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Multivalent vaccines are designed to immunize against two or more pathogens in a single
dose vaccination. A challenge for wide spread use of these vaccines is their lower protec-

tion efficacy compared to monovalent vaccines that immunize individuals against a single

pathogen. We sought, for the first time, to evaluate the outcomes of bivalent and mono-
valent vaccines in terms of the reduction in the number of infections over time. For this
evaluation, we developed epidemiological models governing the transmission dynamics of

two immunologically unrelated pathogens, where immunity conferred by vaccination or
natural infection of one pathogen does not provide any cross-protection against the other

pathogen. We assumed that a monovalent vaccine provides full, but temporary, protec-
tion against a particular pathogen. While protecting against both pathogens requires

two pathogen-specific monovalent vaccines, a single dose of the bivalent vaccine provides

partial protection against both pathogens. We analyzed the two models to investigate
the impact of vaccination. In addition to examining global behaviours and disease per-

sistence of the models, we performed simulations to show the existence of a biologically
feasible region for the bivalent vaccine to outperform monovalent vaccines for prevention
of disease transmission using a lower number of vaccines.
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1. Introduction

Vaccination has proven as the most effective and economical measure against many

communicable diseases.1–3 The aim of vaccination is to provide active acquired

immunity against a particular pathogen, thereby preventing infection and related

outcomes upon exposure to the pathogen. Since the discovery of the polysaccharide

conjugate vaccines in the late 1980s,4 the impact of vaccination on the pathogen-

population landscape has dramatically changed. Haemophilus influenzae serotype

b (Hib) is the first infection against which a polysaccharide conjugate vaccine was

developed and implemented as part of the infant immunization programs in several

affected populations.4 Since then, a number of multivalent combined or unimolecular

vaccines have been produced to protect individuals against different pathogens or

different serotypes of a pathogen using a single vaccine dose.5–7 A particular example

is the DTaP-IPV-Hib combined vaccine that protects individuals against diphtheria,

tetanus, pertussis, polio and Hib.8

Multivalent vaccines have the advantage of providing protection against two

or more diseases in a single dose, and therefore eliminate a number of logistical

and administrative challenges associated with vaccination using monovalent vac-

cines. However, the protection efficacy of multivalent vaccines may be lower than

that provided by individual monovalent vaccines. For instance, several studies have

demonstrated lower immunogenicity to the Hib component of the DTaP-IPV-Hib

combined vaccine products that include Hib antigens when compared with indi-

vidually administered Hib polysaccharide conjugate vaccine.9–12 In addition to the

lower protection efficacy conferred by such multivalent vaccines, waning immunity

and deferral of boosting may be a cause for the resurgence of some severe infections,

such as invasive Hib disease.13

In this study, we develop vaccination models to investigate, the effect of

monovalent and bivalent vaccines, and compare the outcomes in terms of the

vaccine-induced protection and vaccine coverage. We consider these models for two

pathogens (referred to as pathogen A and pathogen B), and assume that no cross-

protection is conferred through vaccination or natural infection. In the monovalent

model, vaccines are assumed to provide full protection against each pathogen for a

certain period of time. In the bivalent model, we assume that the vaccine is imper-

fect, providing only partial protection against each pathogen. While investigating

theoretical aspects of these models, we simulate them to illustrate the time profiles

of infection spread in the population. By means of simulations, we also show the

importance of the durations of vaccine-induced protection and naturally acquired

immunity when comparing the outcomes of these models.

2. Vaccination models

To develop vaccination models, we divide a homogeneously mixing population of

size N into classes of susceptibles (S), infected individuals with pathogen A (I
A

),

infected individuals with pathogen B (I
B

), recovered individuals from infection with
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pathogen A (T
A

), recovered individuals from infection with pathogen B (T
B

), in-

fected individuals with pathogen B after recovery from infection with pathogen

A (J
B

), infected individuals with pathogen A after recovery from infection with

pathogen B (J
A

), and recovered individuals after subsequent infections with both

pathogens (R). We assume that recovery from infection with one pathogen does not

provide any cross-protection against the other pathogen. We exclude the occurrence

of co-infection with both pathogens A and B from our models. Vaccination models

include other subpopulations based on the type of vaccine being implemented. In

the absence of vaccination, the model (2.3) is expressed as the following system of

differential equations

S′ = Λ− (F
A

+ F
B

)S − dS + θ(T
A

+ T
B

+R),

I ′
A

= F
A
S − γ

A
I
A
− dI

A
,

I ′
B

= F
B
S − γ

B
I
B
− dI

B
,

T ′
A

= γ
A
I
A
− F

B
T

A
− dT

A
− θT

A
,

T ′
B

= γ
B
I
B
− F

A
T

B
− dT

B
− θT

B
,

J ′
A

= F
A
T

B
− γ

A
J

A
− dJ

A
,

J ′
B

= F
B
T

A
− γ

B
J

B
− dJ

B
,

R′ = γ
A
J

A
+ γ

B
J

B
− dR− θR,

(2.1)

where

F
A

= β
A

I
A

+ J
A

N
, F

B
= β

B

I
B

+ J
B

N
.

Parameters of this system are described in Table 2.1. This system will be used

as a basic framework for the development of monovalent and bivalent vaccination

models.

2.1. The monovalent vaccine model (MVM)

In this model, susceptible individuals may be vaccinated against pathogen A (W
A

)

only, pathogen (W
B

) only, or both pathogen (W
AB

). Vaccination against each

pathogen is assumed to provide full protection for a certain period of time. Af-

ter the vaccine-induced protection has waned, individuals will become susceptible

to the infection again. We assume that the durations of vaccine-induced protec-

tion and naturally acquired immunity (through natural infection) are the same for

both pathogens A and B. Considering the basic framework in (2.1), the MVM is
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expressed by

S′ = (1− pm)Λ− (F
A

+ F
B

)S − dS + θ(T
A

+ T
B

+W
A

+W
B

+W
AB

+R),

I ′
A

= F
A
S − γ

A
I
A
− dI

A
,

I ′
B

= F
B
S − γ

B
I
B
− dI

B
,

T ′
A

= γ
A
I
A
− F

B
T

A
− dT

A
− θT

A
,

T ′
B

= γ
B
I
B
− F

A
T

B
− dT

B
− θT

B
,

J ′
A

= F
A
T

B
− γ

A
J

A
− dJ

A
,

J ′
B

= F
B
T

A
− γ

B
J

B
− dJ

B
,

W ′
A

= pmrAΛ− F
B
W

A
− dW

A
− θW

A
,

W ′
B

= pmrBΛ− F
A
W

B
− dW

B
− θW

B
,

X ′
A

= F
A
W

B
− γ

A
X

A
− dX

A
,

X ′
B

= F
B
W

A
− γ

B
X

B
− dX

B
,

W ′
AB

= pmrAB
Λ− dW

AB
− θW

AB
,

R′ = γ
A
J

A
+ γ

B
J

B
+ γ

A
X

A
+ γ

B
X

B
− dR− θR,

(2.3)

where

F
A

= β
A

I
A

+ J
A

+X
A

N
, F

B
= β

B

I
B

+ J
B

+X
B

N
.

In this model, X
A

represents the class of individuals who are infected with pathogen

A after being vaccinated only against pathogen B. Similarly, X
B

represents the class

of individuals who are infected with pathogen B after being vaccinated only against

pathogen A. The overall vaccination coverage is given by pm (where 0 ≤ pm ≤ 1).

The parameters r
A

, r
B

, and r
AB

represent respectively the fractions of this coverage

considered for vaccination against pathogen A, against pathogen B, and against

both pathogens, giving r
A

+ r
B

+ r
AB

= 1. Other parameters of this model are

described in Table 2.1.

2.2. The bivalent vaccination model (BVM)

In this model, we assume that a single dose of the vaccine provides protection

against both pathogens A and B. In contract to the monovalent vaccine, we assume

that the bivalent vaccine confers only partial protection against each pathogen,

which reduces susceptibility to infection. Therefore, vaccinated individuals (V
AB

)

may encounter infection with pathogen A or pathogen B at reduced transmission

rates. Recovered individuals from infection with pathogen A (Q
A

) and pathogen

B (Q
B

) following vaccination may respectively acquire infection with pathogen B

(Y
B

) and pathogen A (Y
A

). Inclusion of these subpopulations to the basic framework



January 3, 2016 9:50 WSPC/INSTRUCTION FILE Knipl-Moghadas-revised

Comparative dynamics of monovalent and bivalent vaccination 5

Table 1. Description of parameters and their values (ranges) used in simulations of the monovalent

and bivalent vaccination models.

