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“I almost wish I hadn't gone down that rabbit-hole — and yet — and yet — it's 

rather curious, you know, this sort of life!” – Lewis Carroll 
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Abstract 

Depression is a prevalent and debilitating psychiatric condition. However, currently 

available pharmacological treatments are ineffective for almost a third of all 

depressed patients. Moreover, even when effective, standard treatments suffer from 

substantial therapeutic lag, often taking weeks-to-months to reach maximum 

efficacy. Thus, the need for faster acting treatments for depression is high. Evidence 

of novel glutamatergic pharmacological and brain stimulation antidepressant 

treatments has been reported. However, it is unknown how exactly these treatments, 

namely transcranial direct current stimulation and ketamine, work at either the 

biological or cognitive level. The aim of this thesis was to provide a cognitive and 

systems level biological explanation for the efficacy of these treatments on two 

important symptoms of depression, anhedonia and cognitive control. Following a 

general introductory chapter, the first experimental chapter explores the effect of 

tDCS on cognitive control in healthy volunteers. The second experimental chapter 

explores the reliability of 7 Tesla (T) proton magnetic resonance spectroscopy (1H-

MRS) as a technique to quantify glutamate and glutamine levels in the healthy 

human brain. The third experimental chapter explores the relationship between levels 

of glutamatergic metabolites, one purported mechanism to which ketamine and tDCS 

elicit their antidepressant response, and anhedonia in medication-free depressed 

patients and healthy individuals at baseline and following ketamine and placebo. The 

fifth and final experimental chapter explores whether ketamine alters the behaviour 

and neural activity underlying cognitive control in patients with depression. The 

results suggest that tDCS may induce improvements in cognition in healthy 

volunteers and that ketamine may improve levels of anhedonia and mood, but not 

cognition, in depressed patients. Surprisingly, a decrease in 7T 1H-MRS measured 

glutamine, but not glutamate, levels was found post-ketamine; moreover, baseline 

levels of glutamine, but not glutamate, were associated with the antidepressant and 

anti-anhedonic response to ketamine. The final chapter discusses the experimental 

results in light of cognitive and neural mechanisms thought to underpin depression 

and its treatment. 
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1 General Introduction 

1.1 Clinical characteristics of major depressive disorder 

Major depressive disorder (MDD; otherwise known as unipolar depression) is a 

complex psychiatric illness. To reach criteria for the diagnosis of MDD, an 

individual must have experienced a two-week episode comprising at least one of two 

cardinal symptoms, low mood or anhedonia, the loss of interest or pleasure, most of 

the day, nearly every day. Additionally, the person must experience at least four of 

the following seven symptoms nearly every day over the same two-week minimum 

period (only three are required if both cardinal symptoms are present): insomnia or 

hypersomnia, unintentional weight or appetite changes, fatigue or anergia, 

psychomotor agitation or retardation, feelings of worthlessness or excessive guilt, 

cognitive difficulties or indecisiveness and suicidal ideation or self-injurious 

behaviour. Collectively, the symptoms should also represent an impairment in 

functioning from previous non-depressed levels and must not be drug induced. 

Bipolar depression (BD; otherwise known as manic depression) comprises the same 

symptoms as MDD during the depressive phase but also requires at least a single 

one-week period of consistent mania (BD I) or four-days of hypomania (BD II). The 

sweeping flexibility of the MDD diagnosis has undoubtedly led to difficulties in 

successfully treating the disease, resulting in its high societal pervasiveness and 

deleterious impact (Hidaka, 2012, Kessler et al., 2007). 

MDD is a prevalent and debilitating mental illness; over 350 million people 

annually are affected worldwide (approximately 5% of the world’s total population); 

it is the number one cause of global disability (World Health Organization, 2012). 

The impact of MDD on society is large; for example, MDD affects around 30 million 

European Union citizens, costing around €92 billion (Olesen et al., 2012). The 

burden of lost years associated with depression is particularly apparent when 

statistics related to suicide are considered. Suicide remains the biggest killer of men 

under 50 years of age in the UK (Office for National Statistics, 2014) and depression 

is one of the strongest predictors of suicidal ideation (Nock et al., 2010). Suicidal 

patients tend to be severely depressed (Birtchnell, 1970). Up to 6% of MDD patients 
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will commit suicide (Inskip et al., 1998). Thus, the need for successful understanding 

and treatment of MDD is very high. 

1.2 Common treatments for MDD and their efficacy 

Presently, only two common treatment methods for MDD are widely available, 

psychological ‘talking’ and pharmacological therapy; they are equally effective 

(Cuijpers et al., 2013, DeRubeis et al., 2008) but have a purported additive effect 

when combined (Hollon et al., 2014). A third treatment, electroconvulsive therapy 

(Group, 2003), is typically reserved for individuals who fail to respond to initial 

treatment with medication and psychotherapy. A fourth and final treatment option, 

ablative neurosurgery, typically a dorsal anterior cingulotomy, is used, albeit rarely, 

in very severe treatment-resistant depression, with some success (Shields et al., 

2008). 

1.2.1 Psychotherapy 

The term psychotherapy derives from the ancient Greek word “psyche” meaning 

“breath”, “spirit” or “soul” and “therapeia” meaning “healing”. Psychotherapy is the 

application of clinical methods and psychological principles for the purpose of 

assisting people to modify their behaviours, cognitions, emotions and characteristics 

(APA, 2012). In most instances, psychotherapy takes the form of verbal 

communication between a therapist and a patient or group of patients. A huge variety 

of different types of effective psychotherapies for MDD exist (see Hollon and 

Ponniah (2010) for an extensive review), including: behavioural activation therapy, 

cognitive behavioural therapy (CBT), interpersonal therapy, mindfulness based stress 

reduction (MBSR) and psychodynamic therapy, amongst others. To date, there is 

little evidence for one form of psychotherapy being more effective than another in 

treating MDD patients (Baardseth et al., 2013, Leichsenring, 2001, Leichsenring et 

al., 2015); head-to-head comparisons are rarely conducted. Typical remission rates 

(usually classified as a Hamilton depression rating scale score (HDRS; Hamilton 

(1960)) of seven or less) for MDD patients following a 16 week course of CBT, the 

most widely-used psychotherapy, are approximately 40% (DeRubeis et al., 2005). 

There is also some evidence that CBT may provide some enduring long term benefit 



 13 

in the prevention of recurrent depressive episodes (Hollon et al., 2005) with lower 

relapses than other treatments (Steinert et al., 2014).  

However, the resource (e.g. financial and time) demands associated with 

psychotherapy have made it a much less prevalent and attractive form of treatment 

than medication (Marcus and Olfson, 2010). In addition to the demand on resources, 

the significant time required to reach maximal therapeutic efficacy (16-weeks) 

should be noted. Moreover, the fact that typically over 40% of depressed patients do 

not reach response (a 50% reduction in symptoms) criterion following CBT 

(DeRubeis et al., 2008) makes psychotherapy a substantially less than perfect 

treatment option. Furthermore, concerns regarding the effectiveness of CBT for 

MDD in well controlled studies have also emerged, with reports of only a small 

effect size when the CBT group is compared to a placebo pill group (Lynch et al., 

2010), as opposed to, the more lax and typical, waiting list group comparison. 

Therefore, the need for more efficacious and alternative treatments to psychotherapy 

is greatly needed. As the focus of this thesis is on novel brain stimulation and 

pharmacological interventions for depression, we shall focus on these methodologies 

herein. 

1.2.2 Pharmacotherapy 

Currently available pharmacological therapies for MDD mostly target the 

monoaminergic neurotransmitter system, primarily augmenting extracellular 

serotonin, next noradrenaline, and finally, dopamine levels in the central nervous 

system (Delgado, 2000). The monoaminergic treatment of depression centres on the 

idea that the core symptoms of major depression, dysphoria and anhedonia, arise due 

to a neurochemical imbalance (Asberg et al., 1976, Schildkraut, 1965). This crude 

neurobiological theory of major depression arose serendipitously when terminal 

patients with tuberculosis were given a novel experimental drug (iproniazid) to treat 

their tuberculosis symptoms; patients exhibited a remarked improvement in mood 

and vigour (Selikoff et al., 1952). The new agent was found to exhibit its effects via 

inhibition of monoamine oxidase, an enzyme implicitly involved in the breakdown of 

monoamines; by reverse inference therefore, depression was thought to be caused by 
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low levels of monoamines. Pharmaceutical development for the treatment of 

depression since has mainly focussed on the creation of compounds that increase, 

directly or indirectly, specifically or non-specifically, levels of monoamines in the 

brain. Despite convincing evidence of the efficacy of such antidepressant 

medications in animal models, progress in the development of effective treatments 

for depression in humans has been extremely slow. 

There are over 30 commonly prescribed medications for MDD, with six main 

classes (Kupfer et al., 2012): selective serotonin reuptake inhibitors (SSRIs), 

serotonin and noradrenaline reuptake inhibitors (SNRIs), noradrenaline and specific 

serotoninergic antidepressants (NaSSAs), noradrenaline reuptake inhibitors (NRIs), 

tricyclics and monoamine oxidase inhibitors (although these are not as frequently 

prescribed now due to dangerous food and drug interaction potential). Medications 

typically prescribed for psychotic disorders (e.g. schizophrenia; both the typical and 

atypical antipsychotics), which mainly modulate the dopaminergic system, are also 

frequently administered as adjunctives (Spielmans et al., 2013). One report profiled 

the effectiveness of 12 new-generation antidepressants against each other in a large 

multiple-treatment meta-analysis and found that mirtazapine (NaSSA), escitalopram 

(SSRI), venlafaxine (SNRI) and sertraline (SSRI) were significantly more efficacious 

than five of the other antidepressants, with sertraline and escitalopram evidencing the 

greatest patient acceptability (Cipriani et al., 2009). Nevertheless, the effectiveness 

of standard antidepressants over placebo in relieving depressive symptomatology has 

come under intense scrutiny in recent years (Fountoulakis and Moller, 2011, 

Fournier et al., 2010, Kirsch, 2008).  

Increasingly, evidence suggests that the effect size of standard 

antidepressants is small, particularly for trials where an active placebo is used as a 

comparison (Moncrieff et al., 2004). Researchers have also questioned the clinical 

significance of such small effects (Moncrieff and Kirsch, 2015). Interestingly, 

standard antidepressant medications appear to be most effective for individuals 

currently in a very severe depressive episode (Fournier et al., 2010); although this 

may be due to a reduced placebo response. Indeed, the UK’s National Institute for 

Health and Care Excellence (NICE, 2009) guidelines indicate that antidepressants be 



 15 

a first line treatment for patients in a moderate or severe depressive episode or those 

in a persistent mild depressive episode. However, a meta-analysis found that the 

antidepressant benefits of fluoxetine and venlafaxine were not superior for patients 

more depressed at baseline (Gibbons et al., 2012), suggesting that certain 

antidepressants may be more favourable for different depression severities or 

symptoms (Nutt, 2008). The combination of multiple antidepressant drugs appears to 

be the most effective approach for patients to reach remission from depression across 

a 6-week period (Blier et al., 2010). Of the antipsychotics prescribed as adjunctives 

for patients with MDD, quetiapine and aripiprazole have the strongest antidepressant 

efficacy evidence base (Zhou et al., 2015). In addition to their questionable efficacy 

over placebo conditions, a number of other critiques surrounding the effectiveness of 

antidepressants have been voiced. 

Commonly prescribed antidepressants, e.g. SSRIs, can take from weeks to 

months before any substantial reduction in depressive symptoms occurs (Trivedi et 

al., 2006), although significant signs of improvement can be seen as early as one 

week following administration in some cases (Smagula et al., 2015, Taylor et al., 

2006). Additionally, their administration has been associated with increases in 

suicidal ideation and behaviour (Moller et al., 2008) and increased chance of manic 

or hypomanic episode induction (Frye et al., 2009). Most importantly, they are 

almost completely ineffective in more than one-third of MDD patients (Trivedi et al., 

2006). Specifically, a large open-label investigation, the STAR*D study, found that 

remission rates following 14-weeks of treatment with citalopram, a prominent SSRI, 

reach approximately 30 % (Trivedi et al., 2006). Amongst the standard 

antidepressant medications, there is little evidence to delineate one from another for 

specific symptoms, despite their apparently different mechanisms of action. 

Typically, one of the main differentials amongst standard antidepressants is in the 

side effect and risk category. Of the patients who discontinue treatment with an 

SSRI, 15% do so because of side effects (Montgomery et al., 1994). Notably, both 

SSRIs and SNRIs can induce significant sexual side effects in individuals, with 

SSRIs appearing to be the worst of these two typical classes (Gregorian et al., 2002); 

bupropion, however, has a more favourable sexual side effect profile (Thase et al., 

2006). However, sexual dysfunction may be a side effect of all antidepressant 
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medication (Taylor et al., 2006). In recent years, there has been a particular focus 

from the pharmaceutical industry on the reduction of side effects associated with 

earlier medications, particularly with the creation of the second (SSRIs) and third 

(non-SSRIs) generation antidepressants (Olver et al., 2001). In general, their safety 

profile is good, with a very low chance of fatality (Hawton et al., 2010).  

In sum, standard antidepressants appear to have some efficacy in relieving 

depressive symptoms, particularly for those in a severe depressive episode and when 

administered in combination with other antidepressants medications or 

psychotherapy. However, a number of issues have been raised regarding both the 

time taken to induce meaningful treatment impact and also the side effects associated 

with their administration. Most importantly however, standard antidepressants 

provide no meaningful improvement for a substantial proportion of MDD patients. 

1.2.3 Electroconvulsive therapy  

ECT, formerly known as electroshock therapy, is the most effective antidepressant 

treatment available (Fava, 2003, Pagnin et al., 2004); it has long been considered the 

gold standard technique for MDD patients who are treatment refractory (Fink, 1990). 

Indeed, meta-analyses have revealed that remission rates following ECT are 51-90% 

for treatment resistant MDD patients (Dierckx et al., 2012, Group, 2003). ECT 

trumps other treatments on at least two levels. First, evidence suggests the 

probability of responding to ECT is substantially higher than antidepressants. 

Second, over 50% of patients treated with ECT show improvements within one week 

(Husain et al., 2004), with 66% reaching response and 53% remission criteria 

following 6 sessions (Khalid et al., 2008). ECT, as the name suggests, involves the 

use of electricity, which is applied to the brain, to induce a seizure in anesthetized 

patients; patients are also administered muscle relaxants. Electrodes can be placed 

either unilaterally or bilaterally. Patients are typically stimulated two-to-three times 

per week until symptoms remit, with a two-to-four week treatment schedule 

frequently used. The risk profile of ECT has however caused concern and it remains 

a controversial treatment with severe restrictions in some European countries. 
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 As ECT is typically administered under a general anaesthetic, treatment with 

this technique is unsurprisingly associated with some confusion and memory loss. 

However, for most patients ECT results in significant temporary cognitive 

impairment, which includes both retrograde (the most persistent effect) and 

anterograde amnesia (Lisanby et al., 2000). For some patients, the effects of ECT 

may induce permanent memory loss, which may extend to months and years of 

retrograde amnesia from the time of treatment. Bilateral stimulation has been shown 

to induce significantly more memory impairment that unilateral but is more effective 

as a treatment (Lisanby et al., 2000). Despite these findings, ECT has not been found 

to induce structural brain damage in MDD patients (Devanand et al., 1994) and 

remains an important tool in the treatment of MDD.  

1.2.4 Summary of standard treatments and their efficacy for MDD 

Psychotherapy and antidepressant medications are effective methodologies for the 

treatment of MDD, with consistent, albeit small, effects for both treatments found in 

randomised controlled trials. However, both treatments are associated with 

significant lag in their time to reach maximal efficacy. Additionally, while 

psychotherapy is costly, antidepressants are associated with significant side effects 

for some patients. Moreover, both treatments are ineffective for a substantial portion 

of MDD patients. Only a third of patients administered an antidepressant medication 

(citalopram) will reach remission status after 14-weeks of treatment (Trivedi et al., 

2006). Furthermore, despite their apparent efficacy, patients administered either of 

these treatments will typically relapse within 12 months, with lower relapse rates for 

cognitive therapy (31%) than antidepressant medication (76%; Hollon et al. (2005)), 

suggesting an enduring effect of psychotherapy over medication. The combination of 

both psychotherapy and antidepressant medication appears to be the most effective 

typical approach in treating MDD (Hollon et al., 2014, Schramm et al., 2007). While 

ECT is the most effective treatment for MDD in general, with particular efficacy in 

treatment resistant individuals, and works quicker than either of the other two 

standard treatments, there are substantial side effects that warrant its use only in 

severe cases of MDD. Without additional active treatment however, virtually all 

remitted patients will relapse within six months following ECT (Sackeim et al., 
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2001). In sum, all of the aforementioned treatments have advantages and 

disadvantages. There is still an unmet need for a safe, quick-acting treatment that is 

effective in the majority of MDD patients and is not associated with substantial long-

term side effects. A better understanding of current treatments and their biological 

bases is needed to drive forward the generation of novel, alternative and more 

effective treatments for MDD.  

1.3 Models of MDD and its treatment 

From the clinical evidence for the aforementioned MDD treatments, a number of 

models of MDD and its typical treatment have been proposed. Here we will discuss a 

few particularly prominent theories at the neurotransmitter, cellular and 

psychological levels of treatment action. 

1.3.1 Monoaminergic model 

Stemming from the fact that effective standard antidepressant medications mainly 

modulate the serotonin, noradrenaline and dopamine neurotransmitter systems, it has 

been posited, via ex juvantibus reasoning, that abnormalities in either the levels or 

functionality of the monoamine systems may underlie MDD (Coppen, 1967, 

Schildkraut et al., 1965). However, and despite almost 50 years of research, there is 

little consistent evidence to date that irregularities in these neurotransmitter systems 

are apparent in MDD (Lacasse and Leo, 2005). A handful of positron emission 

tomography (PET) studies examining serotonin receptor and transporter binding 

potentials and densities in MDD patients have found some evidence for alterations 

(Cannon et al., 2007, Kaufman et al., 2015, Murrough et al., 2011); however, these 

studies are potentially confounded, similarly to the earlier studies examining plasma 

levels of serotonin, by the patient’s previous medication usage (Karege et al., 1994). 

Interestingly, Parsey and colleagues (2006) found that antidepressant naïve patients 

had the lowest serotonin transporter binding potential; this finding remains to be 

replicated. Nevertheless, the strongest evidence for the monoamine model of MDD 

comes from dietary depletion studies, where central nervous system levels of either 

serotonin or the catecholamines (noradrenaline and dopamine) are temporarily 

lowered (Cowen and Browning, 2015).  
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Recovered MDD patients show a tendency towards a transient relapse 

following depletion of tryptophan (Ruhe et al., 2007), the precursor to serotonin, and 

α–methyl-paratyrosine (Bremner et al., 2003, Homan et al., 2015), a rate limiting 

inhibitor of the catecholamines, but not tyrosine (McTavish et al., 2005, Roiser et al., 

2005), the precursor to dopamine. One possible explanation for this effect however is 

that patients administered monoamine modulating medications may have a direct or 

indirect iatrogenic disposition to these depletion studies; performing monoamine 

depletion experiments on antidepressant medication naive patients following 

recovery from psychotherapy only would be an interesting avenue to examine this 

hypothesis. Nevertheless, depleting levels of tryptophan or tyrosine does not reliably 

induce depressive symptomatology in healthy volunteers (Cowen and Browning, 

2015). Additionally, giving extremely large doses of tryptophan does not lead to an 

antidepressant response in MDD patients (Mendels et al., 1975). Finally, one of the 

primary critiques of the monoamine model of MDD is that although antidepressant 

medications alter levels of neurotransmitters within hours, meaningful clinical effects 

in humans typically take weeks-to-months to take place; they occur more rapidly in 

rodents. Taken together, these findings suggest a potentially important, but 

insufficient, role for monoamines in the neurobiology of MDD (Cowen, 2008, 

Massart et al., 2012); very little work to date has examined the effects of either 

psychotherapy or ECT on brain monoamines. Interestingly, preclinical and clinical 

work examining cellular and systems level neurobiological effects of administration 

of standard antidepressant medications has found evidence for plasticity enhancing 

properties of these drugs (Boldrini et al., 2013, Dranovsky and Hen, 2006, Duman et 

al., 1999, Maya Vetencourt et al., 2008, Normann et al., 2007, Sheline et al., 2003), 

which may explain the treatment lag and provide key insights into the aetiology of 

MDD.  

1.3.2 Cellular plasticity model 

The time from increased levels of monoamines to clinical effects suggests that slow 

adaptive changes in downstream neurobiological signalling and plasticity may 

underlie the mechanism of successful antidepressant treatment. Evidence for a 

cellular plasticity hypothesis of MDD and its treatment comes from many sources. 
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First, one of the most robust findings in depression research is that of neuronal 

atrophy, specifically, reduced hippocampal volume in MDD patients in comparison 

to healthy volunteers (Schmaal et al., 2015); with this effect being driven by the 

number of recurrent major depressive episodes. There is a consistent body of 

evidence suggesting that depression is associated with gross reductions in grey 

matter volume (Grieve et al., 2013). This evidence is also borne out in post-mortem 

studies where specific reductions in glial cell, namely astrocytes, density and 

neuronal size have been found recurrently in the prefrontal cortex and hippocampi of 

depressed patients (Drevets et al., 2008, Miguel-Hidalgo and Rajkowska, 2002, 

Rajkowska, 2000).  

Second, depression is considered a stress-related illness and animal models of 

depression, which often use stress as a manipulation, reliably induce specific 

behaviours, which are argued to reflect some aspects of the human condition. 

Interestingly, depressed rodents also exhibit atrophy and loss of neurons and glia 

(Duman and Li, 2012), providing cross species validation. Further, brain-derived 

neurotrophic factor (BDNF), a plasticity protein involved in neuronal support and 

growth, has been implicated in both stress and depression, with lower serum levels 

found in MDD patients (Sen et al., 2008). Persistent stress induced BDNF decreases 

eventually lead to hippocampal atrophy in rodents, suggesting a mechanistic link 

between stress and depression. Interestingly, BDNF has been found to be important 

for memory (Bekinschtein et al., 2007), a process commonly impaired in MDD 

patients (Zakzanis et al., 1998) and known to strongly depend on the hippocampus 

(Squire, 1992). BDNF is also involved in synaptogenesis, dendritogenesis, and 

neurogenesis, the creation of new synapses, dendrites, and adult neurons, 

respectively (Leal et al., 2014, Lu et al., 2013). Neurogenesis in the human brain 

occurs in at least two locations in adults, the dentate gyrus of the hippocampus and 

the subventricular zone of the lateral ventricles (Ming and Song, 2011). Stress has 

been shown to inhibit adult neurogenesis in the hippocampus (Anacker, 2014). 

Snyder and colleagues (2011) provided the first direct evidence for the role of adult 

neurogenesis in buffering the impact of stress and preventing depressive behaviour in 

rodents. Thus, it appears that plasticity is a critical step in the resilience to, and 

potentially also the treatment of, depression. 
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There is increasing evidence that effective antidepressant medications may 

increase neuroplasticity (Duman et al., 1999, Pittenger and Duman, 2008). For 

example, chronic treatment with fluoxetine, an SSRI, enhanced BDNF mediated 

synaptic plasticity in the amygdala, a key brain region implicated in depression, 

which permitted, when combined with extinction training, fear erasure in rodents 

(Karpova et al., 2011). Administration of SSRIs and SNRIs has been shown to 

increase neurotrophic factors (e.g. BDNF and vascular endothelial growth factor) 

expression (Banasr et al., 2011). Furthermore, there is evidence that SSRIs increase 

neurogenesis in the adult rat (Malberg et al., 2000), non-human primate (Perera et 

al., 2007, Perera et al., 2011) and human (Anacker et al., 2011) hippocampus. The 

time required from initial hippocampal neurogenesis to maturation and integration is 

slow (8-weeks) and mirrors the time taken for typical antidepressants to reach peak 

clinical efficacy, suggesting a link between these two processes (Schoenfeld and 

Cameron, 2015). Indeed, research has found that neurogenesis is in fact a vital 

mediating step in the antidepressant response to some medications in animal models 

(Santarelli et al., 2003), and may also be important for the efficacy of other 

antidepressant treatments (Schoenfeld and Cameron, 2015).  

There is evidence that ECT may also induce neurogenesis in rodents (Madsen 

et al., 2000, Malberg et al., 2000, Scott et al., 2000) and non-human primates (Perera 

et al., 2011). Intriguingly, a recent investigation found that ECT in MDD patients 

was associated with volumetric increases in the hippocampus and amygdala, with 

volume increases post-ECT positively correlating with clinical improvement (Joshi 

et al., 2015). Interestingly, both ECT and SSRIs increase plasma levels of BDNF 

(Marano et al., 2007) and pre-treatment serum levels of BDNF predict SSRI 

response (Wolkowitz et al., 2011). Patients treated with antidepressant medications 

tend to have less pronounced in-vivo (Sheline et al., 2003) and post-mortem 

(Boldrini et al., 2013) hippocampal volumetric decreases. At least two studies have 

examined neuronal glucose metabolism changes, an indirect measure of plasticity, 

induced by psychotherapy in MDD patients using 18-fluorodeoxyglucose PET. 

Brody et al. (2001) found that interpersonal therapy increased right prefrontal cortex 

and left anterior cingulate and temporal lobe metabolism. Goldapple et al. (2004) 

found that response to CBT was associated with increases in hippocampal and dorsal 
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anterior cingulate metabolism and decreases in dorsal, ventral and medial prefrontal 

cortex. To date however, there is no published research examining changes in either 

brain volume or plasma levels of BDNF in MDD following psychotherapy, although 

one would expect robust and detectable neurobiological changes to underpin 

alterations in behaviour. One model, however, has sought to intersect aspects of both 

the monoamine and plasticity model to explain how antidepressants and potentially 

also psychotherapy, work at a more psychological level. 

1.3.3 Cognitive neuropsychological model 

The cognitive neuropsychological model of MDD and its treatment suggests that 

depression is associated with a deeply ingrained dysfunctional negative schema of 

both the world and the patient themselves, which are instantiated by negative 

affective processing biases (Harmer et al., 2009a, Roiser et al., 2012). This model 

stems from earlier cognitive models (Beck, 1967, 1976), which focussed on the 

importance of early negative life experiences in generating negative schemata, 

overgeneralization and arbitrary inference, which lead to biased information 

processing and ultimately, depression, and, drove the development of some 

psychotherapeutic approaches, such as CBT. However, the focus on early life 

experiences and high-level psychological constructs make objectively testing these 

earlier models difficult. In contrast, the cognitive neuropsychological model suggests 

that negative affective processing biases, which may be related to environmental or 

genetic factors, drive the onset of depression; importantly, this model can be tested 

through objective behavioural measures and/or neural responses.  

The cognitive neuropsychological model suggests that standard therapies for 

depression exert their beneficial influence by attenuating (medications) or 

deconstructing (psychotherapy) negative biases allowing an eventual 

reconceptualization of the world from the patient’s perspective (Harmer, 2008). In 

particular, the model purports that the monoaminergic system plays a key role in the 

maintenance of the aforementioned negative biases, but does not affect mood 

directly. Rather, the monoaminergic system is believed to underlie the emotional 

colour with which information is coded. For example, a depressed patient may 
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misinterpret a neutral facial expression as a negative stimulus due to aberrant levels 

of one or more of the monoamines. The effect of weakening or deconstructing 

negative biases is a gradual improvement in the patient’s model, which may explain 

why both standard antidepressant medications and psychotherapy take several weeks 

to months to reach their peak clinical efficacy, despite medications increasing 

synaptic levels within hours (Roiser et al., 2012). Evidence for this model comes 

from a number of sources.  

First, there is now substantial evidence that MDD is associated with negative 

affective biases (Gotlib and Joormann, 2010, Harmer, 2008). For example, there has 

been a wealth of studies examining facial affect in patients with MDD. While 

findings are somewhat inconsistent, in general there is a reported bias (both reaction 

time (RT) and accuracy differences in comparison to healthy volunteers) in MDD 

patients away from positive (e.g. happy) facial stimuli and toward more negative 

(sad, angry) facial images (Roiser et al., 2012). Second, the effects of antidepressant 

administration are visible implicitly using cognitive tasks and functional 

neuroimaging within hours, long before they reach observable changes on 

psychometric scales in MDD patients. For example, Harmer et al. (2009b) found that 

a single dose of reboxetine, an NRI, but not a placebo, was enough to ameliorate 

negative perceptual biases (both memory and RT) towards affective facial stimuli, 

despite no change in reported mood. Additionally, similar changes in biases were 

also apparent in healthy volunteers following acute administration of citalopram 

(Harmer et al., 2003a) and reboxetine (Harmer et al., 2003b, Harmer et al., 2009b). 

Third and finally, the model predicts that depressed patients showing the greatest 

early changes in such implicit tasks will also evidence the best clinical improvement 

following administration of the medication. Indeed, Tranter et al. (2009) found that 

the patients who exhibited the greatest change in their affective biases within two-

weeks of citalopram or reboxetine treatment displayed the greatest antidepressant 

response at six-weeks. This last finding has been reinforced by similar effects at the 

neural level; changes in brain activity of MDD patients at seven-days post-acute 

treatment with escitalopram predicted response at six-weeks (Warren et al., 2015). 
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1.3.4 Summary and limitations of models of MDD and its treatment 

In summary, evidence exists for at least three different accounts of how depression 

manifests and how standard treatments may work in treating this illness. While the 

overly simplistic monoamine hypothesis has now fallen out of favour, it is clear that 

monoamine-modulating medications provide some benefit for depressed patients. It 

may be that more complex theories such as the cognitive neuropsychological and 

neuroplasticity models are more applicable both to understanding the complexity of 

the illness and developing new treatments. While each of the models provide 

different accounts of how antidepressants work and what the underlying dysfunction 

in MDD is, they are far from mutually exclusive and can all, to some degree, be true. 

A parsimonious account of depression and its treatment may involve all three 

models. However, these models are not without their limitations. While they all 

provide explanations for how some depression treatments work, the plasticity model 

fails to account for the effects of psychotherapy and how this treatment may work at 

the neural level and the same can be argued for the cognitive neuropsychological 

model and ECT. Moreover, there are inconsistent and contradictory findings for each 

of the models (Cowen and Browning, 2015, Hanson et al., 2011, Roiser et al., 2012, 

Schoenfeld and Cameron, 2015, Warren et al., 2015). For example, disruption of 

neurogenesis does not induce depressive symptoms or increase chronic stress 

sensitivity in rodents (Jayatissa et al., 2009, Surget et al., 2008). Furthermore, none 

of the models attempt to explain why some MDD patients do not respond to standard 

treatments and what the underlying biology or psychology may be in these 

individuals. Thus, the need for alternative and more comprehensive models of 

depression is high. Fortunately, evidence from several new potential treatments for 

depression provides some novel clues to the underlying mechanisms of MDD, and, 

may eventually themselves become established techniques for improving the lives of 

people suffering from this debilitating illness. 
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1.4 Novel plasticity enhancing treatments for MDD 

1.4.1 Brain stimulation as a treatment for depression 

One alternative approach to pharmaceutical and psychotherapeutic intervention for 

depression is the use of non-invasive brain stimulation (NBS) techniques; ECT is 

considered an invasive procedure due to the associated risks (Stevens et al., 1996, 

Tharyan and Adams, 2005). Notably, both transcranial magnetic stimulation (TMS) 

and transcranial direct-current stimulation (tDCS) have received attention as 

potential cognitive and mood enhancers for patients with MDD. Anthony Barker 

invented TMS in 1985 (Barker et al., 1985) as an attempt to create a brain 

stimulation methodology that could painlessly and non-invasively induce regionally 

specific action potentials. The technique uses a rapidly changing magnetic field to 

focally induce an eddy current in the brain. tDCS is a much older and simpler 

technique than TMS; despite having been used since the 18th century, tDCS is 

currently undergoing its second scientific renaissance since the turn of the 

millennium. tDCS works by creating an electrical current flowing circuit, whereby 

electrons flow from the excitatory anodal to the inhibitory cathodal electrode. 

Purportedly, the area of the brain under the anodal electrode increases in excitability 

and the area under the cathode is inhibited. Importantly, both NBS techniques (TMS 

and tDCS) are capable of producing plastic changes at both the neuronal and 

behavioural level that can last for hours after their discontinued administration 

(Fritsch et al., 2010, Huang et al., 2005). 

 Both forms of NBS have been used to modulate cognition and mood with 

varying degrees of research endeavour and success. Researchers have attempted to 

utilise repetitive TMS (rTMS), where stimulation pulses are applied repeatedly at a 

frequency of 1 hertz (Hz) or quicker, to treat depression for almost 20 years, with 

moderate success culminating in its Food and Drug Authority (FDA) approval to 

treat MDD in 2008. The evaluation of tDCS to treat depression has thus far yielded 

very variable results (Kalu et al., 2012). However, the use of tDCS to modulate 

behavioural and neural performance has received a large amount of research 

attention, due to the low research costs and risks associated with the device. Both 



 26 

NBS techniques are promising avenues of research to enhance the lives of patients 

suffering from depression. 

1.4.1.1 Transcranial magnetic stimulation (TMS) 

TMS was first used to treat depression in the mid-nineties; researchers found that 

rTMS, delivered at a high pulse delivery frequency (10-20Hz), thought to cause an 

increase in cortical excitability, applied to the left dorsolateral pre-frontal cortex 

(DLPFC) caused an improvement in mood in treatment resistant MDD patients 

(George et al., 1995, Pascual-Leone et al., 1996). Low frequency rTMS (1Hz), 

thought to cause a down regulation in regional activity, applied to the right DLPFC 

has also been successful in reducing dysphoria in depressed patients (Klein et al., 

1999). The rTMS frequency and laterality discrepancy between these findings has 

led some researchers to conclude that depression might be caused by hypoactivity in 

the left and hyperactivity in the right DLPFC (Brunoni et al., 2013a, Hecht, 2010); 

however, such ex juvantibus logic mirrors that underpinning the monoamine 

hypothesis of depression and has not been substantiated through research (Speer et 

al., 2014). A well designed randomised sham-controlled assessment of rTMS in a 

large sample of patients confirmed the therapeutic efficacy of excitatory left DLPFC 

rTMS as a treatment for MDD; George et al. (2010) found that approximately 14% 

of patients achieved remission status following active stimulation versus 5% for 

sham, a highly comparable remission differential statistic to placebo controlled 

evaluations of SSRIs (Thase et al., 2001). Highly similar remission rates were also 

found in an earlier industry sponsored double-blind study exploring the 

antidepressant effects of six-weeks of left DLPFC rTMS for MDD (O'Reardon et al., 

2007). 

1.4.1.2 Transcranial direct current stimulation (tDCS) 

Excitatory tDCS has been successfully used as a method to improve performance in 

a variety of cognitive domains in healthy volunteers, including: numerical 

competence (Cohen Kadosh et al., 2010), decision-making (Hecht et al., 2010), 

motor learning (Reis et al., 2009) planning (Dockery et al., 2009), target detection 

(Clark et al., 2012) and working memory (Zaehle et al., 2011). However, questions 
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remain regarding the optimal stimulation parameter settings for cognitive 

enhancement; the parameter space includes the following variables: current intensity 

and blinding (O'Connell et al., 2012), stimulation frequency (Horvath et al., 2015), 

stimulation duration (Nitsche et al., 2008), and electrode positions (Miranda et al., 

2006); these parameters can all strongly influence the interpretation of alterations in 

performance. However, despite the apparent efficacy of tDCS for cognitive 

improvement, recent reviews and meta-analyses have cast doubt on some of the 

earlier enhancement findings (Horvath et al., 2015). There is a possibility that tDCS 

may be particularly suited to remediating cognitive deficits in clinical populations 

and there is now a burgeoning field of research examining the effects of tDCS for 

depression more generally.  

