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Abstract 

Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease 

affecting motor neurons (MNs). It is primarily sporadic, however a proportion of cases 

are inherited and of these ~20 % are caused by mutations in the superoxide dismutase 

1 (SOD1) gene. The work described in this thesis has focused on the characterisation 

of the role that the SOD1 protein plays in ALS, investigating the human and the 

mouse variants in vivo and in vitro. 

SOD1 mutations result in ALS by an unknown gain of function mechanism, although 

mouse models suggest that complete loss of SOD1 is also detrimental to MN function. 

To investigate a possible role of SOD1 loss of function in SOD1-ALS, a meta-analysis 

was carried out on the literature reviewing measures of SOD1 activity from patients 

carrying SOD1 familial ALS mutations and the phenotype of Sod1 knockout mice. 

The first set of experiments aimed to phenotypically characterise a novel mouse model, 

Sod1D83G, carrying a pathological mutation in the mouse Sod1 gene. Sod1D83G/D83G mice 

have no SOD1 activity, low levels of SOD1 protein, develop central MN degeneration 

and a distal peripheral neuropathy. Further the Sod1D83G mice were crossed with Sod1 

knockout mice and mice overexpressing the human wild-type SOD1 to determine if it 

was possible to dissect elements of a loss of function (the peripheral axonopathy) and 

aspects of a gain of function (the central body degeneration). 

ALS mutations generally cause SOD1 to become more aggregate-prone, but it is 

unclear whether the human and the mouse SOD1 proteins co-aggregate in mouse 

models of SOD1 familial ALS. To investigate possible interactions between human and 

mouse SOD1 variants, recombinant proteins were produced, characterised and their 

spontaneous aggregation propensity was assessed in vitro. 

Finally a sensitised screen focused on the effect of unknown mutations on the life-span 

of a low copy SOD1G93A transgenic model of ALS, identified one mouse line with 

reduced survival, named Galahad. The phenotype of the Galahad mouse progeny was 

examined and a quantitative trait loci analysis was carried out to try to identify possible 

modifying locus/loci interacting with the SOD1 G93A mutation. 

The present work aims to shed light on the interaction between human and mouse 

SOD1 proteins and increase our understanding on the mechanism affecting central and 

peripheral degeneration of MNs in the context of SOD1 familial ALS mutations. 
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Chapter 1 Introduction 

1.1 Amyotrophic lateral sclerosis (ALS)  

Amyotrophic lateral sclerosis (ALS) is the most common adult onset motor neuron 

disease, characterised by the degeneration and death of upper and lower motor 

neurons (MNs). This relentless and fatal neurodegenerative disorder has a progressive 

clinical course typically starting with a focal onset of motor weakness which spreads 

through the body leading to paralysis and death within 3 to 5 years after diagnosis 

(Hirtz et al., 2007; Valdmanis and Rouleau, 2008). 

1.1.1 Epidemiology 

A meta-analysis study of global data provided a median incidence rate of ALS of 1.90 

per 100,000 and a prevalence of 4.48 per 100,000 of total population. In considering 

this figure it is important to note that the great majority of research on ALS 

epidemiology has been conducted in Europe and that there is wide variability in the 

incidence and prevalence reported in literature (Chiò et al., 2013). Investigation of ALS 

sex ratios showed that men are 1.2-1.5 times more likely to develop ALS compared to 

women, and this difference decreases with age (Manjaly et al., 2010). The average age 

of onset is 65.2 for men and 67.0 for women, while the peak incidence is between the 

ages of 70-74 for men and 65-69 for women (Logroscino et al., 2010; Strong and 

Rosenfeld, 2003). 

1.1.2 ALS clinical course 

ALS affects both the upper and lower motor neurons. Upper motor neuron (UMN) 

degeneration presents itself clinically as weakness of the voluntary muscles, spasticity, 

and brisk reflexes. While symptoms of lower motor neuron (LMN) impairment are 

muscular atrophy, weakness of the skeletal muscles, cramping, fasciculation, twitching 

and flaccidity (Traynor et al., 2000). 

1.1.2.1 Motor neuron degeneration 

About 70 % of ALS patients develop a primary lumbar onset, which usually starts with 

asymmetric focal weakness of the extremities. In 25 % of the cases the onset is bulbar 

causing pronunciation problems (dysarthria) and swallowing difficulties (dysphagia) 

(Piao et al., 2003). While in the remaining 5 % of affected individuals the onset occurs 

in the trunk muscles, affecting the respiratory system (Kiernan et al., 2011). In most of 
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the cases, during the course of the disease symptoms become progressively more 

severe, developing from muscle weakness to paralysis and they also spread from a focal 

site of onset through the rest of body (Fujimura-Kiyono et al., 2011). Patients usually 

have preserved oculomotor muscles and voluntary sphincters of bowel and bladder 

functions (Eisen et al., 1992; Kiernan et al., 2011). Of note the majority of patients die 

from respiratory failure arising from paralysis of intercostal muscles, or related 

complications (Haverkamp et al., 1995; Mitchell and Borasio, 2007; Valdmanis and 

Rouleau, 2008). 

Although ALS causes both upper and lower motor neuron degeneration, symptoms 

often have a wide clinical spectrum with cases showing predominantly UMN or LMN 

signs (Burrell et al., 2011). The age of onset ranges extensively from about 14 to 90 

years of age (Andersen et al., 1996; Gouveia and de Carvalho, 2007). Also disease 

duration is heterogeneous, indeed even though the majority of patients die within 2.5 

years of onset there are about 15-20 % who survive past 5 years (Talbot, 2009) and rare 

cases exhibiting survival of over 40 years (Grohme et al., 2001). Interestingly a shorter 

disease progression has been found to correlate with advanced age and body mass at 

onset, bulbar onset, respiratory dysfunctions, and fast spread from the initial site of 

onset (Fujimura-Kiyono et al., 2011; Magnus et al., 2002; Traxinger et al., 2013). 

1.1.2.2 Cognitive dysfunctions 

ALS was initially considered a pure motor system disorder (Strong et al., 1996), but a 

component of cognitive impairment gradually became apparent. Recent studies 

confirmed that 51 % of ALS patients develop significant cognitive dysfunction 

presenting symptoms such as impaired memory and alteration in behaviour, abstract 

reasoning, problem solving and language comprehension (Zimmerman et al., 2007). 

Histological evidence and neuroimaging studies support clinical findings showing 

degeneration of neurons in extra-motor neuron areas (Neumann et al., 2006) and 

regional atrophy of the frontal and temporal lobes of the brain (Chang et al., 2005) 

Indeed about 15 % of ALS patients also present frontotemporal dementia (FTD), 

(Ringholz et al., 2005). These two disorders share pathological and genetic features, see 

section 1.1.7 (Giordana et al., 2011; Orr, 2011). 
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1.1.3 Diagnosis 

To date there is no specific diagnostic laboratory test or clinical procedure to recognise 

ALS. Physicians establish the presence of the disease through a standard diagnostic 

protocol involving positive inclusion and negative exclusion criteria: The Revised El 

Escorial Criteria (Brooks et al., 2000). Inclusion criteria are evidence of signs of 

impairment of LMNs or UMNs confirmed by clinical examination, electrophysiological 

or neuropathological changes. Exclusion criteria are employed to reject the presence of 

pathological characteristics of other diseases that explain the degeneration of motor 

neurons (Table 1.1). Despite the establishment of these diagnostic criteria, incorrect 

diagnoses are still frequent. In addition, the combination of UMN and LMN 

symptoms may not be evident until a late point in the disease meaning that there is 

often a latency period between onset of symptoms and diagnosis. 

Diagnostic level  Description 

Clinically definite Either UMN signs with LMN signs in the bulbar region 
plus two other signs, or UMN and LMN signs in 3 or 
more spinal regions 

Clinically probable UMN and LMN sings in 2 spinal cord regions with some 
UMN signs rostral to LMN signs 

Clinically probable 
Laboratory supported 

Either UMN and LMN signs in 1 region, or UMN signs 
with EMG defined LMN signs in 2 regions 

Clinically possible Either UMN and LMN signs in 1or UMN signs in 2 or 
more regions, or LMN signs rostral to UMN signs 

UMN signs for diagnosis Spasticity, increased muscle tone and clonus, bilateral 
facial weakness affecting lower face and dysarthria 

LMN signs for diagnosis Muscle weakness, atrophy, fasciculation and flaccid 
dysarthria 

Table 1.1 El Escorial diagnostic criteria for ALS. (EMG) electromyography. (Brooks et al., 2000; 

Economides et al., 2013; Kiernan et al., 2011; Ravits et al., 2007a; Wijesekera and Leigh, 2009). 

1.1.4 Treatments 

ALS is an incurable disease, despite the large number of clinical trials testing the effect 

of over 50 different compounds only one drug is available for the treatment of this 

neurodegenerative disorder, Riluzole, which can increase survival by 2-3 months 
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(Miller et al., 2012a; Turner, 2001). Thus to date the main method in the care of ALS 

patients consists of symptomatic treatment via a multidisciplinary approach covering 

physiotherapy, nutrition, respiration and pain management to help improve life quality 

(Kiernan et al., 2011; Miller et al., 2009a, 2009b, 2012b). 

1.1.5  Environmental risk factors  

Environmental factors such as exposure to toxins, solvents, pesticides, formaldehyde, 

smoking, exercise, infectious agents, and physical trauma have been associated with 

increased risk of developing ALS.  

For example, the elevated rate of ALS reported for the indigenous population of Guam 

was postulated to be the consequence of exposure to the neurotoxic non-protein 

amino acid β-N-methylamino-L-alanine (BMAA). This neurotoxin present in the cycad 

seeds was assumed by people in Guam through the consumption of home-grown 

plants and animals (Khabazian et al., 2002; Lee, 2011; Shaw and Wilson, 2003). 

Although it was clear that the etiologic agent could be an environmental neurotoxin an 

eventual genetic contribution to disease could not be excluded. Also intense physical 

activity has been suspected of being an environmental factor in ALS. For instance, 

increased risk of ALS has been reported in Italian professional soccer players actively 

engaged between 1970 and 2001. However, the absence of ALS cases in professional 

road cyclists and basketball players suggests that ALS is not related to physical activity 

in general (Chio et al., 2009). 

Despite many studies none has produced consistent and convincing evidence that 

environmental factors can cause ALS; therefore to date other than age, gender and 

family history no other non-genetic risk factor is associated with the disease (Al-

Chalabi and Hardiman, 2013; Ingre et al., 2015). 

1.1.6 ALS pathological features 

1.1.6.1 Degeneration of motor neurons 

The main neuropathological feature of ALS is the degeneration of both upper and 

lower motor neurons causing the denervation of skeletal muscles, see Figure 1.1 

(Mendonça et al., 2005; Miki et al., 2010; Ota et al., 2005; Ravits et al., 2007b).  
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Figure 1.1 Impairment of the neuromuscular system in ALS. (a) Upper motor neurons (UMNs) are 

located in the motor cortex and their axons project down to the spinal cord where they form synapses 

with lower motor neurons (LMNs). The axons of LMNs project to the muscles forming synapses at the 

level of the neuromuscular junctions (NMJs). (b) In healthy individuals the motor cortex connects with 

the muscles through the MNs. At the muscle level each LMN axon branch innervates a single muscle 

fibre. The neurotransmitter acetylcholine (red dots) is released from the foot plate of the axon and 

received by nicotinic acetylcholine receptors located on end plate of the muscle fibre. In this case the 

NMJ, the foot plate and the end plate are closely aligned to ensure efficient signal transduction. (c) In a 

degenerating NMJ the foot plate and the axon degenerate progressively retracting and reducing the 

efficiency of signal between the axon terminal and the muscle, eventually losing contact. 

The selective vulnerability of MNs to neurodegeneration might be explained by their 

structural and metabolic specialization. In humans MNs are typically large cells, with a 
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central body of approximately 50-60 μm and an axon of 1 m. To maintain such a large 

structure mitochondria have to meet high energy demands, consequentially increasing 

the production of reactive oxygen species (ROS) and therefore leaving the cell more 

prone to oxidative stress damages (Barber and Shaw, 2010). Moreover MNs have low 

levels of cytosolic calcium-binding proteins (CaBP) compared to other neuronal 

populations. The lack of CaBP, forces mitochondria to sequester calcium ions, 

triggering further an increase in ROS. In addition, MNs have low expression of the 

glutamate receptor 2 (GluR2) subunit of the Alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) glutamate receptors, which imparts a high calcium 

permeability contributing once again to generate more ROS and ultimately to 

selectively damage MNs (Barber and Shaw, 2010; Jaiswal, 2014). Degeneration mostly 

takes place in the anterior and lateral columns of the spinal cord, but is evident also in 

the motor cortex and brain stem. Investigation of brain and spinal cord of ALS 

patients using magnetic resonance imaging (MRI) and diffusion tensor tomography 

techniques have shown an in vivo correlation between the severity of the atrophy and 

the clinical symptoms of the disease (Branco et al., 2014; Cohen-Adad et al., 2013; 

Schuster et al., 2013; Thorns et al., 2013). Furthermore post mortem LMN 

investigation has suggested that MNs loss is a contiguous process that progresses in 

parallel with the disease symptoms, with an average loss at end stage of 55 %, ranging 

from 8 % to 90 % (Ravits et al., 2007b).  

1.1.6.2 Gliosis 

Astrogliosis and microgliosis are hallmarks of ALS and they occur in the dorsal and 

ventral horns of the spinal cord (McGeer and McGeer, 2002; O’Reilly et al., 1995; Ota 

et al., 2005; Schiffer et al., 1996) and in motor and non-motor regions of the cortical 

grey matter (Kushner et al., 1991; Nagy et al., 1994; Sugiyama et al., 2013). The 

impairment within astrocytes and microglia has been suggested to accelerate disease 

progression, while intensity of microglial activation has been shown to correlate with 

the severity of MN damage (Lasiene and Yamanaka, 2011). 

1.1.6.3 Inclusion bodies  

A major pathological feature of ALS is the presence of cytoplasmic inclusions or 

aggregates in degenerating MNs and adjacent oligodendrocytes. Inclusions are present 

in the spinal cord, in the frontotemporal cortices, hippocampus and cerebellum of ALS 

patients (Al-Chalabi et al., 2012). The predominant inclusions found are ubiquitinated 
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aggregates that are classified either as Lewy body-like hyaline inclusions or skein-like 

inclusions, the first characterised by a round shape and the second characterised by 

bundles of filaments with granules. TDP-43 protein has been shown to be the major 

component of these ubiquitinated inclusions (Mackenzie et al., 2007; Nishihira et al., 

2008), but also p62 immunoreactivity is present in these aggregates (Blokhuis et al., 

2013; Leigh et al., 1991; Mizuno et al., 2006; Ota et al., 2005). Other neuropathological 

inclusions are: neurofilament heavy chain accumulations in spinal cord MN cell bodies 

and axons (Mendonça et al., 2005), phosphorylated neurofilament inclusions, often co-

localising with ubiquitin (Takahashi et al., 1997; Troost et al., 1992), astrocytic hyaline-

inclusions, similar to lewy-body-like hyaline but present in astrocytes (Kato et al., 1997) 

and Bunina bodies, small eosinophilic granules occasionally co-localising with TDP-43 

(Miki et al., 2010; Ota et al., 2005). Of note hyaline inclusions containing SOD1 

protein are found in ALS patients with SOD1 mutations (Shibata et al., 1996a), and 

present a fibrillar morphology reminiscent of the amyloid formation observed in many 

neurodegenerative diseases (Ross and Poirier, 2004). 

1.1.6.4 Muscle atrophy 

Atrophy of the muscles, due to loss of innervation of motor neurons is another 

important feature of ALS. In healthy individuals when motor neurons innervating a 

muscle bundle die the adjacent axons tend to re-innervate those muscle fibers 

exhibiting a non-random regrouping of muscle fiber type. However, it has been 

suggested that sprouting axons in ALS are unable to change fiber types of re-

innervated muscle. In fact, ALS patients characteristically have an atrophic group 

containing mixed fiber types rather than a non-random regrouping muscle fiber type 

pattern (Baloh et al., 2007a; Daube et al., 2000). 

1.1.7 Genetics of ALS 

The majority of ALS cases are sporadic (sALS) since they lack a clear genetic 

component, however, a significant percentage are caused by inherited genetic 

mutations, termed familial ALS (fALS). The percentage of ALS patients with a family 

history has been apprised from a low 0.8 % up to 23 % of the ALS population; this 

might still be an underestimation since many cases labelled as sporadic might indeed be 

familial with a reduced disease penetrance (Andersen and Al-Chalabi, 2011). All genes 

found to be causative of fALS have also been found mutated in sALS patients. 

Moreover sALS and fALS are clinically indistinguishable in terms of disease 
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progression and neuropathology; but the average age of onset of fALS is approximately 

10 years earlier than sALS (Andersen and Al-Chalabi, 2011; Siddique and Ajroud-Driss, 

2011).  

The first major breakthrough in understanding the genetic basis of ALS occurred in 

1993, when Rosen and colleagues found that mutations in the superoxide dismutase 1 

(SOD1) gene were causative of fALS (Rosen et al., 1993). To date over 160 SOD1 

mutations have been associated with ALS, variations in this gene account for about 12-

24 % of fALS and for 2-7 % of sALS cases (Pasinelli and Brown, 2006; Renton et al., 

2014; Valdmanis and Rouleau, 2008). Since the identification of SOD1 other genes 

have been discovered to be causative of ALS; with varying levels of prevalence. The 

percentage of ALS explained by each gene in populations of European ancestry are 

reported in Table 1.2 and Figure 1.2 (Renton et al., 2014). Additionally several risk loci 

have been identified mainly on the basis of genome wide association studies (GWAS), 

and they have been predicted to be responsible for 60 % of the risk of developing ALS 

with the reaming 40 % being environmental (Al-Chalabi et al., 2010). 

Of note the identification of an expanded hexanucleotide repeat in an intronic region 

of the uncharacterized gene C9ORF72 strengthened the link between ALS and FTD. 

Normal individuals have at most 23 repeats while ALS or FTD patients can have up to 

several thousand of repeats (Rohrer et al., 2015). This pathogenic expansion repeats 

account for about 40 % of fALS cases, 7 % sALS cases, 25 % of familial FTD cases 

and 4 % of sporadic FTD cases (Andersen and Al-Chalabi, 2011; DeJesus-Hernandez 

et al., 2011; Gijselinck et al., 2012; Renton et al., 2011). Indeed many of the ALS 

causative genes are mutated also in FTD, see Table 1.2. Moreover in some families 

individuals carrying these mutations may develop ALS or FTD or a combination of 

both diseases, reinforcing the hypothesis of a common genetic behind ALS and FTD 

(Orr, 2011).  

