, portfolio return and Sharpe ratio 
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Portfolio Performance Measure Annualization Factor 

 
 

Performance Measure Annualization Factor  

Realized risk × √250 

Predicted risk 

  

× √250 

Empirical risk 

  

× √250 

Sharpe ratio 

  

× √250 

Portfolio return 
  

×  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 
 

Table G.1   Portfolio performance measure annualization factor 

 
 
 
where 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 is the number of rebalancing times per year (e.g. for the 2 months 

rebalancing period, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
12

2
= 6). 

 

*Note that there are 250 trading days per year. 
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