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Abstract

The general theme of this thesis is developing a better understanding of some Markov chain Monte

Carlo methods. We review the literature in Chapters 1-4, including a short discussion of geometry

in Markov chain Monte Carlo.

In Chapter 5 we consider Langevin diffusions. First, a new class of these are derived in which the

volatility is made position-dependent, using tools from stochastic analysis. Second, a complemen-

tary derivation is given, here using tools from Riemannian geometry. We hope that this work will

help develop understanding of the geometric perspective among statisticians. Such derivations have

been attempted previously [108, 43], but solutions were not correct in general. We highlight these

issues in detail. In the final part discussion is given on the use of these objects in Markov chain

Monte Carlo.

In Chapter 6 we consider a Metropolis–Hastings method with proposal kernel N(x,hG−1(x)), where

x is the current state. After reviewing instances in the literature, we analyse the ergodicity properties

of the resulting Markov chains. In one dimension we find that suitable choice of G−1(x) can change

these compared to the Random Walk Metropolis case N(x,hΣ), for better or worse. In higher dimen-

sions we show that judicious choice of G−1(x) can produce a geometrically converging chain when

probability concentrates on an ever narrower ridge as |x| grows, something which is not true for the

Random Walk Metropolis.

In Chapter 7 we discuss stability of Hamiltonian Monte Carlo. For a fixed integration time we

establish conditions for irreducibility and geometric ergodicity. Some results are confined to one

dimension, and some further to a reference class of distributions. We find that target distributions

with tails that are in between Exponential and Gaussian are needed for geometric ergodicity. Next

we consider changing integration times, and show that here a geometrically ergodic chain can be

constructed when tails are heavier than Exponential.
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Chapter 1

Introduction

1.1 Monte Carlo methods in Statistics

In some sense Monte Carlo methods mark an about turn for the statistician. We move from treating

observed data as realisations of random variables from probabilistic models, to simulating random

variables from a model of our choosing. Instead of starting from the data we no longer need any.

Put another way, however, standard Monte Carlo is a straightforward application of the two most

elementary results in Probability: the Law of Large Numbers and the Central Limit Theorem.

Monte Carlo is a method for estimating intractable integrals. Provided we can write the integral

as an expectation of some function f with respect to some probability distribution π(·), we simply

simulate m independent and identically distributed (iid) observations Xi ∼ π(·) and note that:

f̄m =
1
m ∑

i
f (Xi)→ Eπ [ f (X)]

with probability one (see e.g. Section 7.5 of [44]). The natural statistical goal is to understand the

properties of the estimator f̄m. But using rules of expectations we can see that if Varπ [ f (X)] = σ2 <

∞ then Var[ f̄m] = σ2/m, and the Central Limit Theorem gives the celebrated asymptotic

√
m
(

f̄m−Eπ [ f (X)]
) d−→ N(0,σ2)

as m→ ∞. We are also able to discuss non-asymptotic results using concentration inequalities.

17



Perhaps the simplest, Chebyshev’s inequality, given by

P
(∣∣ f̄m−Eπ [ f (X)]

∣∣> a
)
≤ σ2

ma2 , a > 0,

allows us to construct non-asymptotic confidence bounds on estimation error. In many specific cases

much sharper bounds exists [16].

The drawback of Monte Carlo in its simplest form is the need to generate independent samples from

π(·). There are many scenarios in which this is not feasible. We focus in the next section on the

most prominent case among statisticians, though certainly not the only one worthy of note (see e.g.

[41, 65]).

1.1.1 Bayesian inference

Philosophical debates on the correct approach to inferring unknown quantities have raged for many

years, and will doubtless continue (see e.g. Chapter 1 of [114]). At least two methods rely on

constructing some kind of probabilistic model (the likelihood) for some data y, which depends on

a set of parameters θ . In the Bayesian approach, the current state of understanding for θ before

observing y is then encoded through a probability distribution, known as the prior, with density

π0(θ).1 Using only the prior and likelihood term f (y|θ), we are then able to establish a posterior

state of knowledge for θ using Bayes’ theorem

π(θ |y) ∝ f (y|θ)π0(θ). (1.1)

Constructing the posterior distribution up to a constant of proportionality is therefore trivial. How-

ever, extracting relevant information from π(θ |y) (such as posterior means, marginal densities and

quantiles for parameters of interest) relies on taking expectations with respect to it. As referenced in

the previous section, since we only know π(θ |y) up to a constant, ordinary Monte Carlo is typically

no longer an option.

1.1.2 Monte Carlo using Markov chains

When independent samples cannot be directly generated there are a number of approaches, collec-

tively termed ‘re-sampling’, in which data are generated from some candidate distribution q(·), and

1Of course, both discrete and continuous parameters can be represented through a prior, of both finite and infinite dimen-

sion, but here we focus on the finite dimensional continuous case for ease of exposition.
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an estimator is constructed from these samples for expectations with respect to π(·). In ‘rejection’

sampling, for example, some of the draws from q(·) are discarded, so that what is left is a representa-

tive sample from π(·). In ‘importance’ sampling, each draw is weighted according to its importance

in inferring quantities from π(·).

An approach which has proven fruitful in practice is to simulate a Markov chain with limiting dis-

tribution π(·). We are then considering the estimator

f̃m =
1
m ∑

i
f (Xi), Xi ∼ Pi(x0, ·),

where Pi(x0, ·) is the i step transition kernel. Note two things here:

1. The marginal distribution of each Xi is not π(·)

2. The random variables Xi and Xi+1 are not independent of each other.

It is somewhat surprising, therefore, that under very mild conditions on the chain

f̃m→ Eπ [ f (X)]

as m→ ∞, with probability one. If we can show in addition that the sequence of marginal distribu-

tions Pi(x0, ·) for each Xi converges to π(·) at a certain rate, then we can also rely on a Central Limit

Theorem [56] result
√

m
(

f̃m−Eπ [ f (X)]
) d−→ N(0,v(P, f )) (1.2)

for the estimator f̃m (note that certain restrictions again must be placed on f , which we discuss later).

In some cases we can also appeal to non-asymptotic bounds (we also discuss this in more detail in

Chapter 2).

1.1.3 The need for rigorous understanding

Several different Markov chain Monte Carlo (MCMC) algorithms exist today in the Statistics, Math-

ematics, Physics and Computer Science literature [18], so for a given problem there are several

different MCMC estimators to choose from. It is vitally important for practitioners to understand

which method to use in a given scenario. Understanding for what forms of π(·) a version of (1.2)

holds, and the corresponding asymptotic variance v(P, f ) for each algorithm, gives a principled way

19



to make such a choice. Perhaps more disturbingly, without establishing the necessary convergence

properties of the Markov chain, we have very little guarantees on the quality of the estimator f̃m.

In modern applied Statistics, MCMC is ubiquitous [29]. Ensuring that the optimal methods are

being used, and understanding the strengths and weaknesses of each, is clearly necessary to ensure

that the right insights are being drawn from empirical research. The goal of this thesis is to make a

contribution towards this end.

1.1.4 Thesis outline

In Chapters 2, 3 and 4, we review the field of Markov chain Monte Carlo. We begin with stochastic

simulation and its use in statistical inference, to motivate why methods based on Markov chains have

become popular. We then give a detailed review of Markov processes, mainly (but not exclusively)

in discrete time. After this we introduce some common Markov chain Monte Carlo methods, dis-

cussing the strengths and weaknesses of each. A highlight of this chapter is a review of geometric

concepts in Markov chain Monte Carlo, in Section 4.3, which is based on the author’s own published

work in [71].

In the rest of the thesis we present some original contributions. Parts of Chapter 5 are based on

two published works [130] and [71]. Chapter 6 is based on the submitted work [70]. Chapter

7 is motivated by the submitted work [11], but is mostly more recent work which is currently in

preparation. Chapter 8 contains a short summary of the thesis contributions along with some possible

avenues for further research.

1.1.5 Notational conventions

We use {Xt}t≥0 to denote the process {X0,X1,X2, ...} that evolves in discrete time, and (Xt)t≥0

for the continuous-time variant {Xt : t ∈ R≥0}. Throughout if π(·) denotes a probability measure

then π(x) will be the corresponding density with respect to Lebesgue measure on the measurable

space (Rn,B(Rn)), with B(Rn) the Borel σ -algebra (this is discussed more thoroughly in Section

3.1). We denote by X the state-space for a Markov chain, and unless otherwise stated this can

also be assumed to be Rn. In the discrete time case, we sometimes refer to the m-step transition

probabilities for a Markov chain. Most text books refer to n-step transition probabilities, but we

reserve n for the dimension of the state space of a random variable. The letter d is sometimes used
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for this purpose, but we use d for distance metrics. For an element x ∈ Rn, we write |x| =
√

∑i x2
i

to denote the Euclidean norm. For a set A, |A| denotes its cardinality, the number of elements in

A. Three commonly used measures are δa(·), the Dirac measure at a, for which δa(A) = 1 if a ∈ A

and 0 otherwise, µG(·), the standard Gaussian measure on Rn, and µL(·), the standard Lebesgue (or

length) measure on Rn (see e.g. Sections 2.3-2.4 of [20]). In the context of Markov processes, we

sometimes use the conditional probability notation Px[·] := P[·|X0 = x] and Ex[·] :=E[·|X0 = x]. This

will mean we are technically conditioning on the null set ‘X0 = x’. We discuss this issue in Section

3.1.
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Chapter 2

Stochastic simulation methods

Since at least the 1970s [38], simulation-based methods have been exploited for a variety of goals

in Statistics. Indeed some argue that they have revolutionised the field [29]. The premise that re-

alisations of random variables can be ‘simulated’ with high precision has allowed more complex

statistical models to be developed, for a variety of reasons. In the classical framework, hypotheses

can be constructed based on test statistics which no longer need to follow an asymptotic distribution

which can be derived analytically, we can simply simulate data under the null hypothesis and ap-

proximate the distribution with a histogram. Similarly confidence intervals in linear models need no

longer rely on the assumption of normality of errors, thanks to bootstrapping techniques [38]. These

are but two examples of many. We focus here on the Monte Carlo method, which originated in the

Physics literature (e.g. [79]) but has found many useful applications in Statistics [99], for reasons

we now discuss.

2.1 Intractable integrals & Monte Carlo

The problem of interest is evaluating intractable integrals, specifically those that can be written as

expectations

Eπ [ f (X)] =
∫

f (x)π(dx). (2.1)
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Such integrals arise often in Statistics. A prominent example is an intractable likelihood

L(θ ;y) =
∫

fθ (y|x) fθ (x)dx,

where y represents some observed data, x some unobserved data and θ a parameter of interest. Often

conditional on knowing x the likelihood takes a straightforward form, but the marginal likelihood

given only y is much more complex. Another, and perhaps the most common example is Bayesian

inference, where information about θ is encoded in the posterior distribution, and posterior expec-

tations and quantiles must be computed by integration.

2.1.1 Numerical methods

One approach to the problem is to compute the integral numerically. Perhaps the simplest method

is an approximation by a collection of rectangles. If we assume that the region of integration is

some bounded interval [a,b], then we divide this region into a = a1 < a2 < ... < am = b, where for

simplicity we assume the ai are equidistant with4a = ai+1−ai. We approximate the integral with

the sum

Sm =
m−1

∑
i=1

f (ai)4a. (2.2)

Clearly as m grows the approximation becomes more accurate.1 The problem with such grid-based

numerical methods is scaling with dimension. The sum above involves m− 1 terms. In the n-

dimensional case, where we are interested in

∫
f (x1, ...,xn)dx1...dxn,

we must compute

Sn
m =

m−1

∑
i1=1

...
m−1

∑
in=1

f (ai1 , ...,aim−1)(4a)n,

where now the sum Sn
m involves (m− 1)n terms. In short, such grid-based methods typically scale

exponentially with dimension. Of added concern to the statistician, we often cannot assess statistical

properties of the resulting ‘estimates’ for the integral, such as bias and efficiency.

1Provided that f is suitably well-behaved.
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2.1.2 Monte Carlo and random number generation

In ordinary Monte Carlo we simply simulate data from π(·) and compute the ‘sample average’

estimator

f̂m =
1
m

m

∑
i=1

f (Xi), Xi ∼ π(·).

As stated previously, Laws of Large Numbers, Central Limit Theorems and concentration inequal-

ities provide a range of tools with which to assess the quality of this estimator. The method is also

(in some sense) dimension-independent: we can see that f̂m is a sum of m terms, regardless of the

dimension of X .2 A key difference between this and grid-based approaches is that effort is concen-

trated here on relevant parts of the space, as more samples will be generated in areas which are more

likely under π(·).

Truly random numbers can be straightforward to generate in reality, by simply rolling a die or flip-

ping a coin. Producing these in large quantities, however, would be time consuming. In the vast

majority of cases, those working with stochastic simulation tools instead use pseudorandom num-

bers, which are deterministic sequences produced by a computer, designed so that they are statisti-

cally random, in the sense that a given sequence is indistinguishable from one that would have been

produced from the desired distribution, according to some standard hypothesis tests. Generators are

usually designed to produce U [0,1] random variables. A simple eample is the linear congruence

generator, where {u1,u2, ...} is determined by the recursion

un+1 = (aun +b)modM,

where a and M are large coprime integers. See [98] for more detail on the properties of such methods,

and recommended choices for a,b and M.3

To draw samples from other distributions, usually U [0,1] sequences are first generated and then

transformed. This is straightforward to do in many cases because the U [0,1] cumulative distribution

function is the identity, i.e. P[U < u] = u. If X follows a distribution such that P[X ≤ x] = FX (x),

then

P[X ≤ x] = FX (x) = P[U ≤ FX (x)] = P[F−1
X (U)≤ x],

2In reality this depends on the function being estimated. If we consider the specific case f (x) = ∏
n
j=1 x j , with X =

(X1, ...,Xn) comprised of iid zero mean components and Var[X j] = σ2, then Var[ f̂m] = σ2n/m, which grows exponentially

with dimension.
3We leave the discussion on drawing samples of continuous random variables to Section 3.1.
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meaning provided FX is invertible then F−1
X (U) follows the desired distribution.4 is This method is

known as the probability integral transform (see Section 2.1.2 of [99]).

Example 2.1. To generate a sample from an Exponential distribution with rate parameter 1, where

FX (x) = 1− e−x, we generate u∼U [0,1], and set x =− log(1−u).

One example where FX cannot be inverted analytically is the Gaussian distribution. A simple ap-

proach to generating two N(0,1) random variables is using the Box–Muller method [17]. The logic

is that if (X ,Y )∼ N(0, I2×2) then

R2 = X2 +Y 2 ∼ χ
2
2 , and θ = arctan(Y/X)∼U [0,2π].

Using this polar coordinate transform, we can generate R2 =−2logU1 and θ = 2πU2 using the prob-

ability integral transform from uniform samples U1 and U2, and then recover X and Y . Combining

steps gives

X =
√
−2logU1 cos(2πU2), Y =

√
−2logU1 sin(2πU2).

An n-dimensional Gaussian random variable X ∼ N(µ,Σ) can be generated by setting

X = µ +(
√

Σ)Z,

where Z ∼ N(0, In×n), and
√

Σ is a matrix such that
√

Σ(
√

Σ)T = Σ, which can be found using

(for example) a Cholesky decomposition of Σ [126]. It should be noted that this process is not

dimension-independent, as the decomposition is O(n3). However, (anecdotally) such random num-

ber generation does not appear to be much of a computational bottleneck in practice for our needs,

so we do not discuss it further.

We will be concerned with the case where the density of interest (and hence FX ) is only known up

to a proportionality constant. Often in the Bayesian context this is the case, as shown in (1.1). Here

direct simulation from π(·) using appropriate transformations is often not possible.

2.1.3 Re-sampling, indirect Monte Carlo

Often in the above scenario we can still draw samples from π(·) using a two stage process:

4In the case where X is discrete then the generalised inverse can be used, see Chapter 2 of [99].
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1. Draw samples from some candidate distribution q(·)

2. Modify them in such a way that integrals with respect to π(·) can be estimated

Two popular methods are rejection sampling and importance sampling.

In the first, stage two involves either keeping or discarding each X ∼ q(·) with some probability

P[Accept sample x] =
πu(x)
Mq(x)

,

where M is chosen such that this ratio is at most one, and πu(x) represents the unnormalised version

of π(x). It is straightforward to see that

P[X ∈ A|Xaccepted] =
P[X ∈ A,Xaccepted]

P[Xaccepted]
=

∫
A q(x) πu(x)

Mq(x)dx∫
q(x) πu(x)

Mq(x)dx
=

∫
A πu(x)dx∫
πu(x)dx

= π(A),

meaning the rejection method produces independent samples from π(·). Efficiency is dictated by

how regularly samples from q(·) are accepted, which requires this candidate distribution to be chosen

such that it is ‘similar’ to π(·) in some sense.

In the basic importance sampling scheme, stage two involves replacing (2.2) with the estimator

f̄m =
m

∑
i=1

f (Xi)
π(Xi)

q(Xi)
. (2.3)

Trivially, ∫
f (x)

π(x)
q(x)

q(x)dx =
∫

f (x)π(x)dx = Eπ [ f (X)].

The ratios π(x)/q(x) are known as ‘importance weights’. For many functions of interest5 the method

is most effective when each of these weights is as close to one as possible (see Chapter 3 of [99]).

Of course, in (2.3) π(x) needs to be known exactly, so in the case where only πu(x) is known the

modified estimator

f̌m =
∑

m
i=1 f (Xi)w(Xi)

∑
m
i=1 w(Xi)

, w(Xi) =
πu(Xi)

q(Xi)
(2.4)

is used, which is derived from the expression

Eπ [ f (x)] =

∫
f (x)πu(x)

q(x) q(x)dx∫
πu(x)dx

=

∫
f (x)πu(x)

q(x) q(x)dx∫ πu(x)
q(x) q(x)dx

.

For finite m (2.4) has some bias, but is often in fact more efficient than (2.3) as shown in Section

3.3.2 of [99]. It is also important to choose q(·) so that the ratio π(x)/q(x)→ 0 as |x| → ∞, as this
5A notable exception here is function that concentrate on the tails of a distribution, see Chapter 3 of [99] for more detail.
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also has an impact on the variance of estimators (2.3) and (2.4), again as discussed in Section 3.3 of

[99].

The problem with these methods is again scaling with dimension. Both rely on choosing a candidate

distribution q(·) which approximates π(·) globally in some sense. Often when n is large we have

limited knowledge of π(·) making a good choice of q(·) an extremely challenging task. For the

rejection method, the result will be that typically very few samples are accepted. In the importance

sampling case, the variation in importance weights is often very large, meaning the estimator (2.4)

is extremely inefficient. Examples illustrating these difficulties are described in detail in [72].

2.2 Markov chain Monte Carlo

We have already introduced the idea of Monte Carlo using Markov chains in the introduction. This

section simply serves to motivate Markov chain Monte Carlo (MCMC) further. The key point of

note is that the re-sampling methods discussed in the previous section can fail because of the need

to understand what π(·) looks like globally. Markov chains, on the other hand, can be constructed

in such a way that they explore the space locally. The question is modified from how to draw a

sample which is ‘likely under π(·)’ to one of where to move next given the current location in the

chain. Evaluating a proposed move y given the current position x can be done through the ratio

π(y)/π(x) = πu(y)/πu(x), which directly assesses whether the chain will be moving in a direction

which is more or less likely under π(·). As a result, MCMC methods can produce estimators for

intractable integrals which scale much more favourably with dimension than either numerical or

re-sampling counterparts.

In the next section we give a thorough review of the underlying mathematics of Markov chains,

which will be exploited to develop new results in this work. We focus mainly on the discrete time

case, but also review some continuous-time processes which will be used later.
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Chapter 3

Markov chains

A course on Markov chains which unfold on a finite state space is a typical module on any un-

dergraduate Mathematics and Statistics degree. Moving to the case where each Xt is defined on

an uncountable space requires some understanding of measure-theoretic probability, and hence a

good deal more subtlety. For this reason, while we deal with the general case here, we refer to the

finite/countable case periodically to aid intuition for some concepts.

3.1 A note on real numbers & measure theory

Modelling real numbers using Probability theory is both intuitive and extremely puzzling. It is very

natural when confronted with a collection of data points 12.345,18.421,34.564... to consider them

as ‘continuous’. However, to place a probability distribution over the entire real number line one

must set the probability of any specific outcome in R to zero.

Proposition 3.1. If (xi)i∈I is an uncountably large collection of real numbers with each xi ≥ 0

such that ∑i xi < ∞, then xi = 0 for all but at most countably many i ∈ I. Setting each xi to be

the probability of outcome i ∈ I implies that only a countable number of these can be assigned a

non-zero probability.

Proof: Suppose the sum is finite, so ∑i xi = M < ∞. We show that I>0 = {i ∈ I : xi > 0} must be
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countable. First consider the set Sn of all i for which xi > 1/n. We have

M ≥ ∑
i∈Sn

xi ≥
1
n
|Sn|,

where |Sn| denotes the number of elements in Sn. So Sn can have at most Mn elements, and hence is

finite. From here we simply note that I>0 = ∪n∈NSn, which is a countable union of finite sets, and

hence is countable. �

Since we require probabilities to be positive and sum to one, this makes life difficult. The philosoph-

ical conundrum of how we uncovered the data we have is resolved by taking measurement precision

into account: our data are not in fact real numbers, but each is the set of all real numbers which are

equivalent up to a certain decimal place. Our model R is only ever an approximation to reality, but

it will be arbitrarily good for arbitrarily high accuracy of measurements.

Mathematically we first deal with the problem by using densities in place of probability mass func-

tions, using the physical intuition mass = density× volume to compute probabilities with integrals.

However, this makes it hard to have a unified treatment of the theory. For example, one cannot

define a random variable which can either take the value 0 (with positive probability) or any positive

real number. Additionally the Riemann integral learned during undergraduate Mathematics can be

undone by some simple probabilistic questions: for example, we cannot compute the probability

that a randomly selected number between 0 and 1 will be rational, as the upper and lower Riemann

sums do not converge to each other but remain at 1 and 0 respectively for any partition of [0,1].

The language of measures relieves both of these problems. A measure is simply a function whose

argument is a set, that assigns a number to that set. In addition, a measure µ(·) must be countably

additive, meaning for any countable collection of sets {Ei} with Ei∩E j = /0 for all i, j we have

µ

(
∞⋃

i=1

Ei

)
=

∞

∑
i=1

µ(Ei). (3.1)

Measures are natural to the probabilist as the probability of an event, or set of possible outcomes.

Countable additivity is also intuitive, and is in fact a probability axiom. Using this language we

can construct probability measures for both discrete and continuous random variables as well as

mixtures. For example, a random variable which takes the value 0 with probability 1/2 or else a

uniformly chosen number between 1 and 5 has probability measure

π(·) = 1
2

δ0(·)+
1
2

µ̃
L(·),
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where µ̃L(A) = µL(A∩ [1,5])/4. Similarly, the Lebesgue integral trivially asserts that the number

of elements of [0,1] for which 1x∈Q is non-zero is a countable collection of points and hence has

Lebesgue measure zero (by countable additivity), so there is no chance that a randomly chosen

number between 0 and 1 is rational.

Unfortunately, complications arise from Lebesgue’s careful study of measure. It can be shown

(assuming the axiom of choice) that sets exist for which (3.1) does not hold (see e.g. the Appendix

on page 301 of [20]). So in order to discuss Probability rigorously, we must specifiy a measurable

space (X,B), the set of possible outcomes X combined with a collection of subsets of X (termed

the σ -algebra) for which (3.1) holds, and restrict our analysis to these sets. Probabilistically, we

can think of these as the sample space and event space. In practice, we are unlikely to ever need to

worry about sets which are not in B. However, for consistency in this thesis we will always work on

the abstract probability space (Ω,B(Ω),P(·)), representing the ‘state of the universe’, and consider

random variables as maps X(ω) from ω ∈ Ω to some (X,B), with X a complete, separable metric

space (e.g. [112]), and when stated with an induced probability measure π(·).1

3.1.1 Conditional probability

One particular challenge of continuous random variables is conditioning. A basic course in Proba-

bility will teach that

P[X ∈ A|Y ∈ B] =
P[X ∈ A,Y ∈ B]

P[Y ∈ B]
, (3.2)

where A and B are events and X and Y random variables, and the logic is undeniable from simply

drawing a Venn diagram. However, if P[Y ∈ B] = 0 then (3.2) does not actually make sense. When

discussing Markov chains we will often be in this scenario, by attempting to condition on the current

state in the chain having a specific value when defining the distribution for the next state.

We resolve this in practice by using (3.2) on non-null sets,2 and defining a regular conditional

probability measure for conditioning on specific points in the state-space. Loosely, the idea is that

two random variables X |Y1 and X |Y2 will agree almost surely provided i) they agree on non-null sets

under Y1 and Y2, and ii) Y1 and Y2 have the same null sets (see e.g. Section 6.5.3 of [20]). So on these

null sets we can actually choose from several versions of the conditional distribution. A regular

1Those unfamiliar with measures will not lose too much by simply replacing
∫

π(dx) with
∫

π(x)dx where appropriate

and noting that
∫

f (x)δa(dx) = f (a).
2A null set is simply a set of zero probability under the chosen distribution.
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conditonal distribution is just a way of picking a particular version. In the Markov chains case, we

will call this version a transition kernel, defined in the next section. However, for ease of exposition,

we will still sometimes formally write P[Y ∈ A|X = x] to denote a conditional probability, as well as

occasionally Px[Xt ∈ A] := P[Xt ∈ A|X0 = x]. For a much more rigorous and detailed discussion of

conditional probability, see [59].

3.2 Markov chains in discrete time

A stochastic process {Xt}t≥0 with each Xi defined on (X,B) is called a Markov chain if

P[Xi ∈ A|Xi−1 = xi−1, ...,X0 = x0] = P[Xi ∈ A|Xi−1 = xi−1]. (3.3)

If in addition the distribution of Xi|Xi−1 does not depend on i, we call the chain time-homogeneous

(we only consider chains of this form here). Given (3.3), we can completely characterise {Xt}t≥0

through an initial distribution µ(·) for X0, and a set of conditional distributions P[X1 ∈ A|X0 = x0]

for each x0 ∈ X.3 For the latter we use a transition kernel

P : X×B→ [0,1].

For any fixed x0 ∈ R, P(x0, ·) defines a distribution over (X,B), and for any A ∈ B, P(·,A) is

measurable. Intuitively, P defines a map from points to distributions in X. Similarly, we can define

the m-step transition kernel as

Pm(x0,A) = P[Xm ∈ A|X0 = x0],

which we can find recursively through the calculation

Pm(x0,A) =
∫

Pm−1(y,A)P(x,dy).

Example 3.2. A simple stationary Gaussian AR(1) process defined recursively as Xi+1 = ρXi +√
1−ρ2εi, εi ∼ N(0,1) can be written as a Markov chain with initial distribution µG(·) and tran-

sition kernel P(x, ·) defined to be N(ρx,1−ρ2), for any ρ ∈ (−1,1).

3The existence of a stochastic process defined via these objects is a straightforward consequence of Kolmogorov’s con-

sistency theorem in most cases. See Chapter 3 of [81] for more detail.
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In the case where |X|= n < ∞, the transition kernel is simply an n×n matrix P, and the distribution

for any Xi is an n-dimensional row vector ν with νi ≥ 0 and ∑i νi = 1. The marginal distribution

ν ′ for Xi+1 can then be written ν ′ = νP. When P is of this form, we can elegantly represent the

relationship between transition probabilities through the Chapman-Kolmogorov equations

Pm+n = PmPn. (3.4)

We must first define the operator P in the general case in order to express things in the same way.

We do this through its action on probability measures (to the left) as

νP(A) =
∫

P(x,A)ν(dx), (3.5)

with which we can define the marginal distribution of X1 in the instance X0 ∼ ν(·), and on functions

(to the right) as

P f (x) =
∫

f (y)P(x,dy), (3.6)

which gives the conditional expectation of f (X1) given that X0 = x. With (3.5) we can write ν ′(·) =

νP(·) as in the finite case, while (3.6) means we can write (3.4) in the general case. Note that (3.4)

is in fact the semi-group property for the family of linear operators {Pt}t≥0 [88].

We are interested in Markov chains as a means to approximate expectations under some distribution

from which we cannot simulate directly. The reason that many Markov chains present an avenue to

do this is by a property known as ergodicity. Informally, for some specific forms of P, there exists a

unique distribution π(·) for which in some sense

µPm(·)→ π(·) (3.7)

as m→ ∞, for any choice of µ(·). Thus, direct simulation from π(·) is no longer required in order

to draw samples with distribution ‘arbitrarily close’ to π(·), in a sense that we will make rigorous

later. In this instance, we also have a version of the Strong Law of Large Numbers, again informally

stated here as
1
m

m

∑
i=1

f (Xi)→ Eπ [ f (X)], Xi ∼ µPi(·). (3.8)

In the following sections we make these ideas rigorous, discussing the requirements on P which

result in the Markov chain being ‘ergodic’, and how these translate into guarantees on estimators.

To do this, we must first understand long-time behaviour. This can be an arduous task, as the theory

is rich. Here we summarise some notions from countable state space chains, before moving on to the
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general case. We introduce the countable case first as many concepts seem natural there, and in the

general case ideas have often been adapted from those for countable chains. Geometric ergodicity

is also most naturally motivated from the countable state space theory. Loosely, in the following

sections we will characterise the sets A ∈B which will be visited by the chain, and then those that

will be visited infinitely often. Any limiting distibution π(·) will only have π(A) > 0 if this is the

case, as otherwise ∑Pm(x,A)/m will converge to zero as m→ ∞. We then establish conditions

for convergence to a unique limit π(·), rates of convergence, and corresponding limit theorems for

estimators taken from chains.

Historical Note. Interestingly, Markov chains were in fact specifically designed as a process for

which (3.8) could be established. At the beginning of the twentieth century the ‘Moscow school’

of Mathematics was attempting to use rigorous arguments to establish evidence for the doctrine of

free will, which loosely implies that each person is solely responsible for his or her actions [117].

During an era in which various political and economic ideologies were on the rise, the prospect

of a widely held belief in such a doctrine posed serious threats to social order. P. A. Nekrasov,

a mathematician from the Moscow school, used the quote at the beginning of this thesis as an

argument for free will. He noted that averages of many people’s behaviour (such as voting polls)

apppeared to approach constant values, and claimed that this was evidence that decisions were being

made independently, rather than under the influence of others [118]. Andrey Andreyevich Markov,

an opponent to the Moscow school, developed the Markov chain to refute this claim, and indeed

showed that independence was not a necessary condition for a Law of Large Numbers [74]. It

is thrilling to consider that at this time abstract Probability formed the core of philosophical and

political debates that came to have such a profound influence on the modern world.

3.2.1 Doeblin–Kolmogorov theory for countable state spaces

Although introduced by Markov in [74], the theory of chains on countable state spaces was mainly

developed independently by Kolmogorov [61] and Doeblin [33] in the 1930s. Both were interested

in classifying the long-time behaviour of chains. An important precursor to this section is the concept

of an invariant distribution, meaning a probability measure π(·) for which

π(·) = πP(·). (3.9)
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Intuitively, if Xi ∼ π(·), then Xi+m ∼ π(·) for all m ≥ 0. In this subsection we characterise the

conditions under which π(·) both exists and is unique when X is countable, and establish when

π(·) will be the limiting distribution, as in (3.7). To do this we must first introduce some stability

concepts.

In the countable case, we say any two elements x and y communicate, denoted x↔ y, if there are

n = n(x,y) and m = m(y,x) such that Pn(x,y) > 0 and Pm(y,x) > 0. We can also express this idea

through the notion of a hitting time

τy = inf{t ≥ 1 : Xt = y},

calling state y ‘reachable’ from state x if either Px[τy <∞]> 0 or y= x. We define the communicating

class of a state x ∈ X as C(x) = {y ∈ X : y↔ x}, which represents all the states that can eventually

be reached from x. In fact, we can partition X into communicating classes, as “↔” defines an

equivalence relation on X (see Appendix A), meaning we can write X =
⋃

i∈I C(xi) for some index

set I, with C(xi)∩C(x j) = /0 for any i 6= j.

A Markov chain is called irreducible if C(x)≡ X, or equivalently Px[τy < ∞]> 0 for all x,y ∈ X. In

words, any state can be reached from any other. If a chain is not irreducible any limiting distribution

may critically depend on the starting point X0.

Example 3.3. Consider a chain with X = {1,2,3,4}, and transition kernel defined by P(1,2) =

P(2,1) = θ1, P(1,1) = P(2,2) = 1−θ1, P(3,4) = P(4,3) = θ2 and P(3,3) = P(4,4) = 1−θ2, for

0 < θi < 1. It can be shown that if x0 = 1 or 2 then the limiting distribution is π = (1/2,1/2,0,0),

while if x0 = 3 or 4 then π = (0,0,1/2,1/2).

Irreducibility implies any state can be reached from any starting point, but we would like to identify

states that will be reached. In fact, in the countable case irreducible chains can be partitioned into

two categories, which we call recurrent and transient. Since Px[τx < ∞] > 0 for all x ∈ X, these

concepts are defined as

Px[τx < ∞] = 1⇒ x is recurrent,

Px[τx < ∞]< 1⇒ x is transient.

Although this is a state-level definition, remarkably the categorisation is the same for all states in
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the equivalence class C(x) of x (shown in Appendix A). So in the irreducible case, if a single state

is recurrent then the whole chain is, and similarly for transience.

We can also define recurrence of a state x through its occupation time as

ηx =
∞

∑
t=0

1x(Xt).

Recurrent states are those for which Ex[ηx] = ∞. We say x is visited ‘infinitely often.’

Proposition 3.4. When X is countable, Ex[ηx] = ∞⇔ Px[τx < ∞] = 1.

Proof: See Appendix A.

In the case where |X|< ∞, then irreducibility and transience cannot actually coincide.

Proposition 3.5. If {Xt}t≥0 unfolds on a finite state space, then irreducibility⇒ recurrence.

Proof: A transient state x ∈X will only be visited a finite number of times, so there exists some time

Tx after which x will never be visited again. Where C(x) = X, a single transient state⇒ every state

is transient, so there would exist a time T = max{Tx : x ∈ X} after which no state will be visited

again. As the chain must be somewhere at this time, we have a contradiction, implying the chain

must be recurrent. �

When |X| = ∞ an irreducible chain can be transient. A simple example is the random walk on Z,

with X0 = 0 and transition kernel P(x,x+1) = p, P(x,x−1) = 1− p for some p ∈ [0,1]. If p = 1/2

then it can be shown that E0[η0] = ∞, but any other choice for p will result in a finite expected

occupation time (for a proof see [86]). Since there are an infinite number of states, we cannot use

the same argument to show recurrence as in the finite case.