Model parameters Description Values/Range

Λ recruitment rate 10 yr−1

d natural death rate 1/70 yr−1

βA , βB transmission rates 0.12, 0.13 yr−1people−1

γA , γB recovery rates from infection 1/10 days−1

θ rate of waning immunity varied
pm vaccination coverage varied: [0, 1]

rA fraction vaccinated against pathogen A only 0.2

rB fraction vaccinated against pathogen B only 0.2
rAB fraction vaccinated against both pathogens 1 − (rA + rB )

pm(rA + rAB ) vaccination coverage against pathogen A varied
pm(rB + rAB ) vaccination coverage against pathogen B varied

pb vaccination coverage varied: [0, 1]

κA , κB transmission reduction factors due to vaccine 0.2

gives the following system of differential equations:

S′ = (1− pb)Λ− (F
A

+ F
B

)S − dS + θ(T
A

+ T
B

+Q
A

+Q
B

+R+ V
AB

),

I ′
A

= F
A
S − γ

A
I
A
− dI

A
,

I ′
B

= F
B
S − γ

B
I
B
− dI

B
,

T ′
A

= γ
A
I
A
− F

B
T

A
− dT

A
− θT

A
,

T ′
B

= γ
B
I
B
− F

A
T

B
− dT

B
− θT

B
,

J ′
A

= F
A
T

B
− γ

A
J

A
− dJ

A
,

J ′
B

= F
B
T

A
− γ

B
J

B
− dJ

B
,

V ′
AB

= pbΛ− (κ
A
F

A
+ κ

B
F

B
)V

AB
− dV

AB
− θV

AB
,

X ′
A

= (κ
A
F

A
)V

AB
− γ

A
X

A
− dX

A
,

X ′
B

= (κ
B
F

B
)V

AB
− γ

B
X

B
− dX

B
,

Q′
A

= γ
A
X

A
− (κ

B
F

B
)Q

A
− dQ

A
− θQ

A
,

Q′
B

= γ
B
X

B
− (κ

A
F

A
)Q

B
− dQ

B
− θQ

B
,

Y ′
A

= (κ
A
F

A
)Q

B
− γ

A
Y

A
− dY

A
,

Y ′
B

= (κ
B
F

B
)Q

A
− γ

B
Y

B
− dY

B
,

R′ = γ
A
J

A
+ γ

B
J

B
+ γ

A
Y

A
+ γ

B
Y

B
− dR− θR,

(2.5)

where

F
A

= β
A

I
A

+ J
A

+X
A

+ Y
A

N
, F

B
= β

B

I
B

+ J
B

+X
B

+ Y
B

N
.

In this model, pb represents the vaccination coverage with 0 ≤ pb ≤ 1. Other

parameters are described in Table 2.1.
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3. Analysis of the MVM

The system is at an equilibrium if the time derivatives of its variables are zero. The

equation

N ′ = Λ− dN (3.1)

describes the dynamics of the total population. At the equilibrium for the total

population we have N∗ = Λ/d, which is globally attracting. From the system speci-

fications, it follows that nonnegative initial values give rise to nonnegative solutions.

It is thus meaningful to define the phase space Γ for model (2.3), as

Γ = {x = (S, I
A
, . . . , R) ∈ R13

+ : N ≤ N∗}.

The space Γ is positively invariant with respect to the model (2.3). The solutions

are bounded, and remain nonnegative for nonnegative initial values. There is a

unique disease-free equilibrium (DFE) given by

S0 = (1− pm)
Λ

d
+

pmΛθ

(d+ θ)d
,

I0
A

= 0, J0
A

= 0, X0
A

= 0, I0
B

= 0, J0
B

= 0, X0
B

= 0,

T 0
A

= 0, T 0
B

= 0, R0 = 0,

W 0
A

=
pm rAΛ

d+ θ
, W 0

B
=
pm rBΛ

d+ θ
, W 0

AB
=

(pm rAB
)Λ

d+ θ
.

(3.3)

The disease-free subspace is defined as

Γ0 = {x ∈ Γ : I
A

= J
A

= X
A

= I
B

= J
B

= X
B

= 0}.

In Γ0, model (2.3) reduces to a linear system, and it is easy to obtain that the DFE

is globally asymptotically stable in the disease-free subspace Γ0.

We define the corresponding reproduction numbers for pathogens A and B in

model (2.3), as we introduce an individual infected with pathogen A or B, into a

completely susceptible population:

RAm =
β

A

(γ
A

+ d)N∗
(S0 +W 0

B
) =

β
A

(γ
A

+ d)

(
1− pm(1− r

B
)d

d+ θ

)
,

RBm =
β

B

(γ
B

+ d)N∗
(S0 +W 0

A
) =

β
B

(γ
B

+ d)

(
1− pm(1− r

A
)d

d+ θ

)
.

(3.5)

Theorem 3.1 The DFE of model (2.3) is locally asymptotically stable if

max{RAm, RBm} < 1, and unstable if max{RAm, RBm} > 1.

A Proof of the theorem is provided in Appendix A. We performed theoretical

analysis to investigate the local and global dynamics of the MVM. In particular,

after establishing the existence of a unique DFE and describing its local stability, the

existence of endemic equilibria are also investigated. Various threshold quantities–

reproduction numbers–are defined to describe local and global stability, and we give
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sufficient conditions for disease persistence in the MVM. These analyses provide rich

dynamics of the model, and we refer the reader to Appendix A for their derivations

and proofs.

4. Analysis of the BVM

The steady state N∗ = Λ/d for the total population is globally attracting in model

(2.5). Furthermore, nonnegative initial conditions give rise to nonnegative solutions.

The phase space for model (2.5) is defined as

Γ = {x = (S, I
A
, . . . , R) ∈ R15

+ : N ≤ N∗},

where for simplicity we use the same notation as for model (2.3). The space Γ is

positively invariant with respect to model (2.5). The solutions are bounded, and

remain nonnegative for nonnegative initial values.

There is a unique DFE given by

S0 = (1− pb)N∗ +
θpbN

∗

(d+ θ)
,

V 0
AB

=
dpbN

∗

d+ θ
,

I0
A

= 0, J0
A

= 0, X0
A

= 0, Y 0
A

= 0,

I0
B

= 0, J0
B

= 0, X0
B

= 0, Y 0
B

= 0,

T 0
A

= 0, T 0
B

= 0, Q0
A

= 0, Q0
B

= 0, R0 = 0.

(4.2)

In the disease-free subspace Γ0 = {x ∈ Γ : I
A

= J
A

= X
A

= Y
A

= 0, I
B

= J
B

=

X
B

= Y
B

= 0} the DFE is globally asymptotically stable in model (2.5). We define

the reproduction numbers for pathogens A and B as:

RAb =
β

A

(γ
A

+ d)N∗
(S0 + κ

A
V 0

AB
) =

β
A

(γ
A

+ d)

(
1− pb(1− κA

)d

d+ θ

)
,

RBb =
β

B

(γ
B

+ d)N∗
(S0 + κ

B
V 0

AB
) =

β
B

(γ
B

+ d)

(
1− pb(1− κB

)d

d+ θ

)
.

(4.3)

Theorem 4.1 In model (2.5), the DFE is locally asymptotically stable if

max{RAb, RBb} < 1, and unstable if max{RAb, RBb} > 1.

The proof of this theorem is similar to Theorem 3.1, and we omit it. One can also

show the persistence of the disease, and investigate the local and global behaviour

of the BVM. Details of such dynamics are provided in Appendix B. Proofs and

detailed explanations are omitted where they are similar to those obtained for the

MVM.

5. Simulation results

The theoretical analyses of the MVM and BVM (see Appendices A and B) provide

rich dynamics of these systems with respect to their local and global behaviours.
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The purpose of our simulations here is to compare these models to determine the

conditions under which a bivalent vaccine could outcompete monovalent vaccines in

preventing infection spread by both pathogens. This comparison is associated with

two key parameters including the level of vaccine-induced protection and vaccination

coverage of individuals in the population. In the BVM, the number of vaccines is

the same as the vaccination coverage; however, in the MVM, protecting individuals

against both pathogens with the same coverage as in the BVM requires twice as

many vaccinations.

