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ABSTRACT 
Many navigation techniques have now become so reliant 
on GNSS that there is no back-up when there is limited or 
no signal reception. If there is interference, deliberate 
jamming or spoofing, and/or blockage and reflection of the 
signals by buildings, navigation could be lost or become 
misleading. Other navigation techniques harness different 
technologies such as Wi-Fi, eLoran and inertial navigation. 
However, each of these techniques has its own limitations, 
such as coverage, degradation in urban areas or solution 
drift. Therefore there is a need for new navigation and 
positioning paradigms that may be integrated with GNSS 
to increase the reliability of the system as a whole. 

This paper presents the results of a feasibility study to 
identify a set of novel environmental features that could be 
used for road navigation in the temporary absence or 
degradation of GNSS. By measuring these features during 
times of GNSS availability, a map can be produced.  This 
map can be referred to during times of limited reception.  
The most feasible environmental features are identified, 
their potential for providing position information is 
quantified and various methods of combining these 
features are analysed.  It was found across multiple test 
routes that it is possible to determine the position of a 
vehicle along a route using three sensors: barometer, 
magnetometer and a camera looking at road signs. 

This work is relevant to any road application that requires 
resilient positioning. Examples include navigation and 
tracking of ambulances, fire, police and security vehicles; 



high-value asset tracking; transport logistics; road-user 
charging and pay-as-you-drive insurance. 

1. INTRODUCTION 
Many navigation applications have now become solely 
reliant on Global Navigation Satellite Systems (GNSS) so 
that there is no backup for when the signals received from 
GNSS are limited or entirely unavailable [1]. Therefore if 
there is interference to the signal, navigation capabilities 
can be lost or become misleading. This interference could 
be caused deliberately or accidentally. The increasing use 
of “personal privacy” devices to defeat GNSS-based 
tracking has made short-range jamming more prevalent, 
whilst the increasing demand for radio spectrum could 
make adjacent channel interference a greater threat. GNSS 
performance can also be degraded in dense urban areas by 
blockage and reflection of the signals by buildings. 

Where a robust and reliable position solution is required, it 
is necessary to combine GNSS with other technologies. 
All navigation and positioning techniques are based on one 
of two fundamental methods: position fixing and dead 
reckoning. Position fixing techniques, such as GNSS, 
determine position directly using identifiable external 
information, whereas dead reckoning measures the 
distance and direction travelled from a known starting 
point [2]. 

Dead-reckoning using inertial sensors works by integrating 
measurements from accelerometers and gyroscopes, can 
potentially be used for any application. However high-
performance sensors are expensive and are generally 
reserved for use in applications such as UAV where 
navigation needs to be entirely self-contained. For road 
navigation, odometry, which measures the rotation of the 
vehicle’s wheels, is also commonly used. This may be 
combined with a gyroscope for turn detection and 
accelerometers for detecting wheel slip. However, all 
dead-reckoning techniques suffer from the problem that 
the accuracy of the position solution degrades with time 
due to the accumulation of sensor errors. Therefore, dead-
reckoning is commonly integrated with GNSS. GNSS 
constrains the growth of the dead-reckoning errors and 
complementarily dead-reckoning can bridge outages in the 
GNSS position solution [2]. However, dead-reckoning is 
only suitable for bridging short outages. For robustness 
against longer GNSS outages, alternative position fixing 
techniques are needed. 

Position fixing systems can use either man-made signals or 
environmental features to provide the information they 
require to determine position [2]. Most signal-based 
systems use radio-waves and there are many alternatives to 
GNSS already. Most smartphones are capable of 
positioning using mobile phone and Wi-Fi signals, as well 
as GNSS. However, many “personal privacy” devices jam 
these signals as well as GNSS. Enhanced Long-range 
Navigation (ELoran) is difficult to jam, but is only 
available in a few countries (including the United 
Kingdom) and can exhibit large errors in urban areas due 
to re-radiation effects [3]. Navigation using broadcast 

signals of opportunity has been investigated [4] [5] [6], 
however, these techniques are not yet mature, whilst most 
other radio positioning techniques are designed for either 
air or indoor navigation. For these reasons radio-based 
signals have been excluded from the study but may still 
play a part in the final navigation solution. 

For land navigation in particular, a new approach is 
therefore needed and environmental features provide a 
potential source of location information. These include 
buildings or parts thereof, signs, roads, rivers, terrain 
height, sounds, smells, and even variations in the magnetic 
and gravitational fields [2]. There is currently a lot of 
interest in visual navigation techniques for land vehicles 
[7] [8]. These technologies are being developed and are 
likely to be complementary to the feature matching 
discussed in this paper; however they will not be directly 
discussed in this study. All the environmental features will 
be integrated with dead reckoning and so provides robust 
positioning. 

The overall solution is to place hardware within a batch of 
vehicles, comprising of multiple sensors, (the exact 
combination to be determined from the feasibility study) 
including a GNSS receiver and sensors for dead reckoning. 
Road map matching could also be included. During normal 
usage the GNSS receiver is used for positioning and a 
database is updated with the feature information from all 
the sensors accompanied by location stamps from the 
GNSS-based position solution. As the multiple vehicles 
travel around an area the database is built up for these 
routes. In the event that the GNSS receiver does not 
receive sufficient signals to maintain an accurate position, 
the database is called upon for navigation by 
environmental feature matching. In this scenario the 
sensors will continue to take measurements and by 
combining the knowledge of the last known location, dead 
reckoning and the sensor’s outputs, the positioning 
algorithm will draw upon the database to estimate a 
positioning solution. This method is shown in Figure 1 
and Figure 2. 

 
Figure 1 - Basic workflow mode for collecting data. 



 
Figure 2 - Basic workflow mode for navigation using 

collected data. 

This navigation system relies upon the roads being 
travelled on a regular basis so that the ‘maps’ created from 
the sensor’s outputs are kept up to date and therefore valid. 
The most likely users of this technology would be fleets of 
vehicles that can share the mapping information. To focus 
on a typical system, use in emergency vehicles was 
considered. Knowing your position is vital in an 
emergency vehicle and a system that incorporates a back-
up to GNSS would be advantageous. The motivation for 
maintaining a continuous positioning solution is that, when 
moving within a complex environment, it is necessary to 
maintain the integrity of the current position. In emergency 
situations, delays are not acceptable and integrity is vital. 
There will be no point in time when the vehicle can be 
delayed to obtain a position fix. 