The use of tDCS in the treatment of depression has only been evaluated in 

appropriately designed randomized sham controlled clinical trials in the past six-

years, with few well-designed studies published thus far. While some studies have 

yielded very large effect sizes (Boggio et al., 2009, Brunoni et al., 2013a) others 

have found little to no difference in remission rates between sham and active 

stimulation (Kalu et al., 2012, Loo et al., 2012, Palm et al., 2012). However, a recent 

factorial between-subjects investigation compared the effects of active DLPFC tDCS 

in conjunction with an SSRI versus tDCS with placebo, versus sham tDCS with drug 

and finally against sham tDCS and placebo. The results demonstrated that tDCS had 

antidepressant efficacy versus both sham stimulation and placebo, however, the 

antidepressant effect of tDCS when co-administered with sertraline (SSRI) was 

significantly greater than either one alone (Brunoni et al., 2013a), possibly indicating 

a concomitant increase in plasticity from the combined treatments and corroborating 

previous work indicating a role for serotonin and enhanced tDCS efficacy (Nitsche et 

al., 2009). Nevertheless, the most recent reviews of the antidepressant effects of 

tDCS do not support its use in treatment resistant depression (Meron et al., 2015) and 

question its use as a direct stand-alone mood-enhancing treatment for MDD patients 

(Berlim et al., 2013). As the use of tDCS to significantly improve mood in patients 

with MDD has proved very variable, a more tractable approach may involve the use 

of tDCS as a cognitive enhancer, which has arguably been a more successful 

endeavour thus far in healthy volunteers, to boost the cognitive deficits seen in MDD 
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patients. Interestingly, in the cognitive neuropsychological model, cognitive 

impairment is proposed to play a causal role in the development of depressive 

symptoms and their treatment, as it potentially makes schemata harder to break down 

and psychotherapy more difficult to engage with (Roiser et al., 2012). Thus, if tDCS 

can treat cognitive impairment in MDD patients, other treatments may subsequently 

be more effective. 

The possibility of using tDCS as a cognitive enhancer to improve cognitive 

difficulties in MDD patients has received some attention thus far (Tortella et al., 

2014). A number of studies have demonstrated an increase in cognitive task 

performance in MDD patients following tDCS (Oliveira et al., 2013, Wolkenstein 

and Plewnia, 2013). For example, Loo et al. (2012) found that patients showed 

improvements in both attention and working memory following a single session of 

tDCS. Moreover, Wolkenstein and Plenia (2013) found that excitatory DLPFC tDCS 

improved both cognitive control, a central factor implicated in depression, and 

working memory in MDD patients. However, whether these behavioural 

enhancements are directly related to improvements in mood or are independent is 

unclear (Tortella et al., 2014). Furthermore, much like studies using tDCS to induce 

cognitive enhancement in healthy volunteers, the parameter space for optimality in 

MDD patients has not been systematically assessed; for example, all cognitive 

enhancement studies conducted in MDD patients have used the left DLPFC as the 

region of excitatory anodal stimulation, with inconsistent placement of the reference 

electrode. Nonetheless, questions remain about the use of tDCS as a cognitive 

enhancer in general; very few double-blind experiments have been conducted. 

Whether tDCS could be used effectively as a cognitive enhancer for MDD patients, 

which could thereafter enhance mood or facilitate other treatments, such as 

antidepressant medication (Brunoni et al., 2013a) or psychotherapy, remains 

inconclusive. 

1.4.2 Ketamine as a rapid acting antidepressant 

Research surrounding the potential involvement of glutamate, the predominant and 

excitatory mammalian neurotransmitter, in depression has soared in the past 15 years 
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thanks, in part, to an influential first report demonstrating that ketamine, a non-

competitive ionotropic N-methyl-D-aspartate (NMDA) receptor antagonist and 

anaesthetic, rapidly alleviated depressive symptomatology in a double-blind, placebo 

controlled investigation (Berman et al., 2000). Berman and colleagues (2000) found 

that levels of depression in their small sample of patients with MDD (N = 7) were 

significantly reduced within 72-hours following a single sub-anaesthetic intravenous 

infusion of ketamine. Subsequent investigations of ketamine using larger samples 

and more rigorous investigations in both treatment resistant patients with MDD 

(Ibrahim et al., 2012, Zarate et al., 2006) and BD (Diazgranados et al., 2010a, Zarate 

et al., 2012), including active control drugs (e.g. midazolam, Murrough et al. 

(2013a)), and, across multiple sites in MDD patients (Mathew et al., 2010, Valentine 

et al., 2011), have yielded consistent findings of ketamine’s antidepressant effect 

(Dutta et al., 2015, Naughton et al., 2014). Furthermore, ketamine appears to have 

some efficacy in alleviating depression in MDD patients who fail to respond to ECT 

(Ibrahim et al., 2011), the most effective standard treatment for treatment-resistant 

depression. 

These studies not only confirmed the antidepressant efficacy of ketamine but 

found that the improvement in depressive symptoms was statistically significant 

within two-hours of a single intravenous infusion even in treatment refractory 

patients (Ibrahim et al., 2012, Zarate et al., 2006). However, although the 

antidepressant effect of a single infusion of ketamine is rapid, it is also transient, 

lasting on average one week before symptoms return to baseline levels. Nevertheless, 

the antidepressant effect of ketamine has heralded a new conceptualization and 

benchmark for psychiatry, the rapid acting medicine, and launched an increase in 

research centred on glutamatergic modulating pharmaceuticals for depression 

(Duman and Aghajanian, 2012). Due to its potential for abuse and harm (Liao et al., 

2011, Liao et al., 2010, Morgan et al., 2014), ketamine is not considered by some to 

be a viable standard treatment for the majority of MDD patients (Sanacora and 

Schatzberg, 2015, Schatzberg, 2014). However, research has sought to utilise it as a 

model to further understand the biological underpinnings of depression and its rapid 

treatment. It is hoped that with further understanding of the clinical and biological 

mechanisms with which ketamine exerts its rapid-acting antidepressant effect, better 
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treatments can be created and, furthermore, that specific treatments for symptoms 

and subtypes be delineated. 

1.4.2.1 Clinical symptoms associated with successful treatment with ketamine 

The rapid-acting nature of ketamine is a huge benefit over standard treatments for 

MDD. In particular however, it is the symptoms that ketamine has been shown to 

quickly improve that have caused such great enthusiasm for the drug. Suicide and 

suicidal ideation are a huge burden associated with MDD; due to the nature of these 

behaviours, rapid resolution of these symptoms is of the utmost importance. 

However, there is currently no approved treatment specifically designed to rapidly 

decrease suicidal ideation in MDD, although clozapine is recommended for suicidal 

patients with schizophrenia. It has now been demonstrated several times that 

ketamine can cause a rapid reduction in suicidal ideation (Ballard et al., 2014, 

DiazGranados et al., 2010b, Price et al., 2009b); at least one study has examined the 

efficacy of ketamine in treating suicidal depressed patients in a naturalistic 

emergency department setting, finding similarly consistent anti-suicidal effects 

(Larkin and Beautrais, 2011).  

In addition to causing a significant reduction in suicidal ideation, ketamine 

may be particularly beneficial for MDD patients who have anhedonia. There is 

mounting evidence that standard medication treatments for MDD patients are 

ineffective at relieving anhedonia (Boyer et al., 2000) and may even induce 

anhedonic symptoms (Hindmarch, 1998, Price et al., 2009a). Nierenberg and 

colleagues (1999) found that anhedonia was one of the most prevalent residual 

symptoms in MDD patients who responded to fluoxetine; importantly, residual 

symptoms are thought to precipitate relapse (Paykel, 2008). Moreover, the presence 

of anhedonia is associated with poorer treatment response to both pharmacological 

therapy (Uher et al., 2012) and novel therapeutics such as rTMS (Downar et al., 

2014). Recent evidence suggests that ketamine may be effective at improving levels 

of anhedonia in both MDD (DeWilde et al., 2015, Lally et al., 2015b) and BD (Lally 

et al., 2014b) patients. In particular, Lally and colleagues (2014b) found that 

ketamine rapidly improved levels of anhedonia in treatment refractory BD patients, 

with the anti-anhedonic effect still present even when the other depressive symptoms 
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were controlled for, suggesting that ketamine may specifically improve anhedonia in 

depressed patients.  

1.4.3 Purported antidepressant mechanisms of action of tDCS and ketamine 

How do tDCS and ketamine exert their behavioural and neural changes? Intriguingly, 

recent research has posited a prominent role for glutamatergic based BDNF-

dependent plasticity in the treatment of depression (Duman and Aghajanian, 2012, 

Nosyreva et al., 2013), through which, both of these agents may work. Fritsch et al. 

(2010) found that tDCS plasticity was dependent upon BDNF and also increased 

levels of BDNF in rodents. Haile et al. (2014) found that plasma levels of BDNF 

were highly correlated with improvements in depression score following ketamine, 

but not post-midazolam. Moreover, Lepack et al. (2015) found that BDNF release 

was a required component of the antidepressant actions of ketamine in rodents. Autry 

and colleagues (2011) further examined the neural mechanisms behind ketamine’s 

response in a series of elegant experiments in mice, demonstrating that ketamine’s 

antidepressant effects, as well as another NMDAR antagonist (MK-801) that elicits a 

rapid-acting antidepressant response in rodents, are dependent upon the rapid 

translation, but not transcription, of BDNF. Furthermore, healthy volunteers and 

MDD patient carriers of the met allele of the BDNF single nucleotide polymorphism 

rs6265 exhibit attenuated responses to tDCS (Fritsch et al., 2010) and ketamine (Laje 

et al., 2012). Importantly, tDCS is also NMDA receptor dependent (Fritsch et al., 

2010), further linking its mechanisms of action with the glutamatergic system and 

plasticity.  

Preclinical evidence suggests that the neural effect of ketamine is mediated 

by increases in glutamatergic activity via disinhibition of inhibitory interneurons in 

the prefrontal cortex (Homayoun and Moghaddam, 2007). Administration of both 

excitatory tDCS and sub-anaesthetic doses of ketamine have been shown to cause 

acute alterations in Glx (a glutamatergic composite marker of glutamate and 

glutamine) and gamma-amino butyric acid (GABA)-ergic levels, as measured by 

proton magnetic resonance spectroscopy (1H-MRS) in healthy volunteers (Clark et 

al., 2011, Stagg et al., 2009, Stone et al., 2012). Importantly, intravenous infusion of 
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a sub-anaesthetic dose of ketamine has very recently been shown to acutely increase, 

by nearly 40%, levels of both GABA and Glx in the medial prefrontal cortex of 

MDD patients (Milak et al., 2015), providing further evidence for a glutamatergic 

and plasticity-related theory of depression and its treatment; however, similar studies 

in healthy humans (Rowland et al., 2005, Stone et al., 2012, Taylor et al., 2012) and 

non-acutely in depressed patients (Valentine et al., 2011) reported mixed findings 

and smaller effects. Interestingly, Li et al. (2010) demonstrated that ketamine caused 

an increase in both protein signalling and the number and function of spine synapses 

in the prefrontal cortex of rats and this increase in plasticity was dependent upon the 

glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

receptor. Thus, it appears that NBS techniques and NMDA receptor antagonism may 

share a common neural mechanism in relieving depressive symptoms; depression 

appears to be improved by techniques that enhance neuroplasticity via glutamatergic 

and BDNF dependent mechanisms. 

1.4.4 Cognitive symptoms improved by ketamine 

Cognitive processing post-ketamine administration has been studied far less than 

following standard antidepressant treatment in patients with MDD. In an active 

comparator infusion study comparing sub-anaesthetic doses of ketamine and 

midazolam in treatment refractory MDD patients, Murrough et al. (2015) found 

improvements in neurocognitive performance from baseline at seven days post-

infusion for both drugs, but no performance differences between ketamine and 

midazolam at seven days post-infusion. Furthermore, there was no association 

between the magnitude of the antidepressant response to ketamine and the 

improvements in cognition. The lack of an association between treatment response 

and behaviour change might suggest that ketamine may not have specific cognitive 

enhancing capabilities and that performance improvements may be mediated by 

indirect effects on other symptoms, for example anhedonia or mood; the results may 

also be partially explained by practice effects or the comparable cognitive enhancing 

capabilities of midazolam. Interestingly, the slowest performing patients improved 

the most following ketamine, replicating an earlier finding (Murrough et al., 2013b), 

which may suggest that ketamine causes the greatest improvements in the most 



 33 

impaired or depressed patients, much like other antidepressant and psychotherapeutic 

interventions. One study (Price et al., 2009b) examined whether open-label ketamine 

treatment might, in addition to improving scale scores related to suicidal ideation, 

improve levels of both explicit and implicit suicidality, as measured by a cognitive 

task; a death related implicit association test was administered both pre- and post-

infusion to a small sample (N = 10) of MDD patients. Price et al. (2009b) found that 

implicit suicidality was reduced following intravenous ketamine and that the 

magnitude of this reduction was correlated with the anti-suicidal impact of the sub-

anaesthetic infusion of ketamine. Further research on the cognitive benefits of 

treatment with ketamine is needed to understand who might benefit most from this 

treatment. In particular, it will be important to understand what specific components 

of complex symptoms, such as anhedonia, are improved by treatment with ketamine.  

1.4.5 Can current models of antidepressant treatment explain the effects of 

tDCS and ketamine? 

The antidepressant effects of both tDCS and ketamine can be explained in terms of 

changes in neuroplasticity, a system that appears to be dysfunctional in MDD. Can 

the monoamine and cognitive neuropsychological models also explain their 

antidepressant or cognitive enhancing capabilities? While there is very little evidence 

for monoaminergic effects of tDCS there is an increasing amount of studies 

examining such systems in relation to ketamine. A PET study in healthy rhesus 

macaques revealed that administration of a sub-anaesthetic dose of ketamine was 

associated with increased serotonin receptor (5-HT1B specifically) and decreased 

serotonin transporter binding in the nucleus accumbens and ventral pallidum 

(Yamanaka et al., 2014); the effect of ketamine on serotonin receptor binding, but 

not transporter, was blocked by administration of an AMPA receptor antagonist, 

which blocks the antidepressant effect of ketamine in rodents, implicating an 

interaction between the glutamatergic and serotonergic systems in ketamine’s 

mechanism of action. A combined PET and microdialysis study in healthy macaques 

revealed that administration of a sub-anaesthetic dose of ketamine was associated 

with increased serotonergic transmission in the prefrontal cortex via inhibition of 

serotonin transporter activity (Yamamoto et al., 2013). Interestingly, the 
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antidepressant effect of ketamine, as assessed by immobility time in the forced swim 

test, was blocked in rats that underwent serotonin depletion (Gigliucci et al., 2013), 

suggesting the monoamine system may be critical for ketamine to exert an 

antidepressant effect in rodents. It has been shown that ketamine exhibits behaviour 

suggestive of a partial agonist of the dopaminergic D2 receptor (Kapur and Seeman, 

2002) and causes increases in levels of dopamine in the striatum (Vollenweider et 

al., 2000). Interestingly, a recent report provided the first evidence that the 

antidepressant effect of ketamine is partially dependent on the dopaminergic system 

in rodents (Belujon and Grace, 2014); additional evidence suggests that the D2/D3 

receptor, but not D1, may be particularly important for the antidepressant effect of 

ketamine in rodents (Li et al., 2015b). 

Interestingly, the administration of ketamine to healthy volunteers is a model 

of schizophrenia (Corlett et al., 2007), a disorder treated primarily by dopamine 

modulating medication. While the recent preclinical evidence purports that dopamine 

is important for the antidepressant effects of ketamine, clinical evidence in depressed 

patients suggests that the psychosis-like effects of ketamine may not be clinically 

relevant to its antidepressant response. Luckenbaugh and colleagues (2014) found 

that the dissociative, but not the psychotomimetic, side effects during a sub-

anaesthetic intravenous ketamine infusion positively correlated with the 

antidepressant effects at both 230 minutes and seven days post-infusion in a mixed 

sample (N = 108) of depressed patients (MDD and BD); however, a study with a 

smaller sample (N = 27) found a relationship between the psychotomimetic, but not 

the dissociative, side effects and the antidepressant response to ketamine (Sos et al., 

2013). Preclinical evidence suggests that levels of presynaptic glutamate release or 

cycling to glutamine may mediate the dissociative side effects of ketamine (Anand et 

al., 2000), a hypothesis that could be partially testable via 1H-MRS investigations. 

Nevertheless, the dissociative side effects are one the strongest predictors of an 

antidepressant response to ketamine in treatment-refractory patients, (Luckenbaugh 

et al., 2014), suggesting an important psychological component to the antidepressant 

efficacy of ketamine. A thought-provoking report by Dakwar et al. (2014a) found 

that sub-anaesthetic intravenous infusions of ketamine in cocaine dependent 

individuals caused an increase in mystical thinking, which was found to mediate the 
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motivation to quit cocaine 24-hours post-infusion (Dakwar et al., 2014b). Thus, a 

strong psychological experience, such as an increase in mystical thinking driven by 

dissociative effects, may be important for the rapid-acting antidepressant efficacy of 

ketamine.  

Whether tDCS is an effective antidepressant by itself remains to be seen; 

hypothetically, it may exert its effects by increasing DLPFC functionality, allowing 

for greater executive function or cognitive control and thus might work in a similar 

manner to CBT. 

1.5 Thesis aims, hypotheses and predictions 

The overall aim of this thesis was to investigate the neural and cognitive 

underpinnings of two novel antidepressant treatments, tDCS and ketamine. Both 

treatments are thought operate in part by increasing glutamatergic transmission and, 

via somewhat similar cellular and molecular mechanisms of action, by enhancing 

plasticity. However, it is unknown if either technique improves cognitive 

impairments found in depression or how these induced improvements may translate 

at the neural level. These questions will be addressed through four experimental 

chapters.  

1.5.1 Chapter 2 

In Chapter 2 we assessed whether excitatory fronto-extraencephalic DLPFC tDCS 

could improve performance in healthy volunteers on a working memory task on 

which MDD patients show reliable deficits, the n-back, in a double-blind, multi-

stimulation, sham-controlled investigation. The aim was to probe the efficacy of 

tDCS to function as a cognitive enhancer first in healthy volunteers, with the hope 

that a successful outcome could then be applied to MDD patients. The rationale for 

focusing on DLPFC stemmed from its suggested involvement in affective disorders 

(Fales et al., 2009, Rajkowska et al., 1999), and clear evidence for deficits in MDD 

patients on cognitive tasks tapping its function (Snyder, 2013). Research has 

identified DLPFC as a node that is hyperactive in MDD patients while performing 

the n-back, despite comparable behavioural performance to control subjects (see 
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Wang et al. (2015) for a meta-analysis), suggesting that MDD patients may need to 

exert increased cognitive resources to maintain similar working memory 

performance. We hypothesized that excitatory anodal tDCS, applied in conjunction 

with a cognitive task, would up-regulate (and possibly increase the efficiency of) 

DLPFC function, which is known to underlie working memory performance; DLPFC 

activity scales linearly with cognitive load during the n-back in healthy volunteers 

(Yun et al., 2010). It is thought that tDCS increases neuronal excitability by pumping 

in positive ions beneath the anodal stimulated area (Nitsche and Paulus, 2000), thus 

DLPFC in theory should participate at a higher level during active stimulation. tDCS 

may also increase plasticity in the region via increased levels of glutamate 

transmission (Clark et al., 2011) and BDNF secretion (Fritsch et al., 2010). Thus, 

tDCS stimulated DLPFC neurons may contribute more to the network of brain 

regions implicated in the task and permit greater performance enhancements for 

those receiving active, than sham, stimulation. Therefore, we predicted that 

excitatory tDCS would cause an enhancement in working memory performance over 

sham stimulation in healthy volunteers. Additionally, we predicted that there would 

be a linear improvement of the enhancement effect of active stimulation over sham 

with repeated tDCS sessions. 

1.5.2 Chapter 3 

In Chapter 3 we evaluated the reliability of an adapted 1H-MRS pulse sequence (An 

et al., 2015) to quantify levels of neural glutamate and glutamine at 7 Tesla (T). 

Specifically, we explored within- and between-session variability of glutamate and 

glutamine levels in healthy volunteer brains. This assessment allowed us to test the 

consistency of our pulse sequence in measuring neural glutamate and glutamine 

levels before using this methodology in a subsequent experiment (Chapter 4). The 

aim was to evaluate the sequence for within- and between-session reliability to 

permit an accurate estimation of the measurement noise prior to using the pulse 

sequence in clinical and pharmacology studies. We expected that the novel 1H-MRS 

sequence would allow excellent detection of both glutamate and glutamine due to 

their resolved nature with this sequence and the high field strength used here; these 
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factors should also facilitate reliable repeated measurement of these metabolites 

within- and between-scanning sessions.  

1.5.3 Chapter 4 

In Chapter 4 we assessed whether there were baseline differences in anhedonia-

related psychometric scales, reward tasks and, using the evaluated 1H-MRS sequence 

from Chapter 3, medial prefrontal cortex glutamate and glutamine levels, between 

medication free patients currently in a major depressive episode and healthy 

volunteers. We then examined these metrics again in the same patients following 

intravenous infusion of a sub-anaesthetic dose of ketamine and placebo (exactly two-

weeks between infusions) and explored whether changes in depressive symptoms 

following ketamine were related to behavioural and glutamatergic neurotransmitter 

changes. We hypothesized that ketamine would cause an acute increase in prefrontal 

cortex glutamate levels via disinhibition of GABA interneurons and that this 

elevation would normalize these measures to healthy volunteer levels in successfully 

treated patients leading to an antidepressant response. The upshot to an increase in 

glutamate levels would be a cascade of events leading to protein synthesis and neural 

plasticity, namely an up-regulation of AMPA receptor activation, which would cause 

downstream increases in expression of plasticity dependent proteins, such as BDNF 

(Autry et al., 2011). The result of an activation of BDNF may be an activation of 

mammalian target of rapamycin, which could lead to the reported increases in 

synaptic signalling proteins and new spine synapses (Li et al., 2010). In particular, 

glutamatergic normalization in the medial prefrontal cortex is thought to underlie 

changes in levels of anhedonia following treatment with ketamine (Lally et al., 

2014b, Lally et al., 2015b). By improving levels of anhedonia, potentially via a 

glutamatergic boost, we predicted that depressed patients would then respond more 

similarly to healthy volunteers on the anhedonia questionnaires and reward tasks.  

We predicted that there would be baseline differences between patients and 

controls on anhedonia psychometric scales, reward tasks and medial prefrontal 

cortex 1H-MRS measured glutamate levels. We aimed to replicate and extend a 

previous finding of a relationship between pre-treatment levels of a surrogate marker 
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of glutamine and response to ketamine in MDD patients (Salvadore et al., 2012); the 

improved resolution permitted by the combination of our novel sequence and higher 

MRI field should permit a more accurate assessment of the relationship between 

glutamatergic metabolites at baseline and response to ketamine. We predicted that 

ketamine would also serve as a cognitive and motivational enhancer and improve 

performance on our reward tasks, increase 1H-MRS measured glutamate levels and 

improve levels of anticipatory anhedonia. Finally, we predicted that the 

improvements in psychometric scales, reward tasks and medial prefrontal cortex 1H-

MRS measured glutamate or glutamine levels following ketamine would be 

interrelated, with relative increases in medial prefrontal cortex glutamate or 

glutamine positively relating to the magnitude of improvements on tasks and scales. 

1.5.4 Chapter 5 

In Chapter 5 we assessed whether there were baseline differences in blood-oxygen-

level dependent (BOLD) contrast imaging between the same medication free 

depressed patients and healthy volunteers as Chapter 4, while both groups performed 

the aforementioned (Chapter 2) n-back task. There is strong evidence to suggest that 

working memory deficits may play a prominent role in depression (Christopher and 

MacDonald, 2005, Joormann et al., 2011, Pelosi et al., 2000, Rose and Ebmeier, 

2006). Similarly to Chapter 4, we again examined cognition and neural activity 

(using BOLD contrast imaging) changes following intravenous ketamine and 

placebo (again, two-weeks apart) and related these to changes in depressive 

symptoms. The goal was to assess whether ketamine causes an improvement in 

working memory performance in patients and what are the mediating structures 

underlying response to the rapid acting antidepressant. We hypothesized that 

ketamine would improve cognitive control associated neural network activity via the 

aforementioned enhancement in plasticity in depressed patients who respond to the 

treatment. Specifically, we hypothesized that DLPFC would be more efficient two 

days post-ketamine leading to a corresponding reduction in the required levels of 

activity required to complete the task. We predicted that depressed patients would be 

worse than healthy volunteers at performing the n-back task at baseline and that their 

underlying BOLD activity associated with this task, particularly in the DLPFC 
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region, would be greater (Wang et al., 2015). We also predicted that ketamine would 

normalize DLPFC BOLD activity and task performance in depressed patients who 

respond to the treatment. Finally, we predicted that response to ketamine would be 

related to neural activity, particularly in the DLPFC region, elicited during the 

baseline performance of the n-back.  



 40 

2 Does excitatory fronto-extracerebral tDCS lead to improved 
working memory performance in healthy volunteers? 

2.1 Abstract 

Evidence suggests that excitatory tDCS may improve cognitive performance in both 

healthy volunteers and depressed patients. Recent reports also suggest that tDCS may 

possess general antidepressant potential. However, questions remain regarding the 

exact efficacious stimulation parameters and the precise nature of the mood and 

cognitive enhancements. Here, using a double-blind between-subjects design, we 

explored whether 1 mA excitatory (anodal) left DLPFC stimulation with a 

contralateral extracerebral reference electrode, leads to enhanced working memory 

performance across two days, relative to sham stimulation, in healthy volunteers (N 

= 21). Participants performed the 3-back, a test of working memory, at baseline, and 

during and immediately following stimulation on two days, separated by 24-to-48-

hours. Active stimulation did not significantly enhance performance versus sham 

over the course of the entire experiment. However, exploratory comparisons revealed 

a significant effect (which survived correction for multiple comparisons) of 

stimulation group on performance during the first stimulation phase only, with active 

stimulation recipients performing better than sham. While these results do not fully 

support the hypothesis that excitatory DLPFC tDCS boosts working memory, they 

raise the possibility that its effects may be greatest during early learning stages, 

which could have implications for the treatment of depression. 
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2.2 Introduction 

 tDCS has been utilised as a non-invasive brain stimulation methodology to improve 

performance on a variety of cognitive tasks in healthy volunteers, including decision-

making (Hecht et al., 2010), planning (Dockery et al., 2009) and working memory 

(Andrews et al., 2011, Ohn et al., 2008). Due to the minimal risk profile, arising as 

function of the very low current delivered to the scalp, and the relatively inexpensive 

nature of the device, it has high potential as a tool for cognitive enhancement in 

clinical populations. Indeed, a growing body of evidence suggests that tDCS may be 

effective in specifically enhancing cognition in patients with depression (Bueno et 

al., 2011, Oliveira et al., 2013, Wolkenstein and Plewnia, 2013). As cognitive 

impairment is a prevalent and frequently difficult to treat symptom in depression 

(Austin et al., 2001), the apparent cognitive enhancements induced by tDCS may 

underpin the reported, yet tentative, antidepressant effects of the stimulation 

(Brunoni et al., 2014, Brunoni et al., 2013b, Meron et al., 2015). However, the 

optimal stimulation parameters are presently unknown. Questions remain over 

stimulation condition blinding (O'Connell et al., 2012), stimulation frequency (Hoy 

et al., 2013) and appropriate electrode placement (Miranda et al., 2006) as these 

parameters can strongly influence the efficacy of the stimulation device, the induced 

neuronal activity and moreover, the interpretation of stimulation effects on cognitive 

performance. Questions have also been raised about appropriate behavioural and 

stimulation controls (Walsh, 2013). 

tDCS kits comprise two polarised stimulation electrodes, both of which are 

connected to a battery-powered device that delivers constant current. The application 

of the excitatory tDCS electrode to the scalp is thought to cause an increase in 

neuronal excitability in the stimulated area by altering the resting potential (Nitsche 

and Paulus, 2000). To complete the electrical circuit, the reference or inhibitory 

cathodal electrode must be placed somewhere on the head or body being stimulated. 

The majority of studies exploring cognitive enhancement using tDCS have targeted 

DLPFC as their region of excitation while the inhibitory electrode has typically been 

placed on the contralateral supra-orbit (or DLPFC). For example, in a single blind 

investigation using this electrode montage, Ohn et al. (2008) found that 30 minutes 
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of 1 mA tDCS while participants performed the n-back (Kirchner, 1958), a cognitive 

task commonly used to assess aspects of executive function and thought to engage 

working memory in particular, led to significant improvements in task performance 

over sham during stimulation only. However, placing the reference electrode on the 

scalp introduces a potential confound in the interpretation of any resulting 

behavioural effects: these could arise as a result of excitation, inhibition, or a 

combination of the two electrodes. The location of the reference electrode, whether 

extra or intra -cephalic, has been show to play a prominent role in the efficacy of the 

excitatory electrode (Moliadze et al., 2010). 

A single-blind within-subjects investigation by Zaehle et al. (2011) 

demonstrated that 15 minutes of 1 mA excitatory tDCS applied to left DLPFC during 

rest, with the inhibitory electrode placed ipsilaterally at the mastoid, resulted in 

enhanced post-stimulation performance on the 2-back task in comparison with 

cathodal, but not sham, stimulation. Importantly, Zaehle et al. (2011) utilized a 

fronto-extracephalic montage, which attenuates interpretational difficulties as the 

reference electrode and its position can affect the efficacy of tDCS and the 

underlying neuronal activity (Moliadze et al., 2010). Furthermore, it remains to be 

determined whether stimulation during a task or while at rest is more beneficial. 

Andrews et al. (2011) found tentative evidence to suggest that DLPFC tDCS applied 

concurrently with a cognitive task may provide more robust effects on subsequent 

working memory performance that stimulation during rest. 

Working memory dysfunction, and executive function deficits more broadly, 

have been found in depression (Snyder, 2013). Indeed, executive function 

performance has been identified as a tractable endophenotype to explore in 

depression (Hasler et al., 2004). Thus, there is significant potential for non-invasive 

brain stimulation techniques such as tDCS to be applied clinically to ameliorate 

cognitive dysfunction. The n-back task has frequently been used in the context of 

functional neuroimaging experiments in both healthy volunteers (Owen et al., 2005) 

and patients with depression (Snyder, 2013). The results of these studies consistently 

implicate a network of brain regions including parietal cortex and DLPFC, which are 

engaged with increasing cognitive load during n-back performance (Owen et al., 
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2005). Importantly, altered DLPFC function is associated with depression 

(Pizzagalli, 2011). For example, a recent meta-analysis of working memory fMRI 

research in MDD, 60% of which used the n-back task, identified the DLPFC as a 

region of consistent hyperactivity in MDD patients, despite no between group 

behavioural differences to healthy volunteers (Wang et al., 2015), suggesting that 

MDD patients may need to use greater neural resources to achieve the same level of 

performance. Enhancing DLPFC efficiency in depressed patients is one potential 

avenue towards cognitive enhancement. However, in order to establish whether 

tDCS has the potential to improve clinical conditions through modulatory effects on 

executive function, it is important to first establish the effects of specific stimulation 

parameters in healthy volunteers. 

Here, we sought to build on prior research (Andrews et al., 2011, Ohn et al., 

2008, Zaehle et al., 2011) by conducting a double-blind between-subjects experiment 

to examine whether excitatory DLPFC tDCS applied across two days would lead to 

enhancement of n-back performance during and post-stimulation. Specifically, we 

assessed whether excitatory fronto-extracerebral DLPFC tDCS, with the reference on 

the contralateral cheek, could improve performance on the 3-back in healthy 

volunteers across two stimulation days. We predicted that those receiving active 

stimulation would have greater task performance improvement, relative to baseline, 

in comparison with sham stimulation recipients. 

We hypothesized that anodal (excitatory) tDCS applied to the left DLPFC 

during the n-back would up-regulate neuronal functionality in this region. In healthy 

volunteers, DLPFC activity scales linearly with cognitive load during the n-back 

(Yun et al., 2010). tDCS is thought to increase neuronal excitability beneath the 

stimulated area of the anodal electrode by lowering the action potential threshold 

(Nitsche and Paulus, 2000), thus DLPFC neurons should in theory be more activated 

during anodal stimulation. Consequently, tDCS stimulated DLPFC neurons may 

participate more in the neuronal network elicited by the n-back and permit greater 

performance enhancements for those receiving active, than sham, stimulation. 

Therefore, we predicted that excitatory tDCS would elicit a working memory 

performance enhancement, over sham stimulation, in healthy volunteers. Moreover, 
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we predicted that a linear improvement of the performance enhancement effect of 

active stimulation, over sham, would occur with repeated tDCS sessions. 
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2.3 Methods 

2.3.1 Participants 

Twenty-one (14 females, M = 23.09 years, SD = 3.95) right-handed participants 

were recruited from the Psychology subject pool at University College London, UK. 

Participants self-reported no history of mental or neurological illness, current 

psychiatric medication use, no prior or current participation in another brain 

stimulation experiment within the previous 24-hours and had normal or corrected to 

normal vision. There were no significant age (t(19) = 0.211, P = 0.835) or gender 

(X2
(1) = 1.527, P = 0.361) differences between the two stimulation groups (active and 

sham). All participants provided written informed consent and were compensated for 

their time. The study was approved by the UCL ethics committee. 

2.3.2 Task 

The n-back (Figure 2.1) consisted of a continuous sequence of 300 (150 for 

baseline) centrally presented consonants (500 ms) interleaved with fixation crosses 

(1500 ms). Participants were instructed to respond to every appearance of a letter 

(button pressing did not affect stimulus timing), pressing the ‘H’ key only when the 

letter onscreen matched the letter 3-back, and pressing the ‘F’ key for all other 

instances. It is thought that this version of the n-back may afford increased sensitivity 

to working memory performance than versions that focus solely on hits (Haatveit et 

al., 2010, Zaehle et al., 2011). Matches (one-fifth of all stimuli) and non-matches to 

3-back stimuli were randomized in order but their ratio was fixed throughout the 

experiment. The task was coded in MATLAB (release 2008b for Windows; 

Mathworks, Natick, MA, USA) using the Cogent Toolbox 

(http://www.vislab.ucl.ac.uk/cogent_2000.php) and is available for free online 

(https://sites.google.com/site/nialllally/home/code/. The code is also permanently 

available at 10.5281/zenodo.7148. 

  

http://www.vislab.ucl.ac.uk/cogent_2000.php
https://sites.google.com/site/nialllally/home/code/
http://dx.doi.org/10.5281/zenodo.7148
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Figure 2.1. Schema of 3-back task. Stimuli (consonants) were presented centrally for 
500ms and followed by a fixation cross for 1500 ms. Participants were instructed to 
respond to every stimulus, indicating whether the stimulus matched the letter 3-back 
(‘H’) or not (‘F’). 
 
2.3.3 tDCS 

tDCS was administered continuously at 1 mA using the Neuroconn DC-Stimulator 

(Neuroconn, Germany) via a pair of rubber electrodes (7 cm × 5 cm) housed in small 

synthetic sponges dampened with salt water to increase conductivity. The excitatory 

(anodal) electrode was placed over F3 (Figure 2.2A), corresponding to the left 

DLPFC, while the reference (cathodal) electrode was placed on the contralateral 

cheek (Berryhill and Jones, 2012, Tseng et al., 2012). F3 was located using a 10-20 

electroencephalography cap and demarcated using a removable marker. Left DLPFC 

was chosen as the anodal electrode position as this region has been consistently 

implicated in working memory paradigms (Owen et al., 2005). Additionally as the 

task involved processing static letters, the left side of the brain was considered most 

appropriate (Mull and Seyal, 2001). Once the area was located, the electrodes were 

fastened in position using two headbands (a polyester hairband across the forehead 

and a rubber band beneath the jaw and around the circumference of the head; Figure 

2.2B).  
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Before arrival, participants were randomized to one of two brain stimulation 

conditions using MATLAB, active (N = 10) or sham (N = 11); participants remained 

in their stimulation group (active or sham) throughout the experiment i.e. active 

tDCS recipients on Day 1 received active tDCS on day 2. Specific codes were 

selected from the tDCS device manual by an independent researcher not involved 

with the study and were assigned to each condition and randomized to each 

participant. Importantly, utilizing the ‘study mode’ of the device allowed the 

stimulation-administering researchers to remain blinded to the condition participants 

were in as the readout on the stimulation apparatus was identical for both active and 

sham stimulation. However, the integrity of the blinding was not assessed. The 

administered current was applied for 10 minutes with an additional 15-second fade-

in and fade-out ramping period to minimize discomfort and facilitate participant 

blinding. Sham stimulation was limited to small pulses of 100–200 µA every 400–

550 ms between a 15-second fade-in and fade-out voltage ramp (Palm et al., 2013).  

