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Abstract
We consider the fluid dynamics of the chocolate fountain. Molten chocolate is
a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three
main domains—the pumped flow up the centre, the film flow over each dome,
and the freely falling curtain flow between the domes—we generate a wide-
ranging study of Newtonian and non-Newtonian fluid mechanics. The central
pumped flow is a benchmark to elucidate the effects of shear-thinning. The
dome flow can be modelled as a thin-film flow with the leading-order effects
being a simple balance of gravity and viscosity. Finally, the curtain flow is
analytically intractable but is related to the existing theory of water bells (both
inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic
velocity profile; shear-thinning makes the profile more blunted. In thin-film
flow over the dome, gravitational and viscous effects balance and the dome
shape is not important beyond the local slope. We find that the chocolate thins
and slows down as it travels down the dome. Finally, in the curtain flow, we
predict the shape of the falling sheet for an inviscid fluid, and compare this
with the literature to predict the shape for a viscous fluid, having shown that
viscous forces are too great to ignore. We also find that the primary effect
driving the shape of the curtain (which falls inwards towards the axis of the
fountain) is surface tension. We find that the three domains provide excellent
introductions to non-Newtonian mechanics, the important mathematical
technique of scaling, and how to manipulate existing data to make our own
predictions. We also find that the topic generates interest among the public in
our engagement work.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Chocolate fountains (see figure 1(a)) are a popular feature at special events. From table-top
machines that are 30 cm tall, to large displays several metres tall, fountains normally consist
of a series of stacked dome-shaped tiers over which melted chocolate flows, after being
pumped up through a central tube from a basin at the bottom. The tiers are set far enough
apart so that chocolate aficionados can enjoy dipping small food items (typically pieces of
fruit or marshmallows) in the falling curtains of chocolate.

How well the chocolate runs through the fountain is largely dictated by the viscosity of
the fondue. Indeed, in order to keep it flowing smoothly and generating aesthetic curtains,
operators are often seen to add liquids such as vegetable oil. The resulting mixture of cho-
colate fondue poses an interesting fluid mechanics problem, as it is non-Newtonian: this is to
say, its viscosity depends on how it moves through the fountain.

The journey of the chocolate through the fountain consists of three distinct stages (see
figure 1): being pumped to the top through the pipe, flowing as a thin film over the tiered
domes, and falling freely as a curtain. The balance of forces experienced by the chocolate in
each case is different, leading to three distinct dynamical regimes which can be investigated.

This project, then, offers the opportunity to introduce non-Newtonian fluid mechanics at
an undergraduate level in a tasty and tactile way. It also introduces, at a more accessible level,
the principles of mathematical modelling that are essential to applied mathematics: identifying
different regimes (here, in the fountain) and then modelling these dynamical systems
separately.

We perform easy experiments on an affordable table-top chocolate fountain2 (costing
about £30) and then aim to use this data in models of liquid chocolate used by professional
chocolatiers to make predictions of fluid profiles, and to answer questions that are not easily
answered by observation. For example,

• What is the shape of the velocity profile inside the tube?
• Where is the chocolate falling fastest down the dome-shaped tier?
• When the chocolate falls, why does it fall inwards slightly, rather than straight down?

Since we use a few different models of chocolate, we also aim to discover when a simpler
model captures enough of the desired features of the more complex model that it is ‘good
enough’: an important consideration for any industrial modelling.

At a high school and popular mathematics level, we have used the results of this study of
the fountain to introduce the aforementioned principles of mathematical modelling as well as
generating interest in the scientific properties of other easily accessible, non-Newtonian
foodstuffs. Fountains are found with other fondue choices (e.g. cheese or ketchup), and by
classifying foods by their rheological properties, we try to identify other possible fondues!

In this paper, we investigate each regime in turn: the upwards flow through the centre of
the fountain (see section 3); the film flow over each dome (see section 4); and the freely

2 http://amazon.co.uk/Russell-Hobbs-Temptations-13523-Chocolate/dp/B000HAIJMY
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falling curtain flow (see section 5). We present results within each section, and our overall
conclusions in section 6.

The mathematics of each section come from different eras: pressure-driven flow through
a pipe starts in 1846 [19], thin-film flows from 1886 [21], and falling shapes of fluid from
1959 [23]. But these problems continue in current research: for example, there is recent work
in both screw-driven pipe flows [4] and in curtain flows [10]. More sophisticated under-
standing of the mechanics of the chocolate fountain requires delving into more modern
results, which this project allows.

2. Modelling chocolate

The motion of any fluid is governed by the Navier–Stokes equations,

t
p

u
u u g, 1( · ) · ( )

⎛
⎝⎜

⎞
⎠⎟r r   s¶

¶
+ = - + +

which are Newtonʼs second law for a fluid. In every section it is this equation which we will
be looking to solve. The terms on the left represent acceleration, and those on the right
represent forces. The external force here is gravity, g; and the internal forces are split into the
pressure gradient, p, and those due to viscosity, which are represented in the stress tensor,

.s Primarily, at any point in the fluid, the stress tensor is a function of the differences in
velocity around that point, or how quickly the fluid is being sheared in each direction. These
differences are represented by the rate of strain tensor, ,γ̇ which is defined in terms of the fluid
velocity, u, as

u u . 2Tγ̇ ( ) = +

Figure 1. (a) The table chocolate fountain used for our experiments and the inside
structure. (b) Our model of the fountain. Useful dimensions given in table 1.
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Its magnitude, the shear rate, ,ġ is defined as
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2
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= =

where ijġ is the (i, j)th component of the rate of strain tensor .γ̇
It is the definition of the stress tensor in terms of the rate of strain tensor—the constitutive

equation—which gives rise to different fluid models. The relationship between the two may
be as simple as being directly proportional, or it may include additional terms representing
temperature, time, and historical values of all these quantities.

Using household multimeter temperature probes, we observed that in our fountain, the
temperature of the chocolate remains constant at 40±0.5 °C throughout its journey, so long
as the fountain has been running for long enough (about thirty minutes). Wollny [25] states
that to within one degree, the viscosity of chocolate should fluctuate between 5% and 10%.
This allows us to treat the chocolate as isothermal, i.e. in our models, we do not have to
include terms which relate to changes of temperature3.

A fluid like ketchup exhibits time-dependence, or thixotropy, in the amount of time it
takes, after shearing, for the microstructure of the fluid to realign to regain its viscosity. This
is observable after shaking a bottle of ketchup: it remains pourable for about a minute. Only
chocolate with a fat content of less than 30% exhibits thixotropy [2], and as the chocolate we
use in our fountain4 has a fat content of 38%, we can neglect its effects here.