In the MVM, the number of individuals vaccinated per unit time is pmΛ. A

fraction r
A

+r
B

of vaccinated newborns receives vaccine against one pathogen only,

and the remaining fraction r
AB

receives vaccines against both pathogens A and B.

Since r
A

+ r
B

+ r
AB

= 1, the total number of vaccines administered per unit time is

(r
A

+ r
B

) pmΛ + 2 r
AB

pmΛ = pmΛ(1 + r
AB

). In the BVM, the number of newborns

vaccinated per unit time is pbΛ, and each vaccinee receives a single dose of vaccine

against both pathogens. Hence, the total number of vaccines is pbΛ. It is therefore

meaningful to compare the total vaccine doses (1 + r
AB

) pmΛ and pbΛ per unit

time in the two models. We performed numerical simulations to reveal whether it

is possible to reduce the incidence of infections through a bivalent vaccine without

increasing the total number of vaccines in the population compared with the MVM.

Heatmaps presented in Figure 1 show the difference in the cumulative number of

infections for each pathogen in the two models over twenty years following the start

of vaccination. The simulations were run when pm and pb vary in their respective

ranges between 0 (in the absence of vaccination) and 1 (full vaccination coverage

of newborns). In our simulations, four values were considered for the average time

period of protection following vaccination or recovery from infection. Figure 1 shows

the results for lifetime protection, i.e., θ = 0 (A,E); θ−1 = 5 years (B,F); θ−1 = 10

years (C,G); and θ−1 = 15 years (D,H) protection. Other parameter values are

provided in Table 2.1. First and second rows in Figure 1 correspond to the difference

in the cumulative number of infections between the two models for pathogens A and

B, respectively, with the magnitude of difference indicated by colour bars. The red

line indicates the same cumulative number of infections in the two models. The

black dashed-line corresponds to the same number of vaccine doses in both models

(i.e., pb = (1 + r
AB

)pm). Colours corresponding to positive numbers above the red

line identify the areas in the heatmaps where the cumulative number of infections

in the MVM is higher than that in the BVM. Any point below the black dashed-line

corresponds to a lower vaccine doses in the BVM compared with the MVM (that is,

pb < pm(1 + r
AB

)). We observed that the red line is below the black dashed-line for

values of θ (inverse of the duration of protection) used for simulations, implying that

it is possible to reduce the cumulative number of infections for each pathogen by

implementing a bivalent vaccine while using a lower number of vaccines compared to

the MVM. However, as the length of the duration of protection following vaccination

or recovery from natural infection increases, the difference in the cumulative number

of infections between the two vaccination models decreases.
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Fig. 1. Comparison of the cumulative number of infections caused by each pathogen in the two

models over twenty years, with varying vaccine coverages. In figures A and E, the duration of
immunity is lifetime (θ = 0). In other figures, the duration of immunity is θ−1 = 5 years (B,F),

θ−1 = 10 years (C,G), and θ−1 = 15 years (D,H). Colour bars show the difference between the

cumulative number of infections in the MVM and BVM. Positive values indicate a lower number
of infections using a bivalent vaccine. The red line corresponds to scenarios where the difference

in the cumulative number of infections is zero. In the area below the black dashed-line, the total

number of vaccines in the BVM is lower than that in the MVM. Other parameter values are
provided in Table 2.1.

For comparison purposes, we also simulated the time profiles of infection caused

by each pathogen in the two models. For these simulations we fixed a pair of (pm, pb)

in the area between the red and black dashed lines in the heatmaps. Figures 2 and 3

show these time profiles, where red, blue, and green curves correspond to the classes

I
A

, J
A

, and X
A

in each model, and magenta curves in Figure 3 correspond to the

class Y
A

in the BVM. Parameter values are provided in Table 2.1 with pm = 0.6 and

pb = 0.8. These simulations show a similar qualitative behaviour of infection curves

when the difference in the cumulative number of infections between the two models

is small. However, for large differences (Figure 1C), the corresponding infection

curves render different long-term behaviour (Figures 2-C,G and 3-C,G).

Remark. For the simulations presented here, we assumed the same duration of

immune protection following vaccination and recovery from natural infection. How-

ever, for many diseases, natural infection may induce stronger and longer-lasting

immunity than vaccination. We therefore carried out further simulations with a

longer protection period for immunity induced by natural infection compared to

that conferred by vaccination. We observed (Figure 4) that the effect of naturally

acquired immunity transcends the effect of vaccine-induced immunity.
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Fig. 2. Time profiles of infections caused by each pathogen in the MVM (2.3), where the duration
of immunity is (A,E): lifetime (θ = 0); (B,F): 5 years (θ−1 = 5); (C,G): 10 years (θ−1 = 10); and

(D,H): 15 years (θ−1 = 15). Red, blue, and green curves correspond to the classes IA , JA , and

XA . Vaccination coverages are pm = 0.6 and pb = 0.8. Other parameter values are provided in
Table 2.1.
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Fig. 3. Time profiles of infections caused by each pathogen in the BVM (2.5), where the duration
of immunity is (A,E): lifetime (θ = 0); (B,F): 5 years (θ−1 = 5); (C,G): 10 years (θ−1 = 10); and

(D,H): 15 years (θ−1 = 15). Red, blue, green, and magenta curves correspond to the classes IA ,
JA , XA , and YA . Vaccination coverages are pm = 0.6 and pb = 0.8. Other parameter values are

provided in Table 2.1.
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Fig. 4. Time profiles of infections caused by each pathogen in the BVM (2.5), where the duration of
vaccine-induced immunity is (A,B,E,F): 5 years; (C,D,G,H): 10 years; and the duration of naturally

acquired immunity is (A,B,E,F): 10 years; (C,D,G,H): 15 years. Red, blue, green, and magenta

curves correspond to the classes IA , JA , XA , and YA . Vaccination coverages are pm = 0.6 and
pb = 0.8. Other parameter values are provided in Table 2.1.

Discussion

Bivalent vaccines have the advantage of providing immunity against two or more

pathogens in a single-dose vaccination. These vaccines can potentially reduce costs

associated with the administration of single-dose vaccines for different diseases, in

addition to providing the uniform vaccination coverage of each disease. However,

the protection efficacy of such vaccines may not be as good as that provided by

individually administered monovalent vaccines against different pathogens. A num-

ber of bivalent vaccines are currently being used in many countries,5–8 however an

important question is whether these vaccines could reduce the morbidity caused by

different pathogens in the population without increasing vaccine doses compared to

monovalent vaccines.

To address this question, we developed, for the first time, epidemiological mod-

els for transmission dynamics of two immunologically unrelated pathogens, where

immunity conferred by vaccination or natural infection of one pathogen does not

provide any cross-protection against the other pathogen. These models have the

same basic framework in the absence of vaccination, but they are structurally dif-

ferent when monovalent and bivalent vaccines are incorporated. We carried out the

theoretical analysis to show global behaviours and persistence. While the vaccine-

induced immunity wanes over time in both models, our main assumption is that

monovalent vaccines provide full protection against each pathogen, but the bivalent

vaccine provides only partial protection against both pathogens.

We compared the outcomes of vaccination in each model by means of numerical
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simulations. For this evaluation, we considered the cumulative number of infections

caused by each pathogen in the two models overtime, while changing the time du-

ration of the vaccine-induced protection. Our simulation results (Figure 1) suggest

that, within biologically feasible range of model parameters, it is possible to re-

duce the total number of infections using a bivalent vaccine with a lower number of

vaccines compared to the MVM. This is illustrated by the region between red and

dashed-black lines in Figure 1. We observed that the reduction in the total number

of infections over a certain period of time depends significantly on the duration

of the vaccine-induced protection (i.e., the parameter 1/θ). We also note that our

results are quantitatively subject to variations in the parameter space; however, we

expect that qualitative signatures of the models remain intact in epidemiologically

feasible spectra.