In many cases mutations in a specific ALS causative gene can cause specific 

pathologies in patients. For example, SOD1 protein aggregates are present in mutant 

SOD1 cases (Kato et al., 2000). In a similar way mutation in TDP-43 and FUS genes 

cause TDP-43 and FUS protein to mislocalise into the cytoplasm (Blokhuis et al., 

2013). While C9orf72 repeat expansions are characterised by RNA aggregates and 

protein aggregates containing atypical products (Mackenzie et al., 2014). 
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Figure 1.2 Percentage of sALS and fALS explained by each gene. (a) Percentage of fALS cases 

explained by the different genes: C9orf72 = 40 %; FUS = 4 %; SOD1 = 12 %; TDP-43 = 4 %; VCP = 

1 %; SQSTM1 = 1 %; OPTN, PFN1 and UBQLN2 < 1 %. (b) Percentage of sALS cases explained by 

the different genes: C9orf72 = 7 %; FUS = 1 %; SOD1 = 1-2 %; TDP-43 = 1%; VCP = 1 %; SQSTM1, 

OPTN, PFN1 and UBQLN2 < 1 %. Data according to Renton 2014, values are referred to populations 

of European ancestry (Renton et al., 2014). 
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Gene 
symbol 

Gene name Location Inheritance Frequency Link to 
FTD 

Putative function  References 

 Not identified (ALS3) 18q21 AD Rare no Unknown  (Hand et al., 2002) 

 Not identified (ALS7) 20p13 AD Rare no Unknown  (Sapp et al., 2003) 

ALS2 Alsin 2q33.2 AR Rare, juvenile  no Endosomal trafficking and 
cell signalling 

(Hadano et al., 2001) 

ANG Angiogenin 14q11.2 AD Rare yes RNA processing (Greenway et al., 
2006) 

ATXN2 Ataxin 2 12q24.12 AD Rare no Endocytosis, RNA 
translation 

(Elden et al., 2010) 

C9orf72 Chromosome 9 reading 
frame 72 

9p21-q22 AD 22.5-46 % 
fALS, 21 % 
sALS 

yes Homologue to guanine 
nucleotide exchange factor  

(DeJesus-Hernandez 
et al., 2011; Levine et 
al., 2013)  

CHMP2B Chromatin modifying 
protein 2B 

3p11 AD Rare yes Vesicle trafficking (Parkinson et al., 
2006) 

DAO d-amino acid oxidase 12q24.11 AD Rare no Glutamate excitotoxicity (Mitchell et al., 2010) 
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Gene 
symbol 

Gene name Location Inheritance Frequency Link to 
FTD 

Putative function  References 

FIG4 Polyphospoinositide 
phospate 

6q21 AD Rare 1-2 % 
fALS 

no Endosomal trafficking and 
cell signalling 

(Chow et al., 2009) 

FUS Fused in sarcoma 16q11.2 AD, AR, de 
novo mutation 

4-5 % fALS 
juvenile  

yes RNA processing (Kwiatkowski et al., 
2009; Vance et al., 
2009) 

hnRNPA1 Heterogenous nuclear 
ribonucleoprotein A1 

12q13.3 AD Rare no RNA processing (Kim et al., 2013) 

OPTN Optineurin 10p15-p14 AD and AR Rare no Endosomal trafficking and 
cell signalling 

(Maruyama et al., 
2010) 

PFN1 Profilin 1 17p13.2 AD Rare no Cytoskeleton / transport (Wu et al., 2012) 

SETX Senataxin 9q34 AD Rare, juvenile no RNA processing (Chen et al., 2004) 

SIGMAR1 σ Non opioid receptor 1 9p13.3 AD and AR Rare adult 
and juvenile 

yes Unknown  (Al-Saif et al., 2011; 
Luty et al., 2010) 

SOD1  Superoxide dismutase 1 21q22.1 AD, AR, de 
novo mutation 

20 % fALS 
7 % sALS 

no Superoxide metabolism (Rosen et al., 1993) 



36 
 

Gene 
symbol 

Gene name Location Inheritance Frequency Link to 
FTD 

Putative function  References 

SPG11 Spatacsin 15q15-q21 AR Rare, juvenile no  (Orlacchio et al., 
2010) 

SQSTM1 Sequestosome 1 5q35 AD 1 % fALS yes Ubiquitinantion / autophagy (Shimizu et al., 2013) 

TDP-43 TAR DNA-binding 
protein 43 (TDP-43) 

1p36.2 AD AR(rare) 5 % fALS yes RNA processing (Sreedharan et al., 
2008) 

UBQLN2 Ubiquilin 2 Xp11 X-linked  yes  (Deng et al., 2011) 

VAPB Vescicle-associated 
membrane protein-associated 
protein B 

20q13.3 AD Rare  no Endosomal trafficking and 
cell signalling 

(Nishimura et al., 
2004) 

VCP Valosin-containing protein 9p13-p12 AD 1 % fALS yes Ubiquitin / protein 
degradation 

(Johnson et al., 2010) 

Table 1.2 ALS associated genes. Autosomal dominant (AD); Autosomal recessive (AR). 
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1.2 SOD1-fALS 

In 1993 Rosen and colleagues identified for the first time 11 missense mutations in the 

SOD1 gene in 13 different fALS families (Rosen et al., 1993; Saccon et al., 2013). Since 

then over 160 SOD1 variants have been associated with ALS although pathogenicity 

has been confirmed only for 75 of them (Bunton-Stasyshyn et al., 2014)(ALS online 

Database (ALSoD) http://alsod.iop.kcl.ac.uk/).  

1.2.1 Clinical course and pathogenicity of SOD1-fALS 

The clinical course of SOD1-fALS is very similar to the one of SOD1-sALS regarding 

site of onset, progression and duration of the disease (Synofzik et al., 2010). 

Interestingly SOD1-fALS patients have been suggested to be less likely to develop 

cognitive deficits, nevertheless a low proportion SOD1-fALS families have been 

reported with cases of ALS-FTD (Battistini et al., 2005; Katz et al., 2012; Masè et al., 

2001; Wicks et al., 2009). Of note the clinical phenotype deriving from the SOD1-

fALS mutations can be very heterogeneous among patients, sometimes even between 

siblings of a single family (Ito et al., 2002). 

Although mostly similar, the neuropathology of SOD1-fALS presents some differences 

compared to the one of non-SOD1-fALS and sALS. TDP-43 inclusions for example 

were thought to be absent in SOD1-fALS and have been used for a long time to 

discriminate between sporadic and familial SOD1-ALS cases (Mackenzie et al., 2007; 

Tan et al., 2007). However, recent studies reported TDP-43 pathology also in SOD1-

fALS cases (Maekawa et al., 2009; Okamoto et al., 2011; Sumi et al., 2009). Bunina 

bodies are also thought to be absent in fALS (Nakamura et al., 2014; Shibata et al., 

1996a; Tan et al., 2007) while neuronal and astrocytic SOD1 inclusions are ubiquitously 

expressed in SOD1-fALS but often absent in sALS and non-SOD1-fALS (Bruijn et al., 

1998; Hineno et al., 2012; Kato et al., 1996, 2000, 2001; Shibata et al., 1996a, 1996b). 

1.2.2 SOD1 gene and inheritance pattern 

The SOD1 gene, which encodes Cu/Zn superoxide dismutase 1, is located on human 

chromosome 21q22.11 and is 9,310 base pairs (bp) long (Wang et al., 2006; Wulfsberg 

et al., 1983). The gene is composed of 5 exons and is transcribed into 966 bp mRNA 

transcript (Figure 1.3) which encodes a 154 amino acid metalloenzyme, (described in 

section 1.3, Figure 1.4) (Wang et al., 2006). 
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Mutations in SOD1 are scattered throughout the coding sequence of the gene and they 

are mainly missense substitutions. However there are also deletions, insertions, 

mutations in the non-coding areas of the gene and silent point mutations (Birve et al., 

2010; Hu et al., 2012; Turner and Talbot, 2008; Valdmanis et al., 2009; Zinman et al., 

2009; Zu et al., 1997). All SOD1 mutations are associated with a dominant inheritance 

pattern with few exceptions such as N86S and D90A, which also behave as recessive 

traits (Andersen and Al-Chalabi, 2011; Turner and Talbot, 2008). The D90A mutation 

has also been found in association with D96N in recessive fALS (Hand et al., 2001), 

and as a neutral polymorphism in unaffected Scandinavian people (Turner and Talbot, 

2008). Some mutations are found more frequently in populations than others for 

example, the D90A mutation is the most common worldwide, the A4V is the most 

common in the USA (Turner and Talbot, 2008), while I113T is the most common in 

the UK (Orrell et al., 1999). Mutations in the SOD1 gene are thought to cause ALS 

through a still unknown toxic gain of function, even though the majority of the SOD1-

fALS mutations reduce the activity of the SOD1 protein in patients, see section 3.3.1 

(Saccon et al., 2013). The effect of these mutations on the biological function of the 

SOD1 protein will be discussed later in section 1.5. 

A range of transcription factor binding sites have been identified for the SOD1 gene, 

located between -1,200 and +1 bp from the transcriptional start site (Miao and St Clair, 

2009; Park and Rho, 2002; Romanuik et al., 2009; Yoo et al., 1999a, 1999b). Further 2 

functional transcripts with a different 3’ untranslated region (UTR) have also been 

describe (Kilk et al., 1995; Sherman et al., 1983).  
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Figure 1.3 Human SOD1 gene chromosomal location, DNA and mRNA structure. (a) Location 

of the human SOD1 gene on chromosome 21. (b) SOD1 gene structure. The gene is 9,310 bp long, 

including a 1.2 kb upstream encompassing the promoter region. Exons are labelled in red, introns in 

black and UTRs in yellow. (c) SOD1 mRNA is 966 bp. Coding regions are labelled in red and UTRs in 

yellow. 

1.3 SOD1 protein  

SOD1 is an abundant copper and zinc containing protein ubiquitously expressed in all 

cell types, particularly abundant in the motor neurons of the spinal cord (Bordo et al., 

1994; Lindenau et al., 2000). Protein expression levels in vivo are stable within tissues 

and across time independently from environmental factors (Miao and St Clair, 2009; 

Radyuk et al., 2004). This metalloenzyme is highly conserved across species (Fridovich, 

1995), indeed 73 % of the amino acid sequence is shared across mammals (Wang et al., 

2006). Within the cell, SOD1 localises in the cytoplasm, nucleus, lysosomes and inter-

membrane space of mitochondria (Chang et al., 1988; Crapo et al., 1992; Kawamata 

and Manfredi, 2010; Keller et al., 1991; Sturtz et al., 2001). 
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1.3.1 Biological function 

SOD1 is an antioxidant enzyme and its main canonical function consists in the catalysis 

and conversion of toxic superoxide anions (O2
-) to molecular oxygen (O2) and 

hydrogen peroxide (H2O2), thus providing a defence against oxygen toxicity (Zelko et 

al., 2002). 

The dismutase of O2
- is a two-step process. First one molecule of O2

- reduces the 

cupric ion (Cu2+ZnSOD) to form O2, then a second molecule of O2
- reoxidise the 

reduced cupric ion (Cu+ZnSOD) to form H2O2. This two-step reaction has been 

shown to work in a pH range of 5.0 to 9.5 (Valentine et al., 2005). 

Step 1 O2
- + Cu2+ZnSOD → O2 + Cu+ZnSOD 

Step 2 O2
- + 2H+ + Cu+ZnSOD → H2O2 + Cu2+ZnSOD 

Another role for SOD1 in cellular metabolism has been recently identified by Reddi 

and Culotta, using yeast and human cell lines. In the mechanism proposed SOD1 is 

thought to act as an O2 and glucose dependent regulator of respiration through 

stabilisation of casein kinase 1-gamma (CK1γ), via hydrogen peroxide (Bunton-

Stasyshyn et al., 2014; Reddi and Culotta, 2013). SOD1 has also been suggested to 

work as a molecular switch that initiate endoplasmic reticulum (ER) stress in 

conditions of zinc deficiency. In particular the dissociation of zinc form wild-type 

SOD1 during zinc depletion induces a mutant-like conformation change that exposes 

the binding site for Derlin-1, a component of the ER-associated degradation 

machinery. The SOD1-Derlin-1 interaction has been proposed to activate homeostatic 

ER stress by triggering the unfolded protein response (UPR) and consequently 

preventing the accumulation of misfolded proteins (Homma et al., 2013). Furthermore 

mutant SOD1 has been proposed to activate ER stress by disrupting ER-Golgi 

trafficking through binding to the coatomer coat protein II (COPII) (Atkin et al., 2008; 

Bunton-Stasyshyn et al., 2014). Recent studies have suggested a potential role for 

SOD1 in nucleic acid metabolism; SOD1 might be able to control transcription by 

binding to nuclear promoters to regulate oxidative resistance genes (Hu et al., 2012; 

Tsang et al., 2014).  

The SOD1 protein is produced at high levels and represents about 1 % of all 

cytoplasmic proteins in the cell. The functions described above do not account for 
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such a big quantity of SOD1, therefore it is likely that this protein plays other roles in 

the cellular metabolism that have not yet been identified (Bunton-Stasyshyn et al., 

2014; Milani et al., 2013). 

1.3.2 Structural features and protein stability 

The human SOD1 protein functions as a 32 kDa homodimer, and as mentioned before 

has a highly conserved structure. Each monomer contains an intrasubunit disulphide 

bond (S-S), one copper (Cu2+) and one zinc (Zn2+). When the protein is metal loaded 

the copper and the zinc ions are located in close proximity and share an imidazole 

ligand, histidine 63 (His63) (Figure 1.4); their bond is further stabilised by a network of 

hydrogen bonds. Each subunit is made of an 8-stranded β-barrel connected by loops, 

and 1 helical structure in residues 134-137 (Figure 1.4 (b)). The two largest loops are 

particularly important for the correct function of the enzyme: the metal binding loop 

(residues 49-84) and the electrostatic loop (residues 122-143) (Rakhit et al., 2007). The 

disulphide bond is linked between two cysteine residues: cysteine 57 (Cys57) and 

cysteine 146 (Cys146) (Figure 1.4). The two monomers are connected by hydrophobic 

interactions, water mediated hydrogen bonding and main chain to main chain hydrogen 

bonding between the monomers (Elam et al., 2003). 

Metallated SOD1 has been reported to be one of the most stable proteins in nature 

(Rakhit et al., 2007), in particular the intrasubunit S-S bond and the zinc ion act as a 

monodentate ligand contributing to protein stability. SOD1 when fully metallated has a 

melting temperature of 85-95 °C, and does not lose its enzymatically active in 8 M urea 

or in 1 % SDS or 4 M guanidine HCl (Rakhit and Chakrabartty, 2006; Rodriguez et al., 

2002). However, SOD1 loses its stability and becomes intrinsically disordered when in 

the apo- and disulfide reduced forms (Rodriguez et al., 2005). Evidence from in vitro 

and in vivo experiments using non-metallated forms of SOD1 have suggested that a 

mixture of SOD1 species with varying degrees of metallation exists in cells and that 

instability caused by metal-deficiency can be a mechanism through which SOD1 

mutations cause the disease (Hilton et al., 2015). 
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Figure 1.4 Human SOD1 protein structure. (a) 3-dimensional structure of dimeric SOD1. Residue 

His63 is involved both in copper and zinc binding (red); His71, His80 and Asp83 are involved in zinc 

binding (purple); His46, His48 and His120 are involved in copper binding (blue). Cysteine 57 and 146 

form the disulfide bond (green). (b) Secondary structure elements of SOD1. The 8 β-strands are 

represented as arrows and numbered, the α-helix (α1) that forms copper and zinc binding is shown in 

yellow. His63 is labelled in red, residues involved in zinc binding in purple and residues involved in 

copper binding in blue. The disulphide bond is highlighted as a green dotted line. 
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1.3.3 Properties of mutant SOD1 proteins 

1.3.3.1 Effect of mutations on protein function 

Since their first discovery in 1993 mutations in the SOD1 gene are known to reduce the 

dismutase activity of the SOD1 protein. Initially it was hypothesised that this reduction 

in enzymatic activity was the mechanism through which SOD1 mutations were causing 

the disease. Subsequent findings carried out on mouse models soon dismissed that 

theory, and suggested that the disease is caused by a toxic gain of function (reviewed in 

chapter 3). 

A study carried out in HEK cells transfected with 132 flag-SOD1 variants showed that 

124 SOD1-ALS mutations have an exposed Derlin-1 binding site that is blocked in the 

wild-type protein (Fujisawa et al., 2012), suggesting that pathogenic SOD1 mutations 

may induce a common conformational change in SOD1 that leads to motor neuron 

toxicity though ER-stress activation (Fujisawa et al., 2012; Homma et al., 2013). 

Primary spinal MN culture experiments reinforced this hypothesis (Nishitoh et al., 

2008). However, even though a Derlin-1 and mutant SOD1 CNS specific interaction 

have been shown in a transgenic SOD1-fALS mouse models, to date the functional 

consequence of this interaction has not yet been demonstrated outside of cell culture 

(Nishitoh et al., 2008). Further Derlin-1 has never been identified in screens for SOD1 

interactors in SOD1-fALS mice (Watanabe et al., 2008; Zetterström et al., 2011). 

Mutations of specific residues in the copper binding region have been shown to block 

SOD1 activity, and they might influence the role of SOD1 in respiration repression 

described by Reddi and Culotta (Reddi and Culotta, 2013). 

1.3.3.2 Effect of mutations on SOD1 biochemical properties  

Biophysical studies of mutant SOD1 investigating protein activity, metal content and 

spectroscopy, allowed the classification of these mutants into 2 main groups depending 

on their similarity with the wild-type SOD1 protein (Rodriguez et al., 2002). Mutants 

SOD1 with reduced activity and reduced protein stability are classified as metal-

binding-region (MBR) since typically their mutations are located in the region close to 

zinc and copper ions. Variants that are shown to behave similarly to wild-type SOD1 

are defined as wild-type-like (WTL) and typically their mutations are located away from 

the metal binding site (Rodriguez et al., 2002; Valentine et al., 2005). Table 1.3 shows 
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the classification of fALS mutant SOD1 proteins investigated in the present work, 

according to Valentine (2005). 

WTL MBR 

G93A D83G 

D101G  

I113T  

Table 1.3 Classification of mutant SOD1 proteins to WTL and MBR categories. Mutant proteins 

employed in this thesis, are listed under one of the two groups WTL (wild-type-like) or MBR (metal-

binding-region), (Valentine et al., 2005). 

In vivo and in vitro studies trying to correlate disease severity with activity of enzyme, 

half-life, proteolysis resistance, mutation position, protein charge and aggregation 

propensity have not produce convincing results (Lindberg et al., 2002; Prudencio et al., 

2009a; Ratovitski et al., 1999; Vassall et al., 2011). However some biophysical and 

biochemical properties of SOD1 mutations that have been shown to differ significantly 

from wild-type SOD1 are listed below: 

 Resistance to proteinase K digestion: MBR mutants are more easily digested 

than WTL mutants (Ratovitski et al., 1999). 

 Thermal stability: generally all SOD1 mutants show a reduction in thermal 

stability, but there is only a slight reduction in WTL mutants compared to a 

significant reduction in MBR mutants (Rodriguez et al., 2002). Furthermore a 

correlation between decreased disease duration and decreased thermal stability 

has been shown for a small number of MBR mutants (Kitamura et al., 2011; 

Lindberg et al., 2002). 

 Sensitivity to disulfide reduction: MBR mutants are more susceptible to S-S 

reduction compared to WTL mutants and wild-type SOD1 (Rodriguez et al., 

2005). 

 Protein half-life: protein half-life did not correlate to whether mutations were 

MBR or WTL type, although generally SOD1 mutants had shorter half-lives 

than wild-type SOD1, correlating with protein stability (Sato et al., 2005). 

Further cell studies have shown that some MBR mutants with markedly 
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reduced stability have a comparable half-life to wild-type SOD1 (Borchelt et al., 

1994; Ratovitski et al., 1999; Reaume et al., 1996). 

 Degree of hydrophobic exposure: SOD1 mutants have a greater exposure of 

hydrophobic areas than wild-type SOD1 (Rakhit et al., 2002; Rodriguez et al., 

2005). 

 Net charge of protein: net charge of protein at physiological pH varies in 

different SOD1 mutants, independently of whether mutations are MBR or 

WTL type. A reduction in net charge of SOD1 mutants is likely to increase 

their propensity to aggregate especially in cellular environment of low and 

fluctuating pH, as would be found in the lysosomes and in the intermembrane 

space of the mitochondria (Lindberg et al., 2005). 

 Dimer dissociation: SOD1 monomers have been identified as a common 

misfolding intermediate both in sporadic and familial SOD1-ALS (Rakhit et al., 

2004). SOD1 dimer dissociation is a key step in aggregation and occurs due to 

mutations, glutathionylation and cellular stress. In particular SOD1 mutations 

located in the inter-subunit cleft are able to disrupt the dimer interface leading 

to more facile dissociation. Recently a link between the propensity of mutant 

SOD1 to monomerise and disease severity has been suggested specifically, 

when glutathionylation of SOD1 is taken into consideration (McAlary et al., 

2013). 
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Figure 1.5 Human SOD1 secondary structure and mutations responsible for fALS. The 8 β-

strands are represented as arrows, the α-helix that forms copper and zinc binding is in blue. His63 is 

labelled in red, residues involved in zinc binding in purple and residues involved in copper binding in 

blue. The disulphide bond is highlighted as a green dotted line. Mutations known to be causative of 

fALS are reported along the secondary structure of the protein. In the nomenclature, for amino acid 

substitutions the first letter indicates the residue in the wild-type form of the protein, the number 

indicates the amino acid positon and the second letter the new residue. For example, D83G is a 

substitution of an asparagine for a glycine in position 83. Point mutations, deletions and insertions are 

indicated with a line, while mutations that cause a C-terminal truncation are illustrated with a scissor. 

Modified from (Valentine et al., 2005). 
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1.4 SOD1 mouse models 

1.4.1  Why we use mouse models in ALS research  

Mice are one of the most widely used model organisms in research. Indeed it is 

currently the most genetically tractable and cheap mammalian model (Huang et al., 

2011; Niu et al., 2014). The mouse genome has been sequenced and it is 14 % smaller 

compared to humans; at the nucleotide level approximately 40 % of the human 

genome can be aligned to the mouse genome (Waterston et al., 2002). Mice were the 

first species in which an exogenous genetic sequence was introduced (Jaenisch and 

Mintz, 1974) and also the first species with embryonic stem cells (ESC) cultured in vitro 

(Evans and Kaufman, 1981; Martin, 1981). Both these techniques and many others 

lead to the creation of important mouse models and currently over 2,252 human 

diseases have at least one mouse model available (www.informatics.jax.org September 

2015). 

In the study of the nervous system mice are preferentially employed compared to other 

models such as the fruit fly or zebrafish, because they are genetically and 

physiologically more similar to humans. ALS research makes no exception and mice 

are the most widely employed model organism (Gurney et al., 1994). However, also 

rats (Howland et al., 2002), zebrafish (Lemmens et al., 2007), fruit flies (Mizielinska et 

al., 2014; Phillips et al., 1995), and nematodes (Oeda et al., 2001) are used to investigate 

this disease. A small amount of research has also been carried out in horses and dogs 

specifically regarding the SOD1 mutation (Coates and Wininger, 2010; de la Rúa-

Domènech et al., 1996; Zeng et al., 2014). 

1.4.1.1 Mouse models of SOD1-ALS 

Since the identification of SOD1 as a causative gene of fALS (Rosen et al., 1993), 

several different types of mouse model have been generated to investigate SOD1 

mutations. From transgenic mouse models overexpressing either the human mutant or 

the wild-type SOD1 protein, to Sod1 knockout models and also mice overexpressing 

the mouse SOD1 protein. Several experimental crosses have also been carried out 

using these animals to further elucidate the role of SOD1 in ALS. Some of these 

mouse models relevant to the present work are described below, details of other 

important lines are reported in the relevant chapters. 
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1.4.2 SOD1 transgenic mice 

The first mouse expressing the human mutant SOD1 transgene was presented in 1994 

by Gurney and colleagues. Since then a great number of transgenic SOD1 mice have 

been produced, including mice expressing tagged proteins, experimental mutations, 

conditional/inducible lines, and one model overexpressing the mouse SOD1 (Deng et 

al., 2008; Pramatarova et al., 2001; Ripps et al., 1995; Wang, 2003; Watanabe et al., 

2005). A comprehensive list of all these transgenic animals is reported in Table 8.1 of 

Appendix 8.1.  