These observations pave the way for us to use models, plotted in figure 2, where the
stress is merely a function of the rate of strain. The simplest fluid model we shall be using is
the Newtonian model, where there is proportionality between these two quantities. First
described in Newtonʼs Principia, with the following history described in Franco and Partal
[11], the scalar form is

Figure 2. The three constitutive equations we are using, equation (7): Newtonian
(blue, —); power-law (red, – –), fitted from Radosasvljevic et al [20] (red, ◦); and
Casson (green, ---), fitted from Wollny [25] (green, •); plotted with parameters from
table 1. Data points were converted from graphs to data using the online
WebPlotDigitizer program.

3 For thin-film dome flow with a non-isothermal Newtonian fluid, see Leslie et al[14].
4 http://amazon.co.uk/Finest-Belgian-Fondue-Chocolate-Drops/dp/B004IT5F6S
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, 4n ˙ ( )s m g=

where our viscosity, μn, (using a subscript ‘n’ for ‘Newtonian’) is constant. We shall use a
representative viscosity of chocolate at 40 °C , at a typical observed shear rate of 10 s−1, of
14 Pa s [20]. The viscosity of honey is about 10 Pa s [18] so this is a plausible value.

The typical observed shear rate here can be seen by simple ruler-and-stopwatch calcu-
lations, calculating the speed of a bubble on the surface of the chocolate as it falls over the
dome. Assuming no-slip on the surface, the shear rate is estimated by dividing the speed by
the thickness of the chocolate, also measurable with a ruler.

In Casson [8], another constitutive equation is provided, originally designed for printing
ink, as

, 5c
y

2

˙
˙ ( )

⎛
⎝⎜

⎞
⎠⎟s m

s
g

g= +

with parameters from industrial experiments with chocolate [17] given in table 1. Casson’s
model is a modification of the Newtonian model, requiring the stress to exceed a yield value,
σy, before motion can occur (see that when plotted in figure 2, 0ġ = for ys s ). In the limit
of zero yield stress, it returns to the Newtonian model. It was recommended by the
International Confectionery Association to model chocolate from 1973 until 2000, when
Aeschlimann and Beckett [1] found that at low shear rates, it does not fit the experimental
rheology data well. As such it was difficult to find repeatability, and so interpolation data was
recommended instead [3, 22].

Such interpolation data typically takes the form of a power-law model, where

. 6n
p ˙ ( )s m g=

Typical values for chocolate at 40 °C are, from industrial experiments [20], μp=65Pa sn and
n=0.34. Fluids with 0<n<1, as our chocolate is, are called shear-thinning, and include
ceiling paint and toothpaste among them. Fluids with n>1 are called shear-thickening, of
which a paste of cornflour and water is the best known. When n=1, this model reduces to

Table 1. Table of values found experimentally which we will use in comparison and
scaling analysis.

Pipe radius a 0.02 m
Dome radius R 0.07 m
Density of chocolate [24] ρ 1270 kg m−3

Surface tension of chocolate [13] γs 0.0226 N m−1

Characteristic dome film thickness H 0.001 m
Characteristic dome velocity U 0.1 m s−1

Typical dome leaving velocity u0 0.1 m s−1

Characteristic sheet film thickness H 0.002 m
Estimated flux on dome Q 1.4×10−5 m3 s−1

Gravitational acceleration g 10 m s−2

Drop height ℓ 0.07 m
Newtonian apparent viscosity [20] μn 14 Pa s
Power-law flow consistency index [20] μp 64.728 Pa sn

Power-law flow behaviour index [20] n 0.3409
Casson apparent viscosity [25] μc 5.60 Pa s
Yield stress of chocolate [25] σy 8.01 Pa

Eur. J. Phys. 37 (2016) 015803 A K Townsend and H J Wilson
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the Newtonian model. Observe that negative values of n are unphysical, as this implies
infinite stress at no shear.

The three constitutive equations we will work with, then, now written in tensorial form
[16], are

aNewtonian , 7ij ijn ˙ ( )s m g=

bPower law , 7ij
n

ijp
1‐ ˙ ˙ ( )s m g g= -

cCasson , 7ij ijc
y

2

˙
˙ ( )

⎛
⎝⎜

⎞
⎠⎟s m

s
g

g= +

where ġ is the scalar shear rate defined in equation (3), and σ is the magnitude of the stress
tensor, ,s contracted in the same way.

The scalar forms of these equations are plotted with values from table 1 in figure 2, along
with data points from two different sources. Notice how different the models are, and how
different the two sets of data points are, since we have no control over the ingredients of the
chocolate tested in each case. These differences will run us into trouble later.

3. Pumped pipe flow

In this section, we introduce non-Newtonian fluids by examining the velocity profiles we
would expect to see in a pipe, and comparing these to what we would see for a Newtonian
fluid. Generating these profiles requires solving the governing Navier–Stokes equations,
equation (1), after symmetry simplifications, and is a typical exercise in a undergraduate fluids
course. This, therefore, provides a natural introduction to the topic, as well as being relevant
to the chocolate fountain.

In our table chocolate fountain, chocolate is heated in the dish at the base of the machine,
and is then transported to the top using a screw pump. The flow of the chocolate is driven by
the moving boundary of the screw, but this internal motion of the fluid is noticeable only by a
small amount of rotation as the chocolate exits the pipe, which quickly dissipates. On larger
display fountains, the chocolate is instead driven through the vertical pipe by a pressure
pump. While the mechanics of the screw pump are interesting (see Alves et al[4] for recent
advances in this problem), choosing to model the pipe as a pump with a constant pressure
gradient allows us to introduce relevant non-Newtonian fluid models within a domain that is
familiar and well-understood.

3.1. Solving the governing equations

We attempt to solve the Navier–Stokes equations, then, equation (1), along with mass con-
servation for an incompressible fluid,

u 0. 8· ( ) =

The radius of the pipe is a, and the natural choice is to use cylindrical coordinates
(r, θ, z), so u u uu , , ,r z( )= q etc.