2.3.4 Study design 

During the baseline session on day 1 (D1), participants were first trained on the n-

back with a brief exposure to 1, 2 and finally 3-back. Thereafter, participants 

completed a 5-minute version of the 3-back, which served as a baseline pre-

stimulation measure of performance. Immediately after, tDCS was administered for 

10 minutes while participants performed the 3-back task (D1 tDCS; Figure 2C). 

Following this, participants completed a further 10-minute session of the 3-back (D1 

post-tDCS) without stimulation. Participants were instructed that continuation to day 

2 was dependent on D1 post-tDCS task performance but were not given feedback 

until the end of day 1. Continuation to day 2 was dependent on above chance 

performance on the D1 post-tDCS assessment only, which was any positive d' value: 

d' = Z(hit rate) - Z(false alarm rate)   (1) 

where hit and false alarm rate are the number of correct or incorrect ‘H’ responses, 

respectively, divided by the total number of opportunities (1/5 or 4/5 of total stimulus 

letters) and Z is the inverse of the cumulative Gaussian distribution. Participants 

received £10 for their participation on day 1 irrespective of task performance. Day 2 
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(24-to-48-hours later) consisted of one 10-minute task run with stimulation (D2 

tDCS) and one post-stimulation (D2 post-tDCS). Participants were told that 

performing better than the test phase of day 1 would result in a bonus of £10 on top 

of the £5 basic payment on day 2. Thus, participants had a performance incentive for 

the post-tDCS assessment only on each day. 

Figure 2.2. tDCS electrode montage and study design. A, B) The excitatory anodal 
electrode (red) was positioned using a 10-20 standard electroencephalography 
electrode cap under F3, which corresponds to dorsolateral prefrontal cortex. The 
inhibitory cathodal electrode (blue) was positioned on the contralateral cheek. C) 
Timeline of events in the study. Participants performed the 3-back on five separate 
occasions, once at baseline on day 1, twice during and twice following stimulation 
on both days. 
 
2.3.5 Statistical analyses 

To assess the effect of active stimulation versus sham over time, we conducted a 

linear mixed model in SPSS, version 21 (IBM Corp New York 2012). The dependent 

variable was d'. Follow up models also were conducted using hit rate, correct 

rejection rate (1 - false alarm rate) and reaction time for both of these variables. The 

four testing sessions after baseline (D1 tDCS, D1 post-tDCS, D2 tDCS, D2 post-
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tDCS) were entered as a fixed effect of time; tDCS and sham stimulation were 

entered as a fixed effect of group; and their interaction (time-by-group) was also 

entered as a fixed effect. Participant number was entered as a random effect and 

baseline performance was entered as a covariate. A heterogeneous first order 

autoregressive covariance structure was employed. Bonferroni corrected tests 

between the groups at each time point were conducted using linear contrasts to assess 

between-group differences. Follow up assessments of significant points were 

assessed using a general linear model with baseline performance entered as a 

covariate. Performance differences at baseline were assessed using an independent 

samples t-test. Based on our sample size we had 80% power to detect a large effect 

size (d = 1.3) at P = 0.05 (two-tailed) between the stimulation groups. 
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2.4 Results 

One participant (sham group) scored a negative d' value for day 1 and did not 

participate in session 2, but their data were included in the linear mixed model. 

Additionally, the testing computer malfunctioned during the day 1 post-tDCS 

assessment for 1 participant (active group), approximately 40% through the task; 

these data were included in the model and the participant completed a further post-

tDCS test, which was used only to determine progress to day 2. There was no 

significant difference in d' performance between the groups at baseline (t(19) = 1.044, 

P = 0.309; Figure 2.3). As expected, there was a significant main effect of time 

(F(3,36) = 7.669, P < 0.001) on d' performance, reflecting improvement across both 

groups with increasing exposure to the task. However, contrary to our hypothesis, no 

main effect of stimulation group was identified (F(1,16) = 2.228, P = 0.155) and there 

was no group × time interaction (F(3,36) = 1.339, P = 0.277).  

Exploratory Bonferroni corrected pairwise comparisons were carried out to 

assess group performance differences at the four post-baseline time points. A 

significant difference between active sham stimulation was identified at the day 1 

tDCS time point (F(1,13) = 10.747, P = 0.006; controlling for baseline performance 

and Bonferroni corrected for multiple comparisons), indicating a large effect size 

(Cohen’s d = 1.427, r2 = 0.337). No other stimulation group differences in d' were 

found at other time points (all F < 1.2, P > 0.3; see Table 2.1 for group performance 

across sessions and task components). Further analyses of performance during 

stimulation on day 1 (including baseline as a covariate) revealed that both the hit rate 

(F(1,18) = 4.454, P = 0.049, ηp2 = 0.198) and correct rejection rate (F(1,18) = 3.680, P = 

0.071, ηp2 = .170) of active stimulation recipients were significantly, or at trend 

level, better than sham. However, no significant reaction time differences were found 

for this time point for either hits (F(1,18) = 0.010, P = 0.923, ηp2 = 0.001) or correct 

rejections (F(1,18) = 0.202, P = 0.659, ηp2 = 0.011). 
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Figure 2.3. 3-back d' performance (mean values) across testing times and days. The 
active stimulation group always performed better than the sham group but only 
statistically significantly so during stimulation on day 1 (D1 tDCS), denoted by an 
asterisk (*). Baseline performance did not differ between the groups but was 
included in the model as a covariate. Error bars represent ±1 standard error of the 
mean. 
 
Table 2.1. Means and standard deviations of each 3-back session per group. 

 Baseline D1 tDCS D1 post-tDCS D2 tDCS D2 post-tDCS 
Anodal HR 0.4167 

(0.1694) 
0.5250 
(0.1336) 

0.5333 
(0.2278) 

0.5533 
(0.2131) 

0.6067 
(0.1994) 

 CRR 0.8933 
(0.0355) 

0.9296 
(0.0385) 

0.9317 
(0.0486) 

0.9283 
(0.0500) 

0.9425 
(0.0389) 

 Hit RT  0.6848 
(0.2587) 

0.6651 
(0.2358) 

0.6300 
(0.2467) 

0.6052 
(0.2279) 

0.6118 
(0.2609) 

 CR RT  0.6702 
(0.2422) 

0.6566 
(0.2159) 

0.6180 
(0.2214) 

0.5948 
(0.2229) 

0.5939 
(0.2237) 

Sham HR 0.3909 
(0.1106) 

0.4030 
(0.1197) 

0.4879 
(0.1959) 

0.5030 
(0.2048) 

0.5333 
(0.2196) 

 CRR 0.8614 
(0.0429) 

0.8720 
(0.0577) 

0.9049 
(0.0383) 

0.8186 
(0.2757) 

0.8390 
(0.2821) 

 Hit RT  0.7026 
(0.2062) 

0.6816 
(0.1763) 

0.6345 
(0.1770) 

0.5546 
(0.2339) 

0.5714 
(0.2734) 

 CR RT  0.7159 
(0.2017) 

0.6780 
(0.1715) 

0.6365 
(0.1630) 

0.5727 
(0.2448) 

0.5592 
(0.2685) 

D1 = day 1, HR = hit rate, CRR = correct rejection rate; RT, reaction time, CR = 
correct rejection. 
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2.5 Discussion  

Contrary to our hypothesis, no main effect of tDCS on task performance was 

identified in this study. However, exploratory tests suggested that active stimulation 

was associated with enhanced performance relative to sham stimulation during the 

first stimulation period on day 1 only. Our results may therefore indicate that the 

performance enhancement effects of excitatory tDCS may be limited to earlier stages 

of learning (Meinzer et al., 2013). They also suggest that reports of improvements 

after one session of tDCS – the most common report in enhancement studies – may 

not translate to continual improvement with additional stimulation. Indeed, Martin et 

al. (2013) using an extracephalic electrode montage with the reference placed on the 

deltoid muscle, found in a relatively large university sample that, in comparison to 

sham stimulation, 10 sessions of DLPFC tDCS did not lead to a significant 

improvement in task performance on a variant of the n-back task when controlling 

for baseline performance. However, uncorrected contrasts, without controlling for 

baseline, revealed a benefit of active tDCS, in comparison to sham, at the first and 

eighth tDCS sessions only; a result largely consistent with our findings here of 

attenuated effects of tDCS on task performance with repeated sessions.  

Our results do not support the hypothesis that excitatory tDCS applied to 

DLPFC results in post-stimulation improvement on the n-back task across multiple 

days. This result is consistent with some previous research; in comparison with sham 

stimulation, neither Zaehle et al. (2011) nor Ohn et al. (2008) demonstrated 

significant performance enhancements on the n-back task immediately following 

excitatory DLPFC tDCS. Nevertheless, we found evidence for a specific 

improvement in performance during stimulation on day 1 only, an outcome 

consistent with results from Ohn et al. (2008) and others (Fregni et al., 2005). 

Andrews et al. (2011) found that DLPFC excitatory tDCS applied during a working 

memory task (n-back) led to significant improvements in post-stimulation 

performance in comparison with baseline on an alternative working memory task 

(digit span forward but not backward). The improvements found (Andrews et al., 

2011) were not present for either sham stimulation in conjunction with task 

performance or stimulation without task performance. Behavioural data were not 

reported for the task during stimulation and an intracerebral reference electrode was 



 53 

used, limiting direct comparison with the present study. Furthermore, Hoy et al. 

(2013) found that 1 mA excitatory tDCS applied to DLPFC at rest resulted in an 

enhancement in 2-back RTs 40 minutes post-stimulation, but found no improvement 

in accuracy. However, other reports have found evidence for more enduring 

cognitive enhancement following tDCS (Cohen Kadosh et al., 2010, Dockery et al., 

2009) (but see also Walsh (2013)).  

This discrepancy between results may reflect the different tasks, stimulation 

parameters, sample sizes and study designs used. For example, it is possible that the 

payment schemes that served as a performance motivator here limited the potential to 

observe performance enhancing effects of tDCS. As there was no monetary 

motivation during the stimulation phase on day 1, participants may not have exerted 

themselves fully and thus the effects of stimulation may have had greater impact; 

while on day 2, participants in both groups may have reached a level whereby any 

potential for further enhancement of performance through tDCS was limited. Whilst 

the sample size used here is low for a between-subjects study, few tDCS studies have 

thus far been conducted using large sample sizes, and future studies should address 

the issue of stimulation parameter optimization using large sample sizes. 

Nevertheless, our results suggest that tDCS may be particularly sensitive to earlier 

stages of learning (Meinzer et al., 2013).  

In theory, the beneficial effects of tDCS may be most pronounced in poorer 

performers. Indeed, there is some evidence that tDCS may be particularly useful as a 

cognitive enhancer with lower performing individuals (Tseng et al., 2012). As the 

population utilised here primarily comprised students from University College 

London, between-group differences arising as a function of tDCS may have been 

attenuated due to high initial baseline ability. As depression is associated with 

substantial deficits in executive function task performance (Snyder, 2013), which is 

akin to a lower baseline performance rate in comparison to healthy volunteers, 

depressed patients in particular may benefit from the tDCS cognitive enhancement 

shown here. Recent research has indeed shown that excitatory DLPFC tDCS can 

enhance cognitive control, a component of executive function, in major depressive 

disorder (Wolkenstein and Plewnia, 2013); however, long-lasting cognitive 
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ameliorative effects of stimulation in depression have yet to be demonstrated. If our 

finding that tDCS advances early learning holds true, tDCS could in theory be used 

to advance patients cognitive state to facilitate other therapeutic interventions, such 

as CBT. 

The electrode montage used here (fronto-extracerebral) may have also played 

a significant part in the efficacy of the stimulation. While DLPFC is one of the most 

frequent site selections for anodal tDCS, placing the reference (cathodal) electrode 

on the contralateral cheek is a relatively novel occurrence (Berryhill and Jones, 2012, 

Tseng et al., 2012). Current modelling, a technique to determine the amount of 

electrical current cerebrally induced as a function of the electrode positioning and 

other parameters, has been performed for various anodal DLPFC montages, with the 

reference electrode placed on the contralateral supraorbit, DLPFC and deltoid. The 

DLPFC and contralateral cheek montage however has yet to be modelled, thus it is 

unknown if it is more or less efficacious than other electrode configurations. 

Nevertheless, the distance between the anodal and reference electrode is negatively 

correlated with the tDCS induced after-effect magnitude and duration in healthy 

volunteers (Moliadze et al., 2010); in theory, the cheek may be preferential to the 

deltoid and trapezius muscles, however this remains to be assessed. Furthermore, the 

majority of early investigations of tDCS for task performance enhancement used an 

electrode montage with both electrodes positioned proximal to the cerebrum (e.g. 

DLPFC and the contralateral supraorbit), which limits the interpretation as to which 

brain region was primarily modulated as both electrodes could contribute, and may 

in fact do so in opposing ways, to alterations in task performance. Nevertheless, 

widespread changes in neuronal activity outside of the sites of stimulation have been 

consistently identified (Nord, 2013, Stagg et al., 2013), making the issue of electrode 

placement complex. In sum, electrode positioning is a major potential confound 

when comparing tDCS effects on both brain activity and behaviour across studies, 

further research addressing the biological and behavioural consequences of differing 

electrode placement is needed. 

The results of this experiment require replication and extension to validate 

the potential role for tDCS in executive function enhancement. In particular, the 
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evaluation of result specificity represents a prominent hole in the current literature. 

Few studies thus far have contrasted active stimulation results in comparison with 

control tasks and active stimulation of control site locations on the scalp (Walsh, 

2013); such measures would be beneficial in assessing the findings here and across 

the field. Additionally, it could be fruitful to replicate this experiment without the 

monetary incentive. Testing a larger and more representative sample including non-

university students would also be informative. Furthermore, while performance 

improvements under stimulation are important, the clinical utilization of tDCS may 

necessitate long lasting effects once stimulation has ceased. Finally, evidence 

suggests that individual differences in genotype may play a large part in 

susceptibility to the plasticity enhancing capabilities of tDCS. Fritsch et al. (2010) 

found that tDCS was more efficacious in both mice and humans possessing the 

homozygous Val/Val genotype of the BDNF polymorphism (rs6265), than Met 

carriers, though we did not have a sufficiently large sample to explore such 

moderators in the current study. 

In conclusion, our results do not support the hypothesis that excitatory tDCS 

applied to the left DLPFC using a contralateral fronto-extracerebral electrode 

reference produces consistent improvements in executive function beyond the period 

of stimulation. Nonetheless, we found a beneficial effect of tDCS during task 

performance only when the task was relatively novel, which could be interpreted as 

indicating that this particular electrode montage, stimulation voltage and study 

design may be best suited to early stages of learning. 
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3 Reliability of 7T 1H-MRS Measured Human Prefrontal Cortex 
Glutamate, Glutamine, and Glutathione Signals Using an 
Adapted Echo Time Optimised PRESS Sequence: A Between- 
and Within-Sessions Investigation 

3.1 Abstract 

Evidence suggests that aberrant brain glutamatergic signalling plays a role in 

depression. 1H-MRS can non-invasively measure brain glutamatergic metabolite 

levels. Until recently, overlapping glutamatergic signals (glutamate, glutamine, and 

glutathione) could not easily be separated. However, the advent of novel pulse 

sequences and higher field magnetic resonance imaging (MRI) allows more precise 

resolution of glutamatergic signals. To ascertain the underlying mechanisms of 

depression and its treatment using 1H-MRS, sequence-specific within- and between-

session estimates of reliability are first required. At 7T, we acquired 1H-MRS data 

from the medial pregenual anterior cingulate cortex of healthy volunteers (N = 26) 

twice on two separate days. An adapted echo time optimised point resolved 

spectroscopy sequence, modified with the addition of a J-suppression pulse to 

attenuate N-acetyl-aspartate multiplet signals at 2.49 parts per million, was used to 

excite and acquire the spectra. In house software was used to model glutamate, 

glutamine, and glutathione, amongst other metabolites, referenced to creatine. 

Intraclass correlation coefficients (ICCs) were computed for within- and between-

session measurements. Within-session measurements of glutamate, glutamine, and 

glutathione were generally reliable (ICCs ≥ 0.7). As anticipated, ICCs for between-

session values of glutamate, glutamine, and glutathione were slightly lower but 

nevertheless acceptable (ICC > 0.62). A negative correlation was observed between 

glutathione concentration and age (r(24) = -0.37; P < 0.05), and a gender effect was 

noted on glutamine and glutathione. The adapted sequence provides good reliability 

to measure glutamate, glutamine and glutathione signals at 7T and thus supports its 

use in the investigation of the underlying biology of depression and its treatment. 
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3.2 Introduction 

Preclinical and clinical evidence suggests abnormal brain glutamatergic transmission 

may contribute to the pathophysiology of depression (Niciu et al., 2014a, Paul and 

Skolnick, 2003, Sanacora et al., 2012). 1H-MRS provides a non-invasive estimate of 

at least three glutamatergic system components, glutamate, glutamine and 

glutathione. Glutamate is the most abundant amino acid and principal excitatory 

neurotransmitter in the human brain (Maddock and Buonocore, 2012). Glutamine, 

amongst other functions, is a precursor and principal metabolite of glutamate and is 

involved in the astrocytic cyclical regulation of glutamate (Maddock and Buonocore, 

2012). Glutathione, the most abundant brain anti-oxidant, provides a reservoir of 

neuronal glutamate (Koga et al., 2011) and serves important immunological roles. 

Studies using 1H-MRS have linked abnormalities in the regulation of the 

glutamatergic system to depression (Hasler et al., 2007, Lapidus et al., 2014a, Luykx 

et al., 2012, Walter et al., 2009, Yuksel and Ongur, 2010), however others have 

found no differences (Abdallah et al., 2014a, Godlewska et al., 2015). Consistent 

with evidence of glutamatergic dysfunction in depression, drugs that modify this 

system, e.g. ketamine (Stone et al., 2012), have been reported to rapidly improve 

depressive symptoms (Dutta et al., 2015). 

The potential for 1H-MRS to help determine the mechanisms underpinning 

depression and its treatment remains both tantalising and tangible. However, to 

evaluate potential treatments using 1H-MRS, its accuracy and reliability—both 

within- and between-sessions—must be determined (e.g. Cai et al. (2012)). Scanner 

field strength is particularly important for accurately measuring glutamatergic signals 

using 1H-MRS. A recently reported 1H-MRS sequence, evaluated at 7T (An et al., 

2015), affords enhanced detection of glutamate, glutamine, and glutathione. This 

sequence applies an extra excitation pulse to an echo time (TE) optimised point 

resolved spectroscopy (PRESS) sequence to weaken the contribution of the N-acetyl-

aspartate (NAA) multiplet signal at 2.49 parts per million (ppm) via suppression of J-

coupled NAA signals at 4.38 ppm; however, the reliability of this specific sequence 

(An et al., 2015) has yet to be quantified. Hence, the purpose of the present study 

was to assess the within- and between-session reliability of this specific sequence 

(other sequences have been evaluated at 7T; (Cai et al., 2012, Stephenson et al., 
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2011, Wijtenburg et al., 2013)) to detect neural glutamate, glutamine, and 

glutathione from a single medial prefrontal cortex voxel in healthy volunteers. Due 

to their resolved nature with this sequence and the high field strength (7T) used here, 

we expected that the adapted 1H-MRS PRESS sequence would allow excellent 

detection of both glutamate and glutamine. The increased spectral resolution should 

also facilitate reliable within- and between-scanning sessions repeated measurement 

of glutamate and glutamine. 
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3.3 Methods 

3.3.1 Participants 

Twenty-six healthy volunteers (10 females and 16 males; mean age of all participants 

= 31.58 years, SD = 9.32, range = 20-54) were recruited to participate. Participants 

self-reported no history of head trauma, substance abuse or dependence, psychiatric 

or neurological illnesses. They were medically healthy as determined by physical and 

neurological examination and blood and urine laboratory tests. Psychiatric evaluation 

was performed by an experienced clinician using the structured clinical interview for 

DSM-IV (First, 2002), and confirmed by an unstructured interview with a board 

certified, practicing psychiatrist. The Combined Neuroscience Institutional Review 

Board at the NIH approved the study, and all participants provided written informed 

consent. 

 

3.3.2 Design 

Participants underwent MRI scanning once on two separate days (one session per 

day, each comprising two 1H-MRS scans). The average time between each scanning 

session was 8.08 days (SD = 5.50, range = 2-21). Where possible, participants were 

scanned on the same day of the week and at the same time of day on the subsequent 

week or two-weeks later. 

3.3.3 MRI 

All MRIs were acquired using a Siemens 7T scanner. Images were collected using a 

32-channel head coil. Standard 1 mm3 isotropic resolution magnetization-prepared 

rapid gradient echo sequence images (repetition time (TR) = 3 s, TE = 3.9 ms, matrix 

= 256 × 256 × 256, inversion time (TI) = 1500 ms) were acquired on each of the two 

scanning days and used to create an anatomical brain image; this image was used to 

plan the location of the MRS voxel. 
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3.3.4 1H-MRS 

Using the anatomical image, a 2 × 2 × 2 cm3 voxel was placed in the medial 

pregenual anterior cingulate cortex (pgACC; Figure 3.1A). This region of the brain 

has been implicated in numerous neuropsychiatric disorders, particularly affective 

conditions such as major depressive disorder (MDD) (Hasler et al., 2007, Walter et 

al., 2009) and bipolar disorder (Ellison-Wright and Bullmore, 2010, Lally et al., 

2014b). The region was localized by placing the midpoint of the voxel at the midline 

between the two hemispheres in the axial view and the edge of the voxel adjacent to 

the genu of the corpus callosum in the sagittal view, permitting maximal grey, and 

minimal white, matter concentration. To allow for consistency in voxel positioning 

between scanning sessions, a screenshot of the voxel placement on the first scanning 

day, comprising sagittal, axial and coronal voxel viewpoints (Figure 3.1A), was 

created, and this was used to guide the second scanning session, which occurred on a 

different day.  

Voxel-specific first and second order B0 shim coefficients were adjusted 

using a fast, automatic shimming technique by mapping along projections 

(FASTMAP; (Gruetter, 1993)) sequence. Next, a water FID (free induction decay) 

was acquired to calculate and correct for frequency drift, an important determinant of 

spectral quality (Near et al., 2014). The B1 field was optimized using a stimulated 

echo sequence consisting of αo
 - 90o - 90o - acquisition. The αo pulse has no 

localization gradient and the two 90o pulses and acquisitions are localized. Hence, a 

one-dimensional bar going through the centre of the voxel was acquired and 

parameters were adjusted so that a null signal was found at the voxel centre. After 

these calibrations, water-suppressed MRS data were acquired using a TE-optimized 

PRESS pulse sequence modified by inserting a J-suppression pulse (An et al., 2015). 

Water suppression was accomplished using eight RF pulses of ~350 Hz bandwidth. 

The residual water signal amplitude was smaller than the NAA peak amplitude in 

most cases. Only one data set was excluded due to failed water suppression, a 

hardware issue, where the residual water signal amplitude was more than 10 times 

larger than the NAA peak amplitude. 
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Figure 3.1. MRS voxel location, spectrum example showing metabolites and 
the corresponding model fit for our metabolites of interest. A) Sagittal, axial 
and coronal viewpoints showing the medial prefrontal cortex voxel 
positioning in yellow. B) A typical spectrum acquired from a study 
participant using our sequence. The x-axis is measured in ppm. C) The same 
data as (B), showing the corresponding model fit, baseline, and residual from 
our in-house software analysis. 
 

The J-suppression pulse is a frequency-selective radiofrequency pulse placed 

at the resonance frequency of the aspartyl CH proton of N-acetyl-aspartate (NAA) at 

4.38 ppm, thereby altering the J-evolution of the NAA aspartyl CH2 multiplet at 2.49 

ppm. The parameters TE1 = 69 ms, TE2 = 37 ms, and J-suppression pulse flip angle = 

90º resulted in minimal NAA multiplet signals at 2.49 ppm while retaining near-

maximum peak amplitudes for the C4 proton resonances of glutamate and glutamine 

using this sequence (An et al., 2015), and were thus used here. The J-suppression 

pulse combined with optimized TE values minimized the interference of the NAA 

multiplet signals at 2.49 ppm to the detection of the glutamine signals at 2.45 ppm 

and glutathione signals at 2.54 ppm, thus enhancing our ability to resolve these 

peaks. Other parameters for the modified PRESS sequence were: TR = 2.5 s, spectral 

width = 4000 Hz, number of data points = 2048 and number of transients = 128.  
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For each scanning session (two 1H-MRS scans per session, one session per 

day), participants were inside the MRI scanner for approximately 100 minutes. 1H-

MRS data were acquired once following the acquisition of the anatomical image at 

the beginning and once again at the end of the session (note, there was only one 

scanning session on each day) following echo-planar imaging (EPI) functional MRI 

(to be reported elsewhere). Once the calibrations were complete, the total time for 

each 1H-MRS scan was approximately six minutes. Due to the long gap between the 

first and second MRS scan (approximately one-hour), when necessary, re-shimming 

was undertaken for the second scan. Precisely the same procedure was repeated on 

the second scanning day. 

 

3.3.5 1H-MRS Modelling 

The time-averaged 32-channel FID signals were merged into a combined single-

channel metabolite FID using a generalized least squares method (An et al., 2013). 

The combined FID was Fourier transformed into the frequency domain to generate 

the spectrum, which was thereafter processed using a custom written linear 

combination fitting program to estimate metabolite levels. Basis sets included 

glutamate, glutamine, glutathione, γ-aminobutryic acid (GABA), NAA, N-

acetylaspartylglutamate (NAAG), choline, and creatine. A Levenberg-Marquardt 

least square minimization algorithm was used in spectral fitting. The basis functions 

of the metabolites were scaled, apodized using a Voigt lineshape, frequency shifted, 

zero-order phase corrected, Fourier transformed to the frequency domain, and added 

with a spline baseline with eight control points to fit the spectral data between 1.8 

and 3.3 ppm. Each metabolite could have different linewidth but was constrained to 

have the same Lorentzian/Gaussian ratio. The frequency of each metabolite was 

constrained to vary within +- six Hz from its theoretical value. The zero-order phase 

of the spectral data was allowed to vary without any constraint. Metabolites were 

referenced to levels of creatine and are hereafter referred to by their metabolite 

names. Referencing to creatine reduces the need for tissue content correction 

because, similar to glutamatergic signals, creatine is only detected from the tissue 

and experiences the same BOLD effects as other metabolites (Lally et al., 2014a). 

NAA was summed with NAAG, henceforth known as total NAA (tNAA), for 
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statistical analyses as the sequence used here is not optimal for reliable detection of 

NAAG (for an enhanced sequence to detect NAAG see (An et al., 2014)). The TE 

values used by this sequence suppressed GABA signals, and quantification of GABA 

was thus compromised. Cramér-Rao lower bounds (CRLB) expressions of parameter 

variance were computed (Cavassila et al., 2000). We computed the reduced chi-

squared statistic for each spectrum to examine the fit of our model to the data; an 

arbitrary threshold of 12 or less for this statistic was set as an inclusion criterion for 

statistical analyses. Additionally, a water proton peak-line broadening criterion of 16 

Hz was selected and only spectra with less than this value were included in the 

analyses. 

 

3.3.6 Statistical Analyses 

To rule out any systematic changes in our metabolites of interest (glutamate, 

glutamine, glutathione) we first assessed whether there was a main effect of scanning 

day or scan number, or an interaction between these two factors. We conducted a 

linear mixed model with compound symmetry selected as the covariance matrix and 

three fixed effects: scanning session (Day 1 or 2), scan number (1 or 2), and the 

interaction between these variables.  

To determine the within- and between-session metabolite measurement 

reliability, we computed intraclass correlation coefficients (ICCs) in SPSS 21 (IBM 

SPSS, 2010, Chicago, IL, USA) with two-way random effects selected. Because we 

identified no effect for scan or day number on our metabolites of interest, we 

selected the more stringent absolute agreement (as opposed to consistency) option. 

We calculated reliability by comparing metabolites from the first and second scan 

(Scan 1 vs. Scan 2) within each day as well as the between-session reliability for 

each scan number (Day 1/Scan 1 vs. Day 2/Scan 1 and Day 1/Scan 2 vs. Day 2/Scan 

2). The average (as opposed to single) measures ICC was selected from the SPSS 

output due to the averaging of both the FIDs and head coil channels conducted in the 

pre-processing stages. For consistency with previous neuroimaging studies (Nugent 

et al., 2013), we used an ICC of 0.7 as our acceptable level. Specifically, poor, fair, 

good, and excellent reliability were arbitrarily defined as an average ICC value of < 

0.6, 0.6 - 0.7, 0.7 - 0.8, and ≥ 0.8, respectively (Brandt et al., 2013). Additionally, we 
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computed the coefficient of variation (CV; calculated as the standard deviation of the 

mean difference between two data points, divided by the mean of the two data 

points) to make our assessment more comparable to other 7T reliability studies. For 

completeness, we also determined the ICCs, CVs and systematic variation for other 

metabolites quantifiable using our pulse sequence, namely, tNAA and choline. We 

also examined GABA to demonstrate that this sequence is not suitable for reliably 

detecting GABA. Because we used creatine as the reference for all metabolites, it 

was not possible to examine its reliability. The reliability quantification and 

assessment of systematic change for tNAA, choline, and GABA was the same as for 

the analysis of glutamate, glutamine and glutathione. 

We additionally assessed whether the number of days between each scanning 

day affected absolute change in any of our glutamatergic metabolites using 

Spearman’s rho correlations due to the non-normal distribution. Finally, we also 

performed secondary exploratory analyses to examine previous reports of 

associations between our metabolites of interest and both gender and age. Higher 

glutamate levels (from a dorsolateral prefrontal cortex voxel) have been reported in 

men (O'Gorman et al., 2011), and a negative correlation between age and glutamate 

(hippocampal and anterior cingulate cortex; ACC) has also been found (Schubert et 

al., 2004). We expected our enhanced sequence to provide excellent spectral 

resolution to examine the relative quantity of glutamate and glutamine and to 

confirm previously reported associations. Although no association between 1H-MRS-

measured glutathione and age has been reported, we predicted that such a 

relationship would exist because intracellular responses to redox intermediaries are 

known to be less efficacious with age (Erden-Inal et al., 2002). We also assessed 

possible gender effects related to 1H-MRS-measured glutathione. These associations 

were assessed with linear mixed models with either gender or age entered as a fixed 

main effect and the dependent variable entered as glutamate, glutamine, or 

glutathione, averaged across scan number and day. Pearson product-moment 

correlations were used to assess the strength and direction of significant correlations. 

All statistical tests were two-tailed, with a significance threshold of P < 0.05. 
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3.4 Results 

Some participants were missing at least one 1H-MRS spectrum for the following 

reasons: withdrawal from the study before the second scanning day (n = 6 spectra); 

poor data quality (unsuppressed water linewidth > 16 Hz; n = 14 spectra); inability to 

acquire spectra due to scanner hardware, software or participant problems (n = 4 

spectra); or our software’s inability to accurately fit the data (χ2 > 12; n = 2 spectra). 

Thirteen participants had sufficient data quality for all four measurements. In total, 

there were 22 spectra for Day 1/Scan 1, 19 for Day 1/Scan 2, 20 for Day 2/Scan 1 

and 17 for Day 2/Scan 2. The average water linewidth for all included spectra was 

12.14 Hz (SD = 1.48), indicating high spectral resolution; a typical spectrum from 

one subject (Figure 3.1B) and the corresponding model fit (Figure 3.1C) is shown. 

Mean metabolite values (ratio to creatine) are presented in Table 3.1, and CRLB 

values are presented in Table 3.2. 

 

 Table 3.1. Average raw metabolite means (standard deviations), relative to creatine, 
from each day and scan number.  

Abbreviations: Glu, glutamate; Gln, glutamine; GSH, glutathione; GABA, γ-
aminobutyric acid; tNAA, total N-acetyl-aspartate; Cho, choline Cre, creatine. 
 

 
 
 
 
 
 
 
 
 
 

Metabolite Day 1/Scan 1  Day 1/Scan 2 Day 2/Scan 1 Day 2/Scan 2 
Glu/Cre 1.37 (0.13) 1.33 (0.13) 1.38 (0.13) 1.38 (0.14) 
Gln/Cre 0.30 (0.06) 0.29 (0.05) 0.30 (0.06) 0.29 (0.05) 
GSH/Cre 0.25 (0.03) 0.24 (0.03) 0.25 (0.03) 0.25 (0.03) 
GABA/Cre 0.20 (0.06) 0.19 (0.05) 0.20 (0.05) 0.18 (0.03) 
tNAA/Cre 1.62 (0.12) 1.62 (0.11) 1.61 (0.14) 1.61 (0.14) 
Cho/Cre 0.30 (0.04) 0.30 (0.04) 0.30 (0.03) 0.29 (0.03) 
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Table 3.2. Average metabolite percentage CRLB (standard deviations) for each 
metabolite. 
Metabolite Day 1/Scan 1 Day 1/Scan 2 Day 2/Scan 1 Day 2/Scan 2 
Glu 1.58 (0.40) 1.54 (0.27) 1.47 (0.38) 1.35 (0.20) 
Gln 6.76 (2.20) 6.86 (1.78) 6.16 (1.74) 5.90 (0.96) 
GSH 6.14 (1.20) 6.13 (1.38) 5.83 (2.25) 5.35 (0.82) 
GABA 6.69 (2.93) 6.39 (1.57) 5.99 (1.95) 5.89 (1.10) 
NAA 0.76 (0.32) 0.69 (0.18) 0.71 (0.27) 0.64 (0.18) 
NAAG 6.03 (3.42) 5.73 (3.93) 6.07 (4.54) 4.33 (1.24) 
Cre 0.76 (0.23) 0.76 (0.18) 0.72 (0.23) 0.66 (0.18) 
Cho 0.92 (0.29) 0.91 (0.22) 0.85 (0.30) 0.79 (0.19) 

Abbreviations: CRLB, Cramér-Rao Lower Bound; Glu, glutamate; Gln, glutamine; 
GSH, glutathione; GABA, γ-aminobutyric acid; NAA, N-acetyl-aspartate; NAAG, N-
acetylaspartylglutamate; Cre, Creatine; Cho, choline. 
 

No main effects were observed for Day, Scan, or their interaction on levels of 

glutamate (F(1,52) = 0.29, P = 0.59; F(1,51) = 1.06, P = 0.31; F(1,50) = 0.11, P = 0.74), 

glutamine (F(1,56) = 0.36, P = 0.55; F(1,53) = 1.26, P = 0.28; F(1,52) = 0.03, P = 0.86), 

glutathione (F(1,56) = 0.08, P = 0.78; F(1,53) = 0.07, P = 0.79; F(1,51) = 0.15, P = 0.70), 

GABA (F(1,61) = 0.55, P = 0.46; F(1,56) = 1.68, P = 0.20; F(1,54) = 0.10, P = 0.75), or 

tNAA (F(1,53) = 0.61, P = 0.44; F(1,52) = 0.02, P = 0.97; F(1,52) = 0.44, P = 0.51). Scan 

number significantly affected choline levels (F(1,51) = 5.09, P = 0.03), but scanning 

day did not, nor was there any effect from their interaction (F(1,51) = 0.74, P = 0.39; 

F(1,51) = 2.95, P = 0.09, respectively). The significant main effect of Scan number 

found for choline reflected lower levels for Scan 2 than Scan 1. 

Time between the two scanning days did not significantly affect metabolite 

levels for glutamate (rs(19) = 0.26, P = 0.28), glutamine (rs (19) = 0.28, P = 0.25), or 

glutathione (rs (19) = 0.31, P = 0.20).
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Figure 3.2. Bland–Altman and scatter plots depicting the within- and between-sessions reliability for glutamate (A, B), glutamine (C, D), and 
glutathione (E, F). Dashed lines indicate the agreement intervals, or 1.96 standard deviations greater than and less than the correspondingly 
coloured mean. Means are depicted by non-dashed lines for each respective condition in the Bland–Altman plots (left; Day or Scan). Coloured 
lines in the scatter plots indicate the lines of best fit for each respective day or scan number. All metabolites are referenced to creatine.
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As anticipated, ICC values for the within-session measures were higher than 

for the between-session measures for all metabolites (except glutathione, which was 

on average comparable both between- and within-sessions; Table 3.3). Bland-

Altman and scatter plots depicting the four relationships (within scanning days 1 and 

2 and between scan numbers 1 and 2) for each of our metabolites of interest are 

presented in Figure 3.2A-F; Bland-Altman plots (Bland and Altman, 1986) may 

more easily depict systematic biases than scatter plots via the deviation from zero of 

the Y-axis mean difference lines (solid coloured lines). The corresponding CVs are 

also presented in Table 3.3. The reliability results obtained with our modified 

PRESS sequence may be summarized as follows. 1) On average, there was excellent 

within- (Figure 3.2A) and between-session (Figure 3.2B) reliability for glutamate. 

