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Abstract

Background: Understanding carboplatin resistance in ovarian cancer is critical for the improvement of patients’
lives. Multipotent mesenchymal stem cells or an aggravated epithelial to mesenchymal transition phenotype of
a cancer are integrally involved in pathways conferring chemo-resistance. Long non-coding RNA HOTAIR (HOX
transcript antisense intergenic RNA) is involved in mesenchymal stem cell fate and cancer biology.

Methods: We analyzed HOTAIR expression and associated surrogate DNA methylation (DNAme) in 134 primary
ovarian cancer cases (63 received carboplatin, 55 received cisplatin and 16 no chemotherapy). We validated our
findings by HOTAIR expression and DNAme analysis in a multicentre setting of five additional sets, encompassing
946 ovarian cancers. Chemo-sensitivity has been assessed in cell culture experiments.

Results: HOTAIR expression was significantly associated with poor survival in carboplatin-treated patients with
adjusted hazard ratios for death of 3.64 (95 % confidence interval [CI] 1.78–7.42; P < 0.001) in the discovery and
1.63 (95 % CI 1.04–2.56; P = 0.032) in the validation set. This effect was not seen in patients who did not receive
carboplatin (0.97 [95 % CI 0.52–1.80; P = 0.932]). HOTAIR expression or its surrogate DNAme signature predicted
poor outcome in all additional sets of carboplatin-treated ovarian cancer patients while HOTAIR expressors
responded preferentially to cisplatin (multivariate interaction P = 0.008).

Conclusions: Non-coding RNA HOTAIR or its more stable DNAme surrogate may indicate the presence of a
subset of cells which confer resistance to carboplatin and can serve as (1) a marker to personalise treatment
and (2) a novel target to overcome carboplatin resistance.

Background
Late stage presentation aside, carboplatin resistance in
ovarian cancer is the key obstacle to improving survival
in this disease [1]. The observation that re-treatment
with platinum-based drugs 6–12 months after primary
response proved to be successful in a certain percent-
age of patients [2] is consistent with the idea that

platinum sensitivity can be modulated by both cancer
cell-autonomous and non-autonomous factors. For
both these factors stromal/mesenchymal differentiation
is crucially important. Epithelial–mesenchymal transi-
tion (EMT) in ovarian cancer cells is associated with
platinum resistance [3–5]. On the other hand the can-
cer cell-autonomous tumour stroma and mesenchymal
stem cells (MSCs) — mainly recruited from the bone
marrow [6] — might play an important role in ovarian
cancer biology [7, 8]. Recently, bone marrow-derived
MSCs and embryonic fibroblasts, but not more
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extensively differentiated stromal cells, have been shown
to induce platinum resistance in ovarian cancer [9].
Long non-coding RNAs are known to epigenetically

remodel chromatin states and influence gene transcrip-
tion in normal and cancer tissue towards stromal/mes-
enchymal differentiation [10–13]. Aberrant expression of
non-coding RNAs has been observed in numerous dis-
eases, including cancer [14], yet their precise contribu-
tion to disease aetiology and biology is far from clear.
HOX antisense transcript intergenic RNA (HOTAIR),
transcribed from the HOXC locus, represses transcrip-
tion by recruiting polycomb repressive complex 2
(PRC2) to specific polycomb group target (PCGT) genes,
in particular to those normally targeted by PRC2 in em-
bryonic fibroblasts [10].
In stem cells, PCGTs are repressed through PRC2

occupancy and PCGTs important for specialised cell
identities become de-repressed upon differentiation
[15, 16]. We and others have shown that the promoters
of these stem cell PCGTs become methylated and si-
lenced in cancer [17–20]. It was recently reported that
the expression of HOTAIR is increased in various can-
cer entities and that high levels of expression correlate
with cancer invasiveness, metastases and poor progno-
sis [10, 21]. A recent systematic review of 19 papers
(including a total of 2255 patients) demonstrates con-
sistently that HOTAIR expression is a poor prognostic
marker across a large set of cancers [22]. It is unclear,
however, whether HOTAIR is associated with an aber-
rant DNA methylation profile in cancer and whether
this robust DNA-based imprint mediates resistance to
specific drugs.
Here we tested the hypothesis that HOTAIR RNA ex-

pression, or a HOTAIR-associated DNA methylation
(DNAme) signature, as surrogates for mesenchymal dif-
ferentiation, serve as markers for carboplatin resistance
in primary ovarian cancer.