Almost all these transgenic SOD1 mouse lines, share similar behavioural phenotypes, 

disease progression patterns and neuropathological characteristics resembling of the 

pathology seen in ALS patients. However, they have different ages of onset and 

survival times which often correlate with the level of transgene expression or with the 

number of copies in the transgene array (Gurney et al., 1994; Tu et al., 1996; Watanabe 

et al., 2005; Wong et al., 1995). 

Three SOD1 transgenic mouse lines have been employed in the present work: two 

overexpressing the mutant SOD1 G93A mutation at different levels, referred to as 

transgenic SOD1 G93A high copy (TgSOD1G93A(H)) (Chiu et al., 1995) and low copy 

(TgSOD1G93A(L)) (Zhang et al., 1997) and one overexpressing the human wild-type 

SOD1 protein (TgSOD1WT) (Gurney et al., 1994). TgSOD1G93A(H) and TgSOD1WT lines 

have been used through the whole thesis and are described here, while the 

TgSOD1G93A(L) line has been specifically employed for one project and is described in 

section 6.1.3. 

1.4.2.1 Transgenic SOD1G93A high copy mice 

In 1994 Gurney and colleagues established for the first time four transgenic SOD1 

mouse lines carrying the G93A mutation (Gurney et al., 1994). The mouse line 

employed in the present work, Tg(SOD1*G93A)1Gur, referred in the text as 

TgSOD1G93A(H), derives from one of these original lines but has 40 % expansion 

resulting in 25 copies in the transgene array (Chiu et al., 1995). The transgene 

integration site has been mapped to band E of mouse chromosome 12 (Achilli et al., 

2005).  
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The TgSOD1G93A(H) line was originally maintained and described in a C57BL6-SJL 

background (Chiu et al., 1995). TgSOD1G93A(H) mice are characterised by a gradual loss 

of body weight starting at approximately 10 week of age. Signs of motor disturbance 

typically starts at 13 weeks usually in the form of tremors in one or more limbs. 

Similarly to ALS patients these animals develop muscle weakness and atrophy along 

with symptoms such as spasticity, limb-grasping and clonus. With the progressive loss 

of strength in the hind limbs mice display a dropped pelvis and typically drag the body 

using the forelimbs. According to Chiu and colleagues (1995) mice reached the humane 

end point at 136 days of age, which was defined as 10 % loss of body weight or 

inability to right themselves within 30 seconds when placed on their side.  

Electrophysiological studies confirmed the behavioural data describe above showing a 

loss of muscle strength from 40 days of age, compatible with a pattern of preferential 

loss of larger MNs innervating faster muscle fibres (Hegedus et al., 2007, 2008). 

Further pathological studies revealed that, as occurs in ALS patients, these mice have a 

progressive loss of MNs starting at 100 days of age. In particular by end stage a 50 % 

loss of MNs is detected in the spinal cord (Chiu et al., 1995; Fischer et al., 2004; Gould 

et al., 2006). Vacuolation has been observed in the MNs of the spinal cord from 80 

days of age and also in the mitochondria, which appear abnormal (Dal Canto and 

Gurney, 1994; Fischer et al., 2004). Events of denervation and reinnervation of skeletal 

muscles are detected from 47 days of age, moreover evidence of axonal degeneration is 

present in ventral roots from 80 days of age (Chiu et al., 1995; Fischer et al., 2004). 

Astrocytosis is also apparent in the spinal cord from 82 days of age (Tu et al., 1996). 

Several types of inclusion are detectable from an early stage for example spheroid 

neurofilament inclusions are visible in swollen axons of the ventral spinal cord from 82 

days of age, (Gurney et al., 1994; Tu et al., 1996). There are also SOD1 inclusions, 

particularly in the MNs’ ventral horn (Gurney et al., 1994) and p62 and ubiquitin 

aggregates, which have all been shown to co-localise by 120 days (Gal et al., 2007). 

Typically TDP-43 pathology is absent in this mouse line (Robertson et al., 2007), 

however TDP-43 mislocalisation has been reported once at end stage (Shan et al., 

2009). 
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1.4.2.2 Transgenic SOD1WT mice 

Three wild-type SOD1 transgenic lines were generated together with the first G93A 

mutant SOD1 transgenic line by Gurney and colleagues in 1994 and one of them is 

employed in the present work: Tg(SOD1)2Gur, referred in text as TgSOD1WT. This 

line is thought to carry 7 copies of the SOD1 human wild-type transgene, and is 

typically used as control of the TgSOD1G93A(H) line since it has comparable levels of 

SOD1 protein expression and activity (Tu et al., 1996), even though not all studies 

agree (Jaarsma et al., 2000). 

Initially the TgSOD1WT line was thought to be free from motor deficits (Chiu et al., 

1995; Tu et al., 1996), but further phenotypic investigation reviled mild deficits form 58 

week of age (Jaarsma et al., 2000). 

Histological studies showed abundant SOD1 staining in the lateral ventral horn and 

throughout the spinal cord of the TgSOD1WT mice (Gurney et al., 1994). In particular 

at an early stage SOD1 staining is homogeneously distributed but from 30 weeks of age 

it appears enriched within the MNs’ axons (Jaarsma et al., 2000). Further SOD1 

inclusions are detected in MNs from 86 week of age (Jonsson et al., 2006a), and axonal 

degeneration and vacuolation are seen from 30-35 weeks of age, however, denervation 

or reinnervation events are never detected at this stage (Chiu et al., 1995; Dal Canto 

and Gurney, 1995; Jaarsma et al., 2000). Several other pathologies similar to those seen 

in TgSOD1G93A(H) mice, have been reported, but with milder characteristics and at a 

later point in life. Neurofilament and mitochondrial pathology are present and occur at 

a later age, for example neurofilament pathology is seen at 18.6 weeks rather than 11.7 

(Dal Canto and Gurney, 1995; Jaarsma et al., 2000; Tu et al., 1996). The same happens 

for gliosis, MN vacuolation and MN degeneration (Jaarsma et al., 2000; Tu et al., 1996). 

Of note, Graffmo and colleagues have recently investigated homozygous TgSOD1WT 

mice on a different background, due to failure to produce homozygotes in the original 

C57BL/6J background. Interestingly the same phenotype described for the 

TgSOD1G93A(H) mice has been reported but with a longer time scale. These mice show 

hind limb paralysis from 36 weeks, end stage at 52 weeks, presence of misfolded SOD1 

and astrocytosis in the spinal cord and 40 % MNs loss at end stage (Graffmo et al., 

2013). 
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1.4.3 Sod1 knock out mice 

Sod1 knockout mice are not considered a model of ALS since they do not develop 

typical disease phenotypes such as paralysis, loss of motor neuron or premature death 

(Saccon et al., 2013). Nonetheless these mice develop a series of ALS-like phenotypes 

and they have been extensively employed in the study of ALS. Furthermore they have 

been extremely helpful in the investigation of the role that a SOD1 loss of function 

might play in the disease. The Sod1 knockout mice are described in Chapter 3 section 

3.3.2. 

Of note the mouse Sod1 gene is located in mouse chromosome 16, is composed of 5 

exons and is 5581 bp long. The mouse Sod1 mRNA is 116 bp. Despite some difference 

in the gene compared to the human SOD1 gene, the mouse Sod1 encodes for a protein 

of 154 amino acid, very similar to the human homologues. 

1.4.4 Effect of background on mouse phenotypes 

Inbred mouse strain are often employed in research to isolate the effects of a particular 

mutation since they allow the minimisation of background genetic heterogeneity.  

Several inbred strains have been employed in ALS research and since the phenotypes 

of a specific mutation can change depending on the background in which mice are 

bred, it is important to consider it when comparing results. Further, since genetic 

variability can result in phenotypic variations it is important to conduct characterisation 

studies using pure inbred or congenic lines. Congenic lines are obtained by 

backcrossing a donor line to a recipient inbred line for 10 generations. The result of 

such backcross is a ~99.8 % homozygous loci for the recipient allele (Acevedo-

Arozena et al., 2008).  

An example of a phenotypic change modulated by the background strain comes from 

TgSOD1G93A(H) mice. Indeed the time of end stage of these animals was found to be 

significantly different between mice kept on a C57BL/6J or on a C57B6-SJL 

background (Mead et al., 2011). Variance among background strains of TgSOD1G93A(H) 

mice was observed also for other factors, such as onset, disease progression and 

response to drugs (Mancuso et al., 2012; Nardo et al., 2013; Pan et al., 2012; 

Pizzasegola et al., 2009; Wooley et al., 2005). It is also important to note that variability 

among publications might be also due to different humane end points or inconsistency 
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of transgene copy number. Survival variability of TgSOD1G93A(H) mice in different 

backgrounds is reported in Figure 1.6. 

Specific background strains have also been documented to increase gender differences 

in survival, onset and also behavioural tests such as grip-strength, both in 

TgSOD1G93A(H) and TgSOD1G93A(L) mice (Acevedo-Arozena et al., 2011; Heiman-

Patterson et al., 2005; Mancuso et al., 2012; Pan et al., 2012). The same pattern has also 

been reported for other SOD1 transgenes (Kunst et al., 2000; Pan et al., 2012). 
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Figure 1.6 Genetic background effect on TgSOD1G93A(H) mouse survival. Survival time expressed in 

days for TgSOD1G93A(H) mice maintained in different background strains. Data come from different 

publications reporting results from two or more background strains (Heiman-Patterson et al., 2005, 

2011; Mancuso et al., 2012; Pan et al., 2012; Pizzasegola et al., 2009; Wooley et al., 2005). Where survival 

was measured separately for each gender the average is plotted. 
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1.4.5  Limitations of current SOD1-ALS mouse models 

Transgenic mouse models of SOD1-fALS and Sod1 knock out models have been very 

useful in furthering our understanding of motor neuron disease, but as all model 

organisms they have some limitations. 

The majority of the SOD1 transgenic mice, develop ALS symptoms and pathology but 

they are not a perfect genetic representation of the human disease since they 

overexpress the mutant SOD1 gene in addition to the mouse endogenous Sod1. 

TgSOD1G93A(H) mice for example overexpress the human SOD1 protein up to 17 times 

the level of the endogenous mouse SOD1 in some studies and up to 25 times in some 

others, and such high levels of mutant protein have been proven to affect various 

aspect of the disease phenotype and pathology from onset to survival (Jaarsma et al., 

2000; Jonsson et al., 2006b). Sod1 knockout animals have also been crucial for 

investigating the effects of a 50 % reduction of SOD1 dismutase activity as seen in 

patients (Saccon et al., 2013). However, the absence of the Sod1 gene does not mimic 

the human situation, since these animals do not develop motor neuron loss and 

premature death (Saccon et al., 2013). Further, as explained above different factors can 

influence animal pathology and phenotype such as background strain, transgene copy 

number and gender; therefore it is important to take them into consideration in 

interpreting existing results and designing new experiments (Perrin, 2014). 

Despite these limitations to date SOD1 transgenic mice are the most commonly used 

and the most accurate models of ALS. Indeed, the majority of SOD1 transgenic mice 

available recapitulate the keys histopathological and biochemical features of the human 

disease and their onset and survival correlates with the level of the mutant protein 

expressed (Jucker, 2010). Moreover, SOD1 transgenic mice have been extensively 

employed as preclinical models and a substantial number of compounds that modulate 

their pathology have been identified, but only few have been successfully translated in 

clinical trial. Nevertheless there are examples of treatments developed in SOD1 mouse 

models, such as riluzole, the only approved drug for ALS, where the effects seen in 

transgenic SOD1 mice match the clinical experience, demonstrating that these animals 

are an invaluable tool in the study of ALS (Gurney et al., 1996; Ittner et al., 2015; 

Turner and Talbot, 2008). 
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1.5 How mutant SOD1 causes disease  

1.5.1 SOD1-fALS proposed mechanisms of pathogenicity  

Studies carried out in SOD-fALS and sALS patients and SOD1-fALS mouse models 

lead to the conclusion that SOD1-ALS is caused by one or more toxic functions of the 

mutant SOD1 protein, rather than a reduction of superoxide dismutase activity. A 

plethora of molecular mechanisms of pathogenesis have been proposed (Ilieva et al., 

2009). However, to date it is still unknown which of these mechanisms are the cause of 

motor neuron degeneration and which are consequences of the disease. The most 

important of these proposed mechanisms relevant to SOD1-fALS are summarised 

below. 

1.5.1.1 Glutamate toxicity and calcium homeostasis  

High levels of glutamate have been observed in the central nervous system (CNS) of 

sporadic and familial ALS patients (Arundine and Tymianski, 2003; Foran and Trotti, 

2009), and SOD1 mutant mouse models (Ilieva et al., 2009). Elevated concentrations 

of this excitatory neurotransmitter, that triggers motor neurons to fire, can initiate a 

cascade of toxic events in the motor neurons. Taking together these two observations 

it has been proposed that glutamate excitotoxicity can cause motor neuron death in 

ALS. In particular excess of glutamate provokes activation of the glutamate receptors 

which causes a prolonged opening of associated ion channels in mitochondria, 

resulting in increased levels of intracellular calcium and production of ROS (Mattson, 

2003; Rothstein, 1995; Shaw and Ince, 1997). These findings are confirmed by data 

coming from mouse models of SOD1-fALS, where glutamate release and glutamate 

sensitivity are increased (Milanese et al., 2010; Tortarolo et al., 2006). 

Moreover deficiency of the glutamate transporter excitatory amino-acid transporter 2 

(EAAT2) has been reported in astrocytes of sALS and fALS patients and SOD1 mouse 

models, causing glutamate accumulation in the synapses (Howland et al., 2002; 

Rothstein, 1995; Yang et al., 2009, 2010). 

Of note Riluzole which is the only drug used in the treatment of ALS is an anti-

glutaminergic agent which regulates glutamate release (Foran and Trotti, 2009). 
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1.5.1.2 Endoplasmic reticulum (ER) stress and unfolded protein response 
(UPR) 

Pathogenic mutants of SOD1 are involved in the activation of the ER stress (Fujisawa 

et al., 2012; Homma et al., 2013; Nishitoh et al., 2008). When perturbed the ER 

typically activates two stress responses: the UPR and the ER-associated degradation 

(ERAD) (Bunton-Stasyshyn et al., 2014). Indeed markers of UPR response and ERAD 

have been found in ALS patient tissues (Atkin et al., 2008; Ito et al., 2009; Walker and 

Atkin, 2011) and SOD1-fALS mice (Ito et al., 2009; Kikuchi et al., 2006; Saxena et al., 

2009). In particular, as described above, the mechanisms through which SOD1 

mutations have been proposed to cause ER stress are the interaction between SOD1 

and COPII that disrupt the ER-Golgi trafficking (Atkin et al., 2014), and binding of 

SOD1 with Derlin-1 in situations of zinc deficiency (Homma et al., 2013).  

Genetic and pharmacological manipulation of the UPR have been proven to affect 

degeneration in SOD1-fALS mice, presumably because the mice had a reduced 

capacity to turn down synthesis of misfolded SOD1 (Kalmar et al., 2008; Wang et al., 

2011a). In interpreting these findings it is import to consider that in transgenic mouse 

models of SOD1-fALS the SOD1 protein is greatly overexpressed and the ER stress 

response seen might, at least in part, be caused by the presence of an abnormal amount 

of protein. Of note Kiskinis and colleagues showed that motor neurons are more 

susceptible to ER stress than other cell types, and this might be the reason why motor 

neurons are more vulnerable in ALS (Kiskinis et al., 2014). 

1.5.1.3 Mitochondrial dysfunction  

Ultrastructural studies revealed mitochondrial abnormalities in motor neurons of sALS 

patients. The same pathology is present also in transgenic SOD1 G93A mice (Gurney 

et al., 1994) and other SOD1-fALS mouse models (Dal Canto and Gurney, 1994, 1995; 

Kong and Xu, 1998; Martin et al., 2007; Wong et al., 1995).  

Furthermore energy metabolism dysfunctions have been observed in mitochondria 

from CNS (central nervous system), blood and muscle of patients and also in motor 

neurons from SOD1-fALS mouse models (Crugnola et al., 2010; Martin et al., 2007; 

Mattiazzi et al., 2002; Swerdlow et al., 1998; Wiedemann et al., 1998). In particular it 

has been observed: an alteration of the mitochondrial electron transfer chain activity 

(Borthwick et al., 1999; Bowling et al., 1993), aberrant calcium homeostasis (Curti et al., 
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1996; Siklós et al., 1996) and abnormal localization of SOD1 to the inner membrane 

space (IMS) (Mattiazzi et al., 2002). In mice mutant SOD1 specifically targeted to the 

mitochondria IMS has been shown to impair the mitochondria respiratory chain and 

cause ALS like phenotypes such as loss of motor neurons and muscle weakness but 

not muscle denervation (Igoudjil et al., 2011). Therefore, there is evidence that in mice 

mutant SOD1 can cause mitochondrial dysfunction that results in some ALS features, 

but other mechanisms may be necessary to recapitulate all aspects of the ALS 

phenotype (Igoudjil et al., 2011).  

1.5.1.4 Oxidative stress 

Even though it is known that SOD1-ALS is caused by a toxic gain of function, the idea 

that the lack of SOD1 activity provoking oxidative stress might play a role in the 

disease has not yet been dismissed. Indeed SOD1-fALS patients show on average 

approximately 50 % reduced dismutase activity, see section 3.3.1 (Saccon et al., 2013). 

Moreover there are also other indications, independent from the loss of SOD1 

enzymatic function suggesting a role for oxidative stress in ALS. 

For example signs of increased oxidative damage of protein, lipids, DNA and mRNA 

together with other indicators of oxidative stress have been observed in spinal cord but 

also in urine, blood and cerebrospinal fluid of SOD1-fALS and sALS patients (Barber 

and Shaw, 2010; D’Amico et al., 2013). Moreover increased 3-nitrotyrosine levels, an 

oxidative stress marker have been detected in motor neurons of SOD1-fALS patients 

(Beal et al., 1997). Of note in a small number of cases oxidative stress damage has been 

also shown to correlate with disease measures (Abe et al., 1995; Babu et al., 2008; Beal 

et al., 1997; Bogdanov et al., 2000; Bowling et al., 1993; Chang et al., 2008; Cova et al., 

2010; Ferrante et al., 1997a; Murata et al., 2008; Sasaki et al., 2000; Shaw et al., 1995; 

Shibata et al., 2001, 2004; Simpson et al., 2004; Smith et al., 1998; Tohgi et al., 1999).  

Interestingly similar oxidative stress markers have been detected in SOD1-fALS mouse 

models providing further evidence that oxidative damage is implicated in motor neuron 

degeneration (Andrus et al., 1998; Casoni et al., 2005; Cha et al., 2000; Ferrante et al., 

1997b; Lee et al., 2009; Liu et al., 2007, 1998; Poon et al., 2005). In mice SOD1 has 

been found to be oxidised, oxidation has indeed been implicated in the 

monomerisation and aggregation of wild-type and mutant SOD1 (Ezzi et al., 2007; 

Rakhit et al., 2002; Wilcox et al., 2009). Evidence that mRNA oxidation contributes to 
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motor neuron degeneration also comes from SOD1-fALS mouse models, and the 

majority of oxidised mRNA species identified in the spinal cord of the mice are 

implicated with ALS (Chang et al., 2008). 

Recent findings underlined the central role of oxidative stress in SOD1-fALS showing 

that overexpression of oxidation resistance 1 (OXR1), a gene protective against 

oxidative stress, induced damage in neurons of transgenic SOD1 G93A mice, delays 

spinal cord and muscle pathology, extends survival and delays the non-cell-

autonomous inflammatory response (Liu et al., 2015). Moreover, alterations in 

peroxiredoxin (PRDX) 1, 3 and 6, the enzymes responsible for reducing hydrogen 

peroxide levels, and reduction in several isoforms of glutathione S-transferase (GST) 

mu1, 2 and 5 have been demonstrated in SOD1 G93A ALS mouse and cell models, 

suggesting a crucial role of oxidative stress in disease (Allen et al., 2003; Jain et al., 

2008; Strey et al., 2004). 

From all these studies is possible to conclude that even if the role of oxidative stress is 

still unclear, the fact that it is involved in several pathogenic mechanisms of the disease 

suggests that it is an important factor in ALS (Barber and Shaw, 2010).  

1.5.1.5 Axonal transport impairment 

Disruption of axonal transport has been demonstrated in several SOD1-fALS mouse 

models and in primary MNs expressing mutant SOD1. In particular in several SOD1-

fALS mice both slow anterograde and fast retrograde axonal transport system defects 

are present (Bilsland et al., 2010; Warita et al., 1999; Williamson and Cleveland, 1999; 

Zhang et al., 1997). While in primary MNs fast anterograde and retrograde transport 

are disrupted triggering mitochondrial reduction in the axon (De Vos et al., 2007). Also 

in human spinal cords the axonal anterograde transport has been suggested to be 

impaired causing mislocalisation of mitochondria (Sasaki and Iwata, 1996). 