In models considered here, we assumed no cross-protection between the two

pathogens. When considering bivalent vaccines for different strains of the same

pathogen in the presence of cross-protection, the dynamics of disease spread and

prevention become more complex. In this case, recovery from infection with one

strain may provide partial protection against infection with another strain. Com-

plexity of disease dynamics when using this type of bivalent vaccines merits further

investigation. Additional study of the frameworks developed here for specific vac-

cines and scenarios is proceeding.
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Appendix A. Persistence and global behaviour of the MVM

Proof of Theorem 3.1. To derive the stability of the DFE, it is sufficient to

investigate the Jacobian of the infection subsystem around the DFE. The linear

system

[I ′
A
, J ′

A
, X ′

A
, I ′

B
, J ′

B
, X ′

B
]T = J · [I

A
, J

A
, X

A
, I

B
, J

B
, X

B
]T

approximates the dynamics of the infection classes in the initial phase of the epi-

demic, where J is a 6× 6 matrix, defined as

J =

[
J1 0

0 J2

]
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with J1, J2 ∈ R3×3,

J1 =


β

A

S0

N∗ − (γ
A

+ d) β
A

S0

N∗ β
A

S0

N∗

β
A

T 0

B

N∗ β
A

T 0

B

N∗ − (γ
A

+ d) β
A

T 0

B

N∗

β
A

W 0

B

N∗ β
A

W 0

B

N∗ β
A

W 0

B

N∗ − (γ
A

+ d)

 ,

J2 =


β

B

S0

N∗ − (γ
B

+ d) β
B

S0

N∗ β
B

S0

N∗

β
B

T 0

A

N∗ β
B

T 0

A

N∗ − (γ
B

+ d) β
B

T 0

A

N∗

β
B

W 0

A

N∗ β
B

W 0

A

N∗ β
B

W 0

A

N∗ − (γ
B

+ d)

 .

Let s(J) denote the maximum real part of the eigenvalues of J . For stability of

the DFE, we require s(J) < 0. It follows from the block diagonal structure of J that

the six eigenvalues of the matrix arise pairwise as the eigenvalues of the diagonal

blocks, which are

λ1 = β
A

S0 + T 0
B

+W 0
B

N∗
− (γ

A
+ d), λ2 = −(γ

A
+ d), λ3 = −(γ

A
+ d),

λ4 = β
B

S0 + T 0
A

+W 0
A

N∗
− (γ

B
+ d), λ5 = −(γ

B
+ d), λ6 = −(γ

B
+ d).

We note that λ2, λ3, λ5, λ6 < 0; moreover λ1 < 0 (> 0) if and only if RAm < 1

(> 1), and λ4 < 0 (> 0) if and only if RBm < 1 (> 1). These imply the local

stability of the DFE.

We define four subspaces as follows:

Υ
A

= {x ∈ Γ : I
A

= 0, J
A

= 0, X
A

= 0},
Υ

B
= {x ∈ Γ : I

B
= 0, J

B
= 0, X

B
= 0},

Ω
A

= {x ∈ Γ : I
A

+ J
A

+X
A
> 0},

Ω
B

= {x ∈ Γ : I
B

+ J
B

+X
B
> 0}.

Υ
A

and Υ
B

are the extinction spaces of pathogens A and B, respectively. Note that

Ω
A

= Γ \ Υ
A

, and Ω
A

is the subspace where pathogen A is present. Similarly, Ω
B

is the subspace where pathogen B is present, and it holds true that Ω
B

= Γ \ Υ
B

.

It is easy to see that all four subspaces are invariant with respect to model (2.3).

A.1. Behaviour in the presence of a single pathogen

We now investigate the behaviour of model (2.3) in the special case, where one of

the pathogens (say, without loss of generality, pathogen B) is absent. This confines
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the analysis to the subspace Υ
B

. For the special case where pathogen A is absent,

one can obtain similar results to those presented below.

In Υ
B

, the equations for I
B

, J
B

, and X
B

can be eliminated from model (2.3),

as I
B

= J
B

= X
B
≡ 0 implies I ′

B
= J ′

B
= X ′

B
≡ 0. We introduce new variables by

Ŝ = S + T
B

+ W
B

, V̂ = W
A

+ W
AB

, Î = I
A

+ J
A

+ X
A

, R̂ = T
A

+ R, and obtain

the system

Ŝ′ = (1− pm(r
A

+ r
AB

))Λ− β
A

Î

N
Ŝ − dŜ + θ(V̂ + R̂),

V̂ ′ = pm(r
A

+ r
AB

)Λ− dV̂ − θV̂ ,

Î ′ = β
A

Î

N
Ŝ − γ

A
Î − dÎ,

R̂′ = γ
A
Î − dR̂− θR̂,

(A.6)

where we used Ŝ+ V̂ + Î+ R̂ = N , F
B
≡ 0, and 1−pm+pm rB = 1−pm(r

A
+r

AB
).

With V̂ 0 =
pm(r

A
+r

AB
)Λ

d+θ and Ŝ0 = (1 − pm(r
A

+ r
AB

))Λ
d + θ

d V̂
0, the reproduction

number of system (A.6) is calculated as

β
A

(γ
A

+ d)N∗
Ŝ0 =

β
A

(γ
A

+ d)

(
1− pm(r

A
+ r

AB
)d

d+ θ

)
,

and using r
A

+ r
AB

= 1− r
B

we note that this formula is the same as that of RAm
in (3.5). Hence, RAm can be used to describe the reproduction number of system

(A.6).

The system (A.6) gives a special case of the system (2) in Ref. 14. Therefore,

RAm gives the reproduction number associated with the system (2) in Ref. 14.

Following the analysis in Ref. 14, we define

D̂1 =
{

(Ŝ, V̂ , Î, R̂) ∈ R4
+ : N = N∗

}
, D̂0 =

{
(Ŝ, V̂ , Î, R̂) ∈ D̂1 : Î = 0

}
.

Theorem Appendix A.1 Consider the system (A.6). There is a unique endemic

equilibrium Ê1 if and only if RAm > 1. The endemic equilibrium Ê1 is globally

asymptotically stable in the subspace D̂1\D̂0 whenever RAm > 1. For any RAm ≥ 0

there is a unique DFE, denoted by Ê0, which is globally asymptotically stable in D̂1

whenever RAm ≤ 1.

Proof. We recall from the equation (3.1) that there is a unique equilibrium N∗ for

the total population, hence every equilibrium of (A.6) lies in D̂1. It follows from the

non-negativity of solutions that D̂1 is invariant with respect to (A.6). The dynamics

of system (A.6) restricted to D̂1 is equivalent to that of system (15) in Ref. 14. Using

Theorems 1, 3, and 4, and Lemmas 3 and 5 of Ref. 14, we establish the assertion of

the theorem.

It is worth mentioning that system (2) in Ref. 14 allows for the forward and

backward bifurcations at the DFE. However, the analysis of system (2) in Ref. 14
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shows that the backward bifurcation is impossible with a fully protective vaccine,

which excludes the possibility of a backward bifurcation in our system (A.6).

For system (A.6), we obtained that Ŝ, V̂ , Î, and R̂ converge to one of the two

attractors Ê0 and Ê1. Let (Ŝ, V̂ , Î, R̂) → (Ŝ∗, V̂ ∗, Î∗, R̂∗) where (Ŝ∗, V̂ ∗, Î∗, R̂∗) ∈
{Ê0, Ê1}, and let F ∗

A
= β

A
Î∗/N∗. We show that in model (2.3) there is a unique

equilibrium x∗ = (S∗, I∗
A
, . . . , R∗) associated with each of Ê0 and Ê1.

Theorem Appendix A.2 In model (2.3), there is a unique endemic equilibrium

EAm in Υ
B

if and only if RAm > 1. The equilibrium EAm is globally asymptotically

stable in the subspace Ω
A
∩ Υ

B
∩ {x ∈ Γ : N = N∗} whenever RAm > 1. For any

RAm ≥ 0, the unique DFE is globally asymptotically stable in Υ
B
∩ {x ∈ Γ : N =

N∗} whenever RAm ≤ 1.

In model (2.3), there is a unique endemic equilibrium EBm in Υ
A

if and only if

RBm > 1. The equilibrium EBm is globally asymptotically stable in the subspace

Ω
B
∩ Υ

A
∩ {x ∈ Γ : N = N∗} whenever RBm > 1. For any RBm ≥ 0 the unique

DFE is globally asymptotically stable in Υ
A
∩{x ∈ Γ : N = N∗} whenever RBm ≤ 1.