Symmetry in the problem leads us to expect no motion in the r- or θ-directions, and to
expect axial velocity to be merely a function of radial position, uz=uz(r). Furthermore,
searching for steady flow solutions sets all time derivatives to zero. Under these conditions,
the only non-zero components of shear rate are

Eur. J. Phys. 37 (2016) 015803 A K Townsend and H J Wilson

6



u

r

d

d
, 9rz zr

z˙ ˙ ( )g g= =

and hence the only non-constant components of stress in all of our models are σrz=σzr.
These observations, along with denoting the constant pressure gradient, p z,¶ ¶ by −G,

reduce the Navier–Stokes equations to

r r
r g G

1
. 10zr( ) ( )s r

¶
¶

= -

Integrating equation (10) with the boundary condition from symmetry that σzr(0)=0, and
introducing the wall stress constant,

a g G
1

2
, 11w ( ) ( )s r= -

we see that the momentum equation is reduced to

r

a
, 12zr w ( )s s=

where the relation between σzr and uz will depend on which model we choose.
In all our models, velocity boundary conditions on the pipe will be the no-slip condition,

and a symmetry observation,

u a
u

r
0,

d

d
0 0. 13z

z( ) ( ) ( )= =

3.2. Expressions for the velocity

3.2.1. Newtonian model. In the Newtonian model, the stress term is

u

r

d

d
, 14zr zr

z
n n˙ ( )s m g m= =

which when substituted into equation (12) and integrated with boundary conditions,
equation (13), gives us the velocity profile we expect for Poiseuille flow,

Figure 3. (a) Velocity profiles of Newtonian (blue, —), power-law (red, – –) and
Casson (green, - - -) pipe flows with an upward pressure of G=2ρg and walls at
r=±2 cm. (b) Same profiles, as a percentage of their maximum.
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u r a
g G

4
. 15z

2 2

n
( ) ( ) ( )r

m
= -

-

Note that we should not be worried that r2−a2 is negative: in the absence of a pressure
gradient G, we would expect fluid to flow down the tube, in the negative z-direction.

With constant values from table 1, figure 3(a) shows this parabolic velocity profile.

3.2.2. Power-law model. In the power-law model, the stress term is given by

u

r

d

d
, 16zr

n
zr

z
n

p
1

p˙ ˙ ( )⎜ ⎟⎛
⎝

⎞
⎠s m g g m= =-

since zrġ and rzġ are the only non-zero components of the shear rate tensor. When substituted
into equation (12), rearranged and integrated with boundary conditions, equation (13), we
have the velocity profile

u
a

r a

n n1
. 17z

n
n n n n

w

p

1
1 1

( )
( )

( ) ( )⎛
⎝
⎜⎜

⎞
⎠
⎟⎟s

m
=

-
+

+ +

In the case ,p nm m= n=1, this reduces to our Newtonian result. With constant values from
table 1, the velocity profile is also shown in figure 3(a).

3.2.3. Casson’s model. Substituting equation (12) into Cassonʼs model, we have

r

a

u

r

d

d
, 18zr

z
w c y c y˙ ( )s m g s m s= + = +

for σzr>σy. We solve for uz by rearranging and integrating (with the boundary conditions,
equation (13), again), and, specifying the yield stress, a r ,w y cs s= we find

u r a
a r r a r r a r r r a

u r r r

2

8

3
2 if

if 0

. 19z

z

w

c

3 2 3 2
c
1 2

c
2 2

c

c c
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⎧
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⎛
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⎠  



s
m=

- - - - -

<

Rearranging equation (12) and using values from table 1 gives us an estimate for the
critical radius rc of 2.4 mm, only 12% of the radius of the pipe. This velocity profile has been
illustrated in figure 3(a).

3.3. Discussion of results

The Newtonian model exhibits the well-known parabolic velocity profile. In our shear-
thinning models—the power-law and Casson models—the profile is more blunted and
eventually a ‘plug’ of high-viscosity fluid forms in the centre of the channel. The plug flows
with nearly uniform velocity, while the velocity gradients are confined to regions close to
the wall.

Scaling all the profiles on their maxima to compare their shapes (see figure 3(b)), we see
that with small rc, the Casson profile looks very similar to the parabola seen in the Newtonian
case, with a slight flatness at the centre: indeed, equation (19) reduces to the Newtonian
expression, equation (15), in the limit r 0.c  With larger rc, it resembles much more closely
the power-law profile, with the plug flow in the centre. However, in the Casson model, the
flatness seen is a genuine plug: it is truly flat, with u r 0z¶ ¶ = in this area. In the power-law
profile, the profile towards the centre is only approximately flat, forming instead a ‘pseudo-
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plug’, the flatness of which increases with the strength of shear-thinning of the fluid
(as n 0 ).

The maximum speed of the power-law fluid is 40% of the Newtonian maximum, which is
itself 24% of the Casson fluid. These differences are to be expected and are not features of the
models themselves, but rather because the parameters have been sourced from different
industrial experiments. These results in the pipe will be compared with those from dome flow
in the next section, and the similarity will allow us to disregard Cassonʼs model from here on
in, since its profile shape falls between the other two models.

4. Dome flow

In this section we aim to find, as the chocolate moves over the domed tiers of the fountain, the
thickness of the chocolate at any given point, and the speed of the chocolate at any given
point, just by using the measurable parameters from table 1.

How the chocolate moves on the dome is typical of the flow seen in a multitude of natural
and technological applications, such as rain falling down a window, lava flowing down a
volcano, or the coating of manufactured products: fluid thickness is much smaller than its
other dimensions, the flow is predominantly in one of these other directions, and an external
force (gravity) is driving the flow. This is an opportunity to show the power of scaling
arguments, a very useful technique, but which is slightly awkward for the non-Newtonian
model.

We model the dome as the top half of a sphere, but show that the analysis (and result)
would work for any smooth shape, since the global curvature of the dome does not affect the
motion of the fluid (mirroring other thin-film flows).

The two expressions we are looking for—thickness and speed—turn out to be inter-
linked, so we approach the problem in one go, starting from solving the governing equations.

4.1. Reducing the problem using scaling

Since we are modelling the dome as the top half of a sphere, we set up spherical coordinates
(r, θ, f) where θ is the inclination angle, 0�θ<π, and f is the azimuthal angle,
0�f<2π. We label the radius of the sphere R, and the film thickness h. We expect
axisymmetric flow so we can observe h=h(θ).

Again we are attempting to solve the Navier–Stokes equations, equation (1), expecting
steady, axisymmetric flow, so we can set uf, and derivatives with respect to f and time, to
zero. Even with the simplifications afforded by this (e.g. 0ṙ ˙g g= =f qf ) and our constitutive
equations (e.g. hence 0rs s= =f qf ), scaling arguments need to be made to attempt an
analytical solution.

Scaling is an important technique that gives access to solving difficult problems by
providing a rigorous method of deciding when variables are insignificant compared to others.
The method is, for each variable, to divide through by a typical (characteristic) value, so that
the resultant ‘scaled’, dimensionless, variables are all of the same order. Then we can
compare terms by looking at the sizes of the resulting dimensionless groups of these char-
acteristic values.

We introduce scaled variables (with hats) as follows:

u
u

U
u

u

V
h

h

H
y

y

H

r R

H
, , , , 20r

r ( )= = = = =
-

q
q   
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where y is a shifted (but still dimensional) radial coordinate which emphasizes the physical
nature of the problem: the fluid occupies the space 0�y�h. U and V are characteristic
speeds in the θ- and r-direction respectively, H is a characteristic film thickness, and R is our
already-established dome radius.