Methods
Ovarian cancer data sets
We analyzed six different data sets, details of which are
provided in Additional file 1.
The first data set consisted of primary ovarian cancer

samples (n = 134, 24–87 years, median 62.7 years at
diagnosis; Additional file 2) treated at the Innsbruck
Medical University, denoted “INNSBRUCK”. Clinico-
pathological features are shown in Table 1. The study
was approved by the ethical committee of the Medical
University Innsbruck (reference number UN4044). For
the majority of patients exemption from obtaining in-
formed consent was received as the majority of ovarian
cancer patients were dead at the time the application
was evaluated. The median survival time was 3.8 years.

HOTAIR expression was measured in all 134 samples.
DNA methylation data are available as Additional file 3.
The second data set consisted of primary ovarian can-

cer samples (n = 175, 21–83 years, median 60.0 years at
diagnosis; Additional file 4) treated at the University
Medical Center in Groningen [23], denoted “GRO-
NINGEN”. The median survival time in this set, which
consisted only of stage III/IV patients, was 2.1 years. For
these 175 samples, we measured HOTAIR expression. Of
the 175 samples, 157 received carboplatin only, whilst
18 received cisplatin instead. For 114 of these samples

Table 1 Clinicopathological features of patients from the
INNSBRUCK data set stratified according to HOTAIR expression

Characteristics HOTAIR RNA expression

Negative Positive P valuea

(n = 62) (n = 72)

Age 0.166

≤ 62.7 years (median age) 67 35 32

> 62.7 years (median age) 67 27 40

FIGO stage 0.733

I/II 37 18 19

III/IV 97 44 53

Tumour grade 0.182

I/II 78 33 45

III 51 28 23

Unknown 5 1 4

Histology 0.145

Serous cancer 56 28 28

Mucinous cancer 43 19 24

Endometrioid cancer 24 14 10

Clear cell cancer 6 1 5

Not classifiable ovarian tissue 2 0 2

Fallopian tube cancer 3 0 3

Residual disease after surgery 0.308

No residual disease 46 22 24

Residual disease≤ 2 cm 36 19 17

Residual disease > 2 cm 45 20 25

Unknown 7 1 6

Chemotherapy 0.453

Not performed 16 6 10

Performed 118 56 62

Health status 0.074

No relapse 56 31 25

Relapse 78 31 47

Survival status 0.023

Alive 39 24 15

Dead 95 38 57
a P values were calculated with the use of the Chi square test
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there were matched mRNA array expression profiles
available (Operon Human v.3 ~ 35 K 70-mer two-color
oligonucleotide arrays, Gene Expression Omnibus acces-
sion [GEO:GSE13876]). Patients gave informed consent
for collection and storage of tissue samples in a tissue
bank for future research. All relevant patient data were
retrieved and transferred into an anonymous, password-
protected database. The patients’ identity was protected
by study-specific, unique patient codes and their true
identity was only known to two dedicated data man-
agers. According to Dutch regulations, these precautions
meant no further institutional review board approval
was needed.
The third data set consisted of primary ovarian can-

cer samples (n = 342, serous ovarian cancers, median
58 years at diagnosis; 316 received carboplatin-based
chemotherapy with the rest received cisplatin or were
untreated), analyzed within The Cancer Genome Atlas
(TCGA) program, and for which Illumina Infinium 27 k
DNAme data were publicly available [24] (Additional
file 5), denoted “TCGA”. The median survival time was
2.6 years.
The fourth data set consisted of primary ovarian cancer