We define the period of a state x ∈ X as

px = gcd{i≥ 1 : Pi(x,x)> 0},

where gcdA denotes the greatest common divisor of the set A ∈ N. If px = 1 then x is called aperi-

odic. Periodicity is again a class property [86], so the states of an irreducible chain will all have the

same period. A chain must be aperiodic for Pm(x, ·) to converge to a limit. However, if we introduce
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the ‘average’ kernel

Am(x, ·) =
1
m

m

∑
i=1

Pi(x, ·),

then we can remove this requirement. The Markov chains considered here will be aperiodic, so we

will only briefly mention Am in what follows, though see [105] for more here.

Example 3.6. Consider a chain with X= {1,2}, and transition kernel defined by P(1,2)=P(2,1)=

1 and P(1,1) = P(2,2) = 0. If x0 = 1, then P2m(x0, ·) = δ1(·) and P2m+1(x0, ·) = δ2(·), so Pm(x, ·)

never converges to a limit. However, Am(x, ·) will converge to (1/2,1/2).

The key results of this subsection are stated below.

Theorem 3.7. If a Markov chain {Xt}t≥0 is recurrent, then there exists a unique (up to a multiplica-

tive constant) σ -finite4 invariant measure.

Proof: This is the first part of Theorem 10.0.1 of [81].

In the countable case this need not be a distribution (for example it could be Lebesgue measure).

If the state space is finite, however, it will be, as the invariant measure will be finite and hence

normalisable.

Theorem 3.8. An irreducible, aperiodic, finite Markov chain has a unique invariant probability

distribution.

Proof: First note that if P is irreducible and aperiodic with real entries then the Perron–Frobenius

theorem states that it has a unique largest real eigenvalue λ1 with a unique left eigenvector, which

can be chosen to have positive entries [91, 40]. As P is a square matrix, its left and right eigenvalues

are the same [129]. It is clear that P has one as a right eigenvector, as

(P1)i = ∑
j

P(i, j) = 1,

where 1 denotes the column vector with each entry equal to one. So it is true that P also has a left

eigenvector with eigenvalue one, which we can call π , meaning πP = π .

4A measure µ(·) is called σ -finite if X can be written as a countable union
⋃

∞
i=1 Ai, with µ(Ai)< ∞ for each i.
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To see that this is the largest eigenvalue, implying that π has positive entries and is unique (up to

a multiplicative constant), note that any eigenvalue must satisfy |λi| ≤ 1. To see this, assume x is

a right eigenvector with corresponding eigenvalue λx. Take xi as the largest element in the column

vector x, and note that Px = λxx, meaning

∑
i

P(i, j)x j = λxxi.

The left-hand side is simply a weighted average of the elements of x, of which xi is the largest, so

taking absolute values gives

|λx||xi| ≤ |xi| =⇒ |λx| ≤ 1,

which completes the proof. �

Kac’s theorem gives a further characterisation, namely that π({x}) =Ex[τx]
−1, relating the invariant

distribution to the expected return time to a state x ∈ X [86]. This also sheds light on the countably

infinite case, where we can introduce a further dichotomy. We say a recurrent chain is positive re-

current if the invariant measure is finite, and null recurrent if it is only σ -finite. Equivalently we can

say that positive recurrent chains have finite expected return times, whereas for null recurrent chains

these are infinite. More generally we call any Markov chain positive if it has an invariant probability

measure. The last result in this subsection tells us that provided we can establish positivity, then we

have all that is needed.

Theorem 3.9. If an irreducible countable state Markov chain is positive, then it is recurrent. If it is

aperiodic, then π(·) is also the limiting distribution for the chain.

Proof: See Section 21.3, particularly Theorem 21.14, of [66].

3.2.2 Doeblin–Harris theory for general state spaces

Markov chains on general state spaces were first explored in detail by the pioneering work of Doeblin

[34]. Later Harris [47] contributed significantly to the theory, leading some to refer to the ‘Harris

recurrence’ school of Markov chains [28]. The works of Nummelin [88] and Meyn & Tweedie [81]

(as well as others) have done much to refine and popularise the field.

Much of the theory from countable chains carries forward into the general case, but some modifica-

tions are required. The first of which is that if X is uncountably large, then irreducibility becomes
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too strict a concept, since Pn(x,y) = 0 for any individual state y ∈ X by necessity. Without this

we cannot define the equivalence relation “↔”, so it becomes more difficult to decompose X as in

the countable case (though see [127] for interesting discussion on this point). Fortunately, for our

purposes little is lost by focusing instead on an analogue to irreducibility.

A chain {Xt}t≥0 is called ϕ-irreducible with respect to some σ -finite measure ϕ(·) if for any A ∈B

with ϕ(A)> 0 we have:

Px[τA < ∞]> 0, (3.10)

for all x ∈ X.

This is in some ways a more general condition, as irreducibility requires ϕ({x}) > 0 for all x ∈ X.

In the countable case we can take ϕ(·) to be the counting measure c(A) := |A|, but in the general

case this will not be σ -finite. One apparent drawback is that the choice of ϕ(·) seems arbitrary.

It is comforting, therefore, to know that if a chain is ϕ-irreducible for some ϕ(·), then a maximal

irreducibility measure ψ(·) exists, with the properties

• the chain {Xt}t≥0 is ψ-irreducible

• if {Xt}t≥0 is ϕ-irreducible, then ϕ � ψ , meaning ψ(A) = 0⇒ ϕ(A) = 0 for any A ∈B.

Note that what is important here is not so much the value of ψ(A), but the collection of sets

B+ = {A ∈B : ψ(A)> 0},

which are the elements of B that can be reached from any choice of µ(·). So there is actually an

infinitely large family of equivalent maximal irreducibility measures ψ(·). Given an initial measure

ϕ(·), we can actually construct one such ψ(·) using the transition kernel (see Appendix A).

Example 3.10. Consider an {Xt}t≥0 with transition kernel P(1,1) = P(2,2) = θ1 and P(1,2) =

P(2,1) = 1− θ1. Then {Xt}t≥0 is both δ1(·)- and δ2(·)-irreducible, and a maximal irreducibility

measure is the counting measure c(·).

Example 3.11. Consider an {Xt}t≥0 with X = R and B the Borel σ -algebra on R, with transition

kernel P(x, ·) a Gaussian distribution with mean x and variance 1, for all x ∈ X. Then P(x,A) > 0

for any A ∈B with µL(A)> 0, for all x ∈ X, where µL(·) denotes Lebesgue measure on R. So the

chain is µL-irreducible.
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Recurrence in the general case is again more subtle, as the two definitions of a recurrent state which

are equivalent in the countable case are no longer so here.

Proposition 3.12. In the general case Ex[ηA] = ∞ 6⇒ Px[τA < ∞] = 1, for any A ∈B and x ∈ A.

Proof: A counterexample is given later in this section.

In general a set A ∈B is called recurrent if for any x ∈ A we have

Ex[ηA] = ∞. (3.11)

A set is called uniformly transient if there is a constant M which upper bounds this quantity. In

the ϕ-irreducible case the entire chain is called recurrent if (3.11) holds for any x ∈ X and any

A ∈B+. It is transient if X can be covered by a countable collection of uniformly transient sets. A

ϕ-irreducible chain will either be recurrent or transient (See Chapter 6 of [99]).

In the general case, Proposition 3.12 presents a problem. We resolve it by defining a stronger notion,

known as Harris recurrence. A set A ∈B is called Harris recurrent if

Px[τA < ∞] = 1, (3.12)

for all x ∈ A. The chain is called Harris recurrent (or simply Harris) if (3.12) holds for any x ∈ X

and any A ∈B+. The next example shows how the two definitions can result in practical problems.

Example 3.13. Take P(x,A) as a Harris recurrent kernel on X. Now create a new chain on the

extended space X′ := X∪N, where N = {xi}∞
i=1, by setting P′(x,A) = P(x,A) for all x∈X, A∈B+,

and P′(xi,xi+1) = qi, P′(xi,y) = 1− qi for some specific y ∈ X. So once the chain reaches X it

remains there, and from each xi the chain either moves to X or jumps to xi+1.

Under the dynamics of P, we have Px[τA < ∞] = 1 for any A ∈B+. But provided {qi}∞
i=1 is chosen

such that 1≥∏i qi > 0, we have

Pxi [τy < ∞] = 1−
∞

∏
j=i

q j < 1.

Using this, we see that

Pxi [τA < ∞] = Pxi [τy < ∞]Py[τA < ∞] = Pxi [τy < ∞]< 1,
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for any A ∈B+. So the chain is not Harris recurrent. However, it is recurrent (see Section 9.1.2 of

[81]).

The key point here in general is that if the chain is recurrent we can sometimes find a set N ⊂ X of

potential starting points for {Xt}t≥0 (with ϕ(N) = 0) from which the sets in B+ may not be visited.

For a Harris chain this ‘measure-theoretic pathology’ (as it is called in [21]) is removed, so we can

initialise the chain from any x ∈ X.

Thankfully, the dichotomy of positive and null recurrent (and Harris recurrent) chains carries over

from the countable case with no additional difficulties. In the general case a ϕ-irreducible chain is

called periodic with period p ≥ 2 if we can find a sequence of disjoint sets {S1, ...,Sp−1} such that

for any x ∈ Si

P(x,S j) = 1 for j = (i+1)mod(p).

Otherwise the chain is aperiodic [124]. The following two results conclude this subsection.

Theorem 3.14. A ϕ-irreducible, aperiodic Markov chain has a unique σ -finite invariant measure.

Proof: See Theorem 10.0.1 in [81].

Theorem 3.15. If a ϕ-irreducible Markov chain {Xt}t≥0 is positive, then it is recurrent.

Proof: This is Proposition 10.1.1 of [81].

These results suit our purposes well. Specifically, if we can find an invariant probability distribution

and can establish ϕ-irreducibility, then we know our chain is recurrent (though not necessarily Har-

ris). Positive, ϕ-irreducible chains will therefore be our objects of study, since for these chains an

invariant distribution both exists and is unique. However, we have not yet established whether the

chain has a limiting distribution. We turn to this now.

3.2.3 Limiting distributions and ergodicity

The ultimate goal is to establish conditions under which we can approximate expectations by av-

eraging across a Markov chain. Clearly (3.7) is a desirable property connected with this goal. In
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this subsection we establish conditions for (3.7), and then in the next we connect these with (3.8)

explicitly.

There are two different ways in which a Markov chain can be considered to converge in some sense

to a limit. We can either consider the kernel itself Pm(x, ·), or the average kernel Am(x, ·). Typically

the word ergodic is attributed to the latter. A dynamical system in general is called ergodic if the

average time spent in some set A ∈B (in this case the long-run average from the chain) is equal to

the ‘spatial average’ (in this case π(A)). Although Markov proved such results for Markov chains

[74], Birkhoff and Von Neumann are credited with establishing them for more general dynamical

systems, and beginning the field of Ergodic theory [12, 128]. Here, we choose to work with the

convergence of Pm, which is a stronger notion, but provided chains are aperiodic nothing is lost by

doing this [105].

We will define ‘convergence’ to π(·) using a distance metric on the space of probability measures

over X. Although several options exist [42], a choice which is both relatively well understood and

strong enough for our purposes is total variation. For any two distributions µ(·) and ν(·) on (X,B)

this is defined as

‖µ(·)−ν(·)‖TV := sup
A∈B
{µ(A)−ν(A)}. (3.13)

Intuitively, (3.13) gives the largest possible difference between the probability of any single event in

B under µ(·) and ν(·). If both distributions admit densities, we can re-write (3.13) as

‖µ(·)−ν(·)‖TV =
1
2

∫
|µ(x)−ν(x)|dx, (3.14)

which is proportional to the L1 distance between µ(x) and ν(x) (we show the derivation explicitly in

Appendix B). Removing the supremum can often make the distance easier to compute. Our metric

‖ · ‖TV ∈ [0,1], with ‖ · ‖TV = 1 implying the distributions have disjoint supports.

Total variation convergence of a sequence of distributions {ϕn(·)}n≥0 to some limit ϕ(·) is written

‖ϕn(·)−ϕ(·)‖TV → 0

as n→ ∞. Two other common forms of convergence of probability measures are strong and weak,

the former given by

ϕn(A)→ ϕ(A), ∀A ∈B,

and the latter

Eϕn [ f (X)]→ Eϕ [ f (X)],
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for all bounded continuous functions f : X→ R. Weak convergence of ϕn(·) is equivalent to con-

vergence in distribution of the sequence of random variables Xn ∼ ϕn(·). Strong ⇒ weak, but not

the reverse (a simple counter-example is the sequence δ 1
n
(·), which converges weakly to δ0(·) but

not strongly). Total variation is in fact a stricter notion still as it implies a uniformity of convergence

across sets in B, whereas strong convergence only gives a pointwise result. With this machinery we

can make our intuition concrete.

Definition. A Markov chain {Xt}t≥0 with transition kernel P and invariant distribution π(·) is called

ergodic if

‖µPn(·)−π(·)‖TV → 0

as n→ ∞, for any initial distribution µ(·).

Definition. A Markov chain {Xt}t≥0 with transition kernel P and invariant distribution π(·) is called

a.s. ergodic if

‖µPn(·)−π(·)‖TV → 0

as n→ ∞, from π-almost-any starting point.

The phrase π-almost-any means that the set S of starting points for which the chain is not ergodic is

such that π(S) = 0. Given the stability structures introduced in the previous sections, we can now

identify ergodic Markov chains on general state spaces.

Theorem 3.16. (Aperiodic ergodic theorem). A ϕ-irreducible, aperiodic, positive Harris recurrent

Markov chain is ergodic.

Proof: See Theorem 3.1 of [124].

Although we are mainly interested in the general case, the following are interesting to note.

Corollary 3.17. A countable state Markov chain which is irreducible, aperiodic and positive is

ergodic.

Corollary 3.18. A finite state Markov chain which is irreducible and aperiodic is ergodic.
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The first follows since positivity⇒ recurrence, and recurrence⇒ Harris in the countable case. In

the finite case irreducible⇒ positive in addition.

In practice, the most difficult to establish of the conditions required for the above theorem is Harris

recurrence. Positivity is relatively easy, we just find a π(·) that satisfies (3.9). Likewise it is usually

clear from P whether the chain will be ϕ-irreducible and aperiodic. Conditions for Harris recurrence

are outlined in [124]. However, it is useful to note that in the absence of Harris recurrence we can

still rely on a slightly weaker result.

Theorem 3.19. If {Xt}t≥0 is a ϕ-irreducible, aperiodic, positive recurrent Markov chain with initial

distribution δx0(·), so that µPt(·) = Pt(x0, ·) then {Xt}t≥0 is a.s. ergodic.

Proof: See e.g. Theorem 4 of [105].

In short, provided we know the support for π(·), we can choose a starting point for the chain within

this support, and we no longer need Harris recurrence to ensure convergence.

3.2.4 Limit theorems & geometric ergodicity

If we can establish that a Markov chain is ergodic or a.s. ergodic, then we have the Law of Large

Numbers result that we desire.

Theorem 3.20. (Law of Large Numbers for Markov chains). If a chain {Xt}t≥0 is ergodic, then for

any f : X→ R with Eπ [ f (X)]< ∞, the estimator

f̃m→ Eπ [ f (X)]

with probability one, as m→ ∞.

Proof: See the corollary to Theorem 3.6 in Chapter 4 of [97].

In the case of a.s. ergodicity, we require the chain to be initiated from within the support of π(·).

Of course, consistency is a desirable property of an estimator. However, we would really like to say

more than this about f̃m. To do so, however, we need stricter conditions on {Xt}t≥0. A condition

which is sufficient (though not always necessary) is called geometric ergodicity. We first motivate
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why this is such a desirable property for the chain, before formally defining it and showing how it

can be established in the next section.

Theorem 3.21. (Markov Chain Central Limit Theorem). If a Markov chain {Xt}t≥0 with transition

kernel P is geometrically ergodic, and f : X→R is a Borel functional with Eπ [| f |2+ε ]< ∞ for some

ε > 0, then
√

m
(

f̃m−Eπ [ f (X)]
) d−→ N (0,v(P, f )) , (3.15)

as m→ ∞, where v(P, f ) depends on both the functional f and the transition kernel P. If the chain

is reversible (defined in Chapter 4), then (3.15) holds provided Eπ [| f |2]< ∞.

Although still an asymptotic property, clearly this result gives us considerably more confidence in

our estimator f̃m, particularly if we can get a reasonable idea of v(P, f ).

The form of v(P, f ) is in fact quite intuitive. To motivate the derivation, consider a sequence of

m random variables {X1, ...,Xm}, each with marginal distribution π(·), with Var[Xi] < ∞, and the

estimator

f̂m =
1
m

m

∑
i=1

f (Xi).

This could be the first n random variables in a stationary Markov chain, but we do not have to assume

this dependence structure. From basic properties of expectation and variance we can conclude that

E[ f̂m] = Eπ [ f (X)], and

Var[ f̂m] =
1

m2

m

∑
i=1

m

∑
j=1

Covπ [ f (Xi), f (X j)].

If we make the additional assumption that Cov[ f (Xi), f (Xi+k)] is independent of i (which is true for

a stationary Markov chain), then we can re-write this as

Var[ f̂m] =
1
m

(
Varπ [ f (X1)]+2

m−1

∑
k=1

(
m− k

m

)
Covπ [ f (X1), f (X1+k)]

)
. (3.16)

Noting that for any fixed k, the ratio (m− k)/m→ 1 as m→ ∞, we can see that

lim
m→∞

mVar[ f̂m] = Varπ [ f (X1)]+2
∞

∑
k=1

Covπ [ f (X1), f (X1+k)]. (3.17)

The remarkable result for Markov chains is that (3.17) can still be used even if the sequence is not

stationary, provided the chain is geometrically ergodic.
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Equation (3.17) can also be used to ‘choose between’ different Markov chains as a means for con-

structing estimators. Clearly the objective is to minimise ∑
∞
k=1 Covπ [ f (X1), f (X1+k)]. Ranking dif-

ferent Markov chains in such a way is called a Peskun ordering [92, 125].

Now that we have motivated the concept, we turn to a full definition.

Definition. A Markov chain {Xt}t≥0 with transition kernel P and invariant distribution π(·) is called

geometrically ergodic if

‖µPm(·)−π(·)‖TV ≤M(µ)rm, (3.18)

for some function M ≥ 0 and some 0≤ r < 1, for any initial distribution µ(·).

As (3.18) comes from a bound that decreases geometrically with m, the etymology is fairly unam-

biguous. Less clear is the case where M is bounded above, which is termed uniform ergodicity.

Uniform ergodicity means that the distance between Pm(x0, ·) and π(·) is decreasing geometrically

in m, and that a bound exists which is uniform for any choice of x0.

The intuition for a geometric bound comes from the case where X is countable. We give an illus-

trative example in the finite case here, where P is an s× s matrix. If we assume P is symmetric,

irreducible and aperiodic, then by the spectral theorem (e.g. [112]) we can write it in a diagonal

form

P =UT DU,

where each column of U is a left eigenvector of P, and D = diag(λ1, ...,λs) is a diagonal matrix of

real eigenvalues [126]. We have already shown that the largest eigenvalue is one. In fact it is also

true that |λi|< 1 for all other eigenvalues (see Chapter 12 of [66]). The quantity

λG = 1− sup
|λi|<1

|λi|,

is known as the spectral gap for the chain. It can be shown that the existence of a spectral gap λG > 0

is equivalent to the notion of geometric ergodicity [102]. If we write the eigenvalues in descending

order, with λ1 = 1, then it is actually true that any initial distribution vector µ can be written

µ = π +
s

∑
i=2

aiei,

for some constants ai ∈ R, where ei denotes the ith eigenvector of P (see Chapter 12 of [66]).

If we apply P to the right-hand side (giving the distribution for X1 as µP), then we have µP =
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π +∑
s
i=2 aiλiei. Iterating gives

µPm = π +
s

∑
i=2

aiλ
m
i ei.

Because |λi|< 1 for all i≥ 2, then as m→ ∞

‖µPm−π‖TV ≤
s

∑
i=2
|ai||λi|m‖ei‖TV = O((1−λG)

m) ,

so convergence here occurs at a geometric rate. A natural question is when such a rate holds in the

general case, and how to establish a bound such as (3.18) in practice. Although the same spectral

decomposition could be applied to general state transition kernels (provided a suitable inner product

is defined), it can often be extremely difficult to find the eigenvalues of P. We instead discuss a

different approach here.

3.2.5 Establishing geometric ergodicity

A very useful result, again first introduced by Doeblin (see the Appendix of [69]), is the coupling

inequality. A coupling of any two random variables X ∼ µ(·) and Y ∼ ν(·) is any joint distribution

Λ(·) for (X ,Y ) such that the marginals for X and Y are µ(·) and ν(·). A simple example is the

case where X and Y are both N(0,1), in which case any bivariate Gaussian distribution N(0,Σ) with

Σ11 = Σ22 = 1 defines a coupling of X and Y . The choice of how X and Y depend on each other

is free provided the marginals are preserved. Another coupling in this case would be X = Y with

probability one.

Theorem 3.22. (Coupling Inequality) For any coupling Λ(·) of random variables X ∼ µ(·) and

Y ∼ ν(·) we have

‖µ(·)−ν(·)‖TV ≤ PΛ[X 6= Y ]. (3.19)

Proof: See Appendix A.

Example 3.23. Consider the case µ(·) = ν(·), so that ‖µ(·)−ν(·)‖TV = 0.

• One coupling Λ1(·) could be defined such that X and Y are independent, meaning PΛ1 [X 6=

Y ] = 1, giving a very loose bound

• Another, Λ2(·), could be that X = Y with probability 1, so that we sample X ∼ µ(·) and then

set Y to be the same value. In this case PΛ2 [X 6=Y ] = 0, so that the bound on ‖µ(·)−ν(·)‖TV

is saturated.

47



Note that in both cases the marginal distributions for both X and Y would be µ(·), or equivalently

ν(·).

To return now to the goal, we seek a bound on the distance ‖Pm(x0, ·)−π(·)‖TV which decreases

geometrically in m. With the coupling inequality at our disposal, we can construct such a bound if

we can find a coupling Λ(·) of Xm ∼ Pm(x0, ·) and Y ∼ π(·) such that PΛ[Xm 6= Y ] ∝ rm for some

r < 1. To construct such a Λ(·), we must introduce some further concepts.

We say that a set C ∈ X is small if there exists m0 ∈ N and ε > 0 such that for any A ∈B

Pm0(x0,A)≥ εψ(A), ∀x0 ∈C, (3.20)

where ψ(·) is some probability measure. Equation (3.20) is called a minorisation condition (see

Section 5.2 of [81]). In the countable case it is also known as Doeblin’s condition [86].

We focus on the case m0 = 1 here, for ease of exposition, though the extension to any finite m is

straightforward [105]. If (3.20) holds for some set C, then whenever {Xt}t≥0 is in C we can ‘split’ the

transition kernel P into two constituent parts, one of which does not depend on the current position

in the chain, using the decomposition

P(x0, ·) = εψ(·)+(1− ε)R(x0, ·),

where R(x0, ·) = (P(x0, ·)− εψ(·))/(1− ε) is also a transition kernel. Generating the next sample

in a Markov chain with kernel P can therefore be done in two stages, whenever the current point in

the chain is some x ∈C. First, draw a Bernoulli random variable with probability of success ε , and

then conditional on success draw from ψ(·), otherwise draw from R(x, ·). Note that the marginal

transition kernel is still P. The random times T at which draws are made from ψ(·) are known as

regeneration times for the chain. At these points the next sample is drawn completely independently

of even the current value in the chain. This ‘splitting’ construction was introduced independently by

Nummelin [87] and Athreya & Ney [4].

Example 3.24. Consider a Markov chain with state space X = [0,10] and where the transition

kernel P(x, ·) is a standard Gaussian distribution centred at x and truncated at 0 and 10, with

density p(y|x). Then for any A ∈B we have

P(x,A) =
∫

A
p(y|x)dx≥ cmin

∫
A

dy,
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where

cmin = inf
x,y

p(y|x).

Hence we can set ε = 10cmin, giving

P(x,A)≥ εµ̃
L(A),

where µ̃L(A) = µL(A∩X)/10 is the uniform distribution over X. So here the whole state space is a

small set.

This concept of regeneration allows us to find a geometric bound using (3.19). Specifically, we

consider two Markov chains {Xt}t≥0 and {Yt}t≥0, and consider a sequence of couplings on the pairs

(Xm,Ym), such that P[Xm 6= Ym] decreases geometrically in m. If {Yt}t≥0 is initialised at stationarity

(i.e. Y0 ∼ π(·)), then we have the bound we seek. The concrete construction in the case m0 = 1 is:

1. Initialise two Markov chains, both with transition kernel P and invariant distribution π(·). For

the chain {Xt}t≥0 we set X0 = x0, and for {Yt}t≥0 we set Y0 ∼ π(·)

2. At each iteration m, if (xm−1,ym−1) 6∈C×C then we draw Xm∼P(xm−1, ·) and Ym∼P(ym−1, ·)

independently

3. But, in the case (Xm−1,Ym−1) ∈C×C, we draw Um ∼ Bernoulli(ε). If Um = 0 then we draw

Xm ∼ R(xm−1, ·) and Ym ∼ R(ym−1, ·) independently, but if Um = 1 we set Xm =Ym ∼ψ(·), and

draw subsequent values for each chain such that they remain equal

To see how such a construction induces a geometric bound on ‖Pm(x0, ·)−π(·)‖TV , it is important

to note that since Y0 ∼ π(·), each Ym has marginal distribution π(·). First consider the case C = X,

so that (xm−1,ym−1) ∈C×C at every iteration. In this instance

‖Pm(x0, ·)−π(·)‖TV ≤ P[Xm 6= Ym] = (1− ε)m.

In fact, this bound is uniform for any x0 ∈ X, so the case C ∈ X corresponds to a uniformly ergodic

chain.

Theorem 3.25. An irreducible, aperiodic finite state Markov chain is uniformly ergodic.
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Proof: Irreducibility implies that for any (x,y)∈X×X there is an n0 = n0(x,y) such that Pn0(x,y)>

0. We state a fact from number theory that since there are a finite number of (x,y) pairs then there is

an n such that Pn(x,y)> 0 for all of them (see Lemma 1.27 on page 20 of [66] for a proof). Take

δ = inf{Pn(x,y) : x,y ∈ X},

and define c∗(·) = c(·)/c(X), where c(A) = |A|. Then c∗(·) is a probability measure over X and

Pn(x,A)≥ δc∗(A),

for any A ∈B and any x ∈ X. �

Note that in the countable case this approach will no longer yield a proof, as inf{Pn(x,y) : x,y ∈ X}

can be zero. In fact, typically in the case of an unbounded X, a ϕ-irreducible, aperiodic, positive

Harris chain will not be uniformly ergodic. It is more common, therefore, to seek a small set C

which is a proper subset of X. In this case, the additional concern is how often (x,y) ∈C×C in the

split chain construction. To ensure that this happens often enough to construct a geometric bound

on the coupling time, we need to consider how often the chains will visit C.

Example 3.26. Consider a Markov chain with transition kernel P(x,dy) = p(y|x)dy and state space

X = R, which is ergodic to some distribution π(·). Note that unlike in Example 3.24, we now have

inf
x,y∈X

p(y|x) = 0,

so we can no longer lower bound p(y|x) over all x,y ∈ X with some positive constant to create a

minorisation condition. However, if we take the set C = [0,10] and µ̃L(·) as the uniform distribution

over [0,10] (i.e. a distribution that only has support in the set C), then we can still find an ε such

that

P(x,A)≥ εµ̃
L(A),

for any x ∈C and A ∈B. Here

ε = inf
x,y∈C

p(y|x),

which will be positive and finite provided p(y|x) is bounded away from 0 and ∞ on [0,10].

We only offer intuition for how to construct a geometric bound here, closely following that given in

[57]. We need to consider the distribution of τC, the return time to C, defined as

τC = min{m≥ 1 : Xm ∈C | X0 ∈C}.
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If each chain spends enough time in C then we should have enough opportunities for {Xt}t≥0 and

{Yt}t≥0 to ‘coalesce’ (i.e. become equal) so that we can still establish a geometric bound. The

essential (and intuitive) requirement is that for any x ∈C, τC follows a distribution which has tails at

least as light as a geometric random variable. Mathematically we need to show that Ex[eβ1τC ] exists

for some β > 0, since

Ex[eβτC ] =
∞

∑
t=1

eβ tPx[τC = t]< ∞

implies that the probability Px[τC = t] ∈ o(e−β t).

If it can be established that the return times to C have geometric tails, then we can still construct a

bound on the total variation distance which decays geometrically in m [57, 81]. Establishing that τC

has such tails is often most easily done through the use of a drift condition. We find some function

V : X→ [1,∞) for which V (x)→ ∞ as |x| → ∞ (we call such a function coercive), and some λ < 1

and b≤ ∞ for which

PV (x)≤ λV (x)+b1C(x), ∀x ∈ X. (3.21)

If such a Lyapunov function can be found, we can fix a small set to be C = {x ∈ X : V (x)≤ d}. We

can then construct a bound of the form

‖Pm(x0, ·)−π(·)‖TV ≤MV (x0)rm,

for some r < 1 and M < ∞. Since V is unbounded above, the bound is not uniform, but it does satisfy

the requirements of (3.18).

The reason we require V ≥ 1 is that the original results demonstrating its use in establishing conver-

gence bounds in fact are stronger than those we discuss here. In Chapter 16 of [81], it is shown that

establishing both (3.21) and (3.20) provides a geometric bound on the so called V -norm distance

between Pm(x0, ·) and π(·), given by

‖µ(·)−ν(·)‖V := sup
f∈F
|Eµ [ f (X)]−Eν [ f (Y )]|,

where F = { f : X→ R : | f (x)| ≤ V (x), ∀x ∈ X}. It is straightforward to see that total variation

distance is the special case where V (x)≡ 1 (see [105] for a proof). So for any V ≥ 1, we have

‖µ(·)−ν(·)‖TV ≤ ‖µ(·)−ν(·)‖V

Because of this, geometric ergodicity is sometimes discussed along with V -uniform ergodicity,

which is an equivalent bound on the V -norm distance [81, 102].
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3.2.6 Central Limit Theorems from geometric ergodicity

A geometric bound is not always necessary to establish Central Limit Theorems (CLTs) for Markov

chain estimators (in many case polynomial bounds suffice, see e.g. [39]). But proving the existence

of (3.18) allows CLTs to be found in some generality, without too much difficulty. Usual proofs rely

on the existence of solutions to Poisson equations, e.g. [105]. We instead give some intuition using

an approach that more naturally connects with the classical result for independent and identically

distributed (iid) random variables, taken primarily from [45, 27]. First we require some further

definitions.

Definition. The characteristic function of a random variable5 X is the function ϕX : [0,∞)×X→C

given by

ϕX (t) = E[eitX ]. (3.22)

In fact, the characteristic function always exists, and completely characterises the distribution of X ,

in the sense that two random variables X and Y have the same distribution if and only if ϕX (t) =

ϕY (t) for all t (see e.g. Corollary B.106 on page 645 of [114]).

We will use this alternative method of analysing random variables to prove Central Limit Theorems,

first for independent and identically distributed random variables, and then in the Markovian case.

A useful property of ϕX (t) here is that for any a,b ∈R and any independent random variables X and

Y on (X,B) we can calculate the characteristic function of the linear combination aX +bY as

ϕaX+bY (t) = E[eit(aX+bY )] = E[eitaX eitbY ] = ϕX (at)ϕY (bt).

Denoting µX (·) as the distribution for X , another identity is

E[Xk] = (−i)k
ϕ
(k)
X (0),

as

ϕ
(k)
X (t) =

dk

dtk

∫
eitx

µX (dx) =
∫

∂ k

∂ tk eitx
µX (dx) = ik

∫
xkeitx

µX (dx).

The characteristic function is a more general form of the moment generating function M(t) =E[etX ].

Note that ϕX (t) always exists whereas for M(t) this depends on the tails of µX (·).
5We restrict the definition here to one dimensional random variables, though extensions are straightforward.
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We also recall the definition of convergence in distribution for a sequence of random variables

{X1, .X2, ...}. We write

Xn
d−→ X

if for the sequence of cumulative distribution functions given by Fn(x) = P[Xn ≤ x] we have Fn(x)→

F(x) as n→ ∞, at every x for which F is continuous, where F(x) = P[X ≤ x] for some random

variable X . The final component needed for our goal is the following theorem.

Theorem 3.27. (Lévy continuity theorem). Suppose we have a sequence of random variables

{X1,X2, ...}, with corresponding characteristic functions {ϕX1(t),ϕX2(t), ...}. If the sequence {ϕXn(t)}∞
n=1

converges pointwise to a limit, i.e.

ϕXn(t)→ ϕX (t),

for all t ∈ R, then ϕX (t) is the characteristic function of some random variable X, and

Xn
d−→ X .

Proof of this is given for example in Section B.4.2 on page 640 of [114].

Theorem 3.28. (Central Limit Theorem for iid sequences). If we write

Sn =
1
n

n

∑
i=1

f (Xi)

to denote the sample average of n independent and identically distributed random variables f (X1),

f (X2),..., f (Xn) each with E[ f (Xi)] = µ and Var[ f (Xi)] = σ2 < ∞, then

√
n(Sn−µ)

d−→ N(0,σ2).

Proof: Using properties of characteristic functions, we have

ϕ√n(Sn−µ)(t) = ϕ 1√
n ∑i( f (Xi)−µ)(t) =

[
ϕ f (Xi)−µ

(
t√
n

)]n

Also note that the Taylor series expansion of ϕ f (X)(t) about t = 0 is

ϕ f (X)(t) = 1+ iE[ f (X)]t−E[ f (X)2]t2/2+o(t2), t < 1.
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Here we have E[ f (Xi)−µ] = 0 and E[( f (Xi)−µ)2] = σ2. Combining the two expressions gives

ϕ√n(Sn−µ)(t) =
[

1− σ2t2

2n
+o(t2/n)

]n

→ e−σ2t2/2,

as n→ ∞, which is the characteristic function of a N(0,σ2) random variable. �

In the case where {Xt}t≥0 is a Markov chain, then the characteristic function of
√

n(Sn− µ) does

not have the same representation as a product, so such a straightforward proof is not possible. To

deduce something similar, we recall the operator P f (x) =
∫

f (y)P(x,dy) and define a generalisation

Definition. The operator-valued generating function of a Markov chain {Xt}t≥0 is defined as

Pit f (x) =
∫

eity f (y)P(x,dy),

for any measurable f : X→ C.

Clearly we have P0 = P. More generally, if we denote by ψn(t) the characteristic function of Yn =

f (X1)+ f (X2)+ ...+ f (Xn), and 1(x) the function which maps any point x∈X to 1, then if the chain

is started at X0 = x we have

ψn(t) = E[eitYn ] = E[eit ∑ f (Xi)] =
∫

...
∫

eit f (x1)...eit f (xn)P(x0,dx1)...P(xn−1,dxn) = Pn
it 1(x).

We can see therefore that for Markov chains the operator-valued generating function does have a

product representation.