The continuity equation, equation (8), written in spherical coordinates, is

r r
r u u0

1 1

sin
sin . 21r

2( ) ( ) ( )
q q

q=
¶
¶

+
¶
¶

q

Substituting in the scaled variables gives us

Hr R H r
R Hr Vu Uu0

1 1 1

sin
sin . 22r

2( )( ) ( ) ( )
q q

q=
+

¶
¶

+ +
¶
¶

q 
 



Then, since the two terms in the sum balance each other, the characteristic values should
balance each other as well. Noting that Hr R R+ ~ (since H R ), the characteristic values
of both terms, respectively, are

R H
R V U

1 1
. 232 ( )~

Rearranged, this tells us

V U
H

R
U, 24( )~ 

(since H/R is small) which tells us how these characteristic values interact with each other. In
particular, it tells us what we already know: flow is predominantly in the θ-direction.

We then use the same scaling technique on the Navier–Stokes (momentum) equations in
spherical coordinates. For example, the θ-momentum equation is

u
u

r

u

r

u

r

p

r r
r

r

r r
g

1 1 1

sin
sin

cot
cos . 25

r r

r

2
2( ) ( )

( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

r
q q

s
q q

s q

s s q
r q

¶
¶

+
¶
¶

=-
¶
¶

-
¶
¶

+
¶
¶

+ - +

q q q
q qq

q ff

Introducing the scaled variables, we find that the sizes of these terms are

U

R

U

R

U

H

U

R

U

RH

U

R
? ? , 26

2 2

2 2 2
( ) ( ) ( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥r m+ = - + + - +

where we have marked by (?) the size of terms that we do not know. Dividing through by
μ U/H2, the relative sizes are

Re 1 1 ? 1 ? , 272 2 2[ ] ( ) ( ) ( )⎡⎣ ⎤⎦e e e e+ = - + + - +

where H R 1,e =  and Re is the Reynolds number: a non-dimensional number which is
large in fast, low-viscosity flows; and is small in slow, high-viscosity flows. For a power-law
fluid, the Reynolds number, is defined to be

Re
UR U R

H

H

U
, 28

n2

p

( )⎜ ⎟⎛
⎝

⎞
⎠

r
m

r
m

= =

since the viscosity is given by .n
p

1˙m m g= - Using the values from table 1, we find that for the
Newtonian data, Re 0.64,= and for the power-law data, Re 2.9.= Both of these are of the
order we expect.
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In fact, here we have the ‘reduced Reynolds number’, Re,2e which is familiar in thin-
film problems. Since the Reynolds number is of order 1, we are able to not only discount
those viscous terms on the right-hand side of equation (27) which are multiplied by ε, but also
the inertial terms on the left-hand side.

Using this process on the r-equation at this point, we can deduce the scaling for the
pressure term using the same method as with the continuity equation, finding it to be
negligible.

Putting this into the θ-equation, we continue our scaling analysis until we are left with

r
g sin , 29r ( )s

r q
¶
¶

= -q

i.e., the viscosity term balances with the gravity term. This is what we would expect from a
fluid with a low Reynolds number.

4.2. Solving the resultant equation

Recalling ,r
n

rp
1˙ ˙s m g g=q q

- we can substitute this into equation (29) and perform similar
scaling arguments to arrive at

u

y

g

n

u

y

sin

2
0, 30

n

n2

2
p

1 2

1

( )( )

⎛
⎝⎜

⎞
⎠⎟

r q
m

¶
¶

+
¶
¶

=q q
-

-

with boundary conditions

u
u

y
h0 0, 0. 31( ) ( ) ( )=

¶
¶

=q
q

By writing U u y= ¶ ¶q q and defining g sin 2 ,n
p

1 2( ) ( )( )k r q m= - the differential equation
becomes separable5

U

y n
U 0, 32n1 ( )k¶

¶
+ =q

q
-

with solution

U y h y . 33n1( ) [ ( )] ( )k= -q

Integrating this with our boundary conditions, (31), gives us the expression for flow down the
dome as

u y
n

n

g
h h y

1

sin

2
. 34

n

n

n n n n

p
1 2

1

1 1( ) ( ) ( )( )
( ) ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ⎡⎣ ⎤⎦r q

m
=

+
- -q -

+ +

4.3. Using flux to solve our problem

Although we have found the expression for the velocity, equation (34), as desired, it relies on
knowing the film thickness, h(θ), which is itself a function of angle down the dome. For-
tunately we can introduce a constant, measurable quantity which allows to us find the
thickness function h(θ). Once we have found this, we can put it back into our velocity
expression.

5 We would like to thank the reviewer for this observation.
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This constant quantity is the flux. For this we have to assume that the flow is steady, i.e.
there are no variations in the amount of chocolate being pumped out of the top of the pipe.
Then at any time, since the chocolate falls down smoothly, the amount of chocolate passing
through all points on the dome with some angle, is the same as the amount passing through
any other set of points with another angle. In particular, at any given time, the amount of
chocolate being pumped onto the top of the dome is the same as the amount of chocolate
falling off the dome.

Mathematically, the flux, Q, is described by the velocity of the chocolate, integrated over
the area it is passing through:

Q R y u y y2 sin d , 35
h

0
( ) ( ) ( )

( )

òp q= +
q

q

where the sin θ term before the integral comes from the ‘flat radius’ of the dome at any given
angle θ, which varies through the chocolate from R sin q to R h sin .( ) q+

This integration appears unwieldy but requires simply an integration by parts. However,
doing this would leave us unable to find an explicit expression for the film thickness h(θ).
Instead we once again make the observation that the film thickness is much smaller than the
radius of the dome, y�h = R, and so our flux expression becomes

Q Ru y y2 sin d , 36
h

0
( ) ( )

( )

òp q=
q

q

h sin , 37n n n n2 1 1( ) ( )( ) ( )t q q= + +

where

n R

n

g2

2 1
. 38

n n
n

3 1 2

p

1

( )
( ) ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟t

p r
m

=
+

-

Since we can measure the film thickness at any angle θ with simply a ruler, we choose to
measure it at the base of the dome (θ=π/2). Using the measured value of 2 mm, as well as
the other relevant parameters from table 1, the Newtonian model estimates a flux of
2.1 ml s−1, and the power-law model estimates 0.015 ml s−1: a considerable difference. Some
intuition suggests this these are both too small: we can directly measure the flux by capturing
all the chocolate that falls in a 10 s timeframe, measuring the volume, and dividing by 10 s.
Doing so gives us a measured flux of 14 ml s−1.

