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Abstract 5

Abstract

High-level image manipulation techniques are in increasing demand as they allow users to intuitively edit

photographs to achieve desired effects quickly. As opposed to low-level manipulations, which provide

complete freedom, but also require specialized skills and significant effort, high-level editing opera-

tions, such as removing objects (inpainting), relighting and material editing, need to respect semantic

constraints. As such they shift the burden from the user to the algorithm to only allow a subset of

modifications that make sense in a given scenario.

Shadow removal is one such high-level objective: it is easy for users to understand and specify, but

difficult to accomplish realistically due to the complexity of effects that contribute to the final image.

Further, shadows are critical to scene understanding and play a crucial role in making images look

realistic. We propose a machine learning-based algorithm that works well with soft shadows, that is

shadows with wide penumbrae, outperforming previous techniques both in performance and ease of use.

We observe that evaluation of such a technique is a difficult problem in itself and one that is often not

considered throughly in the computer graphics and vision communities, even when perceptual validity

is the goal. To tackle this, we propose a set of standardized procedures for image evaluation as well as

an authoring system for creation of image evaluation user studies. In addition to making it possible for

researchers, as well as the industry, to rigorously evaluate their image manipulation techniques on large

numbers of participants, we incorporate best practices from the human-computer intraction (HCI) and

psychophysics communities and provide analysis tools to explore the results in depth.
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Chapter 1

Introduction

Hypothesis: Perceptually superior soft shadow removal is made possible by learning the relationship be-

tween shadowed image patches and their shadow mattes from synthetically-generated data. Simultane-

ously, the procedures commonly used by the computer graphics community to evaluate their algorithms

can be codified and streamlined into a user-study-authoring system.

1.1 Motivation
Digital image manipulation is becoming an increasingly important task in the age of ubiquitous camera

sensors and vast sharing channels: e.g. in 2012 over 300 million photos per day were uploaded to Face-

book alone1. Because of the sheer variety of contexts in which it is needed, there exists a great diversity

of approaches to image editing with different levels of difficulty and flexibility afforded to the users.

Image manipulation techniques can be divided into two categories based on who their target is:

expert or non-expert users. Non-expert operations include changing contrast and brightness, cropping

and automatic red-eye correction. These are usually easily understood and straightforward to compute,

but only offer limited possibilities. On the other hand, expert techniques by definition require experience

and a deeper understanding of the field, while providing complete freedom. They usually rely on the

combination of many atomic operations applied in the right amount to the correct parts of the image,

combined with clear artistic vision of the desired result. An example of such an operation might be

transforming a virtually shadow-free image taken under a cloudy sky into a more dramatic scene with a

strong directional light and striking shadows, such as a sunset. Such change requires carefully adjusting

the brightness of different parts of the image by different amounts, removing and adding realistic-looking

shadows manually and changing the colour balance.

One possible solution to this disparity between capabilities of novices and experts is to build in some

form of intelligence (or simply clever constraints) into the algorithm thus freeing the users from certain

responsibilities. Ideally the only task asked from the user would be the specification of what should

be changed, but without specifying how exactly. As an example, image inpainting algorithms ask for

input to determine which part of the image should be replaced or filled-in and proceed to automatically

determine what the result should look like. Similarly, in the case of soft shadow removal, which we

1https://www.sec.gov/Archives/edgar/data/1326801/000119312512235588/d287954ds1a.htm
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Figure 1.1: Examples of images, where shadows play central roles. Image credits Pol Úbeda Hervàs
(https://secure.flickr.com/photos/polubeda) and http://totallycoolpix.
com/.

focus on in Chapter 3, the user should only have to indicate which shadow to remove without thinking

about how the result should be created.

Generally, these operations can be described as semantic, because their aim is to perform an image

manipulation that has a semantic meaning in the real world e.g. “remove an object” or “change a light

source”. This contrasts with low-level operations that usually can only be interpreted in image space.

Unfortunately, correctly performing semantically meaningful operations is often very challenging be-

cause various properties of the captured scene, such as the 3D scene structure and light characteristics,

are not preserved in the image, but have to be accounted for.

Creating intelligent image manipulation methods is challenging on several levels. Firstly, creating

the algorithm itself takes considerable time, effort, and creativity. Further, the problem of evaluating

such techniques has to be considered as well, otherwise no principled success criteria can be established.

Given the aim of plausibility, rather than physical accuracy, that many algorithms strive for, perceptual

evaluation is the only reliable way to determine the degree of success. Thus, the ability to run user

studies in a principled, rigorous and reliable manner is critical for the computer graphics and vision

communities. This need is amplified when advances in established fields are made and comparisons to

previous attempts are necessary to prove the merit and scope of a given method. Unfortunately, designing

and executing a user study is difficult. While many recent graphics papers include user studies, the

community is aware of the challenges involved in conducting them correctly and not satisfied with the

status quo (see Section 4.1). In other words, while a few examples of high-quality evaluations exist,

progress in our field is hampered by poorly conducted and irreproducible perceptual experiments.

Aiming to remedy these problems, we have built a user study authoring system specifically tai-

lored to the needs of computer graphics researchers. Our prototype is now an online tool (http:

//www.imcompadre.com), allowing scientists to quickly create a range of principled user studies.

Additionally, since published experiments should be trivially repeatable , it facilitates greater repro-

ducibility than any existing alternative.

We have proven the utility of our tool by reproducing four published SIGGRAPH and Transactions

https://secure.flickr.com/photos/polubeda
http://totallycoolpix.com/
http://totallycoolpix.com/
http://www.imcompadre.com
http://www.imcompadre.com
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on Graphics papers, and in each case, rapidly iterating to obtain novel, previously unreported insights

into the data.

1.2 Overview
In the first part of this work, we focus on soft shadow removal, which is a semantic operation that can

be an aim in itself, but can also be seen as a prerequisite for other operations, such as relighting. It is

important to note here that we do not aim for physically accurate representation (what the scene would

look like if the light really was in a different position) since this problem is massively under-constrained.

Rather, we hope to present a solution that looks plausible to the human eye and does not contain jarring

inconsistencies.

So far, shadow removal research either focused on a) hard shadows, where the penumbra was so

narrow as to be negligible, or b) shadows that were only moderately soft and could be compensated for

using simple approximations, such as linear or polynomial functions (see Chapter 2 for in-depth discus-

sion). However, as we explain in Section 3.5, there is a large class of images where these assumptions

do not hold and where such techniques fail. In contrast, in Chapter 3 we propose a novel, data-driven

soft shadow removal aimed at wide-penumbra situations.

Having developed a novel image manipulation method, we turn to the problem of evaluating it

thoroughly. In Chapter 4 we show the current practices of the graphics and vision communities when

it comes to evaluation of image manipulation methods and show how the situation could be improved.

We identify two different tasks that can be used to evaluate a wide array of image manipulation methods

and describe them throughly to indicate how and where it is appropriate to use them. In Section 4.7 we

present an integrated system that makes it easy to create and run user studies for evaluation of image

manipulation methods. Our hope is that this will allow researchers, whose focus does not lie in the area

of user studies, to conduct principled, accurate and reproducible experiments in order to evaluate and

characterize their methods.

Finally, in Chapter 5 we reproduce and expand the experiments from three past, high-profile papers

as well as our own work. In each case, we recreate the original experiment and find new insights into the

methods by conducting even more in-depth investigation. Having reproducible user studies, where the

subsequent re-runs are cheap to perform, besides being useful for evaluation of new methods, opens up

new research problems. For instance a quick and reliable way to perform user studies can allow iterative

refinement integrated into image manipulation algorithms.

After concluding our scientific contributions in Chapter 6, we explore the potential for using the

new technology in an industrial context in Chapter 7.

1.2.1 Publications

Substantial portions of Chapter 3 appear in: Gryka, M., Terry M., Brostow, G.J., Learning to Remove

Soft Shadows, Transactions on Graphics, Transactions on Graphics, 2015
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Chapter 2

Related Work

In this section we present an overview of literature from the areas closest to the contributions we present

in later chapters. We begin by exploring the area of shadow synthesis and editing, borrowing from related

problems such as intrinsic images, matting and inpainting. Subsequently, we introduce the problems con-

nected with perceptual evaluation of visual stimuli. This information informs our approach to verifying

the success of our shadow removal method. It also allows us to later contribute to the current state of

user study creation in the computer graphics community, by taking into account recommendations about

how to perform general perceptual evaluations and effectively use microtask markets.

2.1 Shadow Removal
Most of the previous shadow removal work has focused on hard or nearly hard shadows. In contrast, in

this work, we focus on soft shadows, mostly ignoring the specific case of hard shadows. Nevertheless,

we present a review of the literature spanning the entire area as concepts introduced are useful for the

discussion of the method in later sections.

Finlayson et al. [FDL09] proposed a method of detecting shadows by recovering a 1-dimensional

illumination invariant image by entropy minimization. Given this, they were able to discriminate be-

tween shadow and non-shadow edges in the original image and subsequently perform gradient domain

operations for unshadowing. The process forced image derivatives at shadow edges to 0, which worked

well with hard shadows, but produced wide, noticeable bands of missing texture when applied to wide

penumbrae.

Shor and Lischinski [SL08] tackled shadow detection and introduced a removal scheme using im-

age pyramid-based processing. They dealt with non-trivial umbras by compensating for the occluder

obstructing ambient light. Their method was not, however, able to deal with complex shadow intensity

surfaces such as leaves or shadows without any umbra. The estimation of non-uniform inner shadow

surfaces was only done at the coarsest pyramid level, and so only took into account large-scale varia-

tions. Further, it is not clear how to compute the “strips” used for parameter estimation in the case of

complex shadows. The approach we present below is more generic, treating the entire shadow as poten-

tially varying, and not limiting the variations to the coarsest scale. Further, their method was not well

equipped to entirely deal with penumbrae, and inpainting around the shadow edges was still necessary
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Figure 2.1: Illustration from [MTC07]. The horizontal magenta line corresponds to the intensity graph
(blue) through the penumbra region. The red curve is a least-squares fit of the specified piecewise
quadratic function. Window size s, position t0, amplitude w and sharpness σ are initialized by the user.

to avoid artifacts.

Mohan et al. [MTC07] proposed a method for removing as well as modifying soft shadows. They

modeled the penumbra by fitting a piecewise quadratic model to the image intensity in user-marked areas,

therefore separating texture variations from illumination changes. This enabled them to work in the

gradient domain and reintegrate the image after recognizing and removing gradients caused by shadows.

The system first asked the user for input in the form of a shadow outline specified by control points along

the shadow boundary. Additionally, the user was required to initialize the width of the penumbra as well

as the shadow amplitude for each of the colour channels separately. The algorithm then performed

iterative optimization by fitting the assumed penumbra fall-off model (shown in Figure 2.1) to either

vertical or horizontal intensity slices through the penumbra, updating the parameters and optimizing

again. This procedure was repeated for each segment of the shadow boundary separately (the number

of boundary segments was also user-specified) and values between the boundary points were obtained

by linear interpolation. The method produced convincing results, but was labor- and time-intensive for

the user and required a significant amount of computation time. In our tests it took over 40 minutes per

image, of which 10 were spent providing the input. Further, the algorithm was sensitive to user input

and some situations required special care. For instance in places where the penumbra changed rapidly

(such as corners) it was necessary to place 2 boundary points very close to each other so that the linear

interpolation of parameters did not introduce artifacts. It was also difficult to correctly mark complicated

shadows as they often require many boundary points.

After the penumbra parameters were optimized, the user had control over which gradients to remove

from the image. Due to the nature of gradient domain operations, this method often modified the entire
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image noticeably, rather than just removing the shadow. Finally, this technique operated under two

assumptions that did not always hold: that penumbrae could be modeled accurately using a sigmoid-

shaped curve and that an umbra region existed at all.

Wu et al. [WTBS07] presented a matting approach to natural shadow removal. In contrast to stan-

dard matting methods, however, they treated the shadow matte as a pixel-wise fractional multiplier of the

unshadowed image. While their method worked well on many shadows, it required noticeably more user

input than our technique: a quad map signifying the “definitely in shadow”, “penumbra”, “definitely out

of shadow” as well as “excluded” regions. Additionally, their matting formulation required a distance

function to be optimized. While they presented one that performed well on many natural shadows, prob-

lems could occur in some scenarios (such as significant noise) since the matting cost function was not

tuned for these.

Arbel and Hel-Or [AHO11] presented a critical survey of recent shadow removal literature and

argued that matting approaches, such as that of Wu et al. described above, are not an optimal way to

pose shadow removal. Instead, they decided to fit an intensity plane to the shadow-free surface and thus

obtain an approximate unshadowed result and separate out the shadow. To recover the lost texture in the

penumbra after fitting the intensity surface, they performed directional smoothing on the shadow matte

in the direction perpendicular to the shadow edge. They demonstrated results on penumbrae up to 15

pixels wide.

Another method to detect as well as remove shadows was described by Guo et al. [GDH12]. The

whole detection was region-based and performed by running an SVM classifier followed by GraphCuts

on the regions of the image to decide whether they were in shadow or not, based on their appearance and

relationship to others. Once every pixel in the image was classified as either shadowed or shadow-free,

constraints for the matting step were built by skeletonizing the obtained shadow mask. Next, the matting

method by Levin et al. [LLW08] was used to obtain penumbra reconstruction.

As noted previously, matting-based approaches are problematic for shadow removal in that they use

a heuristic affinity function at the core of their energy minimization. Since engineering a shadow-specific

affinity function might be challenging, our method effectively learns it from the data. Another problem,

as we found in our evaluation (please see the supplementary material for examples), is that the method

by Guo et al. is not well suited for user input since it can be difficult to specify which shadows should be

removed. In the cases of wider penumbrae, the matting often “misses” the subtle gradients and does not

remove the shadow at all, even with a user-provided shadow mask. While this problem could potentially

be addressed by changing how the shadow mask is used to build matting constraints, the authors reported

experimenting with a few (e.g. treating the eroded mask as definitely-in-shadow region) and choosing

the most successful one.

Additionally all of the above methods suffered from the assumptions about the umbra region.

Namely it was usually assumed that the attenuation due to shadow was constant in the umbra and that

the correct reconstruction could be obtained by multiplying it by a constant. The first problem was that

real shadows rarely exhibit characteristics of true ambient illumination in the umbra, which means that
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their attenuation varies. Secondly, simply multiplying the pixel values by a constant might introduce

artifacts such as decreased contrast and amplified noise. Both [SL08] and [LG08] dealt with these issues

by applying a method similar to previous colour transfer work [RAGS01] to recover the umbra correctly

by analyzing the areas in and out of shadow and matching their characteristics. They differed, however,

in how they dealt with the penumbra. [SL08] used inpainting, which had the drawback of potentially

loosing valuable information, and was only applicable to limited penumbra widths that could be suc-

cessfully inpainted. On the other hand [LG08] used approach similar to [MTC07] of fitting a parametric

curve (in this case cubic polynomial) to the penumbra with a more robust user input mechanism. While

this method produced good results for some examples, it is unclear how well it could cope with wide and

spatially varying penumbrae because of its fixed parametric model.

2.1.1 Soft Shadow Synthesis

Computer graphics literature presents various ways of rendering soft shadows and can therefore provide

valuable insights into how penumbrae can be modeled. While today it is feasible to create physically-

based lights and shadows using sampling methods, it used to be a very expensive operation which led

the researchers to derive certain approximations. [PSS98] observed that a diffuse spherical light and a

straight occluding edge produce penumbrae, which fall off according to a sinusoidal function:

s(τ) =
1

2
(1 + sin(πτ − π

2
)), (2.1)

which can be approximated well with the Bernstein interpolant:

sB(τ) = 3τ2 − 2τ3. (2.2)

Other works [Hai01, CD03] drew on this and, while methods of rendering shadows based on the above

improved, the fall-off model remained the same. [MTC07] showed that a different model is more ap-

propriate for real penumbrae, while [AHO11] argued that fitting parametric models generally is not the

correct approach in the case of real shadows. In this work we posit the same, and provide some evidence

for it in Section 3.2.

2.1.2 Intrinsic Images

Intrinsic image algorithms, as defined by [BT78], separate images into the intrinsic components of re-

flectance and shading. This information can be used to aid other image manipulation techniques, scene

understanding, etc. While much progress has been made in this space, many open problems remain. The

work reviewed here describes approximate solutions that provide good results in specific cases. How-

ever, in general, this class of algorithms is not well equipped for dealing with cast shadows as we show

in Section 3.6.2.

One approach to solving such under-constrained problems is to incorporate higher-level reason-

ing or additional data into the pipeline. For instance, [SA93] showed how to differentiate reflectance

from illumination discontinuities in the world of painted polyhedra, which improved on previous ap-

proaches based on the Retinex theory [LM71]. Work by [LBD13] used depth data from multiview stereo
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to accurately recover illumination of a scene, while [Wei01] used multiple images of the same object

under varying lighting conditions and a prior based on statistics of natural images to obtain convincing

reflectance and shading separation.

Similarly in [BPK13], multiple images of the same scene with different illuminations were used

to enable rich image relighting operations. Interestingly, this technique allowed softening of lights by

blending multiple images, while our approach performs image-space operations for control over sharp-

ness. [BPD09] got their additional data from the user, who was asked to mark areas of constant re-

flectance and constant shading.

[TFA05] leveraged machine learning by first classifying each gradient in the image as either shading

or reflectance, and then employing Generalized Belief Propagation to extend areas of high confidence to

more ambiguous regions. Our approach is related in that we also use supervised learning followed by

a regularization of a Markov Random Field. What makes our solution unique is a heavily customized

learning algorithm and the ability to deal with hundreds of labels at each site.

Recently, [BM12] used a set of priors over reflectance and illumination combined with a novel

multi-scale optimization to obtain results on the MIT Intrinsic Images dataset [GJAF09], outperforming

other methods by 60%, while also recovering shape and illumination. While this method works very

well on images of single objects, we found in our experiments that its results are not as reliable when

faced with complex scenes and cast shadows.

2.1.3 Matting

Image matting provides another type of decomposition, and can be used to separate foreground and

background objects. In principle, this formulation could be used to separate soft shadows as [GDH12]

do when using a method by [LLW08] to matte out small penumbra regions. [WAC07] presented an

intuitive brush interface combined with a fast algorithm to interactively matte out fuzzy objects. As

noted previously, the challenge with using these techniques on noticeably soft shadows lies in specifying

the correct affinity function to optimize. Our method effectively learns such a shadow-specific function

from the data. Additionally, our users specify only a coarse binary mask, rather than a trimap.

While [CGC+03] presented an effective method for shadow matting and compositing, they required

much more input and did not tackle the challenge of wide penumbrae.

2.1.4 Inpainting

Inpainting refers to a family of techniques capable of filling in missing image regions. The field has

matured in recent years to the point of implementations being available in commercial tools. While useful

in many cases, it is not a perfect solution to the problem of shadow removal as it completely discards

potentially valuable information. Consequently, it often fails to reconstruct structure (see Figure 3.4). It

does, however, often produce visually convincing results, and we exploit it to obtain a rough initial guess

to guide our algorithm.

One of the early inpainting works [MM98] drew on [NMS93], but proposed a solution that applied

to natural images. It performed inpainting by connecting geodesic curves (i.e. of the same gray level)

that arrived at the occlusion region by straight line segments. One of the shortcomings was that it did not
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consider at what angle the curve arrived at the region, often resulting in an unnatural-looking fill.

[BSCB00] coined the term “inpainting” and provided a solution conceptually similar to [MM98],

but slightly more robust. It was motivated by how art conservators repaired damaged paintings and as

such also tried to continue lines “coming into” the inpainting region. After the user marked unwanted

areas in the image, the algorithm iteratively filled them in taking into account the angle at which curves

entered the hole. The direction was found by computing the dominant gradient and continuing in the

direction perpendicular to it. Each iteration filled in one, outmost layer of the missing region, continuing

inwards. Best results were achieved on thin regions such as text and creases in images and for structured

inpainting regions. On the other hand perceptually noticeable errors were produced while filling in larger

areas, since texture was not propagated.

The most significant limitation of [BSCB00] was working with structure alone and resulting inabil-

ity to deal with textures, which was addressed in [BVSO03]. The idea was to perform a decomposition

on the target image to produce structure and texture components and fill in missing regions in two re-

sulting images using different techniques. This was motivated by the observation that there is no good

existing technique that deals with the whole spectrum (structure and texture simultaneously), while spe-

cific solutions work well under some constraints. First, image decomposition of [VO03] was used to

separate structure and texture components. Afterwards, the authors used inpainting work of [BSCB00]

to fill in structure and texture synthesis of [EL99] for recovering texture. Finally, the two reconstructed

images were added together to produce the output. Presented results showed improvement over both

structure-only and texture-only methods.

In contrast to previous techniques that completed the missing region solely based on the boundary

around it [MM98, BSCB00, BVSO03] the solution of [LZW03] tried to first learn global statistics of the

image based on the known areas. Then the inpainting was done by finding a solution which maximized

the probability computed based on the surrounding region as well as the learned global characteristics.

The maximization was completed using loopy belief propagation and linear programming. This ap-

proach worked well for simple missing regions, but, similarly to [BSCB00, MM98], would not be able

to complete large, textured areas.

The idea of working with structure and texture together was gracefully extended by Criminisi et

al. [CPT03], where the authors proposed a unified solution that preserved texture while also following

isophotes (i.e. considering structure). This was an iterative, patch-based method based on exemplars

(regions in the image that were known to be correct, i.e. not in the inpainting region). The procedure

started by evaluating and assigning priority to each patch on the inpainting front (border of the fill-

in region). Separate patches were created around every pixel on the inpainting front with a constant,

user-specified size slightly larger than the biggest texture unit. At every iteration patch with the highest

priority was filled in, where patch priority was defined as the product of confidence and data terms.

While the confidence term effectively encouraged concentric fill order (layer-by-layer as in [BSCB00]),

the data term tried to first continue isophotes (lines “coming into” the inpainting region). Results shown

compare favorably to previous works.
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[DCOY03], similarly to [CPT03], aimed to provide a way of simultaneous structure and texture

inpainting by using patches (or “fragments” as defined in the paper). To perform inpainting, the system

looked for data in the input image at various scales and orientations and, after successfully selecting

a fragment, performed compositing with Laplacian pyramids to produce visually pleasing results. It

worked on a coarse-to-fine basis, first approximating colours on the coarsest level and then using this

result as an initialization for adding details at the finer level. Each fragment was considered at a dynamic,

adaptive scale to capture detail at the right level.

Special consideration for structure was shown by [SYJS05] where the authors took advantage of

the fact, that users are good at completing the structure in missing regions. Therefore they asked for user

input in the form of line segments extending from the known area into the inpainting region. Then the

system completed the structure along the specified lines using the information from the known region.

Next the remaining areas were assumed to consist mostly of texture and were completed using a patch-

based texture synthesis algorithm. Finally, photometric correction in gradient-domain was performed

on the inpainted areas to reduce visual inconsistencies. In case of non-overlapping lines the structure

propagation was presented as a graph labeling problem and authors performed energy minimization

using a custom energy function. If there were junctions in the structure lines, the problem was solved by

belief propagation.