Although this system will be designed with emergency 
service vehicles such as ambulances and police cars in 
mind, it could also be used in wider applications such as 
fleet management and tracking devices. Ultimately, crowd 
sourcing or cooperative techniques could be used to pool 
information from different vehicles equipped with the 
system. With a very large number of vehicles maintaining 
the feature database, the system could adapt to changes in 
the environment very quickly. 

This paper presents the results of a feasibility study to 
determine which combination of environmental features 
could be used to create the proposed navigation system. 
Then it presents methods of combining the data from the 
different features to maximise the accuracy and precision 
of the navigation system. Phase 1 (Section 2) summarises 
an initial literature-based assessment of the different 
classes of environmental features. Section 3 presents a 
road experiment collecting data from multiple sensors. 
Phase 2 (Section 4) presents the cross correlation 
coefficients for sensors along the full routes covered in the 
road experiment. It also analyses a method of determining 
the similarity of a sequence of event for discrete features 
using an augmented Damerau-Levenshtein Distance 
technique (Section 5). Phase 3 (Section 6) analyses the 
road experiment data to determine if there is sufficient 
repeatability and unique information to identify the part of 
a route by comparing regions within two different rounds. 
Phase 4 (Section 7) introduces a scanning technique to 
predict a car’s location by scanning along a section of road 
and estimating the cross correlation of the car at each 
location and producing a cross correlation profile. Phase 5 

(Section 8) then describes methods for combining multiple 
features and how these can be weighted. Section 9 draws 
conclusions and finally, Section 10 sets out the next steps 
of the project. 

To reliably achieve meters-level positioning across a range 
of different challenging environments, a paradigm shift is 
needed. We need to use as much information as we can 
cost-effectively obtain from many different sources in 
order to determine the best possible navigation solution in 
terms of both accuracy and reliability. 

This new approach to navigation and real-time positioning 
in challenging environments requires many new lines of 
research to be pursued [9]. These include: 

 How to integrate many different navigation and 
positioning technologies when the necessary expertise 
is spread across multiple organisations [10]; 

 How to adapt a multisensor navigation system in real-
time to changes in the environmental and behavioural 
context to maintain an optimal solution [11]; 

 How to use 3D mapping to improve the performance of 
existing positioning technologies, such as GNSS, in 
dense urban areas [12] [13]; 

 How to obtain more information for positioning by 
making use of new features of the environment, the 
subject of this paper. 

2. PHASE 1 – LITERATURE STUDY 

2.1 Brainstorm Categories 
A brainstorming exercise and a literature study were 
conducted to generate a list of possible environmental 
features that were assessed for the viability of each 
candidate using the current scientific literature.  This is 
discussed in detail in our ION GNSS+ 2013 paper [14] . 

There were five categories that the brainstorm features 
were evaluated against: 

 Temporal Variation (T) 
 Practicality for use on road vehicle (Pra) 
 Ambiguity (A) 
 Precision (Pre) 
 Coverage (C) 

 
Continuous coverage is not required because the features 
are to be used in combination and integrated with dead 
reckoning techniques, such as odometry and inertial 
navigation.  

2.2 The Features 
15 different features were evaluated in the brainstorming 
exercise.  All 15 are listed in Table 1. The environmental 
features are scored out of 5 for Temporal Variation (T), 
Practicality for use on road vehicle (Pra), Ambiguity (A), 
Precision (Pre) and Coverage (C) and total to give the 
overall score. The top few will be discussed in this section. 

 



Table 1 - Scores for features 

Feature T Pra A Pre C Total 
Road Signs 5 4 3 4 4 20 
Terrain Height 5 5 3 3 3 19 
Ambient Light 4 5 2 3 3 17 
Vehicle Movement 4 4 2 4 3 17 
Magnetic Field 3 5 2 3 4 17 
Celestial 3 3 5 1 3 15 
Road Texture 3 4 2 4 2 15 
Scent 2 5 3 2 2 14 
Temperature 1 5 2 1 3 12 
Radioactivity 2 5 2 2 1 12 
Gravity 5 2 3 1 1 12 
Vehicle Speed 1 4 1 2 3 11 
Environmental 
Sounds 

1 2 2 3 1 9 

Pulsar 5 1 3 0 0 9 
Wind Speed 0 4 2 2 0 8 

2.2.1 Road signs 
Text or symbols can be identified from the visual 
environment; this could be street signs, shop names or 
warning signs [15]. In the present context a sign was 
define as a sign from the British Government traffic signs 
website [16]. It should be noted that these traffic signs 
follow international road sign conventions and so 
techniques could easily be converted to work for signs 
from other countries. This could be expanded in future 
work to include other sign sets. Figure 3 shows some 
examples of street signs in Great Britain. Consistency of 
text font and background colours will be an aid in the task 
of sign recognition. 

Figure 3 - Example road signs.  Crown Copyright [16] 

An issue with this technology could be that signs can be 
obscured from view by road furniture or other vehicles. 
Poor lighting conditions will also make it more difficult to 
read signs and especially make it challenging to 
distinguish different colours [17]. Another issue that could 
be encountered is that some signage is temporary such as 
when there are road works and this would affect the 
reliability of the road sign database. 

2.2.2 Magnetic Field 
Human-created magnetic fields are produced by numerous 
objects and devices in urban areas. These are considered 
magnetic anomalies and can be detected above the 
background of the Earth’s magnetic field. The magnetic 
anomalies have been shown to provide a ‘fingerprint’ for 
the environment [18] but there will still be issues with 
temporal variation caused by fields created by cars etc. 

2.2.3 Barometric Height 
Terrain-referenced navigation (TRN) determines position 
by comparing a series of measurements of the height of the 
terrain below a vehicle with a database known as a digital 
terrain model (DTM) or digital elevation model (DEM) 
[2]. TRN has traditionally been used for air navigation but 
also more recently in underwater vehicles. 

Land vehicles can be assumed to maintain a constant 
height above the road terrain but that there will likely be 
fluctuations in height along that road. A barometric 
altimeter may be used to measure variations in terrain 
height. Thus, in principle, TRN may be performed [19] 
[20]. However, as the vehicle travels much slower, a high-
resolution database is needed to capture sufficient terrain 
height variation to determine position compared with 
traditional TRN. This can be circumvented if users build 
their own databases. However terrain height will not work 
if the terrain is entirely flat. 

2.2.4 Ambient Light 
There are two options for measuring the ambient light 
levels. One is to use a simple photo-diode that reads the 
intensity of the light. The other is to use a camera which 
has greater resolution but may give a more complex 
interpretation of the ambient light. Experimentation could 
show that the photo-diode gives sufficient information on 
the light intensity and that more complex measures are not 
needed. 