As has already been alluded to, geometric ergodicity ergodicity of a Markov chain is shown in [102]

to be equivalent to fact that the operator P has an L2 spectral gap, meaning

‖P‖L2(π) := sup
f∈F

∫
( f (y)P(x,dy))2

π(dx)< 1, (3.23)

where F := { f : Eπ [ f ] = 0,Eπ [ f 2]< ∞} (see [102] for details). If this property holds, then it is in

fact possible to show that for t close to 0

ψn(t) = λ (it)n(1+ tθ1(t))+ρ
n
2 tθ2(n, t),

where λ (it) is the largest (in absolute value) eigenvalue of Pit , θ1(t) and θ2(n, t) are bounded and

0 < ρ2 < 1. It is also the case when (3.23) holds that λ (it) can be written as

λ (it) = 1+ itEπ [ f (X)]− v(P, f )t2/2+O(t3).
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With this representation, similar arguments to those used in the classical Central Limit Theorem

show that

√
n(Sn−µ)

d−→ N(0,v(P, f )),

as required. The full argument is given in [45].

3.2.7 Geometric ergodicity on computers

As far as mathematical objects are concerned, we have now established that geometric ergodicity

is a desirable property for general state space Markov chains, and that chains which are simply

ergodic may not converge at a geometric rate. We have also, however, established in Subsection

3.2.5 that any finite ergodic Markov chain will be geometrically ergodic (in fact uniformly so over

any starting point x ∈ X). In Section 3.1 we have discussed the benefits and limitations of working

with continuous random variables, and it is worth at this point having a similar discussion regarding

general state space Markov chains.

Any Markov chain that is being simulated on a computer will necessarily be finite. The chains

we simulate when performing Markov chain Monte Carlo are finite approximations to general state

space chains, owing to the finite memory restrictions of computers. So any Markov chain Monte

Carlo method, in practice, will converge to its equilibrium distribution at a geometric rate. With this

in mind, it is important to understand what is being gained by establishing whether the general state

space object that is being approximated will also be geometrically ergodic.

A short experiment illustrates why establishing geometric bounds ‘in the limit’ has some value on

finite state spaces. Consider two Markov chains defined on the positive integers (a countably infinite

state space):

1. A simple aperiodic random walk model, with P(i, i−1) = P(i, i) = P(i, i+1) = 1/3 for i≥ 2

and P(1,1) = 2/3, P(1,2) = 1/3

2. A slight variation in which P(i, i−1) = 2/6, P(i, i) = 3/6 and P(i, i+1) = 1/6 for i≥ 2 and

P(1,1) = 5/6, P(1,2) = 1/6.

It is straightforward to see that both chains are irreducible and aperiodic. The first is in fact only null
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recurrent, with the counting measure c(·) invariant, as for any j

∞

∑
i=1

c({i})P(i, j) =
∞

∑
i=1

P(i, j) =
∞

∑
i=1

P( j, i) = 1 = c({ j}).

The second is positive, with the geometric distribution as invariant measure. It has been proven that

model 2 produces a geometrically ergodic chain in the countably infinite case [78], whereas the first

is not even ergodic.

We consider finite state approximations to both models, with both approximations approaching the

truth as the dimension n→∞. In each case we let n grow and compute the second largest eigenvalue

(in absolute terms) from the transition matrix P. Figure 3.1 shows the results.
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Figure 3.1: The second largest absolute eigenvalue plotted against state space dimension for two

simple Markov chains.

If we denote the second largest eigenvalue from model i in dimension n by λi,n. it is clear numerically

that λ1,n → 1 as n→ ∞, whereas λ2,n → λ2 < 1. The point of the example is to highlight that

geometric ergodicity in the limiting case of an infinite state space implies that the spectral gap,

or equivalently the geometric rate of convergence, is robust to increasing dimension. So as in the

continuous random variables case, if we develop analytical results for Markov chains in the general

state space case, then the analysis will be robust to any increasing state space size n, which is clearly

desirable.
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3.2.8 Qualitative and quantitative bounds

Geometric ergodicity is often referred to as a qualitative bound. Since we usually do not know the

constants M and r, all we know is that a bound exists which decreases geometrically as the chain

evolves. Thankfully this is all that is required for Central Limit Theorems to exist for Markov chain

estimators of interest to us.

There is still, however, considerable interest in developing non-asymptotic bounds, both for the

distance ‖Pm(x0, ·)−π(·)‖TV , and some loss function associated with the estimator f̃m. The former

is of assistance when comparing different Markov chains, while the latter provides a more direct

assessment of the quality of the estimator f̃m after some finite number of samples m. Clearly both

are highly desirable, and predictably both are very challenging to show.

Quantitative bounds on the total variation distance between Pm(x0, ·) and π(·) exist (e.g. [57, 105]),

based on the drift and minorisation techniques discussed in previous sections. However, such bounds

are typically very conservative. Some loose intuition for this is that projecting the multi-dimensional

process {Xt}t≥0 onto a one-dimensional space through V results in a large loss of information.

Strategies for developing direct bounds on the mean-squared error of f̃m are presented using two

different approaches in [63] and [58]. In the first, regeneration times are exploited, whereas in the

second some ideas from Geometry and optimal transport are used to construct a bound conditional

on a positive Ricci curvature condition for the chain. Both approaches seem to hold some promise,

and have been further analysed and extended (e.g. [113, 37]).

3.3 Diffusion processes

Although we are primarily interested in discrete-time stochastic processes, sometimes these can be

effectively constructed by first considering continuous-time processes. Often there is more structure

to exploit in the continuous case, provided by some form of differential calculus. Here we discuss

some such processes which can be used to build Markov chain Monte Carlo methods.

We do not seek here to be as thorough and pedagogical as in the section for discrete-time chains,

which are our primary focus. Most of the work for this thesis is concerned with analysis of chains

inspired by processes, not the processes themselves. For this reason, this section is confined to
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reviewing some key results which are needed. For a thorough introduction to continuous-time pro-

cesses, see [67, 89].

We define a continuous-time Markov process as a collection of random variables (Xt)t≥0, indexed

by some continuous parameter t ≥ 0. in many cases the index is called time, though processes have

also been studied in Statistics which evolve across space (often referred to as random fields) and

other domains. For any fixed t, Xt is a random variable.

In the continuous-time setting, the Markov property is most easily stated using the concept of a

filtration, an increasing family of σ -algebras {Ft}t≥0 for which Ft contains the ‘history’ of the

process up until time t. The Markov property can then be defined as

P[Xt+h ∈ A|Ft ] = P[Xt+h ∈ A|Xt ].

A more intuitive way to think of this for the less mathematically inclined is that for any collection

of times {ti}n
i=1 with each ti ≤ t0, any h > 0 and any A ∈B

P[Xt0+h ∈ A|Xt0 = xt0 ,Xt1 = xt1 , ...,Xtn = xtn ] = P[Xt0+h ∈ A|Xt0 = xt0 ].

We will primarily discuss the class of Markov processes known as diffusions, those for which ‘sam-

ple paths’ (Xt(ω))t≥0 are continuous with probability one. What is meant by this is that if we

consider the set of possible paths as deterministic functions fω : [0,∞)→ X which map t→ Xt(ω),

the set of outcomes ω ∈ Ω for which fω is not a continuous function occurs with probability zero.

The remainder of this section is adapted from [71] (which is the author’s own work).

We focus on the class of time-homogeneous Itô diffusions, whose dynamics are governed by a

stochastic differential equation of the form:

dXt = b(Xt)dt +σ(Xt)dBt , X0 = x0, (3.24)

where (Bt)t≥0 is a standard Brownian motion. To unpack this slightly, by Brownian motion we

mean a process with B0 = 0, with independent increments, for which Bt ∼ N(0, tI). (Bt)t≥0 is also

continuous with probability one, but is nowhere differentiable (an interesting discussion on this

point is given in Section 13.2 of [44]). The drift vector b and volatility matrix σ in (3.24) are usually

assumed to be Lipschitz6 continuous functions, for reasons discussed in Section 5.2 of [89], however

6A function f : X → Y which maps from one metric space (X ,dX ) to another (Y,dY ) is called Lipschitz if there is a real

constant K < ∞ such that dY ( f (x), f (y))≤ KdX (x,y) for any x,y ∈ X .
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this is not always necessary, and we give some examples which are not Lipschitz in Chapter 5. Under

this assumption, however, and noting that E[Bt+h−Bt |Xt = xt ] = 0 for any h≥ 0, informally we can

see that

E[Xt+h−Xt |Xt = xt ] = b(xt)h+o(h),

implying that the drift dictates how the mean of the process changes over a small time interval. In

addition, if we define the process (Mt)t≥0 through the relation

Mt = Xt −
∫ t

0
b(Xs)ds,

then we have

E[(Mt+h−Mt)(Mt+h−Mt)
T |Mt = mt ,Xt = xt ] = σ(xt)σ(xt)

T h+o(h),

giving the stochastic part of the relationship between Xt+h and Xt for small enough h. See e.g.

Section 5.1 of [111].

Although (3.24) is often a suitable description of an Itô diffusion, we can characterise them in several

different ways. As in the discrete time case, a diffusion can be described through a transition kernel

Pt(x0, ·). Typically, however, the form of Pt(x0, ·) is unknown, though we can write the expectation

and variance of Xt ∼ Pt(x0, ·) via the integral equations

E[Xt |X0 = x0] = x0 +E
[∫ t

0
b(Xs)ds

]
,

E[(Xt −E[Xt |X0 = x0])(Xt −E[Xt |X0 = x0])
T |X0 = x0] = E

[∫ t

0
σ(Xs)σ(Xs)

T ds
]
,

where the second of these is as a result of the Itô isometry (see e.g. page 29 of [89]).

Another (often more tractable) way to characterise a diffusion process is through an infinitessimal

generator, A , which describes how functions of the process are expected to evolve. We define this

partial differential operator through its action on a function f ∈C2(X) as7

A f = lim
h→0

E[ f (Xt+h)|Xt = xt ]− f (xt)

h
,

though A can be associated with the drift and volatility of (Xt)t≥0 by the relation

A f (x) = ∑
i

bi(x)
∂ f
∂xi

(x)+
1
2 ∑

i, j
Ai j(x)

∂ 2 f
∂xix j

(x), (3.25)

7C2(X) is the set of functions f : X→ R with continuous first and second partial derivatives.
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where Ai j(x) denotes the component in row i and column j of σ(x)σ(x)T (see Section 7.3 of [89]).

In the case of an Itô diffusion, provided A(x) is positive definite for all x then Pt(x0, ·) admits a

density pt(x|x0), which, in fact, varies smoothly as a function of t. The Fokker–Planck equation8

describes the variation in terms of the drift and volatility and is given by

∂

∂ t
pt(x|x0) =−∑

i

∂

∂xi
[bi(x)pt(x|x0)]+

1
2 ∑

i, j

∂ 2

∂xi∂x j
[Ai j(x)pt(x|x0)]. (3.26)

A natural question is whether a diffusion has an invariant measure π(·), and whether as t→ ∞

‖Pt(x0, ·)−π(·)‖TV → 0,

for any x0 ∈ X. Again, similarly to the discrete time case, we require the diffusion to be positive

Harris recurrent with π(·) as an invariant distribution, where here positive and Harris are defined

analogously to in the discrete case. In addition to this, there is a topological constraint that all

compact sets must be small for some skeleton chain. See [80] for details. Equation (3.26) actually

provides a means of finding π(·), given b and σ , highlighting that the added structure offered by

some continuous-time processes can be of use. Setting the left-hand side of (3.26) to zero gives

∑
i

∂

∂xi
[bi(x)π(x)] =

1
2 ∑

i, j

∂ 2

∂xix j
[Ai j(x)π(x)], (3.27)

which can be solved to find π(·).

In the case t ∈ R>0, ϕ-irreducibility can be defined in a similar way to t ∈ Z>0. We say a process

(Xt)t≥0 is ϕ-irreducible if for any x ∈ X, there exists a t = t(x,A)> 0 for which

ϕ(A)> 0⇒ Pt(x,A)> 0, ∀A ∈B.

We can equivalently say ϕ(A)> 0⇒ Ex[τA]> 0.

The continuous-time analogue to geometric ergodicity is not surprisingly referred to using the con-

tinuous equivalent of a geometric random variable. We say that a π-irreducible process (Xt)t≥0 with

X0 = x0 is exponentially ergodic if

‖Pt(x0, ·)−π(·)‖TV ≤M(x0)rt , (3.28)

for some r < 1 and M : X→ [0,∞) [80].

8Also known as the Kolmogorov forward equation.
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Again, drift and minorisation conditions can be exploited to establish (3.28). Using the generator

characterisation, the equivalent condition to (3.21) is

A V (x)≤−cV (x)+b1C(x), (3.29)

for some small set C, for any x ∈ X, where c > 0, b < ∞. In some sense the continuous analogue is

more accessible than (3.21). Through the generator characterisation, we have actually defined our

process via how we expect it to evolve. So no further integrals are required in (3.29), as opposed

to (3.21). Note that in the continuous case we refer to a set C ⊂ X as small if for any A ∈B there

exists t ≥ 0 such that.

Pt(x0,A)≥ εψ(A), ∀x0 ∈C,

for some probability measure ψ(·). This is analogous to (3.20).
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Chapter 4

Markov chain Monte Carlo methods

In this chapter we review the Metropolis–Hastings algorithm, and some popular delineations. Al-

though this is not the only way to construct a measure-preserving Markov chain, it is both easy to

do and very general, making it the ‘go to’ choice in Markov chain Monte Carlo [29].

The basic premise of the method is to construct a transition kernel P such that the detailed balance

equations

π(dx)P(x,dy) = π(dy)P(y,dx) (4.1)

are satisfied for the distribution of interest π(·), for any x,y ∈ X. Integrating over x gives∫
π(dx)P(x,dy) =

∫
π(dy)P(y,dx) = π(dy)

∫
P(y,dx) = π(dy),

showing that (4.1) is a sufficient (but not necessary) condition for π(·) to be stationary for {Xt}t≥0.

Readers unsatified with the formal infinitessimal notation used here can consult Section 20.1.2 of

[81] for a more detailed treatment. If we can also establish π-irreducibility, aperiodicity and Harris

recurrence, then the chain will be ergodic, with π(·) as the unique invariant distribution. In words,

(4.1) states that the probability of the chain being in a set A ∈B and moving to B ∈B is the same

as that of being at B and moving to A, for any A,B ∈B. Markov chains that satisfy (4.1) are called

reversible, because if the chain is at stationarity then

P[Xn ∈ A,Xn+1 ∈ B] = P[Xn ∈ B,Xn+1 ∈ A],

so that it is not possible to identify whether time is moving forwards or backwards for the chain.
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4.1 Metropolis–Hastings

In a similar vain to the rejection and importance sampling methods, the Metropolis–Hastings algo-

rithm can be viewed as a re-sampling approach. A Markov chain is constructed by first drawing

some ‘proposed’ next position in the chain from some candidate transition kernel Q, and then us-

ing some accept/reject mechanism to ensure that the full transition kernel P satisfies (4.1). The full

algorithm is given below (with a∧b denoting the minimum of a and b).

Algorithm 1 Metropolis–Hastings, single iteration.
Require: xi−1

Draw X ′ ∼ Q(xi−1, ·)

Draw Z ∼U [0,1]

Set α(xi−1,x′)← 1∧ π(x′)q(xi−1|x′)
π(xi−1)q(x′|xi−1)

if z < α(xi−1,x′) then

Set xi← x′

else

Set xi← xi−1

end if

The full transition kernel for a Markov chain constructed using the Metropolis–Hastings method is

P(x,A) =
∫

A
α(x,y)Q(x,dy)+ r(x)δx(A) (4.2)

for any A ∈B, where

r(x) = 1−
∫

α(x,y)Q(x,dy)

is the average probability that a proposed moved from Q(x, ·) will be rejected.

Proposition 4.1. A Markov chain {Xt}t≥0 produced by the Metropolis–Hastings algorithm has π(·)

as an invariant distribution.

Proof: We first show that α(x,y)Q(x,dy) satisfies detailed balance, and then establish the result.

Assuming π(·) and Q(x, ·) admit densities π(x) and q(y|x) (which is always possible by constructing
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the reference measure m(·) = π(·)+Q(x, ·)), we can write

π(dx)α(x,y)Q(x,dy) = π(x)q(y|x)∧π(y)q(x|y)m(dx)m(dy)

= π(dy)α(y,x)Q(y,dx).

To show that π(·) is invariant for P, note that∫
π(dx)P(x,A) =

∫
π(dx)

[
r(x)δx(A)+

∫
A

α(x,y)Q(x,dy)
]
,

=
∫

A
r(x)π(dx)+

∫
y∈A

∫
α(x,y)π(dx)Q(x,dy),

=
∫

A
r(x)π(dx)+

∫
A

[∫
α(y,x)Q(y,dx)

]
π(dy),

=
∫

A
r(x)π(dx)+

∫
A
(1− r(y))π(dy) = π(A),

as required. �

Provided that the acceptance probability is less than one in some region of X, then the chain produced

will be aperiodic, as there will be a non-zero probability of remaining in the same part of the state

space. Of course, whether or not the chain is ψ-irredicible for some π(·)� ψ(·), Harris recurrent

and geometrically ergodic will depend crucially on the choice of Q. We now discuss some typical

options.

4.1.1 Independence sampler

Perhaps the simplest choice for Q is something which is independent of the current position, meaning

Q(x, ·) = q(·) for any x ∈ X. In this instance the acceptance probability reduces to

α(x,y) =
π(y)q(x)
π(x)q(y)

.

Note that Xi+1 will still depend on Xi through α . Intuitively, the best choice for q(·) is q(·) ≈ π(·),

so that α ≈ 1 and the algorithm almost produces independent samples from π(·).

Unfortunately, the independence sampler suffers from the same drawbacks as other re-sampling

methods, in that finding a distribution q(·) which globally approximates π(·) is extremely difficult

in high dimensions. More formally, ergodicity results for the independence sampler highlight exactly

when the algorithm should and should not be used.
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Theorem 4.2. If the candidate distribution q(·) satisfies the ‘heavy-tail rule’

q(x)
π(x)

≥ δ , ∀x ∈ X, (4.3)

for some δ > 0, then the independence sampler produces a Markov chain which is uniformly ergodic.

If (4.3) is not satisfied, then the chain will not even be geometrically ergodic.

Proof: This is Theorem 2.1 in [78].

In practice (4.3) is very difficult to establish, as noted by Johnson & Geyer [54], making the inde-

pendence sampler difficult to use with confidence, particularly for high-dimensional models.

4.1.2 Random Walk Metropolis

Another extremely simple choice for Q is one in which the resulting transition density q(y|x) satisfies

q(y|x) = q(|y− x|),

meaning the proposal density is symmetric about x. A simple example is Q(x, ·) = N(x,λ 2Σ) for

some λ 2 > 0, where Σ is either taken simply as the identity, or chosen to match the correlation

structure of π(·). In this symmetric case, α reduces to

α(x,y) = 1∧ π(y)
π(x)

(4.4)

which has the clean interpretation that proposals for which the target density is larger will be ac-

cepted. More generally, any choice of Q for which α reduces to (4.4) is called a Metropolis algo-

rithm [48]. The Random Walk Metropolis (RWM) is a special case.

Much theoretical study has been dedicated to the RWM. It has been shown that the optimal accep-

tance rate for proposals tends to 0.234 as the dimension n of X tends to ∞ for a wide class of targets

[101, 120]. The intuition for an optimal acceptance rate is to find the right balance between propos-

ing moves which are far from the current point in the chain and ensuring that these moves will be

accepted a reasonable proportion of the time, so as to minimise the asymptotic variance (3.17). If a

proposal y is ‘close’ to the current point x, then π(y)/π(x)≈ 1, so the acceptance probability will be

high, but Corrπ [ f (Xi+1), f (Xi)] will typically be close to 1, increasing the variance of the estimator.

However, if y is far away from x, it could easily be that π(y)/π(x)≈ 0, meaning the chain stays put
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and Corrπ [ f (Xi+1), f (Xi)] = 1, which is clearly undesirable. Random walk proposals are sometimes

referred to as ‘blind’, as no information about π(·) is used when generating proposals, so typically

very large moves will result in a very low chance of acceptance.

Several authors have also shown that for certain classes of π(·), the tuning parameter λ (highlighted

above in the Gaussian case of Q) should be chosen such that λ 2 ∝ n−1, so that α 6→ 0 as n→∞ [101].

Because of this, we say that algorithm efficiency ‘scales’ O(n−1) as the dimension of X increases.

Note that this compares favourably with both numerical and traditional re-sampling methods.

Ergodicity results for a Markov chain constructed using the RWM algorithm also exist [78, 110].

At least exponentially-light tails are a necessity for π(x) for geometric ergodicity (defined precisely

in Subsection 4.2). In higher dimensions additional conditions are required [110]. These ergodicity

properties are discussed in much more detail in Subsection 4.2. We demonstrate with a simple

example why heavy-tailed forms of π(x) pose difficulties here (where π(x)→ 0 at a slower than

exponential rate).

Example 4.3. Take π(x) ∝ 1/(1+ x2), so that π(·) is a Cauchy distribution. Then if Y ∼ N(x,λ 2),

the ratio π(y)/π(x) = (1+ x2)/(1+ y2)→ 1 as |x| → ∞. Therefore, if x0 is far away from zero, the

Markov chain will dissolve into a random walk, with almost every proposal being accepted.

Of course, a one-dimensional random walk is an example of a null recurrent Markov chain, which

does not have a finite invariant measure (see e.g. Section 21.4 of [66]). It should be noted that starting

the chain from near zero can also cause problems in this example, as the tails of the distribution may

not be explored suitably quickly. See [100] for more details here.

4.1.3 Metropolis-adjusted Langevin algorithm

We have already referred to random walk proposals as ‘blind’, as no information about π(·) is

used to generate them. Intuitively, it would seem more sensible to construct Q in a way such that

πQ(·) ≈ π(·), so that the majority of proposals will be accepted. One way to construct such a

candidate kernel would be to base it on a diffusion which has π(·) as a limiting distribution, and

then use the Metropolis–Hastings step simply to correct for the error introduced by numerically

simulating the process.

Given the Fokker–Planck equation (3.26), our goal therefore becomes clear: find drift and volatility
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terms such that the resulting dynamics describe a diffusion which converges to some user-defined

invariant distribution, π(·). This process can then be used as a basis for choosing Q in a Metropolis–

Hastings algorithm. The Langevin diffusion, first used to describe the dynamics of molecular sys-

tems [23], is such a process, given by the solution to the stochastic differential equation:

dXt =
1
2

∇ logπ(Xt)dt +dBt , X0 = x0. (4.5)

Since the volatility terms are Ai j(x) = 1{i= j}, it is clear that

1
2

∂

∂xi
[logπ(x)]π(x) =

1
2

∂

∂xi
π(x), ∀i, (4.6)

which is a sufficient condition for Equation (3.26) to hold. Therefore, for any case in which π(x) is

suitably regular (so that ∇ logπ(x) is well-defined and the derivatives in Equation (3.26) exist), we

can use (4.5) to construct a diffusion which has invariant distribution π(·).

Roberts and Tweedie [109] give sufficient conditions on π(·) under which a diffusion (Xt)t≥0 with

dynamics given by Equation (4.5) will be ergodic, meaning

‖Pt(x0, ·)−π(·)‖TV → 0 (4.7)

as t→ ∞, for any x0 ∈ X. They are straightforwardly satisfied by many statistical models.

We can use Langevin diffusions as a basis for MCMC in many ways, but a popular variant is known

as the Metropolis-adjusted Langevin algorithm (MALA), in which Q(x, ·) is constructed through an

Euler–Maruyama discretisation of (4.5) and used as a candidate kernel in a Metropolis–Hastings

algorithm. The resulting proposal is:

Q(x, ·) = N
(

x+
λ 2

2
∇ logπ(x),λ 2I

)
, (4.8)

where λ is again a tuning parameter.

Before we discuss the theoretical properties of the approach, we first offer some intuition for the

dynamics. From Equation (4.8), it can be seen that Langevin-type proposals comprise a deterministic

shift towards the local mode of π(x), combined with some random additive Gaussian noise, with

variance λ 2 for each component. The relative weights of the deterministic and random parts are

fixed, given as they are by the parameter λ . Typically, if λ � λ 2, then the random part of the

proposal will dominate and vice versa in the opposite case, though this also depends on the form of

∇ logπ(x) [109].
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Again, since this is a Metropolis–Hastings method, choosing λ is a balance between proposing large

enough jumps and ensuring that a reasonable proportion are accepted. It has been shown that in the

limit (as n→∞), the optimal acceptance rate for the algorithm is 0.574 [104] for forms of π(·) which

either have independent and identically distributed components or whose components only differ by

some scaling factor [104]. In these cases, as n→ ∞, the parameter λ 2 must be chosen ∝ n−1/3, so

we say that algorithm efficiency scales O(n−1/3). Note that these results compare favourably with

the O(n−1) scaling of the Random Walk Metropolis.

Convergence properties of the method have also been established. Roberts and Tweedie [109] high-

light some cases in which MALA is either geometrically ergodic or not. Typically, results are based

on the tail behaviour of π(x). If these tails are heavier than exponential, then the method is typi-

cally not geometrically ergodic and similarly if the tails are lighter than Gaussian. However, in the

in-between case, the converse is true. We again offer two simple examples for intuition here.

Example 4.4. Take π(x) ∝ 1/(1+ x2) as in the previous example. Then, ∇ logπ(x) = −2x/(1+

x2)2→ 0 as |x| → ∞. Therefore, if x0 is far away from zero, then the MALA will be approximately

equal to the RWM algorithm, and so will also dissolve into a random walk.

Example 4.5. Take π(x) ∝ e−x4
. Then, ∇ logπ(x) = −4x3 and X ′ ∼ N(x− 2λ 2x3,λ 2). Therefore,

for any fixed λ , there exists c > 0, such that, for |x|> c, we have |x−2λ 2x3|>> |x|, suggesting that

MALA proposals will quickly spiral further and further away from any neighbourhood of zero, and

hence nearly all will be rejected.

For cases where there is a strong correlation between elements of x or each element has a different

marginal variance, the MALA can also be ‘pre-conditioned’ in a similar way to the RWM, so that the

covariance structure of proposals more accurately reflects that of π(x) [108]. In this case, proposals

take the form

Q(x, ·) = N
(

x+
λ 2

2
Σ∇ logπ(x),λ 2

Σ

)
. (4.9)

It can be shown that provided Σ is a constant matrix, π(x) is still the invariant distribution for the

diffusion on which Equation (4.9) is based [130].
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4.1.4 Hamiltonian Monte Carlo

The next algorithm we introduce is descended from the Physics literature [35]. In Hamiltonian

Monte Carlo (HMC), the usual state space X is doubled in size, with the introduction of auxiliary

‘momentum’ variables to accompany the ‘position’ variables x in a 2n-dimensional physical system.

If we define the Hamiltonian function

H(x, p) =− logπ(x)+
1
2

log |G(x)|+ 1
2

pT G−1(x)p,

then we can construct a probability density on this augmented space as f (x, p) ∝ e−H(x,p), with

marginals X ∼ π(·) and p∼N(0,G(x)). Continuing the physical analogy, H(x, p) is the total energy

in the system, with U(x) =− logπ(x) the potential energy and K(x, p) = pT G−1(x)p/2 the kinetic.

Hamiltonian dynamics are a way to evolve (x, p) in such a way that H(x, p) remains constant (an

energy conserving system). Trivially

d
dt

H(x, p) = ∑
i

(
∂H
∂xi

dxi

dt
+

∂H
∂ pi

d pi

dt

)
,

so a simple way to ensure dH/dt = 0 is to evolve (x, p) using the dynamics

dxi

dt
=

∂H
∂ pi

,
d pi

dt
=−∂H

∂xi
.

We define the action of Hamiltonian flow for t units of time via the map (x, p)→ ξt(x, p). Clearly

H(ξt(x, p)) = H(x, p) for any t.

The map is measure-preserving, but its repeated application would result in flowing along a density

contour rather than exploring the entire state space X×X, so the Hamiltonian Monte Carlo algorithm

intersperses ‘momentum refreshment’ steps. The full construction is:

Algorithm 2 Idealised Hamiltonian Monte Carlo, single iteration.
Require: xi−1, T ∈ R+

Draw p|X = xi−1 ∼ N(0,G(xi−1))

Set (xi, pi)← ξT (xi−1, p)

Heuristic discussion of ergodic properties is given in [84]. We provide a more formal treatment in

Chapter 7. The difficulty in practice is that Hamiltonian flow is often analytically intractable. Fortu-

nately, there are numerical schemes for Hamiltonian dynamics which, while not measure-preserving,
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are still both volume-preserving, and produce maps which can be constructed so as to be reversible

[84]. If the Hamiltonian is separable (meaning K(x, p) = K(p) here), which in the above scheme

means G(x) = M, then one such numerical scheme is the leapfrog method, or Störmer–Verlet inte-

grator [65]. The three steps comprising a single iteration for time step ε is

pt+ε/2 = pt + ε∇ logπ(xt)/2,

xt+ε = xt + εM−1 pt+ε/2,

pt+ε = pt+ε/2 + ε∇ logπ(xt+ε)/2.

This flow does not in general preserve the Hamiltonian H(x, p), but does have unit determinant

(volume preservation), which implies the density for the resulting random variable η∗t (x, p) is still

∝ e−H(η∗t (x,p)) for any t ∈ R. We can construct a flow which is also reversible [84] by running the

leapfrog scheme for T = Lε time units and then negating the momentum. We denote this numerical

flow plus negation (x, p)→ ηT (x, p). We also write ηx
T (x, p) for the x-coordinate of the resulting

map, and the same for p.

To see that the leapfrog integrator is volume preserving, we show that the determinant of each of

the mappings described above is one. Here we write for the first step ψ1(xt , pt) = (xt , pt+ε/2),

and similarly for the second, and ψx
1(xt , pt) = xt , ψ

p
1 (xt , pt) = pt+ε/2 as the projections onto each

coordinate. With this notation we have

(xt+ε , pt+ε) = ψ1 ◦ψ2 ◦ψ1(xt , pt).

Next note that ψx
1 is simply the identity, while ψ

p
1 is the current momentum plus some terms which

only depend on the position coordinate. So denoting ∂x := ∂/∂x, the jacobian for this mapping is

J(ψ1) =

 1 0

∂xψ
p
1 1

 ,

which has unit determinant. A similar argument holds for ψ2. Such mapping are called shear

transformations, which are known to preserve volume (e.g. [84]).

To see that the flow induced by the leapfrog integrator is reversible, note that the composition of

maps gives (taking M = I without loss of generality):

xt+ε = xt + ε
2
∇ logπ(xt)/2+ ε pt , (4.10)

pt+ε = pt + ε∇ logπ(xt)/2+ ε∇ logπ(xt+ε)/2, (4.11)
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Using these means that considering the flow initialised from (xt+ε ,−pt+ε) we have

η
x
ε (xt+ε ,−pt+ε) = xt+ε + ε

2
∇ logπ(xt+ε)− ε pt+ε ,

= xt+ε + ε
2
∇ logπ(xt+ε)/2− ε (pt + ε∇ logπ(xt)/2+ ε∇ logπ(xt+ε)/2) ,

= xt + ε
2
∇ logπ(xt)/2+ ε pt − ε(pt + ε∇ logπ(xt)/2),

= xt .

Similarly we have

η
p
t (xt+ε ,−pt+ε) = (−1)× (−pt+ε + ε∇ logπ(xt+ε)/2+ ε∇ logπ(ηx

ε (xt+ε ,−pt+ε))/2),

= (−1)× (−pt+ε + ε∇ logπ(xt+ε)/2+ ε∇ logπ(xt)/2),

which, when substituting the right-hand side of (4.11) for pt+ε and simplifying, gives pt .

In the case where the Hamiltonian is not separable, explicit symplectic integrators are no longer

available [43]. A possible scheme in this case is given in [43].

To correct for bias in the resulting MCMC estimators, after each numerical flow step a Metropolis

accept-reject step is used (note that the full Hastings acceptance rate is not needed as the mapping

ηt is reversible ∀t ∈ R). It is shown in [35] that the resulting scheme shown below is π-invariant.

A more general proof of this is given in [125], which holds for any deterministic proposal y = g(x)

for which g is an involution, meaning g ◦ g(x) = x. It is straightforward to see that including the

momentum negation step makes the leapfrog flow ηt(x, p) an involution for any fixed t.

Algorithm 3 Hamiltonian Monte Carlo, single iteration.
Require: xi−1, ε ≥ 0, L ∈ N

Draw p∼ N(0,M)

Set T ← Lε , propose (x′, p′) = ηT (xi−1, p)

Draw Z ∼U [0,1]

Set α ← 1∧ e−δH , where δH = H(x′, p′)−H(xi−1, p)

if z < α then

Set xi← x′

else

Set xi← xi−1

end if
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Despite numerous authors noting the strong empirical performance of the method [84, 43], much less

has been established regarding the theoretical properties of HMC [29]. Beskos et al. [6] show that a

lower bound for the optimal acceptance rate α is 0.651 as n→∞, and that algorithm efficiency scales

O(n−1/4) for certain classes of targets, which compares favourably to all other methods presented

here. Betancourt, Byrne and Girolami [10] establish an upper bound on this rate of 0.9, and also

broaden the class of targets for which it applies. Difficulty in choosing the integration time T and

mass matrix G(x), together with the computational overhead of the numerical integration scheme,

have however been noted as possible stumbling blocks to wider implementation [84, 96], though

some recent suggestions have been made for each of these [43, 49, 123, 9]. In the next sections in

particular we review the geometric intuition behind certain choices of G(x).

The question of irreducibility is subtle here: while the method is generally assumed to satisfy this

property with the exception of some pathological special cases (discussed further in Chapter 7), the

result has only been proven in the case where π(x)≥ c > 0 for all x ∈ X [19]. The general question

(in the Lebesgue case) is whether for any B ∈B with µL(B)> 0 then

Q(x,B) =
∫
1B×X(ηT (x, p))µG(d p)> 0,

where µ(·) denotes a standard Gaussian measure. We give a more thorough treatment of this issue

in Chapter 7.

4.2 Geometric ergodicity of Metropolis–Hastings methods

Roberts & Tweedie [110] simplified the matter of establishing geometric ergodicity for a Markov

chain by showing that if all compact sets of X are small, then we need not explicitly find a small set

C, but instead can show that there is a Lyapunov function V for which

limsup
|x|→∞

∫ V (y)
V (x)

P(x,dy)< 1. (4.12)

In fact (4.12) is both necessary and sufficient for geometric ergodicity [110]. In the case where P is

a Metropolis–Hastings kernel, then we have∫ V (y)
V (x)

P(x,dy) =
∫ V (y)

V (x)
α(x,y)Q(x,dy)+ r(x) =

∫ [V (y)
V (x)

−1
]

α(x,y)Q(x,dy)+1. (4.13)

This means that an equivalent condition to (4.12) is

limsup
|x|→∞

∫ [V (y)
V (x)

−1
]

α(x,y)Q(x,dy)< 0, (4.14)
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where Q is the proposal kernel and α the acceptance rate. The authors also note that a sufficient

condition for lack of geometric ergodicity is

esssup
|x|→∞

r(x) = 1. (4.15)

Intuitively this impies that the chain is likely to get ‘stuck’ for large periods. In the context of

Metropolis–Hastings, the authors also established sufficient conditions for all compact sets of X to

be small in terms of π(x) and q(y|x), where Q(x,dy) = q(y|x)dx.