Komodakis and Tziritas [KT06] defined a discrete global optimization scheme that was presented

as a unifying approach to image inpainting and texture synthesis. Similarly to some earlier works

[DCOY03, CPT03, WBTC05] the approach was patch-based in that it copied small patches from the

known (source) region into the unknown (target) area. The energy function minimized here was a sum

over the costs of placing patches next to the known boundary and next to each other. To perform the

minimization authors proposed a new method, “Priority-BP” which is an extension of belief propagation

(BP) with two new elements described in the paper: “priority-based message scheduling” and “dynamic

label pruning”. Because of the global nature of this solution, authors argued that they avoid local minima

resulting from the earlier, greedy approaches.

Copying patches from either known areas of the same image or other images was also used by

Wilczkowiak et al. [WBTC05]. Here, the assumption was made that it was acceptable to slightly extend

the inpainting region, thus losing known data, in order to obtain more visually pleasing results. Patches

were copied into the hole based on similarity of the neighbouring pixels and their shape was determined

by finding an optimal graph labeling with graph cuts based on similarity to already known areas. The

system worked automatically after the user selected region to fill in, but it was also possible to provide

addition constraints. Additionally the authors used automatic image rectification to find matches re-

gardless of perspective at which the image was taken. This produced high-quality results, especially for

photographs of buildings and other man-made structures, which were targeted in this work.

The idea that the missing regions could be completed using information from many different pho-

tographs was taken to the extreme in [HE07]. By utilizing a database of millions of outdoor images

(which were pre-processed before) the authors were able to create a system that completed desired areas
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with data from similar images. Therefore, content was not only visually pleasing, but in majority of cases

semantically correct because images of similar scenes are likely to be semantically similar. In order to

find images suitable for inpainting the target, gist scene descriptor [OT06] was employed. Even though

it did not explicitly describe the semantics, given large enough set of images and the fact that the final

selection was performed by the user, it succeeded in finding good source image candidates.

Generally, inpainting methods need a source of data that can be used to fill in the missing parts. They

can be divided into two categories based on where this data is taken from: a) bootstrapping algorithms

that use the remainder of the image to be modified such as [CPT03], [BSFG09], [PKVP09], and b)

methods that rely on previously created datasets such as [HE07]. Algorithms in the former category are

appealing since one does not need to worry about creating an extensive training set. Yet, in practice, it

is often difficult to make them scale to general scenarios. See Section 3.8 for an analogous extension

of our method. Both Criminisi et al. [CPT03] and Barnes et al. [BSFG09] filled in the missing regions

by finding patches in the rest of the image that “fit into” the hole. In both cases, care had to be taken

to propagate the structure correctly into the missing parts. While Criminisi et al. achieved this in an

automatic way by searching for matches along isophote lines, Barnes et al. opted for user guidance

to indicate structure lines crossing the hole, and thus manually constraining the search space. While

not originally used for inpainting, an alternative here could be a robust approach for finding non-rigid

correspondences as presented by HaCohen et al. [HSGL11].

2.2 User Studies and Evaluation of Images
In this section we review literature related to the issues of perceptual image similarity and methodology

for conducting image-focused user studies. We also conduct a survey to determine how feasible is

crowdsourcing as a perceptual evaluation tool. Additionally we mention several published works in the

area of automatic image enhancement as well as other image manipulation methods, where user studies

have been used as a measure of success and opportunity for further exploration.

2.2.1 Psychophysics

While our community mostly focuses on creating computer graphics and vision algorithms, some mem-

bers also think about the human aspect of how to evaluate these methods. The area of psychophysics,

which is concerned with finding how objective changes in the outside, physical world relate to our per-

ceived, psychological experiences, is a ripe field to borrow ideas and experience from.

Over the recent years many computer graphics papers and journal articles included psychophysical

experiments as evaluation (e.g. [WBSS04], [WFGS07], [ČWNA08]). Further, the need for more in-

depth psychophysical knowledge was confirmed by a 2008 SIGGRAPH workshop “Psychophysics 101”

[Fer08]. Based on this, and other resources such as [EE99], we summarize selected concepts most

relevant to our research.

As already mentioned, psychophysical experiments usually aim to establish relationships between

physical phenomena and their effects on human perception. A widely used example is estimating the

brightness of a patch. Brightness, e.g. on a screen, can be measured directly and is known to the re-
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searcher. However, knowing the absolute brightness does not necessarily mean we know how the patch

appears to people, both on its own and in relation to other patches. To find the relationship, several

established methods can be used: method of adjustment (MOA), method of limits (MOL), method of

constant stimuli (MCS). They all aim to find the mapping between the “physical delta”, i.e. the objec-

tively measured change in the world, and the “perceptual delta”, i.e. how much change people perceived,

often establishing the minimum absolute change that results in a detectable change in perception.

In contrast to threshold methods, it is also possible to arrange stimuli on a specific scale using

scaling methods. Scaling methods include rating, where each stimulus is assigned a numerical value

based on the specified question, e.g. “How bright is this patch?”; pair comparisons, where stimuli with

different values on the objective, measurable scale are compared to each other; ranking where stimuli

are ordered on a linear scale; category scaling, where stimuli are assigned to categories, e.g. “very dark”,

“very bright”.

It is important to remember, however, that not all standard, psychophysical assumptions will hold

in our research. Notably, while our community is very concerned about perceptual effects, there is rarely

a continuous, objectively-measurable scale to relate them to. More often we are faced with a situation,

where we would like to assign perceptual properties to stimuli from different categories, e.g. created by

different algorithms. This does not directly translate to psychophysical problems, since different image

processing methods do not imply change on one, measurable axis, but usually completely different char-

acteristics like brightness, sharpness, colour balance etc. coupled together. In short, while psychophysics

aims to evaluate human perception given data, we mostly aim to evaluate data given perception. Conse-

quently we do not apply the aforementioned methods directly, but instead describe derivatives that have

already been used in graphics research.

2.2.2 Image Evaluation & Perceptual Distance

While psychophysics deals with the general case of stimulating human senses, significant work was also

done focusing on estimating visual distance specifically between photographs. For instance [RFS+98]

describes an experiment that was ran to establish which image features influence image similarity, as

understood by study participants (overall colour characteristics, “human” vs. “non-human” and “man-

made” vs. “natural” were some of the most important ones). Further, the authors used a new method of

collecting similarity judgments from populations, trading off some accuracy for efficiency as compared

to the standard psychophysical technique of paired comparisons.

Also based on low-level image features, Cox et al. [CMM+00] proposed an image search system

that leveraged Bayesian reasoning and psychophysical theory to enable very fast and accurate retrieval

of images. To validate the system, detailed experiments were ran to prove the utility of the proposed

solution. Subsequently, the system was used in [PCY+01] to conduct a number of psychophysical

experiments evaluating image similarity distance schemes.

An argument for how low-level image features can be used to accurately predict image similarity

perceived by human observers was presented in [NG06]. Several image features, based on the knowledge

of the early processing stages in the human visual system, were evaluated. The authors report seeing
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significant correlation between image indexes based on such features and image similarity.

2.2.3 Aesthetics and Predicting Image Attractiveness

One of the most obvious experiments one can conduct given a set of image data and a large population

of Turkers is to sort the images by their attractiveness to human observers. Over the recent years a

number of algorithms emerged aiming to predict how attractive a given image is automatically, with no

human input. While there are many other tasks that humans can complete (annotation, comparisons on

different scale than attractiveness etc.), progress on even this one front is difficult. Nevertheless, a brief

examination of the field of visual aesthetics is useful in order to appreciate the difficulties and the value

that psychophysical user studies still hold for the graphics community.

2.2.4 Crowdsourcing

Since the Amazon Mechanical Turk became available, many researchers across disciplines like psychol-

ogy, psychophysics and computer graphics and vision started using it to recruit study participants. At

the same time, a lot of work was dedicated to evaluating the differences between studies ran using online

microtask markets and more traditional setups.

In this section we present an overview of these efforts and extract several recommendation about

how to maximize the effectiveness of tools like Mechanical Turk when conducting experiments. Addi-

tionally, we shortly examine how similar tools can be used for different purposes.

Feasibility

One of the early analyses was presented by Kittur et al. in [KCS08]. They explored using Mechanical

Turk to conduct tasks normally done with “low numbers, high-engagement” participants using the “high

numbers, low engagement” setup that microtask markets offer and how to design the studies to adapt

them to this new environment. In summary, they found that using microtask markets is most useful

for examining problems which have definite answers. Attempts to game the system were detected, but

thoughtful task design (e.g. requiring subjects to answer a number of non-trivial, but verifiable questions),

made it less likely for participants to cheat. It was also found that the audience seemed diverse, which is

positive from the researchers’ perspective, however, not always possible to measure directly.

The main recommendations given by the authors included ensuring that some questions are ex-

plicitly verifiable to enable detection of malicious input; even better when the questions also look like

they are going to be verified. Additionally, the effort of providing malicious input should be as close as

possible to the effort of producing real answers.

In a related effort, Paolacci et al. [PCI10] addressed widespread concerns about data quality ob-

tained from Mechanical Turk, aiming to show that it is possible to use it to run subjective experiments

and still obtain good results. Firstly, the authors showed that the population of Turkers is at least as

representative of US population as groups recruited traditionally and that more and more international

workers are appearing. Secondly, three classic psychological experiments were conducted and the re-

sults obtained from Mechanical Turk agreed with what was expected (i.e. the results of experiments and

the magnitudes of effects were similar) showing that there does not necessarily need to be a difference
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between traditional and online study audiences.

Effectiveness

Multiple factors influence the quality of results obtained from any user study. Recruiting microtask

workers, while having significant advantages, introduces even more areas, where care has to be taken to

avoid bias. Several methods and recommendations have been proposed by researchers in psychology and

human-computer interaction fields. For instance, Oppenheimer et al. [OMD09] proposed “Instructional

Manipulation Checks” (IMCs): a way of assessing the quality of answers that survey participants provide

and therefore increasing statistical power of experiments. IMCs are instructions embedded in the survey

questions, which look just like other questions, but ask the participant to perform some unusual task to

confirm that they have read the instructions (e.g. click on a small element on the bottom of a website,

rather than the more prominent Likert scale used in “normal” questions). The authors demonstrated,

that IMCs have twofold benefits: firstly they allow screening out of unreliable data during analysis and

therefore increase signal-to-noise ratio of the dataset. Secondly, they can be used interactively to force

survey participants to read the instructions before proceeding, by making sure that the next question

is displayed only after the instructions are followed correctly. Interestingly in the second case, from

the perspective of the data, the previously negligent subjects “turned into” good subjects after the IMC

failure was pointed out by the system.

Some approaches aimed to detect negligent behavior (cheating) by workers on Mechanical Turk.

Rzeszotarski and Kittur [RK11] showed how to detect whether the study participants were diligently

fulfilling tasks, or not, by looking at their task fingerprint, i.e. the record of all interactions with the study

interface. This approach was especially valuable when “gold standard” data was not available, as in the

case of subjective surveys, so rejecting bad workers based on answers provided was not possible.

Similarly, Oleson et al. [OSL+11] proposed a way of creating gold standard data semi-

automatically. This ability is useful in situations, where no gold standard is available ahead of time, but

might be generated given some initial data from users and a manual inspection from study authors.

Interestingly, Ipeirotis et al. [IPW10] proposed a fine-grained analysis method for estimating relia-

bility (quality) scores of Mechanical Turk users while also providing the output (i.e. the class labels for

a set of objects). As opposed to previous approaches that simply downgraded users’ scores if they were

inconsistent with majority or known ground-truth answers, the authors separated unrecoverable error

rates (i.e. noise due to negligence or other factors) from bias, which could be corrected for.

This bias measure was subsequently used to adjust users’ answers accordingly and made it possi-

ble to obtain reliable data from users, who would have otherwise been considered low-quality Turkers.

Conversely it also allowed detection of “strategic” spammers, who always assigned the class label with

highest prior probability.

Another important step towards increasing data quality, is setting up of correct incentives for the

respondents. This topic was explored by Kapelner and Chandler [KC10a], who examined three different

ways of preventing online survey respondents from “satisficing”, that is taking mental shortcuts and

being negligent when answering questions. The first method, displaying prominent text along with
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the questions asking the participants to take the survey seriously, did not have any measurable effect.

However, forcing people to spend at least a specified amount of time per questions (by disabling the

“Continue” button for the first 10 seconds) increased the quality of answers by 10%. The third, and

most effective measure consisted of slowly fading words from the question and other elements of the

interface. This method increased the quality by 13%. The main conclusion we can draw from this work,

is that changing the cost/benefit ratio of satisficing and answering diligently, has a significant impact on

the quality of gathered data.

Another aspect of maximizing the efficiency of using Mechanical Turk is ensuring that people

choose to complete our tasks without requiring expensive compensation. One way of achieving this is

understanding how workers behave, especially when searching for and evaluating tasks. Chilton et al.

[CHMA10] presented such an an examination and provided insight into how to best formulate tasks so

that they are answered quickly and with minimal cost. In summary, tasks behave similarly to search

results other media: the tasks on the first page get by far the most interest and the tasks on the top of the

first page, more still.

Further, being on the top of results when searched by categories (cheapest, lowest price, soonest

expiration, shortest time, alphabetic ordering) is also beneficial. In fact, being at either extreme is good,

since sorting can be both incremental and decreasing. On the other hand, being close to the median in the

search results is the worst case scenario, since the workers have to click through many pages, whichever

extreme they start from.

In addition to perceptual evaluation, microtask markets offer many other possibilities. For instance,

a novel application was presented by Little et al. [LCGM09] where, instead of running HITs “in par-

allel”, they ran them “in series”. In other words, early HITs provided input to later HITs allowing for

verification, iterative improvements and verification of earlier work.

Competition

While there is currently no system, which completely fulfills the needs of graphics researchers, some

solutions exist, which contain a subset of the capabilities needed.

Firstly, if Mechanical Turk is to be used, it is possible to build tasks using Amazon’s interface. This

approach has some advantages (for instance, anecdotally, Turkers are slightly more willing to perform

tasks when they are not required to leave the Mechanical Turk domain), however, it is too constraining

to address all the needs of researchers in our field. It is not possible to define new task types with full

control over the interaction and captured information, and the tasks available are not geared towards

specific purpose of perceptual image evaluation. Importantly, this “locks in” the researcher to using

Mechanical Turk, which is not always desirable. For the same reasons, services built to make working

with Mechanical Turk easier, such as [KC10b] and similar, are not able to provide complete solutions.

Other, more comprehensive products such as [Cro] cater more to industrial customers and have

prohibitively high minimum transaction thresholds.

Recently Matera et al. [MJCB14] presented a prototype crowdsourcing tool similar in scope to our

solution. However, they aim to fill a larger niche and do not focus exclusively on graphics researchers
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and image evaluations. Additionally, no plans were mentioned for developing image-specific evaluation

methods such as we proposed in Section 4.7.
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Chapter 3

Soft Shadow Removal and Editing

3.1 Introduction
Smart image editing algorithms are increasingly needed as non-experts demand more post-processing

control over their photographs. Across the wide range of techniques available in commercial tools and

research prototypes developed by the graphics community, soft shadow manipulation stands out as a

severely under-explored, but important problem. Since shadows are a key cue for perceiving shape,

curvature, and height [Ken74], countless Internet tutorials attempt to teach users how to separate out a

shadow layer using tedious masking and thresholding operations. These manual techniques are employed

in part because many real scenes have soft shadows, and most shadow detection and removal algorithms

developed thus far address mainly hard shadows. Because soft shadows have been shown to be correlated

with people’s perception that an image is real [RLCW01], easier methods for extracting soft shadows

are required.

We present a data-driven shadow removal method that is pre-trained offline and can deal with shad-

ows of widely varying penumbra widths (i.e. where there is no clear boundary between the shadowed

and unshadowed region). In contrast to previous work, our technique does not assume the existence of

a specific model for the umbra, and processes the entire shadow with a unified framework while still

giving users full control over which region to modify. We can deal with complex situations that were

previously impossible, such as when the entire shadow is essentially penumbra, as is often the case (e.g.

with shadows of leaves cast on the ground). Our technique requires user interaction only to roughly

indicate which area of the image should be modified. The system then initializes and applies our model.

Once the shadow matte is computed, the user can interactively manipulate it, or the rest of the image,

using our simple interface.

Our regression model is trained through supervised learning to cope with our underconstrained

problem: given a shadowed RGB image Is, we aim to find a corresponding shadow matte Im and the

unshadowed image Iu that satisfy Is = Iu ◦ Im (◦ is an element-wise product). Similar decompositions

are explored in the intrinsic images domain [LM71], but we compute Im to ignore both reflectance and

shading, and only focus on cast shadows. Also, rather than aiming for physical accuracy, our practical

objective is to produce a convincing-looking Iu as measured subjectively.

In a user study comprising hundreds of rankings and assessments, our technique was found to be
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Figure 3.1: The first column shows the input shadowed image (top) with a user-provided coarse shadow
mask (inset) as well as the unshadowed image (below) produced by our method. The four images on the
right present different unshadowed results for which the corresponding inputs can be seen in Figure 3.27.
This technique could be used e.g. as a pre-processing step for texture extraction algorithms such as
[LXDR13].

significantly more likely to remove soft shadows successfully than the competing methods by [GDH12],

[AHO11] and [MTC07]. Additionally, when shown together with results produced by these other meth-

ods, our results were most often chosen as the most natural-looking (please refer to Section 3.6.5 for

more details).

Our specific contributions are:

1. A regression model that learns the relationship between shadowed image regions and their shadow

mattes.

2. A system that leverages existing inpainting and adapts large-scale regularization to our field of

matte patches, producing results that compare favorably with the real-world baseline.

3. A system for generating countless training examples of scenes with both soft and hard shadows.

4. A large-scale dataset of soft shadow test photographs.

5. We will make available the code for the method as well as the user study experiments for easy

replication.

System Overview: To use our system, the user first paints the region of the image containing the shadow

they wish to modify. This masked region is then processed automatically, as follows. First, the input

image is divided into non-overlapping 16×16 patches, and for each patch ai a descriptive feature vector

f(ai) is computed. Next, our pre-trained regressor maps each feature vector to mi, a distribution of

possible shadow mattes for that patch. A Markov Random Field on the grid of shadow matte patches is

regularized to generate the maximum a posteriori shadow matte image Im for the red channel. A final

optimization computes the corresponding shadow mattes for the green and blue channels, also yielding

the unshadowed image Iu. With the shadow removed, our interface then allows the user to place a
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Figure 3.2: System overview. Obtaining the final matte (far right) allows us to remove, as well as modify,
soft shadows.

new shadow derived from the original shadow matte. This shadow matte can be translated, scaled, and

distorted as desired to allow the user to create a new shadow in the image, or use the resulting layers for

compositing and other creative tasks.

3.2 Exploration of Parametric Penumbra Models
By penumbra fall-off we mean the way the shadow matte changes in the penumbra, along the direction

perpendicular to the shadow edge, from constant multiplicative factor c < 1 in the in-shadow region to

1 in the out-of-shadow region (in reality, in-shadow areas rarely exhibit constant attenuation, but, for the

sake of simplicity, we will make this assumption in this section); we show example penumbra profiles

in Figure 3.3. The exact fall-off depends on many factors such as the shape of the light and the occluder

as well their relative positioning. Since these are, for a given 2D image, unknown, we have investigated

candidate functions that could be fitted to the fall-off under different conditions. The intuition behind this

was that, if there was a model that could represent shadows and have sufficiently distinct characteristics

from commonly-seen textures, it should be possible to fit it to intensity profiles and avoid being confused

by the texture. Below we present a few models that have been evaluated.

There are three factors that make parametric approaches difficult in practice. Firstly it is difficult

to find the right model to fit to the penumbrae, as we demonstrate below. Secondly the model, to be

tractable, is usually treated as a 1D intensity slice through the image. This makes it difficult to deal with

overlapping shadows, since 1D slices are unable to capture the added complexity. Finally, even given

a good model, information about the location and orientation of the penumbra is needed. Mohan et al.

solve this problem by asking the user to indicate shadow edges, but this is not practical in the case of

complex shadows.

3.2.1 Second- and Third-Order Polynomials

In the computer graphics literature [Wat93, PSS98] soft shadows are often modeled with a third order

polynomial as mentioned in Section 2.1.1, Equation (2.2). However, this function only holds in the case

of spherical light source and a straight occluder edge. In other configurations this approximation does

not hold, even when the polynomial coefficients are allowed to vary.

3.2.2 Logistic Function

Another model that seemed promising for the penumbrae was a sigmoid function. One advantage over

aforementioned polynomial was the fact that sigmoid functions are constant everywhere, except the

defined interval, making them a natural fit to shadow profiles without the need for piecewise combi-

nations (assuming constant umbra). We have discovered, however, that the logistic functions such as
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Figure 3.3: Examples of shadow profiles cast by three distinct light shapes and the best-fit curves using
different paramteric models. The red lines show the intensity profiles extracted from the marked region
in each image, while the black lines show the corresponding best-fit curves. Finally, the blue lines
demonstrate the unshadowed intensity profiles, i.e. the result of removing the attenuation from the red
profiles using the black curves as penumbra models. Since there is no underlying texture, all blue profiles
should be flat; while all models are suitable for modeling spherical lights, we have not found one, which
fits either square, or triangular illuminators.
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sL(τ) = 1
1+e−τ are generally not flexible enough. Firstly they couple the slope parameter with the

speed-of-approach. Secondly, they are symmetrical, while penumbrae often exhibit different behaviors

at two ends.

3.2.3 Piecewise-quadratic Spline

Mohan et al. [MTC07] used a piecewise-quadratic function to fit soft shadows. They have performed

the fitting at several points along the shadow boundary, by ensuring that the curve gradients at joining

points agree and that the resulting profile is a good “explanation” for the observed pixel intensities.

Their method was able to correctly unshadow previously-problematic images, however, as we show in

Figure 3.3 and mention at the end of Section 3.6.5, failed in cases where their assumed shadow model

did not hold.

3.2.4 Gompertz Function

While some shadows exhibit different characteristics at the “shallow end” and the “deep end” of the

penumbrae, most sigmoid functions are symmetric and, therefore, are unable to capture such behavior.

One exception is the Gompertz function, defined as

y(x) = aebe
−cx

. (3.1)

Unfortunately, while this model is still not flexible enough to fit real shadows and the resulting

unshadowed profiles exhibit noticeable artifacts.

3.2.5 Summary

While fitting a parametric model to the penumbra produces a simple solution and works well in some

cases, we have not found a model flexible enough to accommodate all scenarios. Different light source

and occluder shapes, and phenomena such as multiple penumbrae, and global illumination effects make

modeling the penumbra fall-off challenging. In contrast, a learning-based system, which automatically

captures such features in the training data, has a better chance of success and directly models 2D surfaces,

instead of 1D slices.

3.3 Learning and Inference
While shadow mattes are generally unique, our hypothesis is that they can be constructed from a finite

set of patches tiled next to each other. We exploit this property and perform learning and inference on a

patch-by-patch basis. We considered alternatives to the machine learning approach we present here, such

as fitting sigmoid functions to model the soft shadow fall-off. Even with complicated heuristics, these

results were unconvincing. Those parametric models needed many degrees of freedom with hard-to-

summarize constraints and relationships to adequately approximate different ground-truth mattes. Our

learning-based approach focuses on the input/output dimensions that correlate most, and is, broadly

speaking, a kind of supervised, non-Euclidean, nearest-neighbour model.