Proof. We prove the first part of the theorem. It is obvious that T
B
→ 0, W

AB
→

W 0
AB

, andW
A
→W 0

A
in model (2.3) in the subspace Υ

B
, so let T ∗

B
= 0,W ∗

AB
= W 0

AB
,

and W ∗
A

= W 0
A

. We also note that W
B
→W ∗

B
where W ∗

B
= pmrBΛ/(d+θ+F ∗

A
) 6= 0;

thus S → S∗ where S∗ = ((1− pm)Λ + θ(V̂ ∗+ R̂∗+W ∗
B

))/(F ∗
A

+ d) 6= 0. Therefore,

the components I∗
A

, J∗
A

, and X∗
A

of the equilibrium must satisfy

F ∗
A
S∗ = (γ

A
+ d)I∗

A
,

F ∗
A
T ∗

B
= (γ

A
+ d)J∗

A
,

F ∗
A
W ∗

B
= (γ

A
+ d)X∗

A
,

Î∗ = I∗
A

+ J∗
A

+X∗
A
.

Note that Î∗ = 0 and F ∗
A

= 0 in Ê0, which implies I∗
A

= J∗
A

= X∗
A

= 0. Furthermore,

we have Î∗ > 0, F ∗
A
> 0 in Ê1, which implies I∗

A
= F ∗

A
S∗/(γ

A
+ d) > 0, J∗

A
= 0, and

X∗
A

= F ∗
A
W ∗

B
/(γ

A
+ d) > 0 (note that we used T ∗

B
= 0). In both cases, I

A
→ I∗

A
,

J
A
→ J∗

A
, and X

A
→ X∗

A
. Lastly, it is easy to see that T

A
→ T ∗

A
where T ∗

A
=

γ
A
I∗
A
/(θ + d), and R→ R∗ where R∗ = γ

A
X∗

A
/(θ + d).

In the subspace Υ
B

, the classes I
B

, J
B

, and X
B

are at zero state. Let I∗
B

=

J∗
B

= X∗
B

= 0 at any equilibrium. The equilibrium associated with Ê0 is a DFE of

model (2.3), and by uniqueness, it follows that it is the DFE given in (3.3). At the

equilibrium of the model (2.3) that is associated with Ê1, we have I∗
A
, X∗

A
> 0. We

denote this equilibrium by EAm, which is an endemic equilibrium with respect to

pathogen A and disease-free equilibrium with respect to pathogen B. We refer to

EAm as the boundary endemic equilibrium of model (2.3) in the presence of pathogen

A and in the absence of pathogen B.
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A.2. Persistence and global behavior

We recall from the equation (3.1) that the total population converges to the equi-

librium N∗. We consider model (2.3) as a non-autonomous system with nonau-

tonomous term N(t), which is governed by (3.1). By limt→∞N(t) = N∗, model

(2.3) is asymptotically autonomous with the limiting system which arises from (2.3)

by replacing N(t) with N∗. In this section our analysis is restricted to the case when

the total population is at its steady state, that is, N = N∗. By the theory of asymp-

totically autonomous systems (see Refs. 15–17) the dynamics of the limiting system

is qualitatively equivalent to that of the original model (2.3).

Note that the equation for W
AB

in model (2.3) is independent from other

equations, and limt→∞W
AB

= W 0
AB

= (pm rAB
)Λ/(d + θ). This means that

limt→∞(N −W
AB

) = Λ/d− (pm rAB
)Λ/(d+ θ). We define the quantities

RcAm =
β

A

(γ
A

+ d)

(
1− d pm rAB

d+ θ

)
,

RcBm =
β

B

(γ
B

+ d)

(
1− d pm rAB

d+ θ

)
.

Note that RAm ≤ RcAm and RBm ≤ RcBm.

Theorem Appendix A.3 In the subspace ΓW = {x ∈ Γ : W
AB
≥ (pm rAB

)Λ/(d+

θ)} each solution converges to the subspace Υ
A
∩ ΓW (to the subspace Υ

B
∩ ΓW ) if

RcAm ≤ 1 (RcBm ≤ 1).

Proof. Suppose RcAm ≤ 1, and consider the Lyapunov function V1(x) = I
A

+J
A

+

X
A

. The derivative of V1 along the solutions of the system is

V̇1 = (I
A

+ J
A

+X
A

)(γ
A

+ d)

(
β

A

(γ
A

+ d)N∗
(S + T

B
+W

B
)− 1

)
.

In the subspace ΓW , we have S + T
B

+W
B
≤ N∗ − (p r

AB
)Λ/(d+ θ), hence

V̇1 ≤(I
A

+ J
A

+X
A

)(γ
A

+ d)

(
β

A

(γ
A

+ d)N∗

(
N∗ − (pm rAB

)Λ

d+ θ

)
− 1

)
.

The derivative V̇1 ≤ 0 if RcAm ≤ 1. Note that V̇1 = 0 if and only if I
A

+J
A

+X
A

=

0 or S+T
B

+W
B

= N∗− (pm rAB
)Λ/(d+ θ), although the latter is only possible if

I
A

= J
A

= X
A

= 0. Thus, the subspace where V̇1 = 0 is Υ
A

. It follows from LaSalle’s

invariance principle that limt→∞(I
A

+J
A

+X
A

) = 0 holds for each solution, implying

that pathogen A dies out. One can show similarly the result for pathogen B by using

the Lyapunov function V2(x) = I
B

+ J
B

+X
B

.

Theorem Appendix A.4 The DFE is globally asymptotically stable in the sub-

space ΓW = {x ∈ Γ : W
AB
≥ (p r

AB
)Λ/(d+ θ)} if RcAm ≤ 1 and RBm ≤ 1, or if

RcBm ≤ 1 and RAm ≤ 1.

Proof. Suppose RcAm ≤ 1 and RBm ≤ 1, and consider the Lyapunov function

V1 as defined in the previous theorem. Therefore V̇1 ≤ 0, and the largest invariant
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set in V1 = 0 is the DFE. Thus, by Theorem Appendix A.1, the DFE is globally

asymptotically stable in Υ
A

.

Similarly, when RcBm ≤ 1 and RAm ≤ 1, we obtain for V2(x) = I
B

+ J
B

+X
B

that V̇2 ≤ 0. Moreover the largest invariant set in V2 = 0 is the DFE. Thus, in both

cases, the limit set of each solution is the DFE, which proves the theorem.

Theorem Appendix A.5 In the subspace ΓW ∩ Ω
B

, EBm is globally asymptoti-

cally stable if RcAm ≤ 1 and RBm > 1. In the subspace ΓW ∩ Ω
A

, EAm is globally

asymptotically stable if RcBm ≤ 1 and RAm > 1.

Proof. Suppose RcAm ≤ 1 and RBm > 1, and consider the Lyapunov function

V1 as defined above. It can be shown that V̇1 ≤ 0, and the largest invariant set in

V1 = 0 is EBm; thus by Theorem Appendix A.1, the DFE is globally asymptotically

stable in Υ
A
∩ Ω

B
.

Similarly, when RcBm ≤ 1 and RAm > 1 we obtain for V2(x) = I
B

+ J
B

+ X
B

that V̇2 ≤ 0. Moreover the largest invariant set in V2 = 0 is the EAm. Hence, the

results follow from LaSalle’s invariance principle.

We continue our analysis with investigating persistence in model (2.3). We in-

troduce two new quantities. Let R∗Am be the expected number of new infections

with pathogen A when an individual infected with pathogen A is introduced into

the population that is at the steady state EBm. Let R∗Bm be the expected number

of new infections with pathogen B when an individual infected with pathogen B is

introduced into the population that is at the steady state EAm. The expressions for

R∗Am and R∗Bm read

R∗Am =
β

A

N∗(γ
A

+ d)
(S∗ + T ∗

B
+W ∗

B
),

R∗Bm =
β

A

N∗(γ
A

+ d)
(S∗ + T ∗

A
+W ∗

A
),

where S∗, T ∗
B

, and W ∗
B

are the states of the corresponding classes at the equilib-

rium EBm, and S∗, T ∗
A

, and W ∗
A

are the states of the corresponding classes at the

equilibrium EAm.

Lemma Appendix A.1 In model (2.3), R∗Am < RAm and R∗Bm < RBm.

Proof. We show that S∗ + T ∗
A

+ W ∗
A
< S0 + W 0

A
, where S∗, T ∗

A
, and W ∗

A
are the

states of the corresponding classes at the equilibrium EAm, and S0 and W 0
A

are the

states of the corresponding classes at the DFE. Hence R∗Bm < RBm.