SOD1 has been shown to interact with a driver of retrograde transport, the dynein 

complex, in cell, mouse and rat models (Zhang et al., 2007). Interestingly in cell models 

it has been shown that perturbation of SOD1-dynein complex interaction correlates 

with reduction of SOD1 toxicity and aggregation (Ström et al., 2008).  

In mice SOD1 aggregation together with a progressive motor phenotype are triggered 

by deficits in the axonal retrograde transport caused by a mutation in the cytoplasmic 
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dynein heavy chain 1 (Dync1h1) gene (Hafezparast et al., 2003). Further mutant and 

oxidised wild-type SOD1 can inhibit dynein based fast anterograde transport (Rotunno 

and Bosco, 2013). 

A damaged axonal transport might cause problems with cytoskeletal structure, energy 

metabolism and seriously impair the transport of crucial proteins and organelles (De 

Vos et al., 2007) creating a process in which all these components are mislocalised and 

the cell is unable to recycle them. MNs have been suggested to be more sensitive to 

this type of axonal impairment than other neuronal cells, due to their morphology 

(Chevalier-Larsen and Holzbaur, 2006). 

1.5.1.6 Non-cell autonomous mechanism 

Motor neuron degeneration is a hallmark of ALS but several other cell types are known 

to be involved in disease pathogenesis. Indeed studies carried out in SOD1-fALS 

mouse models have shown that the selective expression of mutant SOD1 in motor 

neurons or in astrocytes, fails to cause an ALS phenotype, suggesting a non-cell 

autonomous nature of the disease (Gong et al., 2000; Pramatarova et al., 2001). 

However, other experiments have found that the selective expression of mutant SOD1 

in MNs, can give MN loss but no behavioural motor phenotype (Wang et al., 2008) or 

MN loss and behavioural phenotype (Jaarsma et al., 2008). 

Subsequent studies carried out on chimeric mice and on mice in which the transgenes 

were excised from particular cell types, have provided more consistent results. 

Expression of mutant SOD1 in motor neurons determines diseases onset and 

influences progression (Boillée et al., 2006; Wang et al., 2009b; Yamanaka et al., 2008a, 

2008b). While mutant SOD1 expressed in astrocytes and microglia has been proposed 

to be the main key for determining the progression of degeneration (Beers et al., 2006; 

Boillée et al., 2006; Gong et al., 2000; Wang et al., 2009b, 2011b; Yamanaka et al., 

2008b). Transgenic mice with mutant SOD1 expressed in skeletal muscle have shown 

muscle atrophy and reduced strength, but it is still unclear whether this can cause 

degeneration of MNs (Dobrowolny et al., 2008; Wong and Martin, 2010).  

Co-culture experiments have revealed that astrocytes expressing mutant SOD1 are 

toxic to neurons (Fritz et al., 2013; Di Giorgio et al., 2008; Kunze et al., 2013; 

Marchetto et al., 2008; Nagai et al., 2007). Also mutant SOD1 microglial toxicity seems 

likely although the effect may be indirect (Thonhoff et al., 2012; Zhao et al., 2010). 
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All these results taken together suggest that the expression of mutant SOD1 in 

astrocytes and microglia is crucial for disease progression, but the expression of the 

mutant protein in motor neurons is necessary for the disease onset (Boillée et al., 

2006).  

Barber and Shaw proposed a mechanism in which damaged motor neurons activate 

glial cells through the release of ROS, which in turn activate other glial cells leading to 

further motor neuron damage (Barber and Shaw, 2010). The mechanism of this 

communication is still unknown however, a recent publication hypostasised that OXR1 

could act as mediator of the cross-talk between motor neurons and toxic mutant 

SOD1 microglia and astrocytes, extending MN survival (Liu et al., 2015).  

1.5.1.7 SOD1 involvement in RNA metabolism  

TDP-43 and FUS are RNA binding proteins, and are both causative of fALS when 

mutated; their discovery highlighted the possibility that RNA metabolism might play a 

crucial role in the pathogenesis of ALS (Ling et al., 2013). SOD1 has been also shown 

to be involved in RNA metabolism by binding and stabilising mRNAs. 

For example mutant SOD1 may down regulate vascular endothelial growth factor 

(VEGF) expression by directly binding its mRNA transcript. Indeed VEGF mRNA 

expression is downregulated in the spinal cords of transgenic SOD1 G93A mice, and a 

luciferase reporter assay carried out in an in vitro culture model of glia cells expressing 

mutant SOD1, showed that mutant SOD1 protein has a high binding affinity for 

VEGF adenine/uridine-rich elements (ARE) (Lu et al., 2007; Miao and St Clair, 2009). 

Furthermore, in vitro mutant SOD1 has been shown to directly compete with HuR and 

neuronal HuC embryonic lethal abnormal visual (ELAV) RNA stabilizer proteins, 

specifically for VEGF mRNA binding. This gain of function of mutant SOD1 may 

disrupt ELAV protein function leading to loss of expression of VEGF that is essential 

for motor neuron survival (Li et al., 2009). Indeed VEGF increased expression has 

been shown to attenuate the phenotype of SOD1-fALS mice (Bunton-Stasyshyn et al., 

2014; Keifer et al., 2014). Furthermore a polymorphism in the VEGF promoter has 

been related to increased risk of ALS and lower age of onset (Su et al., 2014) and a 

deletion in the promoter of the mouse gene has resulted in a MN degenerative 

phenotype characterised by late onset (Oosthuyse et al., 2001).  
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In a similar way mutant SOD1 also binds the 3’ UTR of low molecular weight 

neurofilament (NFL) mRNA negatively affecting its stability (Bunton-Stasyshyn et al., 

2014; Chen et al., 2014; Ge et al., 2005; Volkening et al., 2009). Experiments carried 

out in NSC34 cells showed that mutant SOD1 but not wild-type SOD1 interacts 

directly with hNFL mRNA and functions as a trans-acting hNFL mRNA stability 

determinant acting within the 3′-UTR (Ge et al., 2005). Further studies showed that a 

reduction in NFL mRNA mediate by mutant SOD1 induces axonal degeneration in 

sALS, SOD1-fALS mouse models and also in MNs differentiated from induced 

pluripotent stem cells (iPSC) derived from SOD1-fALS patients (Chen et al., 2014; 

Julien, 1999; Menzies et al., 2002). However in a SOD1-fALS mouse model the 

knockout of NFL resulted in a significant delay of disease onset (Williamson et al., 

1998), therefore the reduction of the NFL mRNA is probably not the main pathogenic 

mechanism of SOD1-fALS. 

1.5.2 Protein misfolding and aggregation 

1.5.2.1 SOD1 protein aggregates  

The presence of specific protein aggregates is a hallmark of several neurodegenerative 

diseases. In SOD1-fALS the presence of non-amyloid SOD1 aggregates in the MNs 

has been extensively reported (Kato et al., 1996, 1997; Kerman et al., 2010; Okamoto 

et al., 1991; Wang et al., 2002a). Nevertheless the role of such aggregates is still 

unknown. In particular it is unclear whether they are toxic pathogenic species or if they 

are the result of a coping mechanism used to protect the organism against other 

misfolded protein species like monomers and oligomers. (Mulligan and Chakrabartty, 

2013; Ross and Poirier, 2005).  

Investigation of SOD1-fALS mice suggested a link between SOD1 aggregation and the 

disease phenotype. Indeed SOD1 aggregates are preferentially located in the ALS 

affected tissues, and their level has a positive correlation with disease progression 

(Cheroni et al., 2005; Turner et al., 2003; Wang et al., 2002a, 2002b). Moreover Wang 

and colleagues suggested that SOD1 expression levels should reach a certain threshold 

to cause aggregation in order for ALS like symptoms to arise (Wang et al., 2002a).  

Experiments carried out using double transgenic mice expressing both mutant and 

wild-type SOD1 showed increased aggregation and co-localization of the mutant 

SOD1 protein with the wild-type form. In general these animals have a reduced 
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survival compared to single transgenic mice and develop an early onset of ALS 

symptoms (Deng et al., 2006; Fukada et al., 2001; Jaarsma et al., 2000, 2008; Prudencio 

et al., 2010; Wang et al., 2009c). However how the presence of wild-type SOD1 

modulate the aggressiveness of the phenotype and the quantity and nature of the 

aggregates might depend on the expression level of the wild-type SOD1 protein. A 

cross between the L126Z mutant SOD-fALS mouse and 2 lines of transgenic wild-type 

mice showed that higher levels of wild-type SOD1 increase toxicity leaving aggregation 

of mutant SOD1 unchanged; while lower levels of wild-type SOD1 do not affect the 

phenotype but higher levels of aggregation are observed (Prudencio et al., 2010).  

Of note SOD1 aggregate inclusions are detected in mice always after the denervation 

of the muscles (Bruijn et al., 1997; Gould et al., 2006; Johnston et al., 2000; Koyama et 

al., 2006). 

Cell culture model experiments confirmed findings from double transgenic mice 

showing that increased levels of soluble SOD1 correlates with increased toxicity, while 

increased levels of insoluble SOD1 correlates with reduced toxicity. Moreover when 

mutant and wild-type SOD1 are co-expressed aggregation is lessened while toxicity is 

increased (Brotherton et al., 2013; Prudencio et al., 2010; Weisberg et al., 2012; Witan 

et al., 2008, 2009). 

Of note in SOD1-fALS mice high levels of misfolded SOD1 can overload the 

ubiquitin proteasome system (UPS) causing it to become dysfunctional and therefore 

increase aggregation of SOD1 (Bendotti et al., 2012; Urushitani et al., 2002). However, 

this mechanism is always detected after disease onset (Lee et al., 2002). UPS 

dysfunction is observed in SOD1-fALS mice, but not until after onset (Cheroni et al., 

2009) and SOD1 aggregation caused by UPS inhibition is not necessarily toxic (Lee et 

al., 2002), suggesting that this is not a primary cause of mutant SOD1 toxicity. 

The fact that aggregated SOD1 is mainly detected in symptomatic animals suggests that 

aggregates are not the primary cause of ALS, however pre-aggregated SOD1 forms 

present before disease onset might be toxic species (Karch et al., 2009). This does not 

exclude that SOD1 aggregates can cause secondary toxicity by sequestration of other 

important proteins (Bergemalm et al., 2010; Pasinelli et al., 2004; Weisberg et al., 2012), 

or by disrupting axonal transport (Sau et al., 2011). 
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1.5.2.2 SOD1 pre-aggregate species  

Several SOD1 species are detected in the spinal cord of affected SOD1-fALS animals, 

such as: soluble, insoluble and detergent resistant monomers, soluble and insoluble 

dimers, oligomers and other high molecular weight SOD1 species (Koyama et al., 

2006). 

SOD1 mutants typically show an increased propensity of the SOD1 dimers to 

monomerise, together with defects in folding and dimerization of the protein (Bruns 

and Kopito, 2007; Khare et al., 2006; Rakhit et al., 2004). Since monomerisation is a 

crucial step for the formation of oligomers and aggregates (Rakhit et al., 2004; Ray et 

al., 2004) this propensity could accelerate the aggregation process of the SOD1 

mutants. For instance, spinal cords from four different SOD1-fALS mouse mutant 

lines have been shown to be enriched in soluble hydrophobic disordered monomers 

compared to mice overexpressing the human wild-type SOD1 transgenic protein. The 

level of these monomers correlates with survival in the 4 mutant lines, associating 

monomeric SOD1 with disease (Zetterström et al., 2007, 2013). 

Not only monomers but also other oligomeric soluble and insoluble SOD1 species 

have been identified in pre-symptomatic SOD1-fALS mice and they have been 

suggested to correlate with progression of the phenotype (Johnston et al., 2000; Wang 

et al., 2009a). Indeed staining of the MNs of SOD1-fALS mice using antibodies that 

specifically label misfolded forms of SOD1, revealed the presence of non-native 

dimeric species in pre-symptomatic mice and inclusions after disease onset (Liu et al., 

2012; Rakhit et al., 2007). 

The mechanisms through which these monomeric or oligomeric species of SOD1 

might cause toxicity are still unknown, however, some assumptions have been made. 

Monomerisation could for example expose the SOD1 binding site for derlin-1 

triggering ER stress (Fujisawa et al., 2012; Nishitoh et al., 2008), or could impair the 

copper binding causing oxidative stress (Kishigami et al., 2010). Oligomerisation has 

instead been proposed to disrupt retrograde axonal transport by competing with other 

transport targets overwhelming the system (Johnston et al., 2000). 
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1.5.2.3 Prion-like protein misfolding mechanism  

Prion diseases are fatal neurodegenerative diseases characterised by misfolding of the 

prion protein (PrP). They can be sporadic, caused by mutation in the prion protein 

(PRNP) gene or caused by infection with misfolded PrP (PrPsc). In particular the PrPsc 

protein can induce the correctly folded cellular PrP (PrPc) to misfold and take the 

characteristics of the infectious PrPsc. The disease can be transmitted cell to cell, but 

also among animals via oral uptake, blood, or other sources of direct contact 

(Acquatella-Tran Van Ba et al., 2013; Grad et al., 2015; Lee and Kim, 2015). 

There are several lines of evidence suggesting that ALS is a propagating process similar 

to prion diseases. First of all both SOD1 and TDP-43 are known to self-propagate 

within and between neuronal cells (Münch et al., 2011; Nonaka et al., 2013). Moreover 

ALS patients have aggregates of misfolded protein in their motor neurons and post 

mortem studies showed that the loss of motor neurons is more prominent in the 

region of onset and gradually decreases in the other affected areas, with distance from 

the focal onset (Ravits et al., 2007b; Verma, 2013). ALS might be therefore considered 

a prion-like disease. The term prion-like is used to describe two main features: one is 

the ability of a misfolded protein of seeding aggregation and misfold a correctly folded 

protein, and the other is the capacity of spreading this process between cells, see 

section 5.1.1 (Lee and Kim, 2015). 

Even though amyloid features have never been detected in SOD1-fALS and sALS 

patients, the SOD1 protein has been shown to display prion-like mechanism in vitro 

showing both seeding and cell to cell transmission (Chia et al., 2010; Grad et al., 2014; 

Münch et al., 2011). Moreover recent findings suggest a cell to cell transmissibility of 

the SOD1 protein also in mice (Ayers et al., 2014). The SOD1 prion-like mechanism is 

discussed in detail in 5.1.1. It is import to note that the majority of SOD1-fALS studies 

are conducted in mouse models where beside the overexpression of the mutant forms 

of the human SOD1 protein also the endogenous mouse SOD1 protein is present. 

Investigating the possible interactions between the human and the mouse SOD1 

variants will be extremely helpful to better understand and interpret the results from 

the many studies carried out in ALS research. 
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1.5.3 Role of wild-type SOD1 in the pathogenesis of ALS  

As mentioned above SOD1 aggregates are present both in sporadic and familial ALS 

and typically wild-type SOD1 protein is detected in aggregates of SOD1-fALS patients 

in addition to mutant SOD1 (Bruijn et al., 1998; Matsumoto et al.; Shibata et al., 1994, 

1996b; Watanabe et al., 2001). The advent of antibodies able to distinguish between 

misfolded and correctly folded SOD1 revealed the presence of misfolded SOD1 also in 

some sALS and non-SOD1-fALS cases (Bosco et al., 2010; Forsberg et al., 2010, 2011; 

Gruzman et al., 2007; Pokrishevsky et al., 2012). 

Interestingly wild-type SOD1 can misfold and acquire characteristics of the SOD1 

mutant proteins, becoming toxic to the motor neurons. This transformation of the 

wild-type SOD1 protein has been proposed to happen as consequence of a prion-like 

mechanism, initiated by mutant SOD1 proteins, by oxidative damage or demetalation 

(Ezzi et al., 2007; Lindberg et al., 2004; Rakhit et al., 2004; Redler et al., 2011; 

Urushitani et al., 2006). Further in cell models oxidation and misfolding of wild-type 

SOD1 has been reported after expression of wild-type TDP-43 and wild-type FUS 

(Pokrishevsky et al., 2012). 

Transgenic mice expressing human wild-type SOD1, have been extensively 

investigated. Interestingly these animals show ALS-like phenotypes late in life (Dal 

Canto and Gurney, 1995). In particular when the wild-type SOD1 protein is greatly 

overexpressed mice develop motor neuron loss and misfolded SOD1 is detected 

(Graffmo et al., 2013; Jaarsma et al., 2000). Misfolded-oxidised wild-type SOD1 

behaves as mutant SOD1 also in cellular and in vitro models, impairing anterograde 

axonal transport, activating ER-stress and causing mitochondrial damage (Bosco et al., 

2010; Guareschi et al., 2012; Pasinelli et al., 2004; Sundaramoorthy et al., 2013). 

Wild-type SOD1 has been proposed to increase mutant SOD1 toxicity in several ways. 

SOD1-fALS mouse model data showed, for example, that the presence of wild-type 

SOD1 can increase solubility of the mutant protein (Fukada et al., 2001). Also 

misfolded wild-type SOD1 lacking zinc has been observed to become more toxic in 

the presence of correctly folded wild-type SOD1 (Sahawneh et al., 2010). Further wild-

type SOD1 has been suggested to increase the toxicity of mutant or misfolded SOD1 

by forming homodimers with pre-aggregated toxic species, stabilizing them and 
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consequently slowing aggregation as reported in cellular models (Brotherton et al., 

2013; Prudencio et al., 2010; Weisberg et al., 2012; Witan et al., 2008, 2009) . 

Although all mechanisms have not yet been elucidated it is clear that overexpression of 

the wild-type SOD1 protein can cause toxicity. 

1.6 Research aim and current questions in SOD1-fALS 

1.6.1 Does SOD1 loss of function play a role in the disease? 

Mutations in the SOD1 gene were the first to be identified as causative of fALS (Rosen 

et al., 1993). Initially, two mechanisms have been suggested to cause motor neuron 

death in mutant SOD1-induced fALS: a toxic gain of function and a loss of function. 

Data from Sod1 knock out and transgenic mice overexpressing mutant SOD1 provided 

evidence of a neuromuscular phenotype. However, it was soon clear that transgenic 

SOD1 mutant mice better mimicked the MN loss phenotype seen in patients. In 1998, 

a seminal paper showed that the SOD1 loss of function did not influence the survival 

of the gain of function disease models excluding a role of loss of function in SOD1 

fALS (Bruijn et al., 1998). 

Since then several groups further investigated the phenotype of Sod1 knockout mice 

characterising and examining the specific neuromuscular involvement. These studies 

taken together with recent findings on mice overexpressing SOD1 (Ezzi et al., 2007; 

Khare et al., 2004; Rakhit et al., 2004; Wilcox et al., 2009) suggested a possible 

modifying role played by loss of SOD1 activity on the fALS disease course. 

Furthermore loss of function and gain of function mechanisms have been proposed to 

contribute to pathogenesis of TDP-43-ALS and FUS-ALS (Guo et al., 2011; Lagier-

Tourenne and Cleveland, 2009). The contribution of both these mechanism to 

neurodegeneration has been reported also in other disease such as Huntington’s 

disease (HD) (Zuccato et al., 2010), Parkinson’s disease (Winklhofer et al., 2008) and 

spinocerebellar ataxia 1 (Crespo-Barreto et al., 2010; Lim et al., 2008). 

In Chapter 3 papers reporting SOD1 activity data from SOD1-fALS patients and 

publications on Sod1 knockout mice are reviewed to investigate if a possible role for 

SOD1 loss of function in SOD1-fALS pathogenesis exists and what can be done to 

definitively address this issue. 
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1.6.2 Can we dissect the central and the peripheral effects of mutant SOD1 
toxicity using a new mouse model of motor neuron disease? 

Many SOD1 transgenic mice have been generated in the last twenty years, and as 

explained above they have been implicated in many potential ALS pathological 

mechanisms (McGoldrick et al., 2013). However, these animals overexpress the mutant 

or the wild-type SOD1 protein and it is difficult to determine whether the phenotype 

and pathology that they exhibit are the cause of the disease or an effect of the large 

amount of SOD1 protein (Acevedo-Arozena et al., 2011; Chang et al., 2008; Deng et 

al., 2006; Graffmo et al., 2013; Prudencio et al., 2010). Sod1 knock out mice have also 

been crucial in ALS research and develop a distal axonopathy, but the absence of the 

SOD1 protein is not capable of causing MN degeneration (Fischer et al., 2011, 2012). 

Recently we described a new mouse model carrying a point mutation (D83G) in the 

mouse Sod1 gene, identical to an ALS-causing SOD1 mutation in humans (Joyce et al., 

2014; Millecamps et al., 2010). Animals homozygous for this mutation (Sod1D83G/D83G) 

develop MN loss and also a distal neuropathy, due respectively to gain of function and 

loss of function  effects (Joyce et al., 2014). In the work presented in Chapter 4 the 

morphological innervation patterns of endplate NMJs, SOD1 protein level and SOD1 

activity of Sod1D83G animals are investigated. Moreover to characterise further the gain 

of function and loss of function phenotypes, by dissecting the MN loss and the 

peripheral neuropathy of the Sod1D83G mouse, Sod1D83G mice were crossed with 

TgSOD1WT animals to see if the overexpression of the human wild-type SOD1 could 

rescue the disease phenotype of Sod1D83G/D83G mice. Further, Sod1D83G were crossed with 

Sod1 knockout out mice to see if only once copy of the D83G allele was sufficient to 

cause both motor neuron loss and distal neuropathy. 