We have empirically determined that patches of 16 × 16 pixels work well for our purposes. Fur-

ther, we assume that colour channels of a shadow matte are related to each other by a scaling factor.
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Figure 3.4: Example initial guesses. From the input image (left) we use inpainting to obtain an initial
guess for the unshadowed image (middle). That in turn yields an initial-guess matte that forms part
of our feature vector and aids regularization. The right column shows the output of our algorithm: an
unshadowed image respecting the texture present in the shadow. Note that inpainting alone is unable to
recover structure in the above cases.

Specifically, we assume it is possible to reconstruct the blue-channel and green-channel mattes given the

red-channel matte and the correct scaling factors σb and σg (see Section 3.4). We have chosen the red

channel for performing learning and inference, and to reconstruct the colour result in the post-processing

step. While this splits the problem into two optimizations, it reduces the parameter space that must be

learned from data.

3.3.1 Preprocessing

Using an off-the-shelf inpainting method by [BSFG09], we first replace the user-specified shadow region

completely with a plausible combination of pixels from the rest of the image (see middle column in

Figure 3.4). We then apply Gaussian blur in the inpainted region and divide the input image by it to

obtain the first approximation to the matte. The blurring step is necessary to both minimize the impact

of slight inpainting errors, and to avoid producing spurious frequencies in the image after division.

Our aim is to create a mapping mechanism from RGB intensity patches to grayscale shadow matte

patches, so that given a new image we are able to predict the corresponding shadow matte. For con-

sistency with literature, we will refer to the input intensity values as the “feature vector”, since we are

computing a vector of informative features from the input, and to the output patches as “labels”, since

we are effectively assigning a label to each input.

Alternative Inpainting Methods We have examined two alternatives to this initialization method:

a) plane-fit to the unmasked regions of the image, similar to Arbel and Hel-Or 2011 and b) guided inpaint-

ing. In guided inpainting, our aim was to replace the shadowed regions of the image with unshadowed

pixels from the same image and, ideally, the same material. We have modified the PatchMatch algorithm

to replace masked image areas with patches from unmasked regions in the same image. Further, we have

modified the distance function used by PatchMatch aiming to make it illumination invariant. To achieve

that, we have transformed the image from RGB space to a different, multi-channel space, where the new
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(a) plane fitting (b) texture-guided PatchMatch (c) off-the-shelf inpainting

Figure 3.5: Comparison of results using different inpainting approaches. Note that in the case of texture-
guided inpainting there are often out-of-shadow parts of the image that the algorithm chooses as the
source. This is a failure of the distance function used as described below, however, we were not able to
find a better solution.

channels included the illumination-invariant image from Finlayson et al. 2009, pixel chromaticity, as

well as Gabor filter responses. Unfortunately, the final results obtained when using this method proved

to be comparable to, but still noticeably worse than, off-the-shelf inpainting. One of the main issues

was that images often contained other shadows that were not to be removed as per user input. As a

consequence, despite our efforts, the most closely matching patches used to replace the in-shadow re-

gions came from other shadows, therefore providing a poor guidance for unshadowing. A few examples

comparing the three approaches are presented in Figure 3.5.

It is important to note here the potential size of our input space: since we need to learn how different

shadows look like, when cast on different textures, the learning stage should ideally see examples of all

possible shadows cast on all possible textures (while learning algorithms are capable of generalizing, the

underlying distributions of the training- and test-set need to be similar). However, this is not practical,

and instead, we have instead taken the steps listed below to allow our training set to cover a much smaller

part of the entire input space (i.e. the “types” and sizes of shadow profiles):

• alignment of patches to make the learning algorithm invariant to Euclidean transformations (see

below),

• selection of features aiming to minimize the impact of texture and maximize the information about

shadows (3.3.2).

For training, our regressor expects as input a set of small intensity patches ai (or rather a feature
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Test
RRF

input I's

closeup around
patch ai

closeup of the matte
image Im aligned ground  truth

matte patch mi

aligned feature
patch ai

f(   )

Regression Random Forest
learning a mapping function

RRF

(zoomed) aligned
patch a'i

(zoomed) aligned
patch m'

i re-aligned patch m'
i

g(f(a'i)) maps from
intensity patch to matte

input Is

f(  )
Figure 3.6: Patch alignment. At training time (top) we look at each patch in the shadow area (orange
square) and find a small-magnitude Euclidean transform to bring the patch as close as possible to the
template. We then cut out the expanded patch ai (blue square) and use it to compute features f(ai).
Additionally, we cut out the same location from the ground truth matte to obtain the label mi. Finally we
feed these feature/label pairs to the Regression Random Forest to learn a mapping function g(f(ai)) 7→
mi. At test time (bottom), we also start with a grid patch (orange square) and, after finding an optimal
offset, cut out the surrounding area a′i (blue square) from which we compute the features f(a′i). After
pushing these through the forest we obtain a label m′i that we re-align and crop to paste into the original
position in the output image (small, orange square).

vectors f(ai) computed over these patches), as well as the corresponding ground truth matte patches mi

as labels, so we need to extract these pairs from our large set of training images. From each image we

could potentially extract many thousands of such pairs. To avoid redundancy, we chose to sub-sample

each training image to extract J training pairs overall (in all our experiments we have used a training

set of size J = 500 000). Additionally, we bias our sampling so that in each training image, half of

the samples come from the penumbra region only and half are sampled evenly across the entire shadow

(which also includes the penumbra). This avoids over-sampling of uninteresting regions of flat shadow

profile and provides greater variety in the training set.

Alignment We observe that many patches, though seemingly different in their raw form, can ul-

timately appear very similar after aligning with an appropriate Euclidean transform. This allows us

to perform inference on rotationally-invariant data, effectively multiplying the size of our training set

without increasing training time.

For each intensity patch that we wish to include in our training set, we search through a

limited set of rotations and translations to find one that results in the smallest distance to an

arbitrary template patch (we use a simple black-and-white square, as shown on the right).

We then apply this transformation to both the intensity and the matte patches. At test time,

we perform the same procedure before computing features and, after obtaining the estimated label, apply

the inverse transformation to it (see Figure 3.6).

3.3.2 Learning

For each patch, we form a column feature vector by concatenating:

1. pixel intensity values of the patch in the range [0.0, 1.0] shifted in the intensity domain so that their
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(a) Before alignment (b) After alignment

Figure 3.7: Our algorithm needs to output shadow matte values inside the inner squares. However, in
the interest of generalizability and smoothness, we compute the feature-label mapping over the larger,
aligned patches depicted by outer squares.

mean falls at 0.5

2. x and y gradients (finite differences) of the patch

3. distance from the edge of the user-masked region normalized so that the values lie in [0.0, 1.0]

range

4. predicted matte for this patch from the initial guess.

The intensity values are normalized, since they are not directly correlated with the matte (given a dark

shadowed intensity patch it is impossible to determine whether it is a dark shadow on a bright back-

ground, or a bright shadow on a dark background). Therefore we give the inference algorithm processed

features that are likely to contribute to the decision (i.e. indicating the slope of the shadow), but without

confusing differences in absolute intensity.

Our label vector contains the pixel values from the shadow matte. Even though at test time we

obtain suggestions for each patch in the 16 × 16 grid in the shadow region (just the inner squares in

Figure 3.7), both our features and labels are computed over a larger 32 × 32 window (outer squares).

This serves two purposes: to enable smoother results by providing more context to the features, and to

aid the alignment and realignment described in Section 3.3.1.

We have chosen to use Random Forest as the inference mechanism both because of its versatility and

a widespread use in the literature (e.g. [RDP+11], [SGF+12], [CRK+13]). The simplicity of individual

steps in the training and testing pipelines makes it possible to subtly adjust the behavior at various stages.

Further, because of the vast space of possible inputs and outputs in our problem, we have adjusted the

algorithm to act both as a regressor and as a clustering algorithm. A brief introduction to the traditional

Random Forest algorithm below is followed by our modifications and the reasons for introducing them.

Given a standard supervised-training data set of input/output pairs (i.e. the feature vectors and the

corresponding label vectors), we can use Random Forests to create a set of decision trees that will allow

us to predict the label vectors for new, yet unseen feature vectors (provided they resemble the statistics of

the training examples). Each of the separate decision trees is imperfect, usually only trained on a random

subset of the training data (a process called bagging) and with no guarantees about a globally optimal
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inference due to the nature of the training process described below. However, averaging the responses of

a collection of trees (i.e. a “forest”), often results in accurate predictions.

Given a “bagged” set of training data (that is, a subset of all available feature/label pairs), a decision

tree is trained as follows. First, we define an impurity, or entropy, measure for a collection of labels, a

value that is low when the labels at a node are homogeneous, and high when the labels are different to

each other. Then, a binary tree is generated by splitting the available data along the dimensions of the

feature vector in a way that minimizes the impurity of the split collections. Alternatively, this can be

posed as maximizing the information gain—the difference between the original impurity and the sum of

child impurities. The generation process starts at the root node, with all the data available to a given tree.

It tests a number of random splits along the feature dimensions and chooses the one that results in the

largest information gain (an example gain could test if the 7th entry in a feature vector is greater than

0.3). It then creates two child nodes, left and right, and pushes the split data into them. The same process

is repeated at each node until stopping criterion is reached (usually a predefined tree depth or a number

of samples).

After training, the forest can be used for predicting the labels for new feature vectors. The feature

vector in question is “pushed” down each tree depending on the values of individual features and the

node thresholds. After arriving at a leaf node, the mean label of all the training samples that landed at

this node is taken as the answer of this tree. Finally, answers of all trees are averaged to get a more robust

prediction.

We use a modified version of Multivariate Regression Random Forests in this work. While Random

Forests in general have been well-explored already, their use for practical multivariate regression has

been limited [CRK+13]. One of the challenges lies in computing node impurity—in classification, this

can be done easily by counting samples belonging to each class, whereas in regression, one needs to

evaluate the probability density function, which can be costly in high dimensions.

Our labels lie in R2N×2N (whereN = 16 and 2N comes from the fact that we store areas larger than

the original patches). However, we observe that they can be effectively represented in lower-dimensional

space, since penumbrae generally do not exhibit many high-frequency changes. Moreover, we only need

the representation to be accurate enough to cluster similar labels together—we do not lose detail in the

final answer because of the non-parametric nature of our inference method described below (in short

we build the forest based on the low-dimensional representation, but retrieve final labels in the original,

high-dimensional, space). Therefore, we use PCA to project our labels into RD=4, which provides good

balance between the degrees of freedom necessary to discriminate between patches, and computational

complexity while evaluating impurities. Specifically, at each tree node n, we fit a Gaussian distribution

to the labels of all samples Sn falling into it, and evaluate impurity

Hn = log(det ΣSn) (3.2)

by taking the log of the determinant of its covariance matrix ΣSn following [CRK+13].
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This allows us to define the information gain

Gn = Hn −
∑

c∈{l,r}

(|Sc|/|Sn|)Hc, (3.3)

that we aim to maximize at each split node while building the trees. We weight the information gain by

the proportion of samples falling into each child node (l and r) to encourage more balanced trees as in

[BFSO84].

We set the minimum sample count at a node to K = 2D and grow our trees as deeply as necessary

until we do not have enough samples to split. In principle, K could be as low as D (number of samples

needed to compute a D-dimensional covariance matrix). However, in practice, we find that the samples

are often not linearly independent, leading to degeneracies. After a leaf node is reached, instead of

building a typical parametric distribution of all its labels, we save the indices of training samples falling

into this node, allowing us to perform inference as described in the next section.

We have evaluated how the performance of our algorithm varies with the amount of training data

supplied. First, we have kept the number of patches sampled per image constant and set the number of

training images rendered to 1000, 5000, 10000 and 15000. We have empirically determined that using up

to 10000 images provides a good balance between the training time and performance, while beyond the

trade-off becomes less attractive. Secondly, we have used similar procedure to arrive at the appropriate

number of patches sampled per image.

3.3.3 Inference

Our inference step acts as a constraint on the initial guess—we want to “explain” the initial-guess mattes

as well as possible using samples from our training set, but only those suggested by the forest as relevant.

At test time, we compute the feature vector for each patch as before and, after pushing it through

each tree, arrive at a leaf node. From here, instead of looking at the label distribution, we simply get the

indices of training samples that fell into this leaf. Consequently, we obtain L label suggestions, where

L ≥ TK and the number of trees in the forest T = 25. We do this for each patch in the 16× 16 grid in

the shadow region and arrive at an optimization problem: for each image patch in our matte we want to

choose one of L labels that agrees both with our initial guess and any available neighbours.

In summary, the changes we have made to the original RRF algorithm are:

1. Using two representations of labels: low-dimensional used to evaluate node impurity and build

the forest, and high-dimensional used for retrieving the labels at test time. This is motivated by

computational constraints and enabled by the non-parametric treatment of labels.

2. Non-parametric treatment of the labels to avoid over-smoothing. Instead of one mean answer in

label-space, we get a distribution of samples from the data, including extremes, which we want to

preserve.

3. Treating the inference algorithm as a step in the pipeline, rather than the entire pipeline. We

only get an intermediate result from the forest (several matte patch suggestions for each patch)



3.4. Colour Optimization 44

and use regularization later on to extract the final answer. As above, this allows us to benefit from

relatively limited amounts of training data (compared to the number of theoretically possible labels

in 25616×16-dimensional space), without averaging out unusual shadow profiles.

3.3.4 Regularization

Finding a more specific combination of matte patches is not trivial due to the nature of our labels and

the fact that there might be different numbers of label suggestions available at each node. Averaging all

the candidate patches at each location would not be optimal, since any unusual shadow profiles would be

lost. On the other hand, choosing best-fitting patches greedily and then trying to smooth out the edges

between them would a) be extremely difficult to do for small patches that are likely to be incompatible

and b) introduce an implicit, non-data-driven, shadow model in smoothed regions. Instead, at each

location, we choose the best patch by regularizing the entire graph with the TRW-S message passing

algorithm [Kol06]. We use the energy function

E =
∑
i∈I

ω(mi) + λ
∑
i,j∈N

ψ(mi,mj), (3.4)

where I is the set of nodes in the regularization graph (i.e. all the masked image patches) andN denotes

the set of neighbouring nodes in a 4-connected neighbourhood. The unary cost ω(mi) is the SSD distance

from the patch mi to the corresponding area in the initial guess, the pairwise cost ψ(mi,mj) is the

compatibility of patch mi to mj , and λ is the pairwise weight (λ = 1 in all our experiments). We

define the patch compatibility ψ(mi,mj) as the sum of squared differences between adjoining rows (or

columns) of these two patches:

ψ(mi,mj) =



SSD
(
rowN (mi), row1(mj)

)
, if mi is above mj

if mi is to the

SSD
(
colN (mi), col1(mj)

)
, right of mj

(3.5)

where rowN (mi) and colN (mi) are the last row and column of patch mi respectively. We also create

boundary constraints to ensure that the shadow disappears outside of the user-selected region by forcing

patches just outside of the user mask to constant 1.0 (meaning completely shadow-free).

3.4 Colour Optimization
We could repeat the above procedure twice more to obtain the remaining green and blue channel mattes.

Indeed, in theory, this would be the most general solution, assuming no relationship between different

frequencies of light. In practice, however, we find that this relationship is quite strong, and providing

an additional constraint to enforce it makes our method more robust. The top row in Figure 3.8 shows

a shadow matte and the corresponding unshadowed image estimated by the naı̈ve way, i.e. each channel

separately. Note the splotches of different colours revealing where the mattes of different channels do
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Naı̈ve colour reconstruction method

Our method

Figure 3.8: Treating each channel independently results in inconsistent shadow mattes (top left) that
manifest themselves with colourful splotches in the unshadowed output image Iu (top right). Our method
assumes that the three colour channels are dependent—it only regresses one of them and reconstructs the
other two as explained in Section 3.4. Please see the digital version for faithful a colour representation.

not agree. The bottom row shows our default procedure, described here.

We assume that the surface of the shadow matte has the same shape in all three channels, but that

it differs in magnitude as shown in Figure 3.9. For instance, in outdoor scenes the shadow mattes are

blueish. On a sunny day there are two illumination sources: the Sun (white) and the sky (blue); out-

of-shadow regions are illuminated by both light sources, while the in-shadow regions, only by the sky.

Consequently, in-shadow areas and, therefore, shadow mattes appear more blue. In such mattes the

red channel usually has the lowest intensity, therefore, the green and blue channels can be obtained by

scaling the red channel matte so that areas with no shadow remain that way, but the overall depth of

the shadow changes proportionately. This assumes that, there are at most two differently-coloured light

sources.

Relative to the estimated red channel shadow matte, we model each of the other channels with a

single scale factor parameter, σg and σb respectively. To estimate them jointly, we discretize and search

the 2D space to minimize the error function

Ecolour(σg, σb) = log(det(ΣR)), (3.6)

where ΣR is the covariance of a three-column matrix R listing all the RGB triplets in the unshadowed

image after applying that colour matte. We constrain the search in each parameter to lie between 0.8 and

1.2 with discrete steps of 0.01. We find that the scaling factors σg and σb rarely exceed 1.1 and never

fall below 1.0 in outdoor scenes.

The intuition behind this approach is that unshadowing an image should not significantly change
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Figure 3.9: Ground truth shadow matte profiles for RGB colour channels. Note that, disregarding noise,
all channels share the same basic “shape” and reach 1.0 (no-shadow zone). Our experiments indicate
that acceptable green and blue mattes can usually be reconstructed by optimizing (3.6).

the distribution of colours in it. Since introducing new colours would increase the entropy of ΣR, we

use this measure to find scaling factors that minimize it.

For efficiency, we run this optimization on a version of the output image downsampled to 10% of

its original size. This optimization serves to prevent our unshadowing method from introducing new

colours into the images. The user can override these scale parameters with our shadow-editing interface

(Section 3.6.1), but all our results are shown with the automatic adjustment unless specifically stated.

3.5 Data Generation

To train our model, we need large amounts of data to capture a variety of scene configurations and

shadow-receiving surfaces. Since it would be extremely difficult to capture a large enough set of real

images, we follow [MABP10] in training on a synthetically-generated training set and applying it to

real data. We have carefully configured Maya with realistic lighting conditions to generate shadows cast

onto various textures as illustrated in Figure 3.10. For each light-occluder-texture combination, we have

rendered the image with and without shadow, implicitly obtaining the corresponding matte.

While shadows in the real world are cast by three-dimensional objects, for each shadow there also
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exists a 2D slice through the occluder that would produce identical results. Therefore, we have used

automatically-segmented silhouettes of real objects from [GHP07] as occluders in our synthetic scenes

(we have segmented them automatically by using [BVZ01]). This has the advantage over using 3D

models of providing realistic silhouettes, as long as the images used are easily segmentable. Additionally,

a variety of real images1 were applied as textures for the receiving surfaces.

Finally, we varied light conditions in the scene by randomly choosing the shape and size of the

light, its angle and distance from the ground, as well as the angles of the occluder and the ground plane.

In our experiments, we have trained the model on over 10,000 512 × 512 image pairs. Addition-

ally, we have automatically generated binary shadow masks to only train on relevant regions. We have

rendered all our images without gamma correction to make the relationship between image intensity and

shadow attenuation easier to model.

3.6 Experiments and Results

To capture real data for evaluation, we have used a Canon DSLR camera to capture 16-bit-per-channel

RAW, linear images. We provide this set of 137 photographs, 37 of which have the corresponding

ground truth shadow-free images (and mattes), as a benchmark for future methods. The ground truth

was obtained by placing the camera on a tripod and capturing two images: one with the shadow and one

without by removing the shadow caster. For our experiments, we have converted the images to 8-bit-per-

channel linear PNGs and, after processing, de-linearized them for display by applying gamma correction

with γ = 2.2.

Feature Vector

Here we present a short exploration of the relative importance of features in our feature vector. While

feature importance is a very informative measure, it would not be feasible to compute using our full

dataset. Instead, in Figure 3.11 we present “feature frequency”, a number of times each feature was used

as a split in the entire forest.

We have also explored other features, such as explicit pixel-wise gradient orientation and magni-

tude, and the angular position of the patch within the masked region. However, none of them offered

substantial improvements in performance.

3.6.1 Shadow Editing

Knowing the shadow matte allows us to not only remove the selected shadow, but also enables a range of

high-level image editing techniques. We have implemented a basic interface with four different alteration

methods to give artists control over how the selected shadow looks: shape transformation, changing

brightness and colour, and sharpening the shadow. Colour, brightness, and sharpness are adjusted using

sliders, while direct manipulation controls enable a direct homography transform, allowing users to

change the position and shape of the cast shadow. Please see the supplementary video for examples.

1http://www.mayang.com/textures/
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rendering camera

light source

occluder

Scene arrangement in 3D

Shadowed Is Shadow-free Iu

Figure 3.10: To generate the training data, we rendered 10,000 {shadowed, shadow-free} image pairs,
each time varying the light source, the occluder, and the ground plane.
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Figure 3.11: Number of times each part of our feature vector was used as a split dimension at a node.
Note the spike at position 0 indicating that the distance from the mask edge is an important feature.

We can use the recovered shadow mattes to aid tasks

such as compositing, texture extraction etc., which are nor-

mally challenging tasks requiring substantial manual work.

Both the matte and the unshadowed image can be exported

to any number of generic image editing tools for further pro-

cessing.

3.6.2 Visual Comparison With Other Meth-

ods

We have evaluated our algorithm against other related tech-

niques and display results in Figure 3.12. We have chosen

the best results we were able to obtain for this image using

the original implementations of [MTC07] and [AHO11], but

since the user has some freedom in the use of their systems,

we cannot exclude that a more skilled person could achieve

better outcomes (note that for Mohan et al. we have down-

sampled the image by 50% to speed up processing). Please

see the supplementary material for many more results.

While intrinsic image algorithms could be considered

an alternative to shadow matting, it is important to note that

they have different goals and it would not be fair to directly

compare the two, so the examples are shown just for illustration. While shadow matting usually deals

with cast shadows, intrinsic image techniques generally decompose images into reflectance and shading

components where, in practice, shading mostly refers to attached shadows. Most of these techniques
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Input: mask and shadowed image unshadowed ours unshadowed Guo et al.

unshadowed Arbel and Hel-Or unshadowed Mohan et al. Finlayson et al. two distinct illumination-invariant images

Barron and Malik: shading and reflectance Tappen et al.: shading and reflectance

Figure 3.12: Comparison with other methods. Note that both Barron and Malik and Tappen et al.
perform slightly different image decomposition: rather than matting cast shadows, they extract shading
and reflectance components. (The second illumination-invariant result for [FDL09] comes from the
shadowed image in Figure 3.27.

Shadowed Reconstructed unshadowed Ground truth shadow-free Squared difference (×3)

Figure 3.13: While the aim of our work is to enable perceptually-plausible results, here we show the
differences between the output and the ground truth.

are poorly equipped to recognize cast shadows as illumination changes unless given access to additional

data such as in [Wei01].