Recall that the pathogen B is absent at both the DFE and EAm. Therefore W 0
A

=

W ∗
A

and W 0
AB

= W ∗
AB

. Furthermore, at any equilibrium, the total population is at

the steady state N∗, and we obtain

S0 +W 0
B

= S∗ + T ∗
A

+W ∗
B

+ I∗
A

+X∗
A

+R∗.
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Equating the right hand sides of the equations in model (2.3) to zero, it is easy

to see that T ∗
A

= γ
A
I∗
A
/(θ + d) and R∗ = γ

A
X∗

A
/(θ + d); thus we derive from the

above equation that

S0 +W 0
B

= S∗ +W ∗
B

+ (I∗
A

+X∗
A

)

(
1 +

γ
A

θ + d

)
W 0

B
−W ∗

B
− (I∗

A
+X∗

A
)− γ

A

θ + d
X∗

A
= S∗ + T ∗

A
− S0.

Since W 0
B

= pm rBΛ(d+ θ) and (d+ θ)W ∗
B

= pm rBΛ− β
A

(I∗
A

+X∗
A

)W ∗
B
/N∗, from

the ninth equation of (2.3), we obtain

(W 0
B
−W ∗

B
− (I∗

A
+X∗

A
)− γ

A

θ + d
X∗

A
)(d+ θ)

= (I∗
A

+X∗
A

)

(
β

A

N∗
W ∗

B
− (d+ θ)

)
− γ

A
X∗

A

= −I∗
A

(d+ θ)− γ
A
X∗

A
< 0,

where for the last equality we used (I∗
A

+ X∗
A

)β
A
W ∗

B
/N∗ − X∗

A
(d + θ) = 0 from

the tenth equilibrium equation of (2.3). Hence S∗ + T ∗
A
< S0, which implies S∗ +

T ∗
A

+W ∗
A
< S0 +W 0

A
and R∗Bm < RBm. The relation R∗Am < RAm can be proven

similarly.

We now recall some definitions and results from Ref. 18.

Definition Appendix A.1 Let X be an arbitrary nonempty set and ρ : X → R+.

A semiflow Φ : R+ × X → X is called uniformly weakly ρ-persistent, if there

exists some ε > 0 such that

lim sup
t→∞

ρ(Φ(t, x)) > ε ∀x ∈ X, ρ(x) > 0.

Φ is called uniformly (strongly) ρ-persistent, if there exists some ε > 0 such that

lim inf
t→∞

ρ(Φ(t, x)) > ε ∀x ∈ X, ρ(x) > 0.

A set M in X is called uniformly weakly ρ-repelling if there is no x ∈ X such that

ρ(x) > 0 and Φ(t, x)→M as t→∞.

Uniformly weakly ρ-persistence is a property that is weaker than uniformly

(strongly) ρ-persistence. However, Theorem 4.5 in Ref. 18 establishes conditions

on X and Φ such that uniformly weakly ρ-persistence implies uniformly (strongly)

ρ-persistence.

In what follows, we present uniformly persistence results for model (2.3). It is

easy to see that the model generates a continuous flow on the phase space. After

showing weakly persistence for some choices of ρ, we will consider the conditions

of Theorem 4.5 in Ref. 18 to prove uniformly (strongly) persistence. We will also

use Theorem 8.17 in Ref. 18 to assert uniformly weakly ρ-persistence, by examining

some uniformly weakly ρ-repelling sets.
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The ω-limit set of a point x ∈ X is defined as

ω(x) = {y ∈ X : ∃{tn}n≥1 such that tn →∞,Φ(tn, x)→ y as n→∞} .

Theorem Appendix A.6 I
A

+J
A

+X
A

is uniformly (strongly) persistent in Ω
A

if

either R∗Am > 1, or RAm > 1 and RBm ≤ 1. I
B

+J
B

+X
B

is uniformly (strongly)

persistent in Ω
B

if either R∗Bm > 1, or RBm > 1 and RAm ≤ 1.

Proof. We prove the theorem for the persistence of pathogen A only. The phase

space Γ is nonempty, so let X = Γ and x = (S, I
A
, . . . , R) ∈ Γ be any state of the

model. Consider ρ(x) = I
A

+ J
A

+X
A

. Then we have

{x ∈ Γ: ρ(x) = 0} = Υ
A
,

the extinction space of pathogen A. We investigate Ω := ∪x∈Υ
A
ω(x). From Theorem

Appendix A.2, it follows that Ω = M1 ∪M2 whenever RBm > 1, and Ω = M1

whenever RBm ≤ 1, where M1 is the DFE and M2 = EBm.

First, we show that M1 is uniformly weakly ρ-repelling if RAm > 1. Suppose

there is some x such that ρ(x) > 0 and Φ(t, x)→ M1 as t→∞; that is, there is a

solution such that I
A

(t)+J
A

(t)+X
A

(t) > 0 but limt→∞(I
A

(t)+J
A

(t)+X
A

(t)) = 0

and limt→∞(S(t) + W
B

(t) + T
B

(t)) = S0 + W 0
B

+ T 0
B

. Thus, for any ε > 0 and

sufficiently large t > 0, we have S(t) +W
B

(t) + T
B

(t) > S0 +W 0
B

+ T 0
B
− ε. For the

derivative of I
A

+ J
A

+X
A

, we obtain

(I
A

+ J
A

+X
A

)′ = (I
A

+ J
A

+X
A

) (β
A

(S + T
B

+W
B

)− (γ
A

+ d))

> (γ
A

+ d)(I
A

+ J
A

+X
A

)

(
β

A

γ
A

+ d
(S0 +W 0

B
+ T 0

B
− ε)− 1

)
= (γ

A
+ d)(I

A
+ J

A
+X

A
)

(
RAm − ε

β
A

γ
A

+ d
− 1

)
,

which is positive for small ε by RAm > 1, contradicting limt→∞(I
A

(t) + J
A

(t) +

X
A

(t)) = 0. Note that this result holds when R∗Am > 1, as R∗Am > 1 implies

RAm > 1.

We derive similarly that M2 is uniformly weakly ρ-repelling if R∗Am > 1.

Assume the contrary, there is a solution such that I
A

(t) + J
A

(t) + X
A

(t) > 0

but limt→∞(I
A

(t) + J
A

(t) + X
A

(t)) = 0 and limt→∞(S(t) + W
B

(t) + T
B

(t)) =

S∗ + W ∗
B

+ T ∗
B

, where S∗, W ∗
B

, and T ∗
B

are the corresponding components of EBm.

For any ε > 0 and sufficiently large t > 0, we derive

(I
A

+ J
A

+X
A

)′ = (I
A

+ J
A

+X
A

) (β
A

(S + T
B

+W
B

)− (γ
A

+ d))

> (γ
A

+ d)(I
A

+ J
A

+X
A

)

(
β

A

γ
A

+ d
(S∗ +W ∗

B
+ T ∗

B
− ε)− 1

)
= (γ

A
+ d)(I

A
+ J

A
+X

A
)

(
R∗Am − ε

β
A

γ
A

+ d
− 1

)
> 0,

where we used S(t)+W
B

(t)+T
B

(t) > S∗+W ∗
B

+T ∗
B
−ε. However, (I

A
+J

A
+X

A
)′ > 0,

which contradicts limt→∞(I
A

(t) + J
A

(t) +X
A

(t)) = 0.
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Suppose now RBm ≤ 1 and RAm > 1. Then Ω ⊂M1, M1 is isolated, compact,

invariant, acyclic, and weakly ρ-repelling. Therefore, Theorem 8.17 in Ref. 18 implies

that I
A

+ J
A

+X
A

is weakly ρ-persistent. However, we recall again that R∗Am > 1

implies RAm > 1, hence the last statement also holds when RBm ≤ 1 and R∗Am >

1. If RBm > 1, then Ω ⊂ (M1 ∪M2), M1 and M2 are invariant, isolated, compact,

and weakly ρ-repelling if R∗Am > 1, and {M1,M2} is acyclic. Thus, by Theorem

8.17 in Ref. 18, we conclude that I
A

+ J
A

+X
A

is weakly ρ-persistent if R∗Am > 1

and RBm > 1.

It remains to show that weakly ρ-persistence implies uniformly (strong) ρ-

persistence. The phase space X is compact, hence there exists a compact attractor.