Rearranging equation (37) to find an equation for the film thickness h(θ), having set our
constant value of Q to be when θ=π/2, we find that

h
h 2

sin
. 39

n n1 2 1
( ) ( ) ( )( ) ( )q

p
q

=
+ +

The simplicity of this result is surprising and satisfying: the film thickness for a power-law
fluid at any angle is given by a single trigonometric function, scaled on the (easily
measurable) final film thickness. This equation for both models has been plotted in figure 4,
with final thickness h(π/2)=2 mm.

We also now use these expressions for film thickness, h, in our expression for the
velocity of each fluid, uθ(y, θ), equation (34). Since the expression for velocity includes
rheological parameters (from table 1), in order to compare the two models we have set the
flux to be, in both cases, that which we measured in experiment.

The velocity has been plotted as a function of angle, at some film thicknesses, in figure 5;
and at a fixed angle, at varying thicknesses, in figure 6.
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4.4. Discussion of results

We have found results which, from looking at figures 4 and 5 seem sensible. But the severe
underestimate of the flux in equation (37) is troubling. Such a low estimate for the flux
suggests that the parameters and boundary conditions we have used lead to very slow flow.
Indeed, equation (34) suggests a velocity at the upper surface of the chocolate, when it is
about to fall off, of 17 μm s−1 for the power-law case, many orders of magnitude smaller than
the observed speed of 10 cm s−1.

Figure 4. Thickness profile of chocolate flowing over the dome (thick line) for the
Newtonian (blue, —) and power-law (red, – –) models.

Figure 5. Velocity of chocolate for the Newtonian (blue, —) and power-law (red, – –)
models at a fixed flux, at, increasingly, heights y=h/8, h/4, h/2 and h.
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We should note, though, the sensitivity to our measurements. Our expression for the flux,
equation (37), shows that Q h .n n2 1( )µ + In our power-law model, n=1/3, so we have Q ∝
h5: clearly this expression for the flux is highly sensitive to the accuracy of our height
measurement. However, the height of the film was measured quite crudely, by placing some
paper in the film and measuring the height of the chocolate left on the paper. A measured final
height of 1 mm leads to a power-law final velocity of 1 μm s−1, whereas a final height of
2 mm leads to a velocity of 17 μm s−1: a significant difference which we need to be careful
about when we have such primitive measurements. Indeed, this is a typical problem when
data-fitting for strongly shear-thinning fluids.

A likely inaccuracy is the ‘no-slip condition’, the first statement in equation (31): it may
be that the chocolate is slipping over the dome surface. If we instead knew this speed on the
boundary, our theory would provide higher speeds, perhaps better matching the
observed flux.

Another source of inaccuracy is our rheological parameters. Despite extracting data from
sources for milk chocolate at 40 °C , there is still a large variety of different chocolates, made
in different ways and with different proportions of ingredients. The large difference in the two
pieces of data in figure 2 is typical of what we find when trying to source rheological data.
That the prediction for the fluid is so small, suggests that the chocolate is not as viscous as our
data suggests. Indeed, in section 3, figure 3(b) showed that the parameters in the Casson
model—a model since discounted as displaying intermediate behaviour between the New-
tonian and power-law models—predict much higher speeds in the pipe, which would transfer
to higher flow speeds here as well.

Rather than take the data to predict the speed and thickness, it would be nice to be able to
measure these to infer the rheological parameters. With accurate measuring equipment, it
should be possible to solve equation (37) for the power-law parameters, μp and n, if we can
measure accurately the height of the fluid in two places on the dome. However, without such
equipment to test it ourselves, this is the best we can do, and so it serves as a useful lesson on
the uncertainty of rheological measurements.

Figure 6. Velocity of chocolate for the Newtonian (blue, —) and power-law (red, – –)
models at a fixed flux and angle, as a function of the fraction of the way through the
thickness of chocolate. Observe the similarity to figure 3(b).
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A final source of error could be that we assume that the chocolate runs steadily down the
dome. On closer observation, it tends to come down in waves, as it is pushed out of the top of
the pipe. However, this should not account for the wildly small velocity prediction.

Problems aside, let us have a look at the results. The velocity profiles for each fluid from
equation (34), when plotted at different film thicknesses in figure 6, match the velocity
profiles for half a pipe flow from the previous section. The plug flow seen for the power-law
model is also seen in the dome flow. This is not surprising, as when we arrive at
equation (29), we see that the curvature of the problem has disappeared. The balance of
viscosity and gravity is what we would find for a fluid travelling down an flat inclined plane at
an angle, θ, to the horizontal. In other words, to leading order in the film aspect ratio, the fluid
does not experience the curvature of the substrate. Although we have modelled the dome as a
hemisphere, we could choose any smooth shape for the dome and the velocity profiles would
still describe the flow for each locally sloped piece of surface.

The velocity profiles in figure 5 show that the shear-thinning power-law fluid is slower
than the Newtonian fluid at varying film thicknesses throughout the majority of flow
(matching our observation in the pipe) although close to the surface of the dome, it begins to
match it.

In figure 4, we can see that both models give qualitatively the same thickness profile, well
up to high enough on the dome where the flow would be affected by the previous part of the
fountain. Given the complication of the power-law model for no further insight, use of the
Newtonian model for further work here would be sufficient.

5. Curtain flow

This section is driven by the questions ‘why does the chocolate sheet fall inwards?’ and ‘can
we predict how far inwards it will fall?’.

When we look at our table fountain, we see that when the chocolate is running smoothly,
it falls inwards around 3 cm for every 10 cm it falls. Such curtain flow is a difficult problem
and is often found in industrial coating [10]. The difficulties come from three main sources:

(1) the sheet has two free boundaries,
(2) the relation between sheet thickness and distance along the sheet is unknown,
(3) the locations of the sheetʼs free surfaces are also unknown.

When watching the fountain, we can see that the curtain moves inwards and outwards
erratically. Holes appear and disappear at the bottom of the sheet continuously while it
fluctuates, ranging in height from less than a centimetre to the full height of the drop.

In order to start on this interesting problem, the way in we propose here is through the
analysis of water bells (see figure 7(a)). These are inverted-teardrop-shaped water features
that form from water which is jetted onto a small disc (typically the size of a small coin) and
then forced outwards: essentially the ‘water hitting a spoon’ effect. If left to continue, the
water bell is pulled back round by surface tension, to close at the bottom. It is the bottom half
of the bell which reminds us of the fountain (see figure 7(b)).