Finally, the method presented by [FDL09], does not provide perfect illumination-invariant images,

as shown in Figure 3.12. In the first image, while the ilumination differences are not visible, some

reflectance-induced gradients were removed as well (flower patterns in the top part of the image). For a

different input, in the image on the right, illumination differences are still visible.

3.6.3 Quantitative Evaluation

Figure 3.14 (a) shows quantitative evaluation of our and related methods in terms of RMS error from

ground truth (for this evaluation we have used all images, which were processed by all four methods).

Additionally, in Figure 3.14 (b) we visualize per-image RMSE for different methods to give a more

complete characterization. Note that quantitative comparisons are not, in general, representative of per-

ceptual differences and are included here only for completeness.
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Mean RMSE
Ours 13.83
Arbel and Hel-Or 2011 18.36
Guo at al. 2012 19.85
Guo at al. 2012 (automatic detection) 19.19
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Figure 3.14: (a) RMSE between results of different shadow removal methods and the ground truth
shadow-free images. While our scores are best, the most important aim is to convince subjects that the
resulting images are unaltered, rather than obtaining the best numerical result. (b) Per-image RMSE
between results of different shadow removal methods and the ground truth shadow-free images.
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Scene Name Mean Pairwise RMSE
real22 8.35
real26 6.15
real138 14.55
real168 1.02
real249 1.58

Table 3.1: Differences between images unshadowed by different users. Each of the 5 scenes was unshad-
owed by 4 users. For each scene, RMS differences were computed between each image pair, and the mean
of these errors is shown above. Please refer to the supplementary material to see all the user-provided
masks and the resulting unshadowed images.

3.6.4 Impact of Variations in the User Input

Our method does not automatically detect shadows in the image, instead giving the user control over

which regions should be modified. To establish how robust it is to variation in the user input, we have

asked 4 users to create masks for 5 different scenes and ran the unshadowing algorithm for each input.

Each user was instructed to paint over the areas of the image containing the shadow and to pre-

fer over- to under-selection for consistency with our assumptions (namely, that it is difficult to exactly

determine boundaries of soft shadows and that our algorithm is only allowed to modify selected regions).

To properly investigate the impact of user input only, we have constrained the inpainting to be the

same for each user. This is necessary, since the inpainting algorithm we use is non-deterministic and

constitutes the main source of variation between runs. After having all the user-provided masks we have

created a union of them (i.e. pixel-wise logical-or) and used it as the inpainting mask.

As Table 3.1 indicates, the final results are fairly robust to variance in user input. The largest

differences are caused by users underestimating the extent of the shadow and thus not marking some

regions for modification. We have included the different input mattes and corresponding unshadowed

images below.

We conclude that small differences in the provided masks do not contribute significantly to the

quality of final results as long as all the penumbrae are selected. The exception is the bottom row in

most of the scenes, which shows penumbrae parts being left untouched, which is caused by this user’s

tendency to underestimate the extent of the shadow. Recall that we intentionally constrain the unselected

regions to be considered out-of-shadow and therefore unquestioningly trust the users’ judgment. This

design decision could be revisited e.g. by automatically dilating the masks by a certain amount.
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real22 real26

real138 real168
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real249

3.6.5 User Study

To understand how our results compare to those produced by prior work, specifically the methods of

[GDH12] and [AHO11], we conducted a user study similar in spirit to [KKDK12]. We have modified the

method of Guo et al. to sidestep the automatic shadow detection and instead use the same shadow mask

that was given to our algorithm (though the results from Guo et al.’s unmodified version are included in

the supplementary material). Please also note that the method of Arbel and Hel-Or required more input

that was provided manually for each image.

We have assembled a set of 117 images for user evaluation by combining a subset (soft shadows

only) of the dataset released by Guo et al. with a subset of our own images: 65 from Guo’s and 52

images from our dataset. The complete set of images used can be found in the supplementary material.

Our study consisted of two phases: a) a series of ranking tasks in which participants ordered a set of

two or three images, and b) a series of evaluation tasks in which participants indicated the success of

shadow removal on a particular image using a 4-point Likert scale. Both phases started with a tutorial

example and displayed instructions on the right side of the screen throughout all trials. Additionally, in

each phase, we have asked the participants to estimate their confidence in their choice on a 3-point Likert

scale. The interfaces used are shown in Figure 3.15 and Figure 3.15 below.

In the ranking phase, participants were shown 15 random image tuples (from a set of 117), where

each tuple consisted of images of the same scene modified with one of three methods: ours, Guo et al.’s

and Arbel and Hel-Or’s. Using a drag-and-drop interface, participants were asked to order the images

according to how natural they looked (i.e. from most to least natural). The aim of this part of the study

was to establish how believable the produced results were, without the participants being aware that any

shadows were removed. Roughly half of the tuples showed results from each of the three methods, and

half paired our result with one of either Guo et al. or Arbel and Hel-Or. For all participants, the order of
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Figure 3.15: Screen capture of Task 1 of the user study. The participants were asked to decide which of
the presented images seemed more natural and arrange the presented results by click-and-drag.

Figure 3.16: Screen capture of Task 2 in the user study. The participants were presented with results of
shadow removal using either our method, Guo et al.’s or Arbel and Hel-Or’s and asked to indicate how
successful the shadow removal was in the marked region.
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the tuples was randomly chosen, along with the order of the images within the tuple.

In the second phase, 15 images were randomly drawn for each user from a pool of 282 images.

These were the same set of images as in the first phase, however, now each image was shown separately

rather than in a tuple. Of these images, 118 were processed using our technique, 114 were processed

using Guo et al.’s, and 50 using Arbel and Hel-Or’s. The set of 15 images was randomly chosen subject

to the constraint that the images seen during the first phase could not be used in the second. Each of

these images was augmented with a bright arrow pointing to the centroid point of the shadow that was to

be removed, and participants were asked to assign a score {1, 4} based on how successfully they thought

the shadow was removed. Low values corresponded to cases where the shadow was not removed or

where the removal introduced artifacts, while high scores indicated successful shadow removal and no

visible defects. The centroid was computed automatically by finding a point on the skeleton of the binary

shadow mask closest to the mean position of the masked pixels. The order of the two phases (ranking

then evaluation) was fixed for all participants.

Results

The study was deployed on a website. We recruited 51 participants through email lists, word-of-mouth,

and Facebook. Individuals could participate by visiting a link using their own computing device. Of

the 51 participants, 39 completed the whole experiment, 7 quit before finishing the first phase, and 5

quit during phase two. Because of the randomized design of the study, we include all participant data,

including data from participants who did not complete the entire study. Additionally, 28 people visited

the experiment, but did not answer any questions.

We analyze our study data using methods described in [Kru11]. Unless otherwise stated, reported

results represent the posterior mean, and the confidence interval (CI) represents the range encompassing

95% of the posterior probability.

Participants rated a total of 694 image tuples in the ranking phase and analyzed 605 images in the

evaluation phase. In the ranking phase, we calculate the posterior probability of each method being

ranked first (i.e. appearing the most natural). We model this as a Bernoulli random variable with a

uniform Beta prior. As shown in Figure 3.17, results produced by our method were significantly more

likely to be ranked first than the competing methods.

In the second phase, participants ranked the success of shadow removal with a score {1, 4} for each

image. Figure 3.18 shows the normalized histograms of scores assigned to results produced with each of

the three methods. As can be seen, our method obtained high scores in the evaluation task more often than

the other methods. Additionally, we have evaluated how likely each method was to unshadow images

perfectly (we define “perfect” shadow removal as one with mean evaluation score across all participants

µeval > 3.5). Figure 3.19 (left) shows the posterior probabilities for each method to produce a perfect

result (as before we have modeled this using a Bernoulli random variable with a uniform Beta prior).

The results show that our algorithm is significantly more likely than others to succeed in this scenario.

We have also characterized the results by considering the data from both user study phases together.

The right part of Figure 3.19 shows the probability of a given image winning both the ranking phase and
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Figure 3.17: Posterior probabilities of each method winning a ranking round. The shaded, rectangular
regions signify the 95% Confidence Interval (CI).
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Figure 3.18: Normalized histograms of image evaluation scores for different methods. Higher scores
correspond to images where the shadow was removed successfully and no artifacts were introduced,
while low scores mean that the shadow removal failed and/or there were visible artifacts introduced.
Numbers in brackets above each plot show how many evaluations contributed to it. Overall, our method
has the highest chance of obtaining high scores and therefore removing shadows successfully.
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Figure 3.19: Left: posterior probability of image having a shadow removed perfectly (mean score
µeval > 3.5). Right: posterior probability of image modified with a given method winning both in
the ranking and evaluation phases.

the evaluation phase.

Additionally, in Figure 3.20 we show the probability of our method or Guo et al.’s method winning

the ranking task while simultaneously having different evaluation scores. We show that when images

unshadowed by Guo et al.’s method win, they are likely to have low scores, while our method winning

likely means high scores. This can be explained by the fact that in their case, the method sometimes

“misses” softer shadows and does not modify them at all. In these cases, the image is likely to rank high

on the naturalness scale, but still fail the shadow removal evaluation.

Closer inspection of this combined test set revealed that the mean maximum penumbra width of

images from Guo et al. is 32 pixels, while for the test images we have introduced it is 55, as shown in

Section 3.6.5. We have therefore analyzed how the performance of different methods varies on different

subsets of the data. As shown in Figure 3.22 in the case of testing on Guo’s data only, no significant

difference between our and Guo et al.’s method was observed (while the maximum a posteriori (MAP)

estimate of our method is lower, the confidence intervals overlap significantly). On the other hand, our

method performs much better on the dataset with higher mean penumbra width (i.e. softer shadows).

Figure 3.23 shows similar trends as in the ranking case: when using the dataset with moderately

soft shadows our method is indistinguishable from Guo et al.’s, but as the penumbra size increases our

performance becomes relatively higher.

Further, we have measured the standard deviations of scores that the study participants assigned

to individual images. As Figure 3.24 illustrates, different participants were mostly consistent in score

assignments.

Finally, we have conducted a separate user study comparing our method to that of [MTC07]. We

found that participants preferred our results 65% of the time when shown against Mohan et al.’s, and

were significantly more likely to highlight artifacts in their results than in ours.

3.7 Limitations
Though our method is somewhat robust to inpainting errors, it is often unable to recover when the

initialization fails significantly. More explration into structure-guided inpainting methods, similar to the
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Figure 3.20: Probability of winning the ranking task conditioned on the winner’s mean score in the
evaluation task. Note that when Guo et al. win, their scores are likely to be low, while the opposite is
true for our method.

Figure 3.21: Maximum penumbra widths for images in ours and Guo et al.’s datasets. Note that the
average penumbra in our dataset is significantly wider than in Guo et al.’s (meaning softer shadows).
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Figure 3.22: The different performance characteristics on different slices through the dataset seem to
be correlated with the softness of the shadows: our technique has the biggest advantage on images with
softer shadows.

1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

G
uo

's 
da

ta
se

t

Arbel and Hel-Or 2011 (5)

1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5 Guo et. al 2012 (144)

1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5 ours (139)

1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

ou
r d

at
as

et

Arbel and Hel-Or 2011 (107)

1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5 Guo et. al 2012 (100)

1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5 ours (110)

Figure 3.23: Histograms of evaluation scores conditioned on the dataset used. Our method is either
significantly better or comparable to the competition.
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Figure 3.24: The users seemed to mostly agree in their evaluations of the results.

one we tested in Section 3.3.1 could produce better results.

Another limitation is that the technique is not able to deal with most hard shadows. An interesting

area of future work would be to either extend it to perform better in this regard, or combine it with one

of the hard-shadow specific methods and automatically choose the correct implementation.

Additionally, since our training set does not contain scenes with mutliple light sources casting over-

lapping shadows, we do not expect to handle all such cases correctly (however, some complex shadows

such as ones cast by leaves, are removed successfully, despite not being represented in the training set,

e.g. “real276” in the supplementary material). Further, the colour optimization step makes assumptions,

which do not hold in the presence of multi-coloured light sources (e.g. stained glass or mutliple light

sources of different colours), or when the in-shadow region is not similar to any out-of-shadow parts.

Specifically, we allow for the illumination colour balance to change (interpolate) between in-shadow and

out-of-shadow regions, which is enough for most scenarios, such as sun-and-sky illumination. It does

not allow, however, to capture the shadow profiles in the presence of more than two distinct, differently-

coloured light sources (since then one has to interpolate between more than two target illumination

colours). Regressing each channel separately would remove this limitation at the cost of intriducing

slight chromatic artifacts, as demonstrated in Section 3.4.

While we have not tested it, this technique should also work for shadows cast by translucent objects,

since the colour optimization aims to make the unshadowed region similiar (colour-balance-wise) to the

out-of-shadow parts. To handle such situations, we would need to relax our hard constrains on assumed

shadow matte channel scaling, which were put in place to speed up computation in the most common

cases. On the other hand, we would not expect our algorithm to be effective in removing attached (as
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opposed to cast) shadows, unless a different training set was used. Since the fall-off profiles of attached

shadows are dictated by the surface shapes, they do not, in general, exhibit the same behaviour as the

penumbrae of cast shadows.

Finally, in some cases the inference stage is unable to produce compatible matte suggestions at

neighbouring regions in the image, which results in visible grid-like artifacts (see e.g. the top-right

image for Figure 3.25). While the effects of this limitation are often hidden by the texture underneath the

shadow, a possible solution could be to increase the feature patch overlap or to create a stronger pairwise

distance constraint. Both of these solutions are challenging, however, as they require more training data

and therefore computational effort.

3.8 Discussion and Future Work
We have presented a model for removing soft shadows that is not based on heuristics, but instead draws

from the experience of the graphics community to learn the relationship between shadowed images

and their mattes, from synthetically generated, but realistic, data. Our approach can deal with soft

and complex shadows, and produces results faster than the most related techniques in the literature. It

requires little time and input from the end-user, and our study showed that our method is significantly

better than existing methods in successfully removing soft shadows.

More generally, we have presented a unique use of Regression Random Forests for supervised clus-

tering of high-dimensional data, coupled with a regularization step that is adaptable to general scenarios.

Similar ideas could be applied to video e.g. by performing regularization across frames.

There are several ways this technique could be extended in future work. One of the most obvious

additions could be some understanding of the scene and its contents. With more information about e.g.

normals and depth discontinuities, our technique might be able to better identify and composite shadows.

This information could also feed into the following bootstrapping extension to sample the unshadowed

texture more efficiently.

Another interesting problem would be the creation of guided inpainting systems that could be used

for initializing our method. For example, a method similar to [HSGL11] could help find correct out-

of-shadow correspondences, while more user input could provide constraints for the initialization (e.g.

structure cues as in [SYJS05]). As better guided inpainting algorithms emerge, our framework will be

increasingly effective.

Possible extension As mentioned previously, inpainting algorithms can be divided into those that

use a pre-built dataset and those that use the remainder of the image being modified. Similarly, some

super-resolution techniques (e.g. [GBI09]) use parts of the image to be modified as exemplars for syn-

thesis. Using the same reasoning, we can adapt our method so that it bootstraps the training set from

the input image. For this variant, we prepared a set of prerendered shadow mattes and applied a random

subset of them to different positions in the shadow-free areas of the input image. This results in pairs of

[shadowed, shadow-free] images that we use to train the forest, which is then used for inference in the

same process as previously.

The advantage of this extension is that it builds a finely-tuned regressor for this particular image
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Inability to explain some hard shadows

Gross inpainting failure

Incorrect colour adjustment (see video)

Figure 3.25: The left column shows input images, the inpainted initializations are in the center, and
the outputs can be seen on the right. Please note that in the case of incorrect colour optimization,
the user can easily rectify any mistakes by using our simple shadow editing interface as shown in the
supplementary video.
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Standard Bootstrapping

Figure 3.26: Comparison with bootstrapping extension. While for some images bootstrapping allows us
to obtain comparable results with a much smaller training set (the image on the right used a training set
of J = 50 images) it makes much stronger assumptions and is therefore not as generally applicable.

which yields high performance given a smaller training set. On the other hand, it is critically reliant on

the assumption that the image has enough out-of-shadow areas with similar texture as the shadowed parts,

which limits the number of images suitable for this method. Nevertheless, in the right circumstances this

method can produce good results—see Figure 3.26. More work in this area could lead to more robust

solutions.

Further, it might be possible to automatically detect hard and soft shadows in the given image and

to selectively apply our method for soft shadows only, and a hard shadow-specific method otherwise.

Additionally, techniques for detecting forgeries, such as [KOF13], may gain more power given the

ability to explain soft shadows. Finally, works such as [SPDF13], addressing the problem of image

relighting from a single photograph belong to an exciting area that could benefit from the ability to

seamlessly remove and modify shadows.
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Input Coarse, user-provided mask Recovered shadow matte

Figure 3.27: Results of shadow removal using our method on a variety of real photographs. The left
column shows original images, the middle column shows user input, and the right column shows the
obtained shadow mattes (the resulting unshadowed images are presented in Figure 3.1). The mattes
could also be used to modify the properties of the shadows as we show in Section 3.6.1.
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Chapter 4

Image Evaluation User Studies

The graphics community presented many impressive technical contributions over the recent years. De-

spite that, high-quality perceptual user studies are still difficult and expensive to conduct. Symptoms of

this include small numbers of participants, poor generalizability of studies, non-consistent analyses and

lack of thorough examination of the results. In this chapter we examine how big the problem is, why it

is important to address and present our attempt at resolving it.

In short, we had created an authoring system that makes it easy to create image evaluation user

studies with consistently high quality and requiring relatively little effort. First, however, we show that

the problem is already visible to influential researchers and explain why and when user studies are useful.

Next, we enumerate desirable features a user study should have and contrast this with what is usually

done in the graphics community to evaluate image manipulation techniques. Based on this, we propose a

set of tasks that fit the use cases described and can serve as a template for creating user studies, describe

each task in detail, discuss when each is useful, how to carry them out, and how to analyze and draw

conclusions from their results. Finally, equipped with all the above information, we present our user

study creation system that facilitates evaluation of image manipulation techniques.

4.1 Motivation: The Need for User Studies
A big portion of the work done in the graphics community aims be perceptually convincing: inpaint-

ing ([BSCB00], [CPT03], [LZW03], [BSFG09], [PKVP09], [KKDK12]), shadow removal ([MTC07],

[WTBS07], [FDL09], [AHO11]), automatic image enhancement ([CKK11], [HKK12], [KLW12],

[YS12]) and rendering are just some examples, where the success is defined by perceptual criteria.

Clearly we have a need for a reliable way to evaluate perception-based characteristics, for which numer-

ical measures are not a good approximation. While there is a body of work examining the relationship

between perception and numerical measures (for instance Hwang et al. [HKK12] show that in their

studies, L2 distance had poor correlation with perceptual differences expressed by the users) and even

numerical measures were created specifically to reflect perceptually-based criteria ([RFS+98]) there are

many dimensions, for which no numerical metrics exist (e.g. “scaryness” or “funiness” of an image), but

which can be easily evaluated by people.

In the academia, as well as in the industry, running user studies and asking humans to answer
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questions or perform specific tasks is so far the only reliable way to carry out such an evaluation. We

believe that making the creation and refinement of perceptual user studies easier will contribute greatly

to the quality and depth of evaluation of a large part of research in our area. To establish, whether

this opinion is held by other researchers, we have created a short questionnaire to find out what is the

current state of perceptual user studies in the graphics community. The questionnaire was distributed

to the SIGGRAPH Program Committee members during the meeting in Boston in March 2014. The

summarized results can be found in Appendix C1, while below we present a summary of the findings.

Our aim was to find out:

• Whether user studies are considered an important part of graphics papers.

• What kinds of publications can benefit most from having a user study.

• What other methods can be used to convince reviewers of the merit of a new method.

• How the analysis of the results should be carried out, given the choice between Null Hypothesis

Significance Testing (NHST) and Bayesian methods.

Overall, 27 Program Committee members answered the questionnaire. To obtain a rough charac-

terization of the audience, we have asked how many years they have been reviewing graphics papers

(average of 11 years with a standard deviation of 4.66) and how many times they have been on SIG-

GRAPH or Eurographics Program Committee (average of 4.96 times with a standard deviation of 3.57).

Next, we have asked whether there are circumstances, under which presence or absence of a percep-

tual user study can decide about the acceptance or rejection of a paper. Out of 26 answers, 23 were “yes”

and 3 were “no”. When asked to explain the circumstances in more detail, the respondents indicated that

user studies are especially important when

• the paper presents visual, perceptual results,

• there are no obvious objective measuerments,

• there is an aesthetic aspect to the task, or

• users are in the loop.

Further, we have asked the respondents to assess the current state of user studies in the graphics

publications. Out of 22 answers, nobody concluded that the studies are generally “well carried out”, 8

people said that they are “sufficient”, 13 chose “not thorough enough” and one person indicated that they

couldn’t remember any publication, which included a user study.

We had also included a short description of a sample experiment taken from a recent SIGGRAPH

paper as reported by the authors. In addition to the original analysis (based on Null Hypothesis Testing)

we had analyzed the results using a Bayesian method and asked the participants to indicate which anal-

ysis method they prefer and why. Out of 18 answers the majority (10 people) indicated that they do not

1raw responses are also available under http://www0.cs.ucl.ac.uk/staff/M.Gryka/download/
SIGGRAPH-PC-UserStudy-Questionnaire.pdf

http://www0.cs.ucl.ac.uk/staff/M.Gryka/download/SIGGRAPH-PC-UserStudy-Questionnaire.pdf
http://www0.cs.ucl.ac.uk/staff/M.Gryka/download/SIGGRAPH-PC-UserStudy-Questionnaire.pdf
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mind which method is chosen, as long as it is carried out well. Of the rest, 4 chose the classical analysis

and 4 chose Bayesian. The reasons for classical were mostly connected to it being more familiar, while

the proponents of the Bayesian method felt they were more honest and thorough. Additionally, a flaw in

the classical analysis (i.e. the one copied from the original paper) was pointed out by two participants:

the effect sizes were missing. While this means that the questionnaire results might be biased (since one

of the analyses was less than perfect), it highlights the fact that analyzing user study results correctly is

something the graphics community struggles with.

Finally, we had asked our respondents about any other methods, besides perceptual user studies,

that they feel are useful when presenting new graphics research that cannot be easily examined using

objective measures alone. The most prominent were visual comparisons by reviewers themselves, abun-

dance of results, comparisons to previous work and to ground truth, and perceptual quality metrics. One

person additionally suggested that opinions of experts might be convincing.

In conclusion, it seems that influential reviewers of graphics papers feel that user studies are impor-

tant when presenting perceptual results and that our community, currently, has difficulties ensuring these

studies are carried out and analyzed well. We believe that the authoring system presented in this chapter

can solve these problems, while also making it easier and faster to draw conclusions about new methods.

Further, enabling a cheap, but reliable way of creating and running user studies as well as automat-

ing the analysis opens up possible areas of further research. Iteratively optimizing image manipulation

methods and incorporating user feedback as a parameter is just one such possibility.