Moreover our flow is continuous, and therefore we can apply Theorem 4.5 in Ref. 18

to assert uniformly (strongly) persistence.

The question of whether I
A

+ J
A

+ X
A

is uniformly persistent in Ω
A

when

R∗Am ≤ 1 < RAm and RBm > 1 remains unaddressed. However, based on numeri-

cal experiments, we conjecture that this assertion holds true. If so, this result, to-

gether with Theorem Appendix A.6 means that I
A

+J
A

+X
A

is uniformly persistent

in Ω
A

when RAm > 1. Similar conjecture is proposed for the uniform persistence

of I
B

+ J
B

+X
B

in Ω
B

when RBm > 1.

Theorem Appendix A.7 In the subspace Ω
A
∩Ω

B
, I

A
+J

A
+X

A
+I

B
+J

B
+X

B

is uniformly (strongly) persistent if min{RAm, RBm} > 1.

Proof. For X = Γ and x = (S, I
A
, . . . , R) ∈ Γ, we consider ρ(x) = I

A
+ J

A
+X

A
+

I
B

+ J
B

+X
B

. Then, the disease-free subspace is

{x ∈ Γ: ρ(x) = 0} = {(S, I
A
, . . . , R) : I

A
= J

A
= X

A
= I

B
= J

B
= X

B
= 0} .

In the absence of both pathogens, the system is linear and the DFE is globally

asymptotically stable. Let Ω := M1 where M1 is the DFE. We show that M1 is

uniformly weakly ρ-repelling if RAm > 1 and RBm > 1. Suppose there exists a

solution such that I
A

(t) + J
A

(t) + X
A

(t) > 0 and I
B

(t) + J
B

(t) + X
B

(t) > 0 but

limt→∞(I
A

(t)+J
A

(t)+X
A

(t)+I
B

(t)+J
B

(t)+X
B

(t)) = 0 and limt→∞(S(t)+W
B

(t)+

T
B

(t)) = S0 + W 0
B

+ T 0
B

. Then, for any ε > 0 and sufficiently large t > 0, we have

S(t)+W
B

(t)+T
B

(t) > S0+W 0
B

+T 0
B
−ε and S(t)+W

A
(t)+T

A
(t) > S0+W 0

A
+T 0

A
−ε.

We obtain
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(I
A

+ J
A

+X
A

+ I
B

+ J
B

+X
B

)′

= (I
A

+ J
A

+X
A

) (β
A

(S + T
B

+W
B

)− (γ
A

+ d))

+ (I
B

+ J
B

+X
B

) (β
B

(S + T
A

+W
A

)− (γ
B

+ d))

> (γ
A

+ d)(I
A

+ J
A

+X
A

)

(
β

A

γ
A

+ d
(S0 +W 0

B
+ T 0

B
− ε)− 1

)
+ (γ

B
+ d)(I

B
+ J

B
+X

B
)

(
β

B

γ
B

+ d
(S0 +W 0

A
+ T 0

A
− ε)− 1

)
= (γ

A
+ d)(I

A
+ J

A
+X

A
)

(
RAm − ε

β
A

γ
A

+ d
− 1

)
+ (γ

B
+ d)(I

B
+ J

B
+X

B
)

(
RBm − ε

β
B

γ
B

+ d
− 1

)
,

which is positive for small ε since RAm > 1 and RBm > 1, contradicting

limt→∞(I
A

(t) + J
A

(t) +X
A

(t) + I
B

(t) + J
B

(t) +X
B

(t)) = 0.

We apply Theorem 8.17 in Ref. 18 to derive that I
A

+X
A

+ I
B

+X
B

is weakly

ρ-persistent. We note that Ω ⊂ M1, M1 is isolated, compact, invariant, acyclic,

and weakly ρ-repelling. The phase space X is compact, and hence there exists a

compact attractor. Furthermore, the flow is continuous, and thus Theorem 4.5 in

Ref. 18 implies uniformly (strongly) persistence.

The above theorem can be extended by noting that I
A

+ J
A

+ X
A

persists if

RAm > 1 and RBm ≤ 1, and I
B

+ J
B

+X
B

persists if RBm > 1 and RAm ≤ 1.

Corollary Appendix A.1 In the subspace Ω
A
∩Ω

B
, I

A
+J

A
+X

A
+I

B
+J

B
+X

B

is uniformly (strongly) persistent if max{RAm, RBm} > 1.

Appendix B. Persistence and global behaviour of the BVM

B.1. Behavior in the presence of a single pathogen

Similar to model (2.3) (the MVM), we define Υ
A

and Υ
B

in the BVM as the

extinction spaces of pathogens A and B, respectively, and Ω
A

(Ω
B

) as the subspace

where only pathogen A (only pathogen B) is present:

Υ
A

= {x ∈ Γ : I
A

= 0, J
A

= 0, X
A

= 0, Y
A

= 0},
Υ

B
= {x ∈ Γ : I

B
= 0, J

B
= 0, X

B
= 0, Y

B
= 0},

Ω
A

= {x ∈ Γ : I
A

+ J
A

+X
A

+ Y
A
> 0},

Ω
B

= {x ∈ Γ : I
B

+ J
B

+X
B

+ Y
B
> 0}.

It is easy to see that all four subspaces are invariant with respect to model (2.5).

We investigate the model (2.5) in the special case where one of the pathogens

(say, without loss of generality, pathogen B) is absent. The analysis in this subsection

is therefore restricted to the subspace Υ
B

. For the special case where pathogen A

is absent, one can obtain similar results to those presented here.
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In the subspace Υ
B

, the equations for I
B

, J
B

, X
B

, and Y
B

can be eliminated

from model (2.5), as I
B

= J
B

= X
B

= Y
B
≡ 0 implies I ′

B
= J ′

B
= X ′

B
= Y ′

B
≡ 0.

We introduce new variables: S̆ = S + T
B

, V̆ = V
AB

+Q
B

, Ĭ = I
A

+ J
A

+X
A

+ Y
A

,

R̆ = T
A

+Q
A

+R, and obtain the following system

S̆′ = (1− pb)Λ− βA

Ĭ

N
S̆ − dS̆ + θ(V̆ + R̆),

V̆ ′ = pb Λ− κ
A
β

A

Ĭ

N
V̆ − dV̆ − θV̆ ,

Ĭ ′ = β
A

Ĭ

N
S̆ + κ

A
β

A

Ĭ

N
V̆ − γ

A
Ĭ − dĬ,

R̆′ = γ
A
Ĭ − dR̆− θR̆,

(B.2)

where we used S̆ + V̆ + Ĭ + R̆ = N and F
B
≡ 0. With V̆ 0 = pbΛ

d+θ and S̆0 =

(1− pb)Λ
d + θ

d V̆
0, the reproduction number of (B.2) is calculated as

β
A

(γ
A

+ d)N∗
(S̆0 + κ

A
V̆ 0) =

β
A

(γ
A

+ d)

(
1− pb(1− κA

)d

d+ θ

)
,

and we note that this formula is the same as that of RAb in (4.3). Hence, RAb can

be used to describe the reproduction number of system (B.2).

The system (B.2) gives a special case of system (2) in Ref. 14. Thus, RAb
gives the reproduction number associated with system (2) in Ref. 14. Following the

analysis of Ref. 14, we define

D̆1 =
{

(S̆, V̆ , Ĭ, R̆) ∈ R4
+ : N = N∗

}
,

D̆0 =
{

(S̆, V̆ , Ĭ, R̆) ∈ D̆1 : Ĭ = 0
}
.

The following results are obtained by similar arguments as those in Theorem Ap-

pendix A.1.

Theorem Appendix B.1 Consider system (B.2). There is a unique endemic

equilibrium Ĕ1 if and only if RAb > 1. The endemic equilibrium Ĕ1 is globally

asymptotically stable in the subspace D̆1 \D̆0 whenever RAb > 1. For any RAb > 0,

there is a unique DFE Ĕ0, that is globally asymptotically stable in D̆1 whenever

RAb ≤ 1.

We obtained that S̆, V̆ , Ĭ, and R̆ converge in system (B.2). Let (S̆, V̆ , Ĭ, R̆) →
(S̆∗, V̆ ∗, Ĭ∗, R̆∗) where (S̆∗, V̆ ∗, Ĭ∗, R̆∗) ∈ {Ĕ0, Ĕ1}, and let F ∗

A
= β

A
Ĭ∗/N∗. We show

that in model (2.5) there is a unique equilibrium x∗ = (S∗, I∗
A
, . . . , R∗) ∈ R15

associated with each of Ĕ0 and Ĕ1.