Theorem 4.6. (Roberts & Tweedie). Suppose that π(x) is bounded away from 0 and ∞ on compact

sets, and there exists δq > 0 and εq > 0 such that, for every x

|x− y| ≤ δq⇒ q(y|x)≥ εq.

Then the chain with kernel (4.2) is µL-irreducible and aperiodic, and every nonempty compact set

is small.

Jarner & Tweedie [52] introduced a necessary condition for geometric ergodicity through a tightness

condition.

Theorem 4.7. (Jarner & Tweedie). If for any ξ > 0 there is a δ > 0 such that for all x ∈ X

P(x,Bδ (x))> 1−ξ ,

where Bδ (x) := {y ∈ X : d(x,y) < δ}, then P can be geometrically ergodic only in the case where

for some s > 0 ∫
es|x|

π(dx)< ∞.

The result highlights that when π(·) is heavy-tailed the chain must be able to make very large moves

and still be capable of returning to the centre quickly for the geometric total variation distance bound

(3.18) to hold. In the Metropolis–Hastings case it is straightforward to see that

Q(x,Bδ (x))> 1−ξ ⇒ P(x,Bδ (x))> 1−ξ , (4.16)

which is a useful approach to establishing lack of geometric ergodicity in the heavy-tailed case.
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4.2.1 Random Walk Metropolis in one dimension

In this section a ‘textbook style’ proof is provided of geometric ergodicity for the Random Walk

Metropolis in one dimension. The result was first published in [78]. Before establishing a positive

result, we first note that the tightness condition (4.16) holds here, so it is straightforward to see

that the algorithm can only produce a geometricaly ergodic Markov chain if there is an s > 0 such

that Eπ [es|x|] < ∞. In one dimension such a restriction on π(·) is known as tail log-concavity.

Specifically, the density π(x) is called log-concave in the tails if for some x0 > 0, a > 0 and all

y≥ x≥ x0 we have

π(y)/π(x)≤ e−a(y−x),

and a similar condition holds in the negative tail.

The skill in establishing (4.14) in a given scenario is to find a suitable way to bound α and choosing

an appropriate V such that (4.14) can be established. For the Random Walk Metropolis the kernel

choice is such that Q(x,dy) = q(|x− y|)dy, meaning α(x,y) = 1∧π(y)/π(x). Since the acceptance

rate is just the ratio of target densities, it lends itself quite nicely to a simple bound. If we assume

π(x) is log-concave in the tails, then π(y)/π(x)≤ exp(−a(|y|− |x|)) for large enough x. With this,

a sensible choice of Lyapunov function would seem to be V (x) = es|x|, for some 0 < s < a. We first

consider the positive tail, i.e. the case x→ ∞. In this instance we can re-write the integral in (4.14)

as

∫ 0

−∞

[es(|y|−x)−1]α(x,y)Q(x,dy)+
∫ x

0
[es(y−x)−1]α(x,y)Q(x,dy)

+
∫ 2x

x
[es(y−x)−1]α(x,y)Q(x,dy)+

∫
∞

2x
[es(y−x)−1]α(x,y)Q(x,dy).

The first and last terms can be made arbitrarily small by taking x large enough. In the first case this

is because

∫ 0

−∞

[es(|y|−x)−1]α(x,y)Q(x,dy)≤
∫ 0

−x
[es(|y|−x)−1]Q(x,dy)

+
∫ −x

−∞

[es(|y|−x)−1]e−a(|y|−x)Q(x,dy),

where we have used the fact that α(x,y) ≤ e−a(|y|−|x|) for |y| ≥ |x|. The first integral on the right-

hand side is strictly negative for any x and the second is bounded above by Q(x,(−∞,−x)), which

will clearly become negligibly small as x grows. For the last term, we can again use the log-concave
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restriction to bound the integral with∫
∞

2x
[e(s−a)(y−x)− e−a(y−x)]Q(x,dy)≤ e(s−a)2xQ(x,(2x,∞))→ 0.

This leaves the middle two terms. We can combine these by writing y= x+Z, for Z ∼ µ(·), meaning

µ(·) denotes the zero mean proposal ‘increment’ distribution. Typically µ(·) might be a zero mean

Gaussian, if Q(x, ·) = N(x,hσ2). We can then bound the middle two integrals with∫ x

0
[e−sz−1+ e(s−a)z + e−az]µ(dz) =−

∫ x

0
(1− e(s−a)z)(1− e−sz)µ(dz), (4.17)

which is strictly negative. Since for large x the entire integral will be comprised of terms which can

be made arbitrarily small and terms which are strictly negative, this establishes (4.14) as x→∞, and

the log-concave restriction means an equivalent argument holds as x→−∞.

4.2.2 Practical examples

In this section we give simple examples of the behaviour of some Metropolis–Hastings methods, in

one dimension.

Independence sampler

As mentioned in Subsection 4.1.1, the Independence sampler suffers from the same problems in

high dimensions as some other non-Markovian sampling methods. However, in one dimension it

can perform very well in the case where the proposal distribution is a close approximation to the

target, and provided it has heavier tails. Indeed, if the density q(y) is a standard Gaussian and the

same is true for π(x), then the resulting Markov chain will actually consist of independent samples

from π(·).

Figure 4.1, however, shows the case of a Gaussian proposal exploring a Cauchy target, with π(x) ∝

1/(1+x2). The left-hand plot shows that when the algorithm is initialised in the tails of the distribu-

tion it tends to get stuck there for large periods. This is because q(y)/q(x) will be much larger than

π(y)/π(x) for inwards moves, so although most proposed moves will be inwards (provide the modes

of q(x) and π(x) are close to one another) the acceptance rate α(x,y) = 1∧π(y)/π(x)×q(x)/q(y)

will typically be very low for most of these. When the chain is initialised at the mode, the chain

still fails to explore the distribution adequately, as evidenced by the right-hand plot, as q(y) is such

that values far away from zero are very unlikely to be proposed, whereas they still have a reasonable
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chance of occurring under π(·). Crucially, this behaviour is extremely difficult to diagnose using

convergence diagnostics like the graphs shown here without prior knowledge of the size of the typ-

ical set. Since we know the algorithm is not geometrically ergodic for this example, however, we

have some understanding that the chain is unlikely to be a good representation of π(·).
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Figure 4.1: An independence sampler exploring a Cauchy target π(x) ∝ 1/(1+ x2) with a Gaussian

proposal. The left-hand plot shows that when the chains is started in the tails it is likely to get stuck

for long periods there. The right-hand plot shows the path of the chain (blue line) and independent

samples from π(·) (grey dots), highlighting that the chain fails to adequately explore the typical set.

Random Walk Metropolis

Figure 4.2 shows behaviour of the Random Walk Metropolis with a Gaussian proposal exploring

a Gaussian target, with π(x) ∝ e−x2/2. The left-hand plot shows that convergence to the typical

set is quite fast when the algorithm is initialised in the tails, owing to the acceptance rate α(x,y)

ensuring that inwards moves are accepted and outwards moves mostly rejected. The middle plot

shows that a chain initiated from within the typical set quickly explores the entirety of it. This is

further emphasized by the histogram of samples from the chain in the right-hand plot, which closely

resembles the Gaussian density which is plotted over the top of it.

By contrast, Figure 4.3 displays the behaviour of the same algorithm exploring the much heavier-
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tailed target π(x) ∝ 1/(1+ |x|1.1). The left-hand plot shows that when started in that tails, the chain

tends to ‘random walk’, and fails to head in the direction of the mode for some time. This is because

in this instance α(x,y) ≈ 1 for typical proposals in the tails, whether y is larger or smaller than x.

The middle plot and histogram show that even when initialised at the mode, the method still fails

to explore the distribution adequately, resulting in a biased histogram representation of the target

density. Again, such behaviour is often difficult to diagnose without knowing the form that π(x)

should take.
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Figure 4.2: A Random Walk Metropolis exploring a Gaussian target π(x) ∝ e−x2/2. When started in

the tails (left-hand plot) the method quickly reaches the centre of the space, and from there it explores

the distribution effectively (middle plot), as evidenced by the histogram which closely matches the

overlaid Gaussian density (right-hand plot).
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Figure 4.3: A Random Walk Metropolis exploring the target π(x) ∝ 1/(1+ |x|1.1). The left-hand

plot shows that when the chain is started in the tails it tends to ‘random walk’, and hence take a long

time to reach the centre of the space. Once there the middle plot shows that it still fails to explore

the distribution adequately, as evidenced by the skewed histogram (right-hand plot).
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Metropolis-adjusted Langevin algorithm

On a form of π(x) for which the tails are heavier than that of a Gaussian, MALA tends to perform

better than the Random Walk Metropolis in one dimension (and often significantly better in more

than one, owing to the better scaling discussed in Subsection 4.1.3). However, the algorithm still

fails to be geometrically ergodic if π(x) is not log-concave in the tails, as the gradient decays to zero

here, meaning the algorithm still behaves as in the left-hand plot of Figure 4.3.

Figure 4.4 shows a different problem, which has also been discussed, that when π(x) has lighter

than Gaussian tails the gradients tend to ‘explode’ in the tails, meaning the algorithm can spend

large periods there. When the current point in the chain is large, the proposal mass is very far from

the mass under π(·), and so the majority of candidate moves will be rejected. In the example, when

x = 1 then for a step-size h = 1 the proposal mean is x− hx3/2 = 1− 1/2 = 1/2. However when

x = 3, as in the right-hand plot, then x−hx3/2 = 3−33/2 =−10.5, which is far from zero.
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Figure 4.4: Metropolis-adjusted Langevin algorithm on a light-tailed target, π(x) ∝ e−x4/4. When

the current point x (black circle) is large, the proposal kernel (brown density) is a Gaussian centred at

x−hx3/2, which is very far from the typical set of the target density (blue), meaning most proposals

will be rejected and the chain spends large periods in the tails.
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Hamiltonian Monte Carlo

Empirical evidence shows that Hamiltonian Monte Carlo behaves in a similar way to MALA. This

is intuitive: if the gradient becomes negligible in the tails then essentially the sampler will devolve

into a random walk. Similarly if the target has very light tails then the gradient will ‘explode’ and

the majority of proposals will be even further into the tails (and hence are likely to be rejected).

Since the proposal kernel is much more complicated here, however, there is currently no theory to

support this intuition. The reader is referred here to Chapter 7, where we provide some results in

this direction, and explore the issues further.

4.3 Geometry in Markov chain Monte Carlo

This section is mostly taken from the author’s published work [71]. Ideas from differential geometry

have been successfully applied to statistics from as early as [53], offering new insight into common

problems (e.g., [26, 75]). A survey is given in [5]. In this section, we suggest why some ideas from

differential geometry may be beneficial for sampling methods based on Markov chains.

4.3.1 Manifolds and Markov chains

We often make assumptions in MCMC about the properties of the space, X, in which our Markov

chains evolve. Often X = Rn or a simple re-parametrisation would make it so. However, here,

Rn = {(a1, ...,an) : ai ∈ (−∞,∞) ∀i}, the set of n-tuples of real numbers. The additional assumption

that is often made is that Rn is Euclidean, an inner product space with the induced distance metric

d(x,y) =
√

∑
i
(xi− yi)2. (4.18)

For sampling methods based on Markov chains that explore the space locally, it may be advantageous

to instead impose a different metric structure on the space, X, so that some points are drawn closer

together and others pushed further apart. Intuitively, one can picture distances in the space being

defined such that if the current position in the chain is far from an area of X which is ‘likely to occur’

under π(·), then the distance to such a typical set could be reduced. Similarly, once this region is

reached, the space could be ‘stretched’ or ‘warped’, so that it is explored as efficiently as possible.

While the idea is attractive, it is far from a constructive definition. We only have the pre-requisite

that (X,d) must be a metric space. However, as many of the algorithms we have introduced use
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gradient information, we will require (X,d) to be a space on which we can do differential calculus.

Riemannian manifolds are an appropriate choice, therefore, as the rules of differentiation are well

understand for functions defined on them (see Chapters 2 and 3 of [13]), while we are still free to

define a more local notion of distance than Euclidean. In this section, we write Rn to denote the

Euclidean vector space.

4.3.2 Geometry preliminaries

We do not provide a full overview of Riemannian geometry here (see [13, 64, 32]). We simply note

that for our purposes, we can consider an n-dimensional Riemannian manifold (henceforth manifold)

to be an n-dimensional metric space, in which distances are defined in a specific way. We also only

consider manifolds for which a global coordinate chart exists, meaning that a mapping r : Rn→M

exists which is both differentiable and invertible and for which the inverse is also differentiable (a

diffeomorphism). Although this restricts the class of manifolds available (the sphere, for example,

is not in this class), it is again suitable for our needs and avoids the practical challenges of switching

between coordinate patches. The connection with Rn defined through r is crucial for making sense

of differentiability in M. We say a function f : M→ R is “differentiable” if ( f ◦ r) : Rn→ R is (see

Chapter 3 of [13]).

As has been stated, Equation (4.18) can be induced via a Euclidean inner product, which we denote

〈·, ·〉. However, it will aid intuition to think of distances in Rn via curves

γ : [0,1]→ Rn. (4.19)

We could think of the distance between two points in x,y ∈ Rn as the minimum length among all

curves that pass through x and y. If γ(0) = x and γ(1) = y, the length is defined as

L(γ) =
∫ 1

0

√
〈γ ′(t),γ ′(t)〉dt, (4.20)

where γ ′ := dγ/dt, giving the metric

d(x,y) = inf{L(γ) : γ(0) = x,γ(1) = y} . (4.21)

In Rn, the curve with a minimum length will be a straight line, so that Equation (4.21) agrees with

Equation (4.18). More generally, we call a solution to Equation (4.21) a geodesic [13].

In a vector space, metric properties can always be induced through an inner product (which also

gives a notion of orthogonality). Such a space can be thought of as “flat”, since for any two points, y
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and z, the straight line ay+(1−a)z, a ∈ [0,1] is also contained in the space. In general, manifolds

do not have vector space structure globally, but do so at the infinitesimal level. As such, we can think

of them as “curved”. We cannot always define an inner product, but we can still define distances

through (4.21). We define a curve on a manifold, M, as γM : [0,1]→M. At each point γM(t) = p∈M,

the velocity vector, γ ′M(t), lies in an n-dimensional vector space, which touches M at p. These are

known as tangent spaces, denoted TpM, which can be thought of as local linear approximations to M.

We can define an inner product on each as gp : TpM→R, which allows us to define a generalisation

of (4.20) as

L(γM) =
∫ 1

0

√
gp(γ ′M(t),γ ′M(t))dt. (4.22)

and provides a means to define a distance metric on the manifold as

d(x,y) = inf{L(γM) : γM(0) = x,γM(1) = y} .

We emphasise the difference between this distance metric on M and gp, which is called a Riemannian

metric or metric tensor and which defines an inner product on TpM.

Embeddings and local coordinates

So far we have introduced manifolds as abstract objects. In fact, they can also be considered as

objects that are embedded in some higher-dimensional Euclidean space. A simple example is any

two-dimensional surface, such as the unit sphere, lying in R3. If a manifold is embedded in this way,

then metric properties can be induced from the ambient Euclidean space.

We seek to make these ideas more concrete through an example, the graph of a function, f (x1,x2),

of two variables, x1 and x2. The resulting map, r, is

r : R2→M (4.23)

r(x1,x2) = (x1,x2, f (x1,x2)). (4.24)

We can see that M is embedded in R3, but that any point can be identified using only two coordinates,

x1 and x2. In this case, each TpM is a plane, and therefore, a two-dimensional subspace of R3, so:

(i) it inherits the Euclidean inner product, 〈·, ·〉; and (ii) any vector, v ∈ TpM, can be expressed as a

linear combination of any two linearly independent basis vectors (a canonical choice is the partial

derivatives ∂ r/∂x1 =: r1 and r2, evaluated at x= r−1(p)∈R2). The resulting inner product, gp(v,w),
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between two vectors, v,w ∈ TpM, can be induced from the Euclidean inner product as

〈v,w〉= 〈v1r1(x)+ v2r2(x),w1r1(x)+w2r2(x)〉,

= v1w1〈r1(x),r1(x)〉+ v1w2〈r1(x),r2(x)〉+ v2w1〈r2(x),r1(x)〉+ v2w2〈r2(x),r2(x)〉,

= vT G(x)w,

where

G(x) =

 〈r1(x),r1(x)〉 〈r1(x),r2(x)〉

〈r1(x),r2(x)〉 〈r2(x),r2(x)〉

 (4.25)

and we use vi,wi to denote the components of v and w. To write (4.20) using this notation, we define

the curve, x(t) ∈ R2, corresponding to γM(t) ∈ M as x = (r−1 ◦ γM) : [0,1]→ R2. Equation (4.20)

can then be written

L(γM) =
∫ 1

0

√
x′(t)T G(x(t))x′(t)dt, (4.26)

which can be used in (4.21) as before.

The key point is that, although we have started with an object embedded in R3, we can compute the

Riemannian metric, gp(v,w) (and, hence, distances in M), using only the two-dimensional “local”

coordinates (x1,x2). We also need not have explicit knowledge of the mapping, r, only the compo-

nents of the positive definite matrix, G(x). The Nash embedding theorem [83] in essence enables us

to define manifolds by the reverse process: simply choose the matrix, G(x), so that we define a met-

ric space with suitable distance properties, and some object embedded in some higher-dimensional

Euclidean space will exist for which these metric properties can be induced as above. Therefore, to

define our new space, we simply choose an appropriate matrix-valued map, G(x) (we discuss this

choice in Section 4.3.4). If G(x) does not depend on x, then M has a vector space structure and can

be thought of as “flat”. Trivially, G(x) = I gives Euclidean n-space.1

We can also define volumes on a Riemannian manifold in local coordinates. Following standard

coordinate transformation rules, we can see that for the above example, the area element, dx, in R2

will change according to a Jacobian J = |(Dr)T (Dr)|1/2, where Dr = ∂ (p1, p2, p3)/∂ (x1,x2). This

reduces to J = |G(x)|1/2, which is also the case for more general manifolds (see page 212 of [13]).

We therefore define the Riemannian volume measure on a manifold, M, in local coordinates as

VolM(dx) = |G(x)|
1
2 dx. (4.27)

1Note that the Euclidean space in which the n dimensional manifold can be embedded may not have n+ 1 dimensions.

The Möbius strip and Klein bottles are two examples where n+2 are needed.
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If G(x) = I, then this reduces to the Lebesgue measure.

4.3.3 Diffusions on manifolds

By a ‘diffusion on a manifold’ in local coordinates, we actually mean a diffusion defined on Eu-

clidean space. For example, a realisation of Brownian motion on the surface, S ⊂ R3, defined in

Figure 4.5 through r(x1,x2) = (x1,x2,sin(x1)+1) will be a sample path, which is defined on S and

‘looks locally’ like Brownian motion in a suitably small neighbourhood of any point, p ∈ S. How-

ever, the pre-image of this sample path (through r−1) will not be a realisation of a Brownian motion

defined on R2, owing to the nonlinearity of the mapping. Therefore, to define Brownian motion on

S, we define some diffusion (Xt)t≥0 that takes values in R2, for which the process (r(Xt))t≥0 ‘looks

locally’ like a Brownian motion (and lies on S). See [73] for more intuition here.

A 

B 

Figure 4.5: A two-dimensional manifold (surface) embedded in R3 through r(x1,x2) =

(x1,x2,sin(x1)+ 1), parametrised by the local coordinates, x1 and x2. The distance between points

A and B is given by the length of the curve γ(t) = (t, t,sin(t)+1)).

We can use the same intuition to define more general diffusions on manifolds, which we do in

Chapter 5.
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4.3.4 Choosing a metric

We now turn to the question of which metric structure to put on the manifold, or equivalently, how

to choose G(x). In this section, we sometimes switch notation slightly, denoting the target density,

π(x|y), as some of the discussion is directed towards Bayesian inference, where π(·) is the posterior

distribution for some parameter, x, after observing some data, y. The goal is to find an appropriate

choice of distance between points in the sample space of a given probability distribution.

A related (but distinct) problem is to define a distance between two probability distributions from

the same parametric family, but with different parameters. This problem has been well-studied in

information geometry, explored by Rao [94] and others (e.g. [1]) for many years. Although generic

measures of distance between distributions (such as total variation) are often appropriate, based on

information-theoretic principles, one can deduce that for a given parametric family, {px(y) : x ∈

X}, it is in some sense natural to consider this ‘space of distributions’ to be a manifold, with the

Fisher information as the Riemannian metric G(x) (with the α = 0 connection employed; see [1] for

details).

Because of this, Girolami and Calderhead [43] proposed a variant of the Fisher metric for geometric

Markov chain Monte Carlo, as

Gi j(x) = Ey|x

[
− ∂ 2

∂xi∂x j
log f (y|x)

]
− ∂ 2

∂xi∂x j
logπ0(x), (4.28)

where π(x|y) ∝ f (y|x)π0(x) is the target density, f denotes the likelihood and π0 the prior. The

metric is tailored to Bayesian problems, so the Fisher information is combined with the negative

Hessian of the log-prior. One can also view this metric as the expected negative Hessian of the log

target with respect to Lebesgue measure, since this naturally reduces to (4.28).

The motivation for a Hessian-style metric can also be understood from studying MCMC propos-

als. For general pre-conditioning methods [108], the objective is to choose G−1(x) to match the

covariance structure of π(x|y) locally. If the target density were Gaussian with covariance matrix,

Σ, then

− ∂ 2

∂xi∂x j
logπ(x|y) = Σi j. (4.29)

In the non-Gaussian case, the negative Hessian is no longer constant, but we can imagine that it

matches the correlation structure of π(x|y) locally at least. Such ideas have been discussed in the

geostatistics literature previously [22]. One problem with simply using (4.29) to define a metric

86



is that unless π(x|y) is log-concave, the negative Hessian will not be globally positive-definite, al-

though Petra et al. [93] conjecture that it may be appropriate for use in some realistic scenarios and

suggest some computationally efficient approximation procedures [93].

Example 4.8. Take π(x) ∝ 1/(1+ x2), and set G(x) = −∂ 2 logπ(x)/∂x2. Then, G−1(x) = (1+

x2)2/(2−2x2), which is negative if x2 > 1, so unusable as a proposal variance.

Girolami and Calderhead [43] use the Fisher metric in part to counteract this problem. Taking

expectations over the data ensures that the likelihood contribution to G(x) in (4.28) will be positive

(semi-)definite globally (e.g. [90]); so, provided a log-concave prior is chosen, then (4.28) should

be a suitable choice for G(x). Indeed, Girolami and Calderhead [43] provide several examples in

which geometric MCMC methods using this Fisher metric perform better than their ‘non-geometric’

counterparts.

Betancourt [8] also starts from the viewpoint that the Hessian (4.29) is an appropriate choice for

G(x) and defines a mapping from the set of n × n matrices to the set of positive-definite n× n

matrices by taking a smooth absolute value of the eigenvalues of the Hessian. This is done in a way

such that derivatives of G(x) are still computable, inspiring the author to the name, SoftAbs metric.

For a fixed value of x, the negative Hessian, H(x), is first computed and, then, decomposed into

UT DU , where D is the diagonal matrix of eigenvalues. Each diagonal element of D is then altered

by the mapping tα : R→ R, given by:

tα(λi) = λi coth(αλi), (4.30)

where α is a tuning parameter (typically chosen to be as large as possible for which eigenvalues

remain non-zero numerically). The mapping tα acts as an absolute value function, but also uplifts

eigenvalues which are close to zero to≈ 1/α . It should be noted that while the Fisher metric is only

defined for models in which a likelihood is present and for which the expectation is tractable, the

SoftAbs metric can be found for any target distribution, π(·).

An important property of any Riemannian metric is how it transforms under coordinate change

(e.g. [1]). The Fisher information metric commonly studied in information geometry is an example

of a coordinate invariant choice for G(x). If we consider two parametrisations for a statistical

model given by x and z = t(x), computing the Fisher information under x and then transforming
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this matrix using the Jacobian for the mapping t, will give the same result as computing the Fisher

information under z. It should be noted that because of either the prior contribution in (4.28) or the

nonlinear transformations applied in other cases, none of the metrics we have reviewed here have

this property, which means that we have no principled way of understanding how G(x) will relate to

G(z). It is intuitive, however, that using information from all of π(x), rather than only the likelihood

contribution, f (y|x), would seem sensible when trying to sample from π(·).
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Chapter 5

Some new insights on Langevin

diffusions

The Langevin diffusion dXt = ∇ logπ(Xt)dt +
√

2dBt is a useful tool in Markov chain Monte Carlo

as a relatively simple stochastic process which has a user-defined limiting distribution. But it seems

natural to wonder whether there are other similar processes that do the same thing, which could

therefore also be used as a basis for Markov chain sampling methods. By considering the Fokker–

Planck equation (3.26), it can be seen that any diffusion dXt = b(Xt)dt +σ(Xt)dBt with the drift b

and volatility σ chosen such that

bi(x) =
1

2πu(x)

n

∑
j=l

∂

∂x j
[Ai j(x)πu(x)],

will be π-invariant, where again A(x) = σ(x)σT (x) is the ‘squared’ volatility and πu(x) denotes the

unnormalised version of the density π(x). So an infinite family of diffusions can be constructed for

which π(·) is a stationary distribution, using only this equation. A sensible follow on question would

therefore be whether there are more appropriate choices of diffusion to use as a basis for sampling

than that with a constant volatility, on which the Metropolis-adjusted Langevin algorithm is based.

Many authors [108, 43] have in fact considered this natural extension to the Langevin diffusion (4.5)

by allowing the volatility to vary with position. In [108], the authors suggest that such a diffusion

can be constructed using the dynamics
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dXt =
1
2

G−1(Xt)∇ logπ(Xt)dt +Ω(Xt)dt +
√

G−1(Xt)dBt , (5.1)

with the ith component of the additional drift term given by

Ωi(Xt) = |G(Xt)|−1/2
n

∑
j=1

∂

∂x j
[G−1

i j (Xt)|G(Xt)|
1
2 ]

The same equation is derived in [43], and the authors state that this is a generalisation of (4.5) to a

Riemannian manifold with metric G. We establish here that in fact the diffusion (5.1) does not in

general have invariant measure π(·).

The contributions of this chapter are three-fold. First, we highlight that the invariant distribution

for (5.1) is not always π(·) and derive a simpler diffusion which does have the desired limiting

probability measure using techniques from stochastic analysis. Secondly, we demonstrate how this

simpler diffusion also naturally arises as a generalisation of (4.5) to a Riemannian manifold with

metric G, using a more geometric approach. Third we discuss the convergence properties of the

different diffusions, and how these relate to Markov chain sampling. The first part of the work is a

collaboration with Tatiana Xifara, Christopher Sherlock, Simon Byrne and (along with the second)

Mark Girolami. The next two sections are mainly paraphrased from [130] and [71].

5.1 Langevin diffusions with changing volatilities

If we begin with some positive definite, symmetric matrix-valued map A : X→ Rn×n, we can con-

struct the the diffusion

dXt = b(Xt)dt +
√

A(Xt)dBt ,

where
√

A denotes the matrix U such that UUT = A. From here we can simply solve (3.26) to derive

the correct form of b for which π(·) is invariant. Specifically we seek a drift b(x) such that

bi(x) =
1

2π(x) ∑
j

∂

∂x j
[Ai j(x)π(x)], i = 1, ...,n.

Solving gives

2bi(x) = ∑
j

Ai j(x)
∂

∂x j
logπ(x)+∑

j

∂Ai j

∂x j
(x), (5.2)
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resulting in the diffusion

dXt =
1
2

A(Xt)∇ logπ(Xt)dt +Λ(Xt)dt +
√

A(Xt)dBt , (5.3)

where now the additional drift term has ith component

Λi(Xt) =
1
2 ∑

j

∂Ai j

∂x j
(Xt).

We note that Λi(x) is cheaper to compute than Ωi(x) (and confirm this empirically in the next subsec-

tion). If we set A(x) =G−1(x) to match the notation of (5.1), then we have the following proposition.

Proposition 5.1. If G(x) is chosen such that for any combination of 1≤ j,k,m≤ n

∂

∂x j
Gkm(x) =

∂

∂xk
G jm(x) (5.4)

for all x, then (5.1) and (5.3) represent the same diffusion.

Proof: Since the volatilities and the multipliers of ∇ logπ in the drift are identical for the two

diffusions, we need only show that Ωi = Λi for all i. First we note that we can write

Ωi = ∑
j

∂G−1
i j

∂x j
+

1
2 ∑

j
G−1

i j
∂

∂x j
log |G|,

=− ∑
j,k,m

G−1
ik

∂Gkm

∂x j
G−1

m j +
1
2 ∑

j,k,m
G−1

i j
∂Gmk

∂x j
G−1

km , (5.5)

where we have used the general rule ∂ log |G|/∂x j = tr
(
G−1∂G/∂x j

)
. From (5.4), the second term

in (5.5) can be re-written

1
2 ∑

j,k,m
G−1

i j
∂G jm

∂xk
G−1

km =
1
2 ∑

j,k,m
G−1

ik
∂Gkm

∂x j
G−1

jm ,

on relabelling j↔ k. The result follows since G−1
jm = G−1

m j . �

This property arises both when n= 1 and if G is the (continuous) Hessian matrix of some real-valued

function, which goes some way towards explaining why the diffusion (5.1) was considered correct.

In general, however (5.1) will not be π-invariant.

Theorem 5.2. In general, the diffusion with dynamics governed by (5.1) will not have limiting

distribution π(·).
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Proof: It suffices to construct a counter-example. For some positive-valued, differentiable function

f , set

G(x) =

 f (x2) 0

0 1

 .

Then Λ(x) = (0,0)T and Ω(x) = (0, f ′(x2)/2 f (x2))
T , and hence the diffusions (5.1) and (5.3) have

different drift coefficients. Moreover, the diffusion (5.1) can be written in the same form as (5.3), and

by matching drift terms it can be seen that its invariant density is actually proportional to π(x) f (x2).

�

5.1.1 Experiments

The following computer simulations were performed by Tatiana Xifara, not by this author, but are

included here for completeness. The purpose was to compare two different Metropolis–Hastings

schemes, one based on the diffusion (5.3), which we call ‘PMALA’ (position-dependent MALA),

and another based on (5.1), which is known as ‘MMALA’ (manifold MALA). The comparison was

performed across three of the scenarios considered in [43]: logistic regression on each of five differ-

ent datasets, a stochastic volatility model, and a non-linear ODE model. As in [43] the Riemannian

metric G(x) was based on the expected Fisher information.

Initial tuning runs were performed to obtain the optimal scaling parameter h in terms of expected

sample size (ESS) for each algorithm. The initialisation, burn-in, and length of each Markov chain

was exactly as in [43], however here 100 (rather than 10) replications were performed for each chain.

Bayesian logistic regression and the non-linear ODE model are of most interest since in [43] MMALA

was found to outperform Riemannian manifold Hamiltonian Monte Carlo for these scenarios. De-

tailed results are presented for the Bayesian logistic regression and non-linear ODE models. Results

for the stochastic volatility model show the same underlying pattern. Where especially pertinent

brief details on the models and the priors are given. For further details see [43].

Logistic regression

Here Bayesian logistic regression (e.g. [43]) was performed on five different datasets containing

between 7 and 25 covariates. We choose a Gaussian prior for the parameter vector β ∼ N(0,αI),
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Dataset Method ESS CPU Time min. ESS/s

Australian Credit

PMALA (685, 847, 986) 12.58 54.5

MMALA (696, 848, 943) 14.08 49.4

German Credit

PMALA (605, 777, 917) 43.8 13.8

MMALA (605, 774, 921) 45.72 13.2

Heart

PMALA (659, 795, 923) 6.57 100.3

MMALA (657, 773, 920) 8.07 81.4

Pima Indian

PMALA (1235, 1415, 1572) 4.67 264.5

MMALA (1264, 1425, 1576) 5.59 226.1

Ripley

PMALA (477, 591, 679) 3.32 143.7

MMALA (460, 590, 686) 3.94 116.7

Table 5.1: Results for two Metropolis-adjusted Langevin algorithms on a Bayesian logistic regres-

sion example. The mean (over the 100 replicates) is presented for the minimum, median and maxi-

mum ESSs (over the parameters). The CPU time and the mean minimum ESS per second are also

given.

so that with a design matrix X and link function s(·) the metric tensor is given by G(β ) = XT DX +

α−1I, where D is a diagonal matrix with elements Di,i = s(β T XT
i,·)(1− s(β T XT

i,·)). Under these

assumptions the diffusions on which PMALA and MMALA are based have the same law and so the

ESSs for these two algorithms should be the same up to Monte Carlo error.

For each Markov chain the ESS was computed for each parameter and the minimum, median and

maximum of these was noted. Table 5.1 shows, for each algorithm and dataset, the means from

100 replicates. The CPU time and the mean (over replicates) minimum (over parameters) effective

number of independent samples per second are also provided.

As expected, the ESSs for PMALA and MMALA are very similar. Since Λ is computationally less

costly to calculate than Ω, PMALA is the quicker of the two algorithms and so obtains the largest

ESS per second.
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Non-linear differential equation model

A further model was considered based on the Fitzhigh-Nagumo differential equations in [95]: Ẇ =

c
(
W −W 3/3+R

)
and Ṙ =−(W −a+bT )/c. The simulated dataset and our independent priors for

the parameter vector (a,b,c) are the same as those used in [43]. To be consistent with the appendix

of [43] and the associated Matlab code it was assumed that β ∼ Exp(1).

Method ESS CPU Time min. ESS/s

PMALA (1639.6, 669.3, 1406.4) 896.8 (1.83,0.75,1.57)

MMALA (1274.4, 632.8, 1120.5) 923.0 (1.38,0.69,1.21)

Table 5.2: Results of the two MALA schemes for inference on the Fitzhugh-Nagumo model. For

each parameter (a,b,c) and algorithm the mean (over the 100 replicates) ESS is presented, along with

CPU time and mean minimum ESS per second.

The mean ESS for each parameter, along with its standard error are shown in Table 5.2, and it is clear

that PMALA outperforms MMALA under this measure. CPU time and ESS/s are also provided in

the table. PMALA is also the quickest algorithm, meaning its dominance is even clearer when CPU

time is accounted for.

5.2 Langevin diffusions on manifolds

Our goal here is to define a diffusion on Euclidean space, which, when mapped onto a manifold

through some diffeomorphism r : Rn→M, becomes the Langevin diffusion (4.5). Such a diffusion

takes the form

dXt =
1
2

∇̃ log π̃(Xt)dt +dB̃t , (5.6)

where those objects marked with a tilde must be defined appropriately.