Treating the fountain as a water bell means making a lot of assumptions: that the flow is
smooth and continuous, that it is not affected by the shape of the rim of the dome, and that the
liquid is inviscid. Despite finding Reynolds numbers in section 4.1 of Re 0.64= or 2.9
(depending on the model), which indicate viscous flow, it is not clear that these values apply
to curtain flow. The Reynolds number, when defined in section (28), uses the dome radius, R,
as a typical lengthscale that the fluid travels. In a general curtain flow, the fluid falls as a sheet
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for an unspecified distance, so it is not obvious what the relevant lengthscale should be.
Ideally the lengthscale should be one over which the flow varies, but it is not clear how the
velocity varies in the sheet: if we took the lengthscale to be the typical sheet thickness of
2 mm (from table 1), then Re 0.02= or 0.08, values for which an inviscid model might be
appropriate. Furthermore, an inviscid approach allows us to analytically derive a solution,
whereas finding a viscous prediction requires numerical work which is beyond the scope of
the project.

Although we start by solving the inviscid problem, we are still able to achieve an
appropriate viscous, Newtonian prediction. Numerical work by Gilio et al[12] gives a
relationship between an inviscid and an appropriate, viscous prediction. We choose para-
meters in their results which map our inviscid prediction onto theirs, thereby reading off a
viscous prediction. This is described in section 5.2.

Finding an inviscid result will require extensive scaling arguments, as this is another
example of thin-film flow, this time driven by gravity and surface tension.

Figure 7. (a) A water bell made in the kitchen: this experiment is unexpectedly easy to
perform, requiring just a tap, a pen, a coin secured to the top of the pen, and something
to stand the pen up in. (b) Fitting the chocolate fountain (dotted) into the setup of the
water bell. In this way we use the bottom half of the bell to represent the falling sheet of
chocolate.

Figure 8. The balance of forces acting on a vertical slice of the falling curtain.
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5.1. Solving the water bell problem

The water bell problem was first investigated by Taylor and Howarth [23], where they derived
an equation of motion for a water bell trajectory. Assuming the flow to be axisymmetric, we
can take a vertical slice of the curtain (see figure 8) and consider the forces acting on a fluid
element: gravity, surface tension, and internal and external pressure difference.

The form of the gravitational force is as we would expect (mass of the fluid element
multiplied by acceleration due to gravity); and the pressure force is given by multiplying the
volume of the element by the pressure difference, set in the direction normal to the curtain.
The force due to surface tension is given by the Young–Laplace equation, again multiplied by
the volume of the element and set in the normal direction.

By balancing these forces and resolving (with suitable non-dimensionalization in the
style of the previous chapter), Taylor and Howarth found a relationship between the velocity,
u(z), and distance of the sheet from the pipe in the centre of the bell, r(z), both functions of
vertical distance below the bottom of the dome, z. Some later trigonometric simplifications by
Brenner [5, equations (13)–(15)] lead to

r u r r
u

r r r1 1 1 0, 402 2 3 2( ) ( )( ) ( )⎜ ⎟⎛
⎝

⎞
⎠

b
a - + + ¢ + ¢ - + ¢ =

the process of which is explained fully in Button [7, ch 5].
This equation has some given initial conditions: r(0)=r0, the scaled radius of the dome;

and r′(0)=v0, specifying the angle at which the curtain begins its fall. The problem depends
on two physical parameters: α accounts for the effect of the inside–outside pressure differ-
ence, and β accounts for gravity. They are discussed more in section 5.3.2, but are given by

Qu p gQ

u8
and

4
, 410

s
2
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r
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=

where we can see they are composed of terms we would expect from the three forces we are
balancing: γs is surface tension; Δp is the pressure difference between the inside and outside
of the sheet; and g is the acceleration due to gravity. We also have u0, our initial velocity; and
Q, the (constant) flux.

We assume that the sheet is sufficiently thin so that we can assume the velocity to be
constant through a cross-section at a given height. Since the surface of the liquid film is itself
a streamline and this model is for inviscid fluid, we can use Bernoulliʼs equation for any
arbitrary point along a streamline where gravity is constant:

u gz p
1

2
constant, 422 ( )r r- + =

noting that we have switched the sign on the gzr term from the usual convention, as we are
measuring z downwards.

Since the streamline is also a free surface, the pressure, p, on it is constant, so it can be
absorbed into the right-hand side. With the non-dimensionalized boundary conditions u=1
at z=0, Bernoulliʼs equation reduces to

u z1 2 , 432 ( )b= +

which expresses the increase of momentum in the direction of the flow due to the acceleration
of gravity.

We are left with the complete governing equations, equations (40) and (43), to solve.
Analytically this is only possible where α=β=0. Since we do not expect any significant
pressure difference between the inside and outside of the sheet, we can set α=0. However,
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we cannot say this for β, since this is the Bond number (or Eötvös number), which represents
the balance of gravitational forces to surface tension forces which we are left with from
figure 8. With values from table 1, we find β=6.3.

An approach we can take is to consider the β ? 1 limit, where the the flow is dominated
by gravity rather than surface tension. In this limit, the curtain, starting at r(0)=r0 (the scaled
radius of the dome), falls further downwards than it does inwards, and we can express r as a
regular series in 1 1d b= 

r z r r z r z . 440 1
2

2( ) ( ) ( ) ( )d d= + + + 
Differentiating, we have

r z r z r z 451
2

2( ) ( ) ( ) ( )d d¢ = ¢ + ¢ + 

and substituting this into equation (40) and taking the leading order terms, we have

r z

u z
1 0. 461( )

( )
( )+

¢
=

Rearranging for r z1( )¢ and taking the leading order term from equation (45), we are left with

r z
u z

, 47( ) ( ) ( )
b

¢ = -

which we can substitute into equation (43).
Integrating the resulting equation with the boundary condition r(0)=r0, we have an

expression for the sheet profile r(z),

Figure 9. Falling sheet profile predictions for inviscid (orange, – –) and viscous
(blue, —) cases, as well as the observed falling profile over 7 cm (pink, L).
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This equation (in dimensional form) has been plotted in figure 9, with data from table 1.

5.2. Mapping the inviscid result onto viscous data

Finding an equivalent profile for even a Newtonian viscous liquid requires numerical work,
and we were pleased to find Gilio et al[12], where they study both inviscid and viscous two-
dimensional, falling, nonsteady liquid sheets. They derive governing equations using a dif-
ferent method, and solve their viscous equations numerically, using finite-difference methods.

In their viscous model they use a fluid with Newtonian viscosity 10 Pa s, close to our
chocolate value of 14 Pa s. We were able to manipulate our inviscid graph, from
equations (40) and (43) to fit theirs, to find an equation governing the viscous velocity.

We do this by scaling the velocity plots from [12, figure 6] to match our inviscid results
in equation (43). The viscous profile is remarkably linear and can be extracted from their
graph, in non-dimensional form, as

u z z1 2.12 . 49( ) ( )= +

We can substitute this velocity into equation (47) to find an equation governing the position of
the viscous sheet, namely

r z r
z z1.06

. 500

2
( ) ( )

b
= -

+

In this way we now have a viscous prediction for the profile of our falling sheet, and this has
also been plotted (in dimensional form) on figure 9.