1.6.3 Is there an interaction between human and mouse SOD1 proteins, and 
how does this change our interpretation of SOD1 mouse models? 

In several transgenic mouse models of neurodegenerative disease overexpressing a 

mutant human protein, it has been shown that the presence of the homologous mouse 

protein affects the phenotype. For example, in mouse models of human prion disease 

the presence of both mouse and human PrP delays the disease onset and the 

phenotypes detected are more variable than when the mouse gene is knocked-out 

(Collinge et al., 1995; Telling et al., 1995). In mice expressing wild-type human tau no 

disease pathology is detected when the endogenous mouse Mapt gene is functional 
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(Duff et al., 2000). However, when the mouse Mapt is knocked-out, animals develop a 

pattern of pathology similar to that seen in Alzheimer disease (AD), including neuronal 

death (Andorfer et al., 2003, 2005). 

A transgenic SOD1-fALS mutant line carrying the G85R mutation investigated both in 

presence and absence of the endogenous Sod1 gene showed no difference in survival 

and phenotype (Bruijn et al., 1998). However, in a more recent study carried out on a 

similar cross with a G93A mutant SOD1 transgenic, a delay in disease onset and longer 

survival has been observed in absence of the mouse Sod1 gene. Data from double 

transgenic animals have shown that the interaction between wild-type and mutant 

human SOD1 exacerbates the disease. Nevertheless, when wild-type human SOD1 has 

been expressed in a mouse carrying the mouse SOD1 G86R mutation no difference in 

the phenotype has been detected (Audet et al., 2010). 

Cell studies have shown that both human and mouse wild-type SOD1 can slow the 

aggregation of mutant human SOD1, but the mouse and the human SOD1 protein 

have never been shown to co-aggregate (Grad et al., 2011; Prudencio et al., 2009b; 

Qualls et al., 2013). 

In order to interpret results from SOD1 transgenic models it is important to 

understand if there is an interaction between the human and the mouse SOD1 protein, 

and if there is, how it influences the disease phenotype. The mouse SOD1 dimer is 

more stable compared to the human one and therefore predicted to form less 

aggregates (Jonsson et al., 2006b).  

As described in Chapter 5, to investigate human and mouse aggregation propensity 

several human and mouse SOD1 recombinant proteins have been produced, purified 

and biochemically characterised and preliminary experiments have been carried out to 

assess their propensity to spontaneously aggregate. 

1.6.4 Can we identify new genes involved in SOD1-ALS by creating new 
modifier mouse models?  

Mouse models of SOD1-fALS have been used in the investigation of modifier genes 

that might positively or negatively influence the ALS phenotype. To do so the main 

approach that has been employed consists in crossing SOD1-fALS mouse models with 
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other mice that transgenically express or lack genes that are considered of interest (Liu 

et al., 2015; Riboldi et al., 2011; Turner and Talbot, 2008). 

In order to investigate new modifiers of the SOD1 gene a sensitized screen was carried 

out at MRC Harwell, in which N-ethyl-N-nitrosourea (ENU) mutagenized mice were 

crossed with animals carrying the transgenic SOD1 G93A low copy mutation. As result 

of this screen one mouse with a reduced survival was identified as a phenodeviant of 

the TgSOD1G93A(L) line, named Galahad. 

A phenotypic investigation of the Galahad mouse progeny and a quantitative trait loci 

(QTL) analysis to try to identify possible modifying locus/loci interacting with the 

SOD1 G93A mutation are reported in Chapter 6. 
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Chapter 2 Materials and methods 

2.1 Materials 

2.1.1 Equipment 

1 l polypropylene centrifuge bottle Nalgene 

2 l erlenmeyer flask Nalgene 

5 l beaker  Nalgene 

96-well black microtiter plate Griener 

96-well PCR microplate VWR 

Balance  Mettler-Toledo 

Beads Hybaid Ribolyser 

Bench top refrigerated microfuge Heraeus Fresco 17 Thermo Fisher 

Bio-Rad Bio-Logic chromatography system Bio-Rad  

Centrifuge 5402 or 5424 Eppendorf  

Centrifuge 6K15 rotor number: 12500; 12166 Sigma Laboratory 

Centrifuge tube 50 ml Oakridge 

Chromatographic glass column Bio-Rad  

Confocal microscope LSM 710 Zeiss 

Coverslips VWR 

Cryostat BrightTM 

Dialysis cassette Pierce 

Dialysis membrane tubing (8 ml/cm, 8 kDa) Spectra pro 

Dissection tools Dumont 

Electrophoresis power pack Bio-Rad  

Epifluorescence microscope Leica DMR 

Filter unit Sartolab 

Fluorimeter plate reader Infinite M1000 PRO Tecan 

Gel cast for agarose gel Scie-plas 

Gel scanner Hewlett-Packard (hp) 

Gel tank submarine Mupi 

Gilson pipettes Anachem Ltd 
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Grip-strength meter bio-GS3 BioSeb 

Heat block Grant Instruments 

Homogeniser TissueRuptor  Qiagen 

Incubator shaker Orbital 

Jasco J-715 Circular Dichroism Spectropolarimeter Jasco  

Magnetic flea stirrer BIBBY 

Microscope slides VWR 

Microwave Sharp 

Odyssey Classic imaging system Licor 

PAP pen VWR 

Pasteur pipette VWR 

Peltier Thermal Cyclers PTC-225 Bio-Rad  

pH meter Mettler-Toledo 

Photo-film Kodak 

Plastic cuvettes Starstedt 

Plate incubator shaker GrantBio 

Poly-lysine coated slides VWR 

Polyvinylidene difluoride (PVDF) membrane Millipore 

Protein machine ÄKTA pure GE Healthcare Life Sciences  

qPCR machine  Applied Biosystems 

Sonicator Philip Harris Scientific 

Sonicator Probe MS73 Sigma-Aldrich 

Spectrophotometer NanoDrop® ND-1000  NanoDrop Technologies 

Spectrophotometer Sunrise Tecan 

UV illuminator ChemiDoc XRS+ BioRad  

UV/VIS disposable cuvettes Kartell 

Vacusafe pump Integra Biosciences 

XCell SureLock Mini-Cell Electrophoresis System Life Technologies 
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2.1.2 Chemicals and reagents 

16 % Tris-Glycine precast gel Life Technologies 

2-mercaptoethanol Sigma-Aldrich 

3-12 % NativePAGE Bis-Tris precast gels Life Technologies 

4-12 % NuPAGE Bis-Tris precast gels Life Technologies 

Acetic acid VWR 

Benzonase VWR 

Bovine Serum Albumins (BSA) Sigma-Aldrich 

Calcium chloride (CaCl2) Sigma-Aldrich 

Coomassie Brilliant Blue R Sigma-Aldrich 

Copper sulphate (CuSO4) Sigma-Aldrich 

EDTA free protease inhibitor cocktail Roche 

Ethanol (CH3CH2OH) VWR 

Ethidium bromide Sigma-Aldrich 

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich 

Extraction Solution  Sigma-Aldrich 

Florescent mounting media DAKO 

Glutathione Sigma-Aldrich 

Glycerol Sigma-Aldrich 

Guanidine hydrochloride (GuHCl) Sigma-Aldrich 

HyperLadder IV Bioline 

Imidazole Sigma-Aldrich 

Isopropanol VWR 

Isopropyl-β-D-thiogalactopyranoside (IPTG) Melford 

Kanamycin Sigma-Aldrich 

Luria Broth (LB) Sigma-Aldrich 

Lysozyme Sigma-Aldrich 

MES SDS Running buffer 20X Life Technologies 

Methanol (CH3OH) VWR 

N,N,N´,N´-tetramethylethylenediamine (TEMED) Sigma-Aldrich 
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NativeMark unstained protein standard Life Technologies 

NativePAGE Cathode buffer additive 20X Life Technologies 

NativePAGE Running buffer 20X Life Technologies 

NativePAGE Sample buffer 4X Life Technologies 

Neutralisation Solution B Sigma-Aldrich 

Nitro blue tetrazolium  Sigma-Aldrich 

NuPAGE LDS Sample buffer 4X Life Technologies 

NuPAGE Transfer buffer 20X Life Technologies 

OCT  Sakura Finetek 

Odyssey blocking buffer (PBS)  Licor 

Paraformaldehyde Sigma-Aldrich 

Phosphate Buffered Saline (PBS) Sigma-Aldrich 

Potassium phosphate  Sigma-Aldrich 

Proteinase K Invitrogen 

Riboflavin Sigma-Aldrich 

Seeblue plus2 protein standard Life Technologies 

Sodium acetate Sigma-Aldrich 

Sodium azide Sigma-Aldrich 

Sodium chloride (NaCl) Sigma-Aldrich 

Sodium dodecyl sulphate (SDS) Sigma-Aldrich 

Sodium pentobarbital Euthatal 

Sodium phosphate (Na3PO4) Sigma-Aldrich 

Sucrose Sigma-Aldrich 

Taq polymerase REDTaq ReadyMix Sigma-Aldrich 

TaqMan Universal PCR Master Mix Applied Biosystems 

TBS Sigma-Aldrich 

Thioflavin-T (ThT) Sigma-Aldrich 

Thrombin  Sigma-Aldrich 

Tissue Prep Solution Sigma-Aldrich 

Tris acetate  Sigma-Aldrich 
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2.1.3 Commercial kits  

2.1.4 Antibodies  

2.1.4.1 Primary antibodies 

 

2.1.4.2 Secondary antibodies  

Tris borate  Sigma-Aldrich 

Tris hydrochloride (Tris-HCl) Sigma-Aldrich 

Tris-Glycine Electroblotting Buffer 10X National Diagnostic 

Tris-Glycine SDS Buffer 10X National Diagnostic 

Tris-Glycine SDS sample buffer 2X Life Technologies 

Triton X-100 Sigma-Aldrich 

Trizma base (Tris) Sigma-Aldrich 

Tween-20 Sigma-Aldrich 

UltraPure agarose Invitrogen 

Zinc sulphate (ZnSO4) Sigma-Aldrich 

DCTM Protein Assay  Bio-Rad 

ECL Enhanced chemiluminescent substrate Pierce 

M.O.M. Immunodetection basic kit Vector Labs 

Quick Start™ Bradford Protein Assay Bio-Rad  

4',6-diamidino-2-phenylindole (DAPI) Sigma-Aldrich 

Anti-β-actin Sigma-Aldrich 

Mouse monoclonal anti-neurofilament (165 k Da) (2H3) Developmental Studies 
Hybridoma Bank 

Mouse monoclonal anti-synaptic vesicle (SV2) Developmental Studies 
Hybridoma Bank 

SEDI (SOD1 exposed dimer interface) (Rakhit et al., 2007) 

SOD-100 rabbit pan-anti SOD1 Enzo 

USOD (Unfolded SOD1) (Kerman et al., 2010) 

IRDye Licor anti-mouse Licor 

IRDye Licor anti-rabbit Licor 

Polyclonal goat anti-mouse IgG-HRP DAKO 
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2.1.5 Software  

Applied Biosystems 7500 software v2.0.1 

Carl Zeiss software ZEN 

GraphPad Prism 6 

IBM SPSS Statistics 19 

i-controlTM 

ImageJ v1.47 for Windows  

Jasco Standard Analysis software  

Odyssey v2.1 from Licor 

R (programming language) 

2.2 Mice 

All animals were maintained and animal experiments were executed in accordance with 

the Animals (Scientific Procedures) Act 1986 and Home Office Project licence 

No. 30/2290. 

Humane end points were defined as loss of 20 % maximum body weight, presence of 

hind limb paralysis or loss of righting reflex. Animals were assessed daily and weighed 

at least twice a month. 

In the present work an abbreviated nomenclature will be used to describe mouse 

genotypes, defined in Table 2.1. 

Polyclonal goat anti-rabbit IgG-HRP DAKO 

Streptavidin Alexa Fluor 488 Invitrogen 

α-bungarotoxin-rhodamine Sigma-Aldrich 
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Genotypes   Short nomenclature 

Sod1 wild-type Sod1+/+ 

Sod1 knockout heterozygous Sod1+/- 

Sod1 knockout homozygous  Sod1-/-   

Human wild-type SOD1 hemizygous transgenic  TgSOD1WT  

Human SOD1G93A hemizygous high copy transgenic  TgSOD1G93A(H) 

Human SOD1G93A hemizygous low copy transgenic  TgSOD1G93A(L) 

Sod1D83G heterozygous Sod1+/D83G 

Sod1D83G homozygous  Sod1D83G/D83G 

Sod1D83G compound heterozygous knockout Sod1-/D83G 

Human wild-type SOD1 hemizygous transgenic; Sod1D83G 
heterozygous TgWTSod1+/D83G 

Human wild-type SOD1 hemizygous transgenic; Sod1D83G 
homozygous TgWTSod1D83G/D83G 

Galahad without human SOD1G93A hemizygous low copy 
transgenic  NTgGalahad 

Galahad with human SOD1G93A hemizygous low copy 
transgenic  TgG93A(L)Galahad 

Galahad with human SOD1G93A hemizygous high copy 
transgenic  TgG93A(H)Galahad 

Galahad with human SOD1G93A hemizygous low copy 
transgenic; possibly carrying ENU mutation/s mTgG93A(L)Galahad 

Table 2.1 Mouse genotypes nomenclature. 

2.2.1 Housing and husbandry of mice 

Mice were housed in two different facilities under constant conditions: 19-23 °C 

temperature, 55±10 % humidity, 12 hours light:dark cycle. All animals were kept in 

individually ventilated cages (IVCs) with constant access to food and water, and grade 

five dust-free autoclaved wood bedding. If mice became unable to move freely or 

experienced a weight loss between 10 and 15 %, paper was removed and hydrogel was 

placed in the cage at ground level. 
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2.2.2 C57BL/6J mice 

C57BL/6J mice (Jax stock number: 000664) were purchased from the Jackson 

Laboratory, and maintained by animal technicians. These animals have been used as 

the background strain for all the mice employed in the present work. 

2.2.3 Sod1 knockout mice 

B6;129S-Sod1tm1Leb/J mice (Matzuk et al., 1998) (Jax stock number: 002972) were 

purchased from the Jackson Laboratory on a C57BL/6J X 129S hybrid background. 

These animals were backcrossed to C57BL/6J for at least 5 generations before use, and 

maintained by animal technicians.  

Within the present work this strain will be referred to as Sod1 knockout (Sod1 KO), 

while the three genotypes produced from it will be named: Sod1+/+ (homozygous for 

the Sod1 wild-type allele); Sod1+/- (heterozygous for the Sod1 KO allele) and Sod1-/- 

(homozygous for the Sod1 KO allele).  

Genotyping was carried out as described in section 2.5.2.2. 

2.2.4 Human wild-type SOD1 transgenic mice 

B6JL-Tg(SOD1)2Gur/J mice (Gurney et al., 1994) (Jax stock code number: 002297) 

were purchased from the Jackson Laboratory on a C57BL/6J X SJL/J hybrid 

background. These animals were backcrossed to C57BL/6J for at least 5 generations 

before use, and maintained by animal technicians.  

In the present work only hemizygous transgenic littermates coming from this strain 

have been employed in experiments and they will be referred to as TgSOD1WT. 

Genotyping was carried out as described in section 2.5.2.1. 

2.2.5 Human SOD1G93A transgenic high copy mice 

B6.Cg-Tg(SOD1*G93A)1Gur/J (Chiu et al., 1995; Gurney et al., 1994) (Jax stock code 

number: 004435) were purchased from the Jackson Laboratory, already congenic to 

C57BL/6J and maintained by animal technicians. Animals employed for breeding 

purposes were culled at 120 days of age, before development of symptoms. 

In the present work only transgenic littermates coming from this strain have been 

employed in experiments and they will be referred as TgSOD1G93A(H). 
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Genotyping was carried out as described in section 2.5.2.1. 

2.2.6 Sod1D83G mice 

Sod1D83G mice have been identified by screening genomic DNA from the MRC Harwell 

ENU mutagenesis archive for mutations in Sod1 (Joyce et al., 2014). Sod1D83G mice were 

originally on a C57BL/6J-C3H background and they have been backcrossed to 

C57BL/6J for at least 5 generations before use. 

I maintained my own Sod1D83G colony in collaboration with Dr Philip Mcgoldrick. All 

three genotypes generated from this mouse line have been employed in experiments: 

Sod1+/+ (homozygous for the Sod1 wild-type allele); Sod1+/D83G (heterozygous for the 

Sod1D83G allele) and Sod1D83G/D83G (homozygous for the Sod1D83G allele).  

Genotyping was carried out by Dr Abraham Acevedo using pyrosequencing at MRC 

Harwell. 

2.2.7 Galahad mice 

Galahad mice were identified by an ENU mutagenesis modifier screen carried out by 

Dr Abraham Acevedo in collaboration with Prof Elizabeth Fisher see section 6.1.1. 

The colony founder mouse was on a C57BL/6J-BALB/c hybrid background, the line 

produced from it was then maintained on congenic C57BL/6J. 

Two genotypes were generated form this line: TgG93A(L)Galahad (carrying the human 

transgene SOD1G93A low copy) and NTgGalahad (mice non transgenic for the human 

SOD1G93A low copy).  

Genotyping was carried out as described in section 2.5.2.1. 

2.2.8 Sod1D83G X Sod1 knockout cross  

To produce this line Sod1D83G mice were crossed to Sod1 knockout mice in a two-step 

cross. In the first step Sod1+/D83G males were mated with Sod1+/- females, producing 

four possible genotypes: Sod1+/D83G, Sod1+/-, Sod1-/D83G and Sod1+/+ as illustrated in 

Figure 2.1 (a). In the second step Sod1-/D83G males were mated with Sod1+/- and 

Sod1+/D83G females, producing six possible genotypes: Sod1+/D83G, Sod1+/-, Sod1-/D83G, 

Sod1-/- and Sod1D83G/D83G see Figure 2.1 (b). 
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Genotyping for the presence of the Sod1 knockout allele was carried out as described in 

section 2.5.2.2, while genotyping for the presence of the Sod1D83G allele was carried out 

by Dr Abraham Acevedo using pyrosequencing at MRC Harwell. 

 

Figure 2.1 Breeding scheme for Sod1D83G X Sod1 KO. 

2.2.9 Sod1D83G X Human wild-type SOD1 transgenic cross  

To produce this line Sod1D83G mice were crossed to TgSOD1WT mice in a two-step 

cross. In the first step hemizygous TgSOD1WT males were mated with Sod1+/D83G 

females, producing four possible genotypes: TgSOD1WT, Sod1+/D83G, Sod1+/+, and 

TgWTSod1+/D83G see Figure 2.2 (a). In the second step TgWTSod1+/D83G males were mated 

with Sod1+/D83G females, producing six possible genotypes: TgSOD1WT, TgWTSod1+/D83G, 

TgWTSod1D83G/D83G, Sod1+/+, Sod1+/D83G and Sod1D83G/D83G as illustrated in Figure 2.2 (b).  
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Genotyping for the presence of the transgene allele was carried out as described in 

section 2.5.2.1 while genotyping for the presence of the Sod1D83G allele was carried out 

by Dr Abraham Acevedo using pyrosequencing at MRC Harwell. 

 

Figure 2.2 Breeding scheme for Sod1D83G X TgSOD1WT . 

2.2.10 Galahad X Human SOD1G93A transgenic high copy cross  

To produce this line NTgGalahad females were crossed with hemizygous 

TgSOD1G93A(H) males, producing two genotypes: NTgGalahad and TgG93A(H)Galahad. The 

line was maintained by crossing the TgG93A(H)Galahad males with wild-type C57BL/6J 

females, and NTgGalahad female with TgSOD1G93A(H) males. 

Genotyping was carried out as described in section 2.5.2.1. 

2.3 Mouse experimental procedures  

2.3.1 General mouse experimental procedures  

2.3.1.1 Perfusion with paraformaldehyde  

Mice were terminally anaesthetised by intraperitoneal injections with 200 µl of 

200 mg/ml sodium pentobarbital (Euthatal). Surgical plane of anaesthesia was 
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evaluated by blink reflex and paw pinch. Once unresponsive, the animal was pinned on 

its back, and the sternum was exposed by opening the abdominal cavity. An incision 

was made on the diaphragm along the entire length of the rib cage, which was 

subsequently cut on each side up to the collarbone. The sternum was lifted back to 

expose the heart and the pericardium was removed. A 27 gauge needle connected to a 

perfusion pump was carefully inserted into the left ventricle. The right atrium was cut 

and ice cold sterile 0.9 % NaCl (Sigma-Aldrich) was pumped into the heart for 

4 minutes at 3 ml/min flow rate. The buffer was then changed and the animal was 

perfused with ice cold 4 % paraformaldehyde (PFA) (Sigma-Aldrich) in phosphate 

buffer saline (PBS) (Sigma-Aldrich) for 8 minutes at a flow rate of 3 ml/min flow rate.  

2.3.2 Mouse experimental procedures specific for Galahad mice 

2.3.2.1 Neurological checks  

Galahad mice carrying a transgene were checked weekly by animal technicians for 

indications of neurological onset starting at 90 days of age for TgG93A(H)Galahad and at 

150 days of age for TgG93A(L)Galahad. Animals were lifted by the tail and observed for 

the presence of the following symptoms: tremors, rear limbs moving towards the 

middle and paralysis. 