We turn first to (B̃t)t≥0, which we use to denote Brownian motion on a manifold. Intuitively, we may

think of a construction based on embedded manifolds, by setting B̃0 = p∈M, and for each increment

sampling some random vector in the tangent space TpM, and then moving along the manifold in the

prescribed direction for an infinitesimal period of time before re-sampling another velocity vector

from the next tangent space [73]. In fact, we can define such a construction using Stratonovich

calculus and show that the infinitesimal generator can be written using only local coordinates (e.g.
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Section 5.5 of [111]). Here, we instead take the approach of generalising the generator directly from

Euclidean space to the local coordinates of a manifold, arriving at the same result. We then deduce

the stochastic differential equation describing (B̃t)t≥0 in Itô form using (3.25).

For a standard Brownian motion on Rn, A = ∆/2, where ∆ denotes the Laplace operator:

∆ f = ∑
i

∂ 2 f
∂x2

i
= div(∇ f ). (5.7)

Substituting A = ∆/2 into (3.25) trivially gives bi(x) = 0 ∀i, Ai j(x) = 1{i= j}, as required. The

Laplacian, ∆ f (x), is the divergence of the gradient vector field of some function, f ∈C2(Rn), and

its value at x ∈ Rn can be thought of as the average value of f in some neighbourhood of x [122].

To define a Brownian motion on any manifold, the gradient and divergence must be generalised. We

provide a full derivation in Appendix C, which shows that the gradient operator on a manifold can

be written in local coordinates as ∇M = G−1(x)∇. Combining with the operator, divM , we can define

a generalisation of the Laplace operator, known as the Laplace–Beltrami operator (e.g. [51, 60]), as

∆LB f = divM(∇M f ) = |G(x)|−
1
2

n

∑
i=1

∂

∂xi

(
|G(x)|

1
2

n

∑
j=1

G−1
i j (x)

∂ f
∂x j

)
, (5.8)

for some f ∈C2
0(M).

The generator of a Brownian motion on M is ∆LB/2 [51]. Using (3.25), the resulting diffusion has

dynamics given by

dB̃t = Ω
∗(Xt)dt +

√
G−1(Xt)dBt ,

Ω
∗
i (Xt) =

1
2
|G(Xt)|−

1
2

n

∑
j=1

∂

∂x j

(
|G(Xt)|

1
2 G−1

i j (Xt)
)
.

Those familiar with the Itô formula will not be surprised by the additional drift term, Ω∗(Xt). As Itô

integrals do not follow the chain rule of ordinary calculus, non-linear mappings of martingales, such

as (Bt)t≥0, typically result in drift terms being added to the dynamics (e.g. Chapter 4 of [89]).

To define ∇̃, we simply note that this is again the gradient operator on a general manifold, so ∇̃ =

G−1(x)∇. For the density, π̃(x), we note that this density will now implicitly be defined with respect

to the volume measure, |G(x)| 12 dx, on the manifold. Therefore, to ensure the diffusion (5.6) has the

correct invariant density with respect to the Lebesgue measure, we define

π̃(x) = π(x)|G(x)|−
1
2 . (5.9)
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Putting these three elements together, Equation (5.6) becomes

dXt =
1
2

G−1(Xt)∇ log
(

π(Xt)|G(Xt)|−
1
2

)
dt +Ω

∗(Xt)dt +
√

G−1(Xt)dBt ,

which, upon simplification, becomes

dXt =
1
2

G−1(Xt)∇ logπ(Xt)dt +Λ(Xt)dt +
√

G−1(Xt)dBt , (5.10)

Λi(Xt) =
1
2 ∑

j

∂

∂x j
G−1

i j (Xt).

Intuitively, when a set is mapped onto the manifold, distances are changed by a factor,
√

G(x).

Therefore, to end up with the initial distances, they must first be changed by a factor of
√

G−1(x)

before the mapping, which explains the volatility term in Equation (5.10).

The discrepency with this diffusion and (5.1) is that the latter is based on a ‘Brownian motion on

a manifold’ with generator ∆LB (without the 1/2), and that it also has invariant density π(x) with

respect to the volume measure on the manifold, rather than Lebesgue measure.

5.3 Convergence properties

The main purpose of the previous sections was to correctly define a different class of Langevin

diffusions. In this section we give some motivation for why basing Metropolis–Hastings methods

on this class can be beneficial, in terms of the ergodic properties of the resulting samplers. We will

discuss two methods. In the first, the proposal kernel takes the form

Q(x, ·) = N
(

x+
h
2

G−1(x)∇ logπ(x)+hΛ(x),hG−1(x)
)
. (5.11)

We have previously referred to this as ‘PMALA’, standing for position-dependent Metropolis-adjusted

Langevin algorithm. It is a straightforward Euler–Maruyama discretisation of the diffusion (5.3). In

the second, the extra drift term Λ(x) is ignored, leaving the proposal

Q(x, ·) = N
(

x+
h
2

G−1(x)∇ logπ(x),hG−1(x)
)
. (5.12)

This is typically called the simplified manifold Metropolis-adjusted Langevin algorithm, or ‘SM-

MALA’ [43]. The additional drift term is ignored here simply to save on computing time.

Although there are a wealth of different choices available for the metric G(x) (as discussed in both

the previous and the next chapter), we focus on three specific cases here:
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1. The negative Hessian, i.e.

G1(x) =−∇
T

∇ logπ(x)

with suitable uplifting and absolute values taken of eigenvalues when necessary, in order to

ensure that this matrix is positive-definite (to be used as a covariance)

2. The ‘truncated’ Metropolis-adjusted Langevin algorithm, in which

G2(x) = ||∇ logπ(x)‖∞In×n,

where In×n denotes the n×n identity matrix and ‖x‖∞ := maxi |xi| is the L∞ norm. A version

of this method was first introduced in [109]

3. A slightly less truncated version

G3(x) = ‖∇ logπ(x)‖∞diag(x−1
i ),

where diag(ai) denotes an n×n diagonal matrix with ith diagonal element ai.

Recall that the Langevin algorithm with drift h∇ logπ(x)/2 fails to produce a geometrically ergodic

chain either when |∇ logπ(x)| → 0 as |x| → ∞ or |∇ logπ(x)|/|x| → ∞. In the former case pro-

posals devolve into random walks, whilst in the latter they ‘explode’. In this section we investigate

whether any of these choices produce an algorithm which behaves more favourably in either of these

scenarios.

The choice G1(x) is a generic form of a ‘Hessian-style’ metric, as first introduced and reviewed in

Chapter 4. Recall that the motivation for the choice was to allow proposals to use local curvature

information. There is a potentially O(n3) cost for inverting G1(x), which could feasibly be full rank.

The second and third choices G2(x) and G3(x) are simple attempts to control for faster-than-linear

growth in |∇ logπ(x)|. Dividing the drift by its maximum element will control this growth, making

the resulting term |G−1
2 (x)∇ logπ(x)| = O(1), whereas |G−1

3 (x)∇ logπ(x) = O(|x|), i.e. a linear

growth. In both cases the cost of computing G−1(x) is O(n), as the matrices involved are diagonal.

Rather than using new information, however, as in G1(x), derivative knowledge is simply recycled

here.

We provide an intuitive discussion of the behaviour of proposals under each of the three metric

choices, for two reference classes of targets in one dimension, and a specific distribution in two
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dimensions. In one dimension the focus will be on stability of the proposals (5.11) and (5.12) for

large |x|, and differences between them. In more than one dimension not only the size but also

the direction of proposals (as characterised by the deterministic drift vector b(x)h in the discretised

diffusion) plays a role in the efficiency of samplers.

5.3.1 One dimension

In one dimension the first class of models we consider is a simplified version of the exponential

family (discussed in greater detail in Chapter 7), with density

π(x) ∝ exp
(
−β
−1xβ

)
, x > 0,

for some β > 0. The case β ≥ 1 implies log-concavity, while β = 2 implies Gaussian tails. The

Metropolis-adjusted Langevin algorithm with fixed volatility produces a geometrically ergodic Markov

chain in the case 1≤ β ≤ 2. We note here that for the choice G1(x) a formal characterisation of ge-

ometric ergodicity for this class of targets and the proposal (5.12) is given in the comment [62],

confirming that the resulting sampler produces a geometrically ergodic chain for any choice β 6= 1.1

Here we provide some qualitative discussion to justify this result and compare with the proposal

(5.11). This work was done independently of that in [62].

First note that ∇ logπ(x) = −xβ−1 here, which will shrink in the tails if β < 1 and grow at a faster

than linear rate if β > 2, explaining the ergodicity results for MALA established in [109]. The

necessary quantities for our purposes are given in Table 5.3 below. In the case i = 1 they are given

for β 6= 1. Below, we comment on each metric choice in turn.

i Gi(x) G−1
i (x)∇ logπ(x) 2Λ(x)

1 |β −1|xβ−2 -|β −1|−1x 2−β

|β−1|x
1−β

2 xβ−1 −1 (1−β )x−β

3 xβ−2 −x (2−β )x1−β

Table 5.3: Gradient and curvature information of three different versions of the Metropolis-adjusted

Langevin algorithm for the one-dimensional simplified exponential family class of models.

For i = 1, the first drift term will be linear and the second sublinear for any β > 0, meaning the
1In the case β = 1 then the Hessian is 0 so G1(x) is not defined.
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diffusion will never be stiff and proposals will never ‘explode’ for large x, and similarly the drift

will never become negligible in the tails. For β > 1 the second drift term will become negligible in

the tails, meaning the two proposals (5.11) and (5.12) will become arbitrarily close to one another

as x→ ∞. For β < 1 proposals will diverge in the tails, but the leading term will still be present in

both. The second drift term will be positive for β < 2, effectively slowing down movement towards

the centre of the space, and negative in the light-tailed case β > 2, speeding up the drift when there

is very little mass in the tails. The volatility term will be O(x1−β/2), which will always be sublinear

in x for β > 0. For β > 2 this will effectively mean that proposals become deterministic in the tails.

More discussion is given on volatility growth of proposals in Chapter 6.

For i = 2 the first drift term is always −1, meaning in the simplified proposal (5.12) proposals will

effectively be a random walk with inwards drift. The second drift term will be less than the first for

x > 1, and will always be negligible for large x, for any β > 0, making the two different proposals

(5.11) and (5.12) arbitrarily similar here. The volatility will be O(x(1−β )/2) which is again sublinear

in x, and implies deterministic proposal behaviour in the tails for β > 1.

For the last case i = 3 the first drift term will again always be linear and the second sublinear for

β > 0. For β < 2 the simplified proposal (5.12) will provide a stronger than optimal pull towards the

centre of the space for large x, at a rate that increases as x does for β < 1 but decreases for 1≤ β ≤ 2.

The volatility here will be O(x1−β/2), as in the case i = 1. Aside from constants, the terms for i = 1

and i = 3 are the same.

The second model we analyse is a simplified version of the polynomial family (discussed further in

Chapter 6), with density

π(x) ∝ x−p, x≥ 1,

for some p > 1 (note that p = 2 corresponds to Cauchy tails). In this case ∇ logπ(x) = −p/x

which becomes negligible in the tails, meaning the standard Metropolis-adjusted Langevin algorithm

performs poorly here. The necessary terms required for the three metric choices are given in Table

5.4 below.

The first thing to note is that for i = 1 and i = 3 the resulting diffusions are identical for this class.

So it seems that the necessary curvature information can be incorporated simply by intelligently

recycling derivative information here. In these cases the first and second drift terms are linear, and
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i Gi(x) G−1
i (x)∇ logπ(x) 2Λ(x)

1 px−2 −x 2x/p

2 px−1 −1 1/p

3 px−2 −x 2x/p

Table 5.4: Gradient and curvature information of three different versions of the Metropolis-adjusted

Langevin algorithm for the one-dimensional simplified polynomial family class of models.

the resulting diffusion will have dynamics

dXt = (2/p−1)Xtdt +
√

2X2
t /pdBt .

For p = 2 (Cauchy tails) this will result in a diffusion without drift, and with volatility ∝ π(x)−1/2.

In this case the diffusion is in fact equivalent to that arising from the class of tempered Langevin

diffusions introduced in [108], and analysed in more detail in Chapter 6. For 1< p< 2 the simplified

proposal will still give a strong drift towards the centre of the space, whereas the proposal (5.11) will

actually drift away from the centre. For p > 2 the drift terms in both proposals will point towards

the centre of the space, but the simplified scheme will pull more strongly towards the centre. The

volatility term will always grow linearly in x. In fact, in this case the resulting diffusion will be

exponentially ergodic here.

Proposition 5.3. The diffusion with dynamics governed by the stochastic differential equation

dXt = (2/p−1)Xtdt +
√

2x2/pdBt

is exponentially ergodic to π(x) ∝ x−p for x > 1, provided p > 1+ ε for some ε > 0.

Proof: Taking V (x) = xq for some 0 < q < 1 chosen so that Eπ [V (X)] < ∞, then using (3.28) we

have

A V (x) = xq
[(

2
p
−1
)

q+
q(q−1)

p

]
.

We therefore need to show that the xq multiplier is strictly negative. Simplifying gives the necessary

and sufficient condition

p−1 > q.
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So provided p > 1+ ε then choosing q < ε gives the result. �

Discretisations of this diffusion without using Metropolis–Hastings corrections are likely to share

these favourable properties (provided a small enough step-size is chosen), but convergence will typ-

ically be to an incorrect target distribution (e.g. [109]). It is unclear whether Metropolis–Hastings

schemes based on this process would produce geometric converging chains, owing to the nonlinear-

ities introduced through the acceptance probability. This issue is discussed in detail in the general

case in [109] and [76]. We analyse Metropolis-corrected versions of a similar scheme in Chapter 6.

For the case i = 2 the first drift term will again be constant, as will the second. The combined drift

will be (1/p− 1), which will always point towards the centre of the space for p > 1. Hence the

simplified proposal will again propose moves which are closer to the centre of the space when in the

tails, with the difference most severe for smaller p. The volatility here will be O(x1/2), i.e. sublinear

in x. The resulting proposal y= x+h(1/p−1)/2+x
√

h/pZ, Z ∼N(0,1), looks remarkably simple,

however taking the same Lyapunov function here does not lead to a proof of exponential ergodicity.

5.3.2 Higher dimensions

In many examples of hierarchical models the resulting Langevin diffusion exhibits ‘stiffness’, mean-

ing |∇ logπ(x)|/|x| → ∞ as |x| → ∞ in at least one direction. A simple practical example is the

Normal-Gamma model (e.g. [68]), in which the likelihood based on a sample with mean x̄, variance

s2 and size b is given by

π(τ,µ) ∝ τ
b
2 exp

(
−τ

2
(bs2 +b(x̄−µ)2

)
,

in which the leading order term is O(τµ2). Fixing τ and letting µ grow indefinitely will result in

exploding proposals here.

As an illustrative example we consider a model proposed in [110], with density

π(x) ∝ exp
(
−x2

1− x2
2− x2

1x2
2
)
.

As can be seen, the gradient vector is ∇ logπ(x) =−2(x1(1+x2
2),x2(1+x2

1)). Choosing the specific

sequence xm = (m,2), then the gradient vector becomes ∇ logπ(xm) = (−10m,−4(1+m2)), mean-

ing |∇ logπ(xm)|/|xm| → ∞, and hence ordinary MALA proposals will explode in the tails, and the

method will fail to produce a geometrically ergodic chain as a result.
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For the sequence xm we compare the behaviour of the three metric choices. Figure 5.2 gives some

understanding of the behaviour of each. The first plot shows how |bi(xm)|/|xm| grows as |xm| does.

While the standard Metropolis-adjusted Langevin algorithm exhibits faster than linear growth in

drift, this is not the case for any of the other three metric choices, which all appear to be linear

or sublinear. The second plot gives an idea of the extent to which each drift term points to the

mode, by plotting 〈bi(xm),−xm〉 against m. The first metric choice appears to produce a drift which

asymptotically points towards the model (0,0). The second is very close to being simply a nor-

malized gradient, and so asymptotes towards (0,−1). The third metric choice points somewhere in

the middle of these two extremes. The last plot shows the ratio |G−1
i (xm)∇ logπ(xm)|/|2Λ(xm)|, to

understand how important the nonlinear term Λ(x) is in determining each bi(x). It appears that in

each case this ratio grows larger as m increases, particularly for the second metric choice.

Figure 5.3 also gives some qualitative intuition for how each method behaves. Below a contour

plot are (unit) vector fields show the drift under each metric choice varies with position, with black

showing G1, red G2 and green G3 as in the other plots. It is clear that the first metric choice produces

drift which points towards the global mode, the second choice does not when one coordinate is fixed

and the other allowed to grow, and the third choice is a compromise between these.

To illustrate how magnitude and direction combine in this example the diffusions produced using

each metric are shown in Figure 5.1. Here it is clear that the diffusion generated using Hessian infor-

mation (G1) reaches the centre of the space much more quickly than either of the other two choices

(using a fixed time discretisation h = 0.1). Although informative, it should be noted that using the

diffusions themselves does not directly translate to performance as a basis for a Metropolis–Hastings

scheme, as it is likely that different optimal values of the time step h would be preferred for each

method, meaning that using the same time step for each is not necessarily a fair comparison.

Although the Hessian-style metric seems favourable in many cases, and similar problems have been

studied in the optimisation and information geometry literature (e.g. [1]), there are numerical chal-

lenges. While the second and third metric choices are clearly positive definite, the eigenvalues of

−∇T ∇ logπ(xm) are

λ1(m) = 6+m2−
√

16+56m2 +m4, λ2(m) = 6+m2 +
√

16+56m2 +m4.

Basic calculations show that λ1(m)→−22 as m→∞, meaning in practice the negative Hessian will

not be positive definite for large m, and requires regularisation. This presents numerical challenges,
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Figure 5.1: Discretisations of the Langevin diffusions resulting from the Hessian-style metric

(black), truncating metric (red) and linearising metric (green).

particularly when λ1 ≈ 0, in which case G−1
1 (xm) can become extremely large if care is not taken to

‘uplift’ these eigenvalues by an appropriate amount.

5.4 Discussion & Extensions

The first part of this chapter is mainly concerned with correcting an error which has propagated

through the literature. In particular, Theorem 5.2 gives rigorous justification for the use of the

corrected diffusion. Empirical results further justify the corrected form, with the added benefit that

it is computationally less expensive.

The second section is motivated by exploring the connections between differential geometry and

stochastic analysis. It is not a new idea to relate changing the volatility of a diffusion to changing

the space in which the diffusion exists, but there is value in better understanding this connection.

For one, better understanding motivates new research questions, which can be tackled by a group of

researchers (in this case geometers) who communicate in a different language. As both a more sta-

tistical and a more concrete example, in many cases Langevin diffusions arise as the limiting objects

of Markov chain Monte Carlo methods (e.g. [104]), and recently such diffusion limits have been of

the form described in this chapter, and the explicit geometric derivation has been acknowledged as a
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useful pre-cursor to this result [7]. It is likely that future developments in the theory will also benefit

from the geometric perspective.

Qualitative and intuitive exploration such as that given in the last section of this chapter is relevant to

help translate the theory to practitioners, as well as to further understanding. For example, through

the one dimensional exercise it becomes clear that for the class of models considered the omission

of the nonlinear drift term Λ(x) will not affect the ergodic properties of any sampler, and in some

cases this term becomes negligible for large |x|. In fact, numerical methods exist to simulate the

diffusion with Λ(x) included without having to actually calculate it [14], and such schemes could be

beneficial for Metropolis–Hastings sampling. It is also clear from this exercise that an appropriate

metric choice G(x) can change both the magnitude and direction of the drift vector b(x), and hence

the ergodic properties of both the diffusions and numerical schemes. In the examples shown, the

magnitude properties of a metric which uses second derivative information about π(x) can be re-

covered by judiciously recycling first derivative information, but in two dimensions, when direction

also becomes important, the same cannot be said.

There are many interesting open questions on the topic of Langevin diffusions such as those dis-

cussed here. For the diffusions themselves, two obvious such questions are regarding speed of

convergence to equilibrium and optimal metric choice to achieve this speed. Recent work [36] has

studied spectral gaps of the generator A for related diffusions, which have unit volatility but addi-

tional drift components (making them nonreversible), and a similar formal analysis could give useful

insights here on the speed of convergence to equilibrium for certain metric choices, as well as the

related but distinct problem of minimising the asymptotic variance of estimators of functionals using

the diffusion path (see [82] for more detail on the connections between these two problems). As an

example, the recent paper [107] has established that in one dimension, if π(x) has exponential tails

and if G1(x) ≥ G2(x) for all x ∈ X, then the diffusion with volatility G−1/2
1 (x) will produce lower

asymptotic variances for L2(π) functionals than that with volatility G−1/2
2 (x). Through this we can

see that relating volatility choice to estimator efficiency is possible and can lead to straightforward

comparison criteria. Optimal metric choice is a more detailed and open question, though discussion

in [36] and related papers suggests that progress can be made here too.

An alternative avenue to analysing the objects discussed in this chapter would be through hitting

times to the centre of the space. A vast literature exists on hitting times for diffusions, with contri-

butions from both the mathematical finance and partial differential equations literature, as well as
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Probability theory, which could mean that such hitting times may be relatively straightforward to

establish for many models of interest, giving explicit bounds on how long a diffusion takes to reach

the mode of a distribution.

It is not always clear how analysis of diffusions translates to Metropolis–Hastings methods that

use them as proposals. Indeed questions of ‘speed’ become more subtle here, as it may be that

‘slower’ diffusions can also be more accurately integrated numerically, meaning larger step-sizes

can be taken whilst retaining a high chance of acceptance, cancelling out any weaknesses the process

would possess in the continuous time setting. The question of optimal acceptance rate for any such

algorithm is also more subtle here: is not clear whether the optimum should be 0.574 as in MALA,

or indeed that an optimal rate independent of both x and π(·) can be established. Questions of

algorithm efficiency as a function of n are also more involved.

Regarding ergodicity, the three metric choices discussed in the last section of the chapter should all

produce geometrically ergodic Markov chains according to the findings of [109]. However, it would

appear from the examples that the algorithms will converge to equilibrium at very different speeds

in practice. Existing ergodicity results focus mainly on the magnitude of the drift vector b(x), so

some exploration of how the direction of this vector influences either the existence of a spectral gap

or the size of this gap (or equivalently the geometric rate) could offer insight here. Some insights

gained from the work [103] could be useful in this endeavour.
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Figure 5.2: Plots showing behaviour of three Metropolis-adjusted Langevin algorithms for the

target distribution π(x) ∝ exp(−x2
1− x2

2− x2
1x2

2). The first shows how the normalised drift terms

|bi(xm)|/|xm| grow relative to |xm|. The second compares the inner product −〈bi(xm),xm〉 with m.

The third shows how the ratio of the first divided by the second drift terms changes with m.
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Figure 5.3: Vector fields showing the behaviour of each Metropolis-adjusted Langevin algorithm.

The black lines represent the Hessian-style choice G1, the red represents the truncated algorithm G2

and green the linear growth variant G3. The first graphic is a contour plot of the target density.
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Chapter 6

Random walk Metropolis with

position-dependent proposal

covariance

This chapter is mainly taken from [70]. Although the research is solely the work of this author, it

would have been much more difficult without regular discussions with Alexandros Beskos, as well

as input from Krzysztof Łatuszyński and Gareth Roberts.

Recently, some MCMC methods have been proposed which generalise the Random Walk Metropo-

lis described in Chapter 4, whereby proposals are still centred at the current point x and symmetric,

but the variance changes with x [106, 108, 116, 3, 25]. The motivation is that the Markov chain

can become more ‘local’, perhaps making larger jumps when out in the tails, or mimicking the local

dependence structure of π(·) to propose more intelligent moves. Designing MCMC methods of this

nature is particularly relevant for modern Bayesian inference problems, where posterior distribu-

tions are often high dimensional and exhibit nonlinear correlations [43]. We term this approach the

Position-Dependent Random Walk Metropolis (PDRWM), although technically this is a misnomer,

since proposals are no longer random walks.1 Other choices of candidate distribution designed with

1The size of jump now depends on the current position in the chain.
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distributions that exhibit nonlinear correlations were introduced in [43]. Although powerful, these

require derivative information for logπ(x), something which can be unavailable in modern infer-

ence problems (see e.g. Chapter 12 of [18]). We note that no such information is required for the

PDRWM, as evidenced by the particular cases suggested in [106, 108, 116, 3, 25]. However, there

are relations between the approaches, to the extent that understanding how the properties of the

PDRWM differ from the standard RWM should also aid understanding of the methods introduced

in [43].

In this work we consider the convergence rate of a Markov chain generated by the PDRWM to its

limiting distribution. Our main interest lies in how much this generalisation can change these er-

godicity properties compared to the standard RWM with fixed covariance. We focus on the case

where the candidate distribution is Gaussian, and in one dimension we establish necessary and suffi-

cient growth conditions on the proposal variance and tail behaviour of π(x) for geometric ergodicity.

Some of the results extend naturally to higher dimensions, but we also offer an illustrative example

showing that some of the difficulties suffered by the RWM in dimensions two or greater can be

alleviated when the proposal covariance is allowed to change with position.

General assumptions: As in previous chapters unless otherwise stated, we set X = Rn here, so that

objects such as Lebesgue densities and Gaussian measures are well understood. We also assume

unless otherwise stated that the distribution of interest π(·) admits a Lebesgue density π(x) which is

bounded away from zero on compact sets.

6.1 Position-dependent Random Walk Metropolis

In the RWM, Q(x,dy)= q(|y−x|)dy, meaning the acceptance rate reduces to α(x,y)= 1∧π(y)/π(x).

A common choice is Q(x, ·) = N(x,hΣ), with Σ chosen to mimic the global covariance structure of

π(·) [121]. Various results exist concerning the optimal choice of h in a given setting (e.g. [104]).

It is straightforward to see that Theorem 4.7 holds here, so that the tails of π(x) must be uniformly

exponential or lighter for geometric ergodicity. In one dimension this is in fact a sufficient condition

[78], while for higher dimensions additional conditions are required [110]. We return to this case in

Subsection 6.3.
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For the PDRWM we introduce the matrix-valued map

G−1 : X→Mn
PD(R),

where Mn
PD(R) is defined as the space of n× n positive-definite matrices with real coefficients.

Unless otherwise stated we assume that the eigenvalues of G−1 are bounded away from zero, to

ensure that this matrix remains positive-definite for all x∈X. So the transition kernel for the method

is given by Q(x, ·) = N(x,hG−1(x)), and the acceptance rate becomes

α(x,y) = 1∧ π(y)|G(y)| 12

π(x)|G(x)| 12
exp
(
−1

2
(x− y)T [G(y)−G(x)](x− y)

)
.

The intuition here is that proposals are more able to reflect the local dependence structure of π(·). In

some cases this dependence may vary greatly in different parts of the state-space, making a global

choice of Σ ineffective [116].

Readers familiar with differential geometry will recognise the volume element |G(x)|1/2dx and the

linear approximations to the distance between x and y taken at each point through G(x) and G(y) if

X is viewed as a Riemannian manifold with metric G.

The choice of G(x) is an obvious question. In fact, specific variants of this method have appeared

on many occasions in the literature, some of which we now summarise.

1. Tempered Langevin diffusions [108] G−1(x) = π−1(x)I. The authors highlight that the diffu-

sion with dynamics dXt = π−
1
2 (Xt)dBt has invariant distribution π(·), motivating the choice.

The method was shown to perform well for a bi-modal π(x), as larger jumps are proposed in

the low density region between the two modes.

2. State-dependent Metropolis [106] G−1(x) = a(1 + |x|)b. Here the intuition is simply that

b > 0 means larger jumps will be made in the tails. In one dimension the authors compare the

expected squared jumping distance E[(Xi+1−Xi)
2] empirically for chains exploring a N(0,1)

target distribution, choosing b adaptively, and found b≈ 1.6 to be optimal.

3. Regional adaptive Metropolis–Hastings [106, 25]. G−1(x) = ∑
m
i=11x∈XiΣi. In this case the

state-space is partitioned into X1∪ ...∪Xm, and a different proposal covariance Σi is learned

adaptively in each region 1 ≤ i ≤ m. An extension which allows for some errors in choosing

an appropriate partition is discussed in [25]
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4. Localised Random Walk Metropolis [3]. G−1(x) = ∑
m
k=1 q̌θ (k|x)Σk. Here q̌θ (k|x) are weights

based on approximating π(x) with some mixture of Normal/Student’s t distributions, using

the approach suggested in [2]. At each iteration of the algorithm a mixture component k is

sampled from q̌θ (·|x), and the covariance Σk is used for the proposal Q(x,dy).

5. Kernel adaptive Metropolis–Hastings [116]. G−1(x) = γ2I + ν2MxHMT
x , where Mx =

2[∇xk(z1,x), ...,∇xk(zn,x)] for some kernel function k and n past samples {z1, ...,zn}, H =

I− 1/n1n×n is a centering matrix, and γ , ν are tuning parameters. The approach is based

around performing nonlinear principal components analysis on past samples from the chain

to learn a local covariance. Illustrative examples for the case of a Gaussian kernel show that

MxHMT
x acts as a weighted empirical covariance of samples z, with larger weights given to

the zi which are closer to x [116].

The latter cases also motivate any choice of the form

G−1(x) =
n

∑
i=1

w(x,zi)(zi− x)T (zi− x)

for some past samples {z1, ...,zn} and weight function w : X×X→ [0,∞) with ∑i w(x,zi) = 1 that

decays as |x−zi| grows, which would also mimic the local curvature of π(·) (taking care to appropri-

ately regularise and diminish adaptation so as to preserve ergodicity, as outlined in [3]). The logic of

[43, 8] could also be applied, by choosing G(x) as some regularised version of the negative Hessian

of logπ(x). However, if such derivative information were available it would seem more sensible to

use a more sophisticated method than a martingale proposal (see e.g. [43]).

6.2 Geometric ergodicity in one dimension

Here the specific choice of G(x) is left open, and we instead consider two different general scenarios

as |x| → ∞, i) G−1(x)→ Σ, and ii) G−1(x)→ ∞ at some rate. In theory there is also the possibility

that G−1(x)→ 0, though intuitively this would not seem to be a particularly sensible choice as chains

would be extremely likely to spend a long time in the tails of a distribution, so we do not consider it.

Three scenarios are considered for the tail behaviour of π(x). We refer to this density as log-concave

in the tails if for some x0 > 0 and a > 0

π(y)/π(x)≤ e−a(y−x), ∀y≥ x≥ x0, (6.1)
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and a similar condition holds in the negative tail. If (6.1) is not satisfied but there is some β ∈ (0,1)

such that the above condition can be replaced with π(y)/π(x)≤ exp{−a(yβ −xβ )}, then we call the

density subexponential (note this is not the standard definition). Finally, we call π(x) ‘polynomial-

tailed’ if π(x) ∝ |x|−p for large |x| and some p≥ 1. We also apply asymptotic growth conditions for

G−1(x), and without loss of generality assume that these hold for any x larger than the same x0 in

absolute value.

We introduce some asymptotic notation in this section. For positive real-valued functions f and g,

let f (x) = Θ(g(x)) imply f (x)/g(x)→C > 0 as x→ ∞, and f (x) = ω(g(x)) imply f (x)/g(x)→ ∞.

The more familiar big-O and little-o notation is also used. The main results of this section are

summarised in Table 1 at the end of the section.

The first result emphasises a growing variance as a necessary requirement for geometric ergodicity

in the heavy-tailed case.

Proposition 6.1. If G−1(x) ≤ σ2, then the PDRWM can produce a geometrically ergodic Markov

chain only in the case where π(x) is log-concave in the tails.

Proof: In this case for any choice of ε > 0 there is a δ > 0 such that Q(x,Bδ (x))> 1−ε , so Theorem

4.7 can be applied. �

Though the heavy-tailed case is a challenging scenario, the standard RWM with fixed covariance

will produce a geometrically ergodic Markov chain if π(x) is log-concave. Next we extend this

result to the case of sub-quadratic variance growth in the tails.

Theorem 6.2. If G−1(x) = o(|x|2) and π(x) is log-concave in the tails, then the PDRWM method

produces a geometrically ergodic Markov chain from π-almost any starting point. If π(x) is subex-

ponential for some β ∈ (0,1), then choosing G−1(x) = Θ(|x|γ) for some 2(1−β )< γ < 2 gives the

same result.

The log-concave proof consists of partitioning X into five regions, and showing that as |x| → ∞,

(4.14) evaluated over each of these regions will either become arbitrarily small or remain strictly

negative. We use the Lyapunov function V (x) = es|x| for some s> 0. This choice allows results about
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moment generating functions of truncated Gaussian distributions (see D) to be used, in conjunction

with simple bounds on the cumulative distribution function from [24], to establish that (4.14) will

become arbitrarily small for regions of X outside the ‘typical set’ (x− cxγ/2,x+ cxγ/2). Theorem

3.2 from [78] shows that for the RWM with fixed covariance (4.14) evaluated over this region will

be strictly negative. The essence of the argument is that for y > x in the tails, αR(x,y)≤ e−a(y−x) by

log-concavity, so as long as s is chosen to be less than a this decay will dominate any growth in V (y)

here. As for any inwards proposals αR(x,y) = 1 then it can be shown that (4.14) is strictly negative

when evaluated over this region.

The crucial additional difficulty in the case of growing covariance is that the acceptance rate in this

region (for suitably large x) is now

α(x,y) = 1∧ π(y)
π(x)

exp
(

γ

2
log
∣∣∣∣xy
∣∣∣∣− 1

2h

[
(x− y)2

yγ
− (x− y)2

xγ

])
The problematic term lies inside the square bracket: this will be negative for y > x, meaning a large

positive component in α(x,y). To deal with this, we use a Taylor expansion of y−γ about x and

some simplifications to show that provided γ < 2, for large enough x, locally (for y near x, where the

choice of region plays a role) the acceptance rate will still satisfy

α(x,y) = 1 for y < x, α(x,y)≤ e−a(y−x)+δx , for y > x,

where δx can be made arbitrarily small. This allows us to use a similar argument to that in [78] to

prove the result. Outside of this region the Gaussian tails of Q(x, ·) take care of any less desirable

behaviour of α(x,y). To extend this result to the subexponential case, we choose V (x) = es|x|β , and

Taylor expand |y|β in the typical set to get a suitable bound on α(x,y).

Note that this Theorem includes as a special case any instance in which G−1(x) ↑ σ2 as |x| → ∞.

However, the case G−1(x)→ σ2 from any direction is actually more straightforward to show, by

simply moving x far enough into the tails that G−1(x)≈ σ2 for all y ∈ (x− cxγ/2,x+ cxγ/2). In this

case the argument in [78] can be applied more straightforwardly.

Although we do not formally prove that the method will not produce a geometrically ergodic chain

in the polynomial tailed case when G−1(x) = o(|x|2), we show intuitively that this will be the case.

