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Abstract 

 Fragile X-associated disorders are a family of genetic conditions resulting from the partial or 

complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X 

syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-

binding protein involved in the control of local translation, which has pleiotropic effects, in particular 

on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential 

mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. 

FMRP has been confirmed to bind voltage-gated potassium channels (Kv3.1 & Kv4.2) mRNAs and 

regulates their expression in somatodendritic compartments of neurons. Recent studies have 

uncovered a number of additional roles for FMRP besides RNA-regulation. FMRP was shown to 

directly interact with, and modulate, a number of ion channel complexes. The sodium-activated 

potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this 

interaction alters the single-channel properties of Slack channel. FMRP was also shown to interact 

with the auxiliary 4 subunit of the calcium-activated potassium (BK) channel; this interaction 

increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to 

directly interact with the voltage-gated calcium channel, Cav2.2, and reduce its trafficking to the 

plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links 

between modifications of ion channel activity and changes in neuronal excitability, suggesting that 

these modifications could contribute to the phenotypes observed in patients with fragile X-

associated disorders. 

  

Abstract Figure legend 

Fragile X mental retardation protein (FMRP) interacts with voltage-gated potassium channels (Kv3.1 

& Kv4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. FMRP 

also directly interacts with Slack, BK and Cav2.2 channel complexes and alters their activity in the 

soma and presynaptic terminals. Overall, FMRP modulates neuronal excitability by controlling ion 

channel expression and activity. 

  

Abbreviations 

FMR1 fragile X mental retardation 1 gene 
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FXS fragile X syndrome 

FXTAS fragile X-associated tremor/ataxia syndrome 

Slack sodium-activated potassium channel 

Kv voltage-gated potassium channel 

BK large conductance Ca2+- activated potassium channel 

CaV2.2 voltage-gated calcium channel 

PP2A  protein phosphatase 2A 

 S6K ribosomal protein S6 kinase 

 

 

The fragile X mental retardation protein (FMRP) is an RNA-binding protein encoded by the 

fragile X mental retardation 1 (FMR1) gene located on the chromosome X (Bhakar et al., 2012). A 

variety of disorders are associated with mutation in the FMR1 gene including fragile X syndrome 

(FXS) and fragile X-associated tremor/ataxia syndrome (FXTAS) (Lozano et al., 2014). 

FXS is the most common heritable form of intellectual disability and is the leading known 

monogenic cause for autism spectrum disorders (Bhakar et al., 2012). The FMR1 gene contains an 

unstable CGG-repeat in the 5’ untranslated region which is normally 5-44 repeats long. FXS is caused 

by a CGG expansion of more than 200 repeats (called full mutation) which induces methylation of 

the gene and leads to the partial or complete absence of FMRP. Rarely, FXS can also be caused by 

point mutations or deletions (Bassell & Warren, 2008; Myrick et al., 2015). FXS has a prevalence of 1 

in 2500-4000 males and 1 in 7000-8000 females. The prevalence of carrier status has been estimated 

to be up to 1 in 130-250 of females. People with FXS show mild to moderate cognitive dysfunction, 

attention deficits and hyperactivity, anxiety, autistic behaviours, sensory integration problems (such 

as hypersensitivity to loud noises, bright lights and heightened tactile sensitivity) and they are often 

also affected by seizures. 

FXTAS is caused by an expansion of 55-200 CGG-repeats (called premutation) inducing an 

elevation in FMR1 mRNA transcript levels (Lozano et al., 2014). The leading molecular mechanism 

proposed for these disorders involves elevated levels of mRNA containing the expanded CGG 

repeats. This is thought to sequester RNA binding proteins and as a consequence affect their normal 

functions (Hagerman & Hagerman, 2013). However, a recent study investigating FMR1 splice 

variants in brain samples of premutation carriers has shown that mRNA isoforms lacking the C-

terminal of FMRP are the most increased (Pretto et al., 2015). The fact that FMRP C-terminus 

contains important functional domains (Bagni & Greenough, 2005; Bassell & Warren, 2008; Ferron et 

al., 2014) led the authors of the study to suggest that the overexpression of these truncated FMRP 

isoforms could inhibit FMRP function and contribute to the pathology of premutation disorders.  