5.3. Discussion of the results

The inviscid velocity profile, equation (43), is somewhat validated by the results of Brunet
et al[6]. They use a silicon oil with similar density and surface tension to chocolate
(ρ=970 kg m−3, γs=20.4 mNm−1), but with a viscosity of 0.2 Pa s, which is smaller than
that of chocolate (but considerably higher than water). They find by direct measurements that
equation (43) is a reasonable approximation of their results.

Comparing the inviscid sheet profile with the observed falling profile in figure 9, we see
that the sheet falls inwards due to surface tension with slope of the same order we expect.
However, it predicts that the sheet falls in about 3 cm over the 7 cm drop, when we measure in
experiment about half of that. Secondly, in our observations, the sheet starts falling at a slant,
rather than downwards, and we have lost the ability to set r′(0) in performing the perturbation
analysis in equation (5.1), which reduced the order of the governing equation. The viscous
sheet prediction, however, falls 1.5 cm inwards, better matching our observations.

5.3.1. Validity of inviscid approximation. Having derived profiles from two models, we now
show that we expect the inviscid model to fare poorly, since the viscous effects are expected
to be significant. We compare the total energy in the system with the amount used in the work
done by viscous forces in the falling fluid. We find that even in the least-possible case for the
viscous forces, they are of comparable size, meaning that ignoring viscous forces, as we have
done in our inviscid approximation, is unlikely to give us good results.

We start by finding the total energy in the system, i.e. the sum of kinetic and gravitational
energy. The velocity in our sheet is predominantly vertical, occupying in cylindrical polar
coordinates the (dimensional) region V, given by R�r�R+h, 0�θ<2π, 0�z�ℓ,
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recalling that the z-axis points downwards. Then the kinetic energy EK in the system is given
by

E u V A u ℓ gℓ
1

2
d

1

2
, 51

V
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2
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2 2( ) ( )òr r= = +

where
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the cross-sectional area of a horizontal slice of the curtain.
The gravitational potential energy EP of the system is given by
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Therefore the total energy instantaneously in the falling sheet, when we plug in the
parameters from table 1, is EK+EP=0.044 J.

We want to compare this with the amount of energy dissipated as the sheet falls.
Cauchyʼs energy equation for the rate of energy dissipation, K, due to viscosity in a viscous
Newtonian fluid of volume V and viscosity μ is given by [15]

K

t
V

d

d
4 d . 54

V

2˙ ( )ò mg= -

Here, ġ is the scalar shear rate, first introduced in equation (3). Given that the velocity in our
sheet is predominantly vertical, we say that the dominant rate of strain tensor component is

,33ġ given by du/dz. In dimensional form, equation (43) is given by

u u gz2 , 552
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which we can differentiate to find, substituting in 33ġ
g
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. 5633

0
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Incompressibility in the fluid ( u 0· = ) requires that the shear rate tensor is traceless. We
then have some flexibility with values of the other diagonal rate of strain elements 11ġ and .22ġ

The least energy change rate in equation (54) occurs when
1

2
,11 22 33˙ ˙ ˙g g g= = - and the most

when 11 33˙ ˙g g= - and 0.22ġ = Given that we are looking for a lower bound on the energy
dissipation, we take the least-case scenario and after substituting into equation (54), we get
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Again with the parameters from table 1, we find that in a tenth of a second, an estimate
for how long it takes chocolate to complete its fall, in the least-case scenario, the energy
dissipated by viscous forces K is 0.046 J.

We have shown that, if we use an inviscid model to predict the fluid velocity of our
viscous fluid, the dissipation we have neglected is as large as the total energy in the system.
Though our energy estimates are rough, it is clear that the neglect of viscous effects is not
justifiable, and we can expect the inviscid approximation to give poor predictions.
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5.3.2. Importance of physical parameters. The governing equation for our sheet position and
velocity profiles, equation (40), relies on the physical parameters α and β, given in
equation (41).

Since the pressure difference is negligible, given that the falling sheet never forms an
airtight seal, we set α=0, but we can see that the Bond number, β, depends on physical
parameters of the chocolate.

Figure 10 shows the profile of the falling sheets in the inviscid and viscous cases for
substances with different values of β. Lower values of β, corresponding primarily to increased
surface tension since the densities are of similar order, bring the sheet in further. Interestingly,
it affects the viscous sheet more than the inviscid sheet, with the viscous sheet falling further
inwards in the higher surface tension case than the inviscid prediction.

6. Conclusions

6.1. Physical conclusions

From our analyses in the three separate domains of the fountain, we have found how the
chocolate moves round the fountain under different models, and were able to compare them to
what we see with our actual fountain. In short:

Figure 10. Falling sheet profile predictions for viscous (blue, —) and
inviscid (orange, – –) cases for fluids with different values of β: (i, light) water
at 25 °C (β= 1.5, since 72 mN ms

1g = - , ρ=997 kg m−3); (ii, dark) chocolate
(β= 6.3); (iii, light) liquid nitrogen at −196 °C (β= 10.1, since γs = 8.9 mN m−1,
ρ= 806 kg m−3) [9]. Dotted line (pink, L) represents observed chocolate profile, as in
figure 9.
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• Pumped pipe flow. For power-law flows, plug flow is expected in a pipe with a pressure
gradient. For Newtonian flows, a parabolic flow is expected. The analysis here allows us
to narrow our choice of models to just two.

• Dome flow. Gravitational and viscous effects balance, and the dome shape is not
important beyond the local slope. The chocolate thins and slows down as it travels over
the dome. The Newtonian model performs as well as the power-law model in predicting
the thickness of the chocolate.

• Curtain flow. Surface tension is the dominating factor in pulling the sheet inwards. An
inviscid model is not expected to predict well how far inwards the sheet will fall, but a
viscous one would.

6.2. Pedagogical conclusions

We have taken a novelty, engaging consumer item and presented a project which uses it to
introduce the world of non-Newtonian fluid mechanics. Moreover, we have found that it
works particularly well in bringing this exciting area of research to many different levels of
technical ability.

The process of deriving the key results is necessarily mathematical, and highly suited to a
final-year undergraduate course or project. Breaking the fountain into its three natural com-
ponents, we see that each serves a distinct and valuable educational purpose.

• Pumped pipe flow. Pressure-driven flow in a pipe is a simple flow problem, ideal for
developing the theory of non-Newtonian fluid flow and investigating the phenomenology
of different model fluids. Students will have met this problem for Newtonian flow before
in a fluids course, so it serves as a reminder as well as an interesting extension.