2) Within-session reliability for glutamine was excellent (Figure 3.2C), but between-

session reliability was only fair (Figure 3.2D). 3) Reliability for glutathione was on 

average fair within- and good between-sessions (Figure 3.2E-F). 4) As expected, the 

reliability of GABA was poor (Table 3.3). 5) Reliability for tNAA and choline were 

excellent both within- and between-sessions (Figure 3.3A-D). As choline was not a 

metabolite of interest per se, the more stringent absolute agreement ICC option was 

selected here despite the significant effect of scan number. CVs values were similar 

to ICCs with excellent reliability demonstrated using this statistic for glutamate, 

NAA and choline and fair-to-good reliability for glutamine and glutathione, both 

within- and between-session measurements (Table 3.3). 

 
Table 3.3. Intraclass correlation coefficient and coefficient of variation (CV, %) 
values between- and within-scanning sessions. 

Metabolites Within Day 1 
(Scan 1 vs. 
Scan 2; n = 18) 

Within Day 2 
(Scan 1 vs. 
Scan 2; n = 17) 

Between-
Session (Scan 
1; n = 18) 

Between-
Session (Scan 
2; n = 14) 

 ICC CV ICC CV ICC CV ICC CV 
Glu/Cre 0.88 6.00 0.94 4.77 0.86 6.48 0.68 7.95 
Gln/Cre 0.87 12.44 0.84 13.40 0.63 15.53 0.62 9.38 
GSH/Cre 0.49 14.95 0.88 8.54 0.65 11.45 0.76 8.25 
GABA/Cre -0.17 36.89 0.37 29.19 -0.26 30.92 0.21 15.43 
tNAA/Cre 0.94 3.38 0.93 4.79 0.88 4.60 0.90 2.09 
Cho/Cre 0.94 5.77 0.97 2.82 0.93 4.75 0.91 3.39 
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Abbreviations: ICC, intraclass correlation coefficient; CV, coefficient of variation; 
Glu, glutamate; Cre, creatine; Gln, glutamine; GSH, glutathione; GABA, γ-
aminobutyric acid; tNAA, total N-acetyl-aspartate; Cho, choline.
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Figure 3.3. Bland–Altman and scatter plots depicting the within- and between-sessions reliability for total tNAA (A, B), and choline (C, D). 
Dashed lines indicate the agreement intervals, or 1.96 standard deviations greater than and less than the correspondingly coloured mean. Means 
are depicted by non-dashed lines for each respective condition (left; Day or Scan). All metabolites are referenced to creatine. 
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Finally, in our age- and gender-related analyses, we found a significant main 

effect of age on glutathione (F(15, 7) = 3.47, P = 0.049), reflecting a negative 

correlation using the average across all scans (r(24) = -0.37), but no relationship 

between age and glutamate (F(15, 8) = 1.58, P = 0.27) or glutamine levels (F(15, 8) = 

0.62, P = 0.80). In contrast to previous reports (O'Gorman et al., 2011), there was no 

main effect of gender on glutamate (F(1,22) = 0.29, P = 0.59). However, we found a 

significant effect of gender on glutamine (F(1,23) = 8.55, P = 0.008) and glutathione 

(F(1,21) = 4.32, P = 0.050); females had higher levels of glutathione, but lower levels 

of glutamine, than males.  
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3.5 Discussion 

The present study used an adapted 1H-MRS PRESS sequence (An et al., 2015) in a 

group of healthy volunteers and found that measures of medial pgACC glutamate, 

glutamine, and glutathione showed on average good-to-excellent within-session 

reliability and fair-to-excellent between-session reliability. The precise measurement 

of neurochemistry is vital to improving our understanding of the pathophysiology 

and treatment of depression. Given that 1H-MRS is the only non-invasive technique 

capable of measuring glutamatergic metabolites, it is important that its 

reproducibility be characterised. 

Glutamate in particular, on average, showed excellent within- and between-

session reproducibility, with high stability as evidenced by the low CRLB values. 

Corroborating the original report of this sequence (An et al., 2015), the high signal-

to-noise ratio (SNR) for glutamate detection evident in our data likely arose from 

both the excellent separation afforded by the high-field MRI and the TE-optimized 

pulse sequence. The high reliability of glutamate measurements in healthy volunteers 

is promising with regard to the methodological approach presented here, and 

particularly important given the recent surge in interest in developing and evaluating 

glutamate-modulating pharmacological compounds for psychiatric and neurological 

conditions (Kalia et al., 2008, Zarate et al., 2010).  

For glutamine, within-session reproducibility was excellent, but between-

session reproducibility was only fair. Glutamine concentrations in the brain are much 

lower than those of glutamate (~40%, (Govindaraju et al., 2000)), thus the SNR is 

poorer and the metabolite harder to resolve accurately; these factors make 

quantification errors more likely than with glutamate. Nevertheless, our 

methodological approach may still be robust enough to permit pharmacological 

investigation of glutamine-modulating agents; measurement of 1H-MRS glutamine 

provides an important and distinct biological signal to glutamate. In a cyclical 

fashion, glutamate is enzymatically converted into glutamine by glutamine 

synthetase in astrocytes, where it is then transported back for subsequent 

reconversion to glutamate and packed into synaptic vesicles. Thus, 1H-MRS 

measurement of glutamine may provide an index of astrocytic functioning relating to 

this particular cycle; the ratio of glutamine-to-glutamate may be particularly salient. 
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Notably, alterations in glutamine (Maddock and Buonocore, 2012) and astrocyte 

function (Niciu et al., 2014b) have been associated with a number of psychiatric 

conditions.  

On average, pgACC glutathione levels showed fair reliability for within- and 

good for between-session measurements. Few studies have quantified neural 

glutathione with 1H-MRS, as it is typically not resolvable at MRI scanner field 

strengths of 3T or lower; however it is readily detectable at 7T using sequences such 

as ours. Moreover, it remains an intriguing metabolite to explore clinically due to its 

functionality. Glutathione is the brain’s primary antioxidant and is involved in 

inflammatory responses (Shungu et al., 2012); indeed, aberrant 1H-MRS glutathione 

concentrations have been found in several clinical conditions. For instance, Shungu 

and colleagues (2012) found that depressed patients had significantly lower levels of 

occipital glutathione than healthy volunteers. Reductions in glutathione have also 

been observed in amyotrophic lateral sclerosis (Weiduschat et al., 2014) and chronic 

fatigue syndrome (Shungu et al., 2012), suggesting that 1H-MRS glutathione levels 

may be an index of oxidative stress, which commonly occurs in psychiatric and 

neurological conditions. We also noted a decrease in glutathione with age, which is 

particularly interesting because ageing is associated with impaired immunity. 

Moreover, given the association between the glutathione redox system and age 

(Erden-Inal et al., 2002), it appears that 1H-MRS-measured glutathione could be a 

sensitive marker of both cerebral ageing and immune function. 

Our analyses suggest that tNAA and choline level measurements were also 

highly reliable, both within and between-sessions, using the sequence evaluated here. 

Given that these peaks are prominent within the standard 1H-MRS spectrum, and are 

easily resolved at lower MRI field strengths, their high reliability here is reassuring 

and suggests that the reproducibility metrics for glutamate, glutamine and 

glutathione are appropriate. In contrast, the main effect of scan number on choline 

levels was surprising; lower levels were observed for the second 1H-MRS acquisition 

on each day. Because choline is involved in cellular membrane turnover (Maddock 

and Buonocore, 2012), this decrease may reflect decreased functional activity in this 

region. 

At least three studies have examined within- or between-session reliability of 
1H-MRS at 7T in healthy volunteers. Wijtenburg and colleagues (2013) explored the 
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between-session reliability of anterior cingulate cortex and DLPFC metabolites in a 

small sample (N = 4) using two distinct pulse sequences: STEAM and MEGA-

PRESS-IVS. Both sequences demonstrated good measurement reliability, 

particularly for GABA. Stephenson and colleagues (2011) assessed the between-

session reproducibility of ACC metabolites and within- and between-session 

reliability of insula metabolites using STEAM, in 12 healthy males, and reported 

good reliability for both regions. Finally, Cai and colleagues (2012) calculated the 

between-session (both same day and two-weeks apart) reproducibility of their 

sequence in male volunteers at 7T as an adjunct to a pharmacological investigation. 

They found that mean levels of occipital metabolites, collected separately using 

MEGA-PRESS and PRESS sequences, were similar (i.e. not significantly different) 

between scanning sessions, while drug administration significantly increased GABA 

levels.  

The CV values found here using our sequence are comparable, for both the 

between and within session measurements, to these first two investigations 

(Stephenson et al., 2011, Wijtenburg et al., 2013), with much less than 10% variation 

for glutamate, NAA and choline and on average, less than 15% for glutamine; Cai 

and colleagues do not report any reliability statistics. However, none of these three 

aforementioned reliability studies assessed the reproducibility of their metabolite 

quantification using typical reliability statistics, such as ICC, making precise 

comparisons between studies somewhat difficult. Moreover, none of the 

aforementioned studies reported metabolite values for glutathione, suggesting that 

the sequence used here is specifically able to estimate this important signal. 

Furthermore, the CRLBs observed here in our measurements and analyses are, on 

average, lower for all metabolites than for those reported using STEAM (Wijtenburg 

et al., 2013), suggesting that our sequence may offer enhanced sensitivity to detect 

most metabolites at 7T. 

Although the data presented here suggest that our methodological approach 

provides fair-to-excellent reliability for detecting glutamatergic metabolites and 

excellent spectral resolution in general, several limitations and asides should be 

acknowledged. First, some loss of data quality may have occurred due to subject 

movement, partially arising from the long scan duration. Indeed, poor data (linewidth 

> 16 Hz) for a number of excluded spectra were likely due to subject movement; no 
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methods exist to measure intra- and inter-1H-MRS scan movement. However, our 

long scan time also reflects the realistic length of time required for intra-scanner drug 

administration studies. Second, the results presented here are specific to the modified 

pulse sequence and scanner strength used; it remains unknown whether different 

field strengths using our sequence would yield similar results. It is also unknown if 

another scanner of the same strength and brand using the same sequence would yield 

highly comparable results, as significant variation likely exists across MRI scanners 

and the precise hardware factors that influence 1H-MRS measurement remain 

undetermined. Third, although 26 individuals participated in the study, our final 

dataset included many participants missing at least one data point. Future studies 

would benefit from a larger sample size and more complete scan set.  

Several other factors should also be mentioned. First, our metabolites were 

referenced to creatine, which should fully afford tissue relative concentrations 

without the need for tissue correction; however, this remains to be tested empirically 

and appropriate concentration referencing remains a controversial topic. Indeed, 

Wijtenburg and colleagues (2013) found a 12% variation of creatine between two 

scanning sessions, suggesting that creatine, or at least the measurement of this 

metabolite, may not be an appropriately reliable reference. Furthermore, referencing 

to creatine may not be applicable in comparisons between healthy volunteer and 

patient groups where creatine is potentially altered, for example in tumours; 

however, Maddock and Buonocore (2012) note that consistent evidence for abnormal 

creatine levels in major psychiatric illnesses such as MDD or schizophrenia has not 

been found. Second, the gender effects noted for glutamine and glutathione are hard 

to explain. Some authors have suggested that gender differences in glutamatergic 

metabolites may result from differing neuroactive steroids (e.g. oestrogen, 

progesterone, and testosterone (O'Gorman et al., 2011)). If these gender effects are 

replicated in a larger sample, then studies should incorporate strict between-group 

gender matching when appropriate. Third, several of our findings may actually be 

type 1 (false positive) errors, including the significant effect of scan timing on 

choline, the trend for glutamate, the effects of age and gender on glutathione, and the 

effects of gender on glutamine. Specifically, because these were exploratory analyses 

and numerous control tests were also completed, Bonferroni correction for multiple 

comparisons was not performed. Additionally, due to the low number of subjects and 
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the lack of wide and systematic variation in age, these results remain tentative and 

require careful independent replication.  

In conclusion, we used an adapted echo time optimised PRESS pulse sequence 

at 7T to measure glutamate, glutamine and glutathione signals in the healthy human 

brain, and found that these measurements were on average reliable both within- and 

between-sessions. Taken together, our results suggest that this novel 7T 1H-MRS 

sequence is a useful and reliable tool for measuring brain glutamate, glutamine and 

glutathione signals. In sum, this novel 7T 1H-MRS sequence is well placed to assess 

both glutamatergic differences between depressed patients and controls and 

antidepressant treatment effects.  
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4 Anhedonia, Reward Processing and Medial Prefrontal 

Glutamate in Major Depression: A 7T 1H-MRS and NMDA 

Receptor Antagonist Treatment Investigation in Medication 

Free, Treatment-Resistant, Depressed Patients 

4.1 Abstract 

Anhedonia, the loss of pleasure or interest in enjoyable activities, is a prevalent and 

debilitating symptom in depression. Yet, little is known about the underlying 

neurobiology of anhedonia in depressed patients and there are no approved 

pharmacological treatments specifically for this symptom. Recent evidence suggests 

that ketamine, an N-methyl-D-Aspartate receptor antagonist, may have some efficacy 

in improving anhedonic symptomatology in patients diagnosed with major 

depressive or bipolar disorders. However, the precise clinical improvement in 

anhedonia caused by ketamine and its neuronal mechanisms of action in alleviating 

this symptom remain undetermined. To better understand the specific components of 

anhedonia improved by ketamine and the corresponding underlying neurobiological 

mechanisms, we administered anhedonia scales, reward-processing tasks and 7T 1H-

MRS scans, to healthy volunteers and medication-free patients currently in a major 

depressive episode. Scales, tasks and scans were all acquired at baseline and 24-

hours after intravenous infusions of a sub-anaesthetic dose of ketamine and placebo, 

with two interim weeks, in a randomized, placebo-controlled, crossover study. We 

replicate previous findings of a ketamine-induced improvement in anhedonia levels. 

However, no changes in reward task performance or glutamate levels were found 

post-ketamine (N = 15 depressed patients) and changes in psychometric scales were 

not related to changes in behaviour or glutamate levels. Nonetheless, there was an 

association between baseline glutamine levels and the antidepressant and anti-

anhedonic effects of ketamine. Moreover, a trend towards a reduction in glutamine 

levels post-ketamine was found (N = 12 depressed patients); however, post-infusion 

glutamine level alterations were not related to anhedonia changes. Further research 

exploring the mechanisms by which ketamine improves anhedonia is required. 
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4.2 Introduction 

Anhedonia, the loss of interest or enjoyment in pleasurable activities, is one of two 

cardinal symptoms needed to diagnose a major depressive episode. The presence of 

anhedonia in depressed patients predicts both suicidal ideation (Winer et al., 2014) 

and proximal suicide completion within one year (Fawcett et al., 1990). Despite the 

apparent importance of anhedonia, there are currently no approved pharmacological 

interventions for this specific symptom. Highlighting the need for an anhedonia 

specific treatment, anhedonic depressed patients are less likely to respond to standard 

medications (Uher et al., 2012) and some antidepressants may even cause symptoms 

of anhedonia, such as emotional blunting (Opbroek et al., 2002, Price et al., 2009a). 

Recent evidence tentatively suggests that intravenous sub-anaesthetic ketamine may, 

in addition to rapidly improving depressive symptoms generally (Berman et al., 

2000, Diazgranados et al., 2010a, Dutta et al., 2015, Zarate et al., 2006), be effective 

at quickly alleviating anhedonia in treatment refractory patients diagnosed with 

major depressive or bipolar disorders (DeWilde et al., 2015, Lally et al., 2014b, 

Lally et al., 2015b). However, precisely how ketamine improves levels of anhedonia 

and what specific components of the symptom are remedied, remains unknown. 

At the clinical level, anhedonia is a complex multifaceted symptom 

comprising many factors (Treadway and Zald, 2011). For example, the diagnostic 

and statistical manual (DSM-V) specifies that there must be either diminished 

pleasure (i.e. consumption) or interest (i.e. anticipation) in enjoyable activities to 

meet criterion for this symptom (American Psychiatric and American Psychiatric 

Association, 2013). Importantly, these two psychological components, interest and 

pleasure, have distinct neurobiological bases (Der-Avakian and Markou, 2012) 

suggesting that conflating them for diagnostic purposes may hinder the identification 

of the neural mechanisms driving this symptom, as well as efforts to identify 

effective behavioural and pharmacological treatments (Treadway and Zald, 2011). 

Moreover, even the attenuated interest component of the clinical definition could 

reflect numerous cognitive processes, such as amotivation, impaired learning or 

valuation, pessimistic expectation, or an inability to fully anticipate a rewarding 

stimulus, which may also have distinct neural correlates. Compounding the issue of a 
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lack of clinical specificity, researchers have proposed a “decisional anhedonia” in 

depression, in which a deficit in value-based choice drives anhedonia (Treadway and 

Zald, 2011); this decisional anhedonia may be driven by broad deficiencies in reward 

processing, e.g. aberrant reward and punishment valuation systems, in depressed 

patients (Eshel and Roiser, 2010, Robinson et al., 2012). However, the precise 

underlying deficits in reward processing associated with depression, and anhedonia 

in particular, are unclear as the majority of previous studies investigating these 

processes are confounded by patient medication status (Eshel and Roiser, 2010). The 

co-administration of anhedonia focussed psychometric scales and reward processing 

cognitive tasks in medication free patients before and after treatments could permit 

the exploration of what specific anhedonic processes are suitable targets for 

improvement in depressed patients and what treatments better what symptoms.  

Early evidence suggests that a single infusion of sub-anaesthetic ketamine 

may improve levels of anticipatory anhedonia, as measured by the Snaith Hamilton 

Pleasure Scale (SHAPS; Snaith et al. (1995)), in depressed patients (Lally et al., 

2014b, Lally et al., 2015b). Lally and colleagues (2014b) found that intravenous sub-

anaesthetic ketamine improved levels of anticipatory anhedonia even after 

controlling for the overall improvement in general depressive symptoms in BD 

patients, suggesting specific anti-anhedonic properties for this treatment. 

Impressively, the specific anti-anhedonic effect that was still apparent two-weeks 

following the infusion. Non-anticipatory anhedonic components have yet to be 

examined in depressed patients following ketamine; however, preclinical evidence in 

rodents suggests other anhedonia components may be implicated. Autry and 

colleagues (2011) found that ketamine improved chronic stress-induced decreases in 

sucrose intake (a rodent index of consummatory anhedonia) in mice; this finding has 

been replicated in rats (Garcia et al., 2009, Li et al., 2011, Wang et al., 2011) and 

mice (Ma et al., 2013, Walker et al., 2013) and using different doses of ketamine and 

routes of administration. However, Donahue et al. (2014) found that mice that were 

exposed to chronic social defeat stress showed attenuated social avoidance but no 

decrease in heightened lateral hypothalamic intracranial self-stimulation threshold 

(another rodent index of consummatory anhedonia) following ketamine. Taken 

together, these results suggest that ketamine may be effective for anticipatory, social 
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and some types of consummatory anhedonia. The question of how exactly ketamine 

may exert these anti-anhedonic changes and whether other components than 

anticipatory anhedonia are improved in depressed patients still remains unanswered. 

Ketamine is classified as a non-competitive NMDA receptor antagonist, 

implicating the glutamatergic system in its effects. Administration of a sub-

anaesthetic dose of ketamine is associated with acute increases in glutamate levels in 

the prefrontal cortex of rodents (Moghaddam et al., 1997) and in the medial anterior 

cingulate cortex of both healthy volunteers (Stone et al., 2012) and patients with 

depression (Milak et al., 2015), assessed using 1H-MRS acquired at 3T; however, see 

Taylor et al. (2012) for a contradictory 1H-MRS finding at 3T of no acute effect of 

ketamine on glutamate levels in healthy volunteers. It should be noted that 1H-MRS 

investigations at field strengths lower than 4T suffer from an inability to accurately 

quantify levels of both of glutamate and glutamine (Ramadan et al., 2013). To date, 

Rowland and colleagues (2005) have conducted the only human 1H-MRS 

investigation of the effects of ketamine at field strength > 3T. At 4T MRI, they found 

that acute administration of sub-anaesthetic ketamine caused increases in glutamine 

in the anterior cingulate cortex of healthy volunteers. Nevertheless, using 1H-MRS at 

3T, Salvadore et al. (2012) found that pre-treatment levels of a surrogate marker of 

glutamine (glutamate + glutamine (Glx) / glutamate) in the medial prefrontal cortex 

predicted the magnitude of the antidepressant response to ketamine in depressed 

patients. Glutamine may be a particularly important marker of astrocytic glutamate 

cycling as glutamate is processed, converted to glutamine and released by astrocytes 

(Ramadan et al., 2013). Interestingly, astrocytic blockade of glutamate uptake in the 

prefrontal cortex induced an anhedonia-like phenotype in rats (Bechtholt-Gompf et 

al., 2010, John et al., 2012). Finally, using 1H-MRS at 3T, Walter and colleagues 

(2009) found significantly lower levels of pregenual glutamine levels in depressed 

patients with anhedonia, but no statistical difference between those without, in 

comparison to healthy controls. Taken together, the evidence discussed above 

suggests that medial prefrontal cortex glutamate, and potentially glutamine, may 

contribute to depression and anhedonia and their treatment with ketamine. 
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To assess the neural basis of the anti-anhedonic effect of ketamine, we 

administered anhedonia-specific psychometric scales, reward-processing tasks and 

high field (7T) 1H-MRS scans to healthy volunteers and depressed patients currently 

in a major depressive episode. The majority of the patients were medication free and 

treatment refractory. Reward tasks were administered to probe distinct components 

of reward processing, including reward motivation and learning. 1H-MRS scans were 

conducted using a novel pulse sequence (See Chapter 3) shown to reliably 

distinguish and quantify levels of both glutamate and glutamine (An et al., 2015, 

Lally et al., 2015a). The scales, tasks and scans were acquired at baseline and 24-

hours following sub-anaesthetic intravenous infusions of ketamine and placebo in a 

double-blind, randomized, placebo-controlled, crossover, treatment investigation. 

We hypothesized that ketamine would cause a disinhibition of GABA 

interneurons and lead to an acute increase in prefrontal cortex glutamate levels; we 

believed that successful antidepressant treatment with ketamine would lead to an 

increase to healthy volunteer levels of glutamate. In particular, medial prefrontal 

cortex glutamatergic increases are thought to underlie post-ketamine improvements 

in anhedonia levels in depressed patients (Lally et al., 2014b, Lally et al., 2015b). 

We predicted pre-treatment differences between depressed patients and controls on 

anhedonia psychometric scales, reward tasks and medial prefrontal cortex 1H-MRS 

measured glutamatergic metabolite levels. We aimed to replicate and extend an 

association between baseline levels of a surrogate marker of glutamine, acquired at 

3T, and the antidepressant response to ketamine in MDD patients (Salvadore et al., 

2012); the improved resolution permitted by 7T MRI and our adapted pulse sequence 

should permit a more accurate assessment of the relationship between baseline 

glutamatergic metabolite levels and the antidepressant response to ketamine. We 

predicted that ketamine would serve as a motivational and cognitive enhancer and 

improve performance on our reward tasks and levels of anticipatory anhedonia. We 

predicted that these hedonic improvements would co-occur with increases in 

glutamate levels post-ketamine. Finally, we predicted that the alterations in our 

dependent variables (psychometric scales, reward tasks and medial prefrontal cortex 
1H-MRS measured glutamate or glutamine levels) post-ketamine would be 

interrelated, with relative increases in medial prefrontal cortex glutamate or 
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glutamine positively relating to the magnitude of improvements on tasks and scales. 

By improving anhedonia levels, potentially via a glutamatergic metabolite boost, we 

predicted that depressed patients would then respond more similarly to healthy 

volunteers on the anhedonia questionnaires and reward tasks. 
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4.3 Methods 

4.3.1 Participants 

Thirty-seven healthy participants (16 women) and 32 currently depressed patients 

(16 women) diagnosed with either major depressive disorder (MDD; N = 26, 12 

women) without psychotic features or BD (N = 6, two men) were enrolled in this 

study, which was conducted at the National Institutes of Health (NIH), Bethesda, 

Maryland, USA. BD patients were diagnosed with BD I (N = 1 woman) or BD II (N 

= 5, two men). Healthy participants and patients were evaluated and diagnosed, 

respectively, via the structured clinical interview for DSM-IV Axis I disorders and 

an unstructured interview with a board certified psychiatrist. All patients were 

currently in a major depressive episode lasting at least four-weeks. At the time of 

testing, all participants were medication-free for at least 10 days with the exception 

of three of the BD patients (91%). Consistent with our previous protocols 

(Diazgranados et al., 2010a, Zarate et al., 2012), these three BD patients were 

administered a mood stabilizer (two patients received lithium and one valproate, 

only) at treatment levels (serum lithium, 0.6-1.2 mEq−1; or valproic acid, 50-125 

μg ml−1), which was ineffective at alleviating the depressive episode. All participants 

were physically healthy and were free of any serious medical conditions and 

comorbid substance abuse (within the preceding three months) and lifetime 

dependence (excepting caffeine and nicotine); the latter two were lifetime 

exclusionary criteria for healthy volunteers. Pregnancy and nursing were not 

permitted and female subjects in the ketamine study (see below) were required to use 

approved methods of birth control. Comorbid axis I anxiety disorders were permitted 

for patients if they were not the primary diagnosis within the preceding 12 months. 

Healthy volunteers were excluded if any first-degree relatives had received a 

diagnosis of a major psychiatric disorder (N = 1 man). Participants were initially 

enrolled under a screening protocol with a view to undertaking further research at 

NIH. However, the primary protocol concerned in this instance evaluated the effect 

of intravenous anaesthetic ketamine as a treatment for depression, to which a 

subgroup of the total study patients and healthy participants enrolled. Studies were 
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approved by the combined neuroscience institutional review board of NIH and all 

subjects provided written informed consent before study entry. 

4.3.2 Study Design 

Medication free participants not enrolled or planning to enrol in ketamine studies 

were assessed at baseline only during a post-screening assessment. This assessment 

included the administration of psychometric scales, computerised reward tasks and, 

where possible, 7T MRI scans to acquire a 1H-MRS spectrum; this non-ketamine 

dataset was used for the case-control comparison analyses (see below). Patients and 

healthy volunteers typically then proceeded to other non-ketamine studies. 

4.3.2.1 Ketamine Study Design 

Following the initial screening, a subgroup of depressed patients (N = 23, 5 BD) and 

healthy participants (N = 11) were admitted to an inpatient psychiatric unit at the 

NIH to participate in a ketamine mechanism of antidepressant action investigation. 

Details of participant disposition across measures are presented in Table 4.1. The 

study utilised a randomized, double-blind, placebo-controlled, crossover design 

study (Figure 4.1). Following a medication taper and a two week drug-free period 

(5-weeks for those taking fluoxetine) for patients (other than the three BD patient 

exceptions noted above who were maintained on a mood stabilizer), participants 

were administered one intravenous infusion of a sub-anaesthetic dose of ketamine 

hydrochloride (0.5 mg/kg) and one infusion of placebo (0.9% saline solution), with 

two interim weeks between infusions, which were counterbalanced across 

participants. Infusions were administered by an advanced cardiac life support 

licensed practitioner over 40 minutes using a Baxter infusion pump; identical 

injections were used to ensure blinding. A Montgomery-Åsberg Depression Rating 

Scale (MADRS; (Montgomery and Åsberg, 1979) score ≥ 20 at the time of screening 

and also prior to the first infusion was an inclusion criteria for depressed patients. 

The majority (22/23) of patients enrolled in the ketamine study were refractory to 

pharmacological treatment; treatment resistance was defined as failure of two or 

more adequate antidepressant trials, as assessed by the Antidepressant Treatment 

History Form (Sackeim, 2001). Aside from monotherapy with a mood stabilizer for 
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three of the BD patients, no psychotherapy or other treatment was permitted during 

the entire trial period. A number of measures (7T MRI scans, computerized decision-

making tasks, and psychometric scales) were acquired repeatedly throughout this 

month-long period (Figure 4.1).  

Table 4.1. Disposition of participants (N) across measures. 

  Healthy Volunteers  Patients  

Baseline  MDD BD 
Psychometrics 37 26 6 
EEfRT 34 21 5 
Scene Choose 35 19 5 
1H-MRS 27 15 2 
Ketamine    
Psychometrics NA 18 4 
EEfRT NA 10 5 
Scene Choose NA 10 5 
1H-MRS NA 10 2 

 

Figure 4.1. Ketamine Study Design. Approximately 3 days prior to the first infusion, 
all participants in the ketamine trial were scanned in a 7T MRI scanner where a 1H-
MRS spectrum was collected using a sequence optimized to detect glutamate and 
glutamine (An et al., 2015). Additionally, reward processing tasks that assessed, 
amongst other variables, motivation and reward learning, were administered along 
with anhedonia specific psychometric scales on the same day. At day 0, participants 
received their first infusion. Participants received one ketamine and one placebo 
infusion in a randomized, counterbalanced fashion (days 0 and 14) and were scanned 
and tested on the same reward tasks as baseline the subsequent day (days 1 and 15, 
respectively). 
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4.3.3 Psychometric Scales 

A number of psychometric scales (see Diazgranados et al. (2010a) for a list of other 

psychometric outcome measures) were administered at baseline, one-hour before the 

study began, and then again at 40, 80, 120 and 230 minutes and 1, 2, 3 7, 10 and 14 

days follow the infusion commencement; at the time of writing, data from the scales 

of interest were only available up to day 3 post-infusion, however. Our primary 

scales of interest for this study were the MADRS, the Snaith-Hamilton Pleasure 

Scale (SHAPS; Snaith et al. (1995)) and Temporal Experience of Pleasure Scale 

(TEPS; Gard et al. (2006)). While the MADRS assesses general depressive 

symptomatology, both the SHAPS and TEPS focus specifically on anhedonia, the 

primary topic of interest in this chapter. The SHAPS measures anticipatory 

anhedonia via 14 hypothetical questions centred on socializing, hobbies and sensory 

stimuli (e.g. “during the past 24-hours, I would have been able to enjoy my favourite 

meal”). The scoring for the SHAPS ranges from 14-56 with higher scores indicating 

greater levels of anhedonia. The TEPS attempts to distinguish between two of the 

facets of anhedonia, namely anticipatory and consummatory processes. Scoring on 

the TEPS ranges from 1-6 with lower scores indicating less enjoyment (i.e. more 

anhedonia). Importantly, the scales were administered on the same day (except the 

MADRS, which was administered on day 0, not day -3) as the other dependent 

variables (MRI scans and reward tasks). A 50% reduction in MADRS scoring was 

defined as response criterion. 

4.3.4 Reward Tasks 

Participants were administered a battery of up to five computerized cognitive tasks (4 

reward processing and one simple object recognition) in a randomized order. 

Participants who completed the infusion portion of the study completed the tasks 

again 24-hours after each infusion and in the same order as baseline. Details and data 

for two of the reward processing tasks only are presented below (data from the other 

tasks will be presented elsewhere). 

Participants were administered the effort expenditure for rewards task EEfRT 

(Treadway et al., 2009): the EEfRT is designed to assess levels of reward motivation 
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and probe aspects of decisional anhedonia. In brief, following a fixation cross 

(Figure 4.2A), participants were presented with two options, an easy or hard task 

(Figure 4.2B). The easy option involved making 21 repeated button (‘L’ for right 

and ‘S’ for left handers) taps with the index finger of the dominant hand within 7 

seconds. The hard task entailed making 100 button taps with the pinky of the non-

dominant hand within 21 seconds (Figure 4.2D). The easy task was always worth $1 

but the hard task varied from trial to trial in value between $1.21 and $4.21. 

Additionally, the probability of receiving a reward was randomly varied amongst 

three independent probability categories: low (12%), even (50%), and high (88%). 

The number of button taps was reflected by an onscreen white vertical bar, which 

filled with red from bottom to top with each correct button tap (Figure 4.2E-F). 

Following each trial completion, participants were informed of their success or 

failure and the monetary outcome gleaned (Figure 4.2G-H). Participants initially 

completed 4 trials as training where one easy and one hard trial were encouraged to 

be selected and then played the task for 20 minutes, completing as many trials as 

possible. The sequence of reward probabilities and hard task value was random 

during each administration. The hard task took twice as long as the easy task; 

participants were informed of this before training. Subjects were paid $10 for total 

task completion and could win a further $20 (six trials were randomly selected and 

summed and the monetary outcome from these trials was added to the $10 basic 

payment).  

Participants also completed an adapted reinforcement-learning task (Gold et 

al., 2012), named here as Scene Choose. The goal of this task was to explore 

participants’ ability to learn the relationship between stimuli and feedback. Briefly, 

participants were presented with four pairs of scenes (randomized to either 

mountains, beaches or forests, only), one pair at a time. Two pairs were associated 

with potential gain (Figure 4.2I-J) and two with loss (Figure 4.2K-L). The correct 

response was reinforced 90% of the time in one pair and 80% of the time in the other 

for both gain and loss avoidance stimuli. From the 8 stimuli it was possible to 

construct four categories: frequent winners (FW), frequent losers (FL), frequent loss 

avoiders (FLA) and infrequent winners (IW). Each of the four pairs was shown 40 

times during this training phase; the presentation of the stimuli was divided equally 

such that each pair was presented 10 times per quarter block. After training, a 64 trial 
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transfer test phase was presented where 24 novel pairings were shown twice 

alongside the original four pairings (each presented four times); no feedback was 

provided during the transfer phase. Stimuli were unique to each participant’s session, 

such that if a subject was presented with beach scenes at baseline, session 2 

comprised either mountains or forests with the final session stimuli coming from the 

remaining stimulus set. Subjects were again paid $10 for task completion and could 

win a further $20 via transfer phase performance; participants were paid a dollar for 

every optimal decision made above the chance criterion.  

Both tasks were programmed in Cogent 2000 (www.vislab.ucl.ac.uk/Cogent), 

and/or the Psychophysics Toolbox (Brainard, 1997), stimulus presentation toolboxes 

for MATLAB (version 7.1). 

 

 

Figure 4.2. Reward Processing Tasks. Beginning with a fixation cross (A), the 
experimental effort for reward task (EEfRT) required participants to choose between 
an easy and a hard task (B). The easy task was always worth $1 while the hard task 
varied randomly between $1.21 - $4.21. The probability of winning money on a 
given trials also varied independently between low (12%), medium (50%) and high 
(88%) and was shown on screen. For right hand dominant individuals, the hard task 
(D) required participants to tap the S key 100 times with the pinky of their non-
dominant hand; the easy task required these participants to press the L key 21 times 
in 7 seconds with the index of their dominant hand. Keys were reversed for left-hand 
dominant participants. Irrespective of the task chosen, the goal was to fill up a white 
(D-F) bar, which increased with red after each correct button tap. Once the time 
elapsed or the bar was full, participants received feedback on their performance (G) 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=01650270&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.vislab.ucl.ac.uk%252FCogent
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and whether they won money (H). The Scene Choose Task comprised the 
presentation of four pairs of scenes (either mountains, forests or beaches). The goal 
was to learn by trial and error which scenes were winners (I), not winners (J), neutral 
(K), and, losers (L). Two pairs were associated with winners and two with losses. For 
both win and lose associated stimuli, the probability of correct feedback was 
modulated such that one of the two pairs was 90% and the other 80%. Following a 
stimulus learning phase, participants were tested on novel combinations of stimuli to 
ascertain the extent of learning and valuation between stimulus categories. No 
feedback was provided during this test phase. 