samples from three European Cancer centres (Leuven,
Oslo, Rotterdam; n = 206, median 58 years at diagnosis;
Additional file 6), denoted “EUROPE”. The median sur-
vival time was 3.4 years. For this data set, Illumina Infi-
nium 450 k DNAme data were available for 121
carboplatin- and 85 cisplatin-treated patients. Data are de-
posited in the GEO, accession [GEO:GSE72021]. The
study from Rotterdam has been approved by the local
medical ethics committee (MEC-2008-183), performed in
accordance with the Code of Conduct of the Federation of
Medical Scientific Societies in the Netherlands. The
Regional Committee for Medical Research Ethics in
Norway approved the study (for patients diagnosed before
2007, exemption from obtaining informed consent was re-
ceived as the majority of ovarian cancer patients were
dead at the time the application was evaluated; patients
diagnosed after 2007 signed general consent allowing for
use of the tumours for research purposes). Written in-
formed consent for the use of tumour tissue and prospect-
ive clinical data collection was obtained from all patients
and approved by the Leuven ethics committee.
The fifth data set consisted of primary ovarian cancer

samples from Bergen (n = 49) with 40 receiving carbo-
platin and 9 untreated (no chemotherapy), denoted
“BERGEN”. Patients were included in the study after
written informed consent, approved by the Regional Re-
search Ethics Committee in Medicine. For samples from
this cohort, we measured HOTAIR expression.
The sixth data set consisted of primary ovarian can-

cer samples from Rochester-Mayo (n = 174), denoted
“ROCHESTER-MAYO”. All 174 patients received

carboplatin and for these samples we measured
DNAme using Illumina 450 k beadarrays. All patients
gave informed consent and the Mayo Clinic Institu-
tional Review Board approved the study. The data are
available from Dr Ellen Goode at the Department of
Health Sciences Research, Mayo Clinic, Rochester,
USA, upon request.
Our research conformed to the Helsinki Declaration.

HOTAIR expression
Total RNA was extracted by the acid guanidium
thiocyanate-phenol-chloroform method [25]. Reverse
transcription of RNA was performed as previously de-
scribed [26]. Primers and probes for HOTAIR were de-
signed using Primer Express (Applied Biosystems,
Foster City, CA, USA). Samples in which HOTAIR was
not amplified by real-time PCR after 45 cycles were
classified as negative (HOTAIR-ve; Additional file 1).

DNA methylation analysis
DNA was isolated from tissue samples using the Qiagen
DNeasy Blood and Tissue Kit (Qiagen Ltd, UK, 69506)
and 600 ng was bisulphite converted using the Zymo
Methylation Kit (Zymo Research Inc, USA, D5004/8).
Genome-wide methylation analysis was performed using
the Illumina Infinium Methylation 27 K or 450 K bead-
chip (Illumina Inc., USA, WG-311-1201 and WG-314-
1003). Analysis and quality control were performed as
previously described [19, 27, 28].

HOTAIR overexpression in ovarian cancer cell lines
The SKOV3IP cells were stably transduced with
HOTAIR and LacZ constructs, kindly provided by Dr
Chang (Stanford) [10] and single clones of HOTAIR/
LacZ overexpressing cells were used for experiments
(Additional file 1). Cells were treated with cisplatin
(0.5–18 μM) or carboplatin (10–160 μM) for 3 days
and analysed by the cell survival MTT assay (Sigma).

Statistics
To test for differences in categorical variables, we used
the Chi square test. Impact of HOTAIR expression on
ovarian cancer survival was ascertained using log rank
test and Kaplan Meier curves. To demonstrate the effect
of HOTAIR expression on DNAme patterns, we first
performed univariate analysis to rank CpGs according to
their association with HOTAIR expression (Additional
file 1). We used 10-fold internal cross-validations to
identify an optimal HOTAIR-associated DNAme signa-
ture consisting of 67 CpGs (Additional file 7) at an esti-
mated false discovery rate (FDR) of approximately 0.17.
To build a single-sample classifier from this signature, a
cutoff was optimized using receiver operating character-
istic (ROC) analysis. This same cutoff was then used to
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assign samples from independent cohorts into two
groups exhibiting high and low correlations with the
HOTAIR DNAme signature. For the PCGT enrichment
analysis we relaxed the threshold of the DNAme signa-
ture to include the top 500 ranked CpGs (FDR < 0.3),
and divided the 500 into the 233 which were hyper-
methylated and the 267 which were hypomethylated in
high HOTAIR expressors.