A simple positioning method for exploiting ambient light 
is determining passage through a tunnel or under a bridge 
or a gantry. These cause sudden changes to light levels; 
therefore it will be necessary to incorporate a method 
calibrating the background light level changes that will 
change more slowly. These changes could be caused by 
broken cloud cover and shadowing due to travelling at 
different times of day. 

2.2.5 Vehicle movement 
Unique movements made by vehicles could be used to 
determine its position. These movements could be a 
vehicle going around a roundabout; this would produce a 
noticeable signal on the horizontal plane of an 
accelerometer. Other vehicle movements include speed 
restriction methods that involve a slalom manoeuvre in the 
road or speed bumps. An issue for the accelerometer is the 
speed that these actions are made at. As a signal, it will be 
more pronounced if it is taken at speed. It may be possible 
to mitigate this by averaging the signal. 

3. ROAD EXPERIMENT 

3.1 Motivation 
The next step was to run an experiment, using a road 
vehicle. The aim of the experiment was to provide the data 
necessary to assess the viability of using dissimilar 
environmental features to bridge GNSS outages. 

 

 



 

 

3.2 Method 
A set of sensors with a GNSS receiver were attached to a 
car and driven in closed loops around Stoke-on-Trent on  
multiple road types over multiple days. The loops were 
repeated three times on each day on four road types and 
then repeated over three consecutive days. Figure 4 shows 
the four routes. A Vauxhall Insignia car (mid-range 
hatchback) was used for the experiment and can be seen in 
Figure 6 and the sensors used can be seen in Table 2. 

 
Figure 6 -Vauxhall Insignia used in the 1st car 

experiment, sensor unit can be seen on roof (red oval). 

 

 

Table 2- Sensors used in the road experiments 

Sensor type Sensor name Feature 
Accelerometer ADXL345 Road Texture 
Air Quality SEN01111P Scent 
Barometer BMP180 Terrain Height 
Dust GP2Y1010AU0F Scent 
GNSS & IMU Xsens MTi-G GNSS & DR 
Light Sensors ISL29125 Ambient Light 

Magnetometer Terrafix inertial 
compass 10000/1 Magnetic Field 

Microphone Phidgets1133 Road Texture 
Thermometer Yocto-Temp Temperature 
Video Camera Panasonic SDR-H81 Road Signs 
 
The accelerometer, air quality sensor, barometer, dust 
sensor, light sensors and microphone interfaced with an 
Arduino microprocessor which outputted the signals from 
the sensors to a laptop. The Arduino sensors had a data 
rate of 20 measurements per second. The video recorder 
filmed the turning on of the IMU, Arduino, yocto-sensors 
and the Terrafix inertial compass to assist with 
synchronisation. There was an individual accelerometer 
(attached to the axel of the vehicle) for use in identifying 
road texture. There are also accelerometers that form part 
of the IMU and these were used for dead reckoning. Table 
3 shows the data rate of the sensors. 

Figure 5 - Road types used in the road experiment.  From top left clockwise: suburban, 
high speed road, rural and urban 



Table 3 - Data rate for experiment's sensors 

Sensor type Data rate (measurements/s) 
Arduino sensors 20 
Yocto-sensors 3 
Xsens 100 
Terrafix inertial compass 7 
 
The onset of movement as recorded from the IMU was 
used to assist identifying the beginning of each circuit. 
During the car journeys there were two experimenters, one 
to drive the car and another to monitor the sensors. There 
was 5-10 minutes between each round, during this time the 
sensors would be turned off and then restarted. The 
equipment was designed for the outputs of the sensors to 
be post-processed. 

The four classes of road were suburban, urban, rural and 
high speed road. The route taken and a view from Google 
Street View showing the general type of landscape 
travelled through can be seen in Figure 4.  

A second road experiment was recently performed and this 
experiment travelled the same routes but had an improved 
synchronisation method where there was GPS receivers 
included with the Arduino, video camera and the IMU so 
that GPS time could be used as a constant for the different 
sensors. The results from both experiments are presented 
here. The light sensor data is from the second experiment 
and all other data is from the first. 

4. PHASE 2 – WHOLE ROUTE ANALYSIS 
The outputs from the sensors were evaluated initially for 
their cross correlation over the whole route. This assessed 
if the data from different runs but the same terrain were 
similar and thus had a high cross correlation. This is vital 
for this map-building method of navigation. This section 
deals only with sensors that produce continuous output.  
Section 5 will discuss discrete features. 

4.1 Cross Correlation 
Cross Correlation is a statistical method for determining 
similarity between two series’ data. Cross Correlation is 
used in this section to determine how repeatable the 
measurements from a particular sensor are if the same 
journey is travelled multiple times. 

The derivation of cross correlation [21] is below: 

The two data series' can be presumed to be two random 
variables X and Y. If X and Y are independent variables 
then the expected value of XY can be given as: 

퐸(푋푌) = 퐸(푋)퐸(푌)                                                     (4.1) 

The covariance of X, Y or the moment of joint distribution 
of X and Y is defined as: 

cov(푋,푌) = 퐸[(푋 − 휇 )(푌 −	휇 )]                              (4.2) 

               = 퐸(푋푌) −퐸(푋)퐸(푌) 

where μ is the mean of the relevant distribution.  

Thus it can be deduced that if X and Y are independent 
then E(XY) = E(X)E(Y) and so it follows that cov(X,Y) = 0. 
If X and Y are positively related (a higher value of X tends 
to correspond to a higher value of Y) then cov(X,Y) > 0 and 
conversely if X and Y are negatively related then cov(X,Y) 
< 0. If there is no relation between X and Y then cov(X,Y) = 
0. The value of the covariance however cannot be used as 
a determinate of correlation other than if it is 0, positive or 
negative. In order for the actual value to provide 
information on the strength of the correlation the 
covariance is divided by the standard deviation of X and Y, 
X and Y. 

휌 =
cov(푋,푌)
휎 휎 																																																																						(4.3) 

where  is known as the correlation coefficient and the 
coefficient must be between 1 and -1. 