Assuming that in the tails π(x) ∝ |x|−p for some p > 1 then for large x

α(x,x+ cxγ/2) = 1∧
(

x
x+ cxγ/2

)p+γ/2

exp
(
−c2xγ

2h

[
1

(x+ cxγ/2)γ
− 1

xγ

])
.
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The first expression on the right hand side converges to 1 as x→ ∞, which is akin to the case of

fixed proposal covariance. The second term will be larger than one for c > 0 and less than one for

c < 0. So the algorithm will exhibit the same ‘random walk in the tails’ behaviour which is often

characteristic of the RWM in this scenario, and so the acceptance rate will fail to enforce a geometric

drift back into the centre of the space.

In the case where γ = 2 this will not happen, as the terms in the above expression will be roughly

constant with x. We examine this case next.

Theorem 6.3. If G−1(x) = Θ(|x|2), then there is a h0 = h0(G−1) > 0 such that for a step-size

h ∈ (0,h0) the PDRWM method produces a geometrically ergodic Markov chain from π-almost any

starting point, provided π(x)≤ |x|−p for all |x| ≥ L, where L < ∞, for some p > 1.

Here the intuition is that proposals in the tails will take the form y= (1+ξ
√

h)x, which if h is chosen

to be small will be similar to y = eξ
√

hx. The latter scheme is sometimes called the multiplicative

RWM, and is known to be geometrically ergodic in this scenario (e.g. [121]), as this equates to

taking a log-transformation of x, which ‘lightens’ the tails of the target density to the point where it

becomes log-concave.

In this case we take the Lyapunov function V (x)= 1∨|x|s, with s> 0 chosen such that
∫

V (y)π(dy)<

∞. We again divide the integral of interest into regions, but in this case we show that each of these

can be appropriately bounded simply as functions of the step-size h, i.e. independently of x. By

examining each term, we show that for a small enough h the integral will be strictly negative.

The result is positive, but in this case is perhaps an example where the theory does not necessarily

translate into an effective scheme in practice. If π(x) has particularly heavy tails, for example, then it

is likely that an extremely small value of h would be needed to ensure (3.18), meaning the geometric

rate of convergence r would be close to one. Nonetheless, it is an example of how appropriate choice

of G−1(x) can favourably change the ergodicity properties of a sampler.

The final result of this section provides a note of warning, that lack of care in choosing G−1(x) can

have severe consequences for the method.

Theorem 6.4. If G−1(x) = ω(|x|2), then the PDRWM method can never produce a geometrically
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ergodic Markov chain provided π(y)≤ π(x) for all |y| ≥ |x| ≥ L, for some L < ∞.

The intuition for this result is straightforward when explained. In the tails, the average proposals will

be of size |x|γ/2, which will be much larger than |x| if γ > 2, meaning most will send the chain even

further into the tails in either direction (and hence will likely be rejected). To make this rigorous we

show that (4.15) holds here, by considering the set of proposals Ax,ε := {y ∈ X : α(x,y) ≥ ε}, and

showing that Q(x,Ax,ε)→ 0 as |x| → ∞, for any ε > 0. A specific example is illustrated in Figure

6.1.

Figure 6.1: Example of Position-dependent Random Walk Metropolis behaviour with π(x) ∝ e−|x|,

G−1(x) ∝ |x|4. The black triangle denotes the current state, points highlighted in blue represent

proposals with α(x,y)> 0.5, with all others highlighted in red. For large |x| the majority of proposals

miss the centre of the space and are rejected.

The main results of this section are summarised in Table 6.1.

Variance Polynomial Tails Subexponential Log-concave

G−1(x) = o(|x|2) × X+ X

G−1(x) = Θ(|x|2) X∗ X∗ X∗

G−1(x) = ω(|x|2) × × ×

Table 6.1: Summary of one dimensional ergodicity results for Position-dependent Random Walk

Metropolis. Here f (x) = ω(g(x)) means f/g→ ∞ as x→ ∞, f (x) = Θ(g(x)) means f/g→C > 0,

Xmeans geometrically ergodic, X+ means geometrically ergodic provided G−1(x) ∈ Θ(|x|γ) for

some 2 > γ > 2(1−β ), and X∗ means geometrically ergodic provided h is suitably small.
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6.3 Higher dimensions

Some results from the previous section naturally carry over to higher dimensions. The most straight-

forward is outlined below.

Proposition 6.5. If each element of G−1(x) is bounded above (uniformly in x), then the PDRWM can

only produce a geometrically ergodic Markov chain if the tails of π(x) are uniformly exponential or

lighter.

Proof: As with Proposition 6.1, a straightforward application of Theorem 4.7 gives the result. �

It is also intuitive that an analogue to Theorem 6.4 will exist here. Specifically, if any diagonal

component of the covariance G−1(x) grows at a faster than quadratic rate with x, then the sampler

is likely to run into the same difficulties in the tails. Similarly, when G−1(x)→ Σ, it is straightfor-

ward to see that the sampler will inherit the geometric ergodicity properties of the RWM with fixed

covariance, by a similar argument to that discussed for the proof of Theorem 6.2 in this case.

As mentioned earlier, in the case G−1(x) = Σ, additional conditions on π(x) are required for geo-

metric ergodicity in more than one dimension, outlined in [110]. An example is also given in the

paper of the simple two-dimensional density π(x,y) ∝ exp(−x2− y2− x2y2), which fails to meet

this criterion. The difficult models are those for which probability concentrates on a ‘ridge’ in the

tails, which becomes ever narrower as |x| increases. In this instance, proposals from the RWM are

less and less likely to be accepted as |x| grows. The problem is illustrated graphically in Figure 6.2.

Such densities are often encountered as posterior distributions in hierarchical models, with another

well-known example being the ‘funnel’, discussed in [85]. On the same figure there is some graphi-

cal evidence that if the proposal covariance is allowed to adjust then this problem can be alleviated

somewhat.

To explore this more concretely, we design an extremely simple two dimensional density which

exhibits the same features, which we call the ‘rectangle’ density

�(x) ∝ 3−bx2c1R(x), R := {y ∈ R2;y2 ≥ 1, |y1| ≤ 31−by2c},

where bzc is the integer part of z ∈ R. This is simply a distribution defined over a sequence of
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Figure 6.2: Contours of the density π(x,y) ∝ exp(−x2− y2− x2y2). The left-hand plots show that

a RWM with spherical covariance will find it increasingly difficult to propose values which will be

accepted as the chain moves into the tails. The right-hand plots suggest that allowing the covariance

to change with position might alleviate this issue.

rectangles on the upper-half plane on R2 (starting at y2 = 1), each centred on the vertical axis,

with height one and with each successive triangle a third of the width and depth of the previous.

Intuitively, the density is an ever narrowing staircase, as shown in Figure 6.3.

For simplicity here we take the Random Walk Metropolis proposal as simply a uniform distribution

on the disc of radius one about the current point, so QR(x,A) = µL(A∩Sx)/µL(Sx), where Sx := {y∈

R2; |y−x| ≤ 1}. To imitate the changing covariance in the PDRWM, we take as a proposal a uniform

distribution over an ellipse for which the width is 31−bx2c if the current position is x = (x1,x2) ∈R2,

so QP(x,A) = µL(A∩Ex)/µL(Ex), where Ex = {y ∈ R2 : 32(1−bx2c)(y1− x1)
2 +(y2− x2)

2 ≤ 1}.

For these choices many of the calculations required in this section reduce to calculating areas of

rectangles and ellipses.

Proposition 6.6. The Metropolis–Hastings algorithm with proposal QR does not produce a geomet-

rically ergodic Markov chain when π(x) =�(x).

Proof: It is sufficient to construct a sequence of points xp ∈ R2 such that |xp| → ∞ as p→ ∞, and
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show that r(xp)→ 1. Take xp = (0, p) for p ∈ N. In this case r(xp) is bounded below by one minus

the area of the rectangles that xp is on the boundary of divided by the area of the circle |Sx|= π . So

we have

r(xp)≥ 1−
(

1
3p−2π

+
1

3p−1π

)
→ 1

as p→ ∞, as required. �

Figure 6.3: The rectangle density.

The approach makes it clear that reducing the

area of an ellipse at the same rate as the area of

the rectangles will remove this issue. The next

result confirms this intuition.

Proposition 6.7. The Metropolis–Hastings al-

gorithm with proposal QP produces a geometri-

cally ergodic Markov chain when π(x) =�(x),

from π-almost any starting point.

Proof: We can take as a small set C = {y ∈

R2;1 ≤ yi ≤ 2}, i.e. the largest rectangle on

the contour plot. Outside of this set, we show

that the chain behaves in the vertical coordinate

as a random walk with inwards drift, which is

shown to be geometrically ergodic in Section

16.1.3 of [81]. We can therefore use the Lya-

punov function V (x) = es(1∨|x1|+x2), which is both coercive and only depends on the x2 coordinate

within R. Note first that α(x,y) = 1 for any x,y ∈ R∩{y ∈ X : y2 < x2}. Because of this, it suffices

to show that the overlap on the contour plot between the lower hemisphere of each Ex and R is larger

than that between R and the upper hemisphere for any x∈R\C, which is clearly true from inspecting

Figure 6.4. This establishes that in the x2 coordinate the chain will be of the form yi = yi−1 +ηi,

where ηi follows a distribution which has a negative mean, and the result follows. �
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Figure 6.4: Contour plots of the rectangle density, showing the set of proposals which would be

accepted if the current point is given by the green dot. The area in the lower half of the ellipse which

is coloured yellow is larger than that in the upper half (shown in red), implying that on average the

vertical coordinate (and hence V (x)) will be smaller for the next point in the chain.

6.4 Proofs

The longer proofs of results stated above are given here, so that the main idea of the paper can be

grasped more easily. In each case we re-state the result and then provide a full proof.

6.4.1 Proof of Theorem 6.2

If G−1(x) = o(|x|2) and π(x) is log-concave in the tails, then the PDRWM method produces a

geometrically ergodic Markov chain from π-almost any starting point. If π(x) is subexponential

for some β ∈ (0,1), then choosing G−1(x) = Θ(|x|γ) for some 2(1− β ) < γ < 2 gives the same

result.

Proof: For the log-concave case, take V (x) = es|x| for some s > 0, and let

BA :=
∫

A

[
V (y)
V (x)

−1
]

α(x,y)Q(x,dy).

Recall from Subsection 4.2 that showing limsup|x|→∞ B(−∞,∞) < 0 is sufficient to establish the result

here. We first break up X into (−∞,0]∪(0,x−cx
γ

2 ]∪(x−cx
γ

2 ,x+cx
γ

2 ]∪(cx
γ

2 ,x+cxγ ]∪(x+cxγ ,∞),
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and show that the integral is strictly negative on at least one of these sets, and can be made arbitrarily

small as x→ ∞ on all others. The −∞ case is analogous from the tail conditions on π(x).

On (∞,0], we have

B(∞,0] = e−sx
∫ 0

−∞

es|y|
α(x,y)Q(x,dy)−

∫ 0

−∞

α(x,y)Q(x,dy),

≤ e−sx
∫

∞

0
esyQ(−x,dy).

The integral is now proportional to the moment generating function of a truncated Gaussian distri-

bution (see Appendix D), so is given by

e−sx+xγ hs2/2
[
1−Φ

(
x1−γ/2/h1/2−h1/2sxγ/2

)]
.

A simple bound on the error function is
√

2πxΦc(x) < e−x2/2 (See Appendix E), so setting η =

x1−γ/2/h1/2−h1/2sxγ/2 we have

B(∞,0] ≤
1√
2π

exp
(
−2sx+

hs2

2
xγ − 1

2
(
h−1x2−γ −2sx+hs2xγ

)
+ logη

)
,

=
1√
2π

exp
(
−sx− 1

2h
x2−γ + logη

)
.

which→ 0 as x→ ∞, so we can make this arbitrarily small.

On (0,x− cxγ/2], note that es(|y|−|x|)−1 is clearly negative throughout this region. So the integral is

straightforwardly bounded as B(0,x−cxγ/2] ≤ 0 for all x ∈ X.

On (x− cxγ/2,x+ cxγ/2], provided x− cxγ/2 is large enough that we are in the tail regime, then for

any y in this region

α(x,y)≤ exp
(
−a(y− x)+

γ

2
log
∣∣∣∣xy
∣∣∣∣− 1

2h

[
(x− y)2y−γ − (x− y)2x−γ

])
.

A Taylor expansion of y−γ about x gives

y−γ = x−γ − γx−γ−1(y− x)+
γ(γ +1)

2
x−γ−2(y− x)2 + ...

and multiplying by (y− x)2 gives

(y− x)2y−γ =
(y− x)2

xγ
− γ

(y− x)3

xγ+1 +
γ(γ +1)

2
(y− x)4

xγ+2 + ...

If |y− x|= cxγ/2 then this is:

c2xγ

xγ
− γ

c3x3γ/2

xγ+1 +
γ(γ +1)

2
c4x2γ

xγ+2 + ...
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As γ < 2 then 3γ/2< γ+1, and similarly for successive terms, meaning each gets smaller as |x|→∞.

So we have for large x and y ∈ (x− cxγ/2,x+ cxγ/2)

(y− x)2y−γ ≈ (y− x)2

xγ
− γ

(y− x)3

xγ+1 . (6.2)

Using (6.2) gives (for large enough x)

α(x,y)≤ exp
(
−a(y− x)+

γ

2
log
∣∣∣∣xy
∣∣∣∣+ 1

2h
γ
(y− x)3

xγ+1

)
So we can analyse how the acceptance rate behaves. First note that for fixed ε > 0

α(x,x+ ε)≤ exp
(
−aε +

γ

2
log
∣∣∣∣ x
x+ ε

∣∣∣∣+ 1
2h

γ
ε3

xγ+1

)
→ exp(−aε).

Similarly we find that the e−aε term will dominate for any ε for which ε3/xγ+1 → 0, i.e. any

ε = o(x(γ+1)/3). If γ < 2 then ε = cxγ/2 satisfies this condition. So for any y > x in this region we

can choose an x such that

α(x,y)≤ exp(−a(y− x)+δx) ,

where δx can be made arbitrarily small in this region by choosing a large enough x. For the case

y < x here we have (for any fixed ε > 0)

α(x,x− ε)≤ exp
(

aε +
γ

2
log
∣∣∣∣ x
x− ε

∣∣∣∣− 1
2h

γ
ε3

xγ+1

)
→ exp(aε).

So by a similar argument we have α(x,y)> 1 here for large x, as the exponential term will dominate.

Combining these results we can write

B(x−cxγ/2,x+cxγ/2] =
∫ cxγ/2

0

[
e(s−a)z+δz − e−az+δz + e−sz−1

]
qx(dz),

=−
∫ cxγ/2

0
(1− e−sz)(1− e(s−a)z+δz)qx(dz),

which will be strictly negative for large enough x provided s < a, where qx(·) denotes a zero mean

Gaussian distribution with the same variance as Q(x, ·).

On (x+ cxγ/2,x+ cxγ ] we can upper bound the acceptance rate as

α(x,y)≤ π(y)
π(x)

exp
(

1
2

log
|G(y)|
|G(x)|

+
G(x)
2h

(x− y)2
)

If y≥ x and x > x0 then we have

α(x,y)≤ exp
(
−a(|y|− |x|)+ 1

2h
(x− y)2

xγ

)
.
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For |y− x|= cxη this becomes

α(x,y)≤ exp
(
−acxη +

c2

2h
x2η−γ

)
So provided γ > η the e−a term will dominate for large x. In the equality case we have

α(x,y)≤ exp
((

c2

2h
−a
)

cxγ

)
,

so provided we choose c such that a > c2/2h then the acceptance rate will also decay exponentially.

Because of this we have

B(x+cxγ/2,x+cxγ ] ≤
∫

A4

es(y−x)
α(x,y)Q(x,dy),

≤ e(c
2/2h+s−a)cxγ/2

Q(x,(x+ cxγ/2,x+ cxγ ]),

so provided a > c2/2h+ s then this term can be made arbitrarily small.

On (x+cxγ ,∞) using the same properties of truncated Gaussians and error function bounds we have

B(x+cxγ ,∞) ≤ e−sx
∫

∞

x+cxγ

esyQ(x,dy),

= es2xγ/2
Φ

c((c− s)xγ)≤ exp
(
−c(c−2s)

2
xγ

)
,

which can be made arbitrarily small provided c > 2s.

For the subexponential case, the proof is similar. Take V (x) = es|x|β , and divide X up into the same

regions. Outside of (x− xγ/2,x + xγ/2] the same arguments show that the integral can be made

arbitrarily small. On this set, note that in the tails.

(x+ cx
η

2 )β − xβ = βcx
η

2 +β−1 +
β (β −1)c2

2
xη+β−2 + ...

For y− x = cxη/2, then for η/2 < 1−β this becomes negligible, otherwise it will grow as x does.

So in this case we further divide the typical set into (x,x + cx1−β ]∪ (x + cx1−β ,x + cxγ/2). On

(x− cx1−β ,x+ cx1−β ) the integral is bounded above by e−c1Q(x,(x− cx1−β ,x+ cx1−β ))→ 0, for

some suitably chosen c1 > 0. On (x− cxγ/2,x− cx1−β ]∪ (x+ cx1−β ,x+ cxγ/2] then for y > x we

have α(x,y)≤ e−c2(yβ−xβ ), so we can use the same argument as in the the log-concave case to show

that the integral will be strictly negative in the limit.

�
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6.4.2 Proof of Theorem 6.3

If G−1(x) = Θ(|x|2), then there is a h0 > 0 such that for a step-size h ∈ (0,h0) the PDRWM method

produces a geometrically ergodic Markov chain from π-almost any starting point, provided π(x)≤

|x|−p in the tails for some p > 1.

Proof: Here a typical proposal will be y= x±ξ
√

hx for x sufficiently large, meaning |x−y|= ξ
√

hx,

with ξ ∼ N(0,1). For now we assume both x and y are in the tail regime, meaning G(y) ∝ y−2 and

similarly for G(x) (we make this concrete later). We can also take π(y)/π(x) = xp/yp here.

For y = (1+ξ
√

h)x then in the tails the acceptance rate becomes

α(x,y) = 1∧ 1
(1+ξ

√
h)p+1

exp

(
ξ 3
√

h
2

[
2+ξ

√
h

(1+ξ
√

h)2

])
,

which is completely independent of x.

Take V (x) = 1∨ |x|s, for some s < 1 which is suitably small that
∫

V (y)π(dy) < ∞, together with

an extra restriction which we specify later. Then V (y)/V (x) becomes independent of x also. The

integral of interest can now be re-written in terms of ξ , with µG(·) a standard Gaussian measure,

φ(ξ ) its density, and αh(ξ ) the acceptance rate. So in most of the regions we consider we can choose

x large enough that the integral in question is∫ [
|1+ξ

√
h|s−1

]
αh(ξ )µ

G(dξ ). (6.3)

We therefore need to show that this integral is strictly negative for h small enough, and take care of

the values of y which may not fall into this region.

Using the same shorthand BA as in the proof of the previous Theorem, here we divide X into

B(∞,∞) = B(−∞,−2h−1/2)+B(−2h−1/2,−δh−1/4)+B(−δh−1/4,δh−1/4)+B(δh−1/4,∞),

= BH1 +BH2 +BH3 +BH4 .

It is clear that all of these integrals can be made arbitrarily close to zero by making h small enough.

The goal is to show that B(∞,∞) < 0 for all h ∈ (0,h0). We proceed by finding the order of h of each

BHi .

On H1 = (−∞,−2h−1/2) we have

BH1 ≤
1√
2π

∫
H1

[
|1+ξ

√
h|s−1

]
exp
(
−ξ 2

2

)
dξ
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Use the change of variables γ = 1+ξ
√

h gives

BH1 ≤
∫ −1

−∞

[|γ|s−1]µG(dγ) =
∫

∞

1
(ηs−1)µG(dη)<

∫
∞

1
ηµ

G(dη),

with η ∼ N(−1,h), as s < 1. Using results for truncated Gaussians, we have

∫
∞

1
ηµ

G(dη) =−Φ

(
− 2√

h

)
+
√

hφ

(
2√
h

)
Φ

(
− 2√

h

)
1−Φ

(
2√
h

) ,
=−Φ

c
(

2√
h

)
+
√

hφ

(
2√
h

)
.

The lower bound on Φc from Appendix E gives

BH1 ≤
2+h
4+h

√
h

2π
exp
(
−2

h

)
.

On H2 = (−2h−1/2,−δh−1/4), the function
[
|1+ξ

√
h|s−1

]
is negative, so this integral is trivially

bounded as ≤ 0 for any h. Note that this is the entire set of y’s for which (6.3) is not the correct

integral.

On H3 = (−δh−1/4,δh−1/4) recall that the acceptance probability is

αh(ξ ) = exp

(
−(p+1) log(1+ξ

√
h)+

ξ 3h
2

[
2+ξ

√
h

(1+ξ
√

h)2

])

For any ξ > 0 we have

2+ξ
√

h
(1+ξ

√
h)2

<
2(1+ξ

√
h)

(1+ξ
√

h)2
< 2, so

ξ 3h
2

[
2+ξ

√
h

(1+ξ
√

h)2

]
< ξ

3h,

meaning

αh(ξ )< exp
(
−(p+1) log(1+ξ

√
h)+ξ

3h
)
.

We would like to write this as (1+ξ
√

h)−a for some a> 0. If δh
1
4 < 1 we can use a Taylor expansion

with remainder log(1+x)= x−x2/2+r3/3 for some r∈ (0,x) to get the bound x−x2/2≤ log(1+x)

for 0≤ x < 1. For any b < p+1 then

b log(1+ξ
√

h)> b
(

ξ
√

h− ξ 2h
2

)
>

bξ
√

h
2

> ξ
3h for ξ ∈ (0,δh−

1
4 ), δ <

√
b
2
.

So provided δ is chosen in this way then ∃a > 0 such that αh(ξ )≤ (1+ξ
√

h)−a for ξ ∈ (0,δh−
1
4 )

and α = 1 for ξ ∈ (−δh−
1
4 ,0) (by simply reversing the signs in the above inequalities). Now the
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integral of interest can be written

BH3 ≤
∫

δh−
1
4

0

[
(1+ξ

√
h)(s−a)− (1+ξ

√
h)−a +(1−ξ

√
h)s−1

]
µ

G(dξ ).

So we need to bound∫
(1+ξ

√
h)s−a

µ
G(dξ )−

∫
(1+ξ

√
h)−a

µ
G(dξ )+

∫
(1−ξ

√
h)s

µ
G(dξ )− 1

2
Φ(δh−

1
4 ).

Upper and lower bounds for g(ξ ) = (1+ξ
√

h)−a on (0,δh−
1
4 ) are

gu(ξ ) = mu(a)ξ +1, mu(a) =
h

1
4

δ

[
(1+δh

1
4 )−a−1

]
,

gl(ξ ) = ml(a)ξ +1, ml(a) =−a
√

h.

The first is a straight line through g(δh−
1
4 ) and g(0) = 1, the second is the straight line through

g(0) = 1 with gradient g′(0) (as the function is convex). This gives upper and lower bounds for the

first two integrals as

mu(a− s)Ψh +Φ(δh−
1
4 )− 1

2
, and ml(a)Ψh +Φ(−δh

1
4 )− 1

2
.

where Ψh = φ(δh−
1
4 )− 1/

√
2π < 0. We can construct a similar Taylor Series upper bound for

(1− ξ
√

h)s as a straight line with gradient m∗u = −s
√

h (as this function is concave), meaning the

total bound of interest is

BH3 ≤ (mu(a− s)−ml(a)+m∗u)Ψh,

=

(
(a− s)

√
h+

h
1
4

δ

(
(1+δh

1
4 )s−a−1

))
Ψh,

=CH3 exp
(
− δ 2

2
√

h

)
−CH3 ,

where CH3 = (a− s)
√

h+ h
1
4

δ

(
(1+δh

1
4 )s−a−1

)
. To see that CH3 is positive, we can Taylor expand

(1+δh1/4)s−a, so that

CH3 = (a− s)
√

h+
h

1
4

δ

(
(1+δh

1
4 )s−a−1

)
,

= (a− s)
√

h+
h

1
4

δ

(
−(a− s)δh

1
4 +

(s−a)(s−a−1)
2

δ
2h1/2 +O(h

3
4 )

)
,

=
(s−a)(s−a−1)

2
δh3/4 +O(h)> 0.
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On H4 =(δh−1/4,∞), bounding in the same way as for H1, we set γ = 1+ξ
√

h, meaning γ ∼N(1,h).

Then

BH4 ≤
∫

∞

δh−
1
4
[|γ|s−1]µG(dγ),

which can be re-written

Eϖ [|γ|s−1]Φc(δh−
1
4 )≤ Eϖ [γ]Φc(δh−

1
4 ),

= (1+δh
1
4 )Φc(δh−

1
4 )+
√

hφ(δh−
1
4 ),

where ϖ is now a truncated Gaussian distribution on (1+ δh
1
4 ,∞) with mean 1 and variance h.

Using the upper bound on Φc gives

BH4 ≤ (1+δh
1
4 )

1√
2π

h
1
4

δ
exp
(
− δ 2

2
√

h

)
+

√
h

2π
exp
(
− δ 2

2
√

h

)
,

=

√
h

1
4

2π

(
2h

1
4 +

1
δ

)
exp
(
− δ 2

2
√

h

)
,

=CH4 exp
(
− δ 2

2
√

h

)

Combining inequalities, we can get a very loose upper bound on the integral as

B(−∞,∞) ≤ (CH4 +CH3)exp
(
− δ 2

2
√

h

)
+CH1 exp

(
−2

h

)
−CH3 .

The exponentials are the dominant terms in the first two expressions, as they shrink to zero much

faster than any of the CHi terms (which still depend on h). We have already shown that CH3 is O(h),

and in fact it is more straightforward to see that CH1 and CH4 are both O(h
1
2 ). Because of this,

we can always choose a h small enough that the last term is arbitrarily larger than all others in the

expression, meaning that the integral is strictly negative, as required.

�

6.4.3 Proof of Theorem 6.4

If G−1(x) = ω(|x|2), then the PDRWM method can never produce a geometrically ergodic Markov

chain provided π(y)≤ π(x) for all |Y | ≥ |x| ≥ L, for some L < ∞.

Proof: The goal is to show

limsup
∫

α(x,y)Q(x,dy) = 0.
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The general strategy will be to find some set

Ax,ε := {y ∈ X : α(x,y)≥ ε}.

In words, a set which shows the potential candidate moves which have a non-negligible probability

of acceptance. We will then establish that Q(x,Ax,ε)→ 0 as x→ ∞, for any ε > 0.

First recall that for the algorithm in general the acceptance probability for a proposal y is

α(x,y) =
π(y)|G(y)| 12

π(x)|G(x)| 12
exp
(
− 1

2h
(y− x)2[G(y)−G(x)]

)
.

If G(x) = Θ(|x|−γ), then for large enough x and y the acceptance probability is

α(x,y) = 1∧ π(y)
π(x)

(
|x|
|y|

) γ

2
exp
(
− c

2h
(x− y)2

[
1
|y|γ
− 1
|x|γ

])
.

As each Q(x, ·) is a Gaussian distribution, we consider a ‘typical set’ to be

Tx =
(

x−2
√

hxγ/2,x+2
√

hxγ/2
)
.

For any x, Q(x,Tx) ≈ 0.96. If we can show that i) for large enough x, Ax,ε ⊂ Tx, and ii) the ratio

Q(x,Ax,ε)/Q(x,Tx)→ 0 then we will have established the result.

First we note that for |y| larger than x > L then the assumptions directly imply that π(y)/π(x) ≤ 1,

so we can say

α(x,y)≤
(

x
|y|

) γ

2
exp
(
− c

2h

[
(x− y)2

|y|γ
− (x− y)2

xγ

])
.

Since if y = x then α(x,y) = 1, we will only concern ourselves with |y|> |x|. In effect we are now

considering the set Ax,ε ∪ (−x,x), but since this is strictly larger than Ax,ε it will give us the result.

For y > x, if we write y = x+ z for some z > 0 (and do similar in the other tail), we can see that

α(x,x+ z)≤
(

x
x+ z

) γ

2
exp
(
− cz2

2h(x+ z)γ
+

cz2

2hxγ

)
.

As x→∞, the first term on the right-hand side will tend to something greater than zero for z = O(x)

and decay to zero for the set of z’s that grow at a larger rate than x . Inside the exponential, the

term cz2/2h(x+ z)γ → 0 for any z as x grows. The last term cz2/2hxγ will only increase with x

for the set of z’s that grow at a faster rate than xγ/2. If we denote this set of ‘extreme’ values for y

which would be accepted as Ex,ε = Ax,ε ∩T c
x , then it is clear that Q(x,Ex,ε)→ 0 for any ε > 0, as

Ex,ε ∼ (−∞,−xγ/2+δ )∪ (xγ/2+δ ,∞) for some δ > 0, and this set will be sent deeper and deeper into

the tails of Q(x, ·) as |x| grows.
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So now we can focus on Ax,ε∩Tx, or equivalently consider the set of possible z values in (−2xγ/2,0)∪

(0,2xγ/2). For any of these the dominant term in α(x,x+ z) will be (x/(x+ z))γ/2, so the acceptance

rate will be strictly decreasing in z on this set. Hence we need only examine the boundary points,

y = x+2
√

hxγ/2 and y = x−2
√

hxγ/2, and show that these both decay to zero as x→ ∞.

For y = x+2
√

hxγ/2 the acceptance rate becomes

α(x,y)≤
(

x
x+2

√
hxγ/2

)γ/2

exp

(
− c

2h

[
4
√

hxγ

|x+2
√

hxγ/2|γ
−4
√

h

])
,

≤
(

x
x+2

√
hxγ/2

)γ/2

exp
(

2c√
h

)
,

→ 0.

And for y = x−2
√

hxγ/2, noting that for large x |x−2
√

hxγ/2|>
√

hxγ/2, we have

α(x,y)≤
(

x√
hxγ/2

)γ/2

exp
(

2c√
h

)
exp

(
− c

2h

[
4
√

hxγ

xγ2/2

])
,

≤
(

x√
hxγ/2

)γ/2

exp
(

2c√
h

)
,

→ 0.

�

6.5 Discussion

In this chapter we have analysed the ergodic behaviour of a Metropolis-Hastings method with pro-

posal kernel Q(x, ·) = N(x,hG−1(x)). In one dimension we have characterised the behaviour in

terms of growth conditions on G−1(x) and tail conditions on the target distribution, and some cases

in higher dimensions have also been discussed. The goal was to understand whether generalising an

existing Metropolis–Hastings method by allowing the proposal covariance to change with position

can alter the ergodic properties of the sampler. We can confirm that this is indeed possible, either for

better or worse, depending on the choice of covariance. The key points for practitioners are i) lack

of sufficient care in the design of G−1(x) can have severe consequences (as in Theorem 6.4), and ii)

careful choice of G−1(x) can have much more beneficial ones, particularly in higher dimensions, as

evidenced by the ‘rectangle’ density example.

We feel that such results can also offer insight into similar generalisations of different Metropolis–
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Hastings algorithms (e.g. [43, 130]). For example, it seems intuitive that any method in which

the variance grows at a faster than quadratic rate in the tails is unlikely to produce a geometrically

ergodic chain. There are connections between the PDRWM and some extensions of the Metropolis-

adjusted Langevin algorithm [130], the ergodicity properties of which are discussed in [62]. The key

difference between the schemes is the inclusion of the drift term G−1(x)∇ logπ(x)/2 in the latter. It

is this term which in the main governs the behaviour of the sampler, which is why the behaviour of

the PDRWM is different to this scheme (note that gradients are required for all variants, unlike in

the PDRWM).

We can apply the general results to the specific variants discussed in Section 6.1. Provided sensible

choices of regions/weights, and diminishing adaptation schemes are chosen, the Regional adaptive

Metropolis–Hastings, Locally weighted Metropolis and Kernel-adaptive Metropolis–Hastings sam-

plers should all satisfy G−1(x)→ Σ as |x| → ∞, meaning they will inherit the ergodicity properties

of the standard RWM (the behaviour in the centre of the space, however, will likely be different).

In the State-dependent Metropolis method provided b≤ 2 (with suitable tuning in the equality case)

then the sampler should also behave reasonably. Whether or not a large enough value of b would be

found by a particular adaptation rule in the subexponential case is not entirely clear, and this could

be an interesting direction of further study. The Tempered Langevin diffusion scheme, however,

will fail to produce a geometrically ergodic Markov chain whenever the tails of π(x) are lighter

than that of a Cauchy distribution. In the case of Gaussian tails, for example, G−1(x) = ex2/2I. To

allow reasonable tail exploration, two pragmatic options would be to upper bound G−1(x) manually

or use this scheme in conjunction with another, as there is evidence that the sampler can perform

favourably when exploring the centre of a distribution [108]. None of the specific variants discussed

here are able to mimic the local curvature of π(x) in the tails, so as to enjoy the favourable behaviour

exemplified in Proposition 6.7. This is possible using Hessian information as in [43], though should

also be possible in cases where this isn’t available using appropriate surrogates, at least in some

cases.

It is reasonable to ask whether exploring the tails of a distribution adequately is always necessary.

If the functions a practitioner is interested in estimating are such that
∫

C f (x)π̃(dx) ≈
∫

f (x)π(dx),

where π̃(·) is the target restricted to the centre of the space C, then perhaps this is not so important.

Some results in this direction are given in [15]. If this approach is taken, however, whether or not

a sampler will perform appropriately becomes a considerably more problem-dependent question.
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Geometric ergodicity, whilst by no means guaranteeing sensible estimators in the non-asymptotic

context, does give steps towards this in some generality, through (3.15). As mentioned earlier, it

also appears to have other favourable consequences [63, 77]. As such, we feel it is a property worth

establishing.
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Chapter 7

Stability of Hamiltonian Monte Carlo

This chapter is based on joint work with Michael Betancourt, Simon Byrne and Mark Girolami. It

was also aided by useful discussions with Alexandros Beskos and Gareth Roberts.

The Hamiltonian Monte Carlo algorithm was introduced in Section 4.1.4. There we mentioned that

comparatively little is understood rigorously about the method. In this chapter we deconstruct the

algorithm, and begin to analyse its mixing properties.

We first discuss how the method can be viewed marginally on position space X in Section 7.1. We

then use a simple argument to show ϕ-irreducibility, before giving some conditions under which

the algorithm will and will not be geometrically ergodic. Some of the results presented here are

confined to one dimension, and the positive geometric ergodicity results are specifically for the

one-dimensional class of targets with densities of the form

π(x) ∝ exp
(
−β
−1|x|β

)
,

for some β > 0. By varying the choice of β this class encompasses a wide variety of tail behaviours.

The special cases β = 1 and β = 2 correspond to the Laplace and Gaussian densities respectively,

while β ≥ 1 is needed for log-concavity. We refer to this class as the one-dimensional exponential

family. Figure 7.1 shows contour plots of the resulting joint densities of (x, p) for different choices of

β , with p∼ N(0,1). We discuss how to generalise these results in Section 7.5. Analysis is restricted

here to the case where the Hamiltonian is separable, meaning the momentum variance G(x) = M is
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independent of the current position x. Throughout we set M = I, for ease of exposition but without

loss of generality.
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Figure 7.1: Contour plots of the joint densities e−H(x,p) for Hamiltonians of the form H(x, p) =

β−1|x|β + p2/2. Clockwise from the top left the parameter values are β = 0.4,1,4 and 2 respectively.