Results
HOTAIR expression in primary ovarian cancer is not
associated with clinicopathological features
We analyzed HOTAIR expression in 134 primary ovar-
ian cancer samples (INNSBRUCK) and found that 72
were positive and 62 were negative for HOTAIR. Con-
sistent with our findings that only a subset of cells may
express HOTAIR in ovarian cancer tissue, the cycle
threshold (ct) values in the positive samples were very
low (mean ct 37.4) compared with the TBP reference
gene (mean ct 27.4). On assessing the clinicopathologi-
cal characteristics of the sample set, survival status was

the only characteristic that was significantly associated
with HOTAIR expression, i.e., those patients whose tu-
mours were HOTAIR + ve had a poor outcome com-
pared with HOTAIR-ve tumours (P = 0.023, Table 1).

Association between HOTAIR expression and poor
outcome is restricted to carboplatin-treated patients
In order to test the hypothesis that HOTAIR is linked
to carboplatin resistance we analyzed survival in pa-
tients who received carboplatin both alone or as part of
a combination therapy (‘carboplatin’ group) compared
with those who received cisplatin or no chemotherapy
(‘no carboplatin group’) in the INNSBRUCK set. We
note that there was no difference in any clinicopatho-
logical feature or survival between the two groups
(Additional file 2). HOTAIR expression was significantly
associated with both risk of relapse (hazard ratio (HR)
4.46 [P < 0.001] and 3.38 [P = 0.003] in uni- and multi-
variate analysis, respectively) and of death (HR 4.02 [P
< 0.001] and 3.64 [P < 0.001] in uni- and multivariate
analysis, respectively) in the carboplatin group (Fig. 1a;

Fig. 1 Kaplan-Meier survival estimates in patients from the INNSBRUCK set (a, b) and from the GRONINGEN set (c, d) who received carboplatin-based
chemotherapy (a, c) and in patients who received no carboplatin-based chemotherapy (b, d) according to the presence or the absence of HOTAIR
RNA in their ovarian cancer tumour specimens. The survival analysis was performed in the INNSBRUCK set based on the patients who did receive
carboplatin-based chemotherapy (n = 63) referred to as “Carboplatin Therapy” and the 71 ovarian cancer patients who received cisplatin-based (n = 55)
or no chemotherapy (n = 16) referred to as “No Carboplatin Therapy”. In the GRONINGEN set the survival analysis was performed based on the ovarian
cancer patients who did receive carboplatin-based chemotherapy (n = 157), referred to as “Carboplatin Therapy” and patients who received
cisplatin-based chemotherapy (n = 18), referred to as “No Carboplatin Therapy”. n.s not significant, OS overall survival
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Additional file 8), whereas HOTAIR expression was not
associated with survival in the ‘no carboplatin’ group
(Fig. 1b; Additional file 8).
Only 34 % of patients who received carboplatin and

whose tumours expressed HOTAIR survived the first
3 years post-diagnosis, whereas 85 % of those patients
who received carboplatin, but whose tumours were
HOTAIR-ve, survived during the same time period
(Fig. 1a). Nearly half of the carboplatin-treated patients
also received paclitaxel, and in both groups, i.e., single
agent carboplatin and combined carboplatin/paclitaxel,
HOTAIR was significantly associated with poor outcome
(log rank P value = 0.006 and 0.003, respectively), again
indicating the interaction of HOTAIR with carboplatin
but not with cisplatin or paclitaxel.
To validate these findings we analyzed 175 ovarian can-

cer samples from Groningen [23] and 49 samples from
Bergen and again confirmed that HOTAIR expression is a
poor prognostic factor specifically in carboplatin-treated
patients (Fig. 1c, d; Additional files 9 and 10).