For this experiment X and Y are the measurements from 
two different rounds of the same route and sensor. xi and yi 
are the individual measurements at a position i. The fast 
Fourier transform (FFT) is taken for both X and Y: 

푋 = FFT(푋)				푌 = 	FTT(푌)                                    (4.4) 

Then the complex conjugate of Yft (Yft*) is taken and the 
inverse fast Fourier transform (IFFT) of the product of Xft 
and Yft* gives the unnormalised cross correlation 
coefficient. Therefore so that autocorrelation at zero lag 
would be exactly one it is normalised by dividing byX and 
Y.  This then gives the normalised cross correlation 
coefficient () 

휌 =
IFFT 푋 푌∗

휎 휎 																																																																(4.5) 

Here, the correlation coefficient is used to calculate the 
cross correlation of two rounds of sensor data. The 
correlation coefficient is a normalised value. If a signal is 
correlated with itself, at zero offset (autocorrelation) then 
this would give a value of 1, entirely uncorrelated data 
gives 0. Signals that are 180˚ out of phase would give a 
cross correlation value of -1. 

4.2 Results 

4.2.1 Cross Correlation Coefficients 
The cross correlation coefficients are shown in Table 4 for 
all the sensors. It shows the coefficients for the four 
different road types using combinations of rounds (round 1 
& 2, round 2 & 3 and round 1 & 3 for each three days) 
from the same days and the average of the coefficients for 
all the combinations. The sensors with higher coefficients 
are discussed in more detail in the following subsections. 
All sensors are discussed in detail in our ION GNSS+ 2013 
paper [14]. 

 



Table 4 - Cross correlation coefficients for sensor 
outputs for the four road types 

Sensor type 
Cross Correlation Coefficient 
High 
Speed  

Rural Urban Suburban 

Accelerometer 0.00 0.01 0.03 0.01 
Air Quality 0.33 0.26 0.09 0.16 
Barometer 0.98 0.99 0.85 0.91 
Dust -0.05 -0.03 0.00 0.07 
Ambient Light 0.31 0.59 0.31 0.77 
Magnetometer 0.38 0.84 0.62 0.26 
Microphone 0.53 0.59 0.39 0.17 
Thermometer 0.29 0.52 0.10 -0.05 
 
NB. Roads signs does not have cross correlation 
coefficients calculated as this feature will be treated as 
discrete. Discrete features are discussed separately in 
Section 5. 

4.2.2 Accelerometer 
The magnitude of the acceleration from a accelerometer 
triad was used in this experiment as a method of measuring 
road texture and also vehicle movement. A zoomed in 
section of the acceleration as recorded from the 
accelerometer against the distance travelled can be seen in 
Figure 7. 

 
Figure 7 - Profile from accelerometer (ADXL345) 

attached to axle 

It is difficult to see similarities in the output from the 
different rounds although the accelerometer can show 
movement from stationary to driving and this was used to 
initialise the sensor outputs from the XSens IMU. This is 
shown in Figure 8 at 44s. 

 

Figure 8 - Accelerometer data showing vehicle setting off 

4.2.3 Barometer 
The barometer is used to measure the height change of the 
vehicle.  This sensor produced consistently the highest 
cross correlation coefficient. This can be seen in Figure 9. 

 

Figure 9 - Comparison of height profile over 3 days with 
minimums set to zero 

4.2.4 Magnetometer 
The magnetometer produced data with distinct spikes 
caused by various magnetic anomalies in the environment 
being travelled through this can be seen in Figure 10 for 
the high speed road. 

 

Figure 10 – Vertical axis magnetic field profile for a high 
speed road 



 

Figure 11 - Zoomed in section of the vertical axis 
magnetic field experienced on a high speed road 

Figure 11 is a zoomed in section of the magnetometer data 
from the high speed road in Figure 10. It shows 
correlation with an offset of approximately 44m between 
round 1 and round 3. This is mostly due to synchronisation 
errors between the magnetometer counter and the GNSS 
receiver clock. This is the reason a second run of the road 
experiment was completed and this was discussed at the 
end of section 0. 

4.2.5 Microphone 
The microphone was able to pick up clear signals when the 
vehicle was stationary and the signal seems to be 
dependent on the speed of the vehicle. Figure 12 shows 
the profile from the microphone. 

 

Figure 12 - Profile from microphone attached to axle 

It may be possible to combine this data with the 
accelerometer or odometer data to develop a clearer 
picture of what sound is resulting directly from the road 
surface and what is speed related, although this still may 
not result in a useful feature for this study. 

4.2.6 Thermometer 
Temperature can be seen to vary particularly in a rural 
environment as can be seen in Figure 13. 

 

Figure 13 - Temperature profile for rural roads 

The similarities though are not consistent across 
environments as can be seen from the cross correlation 
values in Table 4 and are likely to change with the seasons 
and due to weather conditions. 

4.2.7 Light Sensor 
Four light sensors were used in the experiment: upwards, 
forwards, left and right facing. Figure 14 shows the data 
from the upward facing sensor on the high speed road. 
There are distinct events where the light level drops. In 
these instances many correspond to gantries (bridge like 
structure spanning highways displaying speed limits and 
other information). These features could be treated as 
discrete, whereby the sharp dips in light level would be 
treated as momentary events. Some of the information 
would be lost in treating the ambient light as discrete but it 
would make the feature more robust against changing light 
levels due to shadowing or cloud cover.  

If light is treated as a continuous feature it can be seen in 
Table 4 that the cross correlation was inconsistent. This is 
partly due to the effects of changing light conditions. On 
the days with direct sunlight, the light sensor would reach 
its maximum intensity and be saturated. This can be seen 
in Figure 14 and this affects the cross correlation 
coefficient calculated. 

 

Figure 14 – The upward-facing light sensor profile for the 
high speed road in second experiment day two 

4.3 Feature outcome 
The thermometer data has been discounted as although it 
gave a cross correlation coefficient of about 0.5 for the 
rural route the other routes had lower cross correlation 
values. Similarly, the microphone data had moderate 



success in high speed and rural environments but not in the 
other two routes. Therefore it will not be taken forward to 
the next phase although it could be used in the future if 
further processing was carried out on the data. As with the 
microphone, the light sensor had cross correlation values 
greater than 0.5 in the rural and urban environments but 
had lower values in the other two. The success of this 
sensor is more reliant on the weather conditions than the 
environment type. At the current point this will not be 
brought forward to the next stage  

The accelerometer (used to measure road texture) showed 
no correlation with cross correlation coefficients of 
approximately zero (between 0.0 and 0.3).  It was useful 
for use in dead reckoning but does not illustrate road 
texture. 

The magnetometer and barometer showed the greatest 
potential for positioning with the highest cross correlation 
values consistently over all the environments. These 
sensors are taken forward into phase 3. 