Some additional notation is used in this chapter. Let νxt ,pt (ds) = ζ−1
xt ,pt1[0,ζxt ,pt ]

ds be the Uniform

distribution between 0 and ζxt ,pt . We write U(xt) =− logπ(xt) as the potential energy, and K(pt) =
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pT
t M−1 pt/2 as the kinetic energy, meaning the Hamiltonian takes the form.

H(xt , pt) =U(xt)+K(pt).

We write sgn(x) := x/|x| (for x ∈ R), and occasionally use the Newtonian notation ẋt := dxt/dt for

time derivatives.

7.1 Constructing the marginal chain

Recall that in Hamiltonian Monte Carlo an approximation to the measure-preserving Hamiltonian

flow is constructed using the leapfrog integrator. This approximate flow for some number of leapfrog

steps L and integration step-size ε is used to generate a Metropolis–Hastings proposal. If the current

point is x = xt then the proposal is denoted xt+Lε = ηx
Lε
(xt , pt), where pt ∼ N(0,M) is an auxiliary

momentum variable. This proposal is then accepted with probability α = 1∧ eH(xt ,pt )−H(ηLε (xt ,pt )),

where H : X×X→ [0,∞) is the Hamitonian function. If we take the current point as x = xt and set

pt ∼ N(0, I), then a single leapfrog iteration is given by

pt+ε/2 = pt + ε∇ logπ(xt)/2,

xt+ε = xt + ε pt+ε/2,

pt+ε = pt+ε/2 + ε∇ logπ(xt+ε)/2.

This transition can be marginalised, and instead written as

xt+ε = xt + ε
2
∇ logπ(xt)/2+ ε pt (7.1)

pt+ε = pt + ε∇ logπ(xt)/2+ ε∇ logπ(xt+ε)/2. (7.2)

From (7.1), it is clear that the proposal kernel for HMC using a single leap-frog step is in fact

equivalent to that used in MALA (as has previously been noted, e.g. [43]). To see that the acceptance

rates are also equal, denote c(x) := x+ε2∇ logπ(x)/2 and y = c(x)+ε pt , so that in the MALA case

we have

log
q(x|y)
q(y|x)

=
1

2ε2

(
|y− c(x)|2−|x− c(y)|2

)
,

=
1

2ε2

(
|ε pt |2−|ε (ε∇ logπ(x)/2+ ε∇ logπ(c(x)+ ε pt)/2+ pt) |2

)
=

1
2
(
|pt |2−|pt+ε |2

)
,
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meaning that
π(y)q(x|y)
π(x)q(x|y)

= exp(H(x, p)−H(ηε(x, p)) ,

where the left-hand side denotes the MALA acceptance rate and the right-hand side that used in

HMC.

We can employ the same marginalisation after more than one leapfrog step. After two steps the

marginal transition is

xt+2ε = xt + ε
2
∇ logπ(xt)+ ε

2
∇ logπ(xt+ε)+2ε pt ,

pt+2ε = pt + ε∇ logπ(xt)/2+ ε∇ logπ(xt+ε)+ ε∇ logπ(xt+2ε)/2.

From this we can see one reason why HMC is challenging to analyse. After a single leapfrog step the

HMC proposal reduces to the current point xt plus a deterministic step ε2∇ logπ(xt)/2, combined

with some additive Gaussian noise ε pt . Hence the proposal Q(x, ·) = N(x+ ε2∇ logπ(x)/2,ε2I).

After another leapfrog step, however, the proposal now involves the term ∇ logπ(xt+ε)=∇ logπ(xt +

ε2∇ logπ(xt)/2+ ε pt). If the map ∇ logπ : X→ X is nonlinear, then this term will be a nonlinear

transformation of the Gaussian pt , so will no longer itself be Gaussian. So whenever more than one

leapfrog step is taken, the HMC transition kernel often becomes intractable.

After L leapfrog steps, the marginal transitions are

xt+Lε = xt +Lε
2
∇ logπ(xt)/2+ ε

2
L−1

∑
i=1

(L− i)∇ logπ(xt+iε)+Lε pt , (7.3)

pt+Lε = pt + ε∇ logπ(xt)/2+ ε

L−1

∑
i=1

∇ logπ(xt+iε)+ ε∇ logπ(xt+Lε)/2. (7.4)

This sheds some light on the behaviour of the method, as the marginal transition (7.3) is essentially

the current point combined with a sequence of gradient steps. However, the non-Gaussianity of the

proposal noise still persists whenever the gradient map is nonlinear.

The acceptance rate can also be thought of marginally. Because the leapfrog method is a symplectic

integrator, it is volume-preserving (as shown in Section 4.1.4). So the density q(xt+Lε |xt) is the

same as that of the momentum pt responsible for generating xt+Lε , which is ∝ e−p2
t /2. Owing to the

symmetry of the Gaussian distribution about zero and the reversibility of the flow, it is also true that

q(xt |xt+Lε) ∝ e−p2
t+Lε . So the complete method can simply be thought of as a Metropolis–Hastings

method on the space X with proposal (7.3).
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Despite the non-Gaussianity, from (7.3) and (7.4) we can immediately guess the ergodic properties

of the method, following the behaviour of MALA. If |∇ logπ(x)| → 0 as |x| → ∞, then (7.3) will

reduce to xt +Lε pt in the tails, i.e. a Random Walk Metropolis proposal. Since this condition on the

gradient implies π(x) will not be log-concave in the tails, then we can guess that the method won’t

produce a geometrically ergodic chain here. Similarly in the case |∇ logπ(x)|/|x| → ∞ as |x| → ∞,

it is likely that proposals will ‘explode’ in the tails, and almost all will be rejected, again leading

to a chain which will not be geometrically ergodic. In between these two cases (when the tails of

π(x) are in between Exponential and Gaussian) it seems reasonable to assume that the sampler will

behave sensibly.

Note, however, that more can be said from (7.3). The discussion so far has assumed that the number

of leapfrog steps L does not depend on the current position xt . In the heavy-tailed case, however,

where the gradient becomes arbitrarily small as |xt | grows, then increasing the number of leapfrog

steps in the proposal could result in a sampler that retains a strong drift towards the centre of the

space, and is therefore much more likely to produce a geometrically ergodic Markov chain. In

practice naively setting L = L(xt , pt) may mean that the map ηLε is no longer reversible, so care

would need to be taken in any such implementation to ensure that the resulting Markov chain targets

the correct distribution.

These issues are explored in more detail in the next sections, where we discuss two different imple-

mentations of Hamiltonian Monte Carlo:

1. Static HMC, in which the number of leapfrog steps L (and hence the integration time Lε) is

fixed

2. Dynamic HMC, in which L = L(xt , pt), so that the integration time changes with position.

In the dynamic case we confine our analysis to an idealised version of the method, but also discuss

practical implementations which are related to this.

7.2 Stability with fixed integration times

In the next two subsections we discuss irreducibility and ergodicity for the static version of the

method.
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7.2.1 ϕ-irreducibility

We first present a simple example that shows how the proposal transition given by (7.3) can produce

a method which is not π-irreducible, and hence will not be ergodic.

Example 7.1. Take π(x)∝ e−x2/2, meaning ∇ logπ(x) =−x, and set L= 2. Then the HMC proposal

becomes

xt+2ε = xt − ε
2xt − ε

2(xt − ε
2xt + ε pt)+2ε pt ,

= xt − ε
2xt − ε

2xt + ε
4xt − ε

3 pt +2ε pt ,

= (1−2ε
2 + ε

4)xt +(2ε− ε
3)pt .

Setting ε =
√

2 means 2ε− ε3 = 0, so that

xt+2ε = (1−4+4)xt = xt .

With this transition, the chain does not move, the proposal kernel is simply Q(x, ·) = δx(·), and hence

{Xt}t≥0 will not be π-irreducible.

Although it is in some sense trivial, the above example highlights that establishing π-irreducibility

is not so straightforward here.

The example occurs in part because Hamilton flow here is periodic. The flow travels along the con-

tours of equal density, so provided these contours are disjoint unions of closed curves, then the flow

will travel along one such curve and eventually come back on itself. In the simple example where

π(x) is a Gaussian, meaning H(x, p) = x2/2+ p2/2, then the contours will be circles. Since the flow

induced by this Hamiltonian is periodic, we can compute the period length ζxt ,pt as the minimum

ζxt ,pt ∈ R such that ϕζxt ,pt
(xt , pt) = (xt , pt). This can be found explicitly here by calculating the

length of the contour Cxt ,pt = {(x′, p′) ∈ X×X : H(x′, p′) = H(xt , pt)} and the speed of the flow ϕt .

The former is simply the circumference of a circle of radius
√

x2 + p2 =
√

2H(x, p). The latter is

simply the Euclidean norm of Hamilton’s equations, in this case

|J∇H(x, p)|=
√

x2 + p2 =
√

2H(x, p), where J =

 0 1

−1 0

 .
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Using the relation time = distance/speed, we can see that the period length in this case is

ζxt ,pt =
2π
√

2H(x, p)√
2H(x, p)

= 2π,

which is independent of the starting position (xt , pt). The leapfrog scheme shares this periodic

behaviour [65], which is why in the above example we are able to construct a chain which simply

remains at the current point. More generally, any integration time T = Lε which is a factor of the

period length will result in a scheme which is not π-irreducible here. Outside of the Gaussian case,

the period length will depend on the current position (xt , pt), and hence will either slow down or

speed up as xt grows. In the next section we show that in the latter case numerical schemes will

typically become unstable.

Returning to the general problem, in [19] the authors prove π-irreducibility of the HMC transition

under the assumption that π(x) ≥ c > 0 for any x ∈ X, or equivalently that the potential energy

U(x) =− logπ(x) is bounded above, so U(x)≤M < ∞. Although the proof is impressive, and holds

for much more general schemes than the simple leapfrog integrator discussed here, this condition is

unfortunately too restrictive for our needs. Indeed, any form of U(x) which is the negative logarithm

of a probability density will necessarily grow indefinitely as |x| → ∞, so the condition will not hold

here unless the state space X is compact.

Fortunately, using equation (7.3), we can actually construct a simple proof of µL-irreducibility under

certain assumptions on π(x), which is sufficient for our needs.

Theorem 7.2. In the case X = Rn, if ∇ logπ(x) ∈ C(Rn), the set of continuous functions on Rn,

π(x) is bounded away from 0 and ∞ on compact sets, and for every 1≤ i≤ n

limsup
|x|→∞

∣∣∣∣|x|−d ∂

∂xi
logπ(x)

∣∣∣∣=C ≥ 0

as |x|→∞, for some d ∈ (0,1), then the Hamiltonian Monte Carlo method produces a µL-irreducible

Markov chain, and all compact sets are small.

Proof. We give the proof in the case X = R. The extension to higher dimensions is simply applying

the same argument to each coordinate separately. The proof is in three stages: i) we establish that

any open set O ⊂ R satisfies P(x,O) > 0 from any x ∈ X (note that the assumptions on π(·) imply

its equivalence to Lebesgue measure), ii) we extend this to any set A for which µL(A)> 0, showing

µL-irreducibility, and iii) we show that this implies all compact sets are small.
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For i), note that from (7.3) after L leapfrog steps the HMC proposal will be

xt+Lε = xt +Lε
2
∇ logπ(xt)/2+ ε

2
L−1

∑
i=1

(L− i)∇ logπ(xt+iε)+Lε pt .

Fix xt and consider xt+Lε = xLε(pt) as a function of pt . The growth assumptions made for ∇ logπ

imply that Lε pt is the leading order term in xt+Lε(pt), meaning xt+Lε(pt)→ ∞ as pt → ∞ and

xt+Lε(pt)→−∞ as pt →−∞. Since Lε p0 and each ∇ logπ(xt+iε) are continuous functions then so

is their sum, so by the intermediate value theorem xt+Lε : R→ R, i.e. the range is the entirety of R.

Continuity for a function f implies that for any open O⊂ R, the preimage

f−1(O) = {y ∈ R : f (y) ∈ O}

is also open. Using this fact, and given that P[pt ∈ f−1(O)]> 0 here, it is straightforward to see that

Q(x,O) > 0 for any open O ∈ R. The conditions on π(x) ensure that there is a positive probability

of accepting any proposed move, as in Theorem 2.2 in [110], meaning P(x,O)> 0 as required.

Lemma 2 in [19] shows that i)⇒ ii) here. Part iii) follows from Theorem 4.6. �

For the one-dimensional exponential family of distributions, the conditions of Theorem 7.2 hold for

β < 2. The result can be generalised without too much work, but as we shall see below, this is

sufficient for all of the geometric ergodicity results of the next section to be valid. Note that in the

cases β = 1 and β = 2 the proposal kernel in fact reduces to a Gaussian, as the function ∇ logπ(x)

is either linear or constant, meaning µL-irreducibility is a trivial consequence here.

7.2.2 Geometric ergodicity

As HMC is both π-invariant and aperiodic, then under the conditions of Theorem 7.2 the limiting

distribution of the resulting Markov chain will be π(·). We now discuss when convergence to this

limit will occur at a geometric rate in m, the number of iterations of the chain. We begin with a

negative result in the case where the density π(x) has heavy tails.

Proposition 7.3. For a fixed number of steps L, step-size ε and mass matrix M (we take M = I here

for brevity), if |∇ logπ(x)|<C for every x ∈X, then the Hamiltonian Monte Carlo method can only

produce a geometrically ergodic Markov chain if Eπ [es|x|]< ∞ for some s > 0.

Proof: Recall from Section 4.2 that if for any ξ > 0 then we can choose a δ > 0 (independent of
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x) such that Q(x,Bδ (x)) > 1− ξ , then a Metropolis–Hastings algorithm with proposal Q can only

produce a geometrically ergodic chain if Eπ [es|x|]< ∞ for some s > 0. We show that this is the case

here.

From (7.3), for any xt ∈ X we have that

|xt+Lε − xt |= |Lε
2
∇ logπ(xt)/2+ ε

2
L−1

∑
i=1

(L− i)∇ logπ(xt+iε)+Lε pt |,

≤ Lε
2|∇ logπ(xt)|/2+ ε

2
L−1

∑
i=1

(L− i)|∇ logπ(xt+iε)|+Lε|pt |,

≤ Lε
2C/2+ ε

2L(L−1)C/2+Lε|pt |.

Since |pt | is the norm of a Gaussian random variable whose variance does not depend on xt , then

Chebyshev’s inequality gives the result. �

In fact, this negative result can be extended to the idealised Hamiltonian Monte Carlo algorithm,

where the true flow can be simulated exactly, as the following shows.

Proposition 7.4. For a fixed integration time T , if |∇ logπ(x)|<C for every x∈X, then the idealised

Hamiltonian Monte Carlo method can produce a geometrically ergodic Markov chain only in the

case where Eπ [es|x|]< ∞ for some s > 0.

Proof: We can proceed as in the previous Proposition. Here, using Hamilton’s equations, we have

xt+T − xt =
∫ T

0
pt+sds =

∫ T

0

[
pt +

∫ s

0
∇ logπ(xt+u)du

]
ds. (7.5)

Taking the norm and using the upper bound gives

|xt+T − xt | ≤ T |pt |+
∫ T

0

∫ s

0
|∇ logπ(xt+u)|duds,

≤ T |pt |+CT 2/2,

and again Chebyshev’s inequality gives the result. �

The above results apply to general target distributions of any dimension. However, from this point

forward we restrict our attention to the one-dimensional exponential family introduced at the be-

ginning of the chapter. We turn first to the special cases β = 1 and β = 2, corresponding to the
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Laplace and Gaussian distributions. As a comment, we note that Hamilton’s equations can in fact be

integrated exactly in these scenarios, so the idealised algorithm can actually be employed. However,

our interest is in methods which can be applied to a much broader class of targets, so we consider

the leap-frog scheme here.

Theorem 7.5. For the one-dimensional exponential family class of targets, the Hamiltonian Monte

Carlo method produces a geometrically ergodic Markov chain in the case β = 1 (Laplace dis-

tribution), and provided a suitably small step-size ε is chosen, also in the case β = 2 (Gaussian

distribution).

In the Laplacian case, leapfrog dynamics actually exactly solve Hamilton’s equations provided that

the x = 0 boundary is not crossed. So in this case the method is simply a random walk with inwards

drift, and the proposal is Gaussian, so it is straightforward to show that this is geometrically ergodic

using the Lyapunov function V (x) = es|x| for some s > 0. In the Gaussian case, the proposal is still

Gaussian but does not exactly replicate Hamiltonian flow, so the acceptance probability must also

be considered. However, in this case it can be shown that the algorithm still reduces to a version

of the Metropolis-adjusted Langevin algorithm, and so will produce a geometrically ergodic chain

provided care is taken with the tuning parameters.

In the case where |∇ logπ(x)|/|x| →∞ as |x| →∞, then the Metropolis-adjusted Langevin algorithm

fails to produce a geometrically ergodic chain, as proposals ‘explode’ in the tails, and as a result

very few are accepted (see Section 4.2.2 for intuition and [109] for a proof). Intuitively this should

also be the case in Hamiltonian Monte Carlo. The next result confirms this intuition.

Theorem 7.6. For the one-dimensional exponential family class of targets, the Hamiltonian Monte

Carlo method does not produce a geometrically ergodic Markov chain in the case β > 2.

The basic intuition for the result is to show that provided |xt | is sufficiently large and |pt | small

relative to it, then at the ith leapfrog step |xt+iε |> 2|xt+(i−i)ε | and |pt+iε |> 2|pt+(i−1)ε |, meaning the

probability of accepting a proposed move (xt+Lε , pt+Lε) can be made arbitrarily small by choosing

|xt | large enough. To conclude the proof from here we simply note that as |xt | grows then the

probability that |pt | will be small relative to it can be made arbitrarily large, as pt is simply a

Gaussian with fixed covariance and zero mean.
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This result is not a property of the exact flow itself, which is in fact extremely efficient, but rather the

numerical integrator. In this instance the period length gets smaller as x grows, meaning a smaller

integration time is needed to reach the centre of the space. In this instance the leapfrog numerical

scheme becomes unstable, resulting in a diverging numerical flow. The problem of numerically

solving stiff systems such as this one is well-documented (e.g. [119])

The final result of this section concerns the remaining possible values for the parameter β in the

class of targets under consideration.

Theorem 7.7. For the one-dimensional exponential family class of targets, the Hamiltonian Monte

Carlo method produces a geometrically ergodic Markov chain in the case 1 < β < 2.

In this case we use several concepts that were introduced in [109] to analyse the Metropolis-adjusted

Langevin algorithm. If we write the HMC proposal here in the form xt+Lε = ch(xt , pt)+Lε pt , and

the corresponding MALA proposal in the form y = c(xt)+ ε pt , then we show that 0 < ch(xt , pt) <

c(xt) as xt → ∞ for almost all choices of pt . This implies that typical HMC proposals will be closer

to the centre of the space than those under a MALA scheme, and since the latter is geometrically

ergodic then we can show from this that the former will be too. We also rely on the concept of

inwards convergence, as in [109]. This restriction on the chain implies that as |xt |→∞, all proposals

that are closer to the centre of X will be accepted, whereas all that have a larger norm than |xt | could

be rejected. We show in the proof that the HMC kernel satisfies this property here.

7.3 Changing integration times

The scheme we consider in this section is both dynamic and idealised. It is dynamic as the integration

time changes based on the current position. It is idealised because we make two unreasonable

assumptions. We first assume that we can solve Hamilton’s equations exactly for the model in

question. This can be relaxed with some additional work (in terms of choosing the correct acceptance

rate for proposals, which will no longer be reversible), but is assumed for ease of exposition. Second

we assume i) that any contour Cxt ,pt := {(x, p) ∈ X×X : H(x, p) = H(xt , pt)} is a compact, disjoint

union of simply connected components, that for a large enough xt the contours will consist of a

single connected component, and that the flow is periodic from any fixed starting point, and ii) that

the period length ζxt ,pt (the time taken to traverse the specific component of Cxt ,pt in which (xt , pt)
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lies) is known. Part i) is likely to be true for many statistical models of interest, but ii) will typically

not be known outside of the case where π(·) is Gaussian (where ζxt ,pt = ζ , as shown in a previous

section). We discuss practical approaches to approximating ζxt ,pt in Section 7.5.

At iteration i (with xt = xi−1), the dynamic Hamiltonian Monte Carlo implementation we consider

consists of re-sampling pt ∼ N(0, I), and then setting xi = ϕx
τ (xt , pt), where τ ∼ U [0,ζxt ,pt ]. In

words, we flow along the Hamiltonian for τ units of time, where τ is a uniform random variable

with maximum value the period length ζxt ,pt (note that ϕζxt ,pt
(xt , pt) = (xt , pt) here).

Firstly, note that µL-irreducibility is more straightforward to see here. To reach any set A ∈B with

µL(A)> 0, we first consider the single contour Cxt ,pt , and specifically the component of this contour

that is connected to (xt , pt). Let Cxt be the projection of this component onto X. Then any nonempty

set A′ ⊂ Cxt has positive probability of occuring, as the next point is chosen from a density with

support all of Cxt . As the contours are eventually composed of single components, and cover the

entire space, then for any A, the probability of choosing a contour for which this argument can be

applied is greater than zero. Figure 7.2 offers more intuition.

To establish geometric ergodicity, we rely on conservation of the Hamiltonian, i.e.∫
U(xt+u, pt+u)νxt ,pt (du)+

∫
K(xt+u, pt+u)νxt ,pt (du) =

∫
H(xt+u, pt+u)νxt ,pt (du) = H(xt , pt).

(7.6)

Averaging over initial momentum choices for the case K(pt) = p2
t /2 gives∫

H(xt , pt)µ
G(d pt) =U(xt)+1/2.

We first introduce a result from the Physics literature which relates K and U . Using this we can

relate the left hand side of (7.6) to

PU(xt) =
∫

U(y)P(xt ,dy),

where P is the transition kernel under consideration. Since the right-hand side of (7.6) relates to

the current value of U(xt), then our goal will be to construct a suitable Lyapunov function from the

potential energy that will help us establish the necessary drift condition.

Theorem 7.8. (Virial Theorem). Under Hamiltonian flow (xt+s, pt+s) = ϕs(xt , pt) we have∫
xt+s

dU
dx

(xt+s)νxt ,pt (ds) = 2
∫

K(pt+s)νxt ,pt (ds), (7.7)

144



p

x

(xt , pt)

Cxt ,pt

Cxt

Figure 7.2: The contour Cxt ,pt = {(y,z) ∈ R2 : y2 + z2 = 9} for the Hamiltonian flow with Gaussian

target π(x) ∝ e−x2/2, with current point (xt , pt) lying on the disc of radius 3, and its projection onto

the set Cxt = [−3,3].

where νxt ,pt (ds) = ζ−1
xt ,pt ds denotes the Uniform distribution on [0,ζxt ,pt ].

Proof: Define the virial function Gt = xt pt . From the fundamental theorem of Calculus we have∫
Ġt+sνxt ,pt (ds) = ζ

−1
xt ,pt

∫
ζxt ,pt

0
Ġt+sds =

Gt+ζxt ,pt
−Gt

ζxt ,pt

= 0.

In this case

Ġt = xt ṗt + pt ẋt =−xt
dU
dx

(xt)+ pt
dK
d p

(pt),

meaning ∫
xt+s

dU
dx

(xt+s)νxt ,pt (ds) =
∫

pt+s
dK
d p

(pt+s)νxt ,pt (ds).

Now simply note that

pt
dK
d p

(pt) = p2
t = 2K(pt),

which, after substituting into the above equation, completes the proof. �
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Corollary 7.9. For the one-dimensional exponential family of targets, and any (xt , pt) ∈ X×X, we

have

2
∫

K(pt+s)νxt ,pt (ds) = β

∫
U(xt+s)νxt ,pt (ds). (7.8)

Proof: Note that for this class of target distributions U(x) = β−1|x|β , so we have the relation

xt
dU
dx

(xt) = xtsgn(xt)|xt |β−1 = |xt |β = βU(xt). (7.9)

Substituting into (7.7) gives the result. �

With these preliminaries, we can now state and prove the main result of this section.

Theorem 7.10. For the one-dimensional exponential family class of targets, the dynamic Hamilto-

nian Monte Carlo method produces a geometrically ergodic Markov chain for any value of β > 0.

Proof: Choose the Lyapunov function V (x) =U(x)+1. Then

PV (xt) =
∫ ∫

U(xt+s)νxt ,pt (ds)µG(d pt)+1. (7.10)

Note that by conservation of the Hamiltonian, we have∫ ∫
[U(xt+s)+K(pt+s)]νxt ,pt (ds)µG(d pt) =

∫
H(xt , pt)µ

G(d pt) =U(xt)+1/2, (7.11)

where we have used that
∫

K(pt)µ
G(d pt) = 1/2. Using (7.8) and (7.10), the left-hand side of (7.11)

can be written

PV (xt)−1+
∫ ∫

K(pt+s)νxt ,pt (ds)µG(d pt) = PV (xt)−1+β (PV (xt)−1)/2,

= (1+β/2)PV (xt)−1−β/2.

Substituting back into (7.11), simplifying, and dividing through by (1+β/2) gives

PV (xt) =
1

(1+β/2)
V (xt)+

1+β

2+β
.

To complete the proof note that we can choose an x ∈ X such that for all |y| ≥ |x| we have

β/3
1+β/2

V (y)>
1+β

2+β
,

meaning

PV (xt)≤
(

1+β/3
1+β/2

)
V (xt)+

(
1+β

2+β

)
1C(xt),

with C = (−x,x). �
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7.4 Proofs

The longer proofs of results stated in previous sections are given here, to aid readability of the main

text. In each case we re-state the result and then provide a full proof.

7.4.1 Proof of Theorem 7.5

The Hamiltonian Monte Carlo method produces a geometrically ergodic Markov chain in the case

β = 1 (Laplace distribution), and provided a suitably small step-size ε is chosen, also in the case

β = 2 (Gaussian distribution).

Proof: In the β = 1 case we note that setting T = Lε , then the numerical map ηLε(x, p) and the

exact flow ϕT (x, p) are identical provided the flow does not cross the point x = 0. Noting that

∇ logπ(x) =−sgn(x) here, then in the marginal case, for any fixed pt there is a large enough xt that,

using (7.3) and (7.5) we have

ϕ
x
T (xt , pt) = xt +T pt −

∫ T

0

∫ s

0
duds = xt +T pt −T 2/2.

Setting T = Lε gives

ϕ
x
T (xt , pt) = η

x
Lε(xt , pt).

Because of this, it is straightforward to see that here the Hamiltonian H(x, p) = |x|+ p2/2+ const.

is preserved exactly by the numerical flow induced from leapfrog dynamics, meaning that the accep-

tance rate is 1 here when the above equation is satisfied. So using the Lyapunov function V (x) = es|x|

for some s > 0 gives

limsup
x→∞

PV (x)
V (x)

= limsup
x→∞

∫
es(|x−(Lε)2/2+p|−|x|)

µ
G(d p),

≤ e−s(Lε)2/2 limsup
x→∞

∫
es|p|

µ
G(d p),

where µG(·) is a standard Gaussian measure. Using properties of truncated Gaussian distributions

(see Appendix D) gives for large enough x and small enough s > 0

PV (x)
V (x)

≤ 2es(s−1)(Lε)2/2
Φ(sLε)< 1,

as required. A similar argument can be made as x→−∞.
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In the Gaussian case we have ∇ logπ(x) = −x. In the paper [6], the authors note that here the

transition kernel can actually be written

xt+Lε = cos(θL)xt +
sin(θL)√
1− ε2/4

pt , (7.12)

pt+Lε =−
√

1− ε2/4sin(θL)xt + cos(θL)pt ,

where θ = arccos(1− ε2/2). Note that from the first equation

−p2
t /2 =− 1− ε2/4

2sin2(θL)
(xt+Lε − cos(θL)xt)

2 = logq(xt |xt+Lε).

Similarly, owing to the reversibility of the leapfrog flow, we have

logq(xt+Lε |xt) =−p2
t+Lε/2,

meaning

q(xt |xt+Lε)/q(xt+Lε |xt) = exp
(
−1

2
[
p2

t+Lε − p2
t
])

.

This explicitly shows that the Hamiltonian Monte Carlo method can simply be thought of as a regular

Metropolis–Hastings method with proposal (7.12) here. In this case it can actually be seen as a

MALA proposal, which by Theorem 4.1 in [109] is geometrically ergodic provided |cos(θL)|< 1.

�

7.4.2 Proof of Theorem 7.6

The Hamiltonian Monte Carlo method does not produce a geometrically ergodic Markov chain in

the case β > 2.

Proof: We first show that the leapfrog integrator pushes proposals further out into the tails at an

increasing rate as |xt | grows, and then that this implies that the rejection probability r(xt)→ 1 as

xt → ∞.

Suppose that

ε pt/xt < 3/2 and ε
2|xt |β−2 > 9.

Then after a single leapfrog step, (xt+ε , pt+ε) = ηε(xt , pt), we have that

(a) xt+ε <−2xt ,

(b) ε pt+ε/xt+ε < 3/2,

(c) |pt+ε |> 2|pt |.
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To see (a), note that the position update here is

xt+ε = xt

(
1− ε

2|xt |β−2/2+ ε pt/xt

)
≤ xt (1−9/2+3/2) =−2xt

Note that this also implies that −xt/xt+ε < 1/2. As the integrator is reversible, we can also write

xt = xt+ε − ε
2xt+ε |xt+ε |β−2/2− ε pt+ε .

Rearranging and dividing by xt+ε gives

ε pt+ε/xt+ε = 1− ε
2|xt+ε |β−2/2− xt/xt+ε < 3/2,

which establishes (b).

To see (c), note from the marginal momentum update (7.2) that

pt+ε/2

xt
=

pt

xt
− ε

2
|xt |β−2 <

pt

xt
, (7.13)

and since

xt+ε − xt = ε (pt + ε∇ logπ(xt)/2) = ε pt+ε/2,

then rearranging gives
pt+ε/2

xt
=

1
ε

(
xt+ε

xt
−1
)
<−3/ε, (7.14)

meaning |pt+ε/xt |> 3/ε . Combining with (7.13) and using the condition ε pt/xt < 3/2 gives∣∣∣∣ pt

xt

∣∣∣∣< ∣∣∣∣ pt+ε/2

xt

∣∣∣∣ .
Finally, from the final leapfrog step for momentum pt+ε we have that

pt+ε

xt
=

pt+ε/2

xt
− ε

2
xt+ε

xt
|xt+ε |β−2

=
pt+ε/2

xt
− ε

2

(
1+ ε

pt+ε/2

xt

)
|xt+ε |β−2

=
pt+ε/2

xt
− ε

2

(
1+

ε

2
pt+ε/2

xt

)
|xt+ε |β−2− ε2

4
pt+ε/2

xt
|xt+ε |β−2.

Using (7.14) we have that

−ε2

4
pt+ε/2

xt
|xt+ε |β−2− ε

2
|xt+ε |β−2 >

ε

4
|xt+ε |β−2 > 0,

meaning
pt+ε

xt
>

pt+ε/2

xt

(
1− ε2

2
|xt+ε |β−2

)
>−2

pt+ε/2

xt
,
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which establishes (c).

By induction, we can see further that under these conditions, after L leapfrog steps,

|xt+Lε |> 2L|xt | and |pt+Lε |> 2L|pt |.

In other words, for any such (xt , pt), the resulting leapfrog trajectories will rapidly get larger in

magnitude, diverging from the true oscillating trajectories.

We now show that this exploding in magnitude implies r(xt)→ 1 as xt → ∞. Writing zt = (xt , pt),

recall that the probability of accepting a proposed move is

α(zt ,zt+Lε) = 1∧ exp
(

β
−1|xt |β −β

−1|xt+Lε |β + |pt |2/2−|pt+Lε |2/2
)
.

If ε pt/xt < 3/2 then provided ε2|xt |β−2 > 9 we have

α(zt ,zt+Lε)< exp
(

β
−1(1−2L)|xt |β +(1−2L)|pt |2/2

)
≤ exp

(
−β
−1|xt |β −|pt |2/2

)
,

≤ exp
(
−β
−1|xt |β

)
where we have used the fact that L≥ 1. This quantity clearly tends to zero as xt→∞. So to complete

the proof we simply note that

P[ε pt/xt < 3/2] = P[pt < 3xt/2ε] = Φ(3xt/2ε)→ 1

as xt → ∞, where Φ is the standard Gaussian cumulative distribution function. �

7.4.3 Proof of Theorem 7.7

The Hamiltonian Monte Carlo method produces a geometrically ergodic Markov chain in the case

1 < β < 2.

Proof: We first recall the proof of geometric ergodicity of MALA in this scenario, and then extend

this proof to the HMC case.

MALA Proof.

Notation: Define A(x) = {y ∈ X : α(x,y) = 1}, R(x) = A(x)c, I(x) = {y ∈ X : |y| ≤ |x|}, and c(x) =

x+h∇ logπ(x)/2 as the mean next candidate step. We say A(x) ‘converges inwards’ if

lim
|x|→∞

∫
A(x)4I(x)

Q(x,dy) = 0,
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where A(x)4I(x) = (A(x)∩ I(x)c)∪ (R(x)∩ I(x)) is the symmetric difference of A(x) and I(x). this

implies that in the limit all inwards proposals are accepted and all outwards proposals might be

rejected.

Setting V (x) = es|x| for some s > 0, we have

PV (x)
V (x)

=
∫

A(x)
es(|y|−|x|)Q(x,dy)+

∫
R(x)

es(|y|−|x|)
α(x,y)Q(x,dy)+

∫
R(x)

(1−α(x,y))Q(x,dy),

=
∫
R

es(|y|−|x|)Q(x,dy)+
∫

R(x)

[
1− es(|y|−|x|)

]
(1−α(x,y))Q(x,dy),

≤
∫
R

es(|y|−|x|)Q(x,dy)+
∫

R(x)∩I(x)
Q(x,dy).

The first term asymptotes to es(|c(x)|−|x|)+s2/2h which is certainly less than one whenever |c(x)| −

|x|→−∞ as |x|→∞. The second term disappears under the assumption that A(x) converges inwards.

It is shown in [109] that both of these conditions hold for the class of target distributions under

consideration here. �

Extension to HMC.

Extra notation: Define ch(xt , pt) := xt + Lε2∇ logπ(xt)/2+ ε2
∑

L−1
i=0 (L− i)∇ logπ(xt+iε), so that

xt+Lε = ch(xt , pt)+Lε pt . Also set ψ(xt , pt) := Lε2∇ logπ(xt)/2+ ε2
∑

L−1
i=1 (L− i)∇ logπ(xt+iε) for

the increment term. We also define the set B(x) := (−|x|δ , |x|δ ) for some 1 > δ > max(β −1,1/2),

and let µG(·) denote a standard Gaussian measure.