 
4.3.5 1H-MRS 

Participants (N = 20 patients and 28 controls) were scanned at baseline, and, for 

those participating in the ketamine mechanism of action trial (N = 21, 7 HVs), again 

24-hours post-ketamine and post-placebo infusions. 1H-MRS scanning occurred in 

the same Siemens 7T MRI scanner and followed precisely the same hardware, 

software, acquisition, location and pre-processing procedures as described in chapter 

3 (see methods in 3.3). However, only one spectrum was acquired per session in this 

experiment. In brief, the same novel adapted point resolved spectroscopy sequence 

(PRESS; (An et al., 2015) was used to acquire a single spectrum from the medial 

pregenual anterior cingulate region, an area frequently found to have decreased 

glutamatergic metabolites in depressed (Horn et al., 2010, Luykx et al., 2012) and 

anhedonic (Walter et al., 2009) patients. Again, 16 Hz was set as the maximum line 

width criterion for all spectra included in our analyses. Data from Chapter 3 (first 

available spectrum for each participant only), the reliability investigation of a novel 
1H-MRS sequence in healthy volunteers (Lally et al., 2015a), were included here as 

part of our healthy control sample for case-control comparisons. Four healthy 

volunteers from the reliability study also subsequently participated in the ketamine 

mechanism of action study and their baseline metabolite values from the ketamine 

study only were included in the analyses here. Again, all metabolite values were 

referenced to creatine. 

Due to the preclinical (Moghaddam et al., 1997) and clinical evidence 

supporting a glutamatergic mechanism for ketamine (Milak et al., 2015, Stone et al., 

2012), our primary metabolite of interest was glutamate. Moreover, our sequence 

showed evidence of good reliability to detect glutamate levels in this region in the 

repeatability investigation (see Chapter 3) (Lally et al., 2015a). Due to the difficulty 
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in separating glutamate from glutamine at lower field strengths, we speculated that 

glutamine may also play a role in the effect of ketamine. While the between-session 

reliability of this metabolite was not as high as glutamate, we reasoned that an 

investigation of its role in the mechanisms of action of ketamine was warranted 

given its strong relationship with glutamate (Ramadan et al., 2013) and the 

aforementioned evidence positing a role for this metabolite in anhedonic depression 

(Walter et al., 2009) and mechanisms of action of ketamine in humans (Rowland et 

al., 2005, Salvadore et al., 2012). 

4.3.6 Statistical Analyses 

Due to the lack of healthy volunteers with post-infusion data (N = 5), these 

participants were not included in the analysis of the effects of drug or post-drug 

group comparisons.  

At baseline, we assessed psychometric scale differences between the two 

groups using independent samples t-tests and the non-parametric equivalent (Mann-

Whitney U test, denoted by a U) when assumptions were violated. Normality was 

assessed using the Shapiro-Wilk test. A single factor repeated-measures ANOVA 

was used to assess the between and within group differences in TEPS scale 

component (i.e. anticipatory vs. consummatory anhedonia) scores at baseline, with 

group entered as a between-subjects factor; follow up post-hoc tests were conducted 

to assess significant differences. To calculate the effects of drug (i.e ketamine vs. 

placebo) on general depression and anhedonia specific scale scores, linear mixed 

models, with compound symmetry covariance structure, were performed, with 

baseline score on the scale of interest entered as a covariate; scale scores acquired at 

40, 80, 120, 230 minutes and 1, 2 and 3 days post-infusion were all included in the 

model. Our main time point of interest post-infusion, however, was day 1, which has 

been shown in previous studies to be the time of the maximal antidepressant and 

anti-anhedonic effect of ketamine (Lally et al., 2014b, Zarate et al., 2006). Day 1 is 

also the time of the administration of both the reward tasks and the 7T 1H-MRS 

scans and therefore should be the time most sensitive to detecting related changes in 

biology and behavior. We performed uncorrected simple effects tests within the 

aforementioned linear mixed models, again including the baseline score as a 
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covariate, to examine the effect of drug at the 24-hour time point post-infusion on the 

MADRS, SHAPS and TEPS. In a supplementary analysis of the SHAPS, we 

attempted to replicate our previous finding whereby a main effect of drug was still 

present on the SHAPS when changes in MADRS score were entered as a covariate 

(Lally et al., 2014b). 

For the EEfRT case-control comparison, participants were excluded if they 

only made easy or only made hard task selections. We first conducted analyses to 

assess that variations in reward probability and magnitude elicited motivational 

effects on task performance. We performed a repeated-measures analysis of variance 

(ANOVA) with a three level factor, the percentage of hard task selection split by the 

reward probability (three levels: 12%, 50% and 88% probability) to test for an effect 

of reward probability on decisions. To compute the effect of hard task reward 

magnitude on the decision to choose the hard task (denoted as high cost/high reward; 

HC/HR), we ran a general linear model using a binary logistic regression in 

MATLAB using the glmfit command and extracted the beta values and then 

estimated if there was a significant difference from 0 across all participants using a 

one-sample t-test in SPSS. A value different from 0 indicates there was a 

relationship. To compute the effect of reward magnitude on hard task decision 

reaction time and the time to complete the hard task, we fit a general linear model 

regression between these measures across all eligible trials for each individual 

subject using the glmfit command in MATLAB and extracted a beta weight for each 

participant. Again, a one-sample t-test from 0 on all participants’ beta weights was 

used to test whether there was an association between magnitude of the hard task 

reward and the RT and the time to complete the trial.  

Next, we evaluated if the two groups (depressed patients and controls) were 

comparable in the amount of trials undertaken and completed using independent 

samples t- and Mann-Whitney U-tests, respectively. To test for the previously 

demonstrated group difference between depressed patients and healthy volunteers on 

the mean percentage hard trials selected (Treadway et al., 2012), we conducted a 

univariate general linear model (GLM) with group entered as a between-subjects 

factor. To test the effect of probability of reward on decisions across groups, we 

conducted a repeated-measures ANOVA with a three level factor (low [12%], mid 

[50%], high [88%]), and group entered as a between-subjects factor. Univariate 
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GLMs were used to test for between-group differences in the effect of reward 

magnitude on hard task decisions, RT and the time to complete the hard task. For the 

post-infusion analyses, we conducted similar control analyses to the case-control 

comparison assessment to validate adequate post-infusion task performance. A 

paired samples t- and a Wilcoxon signed ranks test were used to assess if similar 

numbers of trials were undertaken and completed, respectively, during the post-

infusion sessions. To test the effect of drug on decisions made, we performed a two 

by three repeated measures ANOVA, with drug (ketamine and placebo) and reward 

probability (12%, 50% and 88%) entered as factors. The effects of drug on the 

relationship between the reward magnitude and the decision, RT and time to 

complete the hard task were also assessed using a single two level factor (ketamine 

vs. placebo) repeated measures ANOVA. 

For the Scene Choose task case-control comparison, we conducted a two 

(Probability, 90% and 80%) by two (Valence, gain and loss avoidance) by four 

(Block, 1-4) repeated-measures ANOVA with group entered as a between-subjects 

factor to analyze the stimulus learning phase. To assess the transfer test phase, 

performance on comparisons between FW (90% and 80% gain) and FL (90% and 

80% loss), IW (10 and 20% gain), and FLA (90 and 80% loss avoidance) and FLA 

and IW were grouped, and a repeated-measures ANOVA (with 4 levels) and group 

as a between-subjects factor was performed (Gold et al., 2012). To test the effect of 

drug on the stimulus learning phase, we ran a two (Drug, post-placebo and post-

ketamine) by two (Probability) by two (Valence) by four (Block) repeated-measures 

ANOVA. To assess the effect of drug on the transfer test, we ran a two (drug) by 

four-level (as above) repeated-measures ANOVA. 

To assess baseline differences in levels of medial prefrontal glutamate and 

glutamine in depression, we performed a univariate general linear model (GLM) with 

metabolite as the dependent factor and group entered as a fixed factor. For 

completeness, we then performed univariate GLMs on all the other metabolites 

modeled in our spectrum (glutathione, GABA, tNAA, and choline; Lally et al. 

(2015a)). We additionally explored previously found associations between baseline 

glutamatergic variables and response to ketamine using spearman’s rho correlations 

due to violations in normality. Specifically, we assessed whether baseline glutamine 

and glutamate levels were predictive of the antidepressant response to ketamine. To 
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assess the effect of drug on levels of glutamate and glutamine, we performed a single 

factor repeated-measures ANOVA with post-infusion metabolite values entered in a 

single factor (drug); baseline metabolite value entered as a covariate. Finally, we 

examined whether changes in psychometric scales were related to changes in 

significant glutamatergic metabolites using spearman’s rho correlations due to the 

non-normality of the variables. 

If significant post-infusion changes were found on any of the three measures, 

these were then explored in the context of changes in the other measures to further 

understand the mechanisms of action. 

For all case-comparison analyses, significantly different between-group 

demographic variables (age and years of education) were mean corrected and entered 

as covariates. If the variables entered as covariates had a significant, or trended 

toward a main effect, it was retained in the model or otherwise dropped to allow for 

increased degrees of freedom; unless otherwise stated, results of covariates were not 

significant and dropped from the model to increase the available degrees of freedom. 

Order of drug administration was entered as a between-subjects factor for all post-

infusion analyses. Where applicable, if there was a significant, or trend level, drug by 

order interaction, order was retained in the model, or, otherwise, dropped to increase 

the degrees of freedom.  

All statistical analyses were two tailed, conducted in SPSS (Armonk, NY, 

USA; version 21) or MATLAB (MathWorks, Natick, MA, USA) and a P < 0.05 was 

considered statistically significant and P < 0.1 was considered a trend towards 

significance. Post-hoc corrections are uncorrected unless otherwise stated. Huynh-

Feldt correction was applied if the assumption of sphericity was violated during 

repeated-measures ANOVA.  
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4.4 Results 

4.4.1 Case-control comparison 

Demographic details are presented in Table 4.2. Of note, there were significant 

differences in both age (t(59) = 4.09, P < 0.001) and number of years of education 

(t(59) = -2.29, P < 0.001) between our groups, with patients being on average 11 years 

older and having two years less education than healthy volunteers. 

 

Table 4.2. Participant demographics and psychometric scale scores at baseline.  
  Healthy 

Volunteers (N = 
37) 

Patients (N = 30; 24 
MDD, 6 BD) 

Statistical 
Differences 

 Mean SD Mean SD T P 
Age 28.46 6.82 40.18 11.81 4.09 < 0.001 
Age of onset NA NA 17.53 7.29   
Baseline BDI 1.17 1.42 28.32 8.64 16.70 < 0.001 
Baseline 
MADRS 

1.48 2.34 31.46 3.90 35.31 < 0.001 

Baseline 
SHAPS 

18.38 3.97 36.74 5.30 15.60 < 0.001 

Baseline 
TEPS-A 

4.75 0.58 2.66 0.77 -12.22 < 0.001 

Baseline 
TEPS-C 

4.78 0.63 3.52 0.79 -6.93 < 0.001 

IQ 118.11 10.14 113.07 10.31 -1.35 0.19 
Length of 
current 
episode 
(months) 

NA NA 30.94 41.53   

Years of 
education 

18.42 1.98 16.14 2.57 -2.29  0.03 

 N % N % X
2  

Gender 16 42 16 50 0.68 0.47 
TRD NA NA 24 75   
BDI: Beck Depression Inventory; MADRS: Montgomery-Åsberg Depression Rating 
Scale; SHAPS: Snaith-Hamilton Pleasure Scale; TEPS-A: Temporal Experience of 
Pleasure Scale-Anticipation; TEPS-C: Temporal Experience of Pleasure Scale 
Consummatory; TRD: Treatment Resistant Depression; IQ: Intelligence Quotient. 

4.4.1.1 Psychometric Scales 

Within the depressed sample, strong positive correlations were found between total 

MADRS (BDI, r(30) = 0.74; SHAPS, r(30) = 0.59), BDI (SHAPS, r(30) = 0.57) and 

SHAPS scores. However, only the SHAPS was significantly related to the TEPS 
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(TEPS-A, r(28) = -0.69; TEPS-C, r(28) = -0.64), suggesting the importance of this 

scale in measuring unique aspects of depression, and specifically anhedonia, in our 

patient population. There was a main effect of TEPS subscale (F(1,54) = 31.88, P < 

0.001) and a group by TEPS subscale interaction (F(1,54) = 26.43, P < 0.001). Post-

hoc tests revealed that that levels of anticipatory anhedonia were greater than 

consummatory anhedonia in the depressed sample (t(27) = -7.25, P < 0.001) but not in 

the healthy controls (t(30) = -0.37, P = 0.71), suggesting the anticipatory component 

may be more problematic than the consummatory for depressed patients (Figure 

4.3A). 

 
Figure 4.3. Psychometrics and reward tasks at baseline. (A) Levels of anhedonia 
were higher (a lower score indicates lower pleasure) in patients (red) than healthy 
controls (blue) on the temporal experience of pleasure scale (TEPS). TEPS 
anticipatory anhedonia was significantly greater than consummatory in patients. (B) 
There was no between group performance differences on the fraction of high cost/ 
high reward (HC/HR) decisions on average or across probabilities (prob) during the 
EEfRT (C) Reaction time (RT) or time to complete the hard trials to increasing 
rewards. There was an interaction between feedback probability and performance on 
the Scene Choose task (D), which was related to the number of years patients had 
been ill (E). The transfer phase revealed that patients showed impairment in the 
representation of either frequent winners (FW) or frequent losers (FL; F) in the non-
feedback transfer test phase. 
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4.4.1.2 Reward Tasks 

EEfRT: one participant was excluded from each group for only having selected hard 

trials, all other participants mixed their choices. There was a main effect of reward 

probability (F(2,118) = 105.43, P < 0.001) and reward magnitude (t(58) = 7.99, P < 

0.001) on the decision to select the hard over the easy task, with higher probability of 

reward and greater hard task reward value eliciting more hard task choices; one 

participant was excluded from this analysis due to an inability of the model to fit the 

data. RT (the time taken to make the decision) to hard task choices (t(59) = 15.81, P < 

0.001) and the time to complete all button presses during hard tasks (t(59) = 94.06, P 

< 0.001) also scaled with reward magnitude, suggesting that the task provided a good 

index of participant motivation.  

Importantly, there was no group difference in the number of trials undertaken 

(t(58) = 0.22, P = 0.64; HVs M = 51.92, Depressed M = 50.85) or completed (U = 

465, Z = -0.09, P = 0.93; HVs M = 99.6%, Depressed M = 99.6%). Nevertheless, 

contrary to previous reports (Treadway et al., 2012), there were no group differences 

in the percentage of total hard trials selected (F(1,58) = 0.76, P = 0.39; Figure 4.3B), 

the association of reward magnitude on either hard task decision (F(1,57) = 0.42, P = 

0.52), RT (F(1,58) = 0.04, P = 0.84; Figure 4.3C) or the time to complete the hard 

trials (F(1,58) = 0.16, P = 0.69; Figure 4.3C). There was no group by reward 

probability interaction on the percentage of hard trials selected (F(2,108) = 2.22, P = 

0.11); there was a trend toward a main effect of years of education on the percentage 

of hard trials selected in this model (F(1,54) = 2.90, P = 0.094), but the main effect of 

group was not significant (F(1,54) = 0.06, P = 0.81). No other significant effects were 

found. 

Scene Choose: there were main effects of probability (F(1,57) = 11.32, P = 

0.001), valence (F(1,57) = 10.65, P = 0.002) and block number (F(3,55) = 26.72, P < 

0.001) were found for performance during the stimulus training phase, indicating 

robust task performance across participants. Valence by block (F(3,171) = 0.35, P = 

0.79), probability by block (F(3,171) = 0.74, P = 0.53) and probability by valence by 

block (F(3,171) = 1.42, P = 0.24) interactions were not significant. A significant 

interaction between probability and group (F(1,57) = 4.77, P = 0.03), but no others, 
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was found; the main effect of group was also not significant (F(1,57) = 0.42, P = 0.52). 

Post-hoc analyses revealed a significant difference between probabilities (i.e. 

feedback sensitivity) for depressed patients (F(1,57) = 12.98, P = 0.001), but not 

healthy volunteers (F(1,57) = 0.85, P = 0.36), with patients performing worse on 80% 

than 90% stimuli. The sensitivity discrepancy in depressed patients showed a trend 

towards a relationship to illness length (the number of years since the first major 

depressive episode; rs(16) = -0.47, P = 0.07), but not anhedonia levels (rs(24) = -0.10, P 

= 0.63), as measured by the SHAPS. 

 There was a main effect of stimulus comparison performance during the 

transfer test phase (F(3,171) = 15.87, P < 0.001) and a trend towards an interaction 

between group and performance (F(3,174) = 2.36, P = 0.098). Note however, these 

data are not normally distributed and there is no non-parametric equivalent that 

permits a repeated-measures interaction effect (i.e. one cannot run a group by 

performance interaction). Nevertheless, follow up tests revealed that, in comparison 

to healthy controls, depressed patients did not select frequent winners over frequent 

losers as often (U = 302.5, Z = 2.49, P = 0.012). Again, however, patient 

performance on this measure did not relate to levels of anhedonia (rs(24) = -0.12, P = 

0.59).  

4.4.1.3 1H-MRS 

1H-MRS scans were generally of high quality. Mean linewidth for all baseline scans 

was 12.26 Hz, with no additional baseline scans excluded due to poor quality, other 

than those omitted from the reliability analysis (Chapter 3). There was a trend toward 

significantly better (i.e. lower) linewidth in depressed patients (M = 11.76 Hz) than 

healthy controls at baseline (M = 12.57 Hz; t(43) = 1.85, P = 0.09). Cramer Rao 

Lower Bounds were lower than 20% for every metabolite for all scans included. 

Baseline mean metabolite levels for patients and healthy volunteers are listed in 

Table 4.2. There was no significant main effect of group on baseline levels of medial 

pregenual cingulate glutamate levels (F(1,43) = 2.69, P = 0.11). Our secondary 

analysis revealed no baseline group differences in levels of pregenual glutamine 

(F(1,37) = 0.08, P = 0.78). For completeness, we also report the between group 

comparisons for the other metabolites modelled in our spectrum, glutathione, GABA, 
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tNAA and choline (Table 4.3); there was a significant effect of age on tNAA (F(1,40) 

= 4.14, P = 0.049) but both covariates were not significant for all other metabolite 

analyses.   

Table 4.3. Baseline mean and standard deviations for metabolite levels, relative to 
creative, across the two groups. 
 Healthy Volunteers 

(N = 27) 
Depressed Patients (N = 

17, 2 BD) 
Statistical 

Differences 
Metabolite Mean SD Mean SD F(1,42) P 

Glu/Cre 1.37 0.12 1.29 0.17 2.67 0.11 
Gln/Cre 0.30 0.05 0.28 0.08 0.64 0.43 
GSH/Cre 0.25 0.03 0.23 0.04 1.63 0.21 
GABA/Cre 0.20 0.05 0.19 0.06 0.10 0.75 
tNAA/Cre 1.62 0.11 1.55 0.12 0.87 0.36 
Cho/Cre 0.29 0.04 0.31 0.03 0.69 0.41 
Glu, glutamate; Cre, Creatine; Gln, glutamine; GSH, glutathione, GABA, γ-
aminobutyric acid; tNAA, total N-acetyl-aspartate; Cho, choline. 
 
 
4.4.2 Post-Ketamine 

Owing to the low numbers of healthy volunteers who were successfully tested at 

baseline and following both infusions (N = 5), these participants were not included in 

any post-infusion analyses. 

 

4.4.2.1 Psychometric Scales  

Relative to placebo, only three out of 17 (17%) patients reached response criterion at 

24-hours post-ketamine, which is much lower than other reports (Milak et al., 2015, 

Zarate et al., 2012, Zarate et al., 2006), with a mean improvement of 23% on the 

MADRS at this time point.  

There was a significant interaction effect between drug, time and drug order 

(F(6,183) = 2.25, P = 0.040) on the MADRS and a drug by drug infusion order 

interaction for the SHAPS (F(1,16) = 5.34, P = 0.034), thus order of drug 

administration was retained in these models. A main effect of drug was found on 

MADRS (F(1,186) = 43.54, P < 0.001; Figure 4.4A) and SHAPS scores (F(1,187) = 

23.97, P < 0.001; Figure 4.4B), with post-ketamine scores lower than post-placebo, 

replicating the previously found antidepressant and anti-anhedonic effect of 
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ketamine. However, the effect of drug on SHAPS scores was non-significant when 

controlling for total MADRS score (F(1,188) = 0.19, P = 0.66), contrasting with our 

previous finding (Lally et al., 2014b). 

 There was a significant interaction between drug infusion order and drug on 

TEPS-A (F(1,13) = 11.68, P = 0.005) and TEPS-C (F(1,15) = 5.04, P = 0.039). 

However, there was no significant effects of drug on TEPS-A (F(1,146) = 2.47, P = 

0.12; Figure 4.4C) or TEPS-C (F(1,147) = 0.54, P = 0.46; ; Figure 4.4D). 

Post-hoc simple effects tests revealed that there was a significant difference 

between post-placebo and post-ketamine scores at our time point of interest, day 1, 

for the MADRS (F(1,183) = 10.34, P = 0.002) and the SHAPS (F(1,183) = 6.99, P = 

0.009). However, there was no significant difference between post-placebo and post-

ketamine scores at day 1 on TEPS-A (F(1,142) = 1.45, P = 0.23) or TEPS-C (F(1,144) = 

0.06, P = 0.81).  
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Figure 4.4. The effect of ketamine on depression and anhedonia psychometric 
scales. Relative to placebo, ketamine had a pronounced effect on (A) MADRS and 
(B) SHAPS scores, indicating general antidepressant and anti-anhedonic 
(anticipatory) effects. However, relative to placebo, there was no significant 
improvement in either anticipatory or consummatory anhedonia levels following 
ketamine, as measured by the TEPS-A (C) or TEPS-C (D). 
 

Consistent with previous research (Salvadore et al., 2012), there was a trend 

towards a significant relationship between baseline levels of glutamine (rs(12) = -0.52, 

P = 0.087; Figure 4.5A), but not glutamate (rs(12) = -0.02, P = 0.95), and the general 

antidepressant response to ketamine at day 1. This correlation reflected a greater 

antidepressant response to ketamine in depressed patients with greater levels of 

glutamine. There was also a similar trend towards a significant relationship between 

baseline levels of glutamine and change in SHAPS at 24-hours post-infusion (rs(12) = 

-0.57, P = 0.054), but not glutamate (rs(12) = -0.10, P = 0.75). Corroborating this 

evidence, baseline glutamine was a significant predictor of the general antidepressant 

response to ketamine at 48-hours post-infusion (rs(12) = -0.81, P = 0.002; Figure 

4.5B). 
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Figure 4.5. Relationship between baseline glutamine levels and the antidepressant 
response to ketamine. (A) There was a trend towards a significant relationship 
between baseline levels of glutamine and change in SHAPS post-ketamine. (B). 
There was a significant relationship between baseline 
 

4.4.2.2 Reward Tasks  

EEfRT: two participants were excluded from the post-infusion analyses, one for 

selecting all easy and the other for selecting all hard tasks for both post-infusion 

sessions, leaving a sample size of 15 depressed patients for the drug effect analysis. 

Importantly, there were no differences in the number of trials undertaken post-

placebo (M = 48.40) or post-ketamine (M = 49.60; t(14) = -1.05, P = 0.31) or 

completed (Z = -0.68, P = 0.49; post-placebo M = 99.2%, post-ketamine M = 

99.6%). Again, there was a main effect of reward probability on the decision to 

choose the hard task (F(2,28) = 33.52, P < 0.001). However, there was no main effect 

of drug (F(1,14) = 1.05, P = 0.32) or a drug by probability interaction (F(2,28) = 0.18, P 

= 0.84; Figure 4.6A) on the decision to choose the hard over the easy task. There 

was no effect of drug on the relationship between reward magnitude and hard task 

selection (F(1,14) = 0.04, P = 0.84; Figure 4.6B), RT (F(1,14) = 0.29, P = 0.59; Figure 
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4.6B), or the time to complete the hard task button pressing (F(1,14) = 0.36, P = 0.56). 

No other significant effects were found. 

Scene Choose: there was a significant main effect of block number (F(3,42) = 

13.36, P < 0.001) but the effects of probability (F(1,14) = 0.01, P = 0.92), valence 

(F(1,14) = 0.11, P = 0.75), and drug (F(1,14) = 0.16, P = 0.69) were not significant. 

There was a trend toward a significant drug by block (F(3,42) = 2.54, P = 0.084) and 

drug by block by valence (F(3,42) = 4.16, P = 0.011) interaction. However, post-hoc 

tests on the interaction between drug and block interaction revealed no significant 

differences between placebo and ketamine for any of the four blocks (all F(1,14) < 3 

and P > 0.10). Follow up tests on the drug by block by valence interaction revealed a 

trend toward a valence by block interaction post-ketamine (F(3,42) = 2.55, P = 0.069) 

but not post-placebo (F(3,42) = 2.11, P = 0.11). Post-hoc tests, corrected for multiple 

comparisons, did not reveal any significant differences within the valence by block 

interaction post-ketamine (F < 2.2, P > 0.16). All other interactions for the stimulus 

learning phase were non-significant. There was a main effect of stimulus comparison 

type (F(3,42) = 3.95, P = 0.04) during the transfer phase but no main effect of drug 

(F(1,14) = 0.66, P = 0.43) or a drug by performance interaction on performance (F(3,42) 

= 0.01, P = 0.98; Figure 4.6D). No other significant effects were found. 
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Figure 4.6. The effect of ketamine on reward processing tasks. There were no 
differences in EEfRT (high cost/high reward; HC/HR) behaviour 24-hours post-
placebo and 24-hours post-ketamine for either decisions made (A) or the speed of 
decisions (RT) or the time to complete tasks (B). There was also no change on levels 
of reward learning as indicated by performance on the Scene Choose task. 
Participants performed similarly 24-hours post-placebo (blue) and 24-hours post-
ketamine (red) on both the learning of stimulus outcomes during the acquisition stage 
where there was feedback (C) and the test phase where there was no feedback (D).  

4.4.2.3 1H-MRS 

Due to attrition (N = 1) and MRI scanner hardware (N = 2) and software problems 

(N = 2), data were successfully acquired for 12 patients only at baseline and both 

post-infusion infusion 1H-MRS scans. Linewidth for the 12 subjects was however on 

average excellent for the two post-infusion scans (M = 11.62 Hz). 

For our primary analysis, there was no significant interaction between 

glutamate levels and order of drug administration (F(1,9) = 0.06, P = 0.81), thus this 

factor was removed from the final model. The effect of drug on levels of pregenual 

glutamate levels was not significant (F(1,10) = 1.08, P = 0.32; Figure 4.7A). However, 

there was a trend towards an effect of drug (F(1,9) = 4.30, P = 0.068) on levels of 

glutamine, reflecting, relative to placebo levels, a decrease in this metabolite 

following ketamine when baseline values were controlled for, as assessed by post-
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hoc pairwise comparisons (F(1,9) = 5.11, P = 0.048; Figure 4.7B). There was a trend 

towards a significant interaction between drug order and drug on glutamine levels 

(F(1,9) = 3.39, P = 0.099), causing us to retain drug administration order as a factor in 

this final model. However, the relationships between relative variations ([ketamine-

placebo]/baseline) in glutamine and changes in anhedonia (rs(11) = -0.17, P = 0.61) or 

depression levels (rs(11) = -0.14, P = 0.69) 24-hours following ketamine were not 

significant. No other significant effects were found. A summary of the main results 

from the chapter is presented in Table 4.4. 

 

Figure 4.7. The effect of ketamine and placebo on levels of glutamate and 
glutamine. (A) In comparison to placebo and relative to baseline levels, there was no 
change in levels of glutamate 24-hours post-ketamine, but there was a significant 
decrease in glutamine levels at this time point (B). 
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Table 4.4. Summary of results from the case-control comparison between healthy 
volunteers and depressed patients and analyses comparing post-placebo and post-
ketamine in depressed patients, only. 
  Outcome  

Baseline HVs vs. Patients   
Psychometrics Sig (patients more anhedonic & depressed) 
EEfRT NS 
Scene Choose Sig (patients poorer learning variable stimuli) 
1H-MRS NS 
Ketamine vs. Placebo  
Psychometrics Sig (improvement in depression post-ketamine) 
EEfRT NS 
Scene Choose NS 
1H-MRS Sig (glutamine decreased post-ketamine) 
HV, healthy volunteer; EEfRT, effort experimental for rewards task; 1H-MRS, 
proton magnetic resonance spectroscopy; Sig, significant; NS, non-significant. 
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4.5 Discussion 

The goal of this study was to replicate and extend recent reports that ketamine may 

exert anti-anhedonic effects in patients with depression (Lally et al., 2014b, Lally et 

al., 2015b) and to understand the mechanisms underlying these effects. In particular, 

we desired to examine in detail the precise clinical, cognitive and neural substrates of 

the improvements in anhedonia associated with treatment following ketamine in 

depressed patients. In addition to improving general depression scores, we found that 

ketamine improved levels of anhedonia on one particular scale, the SHAPS, which 

measures anticipatory anhedonia. However, no such effect was found for the TEPS, 

which measures both anticipatory and consummatory anhedonia separately. 

Furthermore, performance on our reward processing tasks, which probed levels of 

motivation and reward learning, showed no changes following treatment with 

ketamine. The antidepressant and anti-anhedonic response to ketamine was predicted 

by baseline levels of glutamine, replicating and extending an earlier finding. 

Additionally, in comparison to placebo and relative to baseline levels, ketamine 

decreased levels of glutamine post-infusion; however changes in glutamine did not 

relate significantly to the antidepressant or anti-anhedonic response to ketamine. No 

effect of drug was found on levels of glutamate 24-hours post-infusion, suggesting a 

more proximal examination of these metabolite effects may be required. Our results 

are suggestive of a particular role for ketamine in improving anticipatory anhedonia, 

but not reward motivation or learning, or consummatory processes, which may be 

potentially mediated by baseline levels of glutamine, implicating glutamatergic 

cycling and astrocytic function in the anti-anhedonic effect of ketamine. 

The administration of ketamine was associated with an improvement in 

general depression and anticipatory anhedonia levels, as measured by the SHAPS, 

but not the TEPS and no improvement in consummatory anhedonia levels, again as 

measured by the TEPS. Our results contrast with evidence that treatment with 

ketamine in rodents improves stress induced deficits in consummatory behaviour 

(Walker et al., 2013, Wang et al., 2011). However, the majority of research 

examining the differing types of anhedonia in depressed patients finds a greater role 

for anticipatory rather than consummatory anhedonia (Treadway and Zald, 2011). 

For example, Sherdell et al. (2012) found that depressed patients rated cartoons 
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equally as funny as healthy volunteers but were less willing to exert effort to witness 

the stimuli. Similarly, Dichter and colleagues (2010) found that MDD patients rated 

sugar water as pleasant as healthy volunteers in a sweet taste test. Consistent with 

these reports, levels of anticipatory anhedonia at baseline were significantly greater 

here than consummatory levels in depressed patients, but the same effect was not 

apparent in healthy volunteers. Nonetheless, consummatory anhedonia levels were 

significantly higher in patients than in healthy volunteers here, suggesting that in 

treatment refractory depressed populations, consummatory processes may still be 

disrupted. However, it should be acknowledged that this is the first reported use of 

the TEPS in a treatment study so questions could also be raised of its validity for this 

form of investigation and whether it is sensitive to detect changes on this time scale. 

We administered a reward decision and motivation task and a reward-

learning task to further understand the potential anti-anhedonic effects of ketamine. 

To our surprise, the improvement in anhedonia levels, as measured by psychometric 

scales, was not mirrored by changes in reward task behaviour following ketamine. 

However, examination of the baseline effects revealed no significant differences in 

the EEfRT, contrasting a previous finding using this exact task (Treadway et al., 

2012). Several differences between our study and the original may explain why no 

baseline differences, and subsequent treatments effects, were found using this 

measure. First, our task was administered as part of a battery of tasks, which may 

have affected energy levels of both healthy participants and patients and thus 

confounded their decision behaviour and our results; it is not known how many tasks 

were administered during the original study. Secondly, the majority of patients in the 

original study (85%) were medicated with an SSRI (75%) or SNRI, whereas the 

majority of patients in this study were medication free. Evidence suggests that SSRIs 

are associated with emotional blunting of responses to stimuli in healthy volunteers 

(McCabe et al., 2010) and patients (Opbroek et al., 2002). It would interesting to 

perform a pharmacological manipulation to see if SSRI medication impacts 

performance of this task in healthy volunteers and patients. Finally, the differences in 

patient population exclusion criteria were substantial. The original study excluded 

patients who had any history of stimulant abuse or substance dependence and any 

past use of dopaminergic medications. As the population investigated here were 

mainly treatment refractory, these criteria would have precluded the majority of 
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patients’ participation; thus, the patient sample differences may also explain why no 

effects were found here. 

The second of our reward tasks, Scene Choose, did however reveal baseline 

between group performance differences. We found that patients performed 

comparably well to healthy volunteers on both loss avoidance and gain stimuli where 

the correct feedback was presented 90% of the time. However, performance on the 

stimuli, irrespective of valence, presented at a lower probability of correct feedback 

(80%) was worse than healthy volunteers. However, this sensitivity variable (90% -

80% performance) was related to the number of years since patient’s first major 

depressive episode, but not levels of anhedonia, suggesting this difference was not 

related to state levels of subjective anticipatory anhedonia. Chronic depression is 

associated with hippocampal volume loss and the hippocampus is a key region 

responsible for memory. Thus, one potential explanation for this between group 

differences is that illness length leads depressed patients to become more sensitive to 

more variable environmental statistics. Interestingly, Browning et al. (2015) recently 

found that healthy individuals with high trait anxiety scores have difficulty learning 

the causal statistics of aversive environments (non-aversive stimuli were not tested) 

but did not show a deficit to false feedback probability, as shown here. In addition to 

a deficit in learning from noisier stimuli, depressed patients also displayed poor 

performance in differentiating frequent winners from frequent losers during the 

transfer phase where no feedback was provided. However, these results are likely 

explainable by poorer performance during the learning phase. 

In an attempt to understand the neural basis of the anti-anhedonic effects of 

ketamine, we scanned patients at 7T using a 1H-MRS sequence at baseline and 24-

hours post-infusions, long after the psychotomimetic effects of ketamine had 

subsided. While the 24-hour post-infusion time point may have missed the direct 

mechanism of action of ketamine, the neural glutamatergic correlates associated with 

changes in anhedonia levels could have been visible and pointed in the direction of a 

potential mechanism of action. As ketamine primarily works on the glutamatergic 

system, and previous research has shown ketamine effects on this neurotransmitter at 

lower MRI field strength (Milak et al., 2015, Stone et al., 2012), our main metabolite 

of interest was glutamate. Our secondary analyses focussed on glutamine due to 

preclinical evidence positing a role for this metabolite in the mechanism of action of 
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ketamine and evidence suggesting its role in anhedonia in particular (Rowland et al., 

2005, Walter et al., 2009). As this was the first study to examine neural metabolite 

levels in depression using 1H-MRS at 7T, we first sought to confirm previous 

findings of a deficit in glutamate levels.  

To our surprise, there were no significant differences in baseline glutamate or 

glutamine levels between depressed patients and healthy volunteers. Moreover, no 

significant changes in glutamate levels were found post-ketamine. Furthermore, 

glutamate levels were not predictive of the antidepressant or anti-anhedonic response 

to ketamine. However, our secondary analyses on glutamine found that ketamine 

caused a significant decrease in glutamine levels, but these decreases were not 

related to the improvement in anhedonia or depression. Additionally, we found that 

baseline levels of glutamine were predictive of the anti-anhedonic and antidepressant 

effects of ketamine. Taken together, our results suggest that glutamine, but not 

glutamate, is implicated in the treatment mechanism of depression with ketamine. 