Road signs will be discussed in detail in the next section 
which illustrates a method of measuring the similarities of 
a sequence of discrete events. 

5. PHASE 2 FOR DISCRETE FEATURES 
A discrete feature is one where there are environmental 
events which occur at one position but can repeat multiple 
times along a route. The discrete feature can either be 
Boolean (an event occurs or does not) or it can be 
descriptive (different possible events or the strength of the 
event). Examples of discrete features include lamp-posts, 
speed humps and shop signage. 

In this paper the discrete feature that will be discussed will 
be street signs although the techniques used are applicable 
to many discrete features. How the signs are identified will 
also not be discussed in detail in this paper and instead 
focus will be on how a sequence of discrete features is 
used show consistency across a route. 

As an overview the signs were identified manually. This is 
a temporary measure and it is hoped that future work will 
automate the process. The manual process involved noting 
the type of sign and the time they were seen. The time-
stamp was taken at the first point at which the sign could 
be discernible. 

When the technique is automated, considerations will need 
to be made for when to state the signs is seen, the solution 
likely to provide the highest consistency is if the time is 
taken once the identified sign is a specific size in the 
footage. This then gives a determinable range to that sign 
and as the British traffic signs are a particular size then this 
would mean the actual position could be calculated. Once 
all the signs along a route were recorded it was important 
to find a method which could use a sequence of signs to 
determine quantitatively how similar that sequence is to 
that of the sign recorded on a different round. As with the 
continuous data the first step is to compare the full rounds 
data with a different round’s data. The next subsection will 

describe the method used to quantify how similar two sign 
sequences are and how it is used with the road 
experiment’s data. 

5.1 Damerau-Levenshtein Distance 
Damerau-Levenshtein Distance (DLD) [22] [23] is a 
method of comparing a sequence for discrete events (or 
strings). It measures the minimum number of changes 
needed to convert one string into another. If each sign is 
assigned a letter this would produce a string that can be 
analysed using DLD. The changes allowed with the DLD 
method are substitution, addition, deletion and 
transposition. In the conventional DLD technique every 
change type is assigned a value of one. Once all changes 
are made to the second string to become the first string the 
total DLD score is tallied. The more changes needed the 
higher the score will be in traditional DLD. If the two 
strings are identical then the DLD score will be zero and if 
the strings are completely different the score is the number 
of characters in the longer string. 

In order for DLD technique to give a comparable value to 
the cross correlation coefficients used for continuous 
features, two additional steps were added to augment the 
conventional technique. 

퐷 = 1−
퐷
푛 																																																									(5.1) 

Equation 5.1 shows the two additional steps added to the 
traditional DLD method to create the DLD-augmented 
scores (Dscore) used in this paper. 

The first step is to ensure that all DLD score values are 
between 0 and 1. To do this the DLD score (DDLD) is 
divided by the length of the longest string (n). This is 
because this is largest number of changes that is needed to 
produce identical strings. Then to normalise the DLD 
score so 1 means that the strings are identical and 0 means 
the strings are completely dissimilar.  

A worked example can be seen in Table 5. The example 
uses two strings: Walters and Wantler. 

Table 5- DLD word example 

W A  L T E R S 
• • + ↔ ↔ • • - 
W A N T L E R  
 
where • is no change, ↔ is transposition, + is addition and 
- is deletion. 

퐷 = 1− 	  

												= 1−   

												= 0.57	                                                           (5.2) 

Equation 5.2 shows for the two strings Walters and 
Wantler that Dscore is 0.57. 

 



5.2 Road sign results using DLD 
British road traffic signs (many of which are international) 
were placed into six categories and these categories can be 
seen in Table 6.  

Table 6 - Categories of signs detected with ID and 
example 

Sign ID Sign Description Example 
1 Red outlined circular 

signs 
Speed limit sign 

2 Red outlined 
triangular signs 

Crossroads ahead 
sign 

3 Blue signs with white 
arrow 

One way sign 

4 Green rectangular 
signs 

A road information 
sign 

5 Brown rectangular 
signs 

Tourist information 
sign 

6 Blue rectangular 
without arrows 

Motorway 
information sign 

 
To illustrate this method all of the signs observed along a 
selection of full routes were analysed to calculate Dscore. 
The outcome from suburban and urban environments can 
be seen in Table 7. 

Table 7 - Dscore for roads signs on combinations of 
rounds on suburban and urban routes, including 

average and Standard Deviation (SD) of Dscore  

1st 
Round 

2nd 
Round 

Suburban 
Dscore 

 1st 
Round 

2nd 
Round 

Urban 
Dscore 

D2 R2 D2 R3 0.58  D2 R1 D2 R3 0.85 
D2 R2 D3 R1 0.62  D2 R1 D3 R1 0.55 
D2 R2 D3 R2 0.56  D2 R1 D3 R2 0.43 
D2 R3 D3 R1 0.33  D2 R3 D3 R1 0.55 
D2 R3 D3 R2 0.56  D2 R3 D3 R2 0.57 
D3 R1 D3 R2 0.84  D3 R1 D3 R2 0.74 
Average 0.58  Average 0.62 
SD 0.16  SD 0.15 
 
The days and rounds are shown as DX RX where D is day 
and R is round. If Dscore is close to 1 that means that the 
signs seen along the full route are similar.  The lower the 
number the more dissimilar the sequence of signs seen 
along the route are. Also analysis was carried out on how 
well DLD could distinguish the same road environment 
with different road environments.  On average a Dscore of 
0.66 was found when comparing rounds for the same route 
whereas comparing rounds from different routes the 
average Dscore was 0.2.  This shows that this method can 
determine if the route is same or different using the test 
data from the road experiment. 

Therefore the augmented DLD method gives a comparable 
method of comparing discrete feature’s matching success 
to that of continuous features.  

 

 

6. PHASE 3 – REGION IDENTIFICATION 

6.1 Region Identification Technique 
As the magnetometer and barometer had the highest cross 
correlation values these features will be used in phase 3. 
Road signs have also been brought through to phase 3 but 
will be dealt with slightly differently and was discussed in 
Section 5. This section will cover a technique used to 
match regions selected from road environments with the 
same regions from a different time or day.  The aim of this 
is to determine if regions contain sufficient information to 
be differentiable from other regions in the same 
environment and also if there is repeatability when 
measurements are taken at different times. The data from 
the road experiment described in Section 3 is used for this 
analysis.  