4.2 Current Trends in Evaluation of Image Manipulation Methods
Armed with the knowledge of what the community members think about the current state of user studies

in graphics papers, we now present a short survey of several relevant papers to see concrete examples.

This section aims to show what the people in our field are already doing and will examine the following

characteristics of each study:

• What was the aim of the study?

• What was the task that the participants were asked to perform?

• Was there a a pilot study to tune the study setup?

• How many participants were recruited and how? Were they from a specific demographic?

• How was the data analyzed?

We have created a collection of papers published in SIGGRAPH and Transactions on Graphics over

the last 5 years. The set was collected by first searching paper abstracts for relevant keywords, adding the

articles we have already known about and then following citation trail. While this is not an exhaustive

list, we aim to show that there is a significant subset of works that share important characteristics of

how they evaluate results. In addition to the summaries below, see Chapter 5, where we have recreated

experiments from four more recent papers.
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• Cole et al. [CSD+09] investigated how well line drawings facilitate understanding of shapes of

3D objects. To gather the data, they have conducted an interactive study on Mechanical Turk,

where they were asking participants to interactively orient gauges in 3D based on the underlying

shapes represented as 2D images. Regardless of the interface, their detection and treatment of

negligent (or malicious) respondents was interesting. In short, in the absence of hard distinctions

between right and wrong answers, they performed consistency checks and rejected data that fell

below a consistency threshold (which was determined during a pilot study). The authors recruited

560 participants from Mechanical Turk. The analysis was specific to the task at hand: the authors

reported simple statistics of angular errors for different 2D representations, scatter plots for a more

qualitative comparison and Null Hypothesis Significance Testing-based analysis to establish when

two conditions differed significantly.

• An exhaustive set of experiments was conducted by Cadik et al. [ČWNA08] to compare differ-

ent HDR tone mapping methods. Their experiment had two phases: scoring and ranking. In the

scoring phase the participants were asked to score how well given image represented a real-world

scene. In contrast, during the ranking phase the task was to rank multiple images based on defined

image quality criteria. The pilot study was performed before the full experiment to test the setup.

Overall 20 individuals were recruited for the study, but the recruitment method was not men-

tioned. The results of the experiments were very thoroughly investigated using null hypothesis

significance testing (NHST).

• Rubinstein et al. [RGSS10] conducted a large-scale survey to thoroughly evaluate 8 different im-

age retargeting methods. They have recruited 420 participants for their experiments, of which

some were volunteers and some recruited through Mechanical Turk. They have also asked the

subjects about their gender, age and familiarity with computer graphics and found that around

40% of participants were female and around 60% male, the average reported age was 30 and that

their graphics expertise varied. Two types of paired comparison tasks were presented: one with

the reference image visible and one without. Before the main experiment a pilot study was ran

to assign labels to the evaluated images based on their contents (the labels were “lines/edges”,

“faces/people”, “texture”, “foreground objects”, “geometric structures” and “symmetry”). After

collecting the data, the methods were ranked based on the frequency they were preferred over

alternatives and the statistical significance demonstrated using NHST.

• A paper by Kang et al. [KKL10] used pairwise comparisons (a non-forced-choice variant, i.e.

also allowing people to answer “no preference”) to evaluate the effectiveness of their personalized

image enhancement technique. The authors recruited 14 friends and colleagues to participate in

the study and no pilot experiments were reported. NHST was used for analysis.

• Another example of using ranking experiments, was the work by Kong et al. [KHA10], where they

used a series of Mechanical Turk tasks to create a set of best practices for creating perceptually-

based treemaps. Over multiple experiments (including a pilot study) the authors ecruited over 200
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Mechanical Turk workers. Again NHST was used during analysis.

• Caicedo et al. [CKK11] hired 336 respondents on Mechanical Turk to find clusters in personal-

ized image preference space. They have created a simple, interactive interface allowing image

modifications and asked people to modify a set of photographs to their liking.

• A large-scale experiment, including a scoring-based task was described in the work by O’Donovan

et al. [OAH11], where colour themes were evaluated based on their subjective attractiveness.

Overall 1301 participants were polled for their colour theme preferences. The data from the exper-

iment was used to train a regressor to rate the colour themes and a classifier to distibguish between

“good” and “bad” ones.

• Hwang et al. [HKK12] used non-forced-choice, pairwise ranking to evaluate different image en-

hancement methods. No information about the pilot study, number of participants or recruitment

methods was given and NHST was used for analysis.

• Yuan and Sun [YS12] created an automatic exposure adjustment algorithm and demonstrated its

performance using pairwise comparison (i.e. binary ranking) experiments. For the evaluation, 12

volunteers with different expertise levels in photography were recruited. Their task was to choose

the better image out of a pair (or indicate a tie), where each was processed with a different method.

No pilot study or statistical analysis was reported, besides proportions of preferences of different

methods together with corresponding standard deviations.

• Similarly, non-forced-choice pairwise comparisons were used by Kaufman et al. [KLW12]. To

gather data about their method, two experiments were carried out: one with 71 students (21 women

and 50 men) and one with 22; it is unclear whether there was overlap in participants between the

two runs. Each time, the subjects were asked to complete the study online, using their own devices.

No data about the pilot study was reported and the authors reported only the percentages of times

each method was preferred.

• Kopf et al. [KKDK12] evaluated their optimized cropping algorithm for inpainted panoramas

using a pairwise comparison task. The study aimed to establish, which method generated more

appealing panorama images. Thirteen (13) participants took part in two experiments, but no pilot

was reported. Interestingly the authors used Mechanical Turk to gather opinions from a larger

population (117 individuals), however, this data was used for the purpose of optimizing parameters

for their algorithm. NHST was used to establish the statistical significance of collected data.

Based on the above data, we have decided to refine and implement two task types: ranking and

scoring. While ranking can be used to directly compare different results and express relative prefer-

ences, scoring tasks allow assigning absolute values (on the author-defined spectrum) to single images.

These two modalities cover a large part of what graphics researchers need to evaluate their methods.

Even though we mostly use binary ranking and therefore the term “paired comparison” might be more

accurate, we have decided to keep the more general description.
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Before specifying the tasks in more detail, however, we also briefly look at how user studies in

general should be built.

4.3 Desirable Characteristics of a User Study
In the general case, user studies vary: they can be employed to evaluate new interfaces, copy writing,

photographs, gather opinions about current events or products etc. Consequently, different constraints

apply in each scenario and different rules should be followed to make the study useful. However, as we

have seen in the previous section, focusing on image evaluation narrows the scope and leads to many

commonalities between different experiment. Additionally, there are a few general rules that should

apply to any high-quality perceptual experiment. Specifically, when designing a user study the following

goals should be kept in mind:

1. Accuracy and Objectivity: the study should be as accurate as possible and avoid bias; it should

aim to find the true properties of the studied phenomena. In the case of image evaluation, the study

should accurately answer questions such as “Which image manipulation method is superior under

given circumstances?” or “How does algorithm A perform in comparison to algorithm B?”. One

important tool that allows drawing objective conclusions from the collected data is statistical anal-

ysis. While traditionally it was often carried out using null hypothesis significance testing [Fis66],

recently this approach received significant criticisms ([Kru11]) and Bayesian methods with con-

fidence estimates have been proposed as an alternative. See Section 4.4.2 and Section 4.5.1 for

more details on how we tackle this problem.

2. Generalizability: the results should be representative of the general population, unless a specific

target audience is defined. As an example, in the case of image manipulation, the results evaluated

should ideally be equally convincing to experts as well as novices. It is worth noting that this

point was often a weakness of studies in our community, where the participants are recruited from

the easiest to reach, but a highly biased population: colleagues and computer science students.

A partial solution to this problem might be recruiting comparatively large numbers of microtask

workers e.g. on Mechanical Turk.

3. Repeatability: given the data and the procedure the study should be repeatable, i.e. the results

should be easily reproduced by others. This is important not only because of “trust, but verify”

phenomenon, but also because it should be easy for new research to build upon earlier findings.

The answer we present below is twofold: firstly we define two common tasks, how they can be

carried out and analyzed. Secondly, we present our implementation of a system that includes these

tasks as well as the ability to export and import the exact setups.

4. Creation time and cost / efficiency: traditionally running user studies implies some form of

compensation to the participants. Ideally a study would use the resources efficiently and not have

other significant overhead; this implies making the most of the feedback participants provide and

ensuring that their tasks are simple and well-defined. Additionally, since the focus of graphics
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researchers is creating interesting algorithms, the preparation of the study should be convenient

for the researcher and take minimal time and effort.

Particularly the last point is a key obstacle leading researchers in our community to suboptimal

treatment of studies. Their creation and thorough evaluation traditionally take large amounts of effort

and often occur shortly before submission deadlines. Alleviating this problem is a major motivation for

our efforts and, consequently, our main measure of success. We have early indications, summarized in

Section 4.8, that we have taken a correct approach to maximizing the quality/effort ratio. However, the

real proof can only be apparent after more researchers use, and provide feedback on, our methods.

4.4 Ranking Task
Many novel algorithms for editing images aim to be perceptually convincing and have to compare them-

selves to previous attempts to establish their performance. In such cases a user study with a ranking task

can provide indication about people’s preferences between images produced with different methods.

While a ranking task in general can mean “order M images based on criterion X”, we mostly focus

on the simplified case, whereM = 2. This simplification can be used even when more than two methods

have to be compared, by selecting 2 out of M images for each round and always presenting pairwise

choices. This setup has a number of advantages: most importantly it makes the task simpler for the

participant, enabling a faster and more efficient data gathering process. In most of our experiments

people took less than 10s to pick a better one of two images, while Cadik et al. [ČWNA08] report

participants taking 35m to order 14 (printed) images. Secondly, when presenting the stimulus digitally it

is often impractical to have more than two images on a screen at one time without losing valuable detail.

Finally, analysis of the data is made easier, especially when different numbers of results are available

from different methods.

It is possible to tackle some of these problems and Berthouzoz et al. [BLDA11] proposed an inter-

esting alternative where users were presented with 4 images, A, B, C and D and were asked to specify

the distance from each of B, C and D to image A on a scale from 1 to 5. It is unclear, however, whether

this particular experiment design is superior to other methods and it still does not scale to large values of

M .

Some examples of how the ranking task can look are found in Figure 4.1. There are a few param-

eters that can be adjusted depending on the scenario. For instance the user can be put under different

constraints such as limited time (either minimum or maximum), ability to revise decisions etc. Further,

there are different interfaces for performing the selection: drag-and-drop, buttons, sliders, or thumbnails

with hover events as used in [RGSS10].

4.4.1 Interface Variations

We have implemented five different ranking interfaces to ensure a wide variety of modalities are available

for study authors. While we have developed each of them based on some assumptions for when they

can be useful, we have not yet gathered enough data to establish the validity of our assumptions. Each

interface can optionally also show a “reference image” if needed. Finally, variety of other parameters,
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(a) drag-and-drop interface used in [GTB15] (b) implementation from [RGSS10]

(c) side-by-side, non-forced-choice interface (d) “curtain” interface

Figure 4.1: Different interface implementations for a binary ranking (paired comparison) task. Note
that (a) can also be used for ranking more than two variations, but its effectiveness is then reduced
because of small image sizes.

such as minimum and maximum time constraints, text displayed, layout and presentation options can be

adjusted per-task by study authors. The interface variations we have implemented include:

• Horizontal side-by-side display, where two images are displayed next to each other together with

buttons to make a choice; see Figure 4.1 (c).

• Vertical side-by-side display, similar to above, but with images and their corresponding buttons

arranged vertically on the left and the textual description on the right.

• A “curtain” interface, allowing the participants to interactively reveal either of the two images

using the mouse cursor; see Figure 4.1 (d).

• A “swap on keypress” interface, similar to “curtain”, but where the images can be alternately

displayed by pressing arrows on the keyboard.

• Drag-and-drop ordering, shown in Figure 4.1 (a), similar to the vertical side-by-side variant, but

which allows drag-and-drop ordering, rather than button-based choice.

We have based these variations on the two main assumptions. Firstly, we expect that the study

authors want to maximize the image size shown, while keeping the entire interface on one screen and

avoid the need for scrolling. This is why having vertical and horizontal variants can be useful.

Secondly, based on different magnitudes of differences between evaluated images, some interfaces

might seem more suitable. For instance, when the differences between images are large, seeing them
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side-by-side is often enough to detect the changes. However, in other cases, the differences might only

be detectable after participants are allowed to “swap” two images in place.

We believe that gathering of data about which interface variations are suitable for which situations

is an important task with the potential to make the creation of accurate perceptual experiments event

easier.

4.4.2 Analysis

To analyze the results obtained from a ranking task, we have used methods described in [Kru11]. While

null hypothesis significance testing (NHST)-based analysis has been historically more common in graph-

ics papers, it has a number of problems that recent works point out ([Wag07], [Kru13], [dWD14]). While

both methods are useful when applied correctly, Bayesian approaches have the advantage of directly an-

swering the question posed (e.g. estimating the chance of method A being chosen over method B given

the data) as well as providing confidence estimates. The potential added difficulty of choosing the correct

prior is not an issue in practice for the problems we have looked at.

In 2-way ranking, or pairwise comparison, we aim to infer a Bernoulli distribution that reflects the

subjects’ responses we have obtained. Bernoulli distribution describes the probability of obtaining one

of two possible outcomes and has the form

p(y|θ) = θy(1− θ)(1−y), (4.1)

where θ = [0, 1] is the parameter of the distribution and y = {0, 1} is the outcome.

Following Kruschke [Kru11] we choose to use a uniform beta distribution

p(θ|α, β) = beta(θ|α, β) =
1

B(α, β)
θ(α−1)(1− θ)(β−1), (4.2)

with the normalization factor

B(α, β) =

∫ 1

0

θ(α−1)(1− θ)(β−1)dθ, (4.3)

for the prior over the Bernoulli parameter, i.e. beta(1, 1). A uniform beta distribution is a reasonable

default choice if no additional information is available. On the other hand, when prior knowledge is

present, it is possible to use a more informative distribution. The choice of a specific prior depends on

individual circumstances of a given study and has to be stated explicitly and be defensible to a sophisti-

cated audience.

The beta(α, β) prior can be interpreted as the experimenter explicitly incorporating previous data

in which the outcome of “1” was seen α times and “0” β times. Most experiments in graphics research

claim no such prior knowledge and thus beta(1, 1) is the most suitable choice, since it indicates that

each value of θ is equally likely (Figure 4.2a). On the other hand, if there is a reason to believe that the

probabilities of both outcomes are balanced, and therefore that θ is likely to be close to 0.5, beta(3, 3)

could be used instead (Figure 4.2b).
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Figure 4.2: Probability density plots of three different beta priors. The priors can be used to formally
incorporate existing knowledge into the experiment: e.g. if there were reasons to believe that θ is close
to 0.5, that is that the conditions are likely balanced, the prior of beta(3, 3) shown in b) would be a
reasonable choice. On the other hand, if no prior information is available, the uniform prior beta(1, 1)
can be used to assign equal probabilities to all values of θ. Finally, if previous data points to a biased
outcome, the prior could be skewed accordingly (c)).

To illustrate the inference method, we present a hypothetical scenario similar to the experiments

described in Chapter 5. Let A and B represent two different image processing methods that were used to

process 10 images. Having the resulting set of 20 images, we want to discover which method produces

more aesthetically appealing results. After asking 100 participants 20 questions each, we found that

method A was chosen cA = 1040 times, while method B cB = 960 times.

To establish whether there is a statistically significant difference between the two methods, we use

the procedure described by Kruschke: assuming a uniform prior of beta(1, 1), and taking advantage of

the fact that the beta distribution is conjugate to Bernoulli, we can compute the posterior distribution

over the probability of method A being chosen with

p(θ|cA, cB) = beta(θ|1 + cA, 1 + cB). (4.4)

More precisely we obtain the posterior distribution over the value of the parameter of the Bernoulli

distribution describing how often method A is chosen, but in this simple case the numbers translate

directly.

We can now plot the posterior density, as shown in Figure 4.3 (blue). Finally, we need to find the

extent of the Highest Density Interval (HDI) of the posterior distribution, to see which values fall within

the credible region. Conventionally HDI is set to encompass 95% of the probability mass centered

around the distribution’s expected value. In our visualizations, we signify this by a shaded rectangular

region and an annotation in the legend. Since the HDI of the posterior does not include the “null” value

of 0.5, we can conclude that method A is chosen more often than method B with a probability higher

than chance.

Note that Figure 4.3 contains redundant information: since the probabilities of choosing both meth-

ods must sum to 1, knowing the probability of choosing A is enough to infer the corresponding probabil-

ity of choosing B. However, to make the visualization more obvious we can also calculate and plot the

posterior distribution beta(1 + cB , 1 + cA), shown in red. Now, instead of checking whether 0.5 falls

within the HDI, we can look for HDI overlaps between the two distribution. This approach is especially

useful when more than two methods are evaluated, as described below.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A (1060 / 2000) HDI=[0.51,0.55]

B (940 / 2000) HDI=[0.45,0.49]

Figure 4.3: Visualization of the posterior distributions estimated from the hypothetical data described
above. The legend shows the proportion of trials won over the total trials as well as the HDI boundaries.

While the above procedure only deals with two conditions (or methods), it can also be applied to

more diverse data. In such cases, each method in turn can be evaluated against all other methods. That

is, all trials when method A was compared with any other method can be collected and the number of

“wins” and “losses” used as input to the analysis.

Similarly to before, let A, B, C and D be four different image manipulation methods. Again, we

process the same dataset with each of the methods to obtain a set of 40 images. We have simulated 100

participants, again answering 20 questions each. For each simulated “question”, we randomly chose

two methods to compare and made a selection based on a biased random number generator. The data

obtained and the corresponding posterior plots are shown in Figure 4.4.

From the plots and HDI values, we can conclude that methods A and B perform equivalently (since

their HDIs overlap) and are followed by D and C, which perform differently to A and B, and to each

other. It is important to note that in this case, the probabilities of wins for each method do not sum to 1,

since we are estimating four separate distributions (even though some of them share the same data).

Comparing Posterior Distributions

In the sections above, we have presented a way of drawing conclusions from experimental data by com-

paring posterior probability distributions. One can look at three levels of detail when comparing proba-

bility distributions: heuristic-based binary decisions, distance measures and full distributions. Heuristics

can produce very concise ways of summarizing results as long as an agreeable criterion is established

(e.g. null-value falling within the 95% HDI in above sections). On the other hand, full distributions

visualized as plots are more verbose, but present the complete, unprocessed output and lend themselves

to visual inspection. Finally, multiple distance measures exist to compare the distributions to each other:

Chernoff distance, Bhattacharyya distance, and KL-divergence are among the most popular. Each of

these methods provides a real-valued output specifying the degree of similarity of two distributions.

They are, however, not sufficient by themselves to answer the question “Are these distributions equiva-

lent?”. Prior knowledge or explicit thresholds are needed to make them meaningful.
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method wins losses
A 605 418
B 621 376
C 316 674
D 458 532

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A (605 / 1017) HDI=[0.56,0.62]

B (621 / 997) HDI=[0.59,0.65]

C (316 / 990) HDI=[0.29,0.35]

D (458 / 990) HDI=[0.43,0.49]

Figure 4.4: Simulated data (top) and four posterior distributions estimated from it (bottom). The legend
shows the proportion of trials won over the total trials that each method was evaluated in as well as the
HDI boundaries.

In this work we have decided to use the HDI overlap as the tool for interpreting posteriors. De-

spite not being strictly “better” than other methods, it has the advantage of intuitive interpretation and

conciseness. While our system does not output other distance measures, they can be computed by study

designers using raw data provided.

4.4.3 Evaluating Confidence

After the results are obtained, it is common for researchers to report confidence in their findings. In the

analysis presented above, we do not usually pose the problem in terms of null hypothesis, since it is

possible to directly estimate (distributions over) the parameters of the underlying sample distributions.

In such situations the width of the posterior distribution, or more precisely, the width of the Highest

Density Interval, is used as the confidence measure.

Further, visualizing posterior distributions allows more in-depth understanding of the data: besides

the HDI, the researcher can also see the mode of the posterior and its relationship to other distributions,

as was shown in Figure 4.4. If the HDIs of two distributions do not overlap, it can be concluded that the

intervals space of credible parameters does not include the null values.

4.5 Classification Task
While ranking tasks described above focus on characterizing methods in contrast to each other, some-

times it is also informative to investigate how a given dataset fares on its own given a specific scale.

For this purpose, classification tasks can be used, where images are to be assigned a category from a

predefined set. Note that, while we use the general term “category”, the specific implementations can

differ:
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Figure 4.5: Sample image classification task. The number and descriptions of available labels (“Real”
and “Composite” above) are adjustable.

• scoring with “categories” being numbers, e.g. 1–5,

• yes/no tasks where users answer a binary-choice question about each image,

• labeling, with different choices being labels defined by the researcher (e.g. “sky”, “ground” and

“buildings”).

In contrast to the ranking task, we have only implemented one interface for classification, shown in

Figure 4.5

4.5.1 Analysis

To analyze the results of the classification task, we generalize the methods used for the ranking experi-

ments above. In ranking, each image was essentially assigned one of two categories (“win” or “lose”).

Correspondingly in this case we use a categorical distribution (of which Bernoulli is a special case) for

the random variable:

p(y = i|θ) = θi, (4.5)

where θ = [θ1, ..., θk], k is the number of categories and i ∈ {1, ..., k}. Similarly, as the prior over the

parameters θ, we use the Dirichlet distribution (generalization of beta):

p(θ|α) = Dir(θ|α) =
1

B′(α)

k∏
i=0

θαi−1i , (4.6)

where B′ is also a normalization factor, which does not need to be directly computed in our case.

Since the Dirichlet distribution is a conjugate prior of the categorical distribution, the inference is

just as simple as in the previous case. Again, we use a uniform prior distribution: Dir(θ|α), where

α = [α1, ..., αk] and αi = 1 for i = 1...k. In other words, this prior “predicts” with low confidence

that a given method is equally likely to be assigned to any of the available categories. If additional prior
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information is available, it can be easily incorporated by increasing values of some of the parameters of

the Dirichlet prior distribution and thus biasing the posterior.

After gathering responses from study participants, we calculate c = [c1, ..., ck], where ci is the

number times category i was chosen, and use it to compute the posterior distribution

Dir(θ|α+ c) = Dir(θ|1 + ci, ..., 1 + ck). (4.7)

Intuitively, assuming a uniform prior, the MAP estimate after the analysis will roughly correspond

to the histogram of times each category was assigned to the given method. There are however, two

important differences: firstly, because the prior acts somewhat as a regularizer, no category will have

an a posteriori estimate of exactly 0, even when no respondents chose it. This is important especially

because, depending on the sample size, the fact that certain outcome does not occur in the dataset does

not necessarily imply that its probability is 0. A simple example could be 10 subsequent tosses of a six-

sided die where, even with no occurence of a 6, we would not conclude that obtaining a 6 is impossible.

Secondly, because the analysis gives us the full posterior distribution, we can also infer the confi-

dence in the estimates obtained and measure the similarity between the two methods in a more precise

manner.