• Dome flow. Thin-film flow over the dome provides an introduction to lubrication theory,
by the use of scaling, an important technique which may have been seen already in a
different area of applied mathematics. With very mild constitutive assumptions, analytical
solutions can be calculated for power-law as well as Newtonian fluids.

• Curtain flow. Finally, the curtain or sheet region in which the molten chocolate falls
freely under gravity is intractable analytically (and beyond the scope of an undergraduate
level project to solve numerically). However, perturbation analysis allowed us to find a
first prediction. After this, we moved onto finding and interpreting relevant existing
literature, working out how to convert existing numerical results to our situation by
scaling for our values of viscosity, film thickness and speed. At a research level, the
falling sheet leaves the greatest opportunity for further work.

Although the level of mathematics required to derive this is high, the results, however,
we have found to be very much of interest to the general public in our engagement work. That
general foodstuffs can be divided into different rheological classes based on whether they are
shear-thinning, shear-thickening, or simply Newtonian, is interesting; but that we can describe
them all mathematically with the power-law model, simply by changing the parameter n,
shows the power of mathematics. We have found that showing audiences the effect of varying
n on viscosity–shear rate graphs allows them to appreciate why mathematics is important in
describing the world. Also, that surface tension brings the chocolate fountain inwards as it
falls, settles a debate which chocolate enthusiasts have long wondered about.

The subject matter is intrinsically attractive (tasty, even!) and we hope that others get the
opportunity to learn about this area of mathematics with their own chocolate fountain.
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at 10ġ = )

[21] Reynolds O 1886 On the theory of lubrication and its application to Mr. Beauchamp Towerʼs
experiments, including an experimental determination of the viscosity of olive oil Phil. Trans.
R. Soc. 177 157–234

[22] Sahin S and Gulum Sumnu S 2006 Physical Properties of Foods (Berlin: Springer)
[23] Taylor G and Howarth L 1959 The dynamics of thin sheets of fluid: I. Water bells Proc. R. Soc. A

253 289–95
[24] Wichchukit S, McCarthy M J and McCarthy K L 2005 Flow behavior of milk chocolate melt and

the application to coating flow J. Food Sci. 70 165–71 (experiments done with milk chocolate
at 42 °C)

[25] Wollny K 2005 Determining the yield point and viscosity of chocolate Application Note
(Germany: Anton Paar GmbH) p2 (http://mep.net.au/foodlab/FL_7/AN_RLQC_Choco_
B.pdf)

Eur. J. Phys. 37 (2016) 015803 A K Townsend and H J Wilson

23

http://dx.doi.org/10.1111/j.1745-4603.2000.tb01019.x
http://dx.doi.org/10.1111/j.1745-4603.2000.tb01019.x
http://dx.doi.org/10.1111/j.1745-4603.2000.tb01019.x
http://dx.doi.org/10.1007/s00217-007-0652-6
http://dx.doi.org/10.1007/s00217-007-0652-6
http://dx.doi.org/10.1007/s00217-007-0652-6
http://dx.doi.org/10.1111/j.1365-2621.2008.01710.x
http://dx.doi.org/10.1111/j.1365-2621.2008.01710.x
http://dx.doi.org/10.1111/j.1365-2621.2008.01710.x
http://dx.doi.org/10.1016/j.jfoodeng.2008.10.037
http://dx.doi.org/10.1016/j.jfoodeng.2008.10.037
http://dx.doi.org/10.1016/j.jfoodeng.2008.10.037
http://www.seas.harvard.edu/brenner/taylor/handouts/waterbell/waterbell.html
http://www.seas.harvard.edu/brenner/taylor/handouts/waterbell/waterbell.html
http://dx.doi.org/10.1063/1.1738650
http://www.ms.unimelb.edu.au/publications/button.pdf
http://eprints.maths.ox.ac.uk/234/
http://eprints.maths.ox.ac.uk/234/
http://www.eolss.net/sample-chapters/c06/e6-197-03-00.pdf
http://www.eolss.net/sample-chapters/c06/e6-197-03-00.pdf
http://dx.doi.org/10.1016/j.euromechflu.2004.12.003
http://dx.doi.org/10.1016/j.euromechflu.2004.12.003
http://dx.doi.org/10.1016/j.euromechflu.2004.12.003
http://dx.doi.org/10.1016/j.jfoodeng.2008.11.008
http://dx.doi.org/10.1016/j.jfoodeng.2008.11.008
http://dx.doi.org/10.1016/j.jfoodeng.2008.11.008
http://dx.doi.org/10.1063/1.3593393
http://wwwf.imperial.ac.uk/~ajm8/M3A10/energy.pdf
http://wwwf.imperial.ac.uk/~ajm8/M3A10/energy.pdf
http://dx.doi.org/10.1080/10942910009524621
http://dx.doi.org/10.1080/10942910009524621
http://dx.doi.org/10.1080/10942910009524621
http://dx.doi.org/10.1093/jee/36.5.769
http://dx.doi.org/10.1093/jee/36.5.769
http://dx.doi.org/10.1093/jee/36.5.769
http://web.aeromech.usyd.edu.au/rheology/snasseri/images/chocolate.pdf
http://web.aeromech.usyd.edu.au/rheology/snasseri/images/chocolate.pdf
http://dx.doi.org/10.1098/rstl.1886.0005
http://dx.doi.org/10.1098/rstl.1886.0005
http://dx.doi.org/10.1098/rstl.1886.0005
http://dx.doi.org/10.1098/rspa.1959.0194
http://dx.doi.org/10.1098/rspa.1959.0194
http://dx.doi.org/10.1098/rspa.1959.0194
http://dx.doi.org/10.1111/j.1365-2621.2005.tb07131.x
http://dx.doi.org/10.1111/j.1365-2621.2005.tb07131.x
http://dx.doi.org/10.1111/j.1365-2621.2005.tb07131.x
http://www.mep.net.au/foodlab/FL_7/AN_RLQC_Choco_B.pdf
http://www.mep.net.au/foodlab/FL_7/AN_RLQC_Choco_B.pdf

	1. Introduction
	2. Modelling chocolate
	3. Pumped pipe flow
	3.1. Solving the governing equations
	3.2. Expressions for the velocity
	3.2.1. Newtonian model
	3.2.2. Power-law model
	3.2.3. Casson&#x02019;s model

	3.3. Discussion of results

	4. Dome flow
	4.1. Reducing the problem using scaling
	4.2. Solving the resultant equation
	4.3. Using flux to solve our problem
	4.4. Discussion of results

	5. Curtain flow
	5.1. Solving the water bell problem
	5.2. Mapping the inviscid result onto viscous data
	5.3. Discussion of the results
	5.3.1. Validity of inviscid approximation
	5.3.2. Importance of physical parameters


	6. Conclusions
	6.1. Physical conclusions
	6.2. Pedagogical conclusions

	References