A region matching technique was devised to determine if 
there was sufficient information from the road experiment 
data to correctly identify a selected region along a route on 
a particular round is the same region from a different 
round. This was accomplished by taking data (from the 
magnetometer and barometer) from a number of regions 
along the route and comparing these with the data from the 
same regions on different rounds. Figure 15 shows an 
example of comparing four regions over two rounds. 
Regions A, B, C and D are cross correlated with regions a, 
b, c and d. Hypothetical sensor data and their comparisons 
can be seen in Figure 16; the arrows show which of the 
capital letter regions is matched to lower case letter 
regions. In that example the matching success rate is 75%.  

 

Figure 15 - Example of regions along a route. The regions 
from the two rounds are highlighted in red. 

 

Figure 16 - Hypothetical traces from a sensor along a 
route for two rounds. Arrows show which rounds are 

matched. 



In order to decide which of the regions are likely to be the 
matching region a table of cross correlation coefficients 
will be produced. Table 8 shows the format of the cross 
correlation table. 

Table 8 - Example cross correlation table, red shows 
incorrect match and green correct 

 Round1 
Reg1 Reg2 Reg3 Reg4 

R
ou

nd
 2

 Reg1 Aa Ba Ca Da 
Reg2 Ab Bb Cb Db 
Reg3 Ac Bc Cc Dc 
Reg4 Ad Bd Cd Dd 

 
For example, the top left cell is the cross correlation 
coefficient for the first region (A) from round 1 with the 
first region (a) from round 2. The neighbouring cell to the 
left is the coefficient for the second region (B) for round 
one with the first region (a) from round 2. The table has in 
total 16 elements for all the combinations of regions over 
the two rounds. The highest value in each column 
represents the most likely match for the two rounds. 
Therefore for the regions to be correctly matched the 
diagonal elements (Aa, Bb, Cc, Dd) should produce the 
values closest one.  In green and red are the results of the 
hypothetical example in Figure 16. Green is a correct 
match and red is an incorrect match. 

6.2 Results 
For this paper regional analysis is shown for suburban data 
taking the data from the 1st and 2nd round on the 3rd day of 
the road experiment. The full traces for magnetic and 
height can be seen in Figure 17 and Figure 18 
respectively.  

 

Figure 17 - The signal from the magnetometer for the full 
route for rounds 1 and 2 on day 3 in a suburban 

 

Figure 18 - The signal from the barometer for the full 
route for rounds 1 and 2 on day 3 in a suburban 

The number of regions to be used was chosen as this 
impacts the probability of chance matching. 10 regions 
means that by random chance alone there is 10% chance of 
matching. Ten regions for an approximately 5km circuit 
were chosen as a balance between number of regions 
needed to reduce chance and also allow sufficient region 
lengths. The resulting 10 regions can be seen in Figure 19. 
Blue is used to highlight the regions and the arrows show 
the direction of travel in these regions.  Each region was 
200m long and the height data was smoothed using a 
moving average with a span of 99m. 

 

Figure 19 - Location of the 10 blue regions along the 
suburban route 

The 10 by 10 cross correlation table for the suburban road 
magnetic data can be seen in Table 9. The highlighted text 
is the highest correlation coefficient per column. If the 
highest correlation coefficient per column corresponds to 
the correct region this is considered a successful match 
(green). Red signifies an incorrect match. For this ten 
region magnetic field data there was a 90% matching 
success.  

 

 

 



 

Table 9 - Table showing correlation coefficients from 10 regions within the suburban route using magnetometer data - 

Magnetic Field Round1 
Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 Reg7 Reg8 Reg9 Reg10 

R
ou

nd
 2

 

Reg1 0.62 0.36 0.30 0.27 0.22 0.22 0.37 0.21 0.28 0.25 
Reg2 0.38 0.81 0.34 0.32 0.34 0.34 0.24 0.15 0.26 0.36 
Reg3 0.26 0.33 0.56 0.59 0.19 0.43 0.38 0.47 0.31 0.25 
Reg4 0.21 0.32 0.46 0.77 0.31 0.36 0.27 0.31 0.23 0.32 
Reg5 0.26 0.30 0.31 0.27 0.57 0.33 0.39 0.25 0.41 0.33 
Reg6 0.24 0.37 0.41 0.39 0.22 0.76 0.30 0.38 0.23 0.43 
Reg7 0.24 0.35 0.30 0.21 0.32 0.28 0.67 0.29 0.39 0.25 
Reg8 0.18 0.36 0.48 0.40 0.39 0.38 0.32 0.91 0.41 0.21 
Reg9 0.21 0.25 0.19 0.27 0.36 0.27 0.48 0.38 0.80 0.25 
Reg10 0.27 0.24 0.24 0.42 0.35 0.35 0.22 0.23 0.29 0.42 

 
Table 10 - Table showing correlation coefficients from 10 regions within the suburban route using barometer data 

Barometric Height Round 1 
Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 Reg7 Reg8 Reg9 Reg10 

R
ou

nd
 2

 

Reg1 0.69 0.93 0.57 0.50 0.69 0.43 0.96 0.52 0.97 0.43 
Reg2 0.86 0.93 0.36 0.42 0.66 0.52 0.92 0.43 0.97 0.45 
Reg3 0.71 0.87 0.62 0.71 0.89 0.51 0.87 0.47 0.80 0.44 
Reg4 0.64 0.49 0.75 0.97 0.74 0.61 0.53 0.50 0.45 0.40 
Reg5 0.85 0.72 0.80 0.79 0.96 0.54 0.70 0.37 0.64 0.41 
Reg6 0.65 0.48 0.68 0.77 0.66 0.87 0.54 0.36 0.48 0.60 
Reg7 0.70 0.97 0.55 0.54 0.72 0.44 0.98 0.51 0.97 0.47 
Reg8 0.43 0.42 0.48 0.45 0.42 0.87 0.36 0.69 0.46 0.58 
Reg9 0.80 0.97 0.46 0.45 0.65 0.48 0.97 0.46 0.98 0.48 
Reg10 0.59 0.53 0.46 0.42 0.57 0.59 0.51 0.78 0.49 0.70 

 

The same analysis was carried out for the height data and 
the resulting matrix can be seen in Table 10. The height 
data matched the correct region 40% of the time. This may 
mean that for a region size of 200m the height cannot 
provide the required accuracy and a larger region size 
maybe useful for this particular feature. It should be noted 
though that if the terrain is too flat increasing region length 
would not improve the matching success. 