HOTAIR expression is associated with a DNAme profile
enriched for PCGTs and associated with multipotent MSCs
As HOTAIR is known to modulate chromatin, in par-
ticular at PCGTs, we asked if DNAme differed between
HOTAIR-expressing and non-expressing ovarian cancer
samples. Since HOTAIR expression was associated with
carboplatin resistance, we restricted the analysis to the
63 carboplatin-treated patients in the INNSNRUCK set.
Of these 63 samples, 35 expressed HOTAIR whilst 28
did not. We identified a 67-CpG DNAme signature
representing a statistically significant association with
HOTAIR expression. Boxplots of beta methylation
values of the 67 CpGs confirmed the relatively large dif-
ferences in methylation between HOTAIR expressors
and non-expressors (Additional file 11). We observed
that many of the top CpGs mapped to PCGTs (Fig. 2a)
and found that PCGTs (defined as PRC2 targets in both
human embryonic stem cells and human embryonic fi-
broblasts, but not PRC2 targets in breast cancer cells)
were highly enriched among CpGs hypermethylated in
HOTAIR expressors (Additional file 12). HOTAIR ex-
pression was also associated with lower expression of
PCGTs, in particular human embryonic fibroblast
PCGTs, in the GRONINGEN set [23], supporting the
role of HOTAIR as an epigenetic regulator of MSCs in
ovarian cancer (Additional file 13). By correlating the
67-CpG DNAme signature to the methylation profile of
any given sample, a correlation score was obtained
which can be viewed as a DNA-based surrogate for
HOTAIR expression. We first evaluated this correlation
score in early passage (multipotent) MSCs, late passage
(more differentiated) MSCs, reprogrammed MSCs, em-
bryonic stem cells [29] and ovarian cancer cell lines,

demonstrating that the HOTAIR DNAme signature is
likely to be a surrogate marker for either multipotent
MSCs within the ovarian cancer tissue, or for ovarian
cancer cells with an increased tendency to undergo
EMT (Fig. 2b; Additional file 14).

The HOTAIR-DNAme signature predicts survival outcome
Given the relationship between HOTAIR expression and
carboplatin resistance, we next checked that the
HOTAIR DNAme signature would be similarly associ-
ated with outcome in the 63 carboplatin-treated sub-
group in the INNSBRUCK set. As expected, the score
obtained by correlating the sample-specific DNAme pro-
file to the HOTAIR DNAme signature was predictive of
carboplatin resistance in univariate as well as in multi-
variate Cox-regression analyses adjusted for age, stage
and size of residual tumour (Additional file 15). In order
to build a single-sample classifier we also optimized a
cutoff on the correlation score of the ovarian cancer tis-
sue samples using ROC analysis to ensure approximately
80 % sensitivity and 80 % specificity between the
DNAme signature and HOTAIR expression (Additional
file 16). Dividing the samples into two groups based on
this cutoff further confirmed a significant difference in
survival rates of these two subgroups of patients, i.e.,
samples with a high DNAme signature score had a HR
of 3.07 (P = 0.001) for death relative to those with a low
surrogate score (Fig. 2c).

Validation of HOTAIR DNAme signature in three
independent large cohorts
To validate our HOTAIR DNAme signature, we first
tested it in an independent large data set of serous
ovarian cancers from TCGA set, consisting of 316 pa-
tients who received carboplatin-based therapy and 26
who received cisplatin. For each of the carboplatin-
treated patients, we computed a carboplatin resistance
score by correlating the DNAme profile of the tumour
to the previously determined 67-CpG DNAme HOTAIR
signature. This score predicted outcome in both univar-
iate as well as multivariate Cox-regression analyses
(Additional file 15), and was a much stronger predictor
of outcome than scores constructed using random sig-
natures (Additional file 17). Using the previously deter-
mined cutoff to assign samples into high and low DNAme
signature score groups further demonstrated the robust-
ness of the predictive classifier in the carboplatin-treated
subgroup (Fig. 2d). Of note, the prediction obtained using
the HOTAIR DNAme signature outperforms the classifi-
cation obtained using either mRNA or microRNA expres-
sion predictors, as reported in TCGA study [24]. In
contrast to the carboplatin-treated group, the HOTAIR
DNAme signature was not predictive of outcome in the
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Fig. 2 (See legend on next page.)
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26 patients in TCGA set who did not receive carboplatin
(Fig. 2e).
We further tested the HOTAIR DNAme signature in