People with the premutation expansions can present with a wide range of clinical phenotypes, from 

mild cognitive problems during childhood (attention deficit hyperactivity disorder, autism spectrum 

disorder) to psychiatric disorders in adulthood (anxiety & depression), motor symptoms (tremor, 

ataxia, muscle weakness and Parkinsonism), neuropathy and chronic pain. FXTAS has a prevalence of 

1 in 260 to 814 males and 1 in 100-260 females indicating that 1 in 3000 men and 1 in 5200 women 

in the general population will develop symptoms of FXTAS.  
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FMRP is expressed in the nucleus and the cytoplasm, and is part of cytoplasmic RNA granules, where 

it plays a role in both the trafficking of specific mRNAs to sites of translation, and the stalling of their 

translation (Bassell & Warren, 2008; Darnell et al., 2011). FMRP has been shown to bind a large 

number of mRNAs, also called the FMRP transcriptome, and many of them code for proteins 

involved in neuronal excitability and synaptic transmission (Darnell et al., 2011). In fmr1 knockout 

mice, the loss of FMRP results in an excessive and unregulated dendritic mRNA translation (Antar et 

al., 2004; Bassell & Warren, 2008), and an alteration of synapse number and shape (Antar et al., 

2006). Consequently, research has concentrated particularly on the dendritic/postsynaptic role of 

FMRP (Ronesi & Huber, 2008; Krueger & Bear, 2011). However, there is now growing evidence for a 

presynaptic role of FMRP. Loss of presynaptic FMRP reduces the formation of functional synapse 

(Hanson & Madison, 2007) and modifies presynaptic protein levels (Liao et al., 2008; Klemmer et al., 

2011). Moreover, electron microscopy studies of the ultrastructure of the synapses of CA3 pyramidal 

neurons onto CA1 pyramidal neurons in the hippocampus of fmr1 knockout mice have revealed an 

increase of the number of docked vesicles at the active zones compare with control animals (Deng et 

al., 2011; Klemmer et al., 2011).  In central neurons, granules containing FMRP are present in 

presynaptic terminals and axons and they are mostly prominent during synapse maturation (Christie 

et al., 2009; Akins et al., 2012).  Studies also show a role for FMRP in local protein synthesis in 

peripheral sensory axons (Price et al., 2006).  While fmr1 knockout mice present normal acute 

nociceptive responses, they show modifications of the chronic responses, both in the peripheral and 

central nervous system (Price et al., 2007).  Heightened tactile sensitivity and self-injurious behavior 

is described in some FXS patients, and this could be linked to dysregulation of nocifensive behaviour 

(Price et al., 2007).   

The analysis of the brain FMRP transcriptome have revealed that, among the mRNA coding 

for proteins involved in excitability and synaptic transmission, a number of target mRNAs code for 

ion channels (Brown et al., 2001; Darnell et al., 2011; Brager & Johnston, 2014). Voltage-gated 

potassium channels Kv3.1b and Kv4.2 mRNA have been confirmed as targets of FMRP (Darnell et al., 

2001; Darnell et al., 2011; Gross et al., 2011; Lee et al., 2011). Kv3.1 channels play a critical role in 

auditory brainstem sound localisation circuit in rodents (Brown & Kaczmarek, 2011). In fmr1 

knockout mice, the normal gradient of Kv3.1 in the medial nucleus of the trapezoid body is flattened 

and the activity-dependent increase of Kv3.1 expression is abolished damaging encoding and 

processing of auditory information (Strumbos et al., 2010). In hippocampal neurons, the A-type 

potassium channel Kv4.2 is the major potassium channel regulating neuronal excitability, and it has 

been confirmed that FMRP binds Kv4.2 mRNAs (Gross et al., 2011; Lee et al., 2011). However, the 

impact of FMRP on Kv4.2 expression is still a matter of debate. Indeed, two studies have investigated 

the level of Kv4.2 expression in fmr1 knockout mice and their results point towards opposite 

conclusions: Gross et al. concluded that FMRP act as a positive regulator of Kv4.2 whereas Lee et al. 

found that FMRP acts as a repressor of Kv4.2 expression (Gross et al., 2011; Lee et al., 2011). The 

reason for this discrepancy has not been elucidated but the use of two different mouse strains has 

been suggested as a possible explanation (Brager & Johnston, 2014). 