2.3.2.2 Weekly weight 

All Galahad mice were weighed weekly on a set day by technical staff starting at 90 days 

of age for TgG93A(H)Galahad and at 150 days of age for TgG93A(L)Galahad and NTgGalahad. 

When animals reached 10 % weight loss compared to their maximum body weight they 

were weighed daily. Weights have been analysed by ANOVA. 

2.3.2.3 Grip-strength 

Grip-strength of TgG93A(L)Galahad and NTgGalahad animals was evaluated once a week 

starting at 150 days of age. Measures were taken by technicians using Grip-strength 

meter bio-GS3 (BioSeb). 

Each animal was lifted by the base of the tail and placed with all four feet on the mesh 

of the grip-strength meter. Once the mouse settled on a grip it was drawn back along 

the mesh in one single movement. Three individual measurements were taken for each 

time point, values were averaged and divided for the weight of the mouse of the 

correspondent week. Data were analysed by ANOVA. 
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2.3.2.4 Survival 

Humane end points defined in section 2.2 have been used for Galahad mice. On 

reaching the human end points animals were perfused as described in section 2.3.1.1, 

and tissues were harvested as described below in section 2.4.2. Control mice that did 

not display ALS symptoms were kept until 315 days of age and then culled by exposure 

to rising concentration of CO2.  

Kaplan-Meier estimator was used for survival data analysis. 

2.4 Histology  

2.4.1 Harvesting of fresh tissues  

For molecular biology experiments the following tissues were harvested fresh from 

each animal: brain, spinal cord, liver, sciatic nerves, tibialis anterior (TA) muscle, 

extensor digitorum longus (EDL) muscle and tail.  

When collecting fresh samples animals were culled by cervical dislocation one at a time. 

The mouse was placed supine to dissect TA, EDL muscles and sciatic nerves. The skin 

on the leg was peeled off and the distal TA tendon was exposed. The ligament of the 

TA was cut and muscle was gently removed, the same was done for the EDL muscle. 

A deep cut was performed from the lumbar region of the vertebral column to the 

gluteal muscles to expose both sciatic nerves, which were then harvested. The mouse 

was turned on its back, a sample of the tail was taken and an incision on the abdomen 

was made to collect the liver. The head was then detached from the body and the brain 

was separated from the skull. Finally the whole column was removed from the body 

and the spinal cord was carefully pinned and dissected.  

Immediately after dissection tissues were placed in cryotubes, snap frozen in liquid 

nitrogen and stored at -80 °C.  

2.4.2 Harvesting and embedding of fixed tissues  

Following perfusion fixed tissues were harvested from mice: brain, spinal cord, TA and 

EDL muscles. 

TA and EDL muscles were dissected with the same technique used for fresh tissues 

described in section 2.4.1. They were then arranged on supports, post fixed for 3 hours 

in 4 % PFA at 4 °C and placed overnight in 40 % sucrose (Sigma-Aldrich), 0.001 % 
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sodium azide (Sigma-Aldrich) in PBS at 4 °C. The following day muscles were 

embedded in OCT freezing medium (Sakura) using aluminium foil moulds. Muscles 

were stored at -20 °C. Brain was dissected as described in section 2.4.1 and post fixed 

overnight in 4 % PFA at 4 °C. The following day it was placed in 40 % sucrose, 

0.001 % sodium azide in PBS and stored at 4 °C. The column was removed from the 

body and post fixed overnight in 4 % PFA at 4 °C. The following day the spinal cord 

was dissected and stored in 40 % sucrose, 0.001 % sodium azide in PBS at 4 °C.  

2.4.3 Neuromuscular junction (NMJ) 

2.4.3.1 Sectioning of the extensor digitorum longus (EDL) muscle  

A BrightTM cryostat was used to cut two series of 20 µm longitudinal sections of frozen 

EDL muscles. Muscles were cut through their entire length and since NMJs are 

approximately 40 µm in size all NMJs present in a muscle should be captured in each 

series. One of the two series cut per muscle was stained and analysed. Sections were 

collected onto poly-lysine coated slides (VWR), air dried at room temperature for 1 

hour and stored at -20 °C. 

2.4.3.2 Immunostaining 

Muscle sections were defrosted, circled with a PAP pen (VWR) and air dried for 

30 minutes. Slices were then placed in a humidified chamber at room temperature and 

kept there for the duration of the staining process.  

Sections were washed 3 times for 5 minutes with TBS (Sigma-Aldrich) to remove OCT 

and then blocked for 1 hour with 3.5 % M.O.M. blocking reagent (Vector Labs) in 

TBS with 0.2 % Triton X-100 (Sigma-Aldrich) (referred to as TBS+). Slices were 

washed twice in TBS+ for 2 minutes and incubated for 30 minutes with 1:10 dilution 

of primary antibodies prepared in 7.5 % M.O.M. diluent (Vector Labs) in TBS+. The 

two primary antibodies used were mouse monoclonal anti-synaptic vesicle (SV2) 

(Developmental Studies Hybridoma Bank) and mouse monoclonal anti-neurofilament 

(2H3) (165 kDa) (Developmental Studies Hybridoma Bank). Sections were washed 

again in TBS+ and incubated for 10 minutes with M.O.M. biotinylated anti-mouse 

secondary antibody (Vector Labs) diluted 1:250 in M.O.M. diluent. Another TBS+ 

washing was applied to the section before incubation with fluorescent labelling 

performed as followed: 1:200 of streptavidin Alexa Fluor 488 (Invitrogen), 1:500 of α-

bungarotoxin-rhodamine (Sigma-Aldrich) 1:500 of DAPI (Sigma-Aldrich) in TBS+ for 
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30 minutes in the dark. Sections were rinsed with TBS and cover slipped using 

florescent mounting media (DAKO), dried overnight at room temperature and stored 

at -20 °C. 

2.4.3.3 Analysis  

NMJs were manually counted using a Leica DMR epifluorescent microscope. The total 

number of NMJs in each muscle was assessed by identification of the end plates on the 

red florescence channel (stained by α-bungarotoxin-rhodamine). The innervation status 

of each NMJ, defined in Table 2.2, was evaluated by determining the co-localisation 

level between the muscle fibre end plate (red) and the foot plate of the motor neuron 

(green, stained by SV2 antibody). All analysis was carried out blind to genotype. Images 

were acquired on a laser scanner confocal microscope Zeiss LSM 710 using proprietary 

software (Carl Zeiss Ltd, Hertfordshire, UK). 

Innervation status Morphology 

Innervated Complete overlap between nerve terminal and endplate 

Intermediate Partial overlap between nerve terminal and endplate 

Denervated Absent overlap between nerve terminal and endplate 

En-passant Synapses that occur at a non-terminal region of an axon 

Table 2.2 Classification of NMJs innervation status. 

2.5 General DNA protocols 

2.5.1 Nucleic acids extraction and purification from mouse tissue  

DNA was extracted from 2 mm ear notches or from 0.5 mm tail biopsies. Two 

different extraction techniques have been employed: a fast DNA extraction for 

genotyping polymerase chain reaction (PCR), and a proteinase K DNA extraction for 

quantity real time polymerase chain reaction (qPCR) and pyrosequencing genotyping. 

2.5.1.1 Fast DNA extraction 

Tissues were incubated in 50 μl Extraction Solution (Sigma-Aldrich) and 12.5 μl Tissue 

Prep Solution (Sigma-Aldrich) for 20 minutes at room temperature then transferred at 

95 °C for 4 minutes. Samples were centrifuged for 30 seconds at maximum speed in a 

bench top microfuge (Heraeus Fresco 17, Thermo Fisher). 50 μl of Neutralisation 

Solution B (Sigma-Aldrich) were added and mixed by vortexing. Samples were then 
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centrifuged for 7 minutes at maximum speed. For genotyping PCR, 1 μl of a 1:10 

dilution in ddH2O was used as template. 

2.5.1.2 Proteinase K DNA extraction 

Tissues were digested at 55 °C overnight in 210 μl filtered lysis buffer: 20 mg/ml 

proteinase K (Invitrogen), 100 mM Tris (pH 8.0) (Sigma-Aldrich), 5 mM 

ethylenediaminetetraacetic acid (EDTA) (Sigma-Aldrich), 200 mM NaCl, 0.2 % sodium 

dodecyl sulphate (SDS) (Sigma-Aldrich). Once digested, the mixtures were centrifuged 

for 5 minutes, at 20817 x g at 4 °C to pellet non-digested tissues. Supernatants were 

transferred to clean 1.5 ml Eppendorf tubes. DNAs were precipitated by adding 200 μl 

isopropanol (VWR) and pelleted by 10 minutes centrifugation at 20817 x g at 4° C. The 

supernatants were then removed by pipetting, and the pellets were air-dried overnight 

at room temperature. DNA pellets were resuspended in 50 μl TE buffer: 10 mM Tris-

HCl (Sigma-Aldrich), 1 mM EDTA. One μl of DNA diluted 1:10 in TE buffer was 

used as template for genotyping pyrosequencing and qPCR. 

2.5.2 Polymerase chain reaction (PCR) 

Primers were either supplied by collaborators ready to be used or purchased as desalted 

lyophilised pellets (Sigma-Aldrich). Purchased primers stocks were reconstituted to 

100 μM in ddH2O and stored at -20 °C. Working dilutions were made to 5 μM with 

ddH2O and stored at -20 °C.  

For genotyping PCR a 2X REDTaq ReadyMix (REDTaq) Taq polymerase from Sigma-

Aldrich was used. Mega mix contained gel loading dye and buffer thus PCR products 

were loaded directly onto agarose gels. 

2.5.2.1 SOD1 transgene genotyping PCR 

This PCR protocol has been employed for genotyping all mouse lines with human 

SOD1 wild-type or human SOD1 G93A transgene: TgSOD1WT, TgSOD1G93A(H), 

Sod1D83G X TgSOD1WT, Galahad and Galahad X TgSOD1G93A(H) mice.  

A 10 μl master mix was used per sample, containing: 2X REDTaq, four primers 

defined in Table 2.3 at a concentration of 0.5 μM, a template of 1 μl of genomic DNA 

diluted 1:10 in ddH2O or TE and appropriate quantity of ddH2O to reach final volume. 

PCR was carried out using Peltier Thermal Cycler PTC-225 (Bio-Rad), cycling 

conditions are reported in Table 2.4. Products from PCR were resolved on a 2 % 
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agarose (Invitrogen), 45 mM Tris-borate (Sigma-Aldrich), 0.1 mM EDTA gel, (see 

below 2.5.2.3) running at 100 V for 30 minutes.  

The success of the PCR was confirmed by the presence in all samples of a 324 bp 

fragment. This band amplifies across an intron 3/exon 3 boundary from the gene 

Interleukin 2 (Il2) on chromosome 3. While the presence of the transgene was 

established by a band of 236 bp which amplifies across exon 4 of the SOD1 transgene, 

from intron 3 to intron 4 see Figure 2.3. 

 Forward Reverse 

Control CTAGGCCACAGAATTGAAAGATCT GTAGGTGGAAATTCTAGCATCATC 

Transgene CATCAGCCCTAATCCATCTGA CGCGACTAACAATCAAAGTGA 

Table 2.3 SOD1 transgene genotyping primers. 

Step Condition  Temperature 

(°C) 

Time 

(min) 

1 denaturation 95 03:00 

2 denaturation 95 00:30 

3 annealing 60 00:30 

4 extension  72 00:45 

Cycle 35 times from step 2 

5 final extension  72 02:00 

6 storing 4 forever 

Table 2.4 PCR cycling conditions for SOD1 transgene genotyping. 
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Figure 2.3 Example of transgene genotyping PCR. (L) Ladder, (ntc) no template control, (Tg) 

transgenic control, (NTg) non-transgenic control; non-transgenic and transgenic samples. 

2.5.2.2 Sod1 knockout genotyping PCR 

This PCR protocol has been employed for genotyping all mouse lines with Sod1 

knockout allele: Sod1 KO and Sod1D83G X Sod1 KO mice.  

A 10 μl master mix was used per sample, containing: 2X REDTaq, four primers 

defined in Table 2.5 at a concentration of 0.5 μM, a template of 1 μl of genomic DNA 

diluted 1:10 in ddH2O or TE and appropriate quantity of ddH2O to reach final volume. 

PCR was carried out using the cycling conditions defined in Table 2.6. 

Products from PCR were resolved on a 2 % agarose, 45 mM Tris-borate, 0.1 mM 

EDTA gel, (see below 2.5.2.3) running at 100 V for 30 minutes.  

The presence of a wild-type allele was revealed by a 123 bp band amplified from exon 

2 to intron 2 of Sod1 on chromosome 16. While the presence of the knockout allele 

was established by a band of 240 bp which presumably amplifies from the selection 

cassette used to replace exon 1 and exon 2, however the sequence was not published 

by (Matzuk et al., 1998) and details are not given on the Jax website. 

 Forward Reverse 

Control TGAACCAGTTGTGTTGTCAGG TCCATCACTGGTCACTAGCC 

KO TGTTCTCCTCTTCCTCATCTCC ACCCTTTCCAAATCCTCAGC 

Table 2.5 Sod1 knockout genotyping primers. 
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Step Condition  Temperature 

(°C) 

Time 

(min) 
1 denaturation   95 03:00 

2 denaturation 95 00:20 

3 annealing 61 01:00 

4 extension  72 01:00 

Cycle 35 times from step 2 

5 final extension  72 05:00 

6 storing   4 forever 

Table 2.6 PCR cycling conditions for Sod1 knockout genotyping. 

2.5.2.3 Agarose gel electrophoresis (AGE) 

For electrophoresis of PCR products 6 mm gels were prepared by dissolving 2 % 

Invitrogen UltraPure agarose in 100 ml 4.5 mM Tris-borate, 0.1 mM EDTA (TBE 

buffer). The solution was heated in a microwave for 1-2 minutes, allowed to cool 

slightly before adding 0.05 μg/ml of ethidium bromide (Sigma-Aldrich) and poured 

into gel casts (Scie-plas). Gels were left at room temperature to solidify for about 30-40 

minutes.  

Electrophoresis was carried out at 100 V at room temperature for 30 minutes in TBE 

buffer using horizontal submarine gel tanks (Mupi). Gels were visualized and imaged 

using a UV illuminator and digital imaging system (ChemiDoc XRS+ Bio-Rad). A 

quantitative DNA ladder was used to assed the size of the DNA bands: 

HyperLadder IV (Bioline). 

2.5.3 Galahad chromosome single-nucleotide polymorphism PCR 

This PCR protocol has been used to amplify DNA for pyrosequencing assays (carried 

out by collaborators at MRC Harwell) for Galahad and Galahad X TgSOD1G93A(H) mice. 

Six PCRs were run per samples with different primers pairs defined in Table 2.7. A 

10 μl master mix was used for each sample, containing: 2X REDTaq, a forward and a 

reverse primer both at a concentration of 0.2 μM, a template of 2 μl of genomic DNA 

diluted 1:10 in TE and appropriate quantity of ddH2O to reach final volume. PCR was 

carried out using Peltier Thermal Cycler PTC-225, for cycling conditions see Table 2.8.  



89 
 

Chr1 166 Mb 

Forward GTTTTACGATGTTGCATT 

Reverse AAAATTCTGGTTTTACGATGTTGCAT 

Biotinylated TCCTTAGACATAGGCAATTTACAGC 

Chr1 181 Mb 

Forward GCGTGTTAAGCCCAA 

Reverse TGCTGGGTGTGTTGAGGTTTG 

Biotinylated CCTCTGCCCAGTTCACAATGG 

Chr1 191 Mb 

Forward CTGGCAGCTGGATG 

Reverse TGAAATACTGGCAGCTGGATG 

Biotinylated GGGAAGATTTTTGCATCCTGTGAG 

Chr7 40 Mb 

Forward ACGTACCAGGTCCAGT 

Reverse AGGGTCTGCGGCTAATAG 

Biotinylated ATATACACACCTCGACCTACCAC 

Chr7 60 Mb 

Forward GAGCACATATTCAGGGT 

Reverse AATGGGAAAAATCTGTGTTGT 

Biotinylated TTGGCAGAAGCTTGACTTA 

Chr7 90 Mb 

Forward ACAACCAACCCTCTTC 

Reverse AAACAACCAACCCTCTTCA 

Biotinylated CAGTGCCAAGATGACCAG 

Table 2.7 Galahad genotyping primers. 

Step Condition  Temperature 

(°C) 

Time 

(min) 
1 denaturation   95 05:00 

2 denaturation 95 00:15 

3 annealing 60 00:30 

4 extension  72 00:15 

Cycle 44 times from step 2 

5 final extension  72 05:00 

6 storing   4 forever 

Table 2.8 Galahad PCR cycling conditions. 
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2.5.4 Quantitative real time PCR (qPCR) for SOD1 transgene copy number 

The qPCR protocol to determine transgene copy number was developed by Dr Rosie 

Bunton-Stasyshyn from the procedure published on Jackson Laboratory website: 

http://jaxmice.jax.org. Assays and the analysis were carried out by technical staff and 

used to asses copy number for the following mouse lines: TgSOD1G93A(H), Galahad and 

Galahad X TgSOD1G93A(H). 

The assay used TaqMan (Applied Biosystems) reagents and relative standard curve 

quantitation of multiplex reactions, containing one measure of the transgene (Tg) and 

one internal endogenous control (EC). 

Primers and probes defined in Table 2.9 have been purchased from Sigma-Aldrich as 

lyophilised pellets and resuspended to 100 μM. The endogenous control primers 

amplified 74 bp from exon 24 of the Apob gene on mouse chromosome 12. The 

transgene primers amplified 88 bp from intron 4 of the human SOD1 transgene. 

A 10 μl master mix was used for each sample, containing: 2X TaqMan Universal PCR 

Master Mix, 0.8 μM of EC forward and EC reverse primers, 0.1 μM of Tg forward and 

Tg reverse primers, 0.1 μM of EC and Tg probes, a template of 1 μl of genomic DNA 

diluted 1:20 and appropriate quantity of ddH2O to reach final volume. For each assay 

plate a five point standard curve was created using a known copy number DNA by 

Jackson Laboratory at the following concentrations: 100, 20, 4, 0.8 and 0.16 ng/μl. 

Each point on the standard curve was replicate six times. Three replicates were 

measured for the SOD1 Tg standard curve and three were measured for the EC 

standard curve. On each plate experimental DNA samples and two control DNAs (a 

Jackson Laboratory control and a known reduced copy number sample) were assayed 

over four replicate reactions. Applied Biosystems 7500 Software v2.0.1 was used to set 

up a standard run, using default baseline and threshold settings and the cycling 

conditions describe in Table 2.10. The delta threshold cycle (Ct) was calculated by 

subtracting the mean SOD1 Tg Ct from the mean EC Ct for each replicate group. The 

delta-delta Ct was then calculated by subtracting the replicate group delta Ct from the 

Jackson Laboratory control delta Ct. Relative quantity was then calculated as 2 to the 

power of the negative delta-delta Ct. 
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Primers and probes Sequence 5’ label 3’ label 

Endogenous control (EC) 
forward primer 

CACGTGGGCTCCAGCATT   

Endogenous control (EC) 
reverse primer 

TCACCAGTCATTTCTGCC
TTTG   

Transgene (Tg) forward 
primer 

GGGAAGCTGTTGTCCCA
AG 

  

Transgene (Tg) reverse 
primer 

CAAGGGGAGGTAAAAGA
GAGC   

EC probe 
CCAATGGTCGGGCACTG
CTCAA Cy5 

Black Hole 
Quencher 2 

Tg probe 
CTGCATCTGGTTCTTGCA
AAACACCA 

6-FAM Black Hole   
Quencher 1 

Table 2.9 SOD1 transgene copy number qPCR primers and probes. 

Step Temperature 

(°C) 

Time 

(min) 
1 50 02:00 

2 95 10:00 

3 95 00:15 

4 60 01:00 

Cycle 39 times from step 3 
 

Table 2.10 SOD1 transgene copy number qPCR cycling conditions. 

2.6 SOD1 protein protocols 

2.6.1 Production and purification of wild-type and mutant SOD1 recombinant 
proteins 

Human and mouse SOD1 proteins were produced and purified from an E.coli 

expression system. All expression constructs have been generated and cloned into 

vectors by Dr Ruth Chia, Dr David Emery and Julian Pietrzyk see Appendix 8.1 for 

more details. Constructs were transformed into E.coli strain BL21 (DE3) (Novagen) by 

Dr Chia Ruth and Mark Bachelor. To confirm that constructs were successfully 
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transformed, Dr Chia Ruth and Mark Bachelor also performed a small scale protein 

expression screen on each colony. Plasmids were isolated for sequence verification to 

ensure the construct did not change during transformation. Cells were stored at -80 °C 

in 15 % glycerol (Sigma-Aldrich).  