The remaining challenge after the analysis is the presentation and visualization the posterior dis-

tribution to draw conclusions. When k = 3 it is still possible to depict the entire posterior distribution

graphically by drawing a heightmap over a triangle, where each vertex represents the probability of

each category being chosen; this is shown in Figure 4.6. Note that attempting a similar visualization

in higher dimensions would result in incorrect coupling of probabilities “on” neighbouring vertices and

decoupling of vertices that are not drawn near to each other.

To avoid this problem, we have decided to marginalize the posterior and show the distribution

separately for each dimension (i.e. for each category independently of others); in practice this means

plotting k separate Beta distributions, since the marginal of a Dirichlet distribution for dimension i is

beta(αi, N − αi), where N is the total number of trials. Intuitively this is similar to the analysis of

ranking, however, this time we count “wins” and “losses” for each class (label) instead of each method.

This view conveys enough information to achieve two important goals: depicting the characteristics of

a single distribution, and making it possible to compare distributions to each other (e.g. by summing

their 2D overlaps). The latter can be achieved in the same way as it was in the ranking task: by plotting

multiple Beta distributions on the same axis and measuring the overlap between their HDIs.

To illustrate our approach, we have again simulated data from a hypothetical task. Given a set of 20

images taken by a certain photographer and 5 participants, we construct a task where, for each trial, the

subject chooses one of three categories based on how the image appears: “sad”, “neutral” or “funny”.

Given that “sad” was chosen 26, “neutral” 59 and “funny” 15 times, the marginalized posteriors are

shown in Figure 4.7.

The same analysis can be used to compare how different photographers’ scores relate to each other:

see Figure 4.8. In addition to individual confidences we can see that the highest density intervals overlap



4.5. Classification Task 80

Figure 4.6: Graphical representation of four different, 3-dimensional Dirichlet distributions. In our
case, this distribution shows how likely each combination of 3 parameters of the categorical distribution
is. Image courtesy of Wikimedia Commons, https://commons.wikimedia.org/wiki/File:
Dirichlet_distributions.png

https://commons.wikimedia.org/wiki/File:Dirichlet_distributions.png
https://commons.wikimedia.org/wiki/File:Dirichlet_distributions.png
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Figure 4.7: A histogram of how many times each label was chosen (a) and visualization of the posterior
(Dirichlet) distribution over the parameters of the categorical distribution (b) for the hypothetical task
described above. In (b) each row shows the distribution marginalized to a single dimension to make
visualization possible even with many categories. While both visualizations present similar conclusions,
the confidences (widths of shaded HDIs) are only available in the presence of full posteriors.
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for two of the classes. This allows us to conclude that these two conditions had equivalent chances of

being assigned “neutral” and “funny” labels; we would not be able to say the same only by looking at

the histograms.

4.6 Additional Task Types
While the ranking and classification tasks seem to cover a large part of graphics researchers’ needs,

based on our literature survey, there are other activities that might also be useful. Below we describe

several additional task types, that could also be integrated into our system. While we have not fully

explored these tasks and their analysis methods, they might nevertheless illustrate additional interesting

possibilities.

Area Markup Task

Knowing the performance of relevant methods is a first step, but it is also important to understand where

and why different techniques perform better or worse. While this information is lost in the rankings, it

can be obtained in a separate task by asking users to mark up relevant areas of the given image. This

method can be used to find artifacts and compare them across different results. Similar task was used by

Chu et al. [CHM+10] to check whether participants could find animals camouflaged into images.

While this task type is not yet integrated into our system, we have created a standalone implemen-

tation and conducted a short study on the subset of the shadow removal data (our method contrasted

with Mohan et al. [MTC07] and ground truth). During the experiment, the participants were shown 15

different images and asked to use a paintbrush tool to indicate regions of the image that they believe

were altered. Participants were instructed that an image may or may not contain alterations, and that

they should only mark the image if they thought it was modified.

For each participant, the 15 images to mark were randomly drawn from a pool of 71 images. Forty-

five of these images were processed using our technique, nine were processed using Mohan et al.’s,

and 17 were ground truth images that showed a scene with no shadow present. We included the 17

unmodified images to provide a baseline for comparison purposes. The set of 15 images displayed to the

participant was randomly chosen subject to the constraint that the participant could not see a ground truth

scene without shadows prior to seeing the same scene with a shadow removed using either technique.

For analysis, if any ink was placed on the image, we considered this an instance of the participant

believing they have detected at least one artifact. We modeled artifact detection as a Bernoulli random

variable with a uniform beta prior. Our results, shown in Table 4.1, show that it is significantly more

difficult for individuals to detect artifacts in our images compared to results produced by Mohan et al.,

however, there is also a difference between our technique and ground truth indicating that there is still

room for improvement.

There are multiple variations of this task which could be explored and which have the potential

to impact the results. Firstly, different interaction paradigms could be used for marking instead of a

brush: lassos, scribbles, polygons etc. Secondly there are multiple constraints that can be enforced in

addition to time, e.g. number of clicks or a limited amount of “ink”. Finally more sophisticated analysis
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Figure 4.8: Classification result visualization of different conditions on the same graph. Note that,
while the histograms of the two “photographers”’ images might appear different, the posterior HDIs
overlap and we have to conclude that no statistically significant difference was found in the frequency of
“neutral” and “funny” images.

Our Technique Mohan et al. Ground Truth
71% (67-74% HDI) 85% (78-91% HDI) 48% (41-54% HDI)

Table 4.1: Chances of detecting an artifact in images processed with our method, one of Mohan et al.
and ground truth. The first number gives the MAP estimation, while the numbers in brackets describe
the HDI boundaries.
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methods might produce more informative conclusions. For instance, in the above example it might have

been interesting to compute an overlap between the marked regions and the known shadow positions.

Similarly, image features “under” marked regions could be analyzed in an attempt to find common

features of artifacts.

Image Tagging

Another useful addition to the system might be an image tagging task, where single images are to be

tagged with textual labels (either free-form or chosen from a predefined set). While there are similarities

to the classification task, tagging assumes that multiple tags can be assigned to each image during each

trial. An example of a similar exercise can be found in [RGSS10], where a pilot study was used to

determine roughly the contents of each image (e.g. lines, faces, texture).

In addition to perceptual image comparisons, this task could also be used for data gathering, e.g. to

feed machine learning algorithms.

Paired Classification and Tagging

Finally, it might be useful to either classify or tag pairs of images, as opposed to single ones. This would

allow discovery of relationships of images to each other, e.g. whether they are similar, whether their

colour schemes are compatible etc.

4.7 User Study Authoring System
We have created imCompadre (http://www.imcompadre.com), a user study authoring system

fine-tuned for image comparison and evaluation. It allows anyone to perform a rigorous, perceptual user

studies and reason about the outcomes, backed by a set of statistical reports. The system is entirely web-

based, enabling wide distribution of the study without the usual constraints of organizing face-to-face

sessions with participants (however, it is still entirely possible to hold face-to-face sessions if the study

author decides to do so). Further, facilities to integrate with Amazon Mechanical Turk are integrated into

the system, making it possible to easily recruit large numbers of participants for the study.

While we borrow experience and draw inspiration from psychophysics research, it is important to

note that our goal is almost the opposite: the evaluation of algorithms, rather than human perception.

Consequently we do not aim to compete with standard psychophysical tools such as the Psychophysics

Toolbox [Bra97] and PsychoPy [Pei08]. While there is some overlap between the experiments that those

and our system can create, their objectives and constraints differ. Our aim is to create a system useful for

compute graphics researchers to evaluate the results of novel algorithms. The built-in tasks, therefore,

are tailored to this specific set of constraints.

Further, while interpreting and utilizing the user feedback interactively, using the user-in-the-loop

concept, is a very interesting area of research, we currently consider it out of scope for imCompadre, and

focus solely on statically evaluating relative merits of image manipulation methods.

Our solution brings several advantages such as convenience, increased reproducibility, heuristic

study setup verification, encouragement of running pilot studies, and facilities for examining the results

thoroughly. We describe each of the important features below and proceed to specify details about

http://www.imcompadre.com
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implementation.

Convenience

The most obvious argument for why the system we have built is useful, comes from the fact that creating

user studies in imCompadre is orders of magnitude faster than building them by hand (we have explored

this more in Section 4.8). Multiple mundane challenges, including designing the layout for the tasks,

writing of HTML and JavaScript, hosting and participant recruitment are abstracted away so that the

study authors can focus on creating algorithms.

While most of the real challenges, like ensuring that the study is measuring phenomena relevant

to the problem, and avoiding bias in data, are not explicitly addressed, we hope to allow researchers to

focus on them by solving the easy, but time-consuming parts.

Reproducibility

The first way that reproducibility is increased is standardization: our system has a set of predefined tasks

that are defined above and can be referred to unambiguously.

Secondly, after creating and running a study, the author can obtain a detailed description of the

protocol that the experiment followed, in a human-readable format. This description contains all the

variables necessary to repeat the experiment: which tasks were present with what kinds of variations,

what was recorded, how many participants were recruited, how they were compensated etc. Optionally

the evaluated data and results can be bundled together with this description to form a complete experi-

ment package that can be analyzed and repeated again later. This data can also be used to directly “clone”

the study in our system for verification or extension.

Freedom to Choose the Participant Pool

Depending on the aim of the study, selecting a particular segment of the general population might be

critical to ensure valid results. For instance, for a company creating software for professional photogra-

phers a user study ran solely on computer science students does not carry as much useful information, as

one where photographers took part.

Having an online system that can be accessed from anywhere makes the recruitment task slightly

easier, especially when using crowdsourcing platforms like Mechanical Turk is feasible. This also opens

the possibilities of involving large numbers of subjects. However, it does not mean that the study has

to be ran online necessarily, since it is also possible to create a controlled study environment and invite

participants to attend physically. Depending on their specific needs, the study authors have the freedom

to choose the right setup.

Rapid Iterations

While repeatability is usually considered a necessity for good academic practice, it can also be helpful

in performing research. The most obvious case is running a pilot study, gathering qualitative feedback,

examining the results and adjusting parameters before running the actual study. When re-running the

experiment is trivial and fast, as it is in imCompadre, this process can be repeated more than once to get

more and more detailed information about the data. An example where we have performed such deep
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analysis post-publication and found additional interesting properties of described methods is given in

Chapter 5.

This is equally true in the industry, where such a rapid, progressive discovery could be a significant

competitive advantage.

Analysis of Results

Analysis of results, described in earlier chapters, is included in our system. After running the study, the

researchers can obtain reports with all the data from their experiments compiled and analyzed. After

investigating past computer graphics research, we have only included analysis methods, which are likely

to be useful for this purpose. Additionally, raw response data from participants together with analysis

recipes are available so any additional processing can be done by the study creators.

4.7.1 Implementation

We have chosen to implement the system as a web application, for several reasons. Firstly this makes

it straightforward to make the experiments available on the Internet, which in turn greatly simplifies

participant recruitment. Secondly, there should be no need for researchers to be forced to install (and

keep up-to-date) another software package just to create user studies. However, since the critical parts of

our system will be released under open source license, the researchers will be able to run the experiments

locally if such need arises.

Further, because of the open source nature of parts of the system, we are hoping to create an active

development community dedicated to improving the state of perceptual user studies. Managed correctly,

such setup will enable rapid development and iterations, which in turn bring biggest advantages when

updates can be applied immediately for all users.

System Overview

We have implemented the system using the Python2 programming language and the Django3 web frame-

work. The choice was dictated both by our familiarity with these technologies and by the widespread

use of Python and its scientific packages in the community. The tasks themselves use JavaScript (with

jQuery4) for user interface and interaction, while a PostgreSQL5 database serves as the back-end storage.

Because deployment is managed by the Ansible6 automation system, it is possible to automatically set

up a server in several minutes.

The scientific Python stack (numpy [VDWCV11], scipy [JOP+] and matplotlib [Hun07]) is

used for processing and reporting the results.

Workflow

Here, we briefly describe the workflow that is used, when working with imCompadre.

1. Create a study.

2https://www.python.org
3https://www.djangoproject.com/
4https://jquery.com/
5http://www.postgresql.org/
6http://www.ansible.com/

https://www.python.org
https://www.djangoproject.com/
https://jquery.com/
http://www.postgresql.org/
http://www.ansible.com/
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2. Define tasks and upload data.

3. Launch the study.

4. Inspect the results.

5. If more information is necessary, clone and repeat. Since one of our major goals is to enable quick

iterations through different versions of the study, out system makes it very easy to duplicate, export

and import studies. This means that not only researchers can adjust the study parameters quickly,

but also share their studies with others simply by sharing a zip file.

Analysis

Because we have, so far, only used closed-form solutions to the problems encountered, the combination

of numpy and scipy sufficed to compute the posterior distributions. If, however, we extend the system

to include problems where no analytical solution exists we will turn to one of Python’s MCMC packages,

such as pymc or emcee.

4.7.2 Display Calibration

Accurate colour representation is a major argument in favor of running perceptual user studies in con-

trolled conditions. While not all research areas require exceptionally well-calibrated equipment, for

some it might be crucial. We cannot hope to compensate for different colour representations completely,

however, we have developed two additional tasks: a) “passive calibration”, enabling identification of

users with well-calibrated displays, and b) “active calibration”, which modifies images for individual

users based on their initial contrast adjustment.

Our system is flexible enough to allow build-

ing of simple calibration-state discovery tasks us-

ing the elements described in previous sections.

To carry out the passive calibration we created

a classification task, asking users how many dis-

tinct pixel intensities they perceived on presented

images. We asked the same question twice, first

showing a dark image containing 4 different, but similar intensities and then a bright one, also with 4

different intensities (both images are illustrated on the inset figure on this page; the participants did not

see the intensity numbers and both images we shown separately on a neutral gray background). Users

with perfectly calibrated monitors should have indicated that they were able to discern 4 intensities in

both cases. We found that, out of 134 respondents, only one person correctly identified 4 intensities in

both test images. The distribution of answers is shown as a histogram in Figure 4.9 (blue bars). The

fact that the majority of people did not perceive any difference in intensities confirms the suspicions that

using Mechanical Turk is difficult when accurate colour representation is important.

We also implemented a separate tasks to explicitly perform simple contrast calibration. This task

can be added to the beginning of any study and asks the participants to first maximize their display
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Figure 4.9: Contrast perception results before and after calibration for low (a) and high (b) intensities.
The calibration increased the subjects’ ability to distinguish between the dark intensities, since the values
of 3 and 4 received relatively more votes.

contrast, if possible, set the brightness to a comfortable level, and then move the contrast slider to adjust

an interactively-updated test image. This image shows a horizontal, linear gradient of intensities from 0

to 255 and, on a perfect monitor, would exhibit no visible steps in intensity (i.e. vertical stripes). After

the participant adjusts the slider to minimize the steps, we save the corresponding contrast correction

and apply it to every image shown to them afterwards. Thus, rather than only asking the participants to

calibrate their displays, which may not be possible e.g. on tablets, we additionally calibrate the images

for the their displays. After re-running the first experiment on 100 new participants, but with the active

calibration step included, we found that people were able to better distinguish between the low intensity

patches (red bars in Figure 4.9 (a)). The perception of bright intensities, however, was not affected.

While from this data it is not possible to isolate the effects of hardware display adjustments and our

software calibration, we have shown that including the calibration step can, at least partially, compensate

for varying display characteristics of study subjects’ displays. Further, the passive calibration task can

be modified by study authors e.g. to find the JND (Just Noticeable Difference) in intensity levels for

each participant and adjust accordingly. Additionally, Mechanical Turk allows for “qualifications”, that

is pre-selecting of respondents, who satisfy certain criteria. This functionality could be used to run a

study only on people, who succeed in discerning the given intensities.

Finally, the above steps can be replaced by standard display calibration procedures when it is prac-

tical to conduct the study in controlled conditions and recruit the participant cohort through conventional

means.

4.7.3 Limitations

In the current state, imCompadre has two important limitations. Firstly, it is not possible, at the moment,

to specify when and in which combinations the stimuli are to be presented. While this is a desirable fea-

ture, we have so far mitigated it by recruiting large numbers of participants and showing them randomly-

selected data, based on simple rules describing which images should be displayed together and which

separately.

Secondly, we have not fully explored the reliability of results obtained via Mechanical Turk. Even
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though works like [KCS08] found that it is reasonable to trust microtask workers given the right study

setup, more exploration of our specific situation is needed. In addition to the good practices of study

design described in 2.2.4 and meant to minimize cheating, there are several heuristics, which can be

used to filter out unwanted data:

• Result consistency checks: users’ answers to the same questions over multiple trials should be

reasonably consistent. The “consistency threshold” used for rejection depends on the data and

should be found during a pilot study (see e.g. [CSD+09]).

• Interaction consistency checks: whether a user always performs the same action regardless of the

data (e.g. always selecting the image on the right-hand side).

• “Honeypot” tasks: presenting input for which the answer is obvious and filtering out users, who

provide obviously wrong answers.

• Interaction-based filtering: recording different actions the user might take while making a decision

(including time taken) and only accepting answers that are accompanied by expected patterns. See

[RK11] for an implementation of a learning algorithm that is trained to discriminate between

malicious and honest feedback based on interaction alone.

However, our system currently has no cheating detection performed by default. We have experi-

mented with different ways of filtering (e.g. only taking into account trials with more than 3s spent on

the decision), but so far have not found significant differences between the conditions.

In the case of ranking tasks, cheating would most likely skew the results towards the “null” value

of 0.5, if we assume a “cheating model” of random selection. Consequently, our system currently might

report results slightly biased towards no difference between conditions. This should be kept in mind

when interpreting the results, as we demonstrate in Chapter 5.

While an effort was made to include broadly-applicable data analysis methods, it is expected that

researchers’ needs will continue evolving in difficult to predict ways. For this reason, we have included a

facility to download the raw results, as well as recipes for common workflows, to enable study designers

to carry out their own analysis.

Finally, the system was built with the use case of evaluating graphics research in mind. Conse-

quently, we have not investigated its suitability for the general case of psychophysical research. For

instance, while the facilities to show stimulus for a limited time are included, the timing precision was

not investigated. While we are confident that using imCompadre is a good choice when one wishes to

compare results of different image synthesis or manipulation methods, we would not recommend it when

the aim is the evaluation of human perception.

4.8 Meta User Studies
Our user study authoring system only achieves its goals if it is easier and faster to create a user study with

its help than without. To evaluate the usability and value that imCompadre brings, we have conducted a

small “meta user study” on several researchers.
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The procedure of the meta study is not as rigorous as we are advocating for the case of image

evaluations. This is mostly caused by the fact that the audience for our system is much more narrow

and consequently it is more difficult to assemble a large group of participants. We believe, however, that

it is enough to prove that our system is better than any alternative, including building of user studies

manually.

4.8.1 Experiment Design

The aim of the experiment was to find out how quickly a graphics researcher will be able to create user

studies in our system after being introduced to it for the first time. We also wanted to make sure that the

results were scalable, i.e. that the participants were able to learn what they needed without any in-person

assistance.

For this purpose we have created two exercises for the users to complete, each one recreating a dif-

ferent study from two past SIGGRAPH papers ([RGSS10] and [KHFH11]). The first exercise included a

15-minute screencast explaining how the authoring system works and what it is capable of and walking

the user through the exercise. The second exercise was to be completed by the participants with no help,

using only the description of the study and the knowledge gained previously. The exercises are avail-

able online (http://www.imcompadre.com/docs/meta_study.html) as well as included in

Appendix B.

The experiments were set up to measure only the study creation time; design of the user studies,

question formulation and the test data in the right format were all provided in advance. Consequently, the

times reported below do not represent all the effort that needs to go into creating high-quality perceptual

experiments, instead, focusing on only the parts that are within the scope of what imCompadre solves.

4.8.2 Results

On average it has taken our 6 participants 6m 37s to complete Exercise 2 (building the study). While

we did not measure the entire experiment for every participant, three individuals reported time under 30

minutes, including the registration and learning about the system.

We conclude that, at the cost of roughly half an hour of learning, the researchers gained the ability

to create publicly available experiments in under 10 minutes. While the most difficult aspect of creating

user studies is the definition and decision about what to investigate, the fact that they can be set up and

iterated on so rapidly is a significant improvement in the research process, especially when combined

with the power of crowdsourcing, which enables one to obtain first results in minutes.

http://www.imcompadre.com/docs/meta_study.html
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Chapter 5

Case Studies

Having built a user study authoring system, we have conducted four experiments to prove that it can

satisfy the user-study-authoring needs of graphics researchers. To that end we have chosen three past

SIGGRAPH publications and our own Transactions on Graphics article and have recreated their percep-

tual experiments using our new system. The aim of this exercise was two fold: to prove that imCompadre

is capable of creating the kinds of experiments our community needs, and that it can be a tool in improv-

ing the reproducibility of research in our community by making user study re-runs very easy.

To emphasize the second goal, we have included the files describing the study setups together with

the necessary data in the supplementary material1. These files are in human-readable JSON format, but

can also be directly used to reproduce studies on imCompadre.

5.1 Rendering Synthetic Objects into Legacy Photographs
Karsch et al. [KHFH11] presented a method of compositing synthetic, 3D objects into real photographs.

Since the method’s aim was to produce images realistic to human observers, a perceptual user study was

carried out to verify the results.

5.1.1 Our Implementation

The study described in the paper consisted of two kinds of questions: a) with a real image shown next

to synthetic one and b) with two synthetic images rendered with different methods shown next to each

other. Every time the participants were asked to choose the image that appeared more realistic to them.

While there were three rendering methods evaluated (referred to as baseline, light probe, and the pro-

posed method), we were only able to obtain a set of images containing the images rendered with the

authors’ proposed method in addition to the corresponding real images. We believe, however, that this

dataset is representative enough to recreate the most interesting findings of the study and even provide

additional insights. Further, we chose not to include the “variants” of images in the study as the authors

did. Variants, which were: converting images to monochrome, adding clutter, cropping, and changing

illumination, hindered the participants’ ability to distinguish between real and synthetic images. There-

fore, by not including them we have tested the most adverse scenario for the algorithm, i.e. one where it

should be easiest for participants to answer correctly. This also means that we have asked more questions

1also under http://www0.cs.ucl.ac.uk/staff/M.Gryka/download/thesis-data/

http://www0.cs.ucl.ac.uk/staff/M.Gryka/download/thesis-data/
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(a) (b)

Figure 5.1: The introductory screen (a) and the task view (b) for the side-by-side interface in the “Ren-
dering Synthetic Objects into Legacy Photographs” study re-run.

under the same conditions, potentially resulting in even more exhaustive exploration of the problem.

To summarize, we have created a user study, where the subjects were shown two images side-by-

side, one real and one synthetic, and asked them choose the one they thought was real. The order of the

pairs was randomized, as was the placement of the images on the left or right. At the start of the study,

the participants were shown an explanation of the task ahead (telling apart real and synthetic images),

told that their time will be recorded, but there willbe no time limit and asked for their confidence in being

able to answer the questions correctly. Subsequently, they were asked 20 questions using the interface

demonstrated in Figure 5.1 (b).