At first glance, the results of our 1H-MRS investigation are surprising. Given 

that 7T permits excellent separation and the patients scanned were very depressed, 

medication refractory, and medication free, we expected that previous findings of a 

reduction in medial prefrontal cortex glutamate in depression would appear in this 

instance. Although non-significant, our results are consistent with previous findings 

and trends, in particular meta-analyses, of a pre-treatment reduction in glutamate 

levels in depressed patients in comparison to healthy volunteers (Hasler et al., 2007, 

Luykx et al., 2012, Yuksel and Ongur, 2010); however, a number of recent reports 

have found no evidence for decreased levels of baseline glutamate in depression in 

comparison to healthy volunteers (Abdallah et al., 2014a, Godlewska et al., 2015) 

suggesting the relationship may be variable. Our finding of a relationship between 

baseline glutamine and the anti-anhedonic effect of ketamine and a reduction in 

glutamine levels post-ketamine is interesting. At least one study has detected a large 

decrease in pregenual glutamine levels with successful treatment of depressed 

patients using lamotrigine (Frye et al., 2007); however, this study was conducted at 

1.5T and in BD patients so the 1H-MRS changes are hard to interpret in the context 

of our results here. The glutamine findings suggest a role for astrocytes in the 

mechanisms of ketamine and treating depression. Accumulating evidence suggests 

that glial cells are dysfunctional in depression (Niciu et al., 2014b) and their 
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influence can induce anhedonia (Bechtholt-Gompf et al., 2010). One mechanism that 

could result in a decrease in levels of glutamine, but no change in glutamate, is an 

inhibition of extracellular glutamate release mediated through astrocytic signalling 

(Mitterauer, 2012). However, the role of astrocytes in the function of ketamine as a 

depression treatment remains to be tested. The antidepressant effects of sleep 

deprivation, the only other rapid acting antidepressant treatment to ketamine, are 

dependent on astrocyte mediated signalling (Hines et al., 2013), suggesting a 

common pathway mechanism may be possible. 

A number of limitations of this study merit comment. First, our patient 

sample was small and mixed, comprising both patients with MDD and BD. Future 

studies should both expand the sample and parse up the diagnoses as differences in 

reward processing and 1H-MRS metabolite levels between depressive disorders may 

exist (Taylor, 2014). Second, three of our BD patients were medicated; future 

research would benefit by examining only medication free BD patients. Third, due to 

technical difficulties, only one 1H-MRS voxel was acquired; the effects of ketamine 

on glutamate may be apparent in other brain regions not contained in our region of 

interest. Fourth, changes in glutamate following ketamine may occur acutely (i.e. 

during the infusion) and thus the timing of the 1H-MRS scan here (24-hours post-

infusion) may have been too late to detect changes in glutamate. Indeed, previous 

research has identified an acute change (within 40 minutes) in 1H-MRS measured 

glutamate (Stone et al., 2012) and glutamine (Rowland et al., 2005) levels in healthy 

volunteers and patients following ketamine. However, 1H-MRS investigations at 3T 

in healthy volunteers have also reported no acute effects of ketamine on glutamate or 

glutamine levels (Taylor et al., 2012) and no effects in MDD patients three and 48-

hours post-infusion (Valentine et al., 2011). Fifth, in comparison to previous reports 

(Milak et al., 2015, Zarate et al., 2012, Zarate et al., 2006), the antidepressant 

efficacy of ketamine was relatively limited in this sample, with only three out of 17 

patients reaching response criterion. This lack of response may have negatively 

impacted our ability to detect differences in behaviour and brain activity post-

infusion and to find relationships between measures. One possible reason for the lack 

of antidepressant efficacy of ketamine here is that the depressed patients recruited 

were particularly treatment refractory; additionally, media reports about ketamine 

may have raised patient expectation to unrealistic levels, which may have hindered 
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drug efficacy. Finally, due to the number of comparisons conducted here, our results 

require careful replication. 

In summary, we found an effect of ketamine in improving levels of anhedonia, 

replicating previous findings. However, we found no baseline differences in reward 

processing that related to levels of anhedonia and no improvements in reward 

processing following ketamine. 1H-MRS scans revealed that medial prefrontal cortex 

glutamine, but not glutamate, levels were predictive of the anti-anhedonic response 

to ketamine, replicating an earlier finding of predictability of baseline metabolites 

and the response to ketamine. While there was a significant decrease in glutamine 

levels post-ketamine, results were not associated with anhedonia or depression 

changes. Further research is required to better understand the cognitive and neural 

correlates of the anti-anhedonic effects of ketamine. 
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5 Working Memory in Major Depression: An fMRI and NMDA 

Receptor Antagonist Treatment Investigation in Medication-

Free, Treatment-Resistant, Depressed Patients 

5.1 Abstract 

Working memory impairment is frequently reported in neuropsychological studies 

comparing depressed patients with healthy volunteers and neuroimaging studies 

often suggest load-related hyperactivity in DLPFC, an area involved in cognitive 

control, in MDD patients. Recent evidence suggests that ketamine, an NMDA 

receptor antagonist, has rapid-acting antidepressant properties and may have 

tentative cognitive enhancing capabilities for depressed patients. The NMDA 

receptor is strongly implicated in learning and memory but there is little work 

examining whether ketamine may improve cognitive impairments found in 

depression. Thus, we examined the effects of a single infusion of ketamine on 

working memory and its associated neural correlates in a randomised placebo-

controlled trial. Treatment-resistant, medication-free depressed patients (N = 20) and 

healthy volunteers (N = 18) performed the n-back, a working memory task, during 

fMRI at baseline and 2 days following each infusion (N = 12 patients only; ketamine 

or saline). Our a priori region of interest was the left DLPFC. There was no 

difference in task performance at baseline. In contrast with previous research, 

depressed patients did not exhibit greater prefrontal baseline neural activity than 

healthy volunteers; however, healthy volunteers displayed a trend toward higher 

superior parietal lobule activity. Ketamine caused a robust antidepressant response, 

but this was not associated with changes in either task performance or BOLD 

activity. Our results do not support the hypothesis that treatment with ketamine is 

associated with an improvement in working memory performance as measured by 

the n-back or task-elicited changes in neural activity. Further research with a larger 

cohort is required to confirm these preliminary results. 
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5.2 Introduction 

Although the true prevalence is unknown (Trivedi and Greer, 2014), cognitive 

dysfunction is a frequently reported, debilitating and hard to treat symptom of 

depression (Fava et al., 2006). Evidence suggests that the presence of cognitive 

dysfunction is a mediator of functional disability in patients with MDD (Lam et al., 

2014). In particular, working memory, the ability to maintain and manipulate 

concurrent information online, is thought to be especially impaired in depression 

(Christopher and MacDonald, 2005, Joormann et al., 2011, Pelosi et al., 2000, Rose 

and Ebmeier, 2006). Standard antidepressants appear to provide limited benefit in 

alleviating cognitive dysfunction (Trivedi and Greer, 2014), and residual cognitive 

impairments remain one of the most common complaints (Fava et al., 2006) and 

predict poorer treatment response (Dunkin et al., 2000, Majer et al., 2004). The 

recent evidence that ketamine, an NMDA receptor antagonist, may rapidly improve 

general depression levels in both unipolar and bipolar treatment-refractory patients 

(Diazgranados et al., 2010a, Zarate et al., 2006) raises the question of whether the 

mechanism by which this occurs may be through improvements in cognitive 

functioning; e.g. enhancements in cognition may lead to better daily functioning 

and/or decreases in anhedonia and thus potentially also improvements in mood. 

To date, only three studies have investigated whether ketamine may improve 

cognitive functioning in depressed patients, none of which used objective 

measurements in blinded placebo-controlled designs. Murrough et al. (2015) 

administered a battery of cognitive tests to treatment-refractory unmedicated 

depressed patients at baseline and seven days post-infusion of both ketamine and 

midazolam (active control) in a randomized controlled trial. Although performance 

improved from baseline to seven days post-ketamine, a similar improvement was 

also seen seven days post-midazolam suggesting that the effect was non-specific and 

may reflect practice effects and/or symptomatic improvement. Nevertheless, 

Murrough et al. (2015) also found that slower baseline processing speed was 

predictive of the greatest antidepressant response to ketamine at 24-hours post-

infusion, replicating an earlier finding (Murrough et al., 2013b). In a retrospective 

analysis, DeWilde et al. (2015) found that treatment with ketamine was associated 
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with an average of a 58% improvement on the concentration item of the MADRS at 

24-hours post-infusion; the authors did not account for change in general depression 

scores however. Notably, Shiroma et al. (2014) found that repeated open label 

infusions of ketamine were associated with improvements in working memory; 

however, these improvements were accounted for by changes in depressive 

symptoms, potentially suggesting a lack of a specific cognitive enhancement with 

ketamine. However, Shiroma et al. (2014) also found that lower attention scores, but 

not processing speed, at baseline predicted greater antidepressant response to 

ketamine. Taken together, these studies suggest that the cognitive enhancing 

properties of ketamine may be limited; nevertheless, poorer baseline pre-treatment 

cognitive levels may predict greater antidepressant response to ketamine. 

At the neural level, Salvadore et al. (2010) found that working memory task-

elicited (n-back) brain activity (the association between task performance and 

response was not assessed) in the pregenual anterior cingulate cortex strongly 

predicted the general antidepressant response to ketamine in an open label 

magnetoencepahalography (MEG) investigation. While the neural correlates of 

cognitive dysfunction in depression are not well understood, a consistent body of 

evidence suggests that hyperactivation of brain regions, particularly in the prefrontal 

cortex, may underpin the impaired cognitive task performance reliably found in 

depressed patients (Harvey et al., 2005, Matsuo et al., 2007). A recent functional 

magnetic resonance imaging (fMRI) meta-analysis (N = 10 studies, 6 of which used 

the n-back) by Wang et al. (2015) identified greater left DLPFC activity during 

working memory task performance in depressed subjects in comparison to healthy 

controls, irrespective of task performance, age, sex or medication status. 

Hyperactivity in depressed patients during comparable task performance to healthy 

volunteers has been suggested to reflect “neural inefficiency” in the depressed brain. 

DLPFC activity is associated with increasing cognitive demands, such as growing 

working memory load (Owen et al., 2005). Interestingly, DLPFC is thought to play 

an important role in antidepressant treatment response (DeRubeis et al., 2008). 

Notably, at least three studies (Brody et al., 2001, Fales et al., 2009, Kennedy et al., 

2001) have demonstrated a normalization of DLPFC activity in depressed patients 

following treatment, suggesting that this brain region may be sensitive to treatment 
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effects. Indeed, Ritchey et al. (2011) found that higher baseline DLPFC activation 

was strongly predictive of the improvement in symptoms following CBT. 

The cognitive enhancing capabilities of ketamine remain unknown. 

Moreover, the precise systems-level biomarkers of the antidepressant response to 

ketamine and its cognitive mechanisms of action are yet to be determined. Tentative 

evidence suggests that pre-treatment working memory task-elicited brain activity 

may be predictive of the antidepressant response to ketamine (Salvadore et al., 

2010), potentially connecting this process to its mechanism of action. Therefore, we 

scanned healthy volunteers and depressed patients while performing the n-back, a 

task shown to robustly recruit prefrontal circuits implicated in treatment response, 

including DLPFC. Participants were scanned at baseline and 48-hours post-infusion 

with ketamine and placebo in a randomized, placebo-controlled investigation. 

We hypothesized that improvements in depressive symptoms following 

ketamine would relate to alterations in neural networks recruited by working 

memory. Specifically, we hypothesized that DLPFC activity levels during task 

performance would be reduced 48-hours post-ketamine resulting in normalization to 

the levels observed with healthy volunteers. Given the treatment-refractory and 

medication-free nature of our patient sample here, we predicted that depressed 

patients would perform the n-back task worse than healthy volunteers at baseline and 

that the underlying BOLD activity associated with this task, particularly in the 

DLPFC region, would be greater. Finally, we predicted that the antidepressant 

response to ketamine would be related to pre-treatment and post-treatment n-back 

associated activation, particularly in the DLPFC. 

  



 

 116 

5.3 Methods 

5.3.1 Participants 

Eighteen healthy participants (8 women) and 20 currently depressed patients (7 men) 

diagnosed with either major depressive disorder (MDD; N = 18, 6 men) without 

psychotic features or BD II (N = 2, one man) were enrolled in this study. The 

investigation was conducted at the National Institutes of Health (NIH), Bethesda, 

Maryland, USA. Healthy participants and patients were evaluated and diagnosed, 

respectively via the structured clinical interview for DSM-IV Axis I disorders and an 

unstructured interview with a board certified psychiatrist. All patients were currently 

in a major depressive episode lasting at least four-weeks. At the time of the initial 

testing, all participants, including the BD patients, had been medication free for at 

least 10 days. All participants were physically healthy and were free of any serious 

unstable medical conditions and comorbid substance abuse (three month duration) 

and dependence (excepting caffeine and nicotine); abuse and dependence were 

lifetime exclusion criteria for healthy volunteers. Pregnancy and nursing were not 

permitted and female subjects in the ketamine study (see below) were required to use 

approved methods of birth control. Comorbid axis I anxiety disorders were permitted 

for patients if they were not the primary diagnosis within the preceding 12 months. 

Healthy volunteers were excluded if any first-degree relatives had received a 

diagnosis of a major psychiatric disorder. Studies were approved by the combined 

neuroscience institutional review board of NIH and all subjects provided written 

informed consent before study entry. 

5.3.2 Study Design 

Following the initial screening, depressed patients and a subgroup of healthy 

participants (N = 12) were admitted to an inpatient psychiatric unit at the NIH to 

participate in a ketamine mechanism of antidepressant action investigation. The 

study had a randomized, double-blind, placebo-controlled, crossover design (Figure 

5.1). Following a medication taper and a two-week drug-free period (5-weeks for 

those taking fluoxetine) for patients, participants were administered one intravenous 

infusion of a sub-anaesthetic dose of ketamine hydrochloride (0.5 mg/kg) and one 
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placebo (0.9% saline solution) infusion, with two-weeks between infusions (Figure 

5.1). Infusions were administered by an advanced cardiac life support licensed 

practitioner over 40 minutes using a Baxter infusion pump; identical injections were 

used to ensure blinding. A Montgomery-Åsberg Depression Rating Scale (MADRS; 

(Montgomery and Åsberg, 1979) score ≥ 20 at the time of screening and also prior to 

the first infusion was an inclusion criteria for depressed patients. The majority 

(19/20) of patients enrolled in the ketamine study were refractory to pharmacological 

treatment; treatment resistance was defined as failure of two or more adequate 

antidepressant trials, as assessed by the Antidepressant Treatment History Form 

(Sackeim, 2001). No psychotherapy or other treatment was permitted during the 

entire trial period; BD patients were medication free throughout the study period. A 

number of measures (3T fMRI scans, and, psychometric scales) were acquired 

repeatedly throughout this month-long period (Figure 5.1).  

 

Figure 5.1. Study design. Approximately 2 days prior to the first infusion, all 
participants in the ketamine trial were scanned in a 3T MRI scanner where fMRI was 
collected during performance of the n-back task. At day 0, participants received their 
first infusion. Participants received one ketamine and one placebo infusion in a 
randomized, counterbalanced fashion (days 0 and 14) and were scanned using fMRI 
with the same n-back task as baseline 48-hours after each infusion (days 2 and 16, 
respectively). 
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5.3.3 N-back Task 

The n-back task was adapted for fMRI from one described in detail previously in 

Chapter 2 (Lally et al., 2013) and programmed in Cogent 2000 

(www.vislab.ucl.ac.uk/Cogent), a stimulus presentation toolbox for MATLAB 

(MathWorks, Natick, MA, USA; version 7.1). Briefly, following an initial fixation 

cross (which lasted 0.9s in duration) and block condition instructions (1s; “1-back” 

or “3-back”; Figure 5.2A; these remained onscreen for the rest of the block), 

participants were presented with a randomized sequence of 12 lower case consonants 

(1s; “t”, “f”, “p”, “v”, “g” or “h”), between a blank screen (0.5s), save for the task 

instruction; alternatively, a fixation cross was presented continuously and 

participants were instructed to rest. The aim was for participants to make a button 

press when the stimulus on screen was the same as the stimulus n-back. Participants 

were only presented with 1- and 3-back active blocks and rest. Examples of 1-back 

and 3-back occurrences are shown (Figure 5.2B). Blocks, of which there were 18, 

were randomized in order, with six of each condition presented (rest, 1-back and 3-

back). Each block lasted 19.1 seconds from the time of the instructions to the interim 

fixation cross, with the task lasting six minutes in total. Only one run was undertaken 

during each scanning session. Participants received extensive training on the n-back 

task, completing 0-, 1-, 2-, and, 3-back examples, prior to performing the task inside 

the MRI scanner. 

 

 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=01650270&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.vislab.ucl.ac.uk%252FCogent
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Figure 5.2. n-back task. (A) Outline of the three different task conditions; each 
column represents a condition (rest, 1-back or 3-back). Following an initial fixation 
cross, which lasted 0.9 seconds, participants were presented with either a rest or task 
block (either 1 or 3-back, only), which began with instructions that lasted 1 second 
and remained onscreen throughout the block. Twelve consonants were presented 
centrally (1s each) and were interspersed with null events, a blank screen aside from 
the task instructions, which lasted 0.5 seconds. (B) An example of a 1-back and 3-
back stimulus. Here the letter ‘p’ is repeated directly once so represents an instance 
of 1-back. The letter ‘f’ reappears after 2 intervening stimuli, thus represents an 
instance of 3-back.  

 

5.3.4 MRI scan acquisition 

All MRIs were collected using a 3T General Electric scanner (GE Signa) and an 8-

channel phased-array head coil. The task was presented via a head coil mirror and a 

front-of-bore projection system. One hundred and forty-eight T2* weighted echo-

planar imaging (EPI) volumes (45 slices per volume, Slice thickness = 3.5 mm; gap 

between slices = 3.5 mm; slice repetition time (TR) = 56 ms, volume TR = 2.5 s; 

echo time (TE) = 23 ms, flip angle = 90o, field of view = 192 mm) were collected per 

session, totalling 6 minutes and 10 seconds in scan duration time. The first four 

volumes from the run were discarded to allow for T1 equilibrium effects, leaving 144 

volumes per session. A 3D T1-weighted anatomical scan (FSPRG BRAVO; 176 

slices; slice thickness = 1 mm; gap between slices = 1 mm; TR = 8.836 ms; TE = 

3.50 ms; inversion time = 450; FA = 13; field of view = 256 x 256 mm2; matrix size 

= 256 × 256; voxel size = 1×1×1 mm resolution) was acquired at the end of each 

scanning session.  
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5.3.5 fMRI preprocessing 

EPIs were pre-processed prior to analysis using Statistical Parametric Mapping  

(SPM; Wellcome Trust Centre for Neuroimaging, London) 8 (release 4010; 

www.fil.ion.ucl.ac.uk/spm) in MATLAB. Images were spatially realigned (to the 

first available session volume) to correct for motion distortion. Volumes corrupted 

due to movement (0.03% of all volumes) were excluded and replaced by linear 

interpolation of the surrounding images. Images were then normalized to Montreal 

Neurological Institute (MNI) co-ordinate space and smoothed with a Gaussian kernel 

of 8 mm isotropic full-width at half-maximum (FWHM) Gaussian kernel.  

5.3.6 Statistical analyses 

For the case-control comparison analyses, unless otherwise specified, demographic 

variables were included in the statistical models as covariates if the variable was 

significantly different between groups. Three demographic variables, age, IQ and 

years of education were significantly different between the two groups (see below for 

details); however, due to missing IQ (N = 6) data, only age and years of education 

were included as covariates. If either age or years of education was found not to 

show a main effect, either significantly or at trend level, it was removed from the 

analyses to increase the available degrees of freedom. 

Due to the low number of healthy volunteers with post-infusion data (N = 8), 

these participants were not included in analyses pertaining to the effects of drug. For 

all post-infusion analyses, order of drug administration was entered as a between-

subjects factor and baseline performance or neural activity was entered as a 

covariate. Where applicable, if there was a significant drug by order interaction, 

order was retained in the model, or otherwise dropped to increase the degrees of 

freedom.  

Where covariates were included in the model, they were first mean corrected. 

All statistical analyses were two-tailed, conducted in SPSS (Armonk, NY, USA; 

version 21) and a P < 0.05 was considered statistically significant and P < 0.1 was 

considered a trend towards significance. Huynh-Feldt correction was applied if the 

file:///C:/Users/N\303\255all%20Lally/Dropbox/Pruning_Paper_NL/www.fil.ion.ucl.ac.uk/spm
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assumption of sphericity was violated during repeated-measures ANOVA. Variables 

were assessed for normality using Shapiro-Wilk tests; where appropriate, non-

parametric tests were used.  

5.3.6.1 Psychometrics analyses 

Our primary psychometric variable of interest for this chapter was the MADRS. As 

the effect of ketamine on the MADRS has already been explored in the majority of 

the sample of patients included here (Chapter 4), our aim here was to evaluate the 

antidepressant effect of ketamine at the time of the fMRI scan (48-hours post-

infusion). We calculated the ketamine to placebo change in MADRS score at 48-

hours relative to the respective ketamine and placebo pre-infusion baseline MADRS 

scores ([placebo baseline / (placebo baseline – 48-hours post-placebo)] - ([ketamine 

baseline / (ketamine baseline – 48-hours post-ketamine)]). 

5.3.6.2 Behavioural analyses 

Accuracy on the n-back was calculated as the percentage of correct 1-back and 3-

back responses (hits) out of the total number of respective opportunities per 

condition, minus the percentage of commissions out of the total number of 

opportunities. Responses to the first stimulus on 1-back and the first three stimuli on 

the 3-back were not included in the commission opportunity statistic. For the case-

control comparison, a single within-subjects factor repeated measures analysis of 

variance (ANOVA) was used to calculate the effect of difficulty (1- or 3-back) on 

accuracy and reaction time (RT) at the baseline time point, with group entered as a 

between subject’s factor. In the case that no accurate response was made, these 

subjects were excluded from the RT analysis. 

For the post-infusion analyses (in MDD patients only), repeated measures 

ANOVAs on accuracy and RT were examined with order of drug administration 

entered as a between-subjects factor and baseline performance (calculated as the 

difference between 1- and 3-back conditions) entered as a covariate. If the drug 

administration order by treatment interaction was non-significant, this factor was 

removed from the model. To limit the number of analyses calculated and the number 
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of baseline performance covariates included, the difference in accuracy and RT 

between the 1-back and 3-back conditions was used as our metric for these post-

infusion analyses.  

Based on previous findings (Murrough et al., 2015, Murrough et al., 2013b), 

we calculated whether baseline performance predicted change in depression levels, 

as measured by MADRS, score 24-hours post-infusion ([placebo baseline / (placebo 

baseline – 24-hours post-placebo)] - ([ketamine baseline / (ketamine baseline – 24-

hours post-ketamine)]), a previously identified maximal time point of the 

antidepressant effect of ketamine (Zarate et al., 2006). We also examined the 

relationship between change in behavioural performance and change in general 

depression using the MADRS at 48-hours post-ketamine. The time point of 48-hours 

was chosen, as this was when the fMRI task was performed. Pearson product 

moment correlation coefficients were used to examine these two relationships. 

5.3.6.3 fMRI analyses 

5.3.6.3.1 First-level analysis 

A simple box car block design was fit at the first-level analysis stage. Regressors for 

1- and 3-back conditions were constructed with rest blocks constituting an implicit 

baseline (all 19.1 seconds in duration). Our primary contrast of interest was 3-back > 

1-back; contrasting these conditions allows the examination of neural mechanisms 

underpinning working memory as the 3-back requires greater working memory 

processes than the 1-back. Three other contrasts were conducted: n-back (1- + 3-

back) > rest, 1-back > rest, and, 3-back > rest. The six realignment parameters were 

also included in the model. Estimation incorporated a high-pass filter at 1/128 Hz 

and serial correlations intrinsic to the fMRI time series were accounted for using an 

AR(1) model. Following estimation, subject-level contrast images entered into 

group-level one-sample t-tests.  

5.3.6.3.2 Second-level analysis 

Our group-level analyses comprised a region of interest and whole brain exploratory 

approaches. Second level models (see below) were constructed to explore basic task 

effects, group comparisons, effects of drug and the relationship between neural 
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activity and antidepressant response. Unless otherwise specified, we applied an 

initial threshold of P = 0.005 (uncorrected) and then family-wise error (whole brain; 

PWB) correction for multiple comparisons at the cluster-level. Given our a priori 

hypotheses, we conducted a region of interest (ROI) analyses based on the left 

DLPFC coordinates identified by Wang et al. (2015) in their meta-analysis (MNI 

coordinates, [x = -46, y = 20, z = 31]). These coordinates were converted from 

Talairach to MNI coordinate space using the tal2mni algorithm (Brett et al., 2002) 

and a 1cm sphere was created around this centre of mass and data were extracted 

from our second level model using the MarsBaR tool for SPM 

(http://marsbar.sourceforge.net/). 

5.3.6.3.3 Models 

First, we constructed two models to explore the effects of the n-back task generally, 

and, specifically, to examine the neural effects of increasing working memory 

demands of the n-back. We explored what brain regions were activated by the task 

by comparing task > rest blocks across all subjects. Next, the aim was to locate the 

neural regions that scaled with the increasing working-memory demands of our task, 

thus we compared 3-back > 1-back blocks across all participants. As anticipated, 

these analyses revealed very robust responses and, for these comparisons only, we 

set our threshold such that only voxels that reached whole-brain voxel-level family-

wise error correction PWB < 0.05 survived. For the 3-back > 1-back analysis only, we 

examined the appropriateness of our ROI selection by comparing extracted beta 

values (average across the ROI) from our two task conditions (1- and 3-back) across 

all subjects using a paired samples t-test. If the ROI is sensitive to task-related 

working memory demands, activity in this region should be higher during 3-back 

than 1-back blocks.  

Second, we examined pre-treatment baseline group differences between 

depressed patients and healthy volunteers. We conducted an independent samples t-

test in SPM with our primary contrast, 3-back > 1-back, as the dependent variable; 

significantly different group demographic variables (age and years of education) 

were included as covariates in the model. A univariate general linear model was used 

to explore the group differences in our left DLPFC ROI, with group entered as a 

http://marsbar.sourceforge.net/
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between-subjects effect and years of education and age entered as covariates. The 

same procedure was undertaken with the peak voxel from clusters identified as 

significantly different between groups as it is not straightforward to include 

interaction effects with covariates in SPM; however, the statistics for this analysis 

will be inflated due to the lack of correction for multiple comparisons. In the event of 

a significant baseline group difference in whole-brain corrected activity, we decided 

to use these regions as further ROIs in subsequent analyses exploring the effect of 

drug. 

Third, we explored the effects of treatment with ketamine on brain activity 

during task performance in patients only. Difference images were calculated (post-

ketamine – post-placebo) for our primary contrast of interest (3-back > 1-back) only. 

We extracted beta values from both our a priori and baseline difference identified 

ROIs. A single factor (drug: post-ketamine or post-placebo brain activity) repeated 

measures ANOVA with order entered as a between-subjects factor and baseline 

activity entered as a covariate was computed in SPSS for each post-infusion ROI. 

For exploratory whole-brain analyses, a one-sample t-test on the ketamine vs. 

placebo difference images was used to assess effects, with order entered as a 

covariate. Beta values were extracted from regions in which a significant effect of 

ketamine was identified and control analyses were computed to assess the interaction 

between order, baseline and post-treatment brain activity, as SPM cannot process a 

baseline image as a covariate. Note, for these methodological reasons the chances of 

a type II error are increased.  

Follow-up analyses of regions identified using the case-control comparison 

model examined whether baseline activity levels in either our ROI or significant 

whole-brain cluster corrected regions (using the extracted peak voxel from 

significantly different clusters from the 3-back>1-back between groups contrast) 

were predictive of the antidepressant response to ketamine, in depressed patients 

only, at 24-hours post-infusion (a previously identified time of maximal 

antidepressant effect). We also explored in depressed patients only whether any brain 

region at baseline was correlated with the magnitude of the antidepressant response 

to ketamine at 24-hours post-infusion using an exploratory whole-brain approach. 
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Finally, we explored whether the post-infusion change in activity in our ROIs (using 

Pearson product moment correlation coefficient) or whole-brain difference image 

was related to the magnitude of antidepressant response to ketamine at 48-hours, the 

time of each post-infusion MRI scan. 
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5.4 Results 

5.4.1 Case-control comparison 

Participant demographic information is presented in Table 5.1 Of note, significant 

differences in IQ (t(29) = -2.85, P = 0.008), age (U = 109.50, Z = 2.06, P = 0.04), and 

number of years of education (U = 102.50, Z = -2.39, P = 0.02) were found between 

patients and healthy volunteers, with patients less educated, displaying a lower IQ 

and older. 

Table 5.1. Participant demographic information and psychometric scale scores at 
baseline. 

 Healthy 
Volunteers (N = 

18) 

Patients (N = 20; 18 
MDD, 2 BD) 

Statistical 
Differences 

 Mean SD Mean SD t/Z P 

Age 32.22 9.90 38.45 11.01 2.06 0.04 
Age of onset NA NA 16.44 8.43   
Baseline BDI 0.67 0.98 30.47 8.63 4.65 < 0.001 
Baseline 
MADRS 

0.31 0.48 31.67 4.00 4.75 < 0.001 

IQ 121.5 7.29 111.89 10.86 -2.85 0.008 
Current 
episode 
length 
(months) 

NA NA 29.64 42.32   

Years of 
education 

18.71 1.69 16.90 2.61 -2.39 0.02 

 N % N % X2  
Female 8 44 13 65 1.62 0.33 
TRD NA NA 19 95   
BDI: Beck Depression Inventory; MADRS: Montgomery-Åsberg Depression Rating 
Scale; TRD: Treatment Resistant Depression; IQ: Intelligence Quotient. 

5.4.1.1 Behavioural data 

There were no significant main effects of years of education or age on baseline task 

accuracy (hits minus commissions) so these variables were dropped from the model. 

There was a main effect of difficulty (F(1,36) = 172.97, P < 0.001), but no main effect 

of group (F(1,36) = 2.62, P = 0.11), or an interaction between difficulty and group 

(F(1,36) = 2.06, P = 0.16) on baseline task accuracy (Figure 5.3A). The main effect of 

difficulty reflected lower accuracy on the 3-back (M = 39%) in comparison to the 1-
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back (M = 96%). Again, there were no significant main effects of age or education 

years on baseline hit RT and again these covariates were dropped from the model. 

Three patients had no correct 3-back responses and thus no RT and therefore were 

not included in this analysis. There was a main effect of difficulty on correct RTs 

(F(1,33) = 29.99, P < 0.001) but no main effect of group (F(1,33) = 0.01, P = 0.92) or a 

difficulty by group interaction (F(1,33) = 0.04, P = 0.85; Figure 5.3B). The main 

effect of difficulty on RTs reflected faster correct responses to the 1-back (591 ms) 

than the 3-back (778 ms) task condition.  

 

  
Figure 5.3. Case control comparison of n-back performance. Task accuracy (A) and 
reaction time (B) were comparable across group (healthy volunteers and depressed 
patients) for both the 1- and 3-back. Error bar indicate one standard error of the 
mean.  
 

5.4.1.2 fMRI data 

The n-back task activated a network of regions reliably found in previous studies 

using this task (Owen et al., 2005), including, motor, striatal, insular, parietal and 

dorsolateral prefrontal cortices (all PWB < 0.05 at the voxel-level; Figure 5.4A; 

Table 5.2). Our main contrast of interest, 3-back > 1-back, also activated a number 
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of regions thought to be involved in increasing cognitive load using this task (Owen 

et al., 2005), including the cerebellum, parietal lobule and DLPFC (all PWB < 0.05 at 

the voxel-level; Table 5.2). Supporting our ROI selection, across both groups 

combined, 3-back performance elicited significantly greater activation in the left 

DLPFC ROI than 1-back performance (t(37) = -7.27, P < 0.001; Figure 5.4B). 

Figure 5.4. Neural responses to the n-back task. A) In comparison to rest, the n-back 
task reliably activated a network of task-related regions across all participants, 
including the motor, (top left) insular (top right), parietal (bottom left) and 
dorsolateral prefrontal (bottom right) cortices; all PWB < 0.05 at the voxel-level. B) 
Beta values averaged across our region of interest, the left DLPFC, revealed that 
activity during the 3-back was greater than activity during the 1-back across the two 
groups combined. Error bar indicate one standard error of the mean. Colour bar 
indicates t-value. 
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Table 5.2. Regions activated during n-back task performance and during our primary 
contrast of interest (3-back > 1-back), both across all subjects (healthy volunteers 
and patients) and threshold PWB < 0.05 voxel-level corrected. 
 
Region MNI Coordinate Peak 

t(37)-
value 

Voxel PWB Extent 

X Y Z 

n-back > Rest 

Posterior medial frontal 6 8 58 13.78 <0.001 4260 
Posterior medial frontal 3 17 49 13.45 <0.001  
Insula 33 23 1 12.93 <0.001  
Supramarginal gyrus 42 -40 43 12.93 <0.001 981 
Inferior parietal lobule 36 -49 46 12.88 <0.001  
Supramarginal gyrus 54 -43 40 10.12 <0.001  
Inferior occipital gyrus -42 -67 -8 10.77 <0.001 548 
Cerebellum -36 -61 -32 9.73 <0.001  
Middle occipital gyrus -39 -85 -5 6.52 0.002  
Inferior parietal lobule -33 -49 43 10.68 0.000 734 
Superior parietal lobule -15 -70 52 7.41 0.000  
Middle occipital gyrus -27 -76 28 5.90 0.011  
Inferior temporal gyrus 45 -58 -14 9.58 0.000 503 
Cerebellum 33 -58 -32 9.36 0.000  
Inferior occipital gyrus 42 -88 -5 8.27 0.000  
Superior temporal gyrus -54 -46 16 8.24 0.000 86 
Head of caudate 15 2 10 6.76 0.001 63 
Cerebellum -9 -79 -26 6.75 0.001 17 
Internal capsule -18 -1 10 6.56 0.002 74 
Superior temporal gyrus 60 -40 16 6.15 0.006 13 
Middle occipital gyrus -33 -94 1 5.32 0.049 1 
3-back > 1-back       
Inferior parietal lobule 42 -43 46 10.93 <0.001 1568 
Precuneus 12 -70 55 10.70 <0.001  
Inferior parietal lobule -33 -55 46 8.88 <0.001  
Posterior medial frontal 3 14 49 9.13 <0.001 942 
MCC 9 23 37 8.51 <0.001  
Superior frontal gyrus 27 8 52 8.18 <0.001  
DLPFC 39 32 34 8.14 <0.001 269 
Cerebellum -33 -61 -32 8.00 <0.001 106 
Insula -30 20 -2 7.84 <0.001 83 
DLPFC -33 47 22 7.75 <0.001 135 
Insula 36 20 -2 7.69 <0.001 108 
DLPFC -39 20 34 7.57 <0.001 463 
Precentral gyrus -45 8 31 7.56 <0.001  
Inferior frontal gyrus -54 17 34 7.23 <0.001  
Cerebellum 36 -61 -32 6.63 0.001 33 
Pons 3 -31 -26 6.54 0.002 13 
Inferior frontal gyrus 54 11 19 6.13 0.005 23 
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Pons 9 -25 -32 5.94 0.007 2 
Pallidum -15 5 -2 5.46 0.026 13 
Putamen -18 2 10 5.42 0.029  
DLPFC: dorsolateral prefrontal cortex; Montreal Neurological Institute (MNI) 
coordinates indicate the distance (in millimeters) from the stereotaxic origin (anterior 
commissure), with X representing the lateral distance from the origin (positive 
numbers to the right), Y representing the anterior-posterior dimension (positive 
numbers anterior), and Z representing the dorsal-ventral dimension (positive 
numbers dorsal). Where a cluster survived whole brain family wise error correction 
(P < .05), three local peaks are reported where available.  
 

For the case-control comparison ROI (left DLPFC) analysis, no significant 

effects of the covariates were found so these were dropped from the model. There 

were no significant activation differences between the healthy volunteers and 

depressed patients in the left DLPFC ROI (F(1,36) = 0.69, P = 0.41; Figure 5.5A). 