an independent set of 121 carboplatin-treated patients
(EUROPE set) with DNAme profiles generated using a
different assay (Illumina Infinium Human Methylation
450 k). In order to more rigorously assess the specificity
of the signature, it was also tested in a further 85
cisplatin-treated patients from the same EUROPE cohort
which were also profiled with the same 450 k technol-
ogy. Once again, the DNAme signature-based surrogate
scores for HOTAIR expression correctly predicted carbo-
platin resistance (Fig. 2f; Additional file 18), with no as-
sociation observed in the cisplatin-treated subgroup
(Fig. 2g; Additional file 18).
Further strengthening the robustness of the HOTAIR

DNAme signature, we found it to be predictive of carbo-
platin resistance in an additional independent set of 174
carboplatin-treated ovarian cancer patients (ROCHES-
TER-MAYO set), which had also been profiled with Illu-
mina 450 k DNAme bead arrays (Additional file 19).

HOTAIR expressors respond preferentially to cisplatin-
based chemotherapy
In all data sets analysed, we observed a consistent trend
for HOTAIR expression, or DNAme-based surrogate
HOTAIR expression, to be associated preferentially with
cisplatin response, although statistical significance was
not observed in individual data sets. Thus, to investigate
this further we used a meta-analysis approach and asked
if the type of chemotherapy received was associated with
a different response in HOTAIR expressors compared
with non-expressors (Table 2). In all data sets the risk of
death was lower in HOTAIR expressors who received
cisplatin compared with those who received carboplatin-
based therapies, whereas for non-HOTAIR expressors
the opposite pattern was observed (Table 2; Additional
files 20 and 21). Using a combined probability Fisher test
in a meta-analysis over all data sets, we found a highly
significant interaction between chemotherapy type re-
ceived and HOTAIR expression in dictating response to

treatment (P < 0.001; Table 2), which was retained in
multivariate analysis (P = 0.008; Table 2).

Effect of HOTAIR expression and platinum sensitivity in
ovarian cancer cell line
In order to test whether HOTAIR expression modulates
response to carboplatin we used SKOV3IP ovarian can-
cer cells, which are sensitive to platinum-based chemo-
therapy and do not express HOTAIR. We observed that
overexpression of HOTAIR in this particular cell line
reduces only sensitivity to carboplatin but not cisplatin
(Fig. 3). The half maximal inhibitory concentration
(IC50) shifted from 30 to 60 μM for carboplatin and
from 3 to 3.5 μM for cisplatin in LacZ and HOTAIR-ex-
pressing SKOV3IP cells, respectively. HOTAIR expres-
sion on two other cell lines had either no effect
(A2780) or increased cisplatin sensitivity (OVCAR8)
(Additional file 22).

Discussion
Here we have shown that women with ovarian tumours
expressing HOTAIR RNA, or an equivalent HOTAIR-as-
sociated DNAme signature, experience a poorer survival
outcome post carboplatin-based chemotherapy com-
pared with HOTAIR-ve tumours.
These data offer solid evidence for two novel concepts.

First, we demonstrate that not only a non-coding RNA,
but importantly also a presumed downstream effect, rep-
resented by a specific DNAme signature, reproducibly
predicts cancer outcome. This concept is appealing, be-
cause (i) a DNA-based biomarker is more stable and (ii)
would provide a spatially and temporally more compre-
hensive surrogate for cancer biology compared with a
snap-shot RNA assessment. Second, our data very much
challenge the dogma that cisplatin and carboplatin have
the same effect on ovarian cancer and that parameters
that allow for discrimination between patients that bene-
fit form carboplatin and those that benefit form cisplatin
would not exist.
A recent study from Roodhart et al. [9] highlights the