Theorem Appendix B.2 In model (2.5), there is a unique endemic equilibrium

EAb in Υ
B

if and only if RAb > 1. The equilibrium EAb is globally asymptotically

stable in the subspace Ω
A
∩ Υ

B
∩ {x ∈ Γ : N = N∗} whenever RAb > 1. For any

RAb ≥ 0, the unique DFE is globally asymptotically stable in Υ
B
∩{x ∈ Γ : N = N∗}



January 3, 2016 9:50 WSPC/INSTRUCTION FILE Knipl-Moghadas-revised

24 Knipl and Moghadas

whenever RAb ≤ 1.

In model (2.5), there is a unique endemic equilibrium EBb in Υ
A

if and only if

RBb > 1. The equilibrium EBb is globally asymptotically stable in the subspace Ω
B
∩

Υ
A
∩ {x ∈ Γ : N = N∗} whenever RBb > 1. For any RBb ≥ 0, the unique DFE is

globally asymptotically stable in Υ
A
∩ {x ∈ Γ : N = N∗} whenever RBb ≤ 1.

Proof. Indeed, it is obvious that T
B
→ 0 and Q

B
→ 0 in the subspace Υ

B
. Let

T ∗
B

= 0 and Q∗
B

= 0. Then S → S̆∗ and V
AB
→ V̆ ∗

AB
, and we let S∗ = S̆∗ and

V ∗
AB

= V̆ ∗
AB

. It follows from model (2.5) that the components I∗
A

, J∗
A

, X∗
A

and Y ∗
A

of

the equilibrium need to satisfy

F ∗
A
S∗ = (γ

A
+ d)I∗

A
,

F ∗
A
T ∗

B
= (γ

A
+ d)J∗

A
,

κ
A
F ∗

A
V ∗

AB
= (γ

A
+ d)X∗

A
,

F ∗
A
Q∗

B
= (γ

A
+ d)Y ∗

A
,

I∗
A

+ J∗
A

+X∗
A

+ Y ∗
A

= Ĭ∗.

However, T
B
→ 0 and Q

B
→ 0 imply that J

A
→ J∗

A
and Y

A
→ Y ∗

A
with J∗

A
=

Y ∗
A

= 0. Note that Ĭ∗ = 0 and F ∗
A

= 0 at Ĕ0, which implies I∗
A

= X∗
A

= 0. On

the other hand, we have Ĭ∗ > 0, F ∗
A
> 0 at Ĕ1; hence I∗

A
= F ∗

A
S∗/(γ

A
+ d) > 0

and X∗
A

= F ∗
A
V ∗

AB
/(γ

A
+ d) > 0. In both cases, I

A
→ I∗

A
and X

A
→ X∗

A
. Finally,

it is easy to see that T
A
→ T ∗

A
and Q

A
→ Q∗

A
where T ∗

A
= (γ

A
I∗
A

)/(θ + d) and

Q∗
A

= (γ
A
X∗

A
)/(θ + d) and moreover R→ 0, giving R∗ = 0.

Note that in the subspace Υ
B

, the classes I
B

, J
B

, X
B

, and Y
B

are at zero state;

thus I∗
B

= J∗
B

= X∗
B

= Y ∗
B

= 0 at any equilibrium in Υ
B

. The equilibrium associated

with Ĕ0 is therefore a disease-free equilibrium in model (2.5), and by uniqueness it

follows that it is the DFE. At the equilibrium of model (2.5) that is associated

with Ĕ1, it follows that I∗
A
, X∗

A
> 0. We denote this equilibrium by EAb , which is an

endemic equilibrium with respect to pathogen A and disease-free with respect to

pathogen B. We refer to EAb as the boundary endemic equilibrium of model (2.5)

in the presence of pathogen A and in the absence of pathogen B. With the above

arguments, we have proven the first part of the theorem, and the second part can

be shown similarly.

B.2. Persistence

Here, we show sufficient conditions for the persistence of the disease in model (2.5).

We again define the reproduction number R∗Ab (R∗Bb), when the population is at

its steady state EBb (EAb ). The expressions for R∗Ab and R∗Bb read

R∗Ab =
β

A

(γ
A

+ d)N∗
(S∗ + T ∗

B
+ κ

A
(V ∗

AB
+Q∗

B
)),

R∗Bb =
β

B

(γ
B

+ d)N∗
(S∗ + T ∗

A
+ κ

B
(V ∗

AB
+Q∗

A
)),
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where S∗, T ∗
B

, V ∗
AB

, and Q∗
B

are the states of the corresponding classes at the

equilibrium EBb , and S∗, T ∗
A

, V ∗
AB

, and Q∗
A

are the states of the corresponding

classes at the equilibrium EAb .

Lemma Appendix B.1 In model (2.5), R∗Ab < RAb and R∗Bb < RBb.

Proof. We show that S∗ + T ∗
A

+ κ
B

(V ∗
AB

+ Q∗
A

) < S0 + κ
B
V 0

AB
, where S0 and

V 0
AB

are the states of the corresponding classes at the DFE. Then, it follows that

R∗Bb < RBb.
Recall that pathogen B is absent at both equilibria. Equating the right hand

sides of the equations for Q
A

, V
AB

, and X
A

in model (2.5) to zero, we obtain

κ
A
F ∗

A
V ∗

AB
= (γ

A
+ d)X∗

A
,

V ∗
AB

=
pbΛ

d+ θ
−
κ

A
F ∗

A
V ∗

AB

d+ θ
=

pbΛ

d+ θ
−

(γ
A

+ d)X∗
A

d+ θ
,

V 0
AB

=
pbΛ

d+ θ
,

Q∗
A

=
γ

A
X∗

A

d+ θ
.

Using these equalities, we derive

V 0
AB
− V ∗

AB
−Q∗

A
=

pbΛ

d+ θ
−
(
pbΛ

d+ θ
−

(γ
A

+ d)X∗
A

d+ θ

)
−
γ

A
X∗

A

d+ θ
=

dX∗
A

d+ θ
.

Since the total population is at the steady state N∗ at any equilibrium, we obtain

S∗ + I∗
A

+ T ∗
A

+ V ∗
AB

+X∗
A

+Q∗
A

= S0 + V 0
AB
,

which we use to express S∗ + T ∗
A
− S0, as

S∗ + T ∗
A
− S0 = V 0

AB
− I∗

A
− V ∗

AB
−X∗

A
−Q∗

A
= −I∗

A
−
θX∗

A

d+ θ
.

Since dX∗
A
/(d+ θ) > 0 and −I∗

A
− θX∗

A
(d+ θ) < 0, it follows from κ

B
≥ 0 that

−I∗
A
−
θX∗

A

d+ θ
< κ

B

dX∗
A

d+ θ
,

S∗ + T ∗
A
− S0 < κ

B
(V 0

AB
− V ∗

AB
−Q∗

A
),

S∗ + T ∗
A

+ κ
B

(V ∗
AB

+Q∗
A

) < S0 + κ
B
V 0

AB
,

which yields R∗Bb < RBb. The other inequality R∗Ab < RAb can be proven using a

similar argument.

The results for persistence are obtained by applying analogous arguments to

those in Theorems Appendix A.6 and Appendix A.7. For the proofs, one may con-

sider the functions ρ = I
A

+J
A

+X
A

+Y
A

and ρ = I
A

+J
A

+X
A

+Y
A

+ I
B

+J
B

+

X
B

+ Y
B

. Without detailing their proofs, we state the following results for model

(2.5).
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Theorem Appendix B.3 I
A

+J
A

+X
A

+Y
A

is uniformly (strongly) persistent in

Ω
A

if either R∗Ab > 1, or RAb > 1 and RBb ≤ 1. I
B

+ J
B

+X
B

+ Y
B

is uniformly

(strongly) persistent in Ω
B

if either R∗Bb > 1, or RBb > 1 and RAb ≤ 1.

Theorem Appendix B.4 In the subspace Ω
A
∩ Ω

B
, I

A
+ J

A
+ X

A
+ Y

A
+ I

B
+

J
B

+ X
B

+ Y
B

is uniformly (strongly) persistent if min{RAb, RBb} > 1 (if

max{RAb, RBb} > 1).