Contrasting previous findings, there were no supra threshold voxels more activated 

in the contrast depressed patients > healthy volunteers for our contrast of interest (3-

back > 1-back). However, exploratory whole brain analyses (cluster-forming 

threshold P < 0.005 uncorrected) revealed a trend toward a difference in activation 

between the two groups in the right superior parietal lobule (SPL; [x = 21, y = -61, z 

= 52]; t(34) = 4.22, PWB = 0.091 at the cluster-level; Figure 5.5B; Table 5.3), which 

arose from greater activity in healthy volunteers than depressed patients (Figure 

5.5C). To further understand this difference, we extracted separate beta values from 

the peak voxel of this cluster for both 1- and 3-back conditions and conducted a 

follow-up repeated measures ANOVA in SPSS with difficulty and group entered as 

within- and between-subjects factors, respectively, and with age and years of 

education entered as covariates. There were no significant main effects of the 

covariates, which were dropped from the model. The main effect of group was also 

not significant (F(1,36) = 0.13, P = 0.72). However, there was a significant main effect 

of difficulty (F(1,36) = 39.81, P < 0.001) and a group by difficulty interaction (F(1,36) = 

9.35, P = 0.004). Post-hoc tests revealed significantly higher SPL activation during 

the 3-back than the 1-back condition for both depressed patients (F(1,36) = 41.68, P < 

0.001) and healthy volunteers (F(1,36) = 5.58, P = 0.024. However, no significant 

between-group differences in SPL activation for 1-back (F(1,36) = 0.95, P = 0.34) or 

3-back (F(1,36) = 0.09, P = 0.77) were found (Figure 5.5C).  
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Figure 5.5. Case-control comparison for n-back fMRI activity. (A) Our ROI analysis 
revealed no group differences in DLPFC activity during our main contrast of interest 
(3-back vs. 1-back). (B) However, we identified a trend towards a significant group 
difference in difficulty-related activation in the superior parietal lobule (SPL; cluster-
forming threshold P < 0.005 uncorrected). (C) The SPL activity difference was 
driven by greater activity in this region by healthy volunteers than depressed 
patients. Error bar indicate one standard error of the mean. Colour bar indicates t-
value. 
 
Table 5.3. Comparison of healthy volunteer and depressed patient’s brain activation 
to our primary contrast of interest (3-back > 1-back). Threshold at an initial P < 
0.005 uncorrected. An extent threshold of 5 voxels or more was also applied. Note, 
there were no supra-threshold voxels in the depressed patients > healthy volunteers 
contrast. 
Region MNI Coordinate Peak t(34)-

value 
Cluster PWB Extent 

X Y Z 

HVs > Depressed PTs       
Cerebellum 18 -52 -38 4.41 0.996 16 
Mid cingulate cortex 12 5 34 4.33 0.147 202 
Superior parietal lobule 21 -61 52 4.22 0.091 239 
Angular gyrus 33 -55 46 4.07   
Supramarginal gyrus 45 -34 37 3.81   
Posterior-medial frontal -9 5 52 3.91 0.695 79 
Middle frontal gyrus -30 20 34 3.84 0.893 49 
Precentral gyrus -30 -7 52 3.79 0.780 67 
Insula -36 2 19 3.75 0.807 63 
Cerebellum -18 -61 -38 3.72 0.997 14 
Postcentral gyrus -54 -1 40 3.67 0.975 29 
Cerebellum 36 -64 -32 3.58 0.893 49 
Superior temporal gyrus 48 -34 10 3.38 0.996 15 
Superior parietal lobule -27 -67 49 3.38 0.994 18 
Precentral gyrus 45 2 37 3.37 0.759 70 
Middle temporal gyrus -63 -46 7 3.34 0.987 23 
Insula 48 8 7 3.28 0.999 9 
Pons 3 -31 -32 3.27 1.000 7 
Precuneus -6 -70 49 3.07 0.998 11 
Superior temporal gyrus 66 -28 22 3.06 1.000 7 
Middle temporal gyrus 51 -49 13 3.06 0.999 10 



 

 132 

Middle occipital gyrus -12 -94 1 3.01 0.999 9 
Cerebellum 24 -79 -44 2.90 1.000 6 
HVs: healthy volunteers; PTs: patients; Montreal Neurological Institute (MNI) 
coordinates indicate the distance (in millimeters) from the stereotaxic origin (anterior 
commissure), with X representing the lateral distance from the origin (positive 
numbers to the right), Y representing the anterior-posterior dimension (positive 
numbers anterior), and Z representing the dorsal-ventral dimension (positive 
numbers dorsal). Where a cluster survived whole brain family wise error correction 
(P < .05) or at trend level (P < 0.1), three local peaks are reported where available.  
 

5.4.2 Post-Ketamine 

Due to attrition (N = 4), hardware difficulties (N = 3), missing functional imaging 

data (N = 1) and a patient not responding during the task (N = 1), 16 patients had 

psychometric, 12 behavioural and 11 fMRI analysable data for both 48-hour post-

infusion time points.  

5.4.2.1 Psychometric data 

In comparison to the equivalent time points post-placebo, there was a significant 

improvement in total depression score (MADRS) at 24- (t(15) = 2.59, P = 0.02) and 

48- (t(15) = 2.72, P = 0.016) hours post-ketamine. However, only 3 of the 16 (19%) 

patients who received both infusions reached response criterion (≥ 50% improvement 

on the MADRS) on days 1 or 2. 

Baseline accuracy (r(16) = 0.30, P = 0.26) and RT (r(13) = -0.14, P = 0.65) were 

not significant predictors of the magnitude of the relative antidepressant response to 

ketamine 24-hours post-infusion. Furthermore, baseline BOLD activity from our left 

DLPFC ROI (r(16) = -0.16, P = 0.57) and right SPL (peak voxel, r(16) = -0.29, P = 

0.28) were not significantly associated with the antidepressant response to ketamine 

24-hours post-infusion (improvement coded as the relative percentage reduction 

between ketamine and placebo post-infusion scores and their respective baseline 

scores). Furthermore, no clusters survived cluster-level correction with our whole 

brain approach (Table 5.4). 
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Table 5.4. Correlation between pre-treatment brain activity during our primary 
contrast of interest (3-back > 1-back) and the antidepressant response to ketamine 
24-hours post-infusion in depressed patients. Threshold at an initial P < 0.005 
uncorrected. An extent threshold of 5 voxels or more was also applied. Note, there 
were no supra threshold voxels for the positive correlation. 
Region MNI Coordinate Peak t(14)-

value 
Cluster PWB Extent 

X Y Z 

Negative correlation with antidepressant response to ketamine at 24-hours post-infusion 

Superior temporal gyrus 45 -25 -2 4.51 0.907 45 
Precuneus 15 -61 46 3.28 1.000 8 
Cerebellum 12 -82 -26 3.25 1.000 8 
Montreal Neurological Institute (MNI) coordinates indicate the distance (in 
millimeters) from the stereotaxic origin (anterior commissure), with X representing 
the lateral distance from the origin (positive numbers to the right), Y representing the 
anterior-posterior dimension (positive numbers anterior), and Z representing the 
dorsal-ventral dimension (positive numbers dorsal).  
 

5.4.2.2 Behavioural data 

There was no significant interaction between drug administration order and drug 

(ketamine or placebo) on either accuracy or RT; thus, order was removed from 

subsequent models examining the effect of drug on task performance. There was no 

significant effect of drug on post-infusion accuracy (F(1,10) = 0.01, P = 0.91; Figure 

5.6A) or RT (F(1,8) = 1.26, P = 0.30; Figure 5.6B). Changes in accuracy (r(12) = 0.32, 

P = 0.31) and RT (r(10) = -0.38, P = 0.28) from placebo to ketamine, relative to 

baseline levels, did not relate to the magnitude of the antidepressant response to 

ketamine.  
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Figure 5.6. The effect of ketamine and placebo on task performance neural activity. 
There was no difference in accuracy (A) or reaction time (RT; B) between post-
placebo (blue) and post-ketamine sessions. There was no difference in neural activity 
(3-back vs 1-back) in the dorsolateral prefrontal cortex (C; DLFPC) or superior 
parietal lobule (D; SPL) regions of interest. Error bars indicate one standard error of 
the mean. 

5.4.2.3 fMRI data 

There was a significant interaction between drug and order (F(1,8) = 5.49, P = 0.047) 

but no significant interaction between baseline and drug (F(1,8) = 0.41, P = 0.54) or a 

main effect of drug (F(1,8) = 0.67, P = 0.44; Figure 5.6C) on left DLPFC activity. 

There was no significant interaction between drug and order (F(1,8) = 0.24, P = 0.64) 

or a main effect of drug (F(1,9) = 0.31, P = 0.59) for our SPL ROI analysis (Figure 

5.6D). Moreover, no clusters survived cluster correction in our exploratory whole 

brain analyses and there were no suprathreshold voxels in the post-placebo > post-

ketamine contrast (Table 5.5). Finally, there was no significant relationship between 

the antidepressant response to ketamine 48-hours post-infusion and the change in 

DLPFC (r(11) = 0.45, P = 0.17) or SPL (r(11) = -0.21, P = 0.54) ROIs or exploratory 

whole brain activity (Table 5.5). 
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Table 5.5. Comparison of drug effects on neural activation and the relationship with 
the antidepressant response 48-hours post-infusion in depressed patients only during 
our primary contrast of interest (3-back > 1-back). Threshold at an initial P < 0.005 
uncorrected. An extent threshold of 5 voxels or more was also applied. Note, there 
were no suprathreshold voxels in the post-placebo > post-ketamine contrast and none 
in the positive correlation with the antidepressant response to ketamine at 48-hours 
post-infusion.  
Region MNI Coordinate Peak t(9)-

value 
Cluster PWB Extent 

X Y Z 

Post-Ketamine > Post-Placebo 

Frontal pole -3 59 -5 5.71 0.814 54 
Precuneus 15 -55 19 4.22 0.994 14 
Intraparietal sulcus -27 -58 28 3.78 0.999 6 
Negative correlation with antidepressant response to ketamine at 48-hours post-infusion 
Superior peduncle -12 -37 -38 5.96 0.967 27 
Cerebellum 9 -43 -8 4.78 0.991 17 
Hippocampus -18 -43 7 4.18 0.997 11 
Montreal Neurological Institute (MNI) coordinates indicate the distance (in 
millimeters) from the stereotaxic origin (anterior commissure), with X representing 
the lateral distance from the origin (positive numbers to the right), Y representing the 
anterior-posterior dimension (positive numbers anterior), and Z representing the 
dorsal-ventral dimension (positive numbers dorsal).  
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5.5 Discussion 

The aims of this study were to assess whether treatment with the rapid-acting 

antidepressant ketamine causes an improvement in working memory, as measured by 

the n-back, in depressed patients and what neural structures are involved in its 

mechanism of action. Additional goals included characterising the pre-treatment 

differences in brain activity and n-back task performance between healthy volunteers 

and unmedicated, treatment-refractory depressed patients and predicting the 

antidepressant response to ketamine. Contrary to our predictions, we found no 

significant changes in working memory or brain activity from placebo to ketamine in 

depressed patients. Moreover and in contradiction to our predictions and numerous 

previous reports (Wang et al., 2015), we failed to find any significant baseline 

differences during our case-control comparison analyses of n-back elicited 

behavioural performance or brain activity between depressed patients and healthy 

volunteers. Nevertheless, in comparison to healthy volunteers, we identified a trend 

toward lower activation in the SPL of depressed patients. Finally, we found no 

significant association between the antidepressant response to ketamine and either 

task performance or brain activity at either baseline or post-infusion. 

In comparison to placebo, administration of ketamine was associated with a 

significant improvement in general depression scores 48-hours post-infusion; 

however, we failed to find a difference in brain activity or behaviour between the 

post-infusion scans. While these results might at first seem surprising, our findings 

may fit in the context of the results obtained from our case-control comparisons and 

some similar reports. Given the treatment refractory nature of the depressed patients 

tested here, we expected to detect robust pre-treatment between group differences in 

performance and fMRI measured neural activity. However, contrasting pre-treatment 

n-back elicited brain activity and behaviour between depressed patients and healthy 

volunteers revealed no significant differences, suggesting our task may have been 

sensitive enough to detect trait differences. Moreover and consistent with our null 

finding, at least one n-back fMRI study failed to detect treatment-related (fluoxetine) 

linear load response-effects in MDD patients, suggesting that the neural correlates of 

working memory abnormalities in major depression may be more trait than state-

related (Walsh et al., 2007). 
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While the lack of a significant difference in n-back behaviour may seem 

surprising, a number of fMRI studies have failed to identify baseline behavioural 

differences between medication-free depressed patients and healthy volunteers using 

the n-back task (Matsuo et al., 2007, Walsh et al., 2007), potentially suggesting that 

fMRI versions of the task may, or perhaps the sample sizes of fMRI studies, not be 

sensitive enough to detect behavioural differences. Indeed, in a meta-analysis of 

executive functioning in depression, the behaviourally administered n-back reliably 

differentiated healthy volunteers and depressed patients with a medium effect size (d 

= 0.63) across seven studies (Snyder, 2013). A power analysis using the same effect 

size (d = 0.63) at 80% power to detect a group difference using a two-tailed 

independent t-test and with an α level of 0.05 revealed that 41 participants would be 

required per group to detect an effect of this size. Further to this point, Wang and 

colleagues (2015) note in their working memory fMRI meta-analysis that out of the 

six studies which utilised the n-back, none of which had an adequate sample size to 

detect a between groups difference using the aforementioned power parameters, no 

study detected a performance difference between depressed patients and healthy 

volunteers, irrespective of medication status.  

Wang and colleagues (2015) did however detect evidence for a consistent 

working memory task-elicited left DLPFC hyper-activation in depressed patients in 

comparison to healthy controls across 10 studies in their meta-analysis. 

Unexpectedly, in comparison to healthy volunteers, we failed to detect prefrontal 

hyperactivity in patients in our ROI analysis using the coordinates identified in the 

meta-analysis by Wang et al. (2015) or using an exploratory whole brain approach; 

worryingly, we identified no supra threshold voxels in the contrast depressed patients 

> controls in our case-control comparison. However, our lack of neural hyperactivity 

in depressed patients in comparison to healthy volunteers during the n-back is not in 

isolation; at least one other group has also failed to find this activation pattern during 

case-control comparisons with depressed patients using the n-back (Barch et al., 

2003). To ascertain the robustness of our methodology, we conducted analyses to 

explore the effects of performing the n-back task and in particular of the increasing 

working memory load from 1- to 3-back conditions. These analyses showed robust 

activation of working memory associated networks, including significantly increased 

activity in our left DLPFC ROI during 3-back in comparison to 1-back blocks. Taken 
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together, these control analyses suggest the n-back task used here was adequately 

designed to elicit detectable effects of difficulty in our regions of interest. 

Nonetheless, we identified a trend towards a reduction in BOLD activation in 

the right SPL in depressed patients during the case-control comparison. Although the 

SPL is a brain region reliably activated by the n-back task during fMRI (Owen et al., 

2005) and is critical for the manipulation of information in working memory 

(Koenigs et al., 2009), we had not anticipated that this region would differ between 

our groups. However, the SPL region we identified is highly proximal (within 1cm) 

to the right precuneus, a structure noted by Wang et al. (2015) as showing a very 

reliable relative hypoactivity in depressed patients during working memory tasks and 

ipsilateral to the region found here. Moreover, the SPL region we found here is also 

consistent in direction and location (including laterality) to at least one previous 

case-control comparison study in MDD patients (Barch et al., 2003). The SPL has 

consistently been shown via functional neuroimaging and lesion studies to be 

involved in cognitive tasks that require goal directed attention (Behrmann et al., 

2004, Friedrich et al., 1998), such as working memory (Lie et al., 2006), and top-

down orienting, such as set-shifting (Shomstein, 2012). One possible interpretation 

of the trend toward a between group difference in SPL activity seen here is that, 

relative to healthy volunteers, depressed patients may have had to work harder to 

maintain similar behavioural performance during the 1-back condition but both 

groups may have worked equally hard during the 3-back. Thus, the smaller neural 

difference between 1- and 3-back in depressed patients may reflect more similar 

levels of attention across task blocks while in healthy volunteers the larger increase 

may indicate distinct changes in attentional demands from 1- to 3-back conditions. 

Although the results of our follow up analyses did not confirm this relationship 

statistically, the main effect of task difficulty on SPL activation was greater in 

healthy volunteers than depressed patients and beta values between 1- and 3-back 

were more comparable in patients than controls (Figure 5C), lending some credence 

to this interpretation. 

We failed to find an association between pre-treatment working memory 

performance (RT) and the magnitude of the antidepressant response to ketamine at 

24-hours post-infusion. In two independent samples, Murrough and colleagues 



 

 139 

(Murrough et al., 2015, Murrough et al., 2013b) found that slower processing speed 

in depressed patients was predictive of a greater antidepressant response 24-hours 

post-ketamine. A number of study differences may explain why no significant 

association was found here. First, Murrough and colleagues (Murrough et al., 2015, 

Murrough et al., 2013b) used the MATRICS consensus cognitive battery (MCCB), 

which assesses many cognitive components using distinct sub-tests, including: verbal 

learning, working memory, visual learning, reasoning/problem solving and 

processing speed. The n-back task used here may not be a valid measure of the 

processing speed component assessed by the MCCB. Murrough and colleagues 

(Murrough et al., 2015, Murrough et al., 2013b) found no association between the 

MCCB working memory component, which assesses accuracy, and the 

antidepressant response, a result consistent with our findings. Second, the sample 

sizes of the two studies by Murrough and colleagues (Murrough et al., 2015, 

Murrough et al., 2013b) (N = 62 and 25, respectively) are substantially higher than 

those used here, which may have hindered our ability to detect associations of the 

magnitude they reported (not enough information was provided in either study to 

calculate an effect size). Finally, the study designs also differed to ours here, with a 

midazolam controlled and open label single ketamine infusion design being 

employed by Murrough and colleagues, respectively (Murrough et al., 2015, 

Murrough et al., 2013b). 

In addition to the failure to replicate an association between pre-treatment 

behaviour and the antidepressant response to ketamine, we also failed to find a 

previously found association between pre-treatment medial pregenual activation and 

response to ketamine in depressed patients. Using MEG, Salvadore and colleagues 

(2010) found a strong association between pregenual cingulate cortex-localized 

desynchronization in the beta band and response to ketamine at 230 minutes post-

infusion in an open label designed study. However, MEG and fMRI assess distinct 

neural signals and it is unclear if beta desyncrhonization is comparable to the 

neurovascular signals detected by fMRI; beta desynchronization is thought to reflect 

asynchronous firing within cortical networks (Stevenson et al., 2011). Our selection 

of the 24-hours post-infusion time point, which was based on findings that this point 

is frequently the time of the maximal antidepressant effect (Zarate et al., 2006) and is 

completely free of the psychotomimetic effects of ketamine (Luckenbaugh et al., 
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2014), may also have hindered the possibility of detecting a similar change in neural 

activity. Finally, pre-treatment and post-treatment activity levels in our ROI, left 

DLPFC, did not relate to the antidepressant response to ketamine. While a number of 

studies have demonstrated a change in DLPFC activity in depressed patients 

following treatment (Brody et al., 2001, Fales et al., 2009, Kennedy et al., 2001), 

only one study has demonstrated a relationship (positive) between pre-treatment 

DLPFC activity levels (higher) and treatment response (greater) (Ritchey et al., 

2011), suggesting that pre-treatment activity levels in this brain region may be 

important for treatment response but might not directly relate to the magnitude of 

post-treatment improvements generally. Moreover, no study has detected a change in 

DLPFC activity levels that relate to the change in depression scores post-treatment.  

A number of limitations of this study merit comment. First, due to resource 

limitations, the n-back task used here comprised only six blocks of each condition (1-

back, 3-back and rest) and lasted six minutes in duration. The brevity of the task and 

number of blocks, although optimised in duration for BOLD SNR detection, may 

have hampered the likelihood of detecting a statistically significant result. Future 

studies would benefit from a greater number of blocks of a similar length. Second 

and related to the first limitation, the sample size for our case-control comparison 

was most likely not adequate to detect a medium effect size. Moreover, the sample 

size for our post-drug analyses was very small (N = 11 for fMRI and N = 12 

behaviourally). Third, the differences in demographic variables (age, years of 

education, IQ) and subsequent required inclusion of these variables (except IQ due to 

missing data) in our statistical models as covariates may have impaired our ability to 

detect group differences during fMRI. These three variables may all relate to 

working memory performance (Alloway and Alloway, 2010, Alloway et al., 2010, 

Cabeza et al., 2004), thus removing their variance and decreasing the degrees of 

freedom may have hindered our ability to detect statistically significant between 

group differences. Fourth, failing to include IQ as a covariate may have missed 

important and unique variance in our models; IQ could arguably be more sensitive 

than education years. Fifth, the timing of each non-baseline fMRI scan was 48-hours 

post-infusion and therefore may have missed the peak antidepressant effects and 

mechanisms of action of ketamine; however, this is unlikely as the antidepressant 

effect size at 24- and 48-hours post-infusion was highly comparable. Sixth, as per 
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Chapter 4, the antidepressant efficacy of ketamine was much poorer than previous 

investigations (Milak et al., 2015, Zarate et al., 2012, Zarate et al., 2006), with only 

19% of patients reaching response criterion; this poorer rate of response may have 

negatively impacted our ability to detect pre-treatment neural and behavioural 

predictors of response to ketamine and changes in brain activity and behaviour post-

infusion. 

In summary, we found no significant brain or behaviour changes between 

post-placebo and post-ketamine scans in medication-free treatment-refractory 

depressed patients during a working memory task. Task performance and 

concomitant brain activity were similar between depressed patients and healthy 

controls at the baseline pre-treatment study phase with the exception of a trend 

towards significantly greater brain activity in the SPL in healthy volunteers. 

Behaviour and brain activity at baseline and changes in these measures were not 

associated with the antidepressant response to ketamine. Further research in a larger 

sample of depressed patients and healthy volunteers pre-treatment and post-infusion 

is required to better understand the cognitive correlates of the antidepressant effects 

of ketamine.  
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6 General discussion 

This discussion will provide a unifying summary of the experiments presented in 

Chapters 2-5. Following a brief overview of the aims and results of each 

experimental Chapter, I will discuss how the novel treatments presented in this thesis 

relate to antidepressant treatment models mentioned in Chapter 1. I will discuss the 

implications and limitations of the current research and assess if and how the work 

demonstrated here advances our knowledge of the cognitive and neural mechanisms 

underpinnings of tDCS and ketamine as antidepressant treatments. Subsequently, I 

will chart a path for future studies in the field. Finally, I will conclude the thesis with 

a summary of the points made during the general discussion. 

6.1 Summary of individual chapter investigations and findings 

6.1.1 Chapter 2: Does excitatory fronto-extracerebral tDCS lead to improved 
working memory performance in healthy volunteers? 

The aim of this study was to investigate whether the application of excitatory fronto-

extracerebral tDCS would enhance performance on a working memory task, the n-

back, in healthy volunteers. A number of studies have demonstrated cognitive and 

mood enhancing capabilities of tDCS in healthy volunteers and depressed patients 

(Berlim et al., 2013, Clark et al., 2012, Coffman et al., 2012, Meron et al., 2015, 

Oliveira et al., 2013). However, the optimal stimulation parameters have yet to be 

explored and a number of methodological criticisms have been voiced (Walsh, 

2013). In particular, questions regarding the blinding of tDCS studies, the timing and 

frequency of stimulation, and the contribution of both stimulation electrodes have 

been raised (Walsh, 2013). No study yet has employed an excitatory fronto-

extracerebral electrode montage to explore the cognitive enhancing effects of tDCS 

across multiple sessions in a double-blind design. Thus, in Chapter 2 we conducted a 

double-blind, multiday, between-subjects experiment using a novel fronto-

extracerebral electrode montage with the excitatory anodal electrode applied to the 

left DLPFC and the inhibitory electrode placed on the contralateral cheek. A fronto-

extracerebral montage precludes criticisms regarding the contribution of the 

reference electrode to task or neural activity changes, as only one electrode is located 

on the scalp. Participants performed the n-back, a working memory task, at baseline, 
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during stimulation and post-stimulation on day 1 and during and after stimulation on 

day 2; 24-to-48-hours separated stimulation days 1 and 2. In comparison to sham 

recipients, participants receiving active stimulation showed a greater improvement in 

n-back accuracy from baseline to the stimulation period on day 1, only; no other 

significant between group differences were found. While our results do not support 

the use of tDCS as an overall working memory performance enhancer in healthy 

volunteers, our findings are consistent with the idea that tDCS may enhance the 

speed of learning during early stages of task performance. 

6.1.2 Chapter 3: Prefrontal Cortex Glutamate, Glutamine, and Glutathione 

Signals Using an Adapted Echo Time Optimised PRESS Sequence: A 

Between- and Within-Sessions Investigation 

The goal of Chapter 3 was to evaluate whether an adapted 1H-MRS sequence at 7T 

was reliable in the measurement of glutamate and its associated metabolites within- 

and between-sessions in healthy volunteers. For 1H-MRS to be used in the evaluation 

of clinical treatments and the assessment of underlying pathology, the within- and 

between-session reliability of each pulse sequence at specific field strengths needs to 

be established first in healthy volunteers. Our results revealed that within-session 

measurement of glutamate and glutamine was excellent on average and good for 

glutathione. Between-session reliability was good-to-acceptable for the measurement 

of glutamate, glutamine and glutathione. We also noted novel associations between 

age and glutathione and gender and glutathione and glutamine levels. The results of 

our assessment support the use of this adapted 1H-MRS sequence at 7T in within- 

and between-session clinical evaluations of neural glutamatergic metabolite levels. 

6.1.3 Chapter 4: Anhedonia, Reward Processing and Medial Prefrontal 

Glutamate in Major Depression: A 7T 1H-MRS and NMDA Receptor 

Antagonist Treatment Investigation in Medication Free, Treatment 

Resistant, Patients 

The goals of Chapter 4 were manifold. Firstly, we aimed to replicate and extend 

recently found improvements in anhedonia levels in MDD and BD patients following 

a sub-anaesthetic dose of intravenous ketamine (Lally et al., 2014b, Lally et al., 
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2015b). Specifically, our primary goals were to further understand the nature and 

underpinning glutamatergic mechanisms of the anti-anhedonic action of ketamine 

using the adapted 1H-MRS sequence and voxel location (pregenual anterior cingulate 

cortex) utilized in Chapter 3. Our second goal cantered on replicating a previously 

found association between pre-treatment glutamine levels and the antidepressant 

response to ketamine (Salvadore et al., 2012). Our final aim focused on probing the 

underlying pre-treatment pathophysiology of anhedonia and depression using 

computerized reward tasks and 7T 1H-MRS. Few studies to date have examined 

reward processing in medication free, treatment refractory patients and no study has 

explored the 1H-MRS metabolite profile of such patients at 7T. 

As expected, in comparison to healthy volunteers, significantly greater 

anticipatory and consummatory anhedonia levels were found at baseline in depressed 

patients. Contrasting previous results, however, no pre-treatment group differences in 

monetary incentive motivation were found. A significant pre-treatment difference in 

reward learning was found with patients showing poorer learning to less reliable 

stimuli than healthy volunteers; however, this difference related to number of years 

living with depression, but not anhedonia levels. No differences in glutamatergic 

metabolites were found at baseline. However, baseline levels of glutamine, but not 

glutamate, were predictive of the antidepressant response to ketamine.  

In comparison to placebo, depressed patients showed a robust improvement 

in anticipatory anhedonia, as measured by the SHAPS, and general depressive 

symptom levels following ketamine; however, this benefit was not mirrored by 

changes in consummatory and anticipatory anhedonia, as assessed by the TEPS. 

Moreover, in comparison to post-placebo, no changes in monetary incentive 

motivation or reward learning were apparent 24-hours post-ketamine. However, in 

comparison to post-placebo, a significant change in glutamine, but not glutamate, 

was found following ketamine but this did not relate to the anti-anhedonic response. 

Our results suggest that ketamine may be beneficial in targeting anticipatory 

anhedonia, but do not provide evidence for benefits to monetary incentive 

motivation, reward learning or consummatory anhedonia; however, the limited 

sample size limits the interpretation of these null results. Furthermore, our results 
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suggest that glutamine may play an important role in the mechanisms of action of 

ketamine, potentially indicating a role for astrocytes. 

6.1.4 Chapter 5: Working Memory in Major Depression: An fMRI and 

NMDA Receptor Antagonist Treatment Investigation in Medication-

Free, Treatment-Resistant, Depressed Patients 

The primary aims of study four were to evaluate the potential for ketamine to 

improve cognitive impairment found in depressed patients and to understand its 

antidepressant mechanisms of action using fMRI; participants performed the n-back, 

a working memory task used in Chapter 2, at baseline and 48-hours following 

infusions of ketamine and placebo during fMRI. Additionally, we sought to replicate 

and extend previous findings by exploring whether baseline task performance 

(Murrough et al., 2015, Murrough et al., 2013b, Shiroma et al., 2014) and neural 

activity (Salvadore et al., 2010) during a working memory task were predictive of 

the antidepressant response to ketamine. Finally, we also conducted case-control 

comparisons to evaluate pre-treatment differences in behaviour and brain activity. 

Contrary to our expectations, in comparison to 48-hours post-placebo, a single 

infusion of sub-anaesthetic intravenous ketamine was not associated with an 

improvement in n-back performance or a change in neural activity 48-hours later. 

Moreover, we failed to replicate previous findings of cognitive load-associated 

prefrontal hyperactivity in depressed patients in comparison to healthy volunteers. 

However, we did find a trend towards reduced superior parietal cortex activity in 

depressed patients in comparison to healthy volunteers. Our results do not support 

the idea that ketamine is a cognitive enhancer for patients with depression. 

 

6.2 How thesis findings relate to models of depression and its treatment 

Chapter 1 discussed, amongst other ideas, three theories of standard antidepressant 

action: the monoamine, cellular plasticity and cognitive neuropsychological models. 

The conclusion of our review suggested that none of the three models on its own was 

sufficient to fully explain how standard antidepressants work, but all models have at 
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least some, albeit tentative in some cases, explanatory power and validity. 

Furthermore, we suggested that these three models were not mutually exclusive and 

may in fact all be true to some extent. We then assessed in Chapter 1 how these three 

models might relate to the novel antidepressant treatments explored in this thesis, 

namely, brain stimulation and pharmacological treatments, such as ketamine. Again, 

our review suggested that all three models might have some basis for explaining the 

efficacy of both ketamine and tDCS. Although our investigations in this thesis were 

not designed to directly probe these models, our results may shed some light on how 

tDCS and ketamine fit within the aforementioned frameworks and function as 

antidepressant treatments. 

Our tDCS experiment in Chapter 2 was conducted in healthy volunteers only, so 

it is speculative to suggest how the results from this chapter may relate to the 

treatment of depression using this technique. Nevertheless, the significantly better 

working memory performance found during excitatory fronto-extracerebral tDCS, in 

comparison to sham stimulation, on day 1 is suggestive of a potential cognitive 

enhancing capacity of tDCS. Although it should be noted that the groups were not 

significantly different at any other time point, the results are potentially suggestive of 

an enhancement in early task learning rates.  

The hypothesized mechanism of action of tDCS lends itself cogently to the 

cellular plasticity model of antidepressant action. As detailed in Chapter 2, tDCS is 

believed to exert its effects by up-regulating neuronal excitability beneath the anodal 

(excitatory) electrode, enhancing BDNF secretion (Fritsch et al., 2010) and has been 

shown to focally increase levels of 1H-MRS measured glutamatergic metabolites 

(Clark et al., 2011, Hunter et al., 2015). We stimulated the left DLFPC in our study; 

thus, the neurons in this region may have increased participation in the working 

memory task-elicited neuronal network, leading to enhanced task performance. 

Although the evidence pertaining to an antidepressant effect of tDCS in patients or a 

cognitive enhancing capability in healthy volunteers and depressed patients is mixed 

(Horvath et al., 2015), methodological issues such as stimulation blinding and 

reference electrode positioning may have limited the effectiveness of tDCS to date 

(Horvath et al., 2014). It is possible that an enhancement in neuronal plasticity in the 
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DLPFC may have cognitive enhancing effects in healthy volunteers and also 

depressed patients (Oliveira et al., 2013). Moreover, enhancing DLPFC functionality 

or connectivity may have antidepressant efficacy itself in depressed patients.  

Alternatively, enhancing cognitive functioning in depressed patients may have an 

indirect and beneficial effect on mood. As detailed in Chapter 1, the cognitive 

neuropsychological model proposes that cognitive impairment may play a causal role 

in the development and treatment of depression (Roiser et al., 2012). In particular, 

impairment in cognitive functioning may prevent the deconstruction of negative 

schemata and the instantiation of modified behaviour via treatments such as CBT. 

An alternative explanation for our results is that excitatory DLPFC tDCS increased 

cognitive control or the propensity to ignore distracting stimuli, which may have 

improved task accuracy. An improvement in cognitive control may also enhance a 

depressed patient’s ability to deconstruct negative schemata. The improvement in 

working memory effect shown in Chapter 2 may also speak to the monoamine 

hypothesis. There is a strong link between dopamine and working memory 

performance (Landau et al., 2009, Sawaguchi and Goldman-Rakic, 1991). 

Interestingly, one preclinical study has investigated the effects of tDCS on 

monoaminergic neurotransmitters. Tanaka and colleagues (2013) found that 10 

minutes of tDCS resulted in an increase in extracellular dopamine, but not serotonin, 

levels in the striatum for at least six-hours. Thus, one potential route underlying the 

cognitive enhancing effects of tDCS may be through dopaminergic 

neurotransmission enhancement. 

As discussed in Chapter 1, the antidepressant effects of ketamine may involve, or 

even require, monoaminergic transmission. However, as monoamines were not 

measured in either Chapters 4 or 5, it would be inappropriate to speculate on the 

relationship between our results in these chapters and the monoaminergic model of 

antidepressant action. Roiser and colleagues (2012) suggested that ketamine might 

work as an antidepressant within the cognitive neuropsychological framework by 

rapidly increasing the plasticity of negative schemata; however, experimental 

evidence exploring such an effect is thus far lacking. Again, our results from either 

Chapter 4 or 5 did not directly assess negative schemata or affective biases so it is 
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difficult to comment on the relevance of our findings regarding the use of ketamine 

as an antidepressant to the cognitive neuropsychological model of antidepressant 

action. The rapid acting nature of the antidepressant effect of ketamine (within two-

hours) may require an update to the cognitive neuropsychological model, as currently 

the model does not specify how schemata could possible be broken down so quickly 

(Pringle et al., 2011, Roiser et al., 2012). One possibility is that a strong dissociative 

experience is an important component in the rapid acting nature of the antidepressant 

efficacy of ketamine; unfortunately, our data cannot reflect further on this point. 

The 1H-MRS results from Chapter 4 may relate more coherently to the cellular 

plasticity model of depression and its treatment. We found two potentially important 

results pertaining to glutamine levels and treatment with ketamine in Chapter 4. 

Firstly, glutamine levels at baseline were positively correlated with the magnitude of 

the antidepressant response to ketamine at 24-hours post-infusion, replicating a 

previous result (Salvadore et al., 2012). Second, medial prefrontal cortex glutamine 

levels were significantly lower 24-hours post-ketamine than post-placebo. Glutamine 

is stored in astrocytes and thus these two associations are consistent with their 

involvement in the antidepressant treatment action of ketamine. Higher levels of 

glutamine at baseline might suggest greater rates of intracellular glutamate reuptake 

and conversion via glutamine synthesase. Post-ketamine decreases in glutamine, but 

not glutamate, may also implicate the rate of glutamate-to-glutamine cycling. Both of 

these results might suggest that the functionality of astrocytic-related processes 

connected to the removal and conversion of intrasynaptic glutmatate might be 

important for the mechanism of action of ketamine. Interestingly, an ex-vivo 13C-

MRS study in rodents reported increased glutamate-to-glutamine cycling acutely in 

the medial prefrontal cortex post-ketamine (Chowdhury et al., 2012). Importantly, 

glutamatergic excitotoxicity arising from dysfunctional clearance of glutamate is 

thought to underlie one of the hallmarks of aberrant cellular plasticity, atrophy 

(Duman, 2009). Interestingly, grey matter volume reductions in the medial prefrontal 

cortex, the location of our 1H-MRS voxel, have been consistently reported (Bora et 

al., 2012). 
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6.3 Implications of the current research 

6.3.1 Chapter 2  

The results of Chapter 2, our first experimental chapter, have a number of 

implications. The findings suggest that tDCS could be effective as a cognitive 

enhancer during early stages of learning, but may not provide noticeable benefit once 

a certain standard of performance has been attained. Cognitively impaired 

individuals, such as some depressed patients, may gain substantial benefit from 

techniques that increase difficult task-learning rates. Hypothetically, tDCS could be 

paired with CBT or MBSR treatments during early treatment stages and these 

combinations might then enhance the speed and potentially also the efficacy of the 

techniques in alleviating depressive symptoms. However, the results of our study 

suggest that tDCS is limited in its ability to enhance performance in healthy 

volunteers so there would likely also be efficacy limits in depressed patients. 