2.6.1.1 Protein expression, cell harvesting and cell lysis  

Protein expression  

To produce a sufficient amount of proteins each construct was expressed in 9 l culture 

Figure 2.4 (a). A transformant colony was inoculated in 100 ml autoclaved 4 % Luria 

Broth in ddH2O (LB) (Sigma-Aldrich) with 50 μg/ml kanamycin (Sigma-Aldrich) and 

grown overnight at 37 °C in a shaking incubator (200 rpm) (Orbital). The following 

day nine erlenmeyer flasks (Nalgene) containing 1 l of autoclaved LB and 50 μg/ml 

kanamycin each, were inoculated with 11 ml of overnight growth. Cells were grown at 

37 °C in a shaking incubator (200 rpm) until the optical density at 600 nm (OD600) was 

between 0.6-1.0 (about 2.5 hours). Cells were then induced overnight at 37 °C in a 

shaking incubator (250 rpm) by addition of 1 ml of 1 M isopropyl-ß-D-

thiogalactopyranoside (IPTG) (Melford). 

Cell harvesting 

Harvesting of cells was performed by successive centrifugation and decantation of 

supernatant in 1 l polypropylene bottles (Nalgene) at 17000 x g for 5 minutes at 10 °C 

using a Sigma Laboratory Centrifuge 6K15 (rotor Nr. 12500) see Figure 2.4 (b). If not 

used immediately cell pellets were stored at -80 °C, otherwise they were carefully 

resuspended in 100 ml of extraction buffer: 50 mM Tris-HCl, 200 mM NaCl, 0.1 % 

Tween-20 (Sigma-Aldrich), 50 U/ml benzonase (VWR), 10 µg/ml lysozyme (Sigma-

Aldrich) at pH 8.0.  

Cell lysis 

Cells resuspended in extraction buffer were lysed by sonication (sonicator probe MS73, 

Sigma-Aldrich) with 2 minutes bursts at 45 % power repeated 3 times. The solution 

was clarified by centrifugation at 17000 x g for 30 minutes at 10 °C (rotor number: 

12166) the supernatant was discard and the pellet retained. The extraction step was 

repeated a second time using the same conditions to obtain a new pellet, Figure 2.4 (c). 
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Solubilisation  

Pellet was resuspended in 40 ml solubilisation buffer: 6 M GuHCl (Sigma-Aldrich), 

50 mM Tris-HCl, and 0.8 % 2-mercaptoethanol (Sigma-Aldrich) at pH 8.0. The 

solution was sonicated with 2 minutes bursts at 45 % power repeated 3 times and 

clarified by centrifugation at 21000 x g for 45 minutes at 10 °C. Supernatant was 

retained, pellet was resuspended again in 40 ml solubilisation buffer, and the process 

was repeated at the same conditions. The pellet was now discard and the supernatant 

was combined with the one obtained before and stored at -20 °C, see Figure 2.4 (d). 

 

Figure 2.4 SOD1 protein production. (a) Each construct was expressed in 9 l culture. (b) Bacterial 

growth was centrifuged and cell pellet retained. (c) Cell pellet was resuspended in extraction buffer. 

Suspension was sonicated centrifuged, and pellet retained. The process was repeated twice. (d) Pellet was 

resuspended in solubilisation buffer, sonicated and supernatant containing His-tagged SOD1 protein 

was retained. The process was repeated twice. 
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2.6.1.2 Affinity chromatography Ni-NTA 

Metal chelate affinity chromatography with nickel ions immobilised on a nitrilotriacetic 

acid sepharose matrix (Ni-NTA) was used to purify SOD1 proteins. A technique based 

on the high specificity bond between immobilised nickel ions and histidine residues in 

the His-tag fused to SOD1 proteins.  

Ni-NTA runs were performed at room temperature using an ÄKTA pure (GE 

Healthcare Life Sciences) chromatography system. Each purification process required 

two Ni-NTA column runs. The first run removed contaminated proteins from the cell 

lysate, the second removed the free His-tag after cleavage from SOD1. 

Column details 

A 65 ml glass column (BioRad) packed with 150 ml Ni-NTA resin (Qiagen) was used 

for protein purification. The column resin was recharged with metal ions every 6 runs, 

see protocol in section 8.3. The column was stored at room temperature in 20 % 

ethanol (VWR). 

First column 

A column was flushed with 120 ml ddH2O and equilibrated with 120 ml of filter 

sterilised buffer A: 6 M GuHCl, 10 mM Tris-HCl, 100 mM Na3PO4 (Sigma-Aldrich), 

10 mM glutathione (GSH) (Sigma-Aldrich) at pH 8.0. The column was then loaded 

with solubilised protein preparation previously defrosted and filtered, and flushed with 

120 ml of buffer A. Protein was refolded on-column overnight with a gradient of 0-

100 % filter sterilised buffer B (10 mM Tris-HCl, 100 mM Na3PO4 at pH 8.0) over 30 

column volumes. The following day protein was eluted with a gradient of 0-100 % 

filter sterilised buffer C (10 mM Tris-HCl, 100 mM Na3PO4, 2 M imidazole (Sigma-

Aldrich) at pH 7.0) over 2 column volumes. See Figure 2.5 (a). 

Dialysis and cleavage  

Protein was transferred within a dialysis membrane (Spectra pro) and dialysed at room 

temperature for 3 hours in 5 l of 25 mM Tris-HCl, 150 mM NaCl at pH 8.4 in ddH2O 

over 3 buffer changes. Concentration of the protein sample was measured using 

absorbance at OD280. His-tags were then cleaved from the protein by addition 0.1 U 

thrombin (VWR) per 1 mg of protein and CaCl2 (Sigma-Aldrich) at a final 

concentration of 2.5 mM see Figure 2.5 (b). The solution was left shaking overnight at 

room temperature to assure complete cleavage. 
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Second column 

A column was flushed with 120 ml ddH2O and equilibrated with 120 ml of filter 

sterilised buffer D: 20 mM Tris-HCl, 300 mM NaCl at pH 8.0. The protein solution 

was loaded into the column and eluted over 5 column volume of 0-100 % gradient of 

filter sterilised buffer E: 20 mM Tris-HCl, 300 mM NaCl, 2 M imidazole at pH 8.0 as 

illustrated in Figure 2.5 (c).  

After use column was cleaned with 150 ml of 6 M GuHCl, 2 M imidazole to remove 

flushed with 120 ml of ddH2O and stored in 20 % ethanol. 

Dialysis and Cu/Zn metal loading 

Protein obtained from the second column run was dialysed at room temperature for 3 

hours in 20 mM Tris-HCl, pH 8.0 over 3 buffer changes.  

Protein was then either stored at -80 °C in 15 % glycerol or metal loaded with copper 

and zinc by subsequent dialysis at room temperature. The first dialysis was carried out 

for 3 hours in 5 l of 100 mM Tris-HCl, 300 mM NaCl, 150 μM of CuSO4 (Sigma-

Aldrich) in ddH2O at pH 8.0; the second for 3 hours in 5 l of 100 mM Tris-HCl, 

300 mM NaCl, 150 μM of ZnSO4 (Sigma-Aldrich) in ddH2O at pH 8.0. Finally the 

protein was dialysed in storage buffer containing 20 mM Tris-HCl in ddH2O at pH 7.5, 

snap freeze and stored at -80 °C.  
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Figure 2.5 SOD1 protein purification. (a) Solubilised protein preparation was loaded to the column. 

Contaminates were removed and protein refolded overnight. His-tagged SOD1 protein was collected. 

(b) Overnight cleavage of the His-tags from SOD1 protein. (c) Cleaved solution was loaded to the 

column, only free His-tags attached to the resin and SOD1 protein was collected. 

2.6.2 Preparation of animal tissues for protein investigation 

2.6.2.1 Brains preparation specific for Sod1D83G experiments  

Frozen mouse brains collected as described in section 2.4.1 were rinsed in PBS and 

weighed. Brains were homogenised using a TissueRuptor (Qiagen) in ice cold lysis 

buffer 0.1 M Tris-HCl at pH 7.4, 0.5 % Triton X-100, 1 mM EDTA and complete 

EDTA-free protease inhibitors (Roche) to make a 10 % weight/volume solution. 

Crude homogenates were kept on ice for 20 minutes and centrifuged at 14000 x g for 

10 minutes at 4 °C. Supernatants were collected and stored at -80 °C. 
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2.6.2.2 Spinal cord preparation specific for transmission experiments  

Frozen mouse spinal cords collected as described in section 2.4.1 were homogenised 

using TissueRuptor in ice cold PBS to make a 10 % weight/volume solution. Crude 

homogenates were kept on ice for 20 minutes, filtered using a syringe with a 20 gauge 

needle and stored at -80 °C. 

2.6.3 Spectrophotometric protein concentration measurements  

2.6.3.1 Absorbance  

While performing affinity chromatography (2.6.1.2) protein concentration of samples 

was estimated using absorbance. One ml of protein sample diluted 5 times was 

measured for absorbance at 280 nm using NanoDrop® ND-1000 Spectrophotometer. 

The concentration for SOD1 was calculated using an experimentally determined 

extinction coefficient (εSOD1) at 280 nm of 10800 M-1cm-1 (Choi et al., 2005) 

calculated using the following formula: 

SOD1 concentration (M) = OD280 / εSOD1 

2.6.3.2 Colorimetric assays 

Two different type of colorimetric protein assay kits with different reactivity to 

detergents have been employed to measure protein concentration: Bradford assay (Bio-

Rad) and DC protein assay (Bio-Rad). 

Bradford assay 

This assay was used, according to manufacturer’s instructions, to determine the 

concentration of solubilised proteins towards the addition of an acidic dye. A 

differential colour change of the day occurred in response to different protein 

concentration. Absorbance measured at 595 nm with a 96 well microplate reader 

(Sunrise, Tecan) and comparison to a standard curve provided a relative quantification 

of protein concentration. 

DC protein assay 

The DC protein assay was used, according to manufacturer’s instructions, to measure 

the relative concentration of solubilized protein. The assay was based a reaction of the 

protein with alkaline copper tartrate solution followed by the reduction of the folin 

reagents with the copper treated-protein which produce several reduced species with a 
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characteristic blue colour. Measurement of the absorbance at 750 nm using a 96 well 

microplate reader and comparison with a standard curve provided quantification of the 

relative protein concentration. 

2.6.4 Polyacrylamide gel electrophoresis  

Gel electrophoresis and blotting were carried out using XCell SureLock Mini-Cell 

Electrophoresis System from Life Technologies. All types of precast polyacrylamide 

gels, buffers and protein standards have been also purchased from Life Technologies 

unless specified differently. Gels and blots were quantified using ImageJ software.  

2.6.4.1 Coomassie blue staining  

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

For coomassie blue staining proteins were separated by polyacrylamide gels 

electrophoresis on 16 % Tris-glycine precast gels with 1X Tris-glycine SDS running 

buffer (National Diagnostic). Prior to running, samples were mixed with 1X Tris-

glycine SDS sample buffer, 2 % 2-mercaptoethanol, heated at 100 °C for 2 minutes and 

loaded onto the gel. Electrophoresis was performed at room temperature at 125 V for 

90 minutes. A BSA (Sigma-Aldrich) control of a known concentration and SeeBlue 

plus2 protein standard were include in all experiments.  

Proteins visualisation 

Proteins were visualised by soaking the gel for 1 hour in coomassie brilliant blue 

solution containing: 10 % acetic acid (VWR), 60 mg / l of Coomassie Blue R (Sigma-

Aldrich) in ddH2O. Gels were destained in ddH2O until they become colourless and 

only protein bands were visible. All gels were imaged using an hp scanner. For protein 

concentration analysis the proteins of interest were compared to the BSA control. 

2.6.4.2 Western blot 

SDS-polyacrylamide gel electrophoresis 

For reducing and denaturing western blots, proteins were separated by polyacrylamide 

gels electrophoresis on 4-12 % NuPAGE Bis-Tris precast gels with 1X MES running 

buffer. Prior to running, samples to a final concentration of 30 µg were mixed with 2X 

LDS sample buffer, 2 % 2-mercaptoethanol and heated at 70 °C for 10 minutes. 

Electrophoresis was performed at room temperature at 200 V for 35 minutes, SeeBlue 
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ladder was used in all experiments in order to identify the molecular weight of the 

proteins of interest. 

Transfer 

Proteins were transferred by electro-blotting from the gel to a polyvinylidene difluoride 

(PVDF) membranes (Millipore). Each PVDF membrane was pre-wet in methanol 

(VWR) at least for 2 minutes before use. Electro-blot was performed at room 

temperature at 35 V for 2 hours using a transfer buffer made up with 1X Tris-Glycine 

Electroblotting buffer (National Diagnostic), 10 % methanol. 

Blocking  

The membrane was blocked in blocking solution (Odyssey blocking buffer (PBS) 

Licor) for 1 hour at room temperature. 

Immunodetection of SOD1  

The membrane was incubated overnight at 4 °C with SOD-100 primary antibody 

(Enzo) (1:2000) and anti-β-actin (Sigma-Aldrich) (1:10000) in 50 % blocking solution, 

50 % PBS with 0.05 % Tween (PBS-T). The unbound antibodies were removed by 3 

washes of 5 minutes in PBS-T. Membrane was then exposed for 2 hours in the dark to 

infrared secondary antibodies: IRDye Licor anti-mouse (1:10000) and IRDye Licor 

anti-rabbit (1:10000) in 50 % blocking solution, 50 % PBS-T. The membrane was 

washed 2 times for 5 minutes with PBS-T and 1 time for 5 minutes with PBS prior 

imaging using Odyssey Classic from Licor. For quantification proteins were normalized 

for β-actin internal control. 

2.6.4.3  Native western blot 

Native-polyacrylamide gel electrophoresis 

For native western blots proteins were separated by polyacrylamide gels electrophoresis 

on 3-12 % NativePAGE Bis-Tris precast gels in non-denaturing and non-reducing 

conditions. Samples to a final concentration of 30 µg were mixed with 1X 

NativePAGE sample buffer and loaded onto the gel. Electrophoresis was performed at 

room temperature in two stages. In the first stage the outer chamber of the 

electrophoresis tank was filled with 600 ml of 1X NativePAGE running buffer and the 

inner chamber was filled with 200 ml of dark blue cathode buffer (1X NativePAGE 

running buffer, 1X NativePAGE cathode buffer additive). The gel was electrophoresed 

for 40 minutes at 120 V until the dye front migration was 1/3rd of the gel. For the 
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second stage the inner chamber buffer was substituted with 200 ml of light blue 

cathode buffer (1X NativePAGE running buffer, 0.1X NativePAGE cathode buffer 

additive). Proteins were resolved on the gel for another hour at 120 V. NativeMark 

unstained protein standard was used in all experiments. 

Transfer 

Proteins were transferred to a PVDF membrane by electro-blotting. The membrane 

was pre-wet in methanol at least for 2 minutes and the gel was soaked for 15 minutes 

in 50 ml of 0.1 % SDS in ddH2O. Electro-blotting was performed at room temperature 

at 35 V for 2 hours using 1X NuPAGE transfer buffer. 

Blocking  

To prevent diffusion of proteins, the membrane was soaked in 20 ml of 8 % acetic acid 

for 15 minutes, washed with ddH2O and air dried for at least 30 minutes. The 

membrane was then reactivated in methanol for 2 minutes rinsed in ddH2O and 

blocked in Odyssey blocking solution for 1 hour at room temperature. 

Immunodetection of SOD1  

Three different antibodies against SOD1 have been employed in native western blot 

experiments, concentrations and secondary antibodies details are given in Table 2.11. 

Membrane was incubated overnight at 4 °C with primary antibody diluted in 50 % 

blocking solution, 50 % PBS-T. The following day unbound antibodies were removed 

by 3 washes of 5 minutes in PBS-T. Membrane was incubate for 2 hours with 

horseradish peroxidase (HRP) conjugated secondary antibody diluted in 50 % blocking 

solution, 50 % PBS-T and was washed 2 time for 5 minutes with PBS-T and 1 time for 

5 minutes with PBS. Enhanced chemiluminescent substrate (ECL) (Pierce) was applied 

to each membrane for 5 minutes to detect HRP. In the dark room photo-films were 

exposed to a membrane and developed. Exposure time varied as needed for optimal 

detection.  

Primary antibody  Secondary antibody  

SOD-100 (Enzo) 1:1000 Goat anti-rabbit IgG-HRP (DAKO) 1:5000 

SEDI (Rakhit et al., 2007) 1:1000 Goat anti-rabbit IgG-HRP (DAKO) 1:5000 

USOD (Kerman et al., 2010) 1:100 Goat anti-rabbit IgG-HRP (DAKO) 1:5000 
 

Table 2.11 Primary and secondary antibodies for native blots. 
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2.6.4.4 SOD1 activity in-gel assay 

To perform an in-gel assay for SOD1 activity quantification, 30 μg of brain 

homogenates were resolved using 3-12 % NativePAGE Bis-Tris precast gels in 1X 

NativePAGE running buffer. Samples were mixed with 2X NativePAGE sample 

buffer and electrophoresed at 120 V for 50 minutes. The gel was then soaked for 45 

minutes in the dark with 50 mM potassium phosphate (Sigma-Aldrich) at pH 7.8, 

275 µg/ml nitro blue tetrazolium (Sigma-Aldrich), 65 µg/ml riboflavin (Sigma-

Aldrich), and 3.2 µl/ml TEMED (Sigma-Aldrich). The gel was rinsed with ddH2O and 

developed by exposure to light. 

2.6.5 Protein characterisation using circular dichroism (CD) 

Secondary structure of purified SOD1 proteins was determined by circular dichroism 

(CD) spectroscopy. Prior to analysis, SOD1 proteins were dialysed over 3 buffer 

change in 20 mM sodium phosphate (Sigma-Aldrich) at pH 7.5. CD spectra at far-UV 

250-190 nm was performed with a J-715 Circular Dichroism Spectropolarimeter 

(Jasco) using 0.1 mm path length circular cuvette. Data were collected at a stop 

resolution of 1 nm, a scan speed of 50 nm/minute, and 1 second response time. Each 

protein sample was measured over 10 accumulations and corrected against storage 

buffer. Protein concentrations were approximately 1.0 mg/ml, and CD measurements 

were converted to units of molar ellipticity ([θ]). Corrections and processing were 

performed using the Jasco Standard Analysis Software (Jasco). 

2.6.6 Conversion of SOD1 proteins into fibrils in vitro 

To form amyloid fibrils each recombinant protein was diluted to a final protein 

concentration of 10 µM in filtered 20 mM Tris acetate buffer (Sigma-Aldrich) with 

0.5 M GuHCl at pH 3.0, containing a final concentration of 10 µM Thioflavin-T (ThT) 

(Sigma-Aldrich). The assay was carried out on a 96 well plate with transparent flat 

bottom, prearranged with 4 Hybaid Ribolyser beads per well. For each sample 200 µl 

of reaction mixture was pipetted into 6 wells and the plate was covered with optically 

corrected adhesive film. The plates was incubated with continuous shaking at 830 rpm 

at 37 °C using GrantBio plate incubator shaker. The kinetics of fibril formation were 

monitored daily by measuring fluorescence emission at 485 nm when excited at 

450 nm using a fluorimeter plate reader (Infinite M1000 PRO, Tecan) with i-controlTM 

software.  
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The lag phase of amyloid formation was determined by fitting the time-dependent 

changes in the fluorescence of ThT (F) overtime of the reaction (t) to using the 

equation: 

F = A + B / (1 + exp [ k * (tm - t)]) 

In the equation above (A) is the base lave of florescence during the lag phase, (B) 

difference between final fluorescence level at plateau and the initial level during the lag 

phase, (k) is the rate constant of fibril growth (h-1), and (tm) is the observed time at 

transition midpoint. The lag time (tl) of fibril formation was calculated as: tl = tm – 2 / k 

(Chia et al., 2010) . 

2.7 Meta-analysis on SOD1 activity in SOD1-ALS affected patients 

Data for meta-analysis were collected by searching Pubmed, ALSoD and Medline 

electronic databases between 1993 and April 2015. Reference lists from relevant articles 

and from all papers obtained were also checked. The search terms used are listed below 

and they have been employed both alone and in combination with each other. 

Search terms: amyotrophic lateral sclerosis, SOD1 enzymatic activity, fALS, loss of 

function, red blood cells, fibroblasts, lymphoblast cells lines, in-gel activity assay. All 

names of SOD1 mutations have also been used as search terms in combination with 

the words “enzymatic activity” for example: “SOD1 G93A enzymatic activity”. 

Original papers but no abstracts or reports from meetings were considered. Studies 

were grouped according to the type of data presented and examined for sources and 

type of SOD1 enzymatic activity measurements taken. Only articles where SOD1 

activity was assessed from red blood cells, fibroblasts and lymphoblast cells lines of 

fALS patients were taken into consideration for analysis. 

2.8 Statistical analysis  

Statistical analysis was carried out using IBM SPSS, GraphPad Prism 6 and R with the 

exception of Chi Square test for calculation of inheritance ratios that was carried out 

using Graph Pad online http://graphpad.com/quickcalcs/chisquared1.cfm. 
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Chapter 3 SOD1 loss of function in SOD1-amyotrophic 
lateral sclerosis 

3.1 Introduction 

In 1993 Rosen and colleagues identified the first ALS causative mutations, 11 missense 

substitutions spread throughout the SOD1 gene. This result together with the finding 

of loss of dismutase activity in ALS patients, initially suggested a loss of function as a 

disease causative mechanism (Deng et al., 1993; Rosen et al., 1993). 

However, in 1994 analysis of a mutant SOD1 transgenic mouse model (TgSOD1G93A) 

gave the first indication for a gain of function mechanism as the cause of ALS (Gurney 

et al., 1994). TgSOD1G93A mice indeed exhibited an increased SOD1 activity together 

with a progressive adult onset motor phenotype with loss of lower MNs. 