complexity of the chemo-resistance response which

(See figure on previous page.)
Fig. 2 HOTAIR-associated DNA methylation signature predicts survival in carboplatin-treated ovarian cancer patients. a Heatmap of the 67 CpG
DNAme signature (gene symbol for PCGTs in red) strongly associated with HOTAIR expression in ovarian cancers. CpG methylation profiles were
centred to mean zero and scaled to unit variance. Blue denotes relative high methylation, yellow relative low methylation. b Correlation scores of
the 67-CpG HOTAIR DNAme signature with the corresponding DNAme profiles in embryonic stem cells (ESC), reprogrammed MSCs (iPSC; induced
pluripotent stem cells), ovarian cancer cell lines (OVC) with and without stable expression of HOTAIR and MSCs harvested at late (more than four
passages) or at early passage (fewer than four passages); P = 10−6 comparing all MSCs to combined ESC/iPSC, P = 10−5 comparing all OVC to all
MSC. c Kaplan-Meier curves and log rank test P value of carboplatin-treated patients with a high and low DNAme HOTAIR signature score (INNSBRUCK
set). d Validation of the DNA methylation HOTAIR signature in an independent large set of carboplatin-treated serous ovarian cancers from TCGA set
(n = 316). e Corresponding Kaplan-Meier curve of HOTAIR signature predictions in the non-carboplatin-treated subset of the TCGA set (n = 26).
f Validation of the DNA methylation HOTAIR signature in an independent large set of carboplatin-treated ovarian cancers (EUROPE set, n = 121). g
Corresponding Kaplan-Meier curve of HOTAIR signature predictions in the non-carboplatin (cisplatin) treated subset (EUROPE set, n = 85), validating the
specificity of the signature. HA HOTAIR, OS overall survival
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integrally involves cancer cell non-autonomous factors.
The authors used a mouse model and demonstrated
that cells with a multilineage differentiation potential,
such as embryonic fibroblasts, become activated dur-
ing treatment with platinum analogs and secrete fac-
tors systemically that protect tumour cells against
platinum chemotherapeutics. Roodhart et al. [9] dem-
onstrated this for both carboplatin and cisplatin
whereas our data — based on 1080 human ovarian
cancer samples — demonstrate that HOTAIR and its
surrogate DNAme signature are associated only with
carboplatin resistance and not cisplatin resistance.
Although in the past cisplatin and carboplatin have

been considered to be nearly identical drugs and pro-
spective randomized trials showed similar overall

survival for cisplatin- and carboplatin-based regimens
in ovarian cancer [30, 31], both drugs have substan-
tially different side-effect profiles with higher rates of
nausea, vomiting and renal toxicity for cisplatin and
thrombocytopenia for carboplatin [32]. Moreover, cis-
platin and carboplatin are known to differ in their
cell membrane transport characteristics [33]. This is
noteworthy because cell membrane transport proteins
have been shown to be critical determinants of platinum
drug sensitivity/resistance, possibly as a result of secreted
factors from MSCs which can affect transport characteris-
tics. Lending further credence to our data, in cervical can-
cer (a disease which is known to expresses high levels of
HOTAIR [34]) carboplatin has been repeatedly reported to
be a less effective platinum analog than cisplatin [35–37].

Table 2 Cox regression analysis of overall survival against chemotherapy received, stratified according to HOTAIR positive and
negative subgroups

Chemotherapy (set) HOTAIR positive HOTAIR negative Interaction

Hazard ratio P valuea Hazard ratio P valuea P value

(95 % CI) (95 % CI)

Cisplatin vs carboplatin (INNSBRUCK) 0.42 (0.23–0.76) 0.003 1.87 (0.95–3.69) 0.068 <0.001

Cisplatin vs carboplatinb (INNSBRUCK) 0.64 (0.33–1.24) 0.187 1.66 (0.69–3.96) 0.255 0.017

Cisplatin vs carboplatin (GRONINGEN) 0.44 (0.18–1.10) 0.071 1.40 (0.49–4.02) 0.525 0.084

Cisplatin vs carboplatin (TCGA) 0.28 (0.04–2.02) 0.18 2.57 (0.33–20.3) 0.35 0.33

Cisplatin vs carboplatin (EUROPE) 0.76 (0.48–1.2) 0.237 1.74 (0.96–3.14) 0.065 0.037