Whether tDCS leads to long lasting improvements once stimulation has ceased also 

remains an open question. Outside of psychiatric illnesses such as depression, tDCS 

may also be useful in the enhancement of difficult skills and early task learning 

stages. 

A methodological implication also arose from this study. The excitatory 

fronto-extracerebral montage used here is atypical but circumnavigates a number of 

criticisms of previous studies. Typically, tDCS studies employ a dual cerebral 

montage with both electrodes placed on the scalp. However, as both electrodes are 

hypothesized to stimulate the underlying neural tissue, this leads to interpretation 

difficulties in terms of understanding the neural mechanisms mediating changes in 

brain activity or behaviour. In this study we placed the active electrode on the left 

DLPFC and the reference electrode on the contralateral cheek, thus removing a 

potential degree of freedom.  

6.3.2 Chapter 3  

The accurate measurement of glutamate, glutamine and glutathione using 1H-MRS is 

important, but also methodologically challenging (Ramadan et al., 2013). These 
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neural metabolites (glutamate, glutamine and glutathione) have been posited to play 

a causal role in the pathophysiology of several psychiatric and neurological 

conditions (Lapidus et al., 2014a, Ramadan et al., 2013). In particular, a strong body 

of research implicates the glutamatergic system in the pathophysiology and treatment 

of schizophrenia and depression (Javitt, 2010, Milak et al., 2015, Sanacora et al., 

2012). The implications of Chapter 3 add to the earlier work establishing the adapted 
1H-MRS pulse sequence used in this chapter in healthy volunteers (An et al., 2015). 

We demonstrate in Chapter 3 that the within- and between-session reliability of the 

adapted 1H-MRS sequence at 7T in delineating these metabolites (glutamate, 

glutamine and glutathione) in the mPFC is on average good. The accurate 

measurement of these metabolites in a single scan should permit a finer grained 

classification of the disease states across numerous illnesses. However, our work in 

Chapter 3 establishing the between- and within-session reliability estimates for each 

of these metabolites should have particular implications for treatment trials. 

The excellent within-session reliability demonstrated in Chapter 3, 

particularly for the measurement of glutamate and glutamine, should encourage the 

use of this pulse sequence in the context of intra-scanner treatments and 

understanding mechanisms of drug action, particularly for treatments that have a 

rapid onset. For example, as detailed in Chapters 1, 4 and 5, the NMDA receptor 

antagonist ketamine is known to have strong glutamatergic effects and to rapidly 

alleviate depressive symptomatology within two-hours. Preclinical evidence suggests 

that the administration of ketamine is associated with acute increases in glutamate in 

rodents (Moghaddam et al., 1997), and healthy volunteers (Stone et al., 2012) and 

depressed patients (Milak et al., 2015) using 1H-MRS at 3T. However, another report 

using 1H-MRS at 4T suggests that the administration of ketamine is associated with 

an acute increase in glutamine only. At 7T, the adapted pulse sequence used in 

Chapters 3 and 4 accurately distinguishes between the glutamate and glutamine 1H-

MRS peaks. An intra-scanner ketamine treatment investigation using our sequence at 

7T would permit the distinction between these two metabolites and the mechanism of 

action of this drug. 
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Although the reliability of our metabolite measurements were not as high 

between- as within-sessions, our pulse sequence would likely also be highly 

beneficial in longitudinal multi-scan treatment studies, as in Chapter 4. Glutamate, 

glutamine and glutathione may serve as biomarkers of disease states and thus 

accurate between-session measurements of these metabolites may be highly 

beneficial for understanding the underlying state-dependent changes from response, 

remission and relapse. 

6.3.3 Chapter 4 

The results from Chapter 4 have a number of implications, which can be split into the 

effects of ketamine, the case-control comparison and our brain (1H-MRS 

metabolites) and behaviour (psychometrics and reward tasks) measures. The case-

control comparison revealed a number of anticipated and surprising results. As 

expected, there were large differences in pre-treatment scores on the anhedonia and 

general depression psychometric scales. Interestingly however, pre-treatment scores 

on the TEPS, which splits anhedonia into anticipatory and consummatory 

components, differed within subjects for depressed patients but not healthy 

volunteers; depressed patients self-reported significantly greater anticipatory than 

consummatory anhedonia levels. This result underscores several reports suggesting 

that anticipatory anhedonia may make a greater contribution to depressive symptoms 

than consummatory processes (Dichter et al., 2010, Sherdell et al., 2012). The 

presence of this trend in medication-free treatment refractory patients suggests that it 

may potentially be a consistent pattern across depressed patients and might inform 

treatment strategies. Hypothetically, treatments sensitive to improving levels of 

anticipatory anhedonia may be more important for depressed patients that those 

targeting subject hedonic experience. 

 Following the ketamine infusion, there was a significant improvement in 

general depression and anhedonia scores, as measured by the MADRS and SHAPS, 

respectively, replicating previous effects (Lally et al., 2014b, Lally et al., 2015b, 

Zarate et al., 2012, Zarate et al., 2006). Surprisingly, we found no change in TEPS 

scores post-ketamine, even on the anticipatory sub-component of the TEPS. One 
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potential interpretation of this null result is that the TEPS is not sensitive to state 

effects occurring over a short time-scale. We failed to replicate an effect in our 

mixed (MDD and BD combined) patient sample of an improvement in anhedonia 

levels post-ketamine once the improvement in depression scores had been accounted 

in medicated medication-refractory BD patients. One possible interpretation of this 

null result is that mood stabilizers enhanced the effect of ketamine in the previous 

study (Lally et al., 2014b); recent evidence has found that lithium, one of the 

medications used in the previous study, has an enhancing effect on response to 

ketamine in rodents (Chiu et al., 2015). Another possibility is that the independent 

anti-anhedonic effect of ketamine is specific to BD patients, whom were in the 

minority in this investigation. Additionally, the sample size of the current study was 

approximately half of the previous study (Lally et al., 2014b) so a statistical power 

may partially explain the null results. 

 We found no significant pre-treatment performance differences between 

depressed patients and controls on the EEfRT, a task which examines monetary 

decisional motivation, failing to replicate a previous effect (Treadway et al., 2012). 

Considering the treatment-refractory nature and medication free status of the 

depressed patients tested in this chapter, our results are somewhat surprising; we 

anticipated substantial levels of amotivation in our depressed patients. Contrastingly, 

depressed patients in this chapter self-reported a significant level of anhedonia on the 

SHAPS and TEPS, both of which assess anticipatory anhedonia, a component of 

motivation. Potential sample differences between the current sample and the 

previous report showing a significant group difference on the EEfRT between 

patients with MDD and healthy volunteers (Treadway et al., 2012). In the previous 

report (Treadway et al., 2012) MDD patients were predominantly medicated (85% or 

17/20; either SSRIs or SNRIs) and were excluded from participation if they met 

criterion for past substance abuse or dependence or any reported use of prescription 

drugs that acted primarily on the dopaminergic system; past abuse and dependence 

was permitted in our sample. Given the medication free nature of the patient sample 

here (89% or 23/26), one interpretation of this null result is that levels of EEfRT-

elicited motivation are not aberrant in medication-free depression. Consistent with 

this interpretation, there were no significant EEfRT performance differences in 
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depressed patients between placebo and ketamine 24-hours post-infusion; however, 

the sample size of the post-infusion analysis was small (N = 15). One interpretation 

for the paradox of self-reported anhedonia yet no behavioural manifestation of 

anhedonia here may be that anhedonia in depressed patients is more specific to non-

monetary decisions, such as social anhedonia (Xie et al., 2014). Interestingly, 

Sherdell and colleagues (2012) found decreased motivation levels towards expending 

energy to gain access to humorous stimuli in MDD patients; however, almost 40% of 

patients were medicated in their study. Further work is needed to understand the 

relationship between anhedonia, standard antidepressant medication and behaviour. 

We found a significant pre-treatment group difference on the stimulus-

learning phase of the Scene Choose task; depressed patients were less accurate in 

learning stimulus associations for stimuli where feedback was less consistent (80% 

probability) than most consistent (90% probability), while no difference was detected 

in healthy volunteers. Additionally, depressed patients performed worse than healthy 

volunteers on the transfer phase of the task during comparisons of frequent winning 

and frequent losing stimuli. Surprisingly, these between-subjects performance 

differences were not related to levels of anhedonia levels in depressed patients, 

suggesting that anhedonia levels were not relevant to task differences. Once more, 

our results contrast a previous report using a similar version of this task which found 

no stimulus type by group interaction on stimulus-learning or transfer phase 

performance levels between medicated (87% or 20/23) MDD patients and healthy 

volunteers (Chase et al., 2010). Interestingly, Chase and colleagues (2010) noted a 

significant correlation between anhedonia levels and trial-by-trial learning, with 

greater anhedonia associated with poorer learning; we did not model learning rate 

here, however. Again, no significant 24-hour post-infusion performance differences 

between placebo and ketamine were apparent in depressed patients (N = 15) on the 

Scene Choose task. 

The similar levels of task-related monetary motivation between depressed 

patients and healthy volunteers and the lack of a relationship between performance 

differences and anhedonia on the reward-learning task is surprising. Moreover, the 

changes in anhedonia levels following ketamine were not mirrored by performance 
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alterations on either task. One interpretation of our task results from this chapter is 

that neither task measures components of anhedonia that are pertinent to anhedonia 

in depression. Research on schizophrenia, where anhedonia is a prominent symptom, 

may also offer an important alternative perspective. Strauss and Gold (2012) 

document a paradox whereby current and non-current anhedonia-related feelings in 

patients with schizophrenia are strongly dissonant, with current feelings mirroring 

healthy volunteers while patients report significantly increased anhedonia 

retrospectively; they suggest that cognitive impairments and negative schemas may 

underlie this bias. Interestingly, MDD patients consistently report fewer positive 

autobiographical memories reported than healthy volunteers (Young et al., 2014). A 

similar bias may exist in depression, whereby patients report experiencing greater 

levels of retrospective anhedonia but function at similar levels to healthy volunteers 

on tasks that assess motivational capacity.  

Contrary to our expectations, we found no significant baseline group 

differences in levels of 1H-MRS measured glutamate or glutamine from the medial 

pregenual cingulate cortex. A number of 1H-MRS studies have found evidence for 

reduced prefrontal cortex glutamate levels in MDD patients in comparison to healthy 

volunteers (Luykx et al., 2012, Yuksel and Ongur, 2010); however, many null results 

have also been reported (Price et al., 2009c, Walter et al., 2009). As our study was 

the first to measure neural 1H-MRS metabolites at 7T in depressed patients, we 

anticipated that significant pre-treatment group differences would be apparent given 

the increased spectral resolution and the medication-free and treatment resistant 

nature of our sample; we also hypothesized that glutamine differences may also be 

apparent.  

A number of differences between our study and previous studies may have 

contributed to the pre-treatment glutamatergic difference null result here, including: 

medication-free and treatment refractory patient sample, mixed (MDD and BD) 

patient sample and the difference in 1H-MRS pulse sequence and field strength. 

However and consistent with our result, Price and colleagues (2009c) compared 

medication free treatment resistant MDD patients, medication-free non-treatment 

resistant MDD patients and healthy volunteers using 3T 1H-MRS and found no 
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differences in medial prefrontal cortex levels of Glx, a proxy for glutamate and 

glutamine levels combined. As 1H-MRS measures total tissue metabolite levels 

indiscriminately, it is possible that certain pulse sequences may differ in sensitivity 

to specific cellular regions. For example, one sequence may be more sensitive to 

synaptic glutamate or extracellular glutamate levels (Lally et al., 2014a).  

Nevertheless, baseline glutamine levels in depressed patients were positively 

associated with the magnitude of the antidepressant and anti-anhedonic response to 

ketamine, suggesting that individual differences in pre-treatment levels of glutamine 

might alter the likelihood of a beneficial antidepressant and anti-anhedonic effect to 

ketamine. As glutamine is predominantly found in astrocytic glial cells of the brain 

(Ramadan et al., 2013), this association suggests these cells in particular may play a 

key role in the beneficial effects of ketamine. Consistent with the proposed 

importance of glial cells in MDD, post-mortem analyses have repeatedly found 

reduced astrocyte density in MDD (Cotter et al., 2001, Rajkowska, 2000, Rajkowska 

et al., 1999). Greater glutamine levels may reflect a higher density of astrocytes in 

our mPFC region of interest. Alternatively, higher levels of 1H-MRS measured 

glutamine may indicate greater conversion of glutamate to glutamine, implicating the 

glial enzyme glutamine synthetase, or enhanced glutamate-to-astrocyte reuptake 

from the synaptic cleft, indicating excitatory amino acid transporters (EAAT) one 

and two (Walter et al., 2009). Interestingly, a down-regulation of both EAAT1, 

EAAT2 and glutamine synthetase has been found in post-mortem analyses in the 

prefrontal cortex of MDD patients (Choudary et al., 2005). Our results may suggest 

that greater baseline reuptake of glutamate from the synaptic cleft or conversion of 

glutamate to glutamine in the pregenual cingulate cortex may enhance the 

antidepressant and anti-anhedonic effects of ketamine. 

Further implicating glutamine levels and astrocytes in the mechanism of 

action of ketamine, in comparison to placebo, administration of ketamine was 

associated with a significant decrease in levels of 1H-MRS measured glutamine, but 

no change in glutamate levels, 24-hours post-infusion. Decreases in glutamine post-

ketamine may reflect decreased synaptic cleft glutamate reuptake or astrocytic 

conversion from glutamate to glutamine. The lack of change in medial pregenual 
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anterior cingulate cortex glutamate contrasts the acute changes in glutamate seen 

post-ketamine in preclinical and clinical intra-scanner 3T 1H-MRS studies (Milak et 

al., 2015, Stone et al., 2012). Given the tight physiological link between glutamate 

and glutamine levels, one might anticipate changes in glutamate to accompany 

changes in glutamine. However, 1H-MRS measures total tissue glutamate and may 

not be sensitive to differing balances of vesicular and extra-synaptic glutamate 

levels; alternatively, the acute glutamate altering effects of ketamine may occur only 

during the infusion and thus our scan time, 24-hours post-infusion, may have missed 

these effects. Consistent with this latter hypothesis, Valentine and colleagues (2011) 

found no changes in occipital glutamate or glutamine 1H-MRS levels measured at 3T 

3- and 48-hours post-ketamine. We found no association between the changes in 

glutamine levels and the antidepressant or anti-anhedonic response to ketamine, 

suggesting the relationship may be non-linear and complex if there is an association 

at all; Milak and colleagues (2015) also found no relationship between the 

antidepressant response to ketamine and the acute changes in glutamate levels. Taken 

together, our 1H-MRS results suggest that glutamine and astrocytic processes may be 

important targets for understanding the mechanisms of action of ketamine but further 

work is needed to clarify these observations. 

6.3.4 Chapter 5 

There are a number of implications of Chapter 5. In contrast to previous reports 

suggesting a cognitive enhancing effect of ketamine (DeWilde et al., 2015, 

Murrough et al., 2015, Shiroma et al., 2014), we found no evidence for a working 

memory enhancement post-ketamine. However and surprisingly, depressed patients 

did not exhibit a decrease in accuracy or RT during pre-treatment performance of the 

working memory task, the n-back. We also found no association between baseline 

performance and the antidepressant response to ketamine, again contrasting previous 

reports (Murrough et al., 2015, Murrough et al., 2013b). Taken together, our results 

do not support the idea that ketamine may have cognitive enhancing capabilities for 

depressed patients. However, the lack of a pre-treatment difference between 

depressed patients and healthy volunteers also raises the possibility that the task 

might not have been sensitive enough to detect subtle changes in post-infusion 



 

 157 

performance. Moreover, the results of our power analyses confirmed that the study 

was substantially underpowered to detect a baseline group difference. Thus, it is 

difficult to draw any firm conclusions about the working memory enhancing capacity 

of ketamine in depression. 

 The results of our fMRI analyses follow a similar story to our behavioural 

findings. In comparison to post-placebo, we found no significant differences in brain 

activation post-ketamine, either at the whole brain level or in our ROI. We failed to 

find the anticipated prefrontal hyper-activation in depressed patients relative to 

healthy volunteers as baseline, one of the most robust findings in fMRI studies using 

the n-back (Wang et al., 2015). Nonetheless, we did detect a trend toward between 

group pre-treatment difference in parietal cortex activation, with reduced activation 

in depressed patients, relative to healthy volunteers; however, this region was not 

sensitive to the effect of ketamine in depressed patients post-infusion.  

The time of our MRI scan, 48-hours post-infusion, may however have 

hindered the detection of group differences as the fMRI detectable neural effects of 

ketamine may occur more proximally to the infusion. Although we demonstrated 

robust findings of task-elicited effects across all subjects (N = 38), our failure to 

detect expected group differences (N= 18 healthy volunteers) at baseline and post-

infusion differences (N = 11) might have occurred because our study was not 

adequately powered to detect subtle fMRI changes. Total scanner time was limited to 

six minutes, which may not have been enough fMRI data to detect robust differences 

in such a small sample size. Consistent with this suggestion, we failed to detect a 

previously found association between baseline n-back elicited brain-activity, using 

MEG, and the antidepressant response to ketamine (Salvadore et al., 2010). Firm 

conclusions are difficult to draw from Chapter 5 due to the short amount of scanner 

time and small sample size used in this study. The results do however suggest the 

effects of ketamine on working-memory task-elicited brain activation and behaviour 

may be subtle if present at all, implying larger and longer studies may be important 

to detect group differences. 
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6.4 Limitations of studies within this thesis  

While the studies mentioned above suggest a potential role for tDCS in modifying 

cognition in healthy volunteers and ketamine for altering neural metabolite and 

improving mood, but not cognition, in depressed patients, there are a number of 

limitations that should be first borne in mind. Importantly, these limitations may 

strongly influence our ability to draw firm conclusions from the data presented here. 

We will first discuss the general limitations of the thesis, discussing drawbacks 

common to more than one chapter and thereafter examine specific limitations within 

each individual chapter.  

Sample sizes throughout the experiments within this thesis were generally 

small. In particular, the sample sizes for the between-subjects tDCS experiment in 

Chapter 2, with a mere 10 subjects in one group and 11 in the other, were particularly 

small. Furthermore, the within-subjects post-infusion comparisons between placebo 

and ketamine on behaviour and brain imaging variables in Chapters 4 and 5 were 

also small, with a minimum of 11 subjects and a maximum of 15 for these 

experiments. Drawing firm conclusions from such small sample sizes is not possible, 

thus our results require careful extension and replication, especially for the null 

results. Moreover, the issue of a small sample size may have also have compounded 

the influence of other limitations. 

Another important limitation of the experiments presented in Chapters 4 and 

5 is the inclusion of a mixed depressive sample, which included MDD, BD I and BD 

II patients. Due to the small number of available patients it was decided to combine 

samples. BD and MDD are distinct psychiatric illnesses with purportedly unique 

biological profiles (Taylor, 2014) and medication recommendations (Ghaemi et al., 

2004), but nonetheless, which share a common ground. While all depressed patients 

tested during pre-treatment assessments were currently in a major depressive 

episode, several BD patients (N = 3) in Chapter 4, but none in Chapter 5, were 

medicated on a mood stabilizer at treatment dosage levels that was ineffective at 

alleviating the depressive episode. The potential interactions between ketamine and 

mood stabilizers are unknown; no studies have compared the effects of ketamine on 
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mood in BD patients on and off a mood stabilizer. Moreover, it is unknown if mood 

stabilizers influence reward processing, let alone how ketamine and mood stabilizer 

in combination affect anhedonia.  

The inclusion of BD patients in our pre-treatment 1H-MRS analyses may 

have had a particularly detrimental effect on our ability to detect a between groups 

glutamate difference between depressed patients and healthy volunteers as BD 

patients are thought to present with higher glutamate levels than MDD patients and 

healthy volunteers (Gigante et al., 2012, Taylor, 2014, Yuksel and Ongur, 2010). 

Moreover, 1H-MRS measured glutamate has even been suggested as a method to 

differentiate MDD and BD patients (Taylor, 2014) suggesting that combining these 

two depressive samples may be a major limitation of this section of Chapter 4. No 

studies have directly compared MDD and BD patients using the fMRI n-back task as 

in Chapter 5, thus the implications of the mixed sample in this chapter are unknown. 

Another potential limitation of the tDCS experiment in Chapter 1 and the 

ketamine infusion experiments in Chapters 4 and 5 is the issue of condition blinding. 

Although double-blind methodologies were employed throughout the thesis where 

possible, the validity of the double-blind claim was not assessed empirically; serious 

concerns about blinding for both tDCS (Horvath et al., 2014) and ketamine 

(Murrough et al., 2013a) experiments have been raised. At least one study has 

attempted to use an active placebo (midazolam) in ketamine depression study 

(Murrough et al., 2013a). However, as the focus of our experiments here was to 

understand the mechanisms of action of ketamine, introducing an active placebo 

agent such as midazolam might have rendered our results difficult to interpret. 

Chapters 3 and 4 had one primary limitation in common relating to 1H-MRS 

acquisition; as spectra in these Chapters were only acquired from one brain region, it 

is not possible to generalize our results to the rest of the brain. Again, due to time 

constraints, it was not possible to acquire spectra from other parts of the brain in 

either study. 
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6.4.1 Chapter 2 

Walsh (2013) documents a series of important measures an ideal tDCS experiment 

should contain in order to make robust claims about the effects of tDCS, including: a 

control region, a single scalp electrode, a control task, assessed double blinding, 

repeated stimulation sessions and real world task validity. While we included a 

number of these suggestions in our study, we failed to incorporate a control region or 

a control task in our study, primarily due to time restrictions. However, without these 

extra measures it is difficult to extrapolate the findings of our experiment; it is 

possible that effects of stimulating another brain region may have elicited similar 

enhancement effects on day one. Moreover, it is also important to probe the 

specificity of improvements in tDCS as it is possible that general attentional 

enhancement may underlie any task improvements. For example, at least one study 

has demonstrated that DLPFC tDCS concurrently enhanced performance on one task 

but also impaired performance on another (Iuculano and Cohen Kadosh, 2013), 

suggesting that the benefit of tDCS may come at a cost. Additionally, it would have 

been useful if we had included a second baseline session on day 2 prior to tDCS to 

examine any post-stimulation effects and allow for greater sensitivity to inter-day 

variation. 

6.4.2 Chapter 3 

There are still several limitations associated with the use of 1H-MRS that are 

important to bear in mind in the context of our results. 1H-MRS measures total tissue 

metabolite volume so it is unknown what cellular mechanisms underlie a single peak. 

For example, the glutamate signal may arise predominantly from vesicular glutamate 

in neurons, extra-synaptic glutamate or astrocytic glutamate or some mix of all three. 

Some reports suggest that different cellular metabolite locations may provide more 
1H-MRS measured signal than others (Kauppinen et al., 1994, Lally et al., 2014a). 

6.4.3 Chapter 4  

There were a number of limitations of the experiments conducted in Chapter 4. First, 

aside from the 1H-MRS paradigm (assessed in Chapter 3), the reliability of a number 
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of our measures has not been assessed for repeated administration; it is unknown if 

the TEPS, EEfRT or Scene Choose task are suitable for a multiple session or several 

week long longitudinal study. As there was no association between anhedonia levels, 

as measured by the SHAPS, and task performance on either tasks, inclusion of other 

tasks that better related to anhedonia levels reflected by the SHAPS may have 

offered greater sensitivity to detecting an effect of ketamine on behaviour. Moreover, 

the inclusion of monetary-based incentive tasks only may have missed possible 

changes in other forms of hedonic functioning, such as social anhedonia. 

   

6.4.4 Chapter 5 

Several potential limitations of Chapter 5 should be borne in mind. Firstly, the 

duration of the scan was very short, lasting only 6 minutes. Secondly, the timing of 

the scan, 48-hours post-infusion, may have missed many of the neural changes 

associated with the infusion; the optimal time to detect neural differences post-

ketamine in unknown. Thirdly, the large differences in demographic information 

between the depressed patients and healthy volunteers may have removed important 

variance in our covariate analyses. Moreover, we did not have IQ measurements for 

all participants so could not control for between group differences in this variable. 

Additionally, we did not explore the question of the reliability of our n-back 

fMRI task. However, there are at least two reliability studies that have examined 

both the repeatability of the n-back behaviour and task-elicited neural network using 

fMRI. Blokland and colleagues (2011) scanned 40 individuals twice, three months 

apart during n-back performance using a variant of the version employed in Chapter 

5. They reported a highly consistent pattern of behaviour and brain activity during 

the n-back, with intraclass correlation coefficients between 0.7 and 0.9 for both task-

elicited neural-activity and behaviour. A significant improvement in accuracy during 

session two was also observed. Plichta and colleagues (2012) found a similar pattern 

of reliability results.  
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6.5 Directions for future research 

Here we will discuss several potential avenues for future research. As previously, we 

will discuss suggested directions for thesis-related research more generally first, 

discussing topics that are common to at least two chapters, and thereafter, specific 

ideas for the extension of experiments in each individual chapter. 

Despite the recent suggestions that psychiatry move towards cross diagnostic 

experiments (Insel et al., 2010, Insel, 2014), the examination of differences between 

healthy volunteers and psychiatric populations still has much merit and is 

particularly important for the development of new treatments. Future studies 

including adequate samples sizes of patients with MDD and BD and healthy 

volunteers would permit the examination of a number of important variables. There 

are very few experiments that have examined pre-treatment variables across 

depressive disorders. For example, there are no known studies that have directly 

compared 1H-MRS measured glutamatergic metabolites in MDD and BD patients 

(Taylor, 2014); there is also an absence of 1H-MRS studies comparing subtypes of 

MDD and BD, such as BDI and BDII. While inclusion of a mixed sample in Chapter 

4 and 5 may serve as a limitation here, expansion of the medication free BD sample 

in particular would allow examination of a number of components thought to 

differentiate these conditions, including reward processing (Redlich et al., 2015, 

Whitton et al., 2015) and glutamatergic metabolites (Taylor, 2014).  

Inclusion of medication-free BD patients may also be important for 

understanding the mechanisms of action of ketamine and the exploration of drug 

interactions. Studies examining the use of ketamine as a treatment for BD suggest 

that lithium is superior to valproate in the anti-anhedonic effect of ketamine (Lally et 

al., 2014b) and also in the likelihood of achieving response criterion and study 

completion (Diazgranados et al., 2010a, Zarate et al., 2012). No studies yet have 

compared the effect of ketamine in medication free BD patients and medicated BD 

patients; however, preclinical evidence suggests lithium may enhance the 

antidepressant effects of ketamine (Chiu et al., 2015). Prolonging the antidepressant 

effects of ketamine is a topic of strong interest; several clinical studies have explored 
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the effects of post-ketamine interventions such as the administration of ECT 

(Abdallah et al., 2012, Jarventausta et al., 2013) and purported glutamatergic 

antidepressant medication, riluzole (Ibrahim et al., 2012, Mathew et al., 2010), all of 

which found no enhancement in treatment-refractory MDD patients. A recent 

preclinical study, however, found that more classical antidepressant medications 

(fluoxetine and imipramine) administered post-ketamine promoted the antidepressant 

effect in rats over the use of either ketamine or the classics alone (Melo et al., 2015). 

Future studies should examine whether ketamine may serve as a priming adjuvant for 

the treatment of depression in MDD and BD patients, potentially preceding CBT or 

MBSR, as well as standard antidepressant medication. One distinct possibility is that 

the time to response would shorten and the time to relapse might lengthen 

substantially in a ketamine priming study. 

A common critique of placebo-controlled ketamine depression treatment 

studies is the condition blinding. Due to the strong dissociative properties of the 

medication (Luckenbaugh et al., 2014), blinding is realistically never even single 

blind in purportedly double-blind investigations. At least one study has attempted to 

use midazolam as an active placebo to get around this critique (Murrough et al., 

2013a); however, the symptom profile difference between midazolam and ketamine 

is large and informed patients could potentially differentiate between medications 

(Murrough et al., 2013a); again, in this study blinding was not assessed. A potential 

alternative to the use of an active placebo is the route of administration. Due to issues 

of bioavailability, nearly all ketamine depression treatment studies have followed an 

intravenous administrative protocol. However, other routes such as intranasal 

(Lapidus et al., 2014b), intramuscular (Chilukuri et al., 2014), subcutaneous (Galvez 

et al., 2014), and potentially even oral, are possible. Importantly, treatment with 

intranasal ketamine was associated with a minimal side-effect profile with minimal 

psychotomimetic effects (Lapidus et al., 2014b), suggesting that blinding may be less 

of an issue via this route of administration. 
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6.5.1 Chapter 2 

tDCS has received a lot of attention in recent years both as a purported cognitive 

enhancing technique and a treatment for a plethora of clinical conditions. 

Unfortunately, the majority of research conducted to date has failed to control for a 

number of potential issues (Walsh, 2013), which confound the interpretation and 

extrapolation of many results. These lack of controls may have contributed to recent 

reports suggesting that tDCS is entirely ineffective as a cognitive enhancer in healthy 

volunteers (Horvath et al., 2015). Future research should seek to include the 

necessary experimental controls, including: appropriate and assessed double-

blinding, a single stimulation electrode, control stimulation sites, and control tasks, 

amongst others (Walsh, 2013). If our findings of an early enhancement in working 

memory performance hold true and are specific to this process and DLPFC 

stimulation, trialling our protocol in clinical populations such as MDD patients, 

would be interesting. In particular, tDCS may be appropriate in combination with 

treatments such as CBT, where cognitive impairment is thought to have a detrimental 

effect on depression treatment prognosis (Roiser et al., 2012). Given the relative 

inexpensiveness of the device and the ease of use, future explorations of its cognitive 

and mood enhancing capabilities are warranted. Finally, intra-scanner tDCS and 7T 
1H-MRS investigations, as in Chapters 3 and 4, may help to further understand the 

neurobiological mechanisms underpinning this exciting form of brain stimulation. 

6.5.2 Chapter 3 

Reliability studies are vital, particularly for techniques used to measure treatment-

related changes. If reliability coefficients are known for a technique or methodology, 

study designs can factor in the noise estimates and plan investigations accordingly. It 

would be fruitful to include multiple single voxel brain regions, aside from the 

pregenual cingulate cortex; estimates from other brain regions shown to be sensitive 

to treatment effects in depression, such as the occipital cortex (Abdallah et al., 

2014b), dorsomedial prefrontal cortex (Lally et al., 2014b, Lally et al., 2015b) and 

DLPFC (Brody et al., 2001, Fales et al., 2009, Kennedy et al., 2001) would be 

particularly useful. Additionally, a comparison of different pulse sequences (e.g. 
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PRESS vs. SPECIAL vs. STEAM) and field strengths (3T vs. 7T) would be 

extremely beneficial as there is little inter- and intra-scanner comparison research in 

the 1H-MRS field. Any claims of a particular sequence bettering another should be 

accompanied by specific comparisons to standard sequences and a between-sessions 

reliability analysis. 

6.5.3 Chapter 4 

A reliability analysis of the TEPS and our reward tasks is needed as it is unknown if 

these measures are reliable enough to be used in a longitudinal design. Given our 

null results using reward-processing tasks in this chapter, a large-scale assessment of 

pre-treatment reward processing and anhedonia in medication-free MDD and BD 

patients is warranted. In particular, a comparison of different forms of anhedonia 

(e.g. social, monetary, and physical) and the characterization of this profile in 

depression is needed. These ideas may relate to the all-inclusive clinical definition of 

anhedonia (comprising anticipatory and consummatory components), which may 

have hindered research in the area (Treadway and Zald, 2011). Our results suggest 

that anticipatory anhedonia may be significantly more clinically significant in our 

sample that consummatory processes, a finding consistent with cognitive task-based 

evidence (Treadway and Zald, 2011). Appropriate characterization of the precise 

components of anhedonia and which components are most aberrant in depression is 

an important point that needs to be addressed. 

There are two main limitations to our 1H-MRS investigations reported in 

Chapter 4, which could be addressed by future studies. Firstly, intra-scanner 

infusions of ketamine at 7T would be ideal to measure the acute changes occurring in 

the glutamatergic system and would allow a finer grained assessment of alterations in 

levels of both glutamate and glutamine and their roles in the treatment of depression. 

While the non-acute evaluation of changes post-ketamine provides valuable 

information, the direct mechanisms of action are most likely to be determined at the 

time of the infusion. Secondly, 1H-MRS does not typically allow the characterization 

of cycling. However, recent reports suggest that 13C MRS combined with an infusion 

of [2- 13C] glucose may permit profiling of the glutamate-to-glutamine cycling in the 



 

 166 

human cortex (Li et al., 2015a, Shen, 2013). The combination of this latter technique 

with an intra-scanner infusion of ketamine in depressed patients at 7T offers the best 

chance of understanding, in-vivo, the underpinning antidepressant mechanisms of 

action of ketamine. 

Additionally, considering the positive correlation between pre-treatment 

levels of glutamine and the anti-anhedonic and antidepressant effects of ketamine, 

one possibility might be to manipulate levels of glutamine prior to a ketamine 

infusion in depressed patients via a pharmaceutical lead-in. Interestingly, Brennan 

and colleagues (2010) found that administration of riluzole for only two days led to 

an increase in 1.5T 1H-MRS measured glutamine-to-glutamate ratio in BD patients. 

Although tentative due to the low field strength, their results suggest an alteration in 

glutamine levels may occur following oral riluzole. This result contrasts our finding 

in Chapter 4 of reduced glutamine post-ketamine but may explain why riluzole was 

not shown to be effective as an acute adjunctive treatment to ketamine in MDD 

patients (Diazgranados et al., 2010a); if ketamine works by decreasing glutamine 

levels, riluzole may potentially work to counteract these effects. However, a short 

riluzole lead-in may offer an ideal opportunity to increase glutamine levels and 

enhance the antidepressant effects of ketamine. 

6.5.4 Chapter 5 

Future studies exploring the cognitive enhancing capacity of ketamine may benefit 

from a longer and more sensitive version of the n-back such as the version used in 

Chapter 2; alternatively, other measures of cognitive functioning or working memory 

more specifically may be more sensitive than the n-back as it assesses many 

cognitive components and is not a pure measure of working memory (Miller et al., 

2009). Future uses of the n-back might also benefit by reducing the maximum 

complexity level to the 2-back; anecdotally, a number of participants, particularly 

depressed patients found the task extremely intimidating. 
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6.6 Conclusion  

In conclusion, this thesis attempted to further understand the neural and cognitive 

underpinnings of two novel antidepressant treatments, tDCS and ketamine. We found 

some evidence for a cognitive enhancing capacity of tDCS in healthy volunteers, 

with specific benefits occurring during the first stimulation session, only. Although 

we replicated previous reports of a rapid improvement in general depression 

symptoms and anhedonia post-ketamine, we failed to detect any specific novel 

components of anhedonia or cognition improved by ketamine. We also failed to 

replicate an association between baseline working memory task-elicited neural 

activity and the antidepressant response to ketamine. However, we found an 

association between pre-treatment 1H-MRS measured glutamine levels and the anti-

anhedonic and antidepressant effects of ketamine, replicating a previous finding. We 

also found a reduction in glutamine levels post-ketamine, but this did not relate to 

changes in depression or anhedonia.  

Altogether, experiments reported in this thesis offer tentative signs of a number 

of important results. First, there appears to be some basis for the cognitive enhancing 

capacity of tDCS. Second, ketamine appears to consistently improve reported, but 

not objective, depressive and anhedonic, but not cognitive, symptomatology. Finally, 

as tDCS and ketamine are thought to both have glutamatergic effects, our 1H-MRS 

results are consistent with a glutamatergic or cellular plasticity theory of 

antidepressant treatment, potentially mediated by astrocytic activity. In sum, tDCS 

and ketamine are important potential antidepressant treatments, particularly for 

treatment resistant depressed patients. Further work using 7T 1H-MRS, a technique 

shown to be reliable, may help to clarify the underpinning neural architecture of 

depression and its treatment with tDCS and ketamine. 
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