We extend the MALA result in 4 steps. Starting from the expression

PV (x)
V (x)

≤
∫
R

es(|y|−|x|)Q(x,dy)+
∫

R(x)∩I(x)
Q(x,dy), (7.15)

we do the following:

1. Establish that for pt ∈ B(xt), and large enough xt we have 0≤ ch(xt , pt)≤ c(xt)≤ xt ,

2. Use this to bound the first integral in (7.15) with that for MALA for pt ∈ B(xt)

3. Show that the integral is negligible outside this region

4. Establish inwards convergence, meaning the last integral in (7.15) is also negligible.

1. Noting that ∇ logπ(x) =−sgn(xt)|xt |β−1, and taking xt � 0, we have

MALA: x′ = c(xt)+hp.

HMC: xt+Lε = ch(xt , pt)+Lε pt .
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Setting h = ε
√

L gives

ch(xt , pt) = c(xt)− ε
2

L−1

∑
i=1

(L− i)sgn(xt+iε)|xt+iε |β−1.

To establish that 0≤ ch(xt , pt)≤ c(xt) for pt ∈ B(xt), it is therefore sufficient to show the following

for i ∈ {1, ...,L−1}

(i). sgn(xt+iε) = 1, implying or equivalently each xt−iε > 0

(ii). ε2
∑

L−1
i=1 (L− i)sgn(xt+iε)|xt+iε |β−1 < c(xt).

We show both of these by establishing upper and lower bounds for xt+iε and in the limit for large

xt . In what follows we use the symbol & to mean ‘asymptotically greater than or equal to’, so that

f (xt)& xt means that for all xt sufficiently large f (xt)≥ xt . We also define . analogously. We also

let {λ1, ...,λL−1} and {ρ1, ...,ρL−1} be two sequences of constants that satisfy 1 > λL−1 > ... > λ1 >

0 and 1 > ρL−1 > ... > ρ1 > 0.

After a single leapfrog step we have

xt+ε = xt − ε
2xβ−1

t /2+ ε pt .

After noting that pt/xt → 0 as xt → ∞, it is straightforward to see that here

(1−λ1)xt . xt+ε . (1+λ1)xt .

For the momentum we have

pt+ε = pt − εxβ−1
t /2− εxβ−1

t+ε /2.

Noting that 1 > δ > β −1, then we have

−(1+ρ1)xδ
t . pt+ε < pt .

Continuing the argument, after the next leapfrog step we have

xt+2ε = xt+ε − ε
2xβ−1

t+ε /2+ ε pt+ε .

Using the same arguments and the bounds on pt+ε gives

(1−λ2)xt . xt+2ε . (1+λ2)xt

and similarly for pt+2ε we have

−(1+ρ2)xδ
t . pt+2ε < pt .
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By induction, we have

(1−λL−1)xt . xt+(L−1)ε . (1+λL−1)xt .

Since every term xt+iε is positive, this establishes (i). As they are each of the same order as xt , then

(ii) is also true for large enough xt .

2. The integral in question can be written∫
B(xt )

es(|y(p)|−|xt |)µG(d p)+
∫

B(xt )c
es(|y(p)|−|xt |)µG(d p).

In B(xt) we have

|y(p)|= |ch(xt , pt)+Lε pt | ≤ |ch(xt , pt)|+Lε|pt | ≤ |c(xt)|+Lε|pt |,

meaning∫
B(xt )

es(|y(p)|−|xt |)µG(d pt)≤ es(|c(x)|−|xt |)
∫

B(xt )
esLε pt µ

G(d pt)≤ es(|c(x)|−|xt |)
[
2e(sLε)2/2

Φ(sLε)
]
,

which can be made arbitrarily small as |c(x)|− |xt | → −∞ as |xt | → ∞.

3. We can actually extend and simplify the above argument for the purposes of this step. Clearly

we have |xt+ε | = Θ(max(|xt |, |pt |)) and |pt+ε | = Θ(max(|pt |, |xt |β−1)). It follows that |xt+Lε | =

Θ(max(|xt |, |pt |). This means that for some C < ∞ for |pt | ≥ |xt |δ we have

exp
(

s|xt+Lε |− s|xt |−
1
2
|pt |2

)
. exp

(
C max(|xt |, |pt |)−

1
2
|pt |2

)
,

= exp
(
|pt |
(

C
max(|xt |, |pt |)

|pt |
− 1

2
|pt |
))

,

. exp
(
|pt |
(

C|xt |1−δ − 1
2
|pt |
))

Provided δ > 1/2, then for suitably large |xt | we have |xt |1−δ −|xt |δ/2 <−1, so we can write

exp
(
|pt |
(

C|xt |1−δ − 1
2
|pt |
))
. exp(−|pt |) ,

meaning ∫
B(xt )c

es(|xt+Lε |−|xt |)µx(d pt).
∫

B(xt )c
e−|pt |d pt = 2e−|xt |δ ,

which becomes negligibly small as |xt | → ∞, as required.

4. We call the acceptance ratio for a proposal

exp
(

β
−1
[
|xt |β −|ch(xt , pt)+Lε pt |β

]
+

1
2

p2
t −

1
2

p2
t+Lε

)
.
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This is simply the acceptance probability without the minimum term. For pt ∈ B(xt) it is shown in

(1) that the absolute value symbols here are not needed. As β > 1 then for |xt | > |xt+Lε | here then

we have

xβ

t − (ch(xt , pt)+Lε pt)
β > (xβ

t − xt)−ψ(xt , pt)−Lε pt ,

meaning the acceptance ratio in this region can be lower bounded by

exp
(

β
−1
[
(xβ

t − xt)−ψ(xt , pt)−Lε pt

]
+

1
2

p2
t −

1
2

p2
t+Lε

)
Using the order arguments from step (2) means that dividing through by |xt |β gives

exp
(
|xt |β β

−1 [1−δ1]+δ2

)
,

where the constants δ1 and δ2 can be made arbitrarily small by simply choosing xt large enough. In

the limit this is greater than one here meaning all proposals will be accepted.

Since
∫

B(xt )c Q(x,dy)→ 0 as xt → ∞, then we have the established result, meaning the last integral

in (7.15) is negligible. An analogous argument can be constructed in the case xt →−∞.

�

7.5 Discussion & Extensions

We have established some rigorous guarantees for the Hamiltonian Monte Carlo method here, which

have in turn suggested new directions in the design of Hamiltonian Monte Carlo algorithms and ap-

propriate rules for setting tuning parameters. The Probabilist and Statistician Persi Diaconis has

recently suggested that such analysis would be of great use to the field [29, 31], in one case ex-

claiming ‘Someone should take up this challenge!’ [29]. We are unaware of many similar examples

of analysing the method, the works [30, 50, 19] being notable exceptions, which focus either on

the more foundational properties of ergodicity in general or on specific statistical models or tail be-

haviours. An ultimate goal here is of course to establish sharp nonasymptotic bounds, and hence

answer the all important question ‘for how long should I run my algorithm?’ We hope that the

present contribution is both a useful and nontrivial step in this direction.

Below we discuss further work which would compliment the results of this chapter, referring to each

case separately.
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7.5.1 Static case

In all cases except target distributions which are not log-concave in the tails, the ergodicity results

presented here are restricted to the one-dimensional exponential family class of targets. With some

moderate effort, however, the results can be extended. To generalise to higher dimensions is actually

much more straightforward for gradient-based proposals than those based on random walks, owing

to the convenience of working with norms, and the general criteria introduced in [109]. The 1 < β <

2 result should be extendable to any target distribution for which |ch(xt , pt)| is nearly always smaller

than |c(xt)| in the tails, provided that the inwards convergence property holds. With this condition it

can be shown that the drift condition for Hamiltonian Monte Carlo should hold whenever a similar

condition holds for the Metropolis-adjusted Langevin algorithm. Similarly the β > 2 case should be

generalisable to any distribution for which |∇ logπ(x)| grows at a faster than linear rate in |x|, as in

the MALA case. Both of these extensions are immediate goals.

7.5.2 Dynamic case

The dynamic results are striking, and there are several potential avenues of further research here.

The unrealistic assumption that the period lengths are known can be relaxed in the scenario that an

‘approximate’ form of the Virial theorem holds, i.e. the case∫
Ġt+uνxt ,pt (du)< δ ,

for some δ > 0, rather than being exactly equal to zero. This approach enables practical schemes to

be designed in which Hamilton’s equations are integrated numerically until the criterion is satisfied,

and then the next candidate position in the chain is sampled from within this trajectory. The above

equation can also be satisfied in cases where the Hamiltonian flow may not actually be periodic,

which strengthens the ergodicity results here, but also raises challenges with regards to irreducibility,

which may not be straightforward to establish.

Of course, the dynamic scheme suggested here is not the only way in which the integration time can

be increased when |xt | grows. Other more straightforward approaches could be to make the number

of leapfrog steps satisfy

L(xt) ∝ |∇ logπ(xt)|−1|xt |,

in some appropriate way. To ensure that the resulting Markov chain targets the correct invariant
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distribution, the ratio q(x|y)/q(y|x) would also need to be computed when evaluating proposals

here, so designing a scheme in which this evaluation is straightforward is a further consideration.

Another popular implementation of the Hamiltonian Monte Carlo algorithm is the No-U-turn sam-

pler [49], which is used in the Stan software [123], and in which the integration time is also dynami-

cally chosen. Empirical evidence given in [49] suggests that the method is very efficient, and it may

be that the pragmatic criterion of integrating forward until a ‘U-turn’ is made actually corresponds to

increasing the integration time until geometric ergodicity is satisfied in many cases (though unlikely

in general due to pathological examples with contours of high curvature). If this were the case then

the theory established in this chapter would give some rigorous justification for the impressive per-

formance of the method, so we aim to explore whether this is the case with some simple examples

as further work.

7.5.3 Stiff bounds and uses for practitioners

The light-tailed case in which β > 2 is a challenge for ordinary gradient-based samplers, and Hamil-

tonian Monte Carlo appears to be no exception. However, for the Metropolis-adjusted Langevin

algorithm some nonasymptotic guarantees hold even in this instance. It is shown in [15] that for any

initial position x, a step-size h can be chosen to be small enough that the MALA chain will explore

the ball centred at 0 with radius |x| at a geometric rate. This gives some guarantees in this case, with

the obvious intuition that for any fixed x a step-size h can be chosen such that |h2∇ logπ(x)/2| is of

a similar size to x, making the MALA proposal a sensible one. The downside is that in practice for

small choices of h exploration will be very slow in the centre of the space, meaning the geometric

rate r will be close to one.

It seems that with some work these results could be extended to the case of Hamiltonian Monte

Carlo, and that the rewards would potentially be greater here. The same intuition applies as in the

MALA case, but this time the step-size parameter is ε . So there is an option to find a small enough

ε , and then choose a number of leapfrog steps L such that the resulting integration time Lε is still

long enough for fast exploration of the state space. Of course the additional costs in the case ε is

small may still be prohibitive. The guarantees provided by such an approach are still also problem

specific and rely on choosing expectations for which the ball of radius |x| is an appropriate substitute

for the state space, which is a very difficult condition to check in practice. Nonetheless, such a result

would still likely improve understanding further of the Hamiltonian Monte Carlo method.
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Many of the bounds constructed here rely on showing that HMC is ‘strictly more efficient’ than

MALA, in some sense. Such a direct comparison would be arguably of the most use to practitioners

when choosing which method to use on a given problem. We have not categorically established cases

here in which the Hamiltonian Monte Carlo method will estimate any expectation of interest more

efficiently than the Metropolis-adjusted Langevin, as the bounds we have rely on certain choices

of Lyapunov function, however such a comparison would seem possible in principle by directly

considering the return times of each method to some typical set, rather than bounding these through

specific choices of Lyapunov function.
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Chapter 8

Summary and future directions

Here we provide a short summary of the contributions in each of Chapters 5, 6 and 7, along with

possible avenues for further research.

8.1 Langevin diffusions

In Chapter 5 we explore Langevin diffusions for Monte Carlo sampling.

8.1.1 Contributions

(I) We highlight that the Langevin diffusion with position-dependent volatility reported in [108]

and [43] does not in fact have the desired limiting distribution in general, and derive a simpler

diffusion which does, given by

dXt =
1
2

G−1(Xt)∇ logπ(Xt)dt +Λ(Xt)dt +
√

G−1(Xt)dBt , where Λi(Xt) =
1
2

n

∑
j=1

∂ jG−1
i j (Xt),

using the convention ∂ j := ∂/∂x j. We derive this result using techniques from stochastic

analysis.

(II) We then derive the same diffusion using the techniques of Riemannian geometry, showing

that it can also be viewed as the image of dXt = ∇ logπ(Xt)dt +
√

2dBt when mapped onto

a Riemannian manifold with metric G(x). In doing this we are able to pinpoint where errors
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were made in previous derivations of this object in [108] and [43].

(III) Finally we consider three popular choices of G(x) in the literature: the negative Hessian, the

truncating metric and the linearising metric. We discuss how each of these choices change the

ergodic properties of the resulting Langevin diffusion. We provide both intuitive and rigorous

results, in both the simple one-dimensional class of Exponential family distributions and a

two-dimensional case which contains features which are common of hierarchical models.

8.1.2 Future directions

It is now known that a judicious choice of G(x) can lead to Markov chains which are geometrically

ergodic for a wide variety of tail behaviours [62]. An obvious mathematical question that remains

is which choice is ‘optimal’ in a given scenario. This is likely to depend on both the function being

estimated and the definition of optimality chosen. On a general note, a more direct comparison of

the ‘speed’ of different Langevin diffusions than that provided here would likely give some useful

insights.

A related but more computational question involves whether choice of G−1(x) which are sparse, in

the sense that resulting matrix operations are not cubic in the dimension n of the state space, can still

produce fast converging Markov chains, and indeed in which scenarios this is the case. It is shown

here that different choices influence both the magnitude and direction of the ‘drift’ of the resulting

Markov chain, and to what extent these two features can be adapted without a cubic implementation

cost in dimension is a relevant open question.

Langevin diffusions can be used as both objects on which to based MCMC methods, or as the

limiting process for an MCMC method. It has recently been shown in [7] that a Langevin diffusion

with position-dependent volatility is the limiting process of the Random Walk Metropolis on certain

classes of target distributions. A better understanding of when such limits and how this translates to

choosing optimal parameters in an algorithm could lead to useful insights for practitioners.
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8.2 Random Walk Metropolis with position-dependent proposal

covariance

In Chapter 6 we consider a Metropolis–Hastings method with proposal x′ ∼ N(x,hG−1(x)), which

a variant of the Random Walk Metropolis in which the proposal variance is allowed to change with

position. We discuss how allowing the covariance to change with position can change the conditions

on π(x) under which the resulting Markov chain will converge geometrically quickly to its limiting

distribution, either for better or worse.

8.2.1 Contributions

(I) In one dimension we establish that if the variance is allowed to grow at Θ(|x|γ) for some

0 < γ < 2 then the method will produce a geometrically ergodic Markov chain provided the

tails of the distribution of interest π(·) are such that π(x)≤ exp
(
−|x|β

)
for some β > 1−γ/2

for all |x| ≥ L for some large L > 0. If γ = 2 then we show that provided a small enough choice

of the step-size h is made, the method will produce a geometrically ergodic chain provided

that π(x)≤ |x|−p for all |x| ≥ L, for some p > 1.

(II) We also establish some negative results: if the variance grows at a faster rate than C|x|2 for

some C <∞ then we show that the algorithm can never produce a geometrically ergodic chain.

We also show that in any dimension then a necessary condition for geometric ergodicity is that

εs|x|π(dx)< ∞ for some s > 0 in the case where each element of then this will also be true if

each element of G−1(x) is bounded above.

(II) Lastly we construct a simple two-dimensional density in which probability concentrates on

an ever narrower ‘ridge’ as |x| increases (a known scenario in which the ordinary Random

Walk Metropolis can perform poorly). We show that a uniform proposal on a spherical disc

will not produce a geometric converging chain, while for a uniform proposal over an elliptical

disc, with the shape of ellipse dependent on the current position, the opposite is true. The first

method is a version of the ordinary Random Walk Metropolis, while the second resembles the

variant with changing covariance.
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8.2.2 Future directions

General results in dimensions greater than one would of course be the natural next step in this

work. In particular it would be interesting to understand whether a lack of smoothness of the con-

tours of π(x) can be corrected for ‘arbitrarily well’ by exploiting the position-dependent covariance

framework, as this is a known failing of the Random Walk Metropolis and is a common feature of

hierarchical models. This would also inform what an appropriate choice of G−1(x) in general should

be. Of course a choice which involved as little information about π(x) as possible is preferable, so

that the method can be used in as wide a variety of scenarios as possible.

There is some intuition for believing that a judicious choice of G−1(x) might also produce a method

that scales more favourably with dimension than the ordinary Random Walk Metropolis. A choice

of covariance matrix for which the principal eigenvector v(x) is asymptotically parallel to x and

for which all other eigenvalues shrink to zero as |x| grows should result in a method which proposes

moves ‘in the right direction’ fifty percent of the time when in the tails. In large dimensions there are

many erroneous directions in which random walk proposals can be, and the idea is that a changing

G−1(x) can alleviate this to some extent. Making such an argument rigorous would be an interesting

challenge.

The analysis here has shown that adaptive methods in which G−1(x) is learned based on computing a

weighted empirical covariance of past samples and in which the adaptation stops after a fixed period

of time are unlikely to result in different ergodicity properties to proposals with a fixed covariance.

The reason is that one can always move far enough into the tails of the distribution that no past

samples exist in this region. Ergodic rates, which inherently depend on the tails, are perhaps there-

fore not the most appropriate tools for analysing whether there is a benefit to such approaches. Two

potential avenues for future research here are (i) considering whether allowing infinite adaptation on

a compact state space, as in [46], can lead to more favourable ergodic properties, and (ii) using some

other tools, such as expected squared jump distance analysis or diffusion limits, to compare relative

efficiency of Markov chain exploration in the centre of the space.
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8.3 Stability of Hamiltonian Monte Carlo

In Chapter 7 we consider the Hamiltonian Monte Carlo method, and establish conditions under

which stochastic stability properties such as π-irreducibility and geometric ergodicity will and will

not hold for certain classes of models.

8.3.1 Contributions

(I) By writing the HMC transition on the marginal position space, we show that under suitable

assumptions on π(·), provided the gradient term ‖∇ logπ(x)‖ is continuous and grows at most

linearly (with suitable integration time chosen in the linear case) then the method with a fixed

integration time will produce a π-irreducible Markov chain, and all compact sets will be small.

(II) For geometric ergodicity, we firstly establish that for any model in which ‖∇ logπ(x)‖ ≤M

for any x ∈ X then this can only happen in the case where
∫

es|x|π(dx) < ∞ for some s > 0.

We also show that this is true if a perfect integrator were available. We then consider the

one-dimensional exponential family class of targets

π(x) ∝ exp
(
−β
−1|x|β

)
, β > 0.

For this class we show that HMC with a fixed integration time will produce a geometrically

ergodic Markov chain if 1≤ β ≤ 2, and will not otherwise.

(III) We then consider dynamic integration times, which are used in various implementations of

HMC such as the No-U-Turn Sampler [49]. In an idealised scenario, we show that if the

integration time is allowed to increase at a suitable rate and a perfect integrator is available

then a geometrically ergodic chain can be constructed for any value β > 0.

8.3.2 Future directions

The immediate follow-on to this work is to extend the fixed integration time results to more general

targets of arbitrary dimension. At the time of writing the thesis chapter this had not been completed,

however it has now and as of January 2016 a preprint is in preparation. In essence the conditions are

that |∇ logπ(x)| grows at most linearly (with careful choice of integration time in the linear case),
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that the gradient points towards the centre of the space when |x| is large, and that the algorithm

‘converges inwards’ in the sense of [109].

The dynamic integration time results are intriguing, but at present do not take into account the po-

tential extra computational cost. To increase the integration time T = Lε in the leapfrog method, one

can either increase ε at no extra cost but reduced accuracy, or increase L at extra computational cost.

The right choice is not obvious. It is also not clear how such an algorithm compares with simply con-

sidering more than one transition of a method with a fixed integration time. If the dynamic method

take 2Lε steps in a certain region of the space, it is not clear how this compares to two transitions

with a step-size of Lε , or indeed 2Lε transitions of the Metropolis-adjusted Langevin algorithm. In

each case the resulting proposals will follow distinctly different distributions. Analysing the speed

of different diffusion limits for the two methods on a reference class of models should give some

insight here.

The marginal representation relates HMC more explicitly to the Metropolis-adjusted Langevin al-

gorithm than has been reported previously, but also offers insight into the various tuning parameters

of the method, not only the integration time but also the kinetic energy choice. It is possible that a

different choice of kinetic energy than ptM−1 p/2 could lead to different ergodicity properties, either

more or less favourable, and this type of analysis is immediately feasible based on the framework

introduced in this thesis.
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Appendix A

Some results on Markov chains.

We expand on some results stated in the main body.

Proof that “↔′′ defines an equivalence relation on a countable X.

We need to show (i) x↔ x for all states x ∈ X, (ii) x↔ y⇒ y↔ x, and (iii) if x↔ y and y↔ z then

x↔ z.

The first is true by the fact that P0(x,x) = 1. The second is trivial since if x↔ y then ∃m,n s.t.

Pm(x,y)> 0 and Pn(y,x)> 0, and these properties are also the requirement for y↔ x. The third can

be seen using the Chapman-Kolmogorov equations: since there must exist ∃r,s s.t. Pr(x,y)> 0 and

Ps(y,z)> 0, it holds that Pr+s(x,z)≥ Pr(x,y)Ps(y,z)> 0, so that x→ z, and an equivalent argument

shows z→ x. �

Proof of Proposition 3.4

First note that

Ex[ηx] = Ex

[
∞

∑
t=0

1x(Xt)

]
=

∞

∑
t=0

Pt(x,x),

where the last identity is true by monotone convergence (see e.g. Section 4.2. of [20]).

We show that ∑
∞
t=0 Pt(x,x) = ∞⇒ Px[τx < ∞] = 1. If we first consider the probability of a finite
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occupancy time ηx, note that

1≥ Px[ηx < ∞] =
∞

∑
t=0

Px[Xt = x∩Xt+i 6= x, ∀i≥ 1].

Using the Markov property this becomes

1≥
∞

∑
t=0

P[Xt+i 6= x, ∀i≥ 1|Xt = x]Pt(x,x), (A.1)

=
∞

∑
t=0

Px[τx = ∞]Pt(x,x), (A.2)

which will only be satisfied if Px[τx = ∞] = 0, implying Px[τx < ∞] = 1 as required. �

The reverse implication can also be proved (see e.g. [86]).

Explicit construction of a maximal irreducibility measure.

We have a ϕ-irreducible chain for which we would like to find a maximal irreducibility measure

ψ(·). We first define the resolvent transition kernel as

Kε(x,A) = (1− ε)
∞

∑
i=1

ε
iPi(x,A),

for any A ∈B and x ∈ X, for any fixed choice ε < 1. The resolvent captures information about the

i step transition kernel for every choice of i. Now we can easily find a ψ(·) by computing

ψ(A) =
∫

Kε(x,A)ϕ(dx),

for any choice of ε .

Proof that recurrence and transience are class properties for a countable X.

We show that if x is recurrent and x↔ y then y is recurrent. It follows that if x is transient then so is

y, because if y were recurrent then x would be also.

Mathematically we want to establish that if Ex[ηx] = ∞ and x↔ y then Ey[ηy] = ∞ also. Since x↔ y

then ∃,k,m s.t. Pk(x,y)> 0 and Pm(y,x)> 0. By the Chapman-Kolmogorov equations

Pk+m+n(y,y)≥ Pm(y,x)Pn(x,x)Pk(x,y),

so summing across all possible n values gives

Ey[ηy]≥
∞

∑
n=0

Pk+m+n(y,y)≥ Pm(y,x)Pk(x,y)Ex[ηx].
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From this we have that y is recurrent if x is. �

Proof of Theorem 3.22. We need to show |µ(A)−ν(A)| ≤ PΛ[X 6= Y ], for any A ∈B. First note

that µ(A) = Pµ [X ∈ A], and similarly for ν(A) and Y . Now

Pµ [X ∈ A] = PΛ[X ∈ A,X 6= Y ]+PΛ[X ∈ A,X = Y ],

Pν [Y ∈ A] = PΛ[Y ∈ A,X 6= Y ]+PΛ[Y ∈ A,X = Y ],

and PΛ[X ∈ A,X = Y ] = PΛ[Y ∈ A,X = Y ], so we can write

|µ(A)−ν(A)|= |PΛ[X ∈ A,X 6= Y ]−PΛ[Y ∈ A,X 6= Y ]| .

Now, for any x,y≥ 0 note that |x− y| ≤max{x,y}, giving

|µ(A)−ν(A)| ≤max{PΛ[X ∈ A,X 6= Y ],PΛ[Y ∈ A,X 6= Y ]}

Since PΛ[X ∈ A,X 6= Y ] = PΛ[X 6= Y ]P[X ∈ A|X 6= Y ], and similarly for PΛ[Y ∈ A,X 6= Y ], we can

write

|µ(A)−ν(A)| ≤ PΛ[X 6= Y ]max{P[X ∈ A|X 6= Y ],P[Y ∈ A|X 6= Y ]} ≤ PΛ[X 6= Y ],

which completes the proof. �.
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Appendix B

Total variation distance

We show how to obtain (3.14) from (3.13). Denoting two probability distributions, µ(·) and ν(·),

and associated densities, µ(x) and ν(x), we have

‖µ(·)−ν(·)‖TV := sup
A∈B
|µ(A)−ν(A)|.

Define the set B = {x ∈ X : µ(x) > ν(x)}. To see that B ∈B, note that B = ∪q∈Q{x ∈ X : µ(x) >

q}∩{x ∈ X : ν(x) < q}, and the result follows from properties of B (see e.g. Section 2.5 of [20]).

Now, for any A ∈B

µ(A)−ν(A)≤ µ(A∩B)−ν(A∩B)≤ µ(B)−ν(B),

and similarly

ν(A)−µ(A)≤ ν(Bc)−µ(Bc),

so, the supremum will be attained either at B or Bc. However, since µ(X) = ν(X) = 1, then

[µ(B)−ν(B)]− [ν(Bc)−µ(Bc)] = 0,

so that

|µ(B)−ν(B)|= |µ(Bc)−ν(Bc)|.

Using these facts gives an alternative characterisation of the total variation distance as

‖µ(·)−ν(·)‖TV =
1
2
(|µ(B)−ν(B)|+ |µ(Bc)−ν(Bc)|)

=
1
2

∫
X
|µ(x)−ν(x)|dx
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as required.
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Appendix C

Some objects from Riemannian

geometry

We provide more details on some generalisations of objects in Rn to Riemannian manifolds.

Gradient and divergence operators

The gradient of a function on Rn is the unique vector field, such that, for any unit vector, u:

〈∇ f (x),u〉= Du [ f (x)] = lim
h→0

{
f (x+hu)− f (x)

h

}
, (C.1)

the directional derivative of f along u at x ∈ Rn.

On a manifold, the gradient operator, ∇M , can still be defined, such that the inner product

gp(∇M f (x),u) = Du[ f (x)]. Setting ∇M = G(x)−1∇ gives:

gp(∇M f (x),u) = (G−1(x)∇ f (x))T G(x)u,

= 〈∇ f (x),u〉,

which is equal to the directional derivative along u as required.

The divergence of some vector field, v, at a point, x ∈ Rn, is the net outward flow generated by v

through some small neighbourhood of x. Mathematically, the divergence of v(x) ∈ R3 is given by

∑i ∂vi/∂xi. On a more general manifold, the divergence is also a sum of derivatives, but here, they
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are covariant derivatives. A short introduction is provided in Appendix C. Here, we simply state

that the covariant derivative of a vector field, v, at a point p ∈M is the orthogonal projection of the

directional derivative onto the tangent space, TpM. Intuitively, a vector field on a manifold is a field

of vectors, each of which lie in the tangent space to a point, p ∈M. It only makes sense therefore

to discuss how vector fields change along the manifold or in the direction of vectors, which also lie

in the tangent space. Although the idea seems simple, the covariant derivative has some attractive

geometric properties; notably, it can be completely written in local coordinates,and, so, does not

depend on knowledge of an embedding in some ambient space.

The divergence of a vector field, v, defined on a manifold, M, at the point, p ∈M, is defined as:

divM(v) =
n

∑
i=1

Dc
ei
[vi],

where ei denotes the i-th basis vector for the tangent space, TpM, at p ∈M, and vi denotes the i-th

coefficient. This can be written in local coordinates (see Appendix C) as:

divM(v) = |G(x)|−
1
2

n

∑
i=1

∂

∂xi

(
|G(x)|

1
2 vi

)
,

and can be combined with ∇M to form the Laplace–Beltrami operator (5.8).

Vector fields and the covariant derivative

Here, we provide a short introduction to vector fields and differentiation on a smooth manifold; see

[13, 64]. The following geometric notation is used here: (i) vector components are indexed with a

superscript, e.g., v = (v1, ...,vn); and (ii) repeated subscripts and superscripts are summed over, e.g.,

viei = ∑i viei (known as the Einstein summation convention).

For any smooth manifold, M, the set of all tangent vectors to points on M is known as the tangent

bundle and denoted T M.

A Cr vector field defined on M is a mapping that assigns to each point, p ∈ M, a tangent vector,

v(p) ∈ TpM. In addition, the components of v(p) in any basis for TpM must also be Cr [13]. We

will denote the set of all vector fields on M as Γ(T M). For some vector field, v ∈ Γ(T M), at any

point, p ∈M, the vector, v(p) ∈ TpM, can be written as a linear combination of some n basis vectors

{e1, ...,en} as v = viei. To understand how v will change in a particular direction along M, it only

makes sense, therefore, to consider derivatives along vectors in TpM. Two other things must be

considered when defining a derivative along a manifold: (i) how the components, vi, of each basis
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vector will change; and (ii) how each basis vector, ei, itself will change. For the usual directional

derivative on Rn, the basis vectors do not change, as the tangent space is the same at each point, but

for a more general manifold, this is no longer the case: the ei’s are referred to as a “local” basis for

each TpM.

The covariant derivative, Dc, is defined so as to account for these shortcomings. When considering

differentiation along a vector, u∗ /∈TpM, u∗ is simply projected onto the tangent space. The derivative

with respect to any u∈ TpM can now be decomposed into a linear combination of derivatives of basis

vectors and vector components:

Dc
u[v] = Dc

uiei
[viei], (C.2)

where the argument, p, has been dropped, but is implied for both components and local basis vectors.

The operator, Dc
u[v], is defined to be linear in both u and v and to satisfy the product rule [13]; so,

Equation (C.2) can be decomposed into:

Dc
u[v] = ui (Dc

ei
[v j]e j + v jDc

ei
[e j]
)
. (C.3)

The operator, Dc, need, therefore, only be defined along the direction of basis vectors ei and for

vector component vi and basis vector ei arguments.

For components vi, Dc
ej
[vi] is defined as simply the partial derivative ∂ jvi := ∂vi/∂x j. The directional

derivative of some basis vector ei along some e j is best understood through the example of a regular

surface Σ ⊂ R3. Here, De j [ei] will be a vector, w ∈ R3. Taking the basis for this space at the point,

p, as {e1,e2, n̂}, where n̂ denotes the unit normal to TpΣ, we can write w = αe1 +βe2 +κn̂. The

covariant derivative, Dc
e j
[ei], is simply the projection of w onto TpΣ, given by w∗ = αe1+βe2. More

generally, at some point, p, in a smooth manifold, M, the covariant derivative Dc
e j
[ei] = Γk

jiek (with

upper and lower indices summed over). The coefficients, Γk
ji, are known as the Christoffel symbols:

Γk
ji denotes the coefficient of the k-th basis vector when taking the derivative of the i-th with respect

to the j-th. If a Riemannian metric, g, is chosen for M; then, they can be expressed completely

as a function of g (or in local coordinates as a function of the matrix, G). Using these definitions,

Equation (C.3) can be re-written as:

Dc
u[v] = ui

(
∂ivk + v j

Γ
k
i j

)
ek. (C.4)

The divergence of a vector field, v ∈ Γ(T M), at the point, p ∈M, is given by:

divM(v) = Dc
ei
[vi], (C.5)
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where, again, repeated indices are summed over. If M = Rn, this reduces to the usual sum of partial

derivatives, ∂ivi. On a more general manifold, M, the equivalent expression is:”’

Dc
ei
[vi] = ∂ivi + vi

Γ
j
i j, (C.6)

where, again, repeated indices are summed. As has been previously stated, if a metric, g, and

coordinate chart is chosen for M, the Christoffel symbols can be written in terms of the matrix,

G(x). In this case [115]:

Γ
j
i j = |G(x)|−

1
2 ∂i

(
|G(x)|

1
2

)
, (C.7)

so Equation (C.6) becomes:

Dc
ei
[vi] = |G(x)|−

1
2 ∂i

(
|G(x)|

1
2 vi
)
, (C.8)

where v = v(x).
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Appendix D

Needed facts about truncated

Gaussian distributions

Here we collect some elementary facts used in the main text. For more detail see e.g. [55]. If X

follows a truncated Gaussian distribution NT
[a,b](µ,σ

2) then it has density

f (x) =
1

σZa,b
φ

(
x−µ

σ

)
1[a,b](x),

where φ(x) = e−x2/2/
√

2π , Φ(x) =
∫ x
−∞

φ(y)dy and Za,b =Φ((b−µ)/σ)−Φ((a−µ)/σ). Defining

B = (b−µ)/σ and A = (a−µ)/σ , we have

E[X ] = µ +
φ(A)−φ(B)

Za,b
σ

and

E[etX ] = eµt+σ2t2/2
[

Φ(B−σt)−Φ(A−σt)
Za,b

]
.

In the special case b = ∞, a = 0 this becomes eµt+σ2t2/2Φ(σt)/Za,b.
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Appendix E

A simple bound on the Normal

distribution function

This is reproduced here from [24] for ease of exposition. Consider the complementary cumulative

distribution function for Z ∼ N(0,1), given by

Φ
c(z) = P[Z > z] =

1√
2π

∫
∞

z
e−t2/2dt.

An upper bound for z≥ 0 can be derived as

√
2πΦ

c(z) =
∫

∞

z
e−t2/2dt <

∫
∞

z

t
z

e−t2/2dt =
1
z

e−z2/2.

For the lower bound, define

g(z) = Φ
c(z)− 1√

2π

z
z2 +1

e−z2/2.

We show that g(z)> 0 for z≥ 0. First note that g(0) = 0.5 > 0, and limz→∞ g(z) = 0. The derivative

of g is

g′(z) =− 2
(z2 +1)2 e−z2/2 < 0.

Since the derivative is strictly decreasing on [0,∞), this gives a lower bound

√
2πΦ

c(z)≥ z
z2 +1

e−z2/2,

as required.
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