After creating the experiment, we have used Amazon Mechanical Turk to recruit 51 participants

to complete it. As described in Section 4.4.2 we have modeled the probability of people mistakenly

choosing the synthetic image using a Bernoulli random variable and a uniform beta prior (α = 1 and

β = 1). Figure 5.2 shows the posterior distribution of the probability of the synthetic image being chosen

after including all 1017 data points we have collected from our participants. While the “chance” value

of 0.5 does not fall within the Highest Density Interval (HDI), people had between 36% and 42% chance

of choosing the synthetic image, so they were not able to recognize it reliably. These results are an even

stronger confirmation of the findings reported in [KHFH11]: in their experiments, when not using any

variants, the subjects had only about 20% chance of being mistaken.

One possible explanation for the difference is that the original study had only 30 data points ex-

ploring this exact condition (i.e. probability of choosing their synthetic image over a real one, when

no variants were applied). Consequently, the confidence intervals after analysis of this data should be

quite wide; we have simulated this by randomly choosing 30 answers from our dataset and plotting the

posterior as before. This implicitly assumes that our data samples are i.i.d. (independent and identically

distributed), which is not necessarily true since all answers by a given individual might be biased in a

similar way and therefore not independent. However, given the large number of data points and a small

number sub-sampled, we feel comfortable making this assumption for the purposes of illustrating the

confidence interval width given different number of estimates. Figure 5.3 shows the distribution over

the inferred chance of choosing wrongly, and confirms that the estimate with this small number of data

points is visibly uncertain, with the HDI ranging from 21% to 54%.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 chosen 395 / 1017 times
 HDI=[0.36,0.42]

Figure 5.2: Posterior probability of a synthetic image being chosen when shown next to a real one. The
posterior is a Beta distribution with mean µ = 0.39 and the shaded rectangular region signifies 95%
HDI between [0.36, 0.42].

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 chosen 11 / 30 times
 HDI=[0.21,0.54]

Figure 5.3: Posterior probability of a synthetic image being chosen when shown next to a real one,
when only 30 randomly-chosen data samples were included, as opposed to 1017 in Figure 5.2. This
distribution has the mean of µ = 0.37 and the HDI [0.21, 0.54]; its width should roughly illustrate the
level of confidence in the original study.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

no time constraints (395/1017) HDI=[0.36,0.42]

minimum 5s (326/923) HDI=[0.33,0.39]

maximum 5s(429/888) HDI=[0.45,0.52]

Figure 5.4: Posterior probabilities of choosing a composite image under the “minimum 5 seconds”
(yellow) and “maximum 5 seconds” (red) conditions, compared with the original, unconstrained results
(blue).

5.1.2 Additional Experiments

We have carried out additional experiments, in an attempt to better understand the merits and limitations

of the proposed technique. In this section we describe how the results were affected after introducing

time constraints, using a different image selection interface, and a different modality (classification task

instead of ranking).

Time Constraints

We have re-run the same experiment described in the previous section twice, each time adding a time

constraint on the participants. In the first run, we have added a minimum time required (“minimum 5

seconds” condition) to encourage the subjects to look at the images for at least 5 seconds before being

able to indicate their choice. In the second run, we have instead enforced a maximum time (“maximum

5 seconds”; measured from the time that the images finished loading) that the participants could look

at the images. After this time the images disappeared, but the buttons to indicate the decision were

left on screen until clicked. In each case we have recruited 100 participants on Mechanical Turk. The

studies were ran a few days apart. While we did not explicitly prevent the same participants to complete

both runs, we filtered out the data from already-seen participants in subsequent studies, so the presented

sample only contains people, who have not seen the images previously.

The results, shown in Figure 5.4, indicate that there is no difference between “minimum 5 seconds”

and “unconstrained” conditions (while the “minimum 5 seconds” condition has lower MAP estimate to

“unconstrained”, the difference is not statistically significant given the number of samples). However, a

clear impact of the “maximum 5 seconds” condition is demonstrated by the fact the HDI of the posterior

distribution in this case does not overlap with the others and, notably, includes the 50% value meaning

that the probability of choosing the composite image is close to chance. We interpret this result as an

indication that, at first glance, the proposed algorithm produces very believable results and only closer

inspection allows somewhat higher chances of making the correct choice.

Additionally, it is possible that the unconstrained results are skewed in favor of the new rendering
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Figure 5.5: The “curtain” interface for the ranking task. Note that at this instant the mouse cursor is
inside the image (indicated by the white vertical line) and the “curtain” is dragged half-way, revealing
half of the left and half of the right image. Because the dividing line is closer to the left side, the left
image is currently selected and highlighted using a thick, gray border.

technique, because of the limitations we have mentioned in Section 4.7.3. Namely, if we expect some

proportion of workers attempted to “game” the system by spending as little time as possible on the tasks,

we can assume that they would select images at random, effectively pushing the posterior distribution

towards 0.5. This can explain the slight difference in distributions after introducing “minimum 5 sec-

onds” constraint designed to minimize cheating. However, since the difference is not large enough to

be conclusive, and our results agree with the findings in the original paper, where in-person user study

was performed, we believe that possible presence of some malicious subjects does not invalidate the

conclusions of the experiment.

Alternative Interface for the Ranking Task

In addition to the side-by-side interface shown in Figure 5.1 we have also implemented a different one,

more suited to discriminating between very similar images. In this interface, which we call “curtain”,

images are overlaid on top of each other and the user can reveal one or the other by moving the mouse

cursor from left to right. Users make their selection by revealing the image they want to choose. Addi-

tionally smaller representations of each image are placed on the left and right to the main canvas area to

indicate which image is the currently selected (see Figure 5.5 for the screenshot of the interface).

Our hypothesis, before running this experiment, was that people will find it easier to correctly

identify real photographs, because this interface allows more precise identification of subtle differences.

As with the previous studies, we have recruited 100 Mechanical Turk workers. After collecting the

feedback, we have found no statistically significant difference between the responses from alternative

interfaces (see Figure 5.6).
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 side-by-side (395/1017)
 HDI=[0.36,0.42]

 curtain (343/966)
 HDI=[0.33,0.39]

Figure 5.6: The results of two experiments ran using different interfaces. While the posteriors are not
identical, the obtained results do not indicate a detectable difference in participants’ responses overall.

Alternative Task Type

Our authoring system makes it easy to create user studies to find out peoples’ opinions about visual

stimuli. It is also important, however, how each experiment is structured and the tasks presented. This is

why we have made it very easy to run small pilot studies, look at how participants behave and iteratively

improve the experiments. An important part of this process is gathering peoples’ opinions not only about

the stimulus, but also about the study itself. To allow this kind of meta feedback, we have included a

non-mandatory “comments” field after at the completion screen of every study.

While not every subject submits additional notes, and from those who do, not every comment is an

actionable piece of advice, we still found it very useful to look at general impressions after completing

the study. For instance, after running the experiments described in previous sections, we have noticed that

many people mentioned that they were very uncertain about how well they did and that discriminating

real from composite images seemed more difficult than they anticipated (a finding also reported in the

original paper). Since there was a statistically significant difference between real and synthetic images

in the previous run, we have decided to find out under which conditions the difference disappears.

Based on this feedback, we have designed an additional study, to measure whether people would

be able to correctly identify composites when only one image was shown at a time. Therefore, we have

created a classification task where, given an image, people were asked to classify it as either a real

photograph or a composite. The data for this experiment was exactly the same as the one for previous

studies and consisted of 10 real images and 10 corresponding composites. In the study introduction we

have let the participants know that it is possible that either all or none of the images will be real.

Similarly to previous experiments we have decided to recruit 100 participants to answer the survey.

After gathering their feedback we found that there was no detectable difference in the frequency with

which people guessed that images are real, whether they were presented with a real or a composite image

by Karsch et al. We conclude that the method is successful in creating photorealistic composites when

presented separately.
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 composite (460/763 guessed real),
 HDI=[0.57,0.64]

 real (461/738 guessed real),
 HDI=[0.59,0.66]
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Figure 5.7: The classification task interface (a) and results (b). After gathering opinions of 100 partici-
pants, we have detected no statistically significant difference between the frequency of guessing that the
image is real, when presented with a real image (red curve) or with a composite (blue) from Karsch et
al.

5.2 Camouflage Images
Chu et al. [CHM+10] created an algorithm to synthesize “camouflage images”: pictures with seamlessly

integrated, hidden content that is only visible on closer inspection. Similar images have been previously

produced by artists, but always required significant, manual effort.

Since the defining feature of any camouflage image hinges on specific features of the human visual

system (i.e. the ability to detect camouflaged content, but only after some time), this research had to be

evaluated based peoples’ subjective opinions. Consequently the authors decided to run a user study to

prove that their results were of comparable quality to artists’ works.

5.2.1 Our Implementation

While the original study contained two stages, our system is, at the moment, only capable of recreating

the second one. Implementing the first stage exactly would require adding customizable logic to the

study flow based on participants’ actions; while this would be a potentially valuable addition, we have

not encountered enough such examples in the literature to make it a priority.

The second stage, however, uses similar concepts to ones we have identified in other perceptual

studies: the subjects are shown an image and asked to assign a score on a previously-defined spectrum.

In the case of camouflage images, the participants were asked to assign a quality score 1–5, where high

quality was defined as containing animals camouflaged in a natural, seamless and engaging way. The

experiment was preceded by a short, one-page introduction explaining what camouflage images are,

what will be presented and how to evaluate them.

Since in some of the images (both automatically and manually generated) the animals were easily

overlooked, we have also included a reference image every time we asked the participant for a score. The

exact experiment setup that we used, together with the data and results, can be found in the supplementary

material, while Figure 5.8 shows how exactly the task was presented to the subjects. The reference

images were also included in the original dataset we have obtained from the paper authors and, to our

understanding, used in a similar manner in the reported study.

We have recruited 100 participants from Amazon Mechanical Turk to complete the study. The

results we have obtained confirmed the findings from the original paper, even though our analysis proce-

dure was slightly different. While the absolute values of the mean scores were different (3.58 and 3.65 in
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(a) (b)

Figure 5.8: The introduction screen (a) and the task view (b) for the “Camouflage images” study re-run.
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Figure 5.9: Distribution of quality scores for the images created automatically by the algorithm of Chu
et al. (top) and manually by artists (bottom).

our results, versus 4.23 and 4.21 in Chu et al.’s), the relationship of the two methods’ mean scores being

virtually the same was replicated. While Chu et al. reported only mean values, we have also looked at the

histograms of how the scores were distributed (Figure 5.9). While in this particular case the histograms

do not provide additional insights, generally they are a useful tool e.g. to detect multimodal distributions.

Additional Analysis

While looking at means and histograms is informative, without probabilistic treatment it is difficult to

establish the degree of confidence in the shown estimates. Further, without using Bayesian methods, it is

not always possible to formally incorporate prior beliefs into the analysis (even though in this example

the prior is a simple uniform distribution). This is why we have investigated the results more by inferring

categorical distributions from the user-provided data. As explained in Section 4.5.1 we have used a

uniform Dirichlet prior and a categorical distribution with 5 dimensions, one for each possible score.

From this view, shown in Figure 5.10, two important pieces of information can be inferred: our

confidence in the estimates and the degree of overlap between the two distributions (blue and red). The

confidence is shown as the width of the individual marginals: the wider the distribution the less confident

the estimates. Similarly, using the convention of treating 95% highest-density interval of the probability
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(a) Posteriors after 300 answers. (b) Posteriors after 1034 answers.

Figure 5.10: Marginal posteriors over the parameters of categorical distributions of scores from auto-
matic (blue) and manual (red) methods after a) 300 and b) 1034 data points. The means of the distri-
butions in b) correspond to the histogram values in Figure 5.9, however, this plot also shows confidence
(the width of the marginal distributions) and the overlap between most likely values (the overlap of
the shaded rectangular regions). Note that the additional data visibly increased the confidence in the
resulting parameters.

mass as the best guess for each parameter, we can easily estimate how similar different distributions are

by summing their overlaps.

The left side of Figure 5.10 shows our estimates after 300 answers were provided i.e. using almost

the same setup as Chu et al. (assuming that participants’ answers are independent and identically dis-

tributed; we have randomly sampled 300 data points from our set to obtain this plot). The widths of

the confidence intervals is clearly visible and the study author can decide whether they are comfortable

with them or whether they need more precision. In this case, we have decided to recruit additional 70

participants to obtain more confident estimates.

Using this data, we conclude that the distributions of quality scores for the manually- and

automatically-created images are virtually identical. While there is some indication that the automatic

method is less likely to get lowest scores (1 and 2), these trends are within error margins and could be

also attributed to noise.

5.2.2 Additional Experiments

To investigate the results more thoroughly, we ran two additional experiments with the same data, but

different study setups. The first experiment explored enforcing different constrains on the subjects, while

still using the same “classification” task type, while the second experiment aimed to answer similar

questions using a different modality: a “ranking” task.

Minimum time constraint

In the first additional experiment, we have enforced a minimum time, 3 seconds, that the participants had

to spend looking at the images before being able to make their choice. The reason for this change was

two-fold: firstly changing the constrains on the participants, might affect how they perceive presented

stimulus and thus provide more information about the methods. The second reason is the minimization

of malicious or negligent input from microtask workers. As shown in [KCS08], there are indications
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Figure 5.11: Score histograms (a) and marginal posteriors (b) for the likelihood of each score 1–5
being assigned to an image produced by the proposed automatic (blue) and manual (red) methods with
the “minumum 3 seconds” constraint enforced.

that one of effective ways to minimize adverse behavior is to make unwanted actions just as expensive

as desirable ones. In the context of this study, we have decided to enforce minimum time per decision,

meaning that malicious participants could not simply click through the tasks immediately and had to

spend at least 3 seconds looking at the images in question.

Again, we have recruited 100 Mechanical Turk workers to complete this study and the resulting

marginal posteriors are shown in Figure 5.11. The data indicates that the users indeed behave differently

when faced with this constraint: the likelihoods of obtaining scores 3 and 4 are visibly different for

the two methods (however, since their HDIs still overlap, the difference is not conclusive). Notably, the

difference between the mean scores only changed slightly from the previous experiment (0.07 previously

versus 0.1 now) and having that information alone would not facilitate drawing new conclusions.

With the newly obtained data, we also have to conclude that the automatic and manual methods

are equivalent, within a margin of error, since the HDIs of probabilities of obtaining each score overlap.

However, it is likely that the manual method is slightly superior under these conditions, since according

to MAP estimates, it is more likely to obtain the highest score and the HDI overlap in this case is small.

Note that enforcing such a constraint is not necessarily equivalent to filtering data from uncon-

strained study to only include answers, where the participants took at least 3 seconds to answer (the

analysis of such a filtered dataset is shown in Figure 5.12). Firstly, filtering data out means that poten-

tially fewer data points are included in the analysis and therefore the confidences are correspondingly

lower. Secondly, the participants might behave differently knowing the constraints thus affecting the

trends in data.

Ranking task

In the second additional experiment, we have created a ranking task and asked subjects to choose one of

the two images that they thought was better (where “better” was defined in the same way as in the previ-

ous task and the definition was always visible to the users). This time we have recruited 50 participants

on Mechanical Turk and have used the intro screen and interface shown in Figure 5.13.

We have analyzed the data using the procedure described in Section 4.4.2: modeling the probability
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Figure 5.12: Posteriors of score probabilities after filtering unconstrained-task dataset to only include
answers, where the participants took at least 3 seconds to answer.
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Figure 5.13: a) Introduction screen to the ranking task and b) ranking interface.
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 chosen 289 / 587 times
 HDI=[0.47,0.55]

Figure 5.14: Posterior distribution over the chance of automatically-created image being chosen as
better than manually-created one. Since the chance value of 0.5 does not fall within the HDI, we can
conclude that the methods are equivalent.

of choosing the automatically-created image as better as a Bernoulli random variable and using a uniform

Beta distribution as a prior. After 587 answers the posterior estimate was almost exactly centered around

the “chance” value of 0.5 confirming our earlier findings that the proposed algorithm produces images

of equivalent quality to the manual ones. (see Figure 5.14 for the posterior).

5.3 Automatic Stylistic Manga Layout
Cao et al. [CCL12] presented another work which required a perceptual user study to demonstrate its

merit. The aim of the method was automatic creation of Japanese-style comic (manga) strips given a

sequence of frames form e.g. a movie trailer. While manga layouts are very characteristic, they are often

created manually and require significant amount of work. Cao et al. set out to prove that their layouting

algorithm compares favorably when presented against other, mostly manual methods.

Their user study had two phases: the first phase asked people to use a manual tool and the authors’

new tool to create manga layouts. The second phase, which we have recreated using imCompadre,

showed people corresponding layouts produced using different tools and asked them which image of the

pair is better on each of the three evaluation criteria: functionality, visual appeal, and style.

In our reconstruction of the study, we have made two changes to the procedure that Cao et al. used.

We have replaced their three binary choices per image pair to a single choice, instead asking people to

asses overall quality of the image, while defining quality using a combination of the three terms they

used separately. We believe that this makes both the participants’ decision as well as analysis of the data

simpler without giving up valuable insights. This belief is also confirmed by the fact that, in the results

reported in the paper, all three evaluation criteria have very similar proportions of people preferring

one method over another. The second aspect of the study we have carried out differently is participant

selection and stimuli presentation order. Cao et al. recruited 10 people who occasionally read manga

and distributed 100 pairs of images between them, so that no pair was seen more than once. In contrast,

we have recruited 50 Mechanical Turk workers, and have shown them 20 randomly-chosen pairs out

of 24 (the difference in data comes from the fact that we were only able to obtain the subset of the
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Figure 5.15: The selection interface (a) and the posterior probabilities of choosing each tool’s output
(b) for the recreation of [CCL12] user study.

images from the original paper). While the results of the two runs might not be directly comparable,

our aim is to illustrate that imCompadre can be used to create effective user studies. The ability to

recruit many “unqualified” respondents is a benefit in many situations, but it does not stop researchers

from carrying out their own recruiting if special needs arise. Note that, in contrast to earlier studies, this

selection interface also contains the “No preference” option in case participants thought both image were

of similar quality.

After gathering the responses using the interface shown in Figure 5.15 (a) we found no statistically

significant difference between how often people select images from the manual tool versus the auto-

matic solution of Cao et al.; the plot showing posterior probabilities of choosing either image or “no

preference” option is shown in Figure 5.15 (b).

At the start of the experiment, we have asked each participant how often they read manga and

given them three options to choose from: “I’ve never read it” (chosen by 16 people), “I’ve read it a

few times” (26 people) and “I read it regularly” (12 people). We have performed additional analysis on

filtered data to find whether people with different degrees of familiarity with manga express measurably

different preferences. First, we have excluded answers provided by people, who said they have never

read it (Figure 5.16 (a)), and finally we have taken answers only from people claiming to read it regularly

(Figure 5.16 (b)). Based on these results, we concluded that regardless of familiarity level, the two tools

produce results of indistinguishable quality.

5.4 Learning to Remove Soft Shadows
As the final case study, we have recreated the experiments we ran for [GTB15]. The original paper

contained a study with two phases:

1. A ranking task (15 questions), where the participants were asked to order images based on how

natural they appeared. For each round either 2 or 3 images were presented, depending on how

many methods a given scene was processed with.

2. A scoring task (15 questions), where the participants were shown a single image and asked to

assign a score 1–4 based on how successful the shadow removal was. Since we did not always

want to remove all shadows from every image, we have included a small arrow into each image
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(a) excluding people unfamiliar with manga
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manual (100/204) HDI=[0.43,0.57]

tie (4/204) HDI=[0.01,0.05]

(b) regular readers only

Figure 5.16: Preference probability densities for data filtered based on respondents’ familiarity with
manga. Note that in (b) both tools were preferred exactly the same number of times, resulting in exactly
overlapping probabilities.
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pointing to the shadow that was supposed to be removed.

Our explicit aim in asking for naturalness of images first and only later mentioning that shadow removal

techniques were evaluated, was to measure whether the methods we looked at produced natural-looking

images, regardless of the participants’ assumptions or knowledge.

Since the study was originally constructed manually, we have recreated it using imCompadre. While

the experiments reported in [GTB15] took us 2 weeks to prepare (based on source code commits), we

were able to create an equivalent study using imCompadre in under 5 minutes. Unfortunately the first

timespan includes also conceptual work and preparation of the study design, while the second includes

only building the actual experiment; the conceptual design work, preparation of data, etc. were not

accounted for. Nevertheless, it seems safe to assume that building an online user study interface and

analysis tools takes at least a week of uninterrupted work, even given all requirements.

There were two differences between the experiment runs. Firstly, instead of showing people either

2 or 3 images at a time depending on how many were available, we have decided to only show pairs. This

decision was motived by both making the task easier for the participants and by making the data analysis

more obvious. In the previous case, while for some images we had signals about being “best”, “worst”

and “half-way”, we had to quantize these into “winning” and “not winning” for analysis. Therefore, by

being explicit in asking subjects for binary decisions, we were now able to simplify their decision without

giving up information. The second difference was that we have omitted asking participants for their

confidence in the answers given (during the first analysis we did not find any evidence that confidence

scores correlated with any other aspect of the data that we measured and thus were not informative).

While previously we have recruited study participants on volunteering basis through email lists,

word of mouth and posts on social media, we have performed new experiments by recruiting 100 paid

microtask workers from Mechanical Turk. After gathering their feedback, we have analyzed the results

in the same manner as before (Figure 5.17 (a) and (b)), with the addition of estimation of categorical

distributions of scores assigned to each method in the second phase (Figure 5.17 (c)).

The results of the first phase did not agree with the findings reported in Chapter 3, where our

method clearly outperformed both alternatives. To understand why we have looked at a subset of images

which won the ranking round and found that in many cases, where the method of Guo et al. was judged

more natural, the shadow was not removed at all. This resulted in a natural looking image, which was

nevertheless a failure; Figure 5.18 shows a few examples of images, where the method Guo et al. failed

to remove the shadows, but which won a ranking round. While we were aware of this problem in our

study setup previously, and explored the relationship between winning ranking and losing scoring phases

in Figure 3.20, we have not seen it impact the results as much.

5.4.1 Additional Experiments

To test our understanding of how the naturalness criterion was impacting the study outcome, we have

created an additional study of exactly the same format, but this time asking subjects directly about the

success of shadow removal; we have also included the guiding arrows in the images, like in the second

phase. This time, our findings agreed with the original conclusions and the distributions from this run
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Figure 5.17: User study results for the re-run of the soft shadow removal experiments described in
Chapter 3. The posterior probabilities of winning in a comparison in the ranking phase are shown in
(a). While the method of Arbel and Hel-Or (yellow) performed significantly worse, both Guo et al.’s
(red) and our (blue) methods are comparable. Plots (b) and (c) both show the data from the second
phase, however, (c) also illustrates the uncertainties our our estimates. In the second phase our method
has significantly lower probability of obtaining low scores than the other two and significantly higher
chance of getting the highest scores than Guo et al.
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Figure 5.18: Some examples of images, where the method of Guo et al. failed to remove the shadows
completely, but which won at least one ranking round.

can be seen in Figure 5.19.