6.2.1 Region Length 
The length of the regions is one of the fundamental 
considerations that needs to be decided upon. This section 
investigates the effect it has on the success of matching the 
regions. Figure 20 shows the matching success against 
region size for the 4 different road types. Ten regions were 
used in this analysis with results for different regions 
lengths and road types shown. The region lengths ranged 
from 20m to 1500m and there were three runs of the 
analysis using ten different regions each time. The 
locations of the ten regions used were equally spread over 
the full route and in order to run the analysis three times 
the ten regions were shifted by 50m on the 2nd run and 
100m for the 3rd run. Therefore different sections of the 
route were analysed each time. For this figure magnetic 
and height data have been combined with equal weighting. 
More analysis on weighting is found in Section 8.  

 
Figure 20 -Matching success vs region length for all four 

road types 

From Figure 20, it can be seen that suburban and urban 
data generally achieves matching success at smaller region 
sizes than is required for the rural and high speed data. The 
vehicle during the suburban and urban experiment was 
travelling at a slower average speed than in the other two 
road types and this would mean that there are a greater 
number of data points for a given distance (assuming that 
the sensor can detect variations in the feature faster than 
the sample rate used in the experiment).  



To achieve 90%/70% success rate the minimum region 
length to achieve this success was taken from the data in 
Figure 20. This is shown in Table 11 and shows clearly 
that the higher speed roads need far higher region sizes 
than the slower roads (suburban and urban) to achieve the 
same success. 

Table 11 – Minimum region size to achieve 90% and 
75% region matching success based on Figure 20 

Road Type High Speed Suburban Rural Urban 
90% success 700m 100m 600m 140m 
70% success 300m 100m 200m 60m 
 

 
Figure 21 - Matching success of regions vs number of data 

points for the region for all four road types 

To verify if this hypothesis is true (that greater number of 
data points improves matching success) a second figure 
was produced showing this time the number of data points 
that are in a region against matching success. In Figure 21 
there is still a spread of results but the different road types 
no longer appear as clearly banded areas on the graph. 
This suggests that the amount of data points has a 
significant effect on the ability for the regions to be 
correctly matched (although this is unlikely to be the sole 
effect on the measurements). Therefore it is important to 
determine the optimal sampling rate; too low means useful 
information will be discarded and too high and processing 
resource will be wasted. 

7. PHASE 4 – POSITION DETERMINATION: 
SCANNING METHOD 

7.1  Method 
The previous section has used set regions and compared 
these same regions over different rounds to determine 
which match. This section will look at scanning one round 
to find the region which best matches a region from a 
different round. Figure 22 illustrates this technique.  

 
Figure 22- Diagram showing the principle used to scan for 

best match to a pre-set region 

The test data is scanned through the reference data.  Cross 
correlation coefficients are calculated as the test data is 
scanned through. The aim is to locate the position of the 
test data using the reference data for which the position is 
already known. The output of this exercise gives a cross 
correlation profile (cross correlation as a function of 
position). This profile can be treated similarly to a 
probability density distribution of position (although they 
are not the same) and so gives an idea of the probability of 
the position at each point in the test data. 

7.2  Results 
Two rounds from the suburban route are shown in this 
section as an example of the results achieved with the 
scanning method. Figure 23 and Figure 24 show the cross 
correlation profiles for magnetic field and height for day 3 
rounds 1 and 2 on the suburban route respectively. The test 
data region chosen is centred at 1.6km into the route.  The 
test data region size was 125m for 4.5km reference data.  

 

Figure 23 - Cross correlation scan for magnetic field on 
the suburban route with the centre of the actual position of 

the test data shown as blue dotted line 



 

Figure 24 - Cross correlation scan for the barometric 
height on the suburban route with the centre of the actual 

position shown as blue dotted line 

It can be seen that the magnetic field has a number of 
peaks along the route. The peak with the highest cross 
correlation coefficient is at the 1.6km point (which is the 
correct position). For the height figure there are many 
broad peaks at similar cross correlation values 
approximately 700m apart. The height peaks are broader 
than the magnetic peaks because the terrain height changes 
more slowly than the magnetic field.  

7.2.1 Ambiguities and dead reckoning 
The two graphs in Figure 23 and Figure 24 show that 
there are ambiguities present in both of the features. The 
majority of the features will have some ambiguities along 
a route and so it is important to develop a technique that 
could mitigate them. One way ambiguities could be 
mitigated is by using the information available from dead 
reckoning. The dead reckoning solution will have a 
specific position error (which grows with time) and the 
ambiguities from the features can be reduced by only 
considering the candidate position within the dead 
reckoning position uncertainty bounds. Equations 7.1 and 
7.2 show the standard deviation which can be used to 
calculate the uncertainty bounds for the position. 

퐫 = 	 퐫 + ∆퐫 																																																																(7.1) 

휎퐫 = 	 휎퐫 + 	휎∆퐫 																																																										(7.2)  

Where  is standard deviation, 퐫 is last known position 
fix, 퐫  is the current position and∆퐫 	 is the change in 
position using dead reckoning. 

The search region therefore could be limited to within 3 
standard deviations of the dead reckoning which is 
equivalent to a 99.73% confidence interval. An additional 
benefit of using the dead reckoning standard deviation is 
that it reduces computational load as cross correlation 
values will only need to be calculated within that range. 

 

8. PHASE 5 – COMBINATION OF FEATURES 
The quality of position information that can be extracted 
from a particular feature type varies with location. Thus a 
better position solution can be obtained if higher weighting 
is attributed to higher quality features. Factors that will 
need to be considered include the precision of position that 
can be extracted from a feature, the level of ambiguity (are 
there multiple candidate positions) [9] and the reliability 
(how much measurements vary unpredictably with time). 

In Sections 4.2.1and 5.2 methods of measuring scoring for 
continuous and discrete features were discussed. The next 
step was to find an optimal method of combining these 
scores(Dscore or ). Section 6.2.1 showed the combination 
of magnetic field and barometric height cross correlations 
using equal weighting. This section will look at other 
possible combinations of weightings.  

8.1 Possible combination techniques 
There are multiple ways to combine the scores from 
different features. Initially there is the decision as to when 
in the position estimation process to combine the features. 
There are two ways to do this either combine the scores for 
each feature or combine the position estimates for each 
sensor. The following subsections will describe a number 
of ways of combining the scores before estimating the 
position. It will be noted if these techniques could also be 
used to combine position estimates.  