Beside its role as an RNA binding protein and translation modulator, FMRP has recently been 

shown to directly interact with ion channels. The first ion channel to be identified that interacts with 

FMRP was the sodium activated potassium channel Slack (Brown et al., 2010). In this study, Brown 

and co-workers used biochemical techniques and single channel recordings to demonstrate that 

FMRP directly interacts with the cytoplasmic carboxy - terminal tail of Slack channel and increases 
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the channel mean open time (Brown et al., 2010). FMRP has also been shown to interact with 

endogenous Slack channels and modulate their activity in bag cell neurons of the Aplysia (Zhang et 

al., 2012). Slack channels contribute to the firing patterns of a variety of neurons (Yang et al., 2007; 

Zhang et al., 2012) and it has been suggested that some of the neuronal defects observed in FXS 

patients could be link to the alteration of Slack channel activity (Kim & Kaczmarek, 2014).  

A second type of potassium channel has been shown to be modulated by FMRP: the large 

conductance Ca2+- activated potassium BK channel (Deng et al., 2013). The modulation of BK channel 

function by FMRP does not occur directly with the pore forming subunits of BK channel but involves 

an interaction with the auxiliary 4 subunit. 4 subunits have been described as a negative 

modulator of BK channel (Brenner et al., 2000; Torres et al., 2007). The proposed mechanism of 

action is that the binding of FMRP to the auxiliary 4 subunit alters the interaction of 4 subunit 

with the pore-forming subunits and consequently reduces its sensitivity to Ca2+ (Deng et al., 2013). 

BK channels are important regulators of action potential duration by driving both the phases of 

repolarisation and afterhyperpolarisation (Bean, 2007). In hippocampal and cortical pyramidal 

neurons of knockout fmr1 knockout mice, Deng et al. have shown a reduction of BK channel activity 

that leads to the elongation of the action potential duration and an increase in presynaptic calcium 

influx (Deng et al., 2013). As a direct consequence, glutamate release and short-term synaptic 

plasticity is affected between CA3 and CA1 pyramidal neurons of the hippocampus of fmr1 knockout 

mice. Interestingly, a recent study has shown that the genetic upregulation of BK channel activity 

normalizes a number of neuronal defects in a mouse model of fragile X syndrome (Deng & Klyachko, 

2015). In this latter study, the authors have crossed fmr1 knockout mice with slo4 knockout mice 

(slo4 gene codes for the BK channel auxiliary 4 subunit) to genetically upregulate BK channel in 

the absence of FMRP and they show that BK single-channel properties, action potential duration, 

glutamate release and presynaptic short-term plasticity in hippocampal pyramidal neurons are 

similar to those in control animals (Deng & Klyachko, 2015). 

In addition to potassium channels, FMRP has also been shown to directly interact with N-

type voltage gated calcium channels (Ferron et al., 2014). These channels (CaV2.2) are critical for 

neurotransmission both in central neurons, particularly early in development, and in the autonomic 

and sensory nervous system (Hirning et al., 1988; Turner et al., 1993; Catterall & Few, 2008). Thus 

they are the main mediators of neurotransmission between primary sensory afferent neurons 

involved in nociception and other sensory modalities, and the spinal cord (Bowersox et al., 1996; 

Altier et al., 2007). CaV2.2 channels are formed of a main pore forming 1 subunit and auxiliary 2 

and  subunits (Dolphin, 2012). FMRP has been shown to interact with the 1 subunit of CaV2.2 

channels (Ferron et al., 2014).  The interaction with FMRP occurs between two cytoplasmic domains 

of the CaV2.2 1 subunit: the cytoplasmic loop between the transmembrane domains II and III and 

the carboxy terminal tail. These intracellular domains of the CaV2.2 channel are important for the 

targeting to the presynaptic terminals (Mochida et al., 2003; Szabo et al., 2006; Kaeser et al., 2011) 

and they have been described to functionally interact with presynaptic proteins (Sheng et al., 1994; 

Bezprozvanny et al., 1995; Mochida et al., 1996; Maximov et al., 1999; Coppola et al., 2001; Kaeser 

et al., 2011). In peripheral neurons, the loss of FMRP induces an increase CaV2.2 channel cell surface 

expression and an increase of neurotransmitter release (Ferron et al., 2014).  