We hypothesize, that the difference in results between previous and new runs was caused by the

bias in the audience. Since we were personally involved in recruiting participants for our previous study,

and some of them were aware that we were creating an algorithm to remove shadows (but not which

images were produced by our method), it is possible that they disregarded the naturalness criteria and

made their decisions instead based on shadow removal success. This issue highlights the importance

of both careful design of a user study and thoughtful audience recruitment. While enlisting the help of

microtask workers raises a number of important issues that do not exist when running user studies in

person, it does have the benefit of bringing an audience that is less likely to have a systematic bias such

as knowing a common set of people, belonging to a specific group etc.

It is also worth noting, that above experiments implicitly trusted the participants’ feedback and no

filtering of input was performed. As already mentioned, this might result in conservative estimates of

differences between the conditions and it is possible that the three distributions would diverge even more

under ideal testing conditions.

5.5 Discussion
In this section we have presented our recreations of perceptual user studies from 4 SIGGRAPH and

ToG papers and how we used imCompadre to verify the results they reported. Re-running the studies

required minimal effort, since the authoring interface is tailored to creation of the kinds of studies that

are commonly done in the graphics community.

In each instance, in addition to reproducing the experiments, we have found further insights by

sampling larger population, performing additional analysis or both. In one case where we were not able

to verify the results obtained by the original authors, we believe that the difference can be explained by

the differences in the study audience. We believe that imCompadre is a valuable addition into the set of

tools researchers use to inspect their results and understand perceptual differences between outputs of
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Figure 5.19: User study results for the re-run of the soft shadow removal experiments, after replacing
the “naturalness” evaluation criterion in the first phase with “shadow removal success”.
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investigated algorithms. Another extremely valuable aspect of imCompadre is the ability to both recreate

the past studies and precisely define new ones enhancing the reproducibility of findings in our field.



110

Chapter 6

Conclusions

We have shown a novel method for removing soft shadows from 2D RGB images with minimal user

effort, that outperforms previous attempts. While previous methods had to assume a specific model of

shadow appearance, we have successfully created a customized machine learning algorithm that effec-

tively builds such a model from training data. We have evaluated our results using a comprehensive user

study and observed that such an evaluation is a critical part of image manipulation design. Our evaluation

was, so far, the largest published effort to compare soft shadow removal methods and was accompanied

by a release of the largest dataset of soft shadow images.

It is our hope that our work will further stimulate development of semantically meaningful methods

trained on synthetic data. We have demonstrated that the current state-of-the-art graphics tools allow

creation of synthetic, but real-looking data, that can fuel supervised learning-based image processing

methods.

While the results we have obtained were proven more perceptually successful than previous at-

tempts, some challenges still remain. Since our method was specifically designed to work on soft shad-

ows, it lacks the ability to deal with narrow penumbrae. An extensions of this method, or perhaps a

unified approach with a hard-shadow-specific model, could enable a more general solution. Further,

even in the presence of soft shadows, there were cases where our results were not convincing enough to

score highly in perceptual experiments. The main reason for these failures we have identified, was the

reliance on off-the-shelf inpainting and discarding of valuable information during the initialization step.

It is possible that a better, guided initialization method would provide superior performance.

While successfully removing soft shadows was a significant, outstanding problem, increasing the

ability to create high quality perceptual user studies might have a larger impact on the community. In

this work, we have provided a set of guidelines about how to perform user studies when evaluating

novel approaches to image manipulation. By creating a detailed protocol for the most widely used tasks,

together with recipes for running the studies and analysis of results, we hope to have established a new

standard for how researchers in our field characterize their methods. Finally, we have created a system

that allows easy creation of user studies that adhere to the above guidelines automatically. To prove its

usefulness, we have recreated perceptual experiments from four graphics papers, in each case succeeding

in not only verifying their results, but also obtaining new insights not reported by the original authors.
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We hope that our work will drive the adoption of improved practices both in the academic research as

well as enabling more rapid feedback in the industrial setting.

Given the ability to create high-quality perceptual studies, the biggest difficulty researchers will

face is perhaps creating a correct experimental design and using the right constraints. While the work

we have presented and the system itself give several recommendations and encourage good practices,

the burden is still on the study author to establish which phenomena to measure and not to create biased

experimental setups. Additionally, obtaining and preparing the data necessary to conduct any comparison

is a non-trivial task and, consequently, might limit the appeal of the proposed solution.

6.1 Future Work
The shadow removal method we have presented relies on effectively learning the relationships between

corresponding image patches under different physical conditions. While we have only applied it to

shadow removal, it might also be possible to follow the same procedure and, given specialized data,

create e.g. highlight removal or dehazing tools.

Having proven that large amounts of relevant training data can help in non-parametric unshadowing,

revisiting the problem of finding a general, parametric shadow model could bear fruit. We have discov-

ered that previously-assumed one-dimensional sigmoid functions are too simplistic, but it is possible that

more complex models could be built to reflect the entire shadow. One of the challenges in building such

a model, would be aligning two conflicting requirements: modeling 2D shadow surfaces (as opposed to

1D slices) without losing generality in the face for different occluder shapes.

There are several areas of research that are made significantly more accessible by using imCom-

padre. The most obvious, and also one that could improve the system itself, would be the measurement

of answer reliability from untrusted users and development of prevention and filtering tools backed by

data collected from many experiments. Such research could also have broader applications in attention

modeling, psychology and psychophysics.

Easy creation of perceptual experiments could also facilitate new discoveries on problems such

as evaluation of massive datasets of images. While asking many people about every possible image

pair becomes intractable as the number of images becomes large, random selection is often not suitable

either. Perhaps borrowing from areas such as active learning, “active ranking” algorithms could be

successfully used to guide the system to dedicate most resources to answer difficult questions while

not wasting effort on the easily-discriminated cases. Such an application would be another example

where Bayesian methods would provide tangible benefits, since both the “under-evaluated” and “over-

evaluated” conditions would have automatically assigned and visible confidences.

Further, automating study creation and evaluation would open more possibilities for tools similar

to [LCGM09] and [GSCO12], which could allow dynamic, feedback-based, and possibly near-real-time

applications to intelligent image manipulation. Finally generalizing the system to work with other data

formats, e.g. video and 3D geometry would broaden the scope of possible experiments.
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Chapter 7

Industrial Applications

7.1 Introduction
In this chapter, we examine the potential industrial applications of above research and a rough execution

plan to bring it to market. We focus on the second part of the efforts, where user study creation system

was developed, since it is more widely applicable and seems to have clearer path to sustainability. Nev-

ertheless, it is worth noting that shadows are some of the most important image elements when it comes

to the perception and realism of a scene [RLCW01]. Their removal is therefore one of the most fun-

damental operations necessary for image modification and compositing. Removing shadows, however,

is difficult as it requires an accurate model of how they behave, especially when the boundaries are not

well defined. This results in a large demand for shadow removal techniques and a significant numbers

of web-based tutorials showing how to achieve this manually, but limited supply of reliable, automatic

methods. This demand is also confirmed by the fact that Anthropics, a company producing intelligent

photo manipulation software and co-sponsors of this research, expressed an interest in automatic shadow

removal techniques based on the knowledge of their customers’ needs.

7.2 Exploring Opportunities for a User Study Authoring System
At first, focusing solely on researchers as the audience for the study creation system did not seem at-

tractive, considering the market size and monetization potential. To widen the appeal we decided to find

other people, for whom such a solution might be useful. Out of photographers, fashion retailers, product

and user interface designers, professional photographers were the most accessible.

We have spoken to 5 photographers who specialize in portraits, weddings and other family occa-

sions, and commercial product sessions. To each of them we have presented an idea of a system that

would allow them to quickly choose the most attractive photographs out of the hundreds or, in some

cases, even thousands shot during a session. This would be achieved by utilizing crowdsourcing to it-

eratively rank a collection of images and select the “best” ones quickly and with minimal resources.

Additional benefit of using crowdsourcing over any automatic method, is that the definition of “best”

is left up to the person commissioning the study to define, providing great flexibility. The premise was

that the tool would dramatically reduce the time the photographer needs to invest in evaluating the shots

before even starting any post-processing.



7.3. Focusing on a Known Market 113

Each of our interviewees confirmed that photograph selection consumes significant amount of their

time: depending on the person between 2 and 5 hours per session. Consequently, the perspective of

reducing this time seemed attractive, however, our solution did not seem to be as appealing as we had

hoped.

The major problems could all be attributed fundamentally to the lack of trust. Firstly, all the pho-

tographers expressed concern in the ability of “random strangers on the Internet” to provide valuable

feedback for something as objective as photograph attractiveness. Secondly, even assuming that the

raters were well-meaning and able, choosing the right shots is a very important ingredient of a photog-

raphers’ style and they would be reluctant to hand over the control of it. Further, showing raw, unedited

images, even under the conditions of anonymity, is not something that many photographers would be

willing to do. Finally, the photo sessions are often confidential and the perspective of a crowd of anony-

mous workers evaluating photographs from private family events or pre-product launch sessions was a

serious problem.

While the problems that prevented us from providing an attractive solution to photographers were

fundamental to the approach we took, we discovered that other opportunities in this market might still

exist: namely the difficulty of choosing which (finished) photographs to showcase in a portfolio or use on

a website seems like something that crowdsourcing solutions might be able to address and something that

some of the people we have spoken to tackled with classical A/B testing. The kind of workflow required

to achieve this, though, is very generalizable and we have decided to pursue opportunities elsewhere and

possibly revisit photographer-specific customizations later.

Another area we have briefly investigated was fashion retail. The value proposition we were bring-

ing forward was rapid and cost-efficient estimates of which items or items’ photographs seem more

attractive and appealing to large groups of people. We have presented our approach to the CTO of

Secretsales (a marketplace for luxury fashion and homeware items).

The feedback we got, however, was highlighting similar problems that we encountered when trying

to appeal to professional photographers. The biggest reservation was that fashion items, especially on

the high end of the market, are heavily curated by opinionated individuals and sentiment analysis of the

general population is not necessarily a valuable input into their decision making process. Further, many

luxury items are not supposed to appeal to too large an audience and are targeted at very narrow groups,

whose opinions are difficult to capture, especially using microtask markets.

7.3 Focusing on a Known Market
After a brief exploration of other fields, we did not find a niche that seemed to be in a dire need of the

solutions we were proposing. It is possible that such a niche exists and we might revisit the exploration in

a more exhaustive manner in the future. For now, however, we feel it is important to focus on building a

product that is immensely useful, even to just a small group of people. This decision is further reinforced

by the general advice given by startup founders and prominent venture capitalists: “solve a problem you

have” and relatedly, “build something people want”. Consequently, we have decided to keep building

the system from the perspective of a graphics researchers trying to maximize their chances of producing
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research published in high-profile venues.

Three important, annual events stand out in the calendars of computer graphics scientists and en-

gineers: the SIGGAPH, SIGGRAPH Asia and Eurographics conferences. There are, of course more

high-profile events, but these three stand out as the most prestigious. Overall there is around 200-300

computer graphics papers published every year. Based on our analysis of historical submission data,

around 10% of papers published, either include a perceptual user study of the type imCompadre cur-

rently supports, or should include one. Further, a smaller proportions of research in the computer vision

community might find the system useful. This translates directly to a very small initial market of 20-

30 customers per year, which does not seem attractive from the perspective of building a sustainable

product. We believe, however, that there are significantly larger opportunities that will open, once this

segment is catered to.

7.3.1 Value Proposition

The overarching goal of our product is to help scientists produce high-quality research. We aim to

achieve this by ensuring that creation and reporting of perceptual user studies is as easy as possible.

We know from first hand experience as well as from feedback gathered from senior reviewers (see Sec-

tion 4.1) that good user studies are hard to conduct and consequently hard to find in literature.

Our web-based system allows for very quick creation of commonly-seen user studies for evaluation

of images. It makes it possible for graphics researchers to focus on algorithmic challenges, instead of

learning about psychophysical aspects of how to conduct perceptual experiments and report their results

in a statistically sound manner. Besides being easier, it is also faster, since majority of the setup work is

not necessary any more.

Another advantage is standardization and popularization of high-quality practices and reporting

methods. Several voices in different disciplines of science recently started criticizing current trends in

reporting the results of large-scale experiments: see for instance [SNS11], [MPH12], [MBL+13] and

[dWD14]. A large portion of these criticism can be applied to user studies in any discipline: so called

“p-hacking”, poor reproducibility etc. imCompadre makes these mistakes more difficult to repeat and

thus enhances the chances of a paper being accepted into a high-profile venue.

While we offer clear benefits to the authors, a wide-spread use of imCompadre will also make it

easier for reviewers to determine the merits of proposed work, since similar protocols and standards will

be applied widely.

7.3.2 Further Expansion

Given a successful adoption by the graphics community, we will attempt to expand the study authoring

system to also appeal to the psychology and psychophysics fields. Several factors make it a slightly

bigger challenge, but with correspondingly larger potential rewards, since these fields are both large and

a “home territory” with a significant numbers of people conducting perceptual user studies.

The challenges will be mainly posed by not being intimately familiar with the field and by existing

solutions. Currently there exist offline software packages allowing display of stimulus under exactly

controlled conditions with calibrated screens, highly precise timing etc. Replacing all this functionality
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in an online system is likely not possible using current technology. However, reaching a reasonably

competitive feature set, while still offering all the benefits of a online system, seems feasible. Further,

continuously improving web technologies, notably mainstream adoption of WebGL, will enable further

benefits in the near future.

Finally, we hope to eventually act as a public study register, where all experiments, including pilot

runs, are by default publicly visible and archived indefinitely. This would be a major step towards

eliminating the problem of positive selection bias in publications. Secondly, it would clearly show

experiment evolution, making “p-hacking” and similar practices more difficult. Introducing this feature,

however, will require a delicate balance between the good of the community in general and convenience

for individual researchers. We feel, therefore, that introducing it too early might impede adoption.

Initial Marketing

For the evolution stages outlined here, we do not plan any scalable marketing efforts and will instead

rely on personal connections and word of mouth. Since the initial market is a small, tightly connected

community this should not pose a significant obstacle for adoption.

Additionally, we have at least one scientific publication planned to introduce the concepts in this

thesis into the community. Should it be accepted, publication in conference proceedings and/or a pre-

sentation will provide ample opportunity to make scientists aware of the benefits of our solution.

7.3.3 Financial Feasibility

As outlined above, we do not expect any significant income from the initial stages of running imCom-

padre. Given the optimistic estimate of 20 users with assumed fee of £10 per month we might expect

revenue of around £2000 per year. This is, however, counterbalanced by negligible running costs (web

hosting). Development time is not currently factored in, since it is likely to be ran as a side project in the

coming year. This means that imCompadre might be ran initially without sustaining losses.

After some popularity is gained, however, increase in prices (for new customers only) will be con-

sidered to reflect increased benefits users will presumably get from a more evolved product. Experiments

with pricing strategies (e.g. tiered pricing for different needs) and more serious marketing efforts might

provide enough fuel to invest more effort into building the product. Further, large-scale deals with entire

departments or universities might become possible after the platform gains enough trust and mindshare

in the community. Such deals open entirely new possibilities for creating a feasible business, but are out

of scope for this report.

7.4 Risks and Mitigations
We have conducted a brief risk analysis to establish which factors are the most likely to negatively impact

development and growth of imCompadre and how to mitigate them.

By far the greatest risk seems to be building a product that is not useful to other people. This would

be a critical failure and, short of pivoting radically, impossible to recover from. To mitigate this risk

we are actively soliciting feedback from researchers in computer vision and graphics. Several of them

have provided valuable input after completing the meta study described in Section 4.8. Further, we are
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preparing a publication to showcase our work and to prove its value for the community.

The second factor, that will need to be mitigated are existing competing solutions. While there is

no direct competition in terms of an online system targeted to the same audience, open source tools like

Psychopy and Psychtoolbox as well as the proprietary system surrounding Amazon Mechanical Turk fill

similar goals. To succeed we will need to show that for specific cases, our solution is superior and, once

that is clear, expand by building new features and revising the product. This risk can only be mitigated by

closely following the developments of competing platforms and ensuring that imCompadre never falls

behind when it comes to satisfying our very narrow target audience.

Finally, there might be some difficulties convincing researchers that putting trust in a proprietary

system in the name of open science is the right thing to do. This is a sentiment that we can relate to and

will need to strike the right balance between transparency, open sourcing parts of our code and staying

competitive. There is no clear mitigation, but being aware of these issues is important.

7.5 Conclusions and Immediate Next Steps
We currently have a product that was used in the creation of two novel publications and is able to reliably

reproduce (with significantly less effort) experiments from three already published articles (Chapter 5).

Our most immediate next step is the publication of a paper describing the system itself and proving

that it is useful to the community. A dedicated publication in a high-profile venue will be a great tool to

drive customer acquisition and a confirmation of the existing need for such a tool.
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Appendix A

Publications

A.1 Learning to Remove Soft Shadows
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Appendix B

Meta User Study
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Meta Study

Thanks for agreeing to take part in our meta user study! There are two exercises here:

one that I will walk you through with video, and one that you will have to complete on

your own.

The general goal is to establish how easy or difficult it is to create visual user studies

using our system and how long it takes. Please measure the time it takes you to

complete Exercise 2.

In case you have any questions, feel free to write me at maciej@imcompadre.com.

1. Create an imCompadre account here (but keep this window open to continue

afterwards): http://www.imcompadre.com/accounts/register/ You will need to

confirm your email address by clicking on the link that’s sent there.

2. Go through Exercise 1, which has a video walkthrough included.

3. Complete Exercise 2 on your own.

Once you’re done please let me know how long it took you to complete Exercise 2 as well

as any impressions or comments you have. Particularly, do you feel you could now create

a user study using your own data and requirements?

Thanks again!

© Copyright 2014, Maciej Gryka.

Sphinx theme provided by Read the Docs
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Meta Study, Exercise 1

The goal of this exercise is to create a user study comparing different image retargeting

(resizing) methods. Several images were processed with different techniques and aggregated

into a dataset that you will need to download.

We will now create a user study to discover which method produces best results. To do that

we will display the original unmodified image and two modified images and ask our

participants which modified image is the best representation of the original.

Now, watch the video below and follow the walkthrough:

1. Download the data.

2. Open your imCompadre study list.

3. Create a new user study with the title: “Evaluating image retargeting methods”.

4. Add a starting survey to estimate participants’ familiarity with image editing. The intro text

should read:



“Thanks for taking part in our experiment! For each question, you will see three images:

one original and two modified images. We will ask you which one of the modified

images represents the reference image better.

Before we start, just a quick question:”

5. There should be one question: “Have you ever done some image editing before?” with

possible answers

1. Never

2. A few times

3. I occasionally edit images

4. I edit images regularly

6. The study should contain a task that shows a reference image and two modified images

and asks the participant to choose the modified image that is the best representation of

the reference. You can use the following text for the title:

“Which modified image best represents the reference image?”,

and description:

“An image is represented well, when it contains all the important content and no visible

deformations.”

7. For the test data, use the set of images provided above.

8. Ensure that the reference image has a descriptive caption.

9. Ensure that each user answers 10 questions.

10. Go through the “pilot” study you have created and see if there are any things that you

would like to change. If so, clone the study, do your modifications and go through it again.

That’s it. Thanks!

© Copyright 2014, Maciej Gryka.

Sphinx theme provided by Read the Docs
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Meta Study, Exercise 2

� Note

Please start a timer now, so you can measure how long it takes you to complete this

exercise.

The goal of the second exercise is also to create a user study, this time to establish

whether people can distinguish real images from rendered ones.

Similarly to before, we will create a study asking people to choose one of two images,

however, in this case there will be no reference image and instead, we will have an

additional constraint. Follow these steps:

1. Download the dataset

2. Open your imCompadre study list.

3. Create a new user study with the title: “Image realism”.

4. Add a starting survey to estimate participants’ confidence in the task before they see

the images.

“Thanks for taking part in our experiment! We will ask you to answer 10

questions, each time choosing the one of the two images that appears more

realistic. Every time one of the images will be a completely real photograph and

the other, a similar photograph with some computer-generated objects added

afterwards.

Before we start, just a quick question:”

5. There should be one question: “How confident are you that you will be able to tell the

difference?” with possible answers

1. Not confident at all

2. Somewhat confident

3. I’m sure I will get it right

6. The study should contain one task that shows two images and asks the participant to

choose the one that looks more realistic. You can use the following text for the title:



“W hich of the two images is real?”,

and leave the description blank.

7. For the test data, use the set of images provided above.

8. Ensure that users are forced to make a choice, i.e. the “No preference” button is not
available (use a “forced choice” setting in the task view).

9. Ensure that each user answers 10 questions.

10. Go through the “pilot” study you have created and see if there are any things that you
would like to change. If so, clone the study from the study list, do your modifications,
activate and go through it again.

� Note

Take note of the time it took you to complete the exercise and send it to me 

That’s it. Thanks!

©  C opyright 2014  

Sphinx theme provided by Read the Docs
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Appendix C

Program Committee Survey Responses

Raw data (scanned responses of the committee members) can be downloaded from http://www0.

cs.ucl.ac.uk/staff/M.Gryka/download/SIGGRAPH-PC-UserStudy-Questionnaire.

pdf. Below we present a short summary of what we discovered.

Quantitative Analysis
Number of years reviewing graphics papers.

mean 11

standard deviation 4.66

Mean number of times on the committee.

mean 4.96

standard deviation 3.57

Q2a. Can a user study make or break a paper?

yes 23

no 3

Q3. User studies in TOG are:

well carried out 0

sufficient 8

not thorough enough 13

can’t remember 1

Q4. Which analysis method do you prefer: Bayesian, classical or don’t mind?

Bayesian 4

classical 4

don’t mind 10

http://www0.cs.ucl.ac.uk/staff/M.Gryka/download/SIGGRAPH-PC-UserStudy-Questionnaire.pdf
http://www0.cs.ucl.ac.uk/staff/M.Gryka/download/SIGGRAPH-PC-UserStudy-Questionnaire.pdf
http://www0.cs.ucl.ac.uk/staff/M.Gryka/download/SIGGRAPH-PC-UserStudy-Questionnaire.pdf
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Qualitative Analysis
According to the respondents:

User studies are important when... the paper presents visual, perceptual results

there are no obvious objective measurements

there is an aesthetic aspect to the task

users are in the loop

I prefer NHST because... it is more familiar, I understand it better

it is more common

it is sufficient

I prefer Bayesian methods because... they seem more thorough

they seem more honest

In addition to (or instead of) perceptual user

studies, how else do you validate the results

of a novel technique?

my own visual inspection, subjective evaluation

lots of results

objective metrics (e.g. precision/recall)

comparison to previous work

comparison to groun truth

recording of user interaction

opinion of an expert
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[CPT03] A. Criminisi, P. Pérez, and K. Toyama. Object removal by exemplar-based inpainting. In

CVPR, 2003.

[CRK+13] A. Criminisi, D. Robertson, E. Konukoglu, J. Shotton, S. Pathak, S. White, and K. Sid-

diqui. Regression forests for efficient anatomy detection and localization in computed

tomography scans. Medical Image Analysis, 2013.

[Cro] CrowdFlower.

[CSD+09] F. Cole, K. Sanik, D. DeCarlo, A. Finkelstein, T. Funkhouser, S. Rusinkiewicz, and

M. Singh. How well do line drawings depict shape? ACM Transactions on Graphics,

28(3), 2009.
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