8.1.1 Equal weighting 
A simple combination technique is for each feature score 
to have equal weighting. The equal weighting used in 
Section 6.2.1 took the two scores and found the average. 
This way no single feature will dominate the navigation 
solution. As the feature scores are not probabilities the 
values are not self-weighting therefore it cannot be 
presumed that that equal weighting would always provide 
an optimal position estimation. 

8.1.2 Test data weighting 
This method takes a set of experimental data and 
empirically determines the weighting coefficients based on 
the best position solution in this test dataset. The test data 
would be used to maximise the score of the combined 
features using weighting at the correct position. This 
would have the benefit of using real data to determine the 
weighting but its strength is based on how representative 
the test dataset is to the environments that the car will 
travel in. 

8.1.3 Environmental context-dependent weighting 
This method would detect the environmental context and 
use this to select an appropriate set of weights. [24] [9]. 
For example, the presence of many Wi-Fi sources would 
suggest a suburban or urban environment while a vehicle 
speed of 31m/s (70mph/113km/h) would suggest that the 
vehicle is likely to be on a highway. Based on this 
knowledge it would possible to use a specific weighting 
coefficient set that is developed for that environmental 
context. 



8.1.4 Cross correlation profile weighting 
This method weights each feature according to the 
characteristics of the cross correlation coefficients profile 
obtained using the scanning method described in Section 
7. This enables the weighing to adapt to the quality of the 
data. Figure 25 shows the traits of a set of peaks that 
affect the confidence in the highest peak being the correct 
position. 

 

Figure 25 - Weighting nomenclature 

Taking the uncertainty in the current position (as shown in 
equation 7.2 in Section 7.2.1) only peaks that, for example, 
fall within 3 standard deviations (3) would be evaluated. 
The characteristics of the tallest peaks compared with the 
others would be used to determine a measure of 
confidence for that feature.   

There will be more confidence in the tallest peak (h0) if 
there is a greater difference between its height and that of 
the other peaks within the uncertainty range (h1,2,3), In 
Table 12 this is  Height.. 

The next factor is the number of peaks within the 
uncertainty range (No. Peaks). The more peaks the less 
confidence there is that the correct peak has been chosen 
as the position estimate. 

The average cross correlation coefficient within the 
uncertainty region (γ) would affect the confidence in the 
estimated position. If the average coefficient value (Av. 
CC) was similar to that of the highest peak, this would 
suggest there is insufficient variation in the data being 
analysed from that feature. 

Finally the standard deviation could be used.  By 
calculating how many standard deviation (Std Dev) the 
highest peak was from the mean this could provide a 
weighting value. 

Each of these characteristics was looked at separately and 
compared against the benchmark of equal weighting using 
the scanning method comparing multiple pairs of rounds 
on different routes.  It can be seen in Table 12 that the 
standard deviation from the mean provided the best 
weighting outcomes.  To optimise the weighting algorithm 
it may be that using a combination of these profile 
characteristics would provide the best position estimation. 

Table 12 - Cross correlation profile weighting showing 
the average distance from the true position of the 
vehicle and the percentage of times the weighted 

scanning technique calculated the position within 100m 

 Equal  Height No. 
Peaks 

Av. 
CC 

Std 
Dev 

Distance 
from Truth 

86m 87m 94m 101m 82m 

% within 
100m 

63% 62% 60% 55% 66% 

 

Figure 26 and Figure 27 show examples of cross 
correlation profiles, they show high and low confidence 
respectively. Figure 26 is the cross correlation of data 
from day three, rounds two and three on suburban roads. 
This figure has a few spaced out peak over the full profile 
and one of the peaks is clearly higher than the others. 
Figure 27 is the cross correlation of data from day two, 
round three and day three, round three from the high speed 
road. This figure has many similar height peaks all around 
the value of 0.5. 

 

Figure 26 - Good cross correlation profile; few spaced out 
peaks with one higher than all other peaks 

 

Figure 27 - Poor cross correlation profile; many low 
similar height peaks 

 



9. CONCLUSION  
This paper presents the results of a five part feasibility 
study into the use of environmental features as a basis for 
predicting the location of a body as it navigates through 
the environment. 

The literature-based element highlighted features such as 
magnetic field anomalies, ambient light, road texture and 
terrain height as possible features to bring forward into the 
next stage of the study. 

A road experiment was described which collected data that 
was used in the rest of the paper. The second phase of the 
feasibility study showed that multiple sensors could be 
used to provide consistent measurements when the same 
route is repeated over multiple trips and days. Initially 
cross correlation coefficients were calculated over full 
routes. Promise was seen in particular in the magnetic field 
and barometric height data collected.   

For environmental features that occur at discrete events, 
such as road signs, a different technique was used. A 
modified Damerau-Levenshtein Distance was developed 
that takes a sequence of recently observed signs and 
compares this with the sequence of signs from previously 
collected data.  The method can produce similar scores to 
the cross correlation coefficients from the other 
environmental features and produced a three times higher 
score for comparing same routes than different routes.  

The third stage of the feasibility study showed that by 
splitting a route into regions it is possible to locate which 
regions are the same from a selection of regions taken 
from different rounds. This means there is sufficient 
variation in features in the environment and that they 
remain reasonably static and repeatable. This demonstrates 
that the sensors provide sufficient information to use them 
for positioning. 

The fourth stage of the feasibility study delivered a 
scanning method which provides an estimated position for 
the vehicle. The scanning method takes a selection of 
recently collected data and scans the database to determine 
where in the database these measurements are likely to 
correspond to.  

The fifth and final stage of the feasibility study discussed a 
selection of methods of weighting including equal 
weighting which was used in stage three as well as a 
method to use the characteristics of cross correlation 
coefficient profile produced from the scanning method. 
Using a method using the number of standard deviations 
the cross correlation peak is from the mean there is an 
improvement in position estimation of 4m. 

This study has shown that environmental features have 
sufficient variability spatially and stability temporally for a 
database of features to be developed to create a map of the 
environment. These results support the hypothesis that it is 
feasible to map a space and then go forward to create a 
feature-mapping and navigation algorithm using a 

combination of environmental feature sensors, a GNSS 
receiver and sensors for dead reckoning. 

10. FUTURE WORK 
The next step of the project is to develop a feature-
matching, mapping and navigation algorithm which 
incorporates inputs from the multiple sensors, a GNSS 
receiver, map-matching and sensors for dead reckoning. 
The algorithm will run collecting sensor data while GNSS 
receiver data is available and store this in a database along 
with location stamps until called upon in times of GNSS 
receiver signal disturbance. The data from the road 
experiments will be used for a test database in developing 
the navigation system. 
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