Cisplatin vs carboplatinb (EUROPE) 0.83 (0.52–1.33) 0.436 1.86 (1.02–3.38) 0.042 0.063

Cisplatin vs carboplatin (COMBINEDc) 0.003 0.076 <0.001

Cisplatin vs carboplatinb (COMBINEDc) 0.286 0.06 0.008
a P values were calculated (in the univariate case) from the Cox-regression likelihood ratio test, while in the multivariate case, the P value derives from the
Cox-regression Wald test. We note that the Groningen and TCGA sets had only 18 and 26 cisplatin-treated patients, respectively, not allowing for meaningful
multivariate results. Interaction was tested by a log-likelihood ratio test between the model with the interaction term (HOTAIR:TREATMENT) and the null model
without it
b Covariates included stage, grade, age and residual disease whenever these were significant in univariate analysis
c The combined analysis P values were derived from Fisher’s combined (meta-analysis) probability test using a chi-square distribution with 8 (2 × 4) degrees of
freedom in the univariate case (INNSBRUCK, GRONINGEN, EUROPE, TCGA) and 4 (2 × 2) degrees of freedom in the multivariate case (INNSBRUCK, EUROPE)

Fig. 3 Chemosensitivity of SKOV3IP ovarian cancer cells which are stably transfected with LacZ (control) or HOTAIR. Treatment with cisplatin (a)
and carboplatin (b)
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Although we provide unprecedented strong evidence
for a non-coding RNA and its DNAme surrogate sig-
nature to be a predictive and prognostic marker in
ovarian cancer, there are several limitations to our
study. First, although in situ hybridisation for HOTAIR
has been successfully established for cell lines, we were
not able (despite substantial efforts; data not shown) to
determine the specific subset of HOTAIR-expressing
cells within the bulk tumour sample. Hence, at this
stage we can only state that HOTAIR expression serves
as an excellent surrogate for “mesenchyme-ness” of a
cancer, not knowing whether this reflects the presence
of MSCs in the tumour stroma or whether it is a re-
flection of the number of cancer cells that have under-
gone EMT, or a combination of both. Second, we don’t
provide a mechanistic model as to why and how
HOTAIR modulates carboplatin and cisplatin response
differently. Whereas recent evidence shows that
HOTAIR promotes proliferation by modulating cell
cycle and apoptosis [38], no evidence exists to show
that this has an impact on platinum resistance. Our
findings are consistent with the view that HOTAIR
modulates the epigenome at the level of the DNA
methylome in both cancer cells and tumour stroma.
Although still speculative, it is likely that the differen-
tial response of carboplatin and cisplatin is due to
underlying differences in how the MSC biology of
tumour stroma and the EMT characteristics of cancer
cells affect the two drugs. Support for this view comes
from recent data (unpublished): we have analysed
MSCs and modulated expression of HOTAIR. Overex-
pression and knockdown of HOTAIR inhibited or stim-
ulated, respectively, in vitro differentiation of MSCs.
Modification of HOTAIR expression evoked consistent
effects on gene expression, particularly in polycomb
group target genes and genes involved in cancer. Fur-
thermore, overexpression and knockdown of HOTAIR
resulted in DNAme changes that are enriched in
HOTAIR binding sites.
Despite these limitations, our findings have a number

of immediate clinical implications. We provide a solid
rationale for prospective randomized clinical trials —
ideally in a neo-adjuvant setting — to assess whether the
HOTAIR DNAme signature is an appropriate tool to
stratify women with ovarian cancer (and possibly also
other cancers) into groups which benefit preferentially
from cisplatin or from carboplatin treatment. Strategies
to reduce HOTAIR activity (i.e., by intra-peritoneal
HOTAIR small interfering RNA) may lead to a novel
strategy to (re)sensitize cancers to chemotherapy.

Conclusions
Our data demonstrate that HOTAIR and its surrogate
DNAme signature play a crucially important role in

ovarian cancer biology and provide novel leads to re-
visit the clinically important field of platinum resist-
ance in this disease.
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