FMRP interaction with CaV2.2 does not affect the biophysical properties of the channel 

which contrast with the interaction of FMRP with Slack and BK channels. Another noticeable 
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difference resides in the domain of FMRP that is involved in the interaction with the channel. The 

amino terminal domain of FMRP is a well-described platform for protein-protein interactions (Bagni 

& Greenough, 2005; Ramos et al., 2006; Bassell & Warren, 2008) and this domain interacts with 

Slack channels and the 4 subunit of BK channels (Brown et al., 2010; Deng et al., 2013). 

Interestingly, it is the carboxy terminal domain of FMRP that has been shown to interact with 

voltage gated calcium channels (Ferron et al., 2014). The carboxy terminal domain of FMRP is a non -

conserved region in the related FXR1P and FXR2P (Bassell & Warren, 2008) and only two other 

protein / protein interactions have been described (Dictenberg et al., 2008; Menon et al., 2004). The 

carboxy terminal domain of FMRP was then suggested to contribute to the specificity of FMRP 

function (Menon et al., 2004). This idea is supported by a recent study performed on premutation 

carriers that suggests a potential link between the overexpression of an FMRP mRNA splicing variant 

lacking the carboxy terminal domain and the pathology of premutation disorders (Pretto et al., 

2015). 

One can speculate on the function of the direct interaction between FMRP and ion channels. 

It has been hypothesized that the interaction of an ion channel with part of the biochemical 

machinery that regulates translation of mRNAs suggests that changes in channel activity may 

contribute to the regulation of activity-dependent protein synthesis in neurons (Zhang et al., 2012; 

Lee et al., 2014). FMRP has been shown to modulate postsynaptic local protein synthesis in 

dendrites of hippocampal neurons (Muddashetty et al., 2007). FMRP phosphorylation status, 

controlled by protein phosphatase 2A (PP2A) and ribosomal protein S6 kinase (S6K), determines the 

switch between translational activation and repression of mRNA targets of FMRP (Narayanan et al., 

2007; Narayanan et al., 2008). Local protein synthesis also occurs in presynaptic terminals (Akins et 

al., 2009) and PP2A and S6K are expressed in presynaptic terminals (Viquez et al., 2009; Cheng et al., 

2011). Moreover, a recent study identified a subset of mRNAs encoding presynaptic proteins as 

targets of FMRP (Darnell et al., 2011). FMRP has been shown to form protein complexes with CaV2.2 

channels in the soma and also in the presynaptic terminals of neurons (Ferron et al., 2014). 

Therefore, FMRP tethering to the vicinity of CaV2.2 may localize it to sites where local activity-

dependent presynaptic protein synthesis may occur. Moreover, PP2A activity can be modulated by 

Ca2+ influx through voltage gated calcium channels (Ferron et al., 2011), which suggests that 

presynaptic Ca2+ influx resulting from CaV2.2 channel activation may activate PPA2, which in turn 

would dephosphorylate FMRP and affect local translation. Determining the mechanisms that control 

FMRP function will be an important issue for future investigations. Indeed, a study has recently 

shown that the deletion of S6K1 in fmr1 knockout mice partially corrected the phenotypes 

associated with FXS (Bhattacharya et al., 2012). 

In conclusion, FMRP can regulate ion channel activity (Figure 1) either by controlling the 

stability and trafficking of the mRNA encoding particular channels (Kv3.1b & Kv4.2) or by a new and 

unconventional way, by directly binding to a channel subunit (Slack, BK and CaV2.2 channels). Several 

other ion channels have been reported to be altered in different parts of the brain of animal models 

of fragile X syndrome but the mechanism of regulation have not been identified yet (Brager & 

Johnston, 2014; Contractor et al., 2015). All those modifications of ion channel expression contribute 

to the modification of neuronal excitability and could account for the alterations observed in fragile 

X-associated disorders (Figure1). 
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 Figure 1 legend: 

Diagram illustrating the interaction between FMRP and ion channels in neurons. A) In wild type 

neurons (WT), FMRP interacts with voltage-gated potassium channels (Kv3.1 & Kv4.2) mRNAs and 

regulates their expression in somatodendritic compartments of neurons. In the soma and 

presynaptic terminals, FMRP directly interacts with Slack, BK and Cav2.2 channel complexes and 

regulates their activity. B) In neurons lacking FMRP (no FMRP), like in models of fragile X syndrome, 

ion channels expression and activity is modified inducing alteration of excitability and 

neurotransmitter release. 

 