Subsequent data from human and mouse studies supported the hypothesis that ALS 

arises from a gain of function mechanism. For example, in humans SOD1 dismutase 

activity did not correlate with aggressiveness of clinical features (Ratovitski et al., 1999). 

Mice lacking the Sod1 gene (Sod1-/-) had no SOD1 activity and did not display ALS-like 

phenotypes (Reaume et al., 1996). Moreover most of the transgenic mouse models 

overexpressing mutant human SOD1 (Joyce et al., 2011) showed an increased SOD1 

activity and loss of MNs.  

The idea that a loss of function played a role in the disease was abandoned without 

question in 1998, when Bruijn and colleagues compared the survival of a transgenic 

SOD1 mouse model (TgSOD1G85R) on a normal wild-type background and on a Sod1-/- 

background. The two mouse lines showed no change in survival, demonstrating that 

survival was influenced by a gain of function mechanism while was independent from 

mouse SOD1 loss of function (Bruijn et al., 1998).  

Further studies on SOD1-ALS together with the identification of other ALS causative 

genes confirmed the undeniable presence of a still unknown toxic gain of function as 

cause of this disease. Several mechanisms by which this gain of function might occur 

have been proposed and reviewed (Ilieva et al., 2009; Rothstein, 2009; Turner and 

Talbot, 2008). However, recently additional investigations on transgenic SOD1 mice 

and Sod1-/- mice pointed to the possibility that a loss of dismutase activity may 

contribute to SOD1-fALS. 
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3.2 Aim 

The aim of the work described in this chapter was to re-examine over twenty years of 

human and mouse research on SOD1 dismutase activity to see if SOD1 loss of 

function may play a modifying role in SOD1-ALS. 

In particular published data regarding SOD1 enzymatic activity of SOD1-ALS patients, 

and phenotypic data of Sod1 knockout mice were analysed and reviewed. 

3.3 Results 

3.3.1 SOD1 loss of function in SOD1-fALS patients 

Published papers about SOD1 enzymatic activity measured in SOD1-fALS patients 

were collected and reviewed as described in section 2.7. 

3.3.1.1 Methods of measuring SOD1 dismutase activity 

In mammals there are three unique and highly compartmentalized superoxide 

dismutases: SOD1 localised in the cytoplasm, SOD2 (Mn-SOD) localised in the 

mitochondrial matrix (Fridovich, 1986; Zelko et al., 2002) and SOD3 (Fe-SOD) which 

is mainly extracellular (Marklund et al., 1982). The presence of other two antioxidant 

enzymes similar to SOD1 complicates the measures of its activity. 

Two methods have been employed to assess SOD1 activity in patients: the “activity 

assay” and the “gel assay”. The activity assay (explained in Table 3.1) measures the total 

activity of the three dismutase enzymes and then subtracts SOD2 and SOD3 activity to 

obtain a measure of SOD1 activity alone. In the gel assay the three proteins are 

separated by electrophoresis and only the band corresponding to SOD1 is used to 

determine its activity. 
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Activity assay Xanthine-xanthine oxidase is added to samples to generate 
superoxide anions (O2-), and then a chromogen is used as an 
indicator of O2- production. In the presence of SOD, O2- 
concentration is reduced, resulting in a decreased colorimetric 
signal. However, all three SOD isoforms contribute to the 
measure of activity, therefore SOD1 activity is obtained indirectly 
by subtraction of SOD2 and SOD3 from total SOD activity. This 
is achieved by running a parallel assay with the addition of 
potassium cyanide which preferentially inhibits SOD1 (Roe et al., 
1988). 

Gel assay Proteins are separated by electrophoresis using a native gel. The 
gel is stained using a solution of NBT and riboflavin (a source of 
superoxide anions after exposure to light). When the gel is 
exposed to light the superoxide anions interact with NBT, 
reducing the yellow tetrazolium within the gel to a blue precipitate 
and staining the gel blue. However, SOD inhibits this reaction, 
resulting in colourless bands where SOD is present. 
Quantification of activity is inferred by measuring the intensity of 
the bands at the correct molecular weight using a digital software 
(Weydert and Cullen, 2010). 

Table 3.1 Methods of measuring SOD1 activity. 

3.3.1.2 Intrinsic and overall SOD1 activity 

In the literature SOD1 dismutase activity was measured either outside (intrinsic 

activity) or within a biological system (overall activity). 

The intrinsic activity of SOD1 was assessed using SOD1 recombinant proteins 

normalised for their quantity. This particular measure reflects only the enzymatic 

efficiency of the SOD1 protein. 

Conversely the overall activity was calculated within biological samples and normalised 

to the tissue quantity. This measure therefore reflects the amount of activity present in 

a biological contexts and takes into account known and unknown factors that affect 

the quantity, biological availability and functionality of SOD1. The intrinsic activity 

itself is one of these factors, others are: SOD1 mRNA half-life, SOD1 protein half-life, 

correct folding of SOD1, Cu++ loading of SOD1 and other post-translational 

modifications (Wilcox et al., 2009).  
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3.3.1.3 SOD1 dismutase activity is reduced in SOD1-fALS patients 

Data of SOD1 intrinsic activity were found only for eight mutant recombinant 

proteins, see Figure 3.1. Intrinsic activity values ranged between 0 % and 150 % of 

human wild-type SOD1 activity, and did not show any correlation with clinical aspects 

of the disease (Borchelt et al., 1994; Ratovitski et al., 1999). 

SOD1 overall activity instead was more frequently measured from patients’ red blood 

cells, fibroblasts and lymphoblast cell lines. Data from 48 different SOD1-fALS 

mutations were found in literature (Figure 3.1 and Table 3.2). The majority of them 

had a reduced overall SOD1 activity (Table 3.2), with a remarkable average loss of 

58 % (± 17, S.D.) of normal values (Figure 3.1). 

These results were consistent and more homogenous than measures of intrinsic activity 

considering that they were produced by different laboratories and that there is a 

naturally occurring variation in activity assessed in blood samples (Borchelt et al., 1994; 

de Lustig et al., 1993; Robberecht et al., 1994). Only in two of the 48 mutations SOD1 

overall activity was found to be normal or slightly reduced: D90A expressed both in 

heterozygosity and homozygosis and L117V when expressed in heterozygosity. Further 

literature investigation on these two mutations revealed some atypical characteristics 

(Table 3.3) and suggested that they might have a propensity to aggregate which is 

sufficient to start the disease process but not sufficient to determine misfolding and 

loss of SOD1 activity in the peripheral tissues.  

No correlation was found between intrinsic and overall SOD1 activity in the eight 

mutations where activity was assessed both from recombinant proteins and in patients. 

The G37R mutation was the most striking example having an overall activity of 40 % 

and an intrinsic activity of 150 % compared to wild-type. As mentioned the intrinsic 

activity is considered to be only one of the many factors that contribute to the overall 

activity, other determinants such as stability of mutant SOD1 proteins need to be 

investigated to account for this difference. Protein half-life for instance is variable 

among SOD1 mutants, but consistently reduced compared to the wild-type protein 

(Sato et al., 2005). A study that combined protein half-life and intrinsic SOD1 activity 

of six SOD1-fALS mutations predicted overall activity of 50 % of normal levels 

(Borchelt et al., 1994). This result is in accordance with Figure 3.1 and with other 

findings (Birve et al., 2010; Deng et al., 1993). Of note most of the data collected in 
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this meta-analysis are measures of SOD1 activity from patients’ red blood cells, which 

are a particularly reliable system for the detection of protein half-life changes due to 

their lack of active protein synthesis (Broom et al., 2008). 

SOD1 activity was found to be reduced to similar levels both in red blood cells and 

post mortem CNS tissues, the similarity was even more striking when compared within 

the same subset of patients (Bowling et al., 1993; Browne et al., 1998; Jonsson et al., 

2004; Rosen et al., 1994; Watanabe et al., 1997b). 

 

Figure 3.1 Diagram of human SOD1 mutations dismutase activity in the current literature. 

Measurements from patients carrying 48 SOD1 fALS mutations between 1993 and April 2015; original 

references are cited in Table 3.2. All intrinsic activity measures fall below 100% of controls activity. 

Three mutations found in homozygous individuals are shown on the right hand side of the figure. Red 

circles show measures of intrinsic activity where these are known. We note that all mutations shown 

here are familial, not sporadic, and have supporting data indicating they are causative of ALS (Table 3.2). 

Where more than one publication reports overall activity for an individual mutation the value from the 

report with the highest sample size has been plotted. Heterozygous (Het); homozygous (Hom) (Saccon 

et al., 2013). 

SOD1 mutation % of SOD1 activity Reference 

A4V 57.8 % (Bowling et al., 1993) 

A4V 45 % intrinsic activity (Borchelt et al., 1994) 

C6F 25.3 % (Morita et al., 1996) 

C6S 73.5 % (Brotherton et al., 2011) 

C6S 70 % intrinsic activity (Marin et al., 2012) 
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SOD1 mutation % of SOD1 activity Reference 

V7E 69.1 % (Hirano et al., 1994) 

G12R 80 % (Penco et al., 1999) 

V14G 57.2 % (Andersen et al., 1997) 

G37R 40 % (Borchelt et al., 1994) 

G37R 150 % intrinsic activity (Borchelt et al., 1994) 

L38V 35 % (Robberecht et al., 1994) 

G41D 47 % (Fujii et al., 1995) 

G41D 49 % intrinsic activity (Borchelt et al., 1994) 

G41S 73 % (Tsuda et al., 1994) 

H43R 42.7 % (Rosen et al., 1993) 

H46R 75.7 % (Abe et al., 1996) 

c.240-7T>G 46. % (Birve et al., 2010) 

G72C 54.7 % (Stewart et al., 2006) 

G72S 55 % (Orrell et al., 1997a) 

D76Y 50 % (Andersen et al., 1997) 

D76V 54.9 % (Segovia-Silvestre et al., 2002) 

L84F * 80.5 %; 69.8 % (Curti et al., 2002) 

L84V 74.8 % (Abe et al., 1996) 

G85R 39.5 % (Deng et al., 1993) 

G85R 0 % intrinsic activity (Borchelt et al., 1994) 
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SOD1 mutation % of SOD1 activity Reference 

A89V 83.5 % (Jacobsson et al., 2001) 

D90V 41 % (Morita et al., 1996) 

G93A 35.8 % (Deng et al., 1993) 

G93A 102 % intrinsic activity (Chia et al., 2010) 

G93D 63.2 % (Bowling et al., 1993) 

G93R 31.7 % (Orrell et al., 1997b) 

G93V 54.2 % (Orrell et al., 1997b) 

E100G 75 % (Calder et al., 1995) 

I104F 43.1 % (Abe et al., 1996) 

S105L 58.4 % (Jacobsson et al., 2001) 

G112T 66.6 % (Esteban et al., 1994) 

I112T 47.3 % (Bowling et al., 1993) 

I113T 50.6 % (Orrell et al., 1997b) 

I113T 65 % intrinsic activity (Borchelt et al., 1994) 

G114A 52.4 % (Jacobsson et al., 2001) 

D125H 52.8 % (Orrell et al., 1997b) 

L126delTT 35 % (Nakashima et al., 1995) 

L126delTT 0 % intrinsic activity  (Zu et al., 1997) 

G127insTGG 60 % (Andersen et al., 1997) 

E132insTT 46.3 % (Orrell et al., 1997b) 
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SOD1 mutation % of SOD1 activity Reference 

S134N 74.4 % (Watanabe et al., 1997a) 

N139H 60.8 % (Nogales-Gadea et al., 2004) 

N139K 53.5 % (Pramatarova et al., 1995) 

A140G 70 % (Naini et al., 2002) 

V148G 35.7 % (Deng et al., 1993) 

V148I 57.7 % (Abe et al., 1996) 

I149T 59.5 % (Pramatarova et al., 1995) 

G27delGGACCA 
heterozygous 

70 % (Zinman et al., 2009) 

G27delGGACCA 
homozygous 

50 % (Zinman et al., 2009) 

D90A heterozygous 82.5 % (Andersen et al., 1995) 

D90A homozygous 93 % (Andersen et al., 1995) 

L117V heterozygous 100 % (Synofzik et al., 2012) 

L117V homozygous 66.8 % (Synofzik et al., 2012) 

L126S heterozygous 75 % (Takehisa et al., 2001) 

L126S homozygous 25 % (Takehisa et al., 2001) 

Table 3.2 SOD1 overall and intrinsic activity of SOD1-fALS patients in the current literature. 

(Figure 3.1). SOD1 overall activities, unless intrinsic where shown. The overall and intrinsic activity of 

each SOD1 mutations is represented with its corresponding reference. In case where the activity of a 

given SOD1 mutant was determined by more than one study, the one with the greatest number of 

clinical samples was reported (Saccon et al., 2013). * 80.5 % is the mean of percentage activity compared 

to wild-type SOD1, as determined in 5 patients carrying the L84F mutation (one was asymptomatic). For 

3 of these patients the SOD1 activity has been measured 3 times at one year intervals and the average 

activity for these 3 measurements is 69.8 %. 
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 D90A L117V 

Presence of misfolded SOD1 
in cells derived from patients 

Not present Not present 

Frequency of homozygosis Majority of patients 1 in 4 patients 

Penetrance in heterozygosity Low Low 

Disease progression Slow Slow 

Table 3.3 Characteristic of D90A and L117V mutations. 

3.3.1.4 Dismutase activity reduction might be enhanced in motor neurons  

The level of SOD1 activity in patients’ motor neurons and other specific cell types, 

known to be affected in ALS, is unknown. This is mainly due to technical difficulties in 

the measurement and availability of post-mortem tissues. However, studies on SOD1 

mRNA, aggregation and oxidative stress suggests that dismutase activity may be 

reduced in motor neurons. 

In normal conditions the half-life of SOD1 mRNA in brain and spinal cord tissues was 

found to be prolonged after formation of complexes with ribonucleoproteins. Though, 

in the presence of SOD1 mutations this complex formation was impaired, reducing the 

half-life of mutant SOD1 mRNA preferentially in the central nervous system of 

SOD1-fALS patients (Ge et al., 2006). 

Other indirect evidence that SOD1 activity might be reduced in specific cells types 

comes from aggregation studies. For example a reduction of SOD1 activity was 

detected in cells where SOD1 G93A and amyloid-β were co-expressed, suggesting that 

aggregation triggers reduction of dismutase activity (Yoon et al., 2009). Moreover in 

mice overexpressing the human wild-type SOD1 protein, SOD1 aggregates were found 

in brain and spinal cord but not in liver and muscle samples. Interestingly the levels of 

the SOD1 protein were similarly increased among the four different tissues; but the 

dismutase activity was increased accordingly only in liver and muscle and not in brain 

and spinal cord, suggesting a link between aggregation and loss of SOD1 enzymatic 

activity (Graffmo et al., 2013). Even if the dismutase activity is retained in SOD1 
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aggregates, it is unknown whether they are able to accomplish the normal SOD1 

function when SOD1 dimer is correctly targeted to the appropriate cell compartments. 

Furthermore, misfolding and aggregation are a hallmark of SOD1-fALS (Jonsson et al., 

2008), and have been recently found also in SOD1-sALS patients (Bosco et al., 2010). 

All these findings from aggregation studies taken together make a dominant negative 

loss of function in SOD1-ALS feasible. 

Lastly oxidative stress it is known to induce monomerisation of SOD1 making it 

dismutase inactive (Ezzi et al., 2007; Khare et al., 2004; Rakhit et al., 2004; Wilcox et 

al., 2009). This mechanism might be particularly prominent in motor neurons since 

susceptibility to oxidative stress was proven to be more prominent in MNs than in 

other cells (Barber and Shaw, 2010). 

In conclusion these findings on tissue specific changes in SOD1 protein and SOD1 

mRNA suggest that dismutase activity might be lower in motor neurons and other 

affected cells compared to that assessed in patients’ red blood cells. Further, SOD1 

overall activity is consistently reduced in SOD1-fALS patients compared to wild-type 

controls. This is caused by changes in protein activity and protein half-life, and possibly 

there is also a tissue-specific dismutase reduction in affected neurons. 

3.3.2  SOD1 loss of function in Sod1 knockout mice 

Sod1 knockout mice have been extensively employed in SOD1-ALS research even if 

they do not model ALS disease. To get more insight on the role of SOD1 loss of 

function in SOD1-ALS, historical and more recent papers about these mice have been 

collected and reviewed using the criteria described in section 2.7. 

Up to now five Sod1 knockout mouse lines have been published (Table 3.4), all were 

generated by homologous recombination in mouse embryonic stem cells. In the five 

models, different regions of the Sod1 gene are deleted, ranging from a single exon to 

the entire genomic sequence. Despite the presence of different Sod1 gene regions, the 

five mouse lines present a strikingly similar phenotype and they have been compared in 

several papers (Huang et al., 1997; Kondo et al., 1997; Kostrominova, 2010). 

Importantly SOD1 protein is undetectable in all homozygous mice and SOD1 

dismutase activity is either absent or very low; detection of low activity levels may be 

caused by the presence of alternative scavenging enzyme or assay background (Reaume 

et al., 1996). Another example that confirms similarity among these mouse lines is the 



113 
 

development in three of them of an accelerated age-related muscle denervation 

(Kostrominova, 2010).   

Of note the majority of the studies collected for this meta-analysis have been 

conducted using Sod1 knockout mice on a congenic C57BL/6J background, making 

results from different laboratories comparable. 

Since the first studies on Sod1-/- mice it was clear that these animals do not develop MN 

degeneration. In 1996 Reaume and colleagues did not find a reduction in the number 

Sod1-/- MNs up until 4 months of age. However, they detected a higher number of 

small neurons and astrocytes from spinal cord tissues (Reaume et al., 1996). Later 

papers confirmed the absence of MN loss also at 6, 9 and 17 months of age and ruled 

out the presence of other hallmarks of ALS such as vacuolation and chromatolysis in 

mice of 4 and 18 months of age (Fischer et al., 2012; Flood et al., 1999). Also 

microgliosis and ubiquitinated protein accumulation in MNs were excluded, but mild 

astrocytosis was found at 4 and 18-months (Fischer et al., 2012).  

Even though Sod1-/- mice do not have motor neuron loss they develop a series of 

phenotypes, some of which relevant to ALS. Also Sod1+/- have been shown to have 

several neuronal dysfunction. Therefore investigating the phenotype of both Sod1 

knockout homozygous and heterozygous mice might be crucial to elucidate the role of 

SOD1 loss of function. 

Mouse line Reference 

Sod1tm1Cpe (Reaume et al., 1996) 

Sod1tm1Cje (Huang et al., 1997) 

Sod1tm1Lem (Matzuk et al., 1998) 

Sod1tm1Ysh (Ho et al., 1998) 

Sod1tm1Dkd (Yoshida et al., 2000) 

Table 3.4 Published Sod1 knockout mouse lines. 

3.3.2.1 Absence of Sod1 causes a progressive adult-onset motor 
axonopathy in Sod1-/- mice 

Several studies show that homozygous Sod1 knockout mice develop an adult onset 

motor axonopathy, and other phenotypes relevant to ALS disease. 
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Behavioural data 

Behavioural analysis from different laboratories showed that even if at birth Sod1-/- 

mice were indistinguishable from wild-type littermates, with age they developed several 

neuromuscular deficits. All behavioural data collected are gathered together in Table 

3.5. 

Age 
(months) 

Phenotype Reference 

3 Decrease in voluntary wheel running  (Muller et al., 2006) 

5 
Body weight reduced by 20 % compared to 
wild-type littermates * (Reaume et al., 1996) 

9 Progressive deficit in rotarod  (Flood et al., 1999) 

9 Progressive deficit in stride-length analysis  (Muller et al., 2006) 

12 Deficit in grip-strength  (Fischer and Glass, 2010) 

12 Presence of tremors  (Fischer and Glass, 2010) 

Table 3.5 Sod1-/- mice behavioural phenotypes. * The light body weight detected in these mice might 

be explained by an impairment in intestine lipid metabolism (Kurahashi et al., 2012) and by a reduction 

lipoprotein secretion in the liver (Uchiyama et al., 2006). 

Neurophysiological data 

Neurophysiological investigations also showed the presence of ALS related 

phenotypes, revealing a clear muscle denervation as well as deficits in motor axons and 

functional motor units. Firstly direct stimulation of muscles showed a reduction in 

muscle strength from 8 months of age. While, muscle strength generated by nerve 

stimulation became increasingly worse compared to measures from direct muscle 

stimulation suggesting a progressive deficit in innervation (Larkin et al., 2011). 

Secondly a progressive reduction in motor unit number was detected starting at 3-

months of age (Shefner et al., 1999). Finally at 6 months of age analysis of nerve 

conduction velocity and latency performed on sensory and mixed nerves, revealed a 
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reduction only where a motor component was present suggesting a deficit in the largest 

motor axons (Flood et al., 1999). 

Axonal damage and neuromuscular junctions denervation 

Investigating neuromuscular junctions (and early pathological disease target in SOD1-

fALS mouse models) revealed a progressive denervation of both fast and slow twitch 

muscles (Fischer et al., 2012; Flood et al., 1999; Larkin et al., 2011). The pattern was 

found to be more aggressive in fast twitch muscles with a reduction of TA muscle 

innervation to 70 % of endplates by 4 months of age, and to 34 % by 18 months of age 

(Fischer et al., 2012; Jang et al., 2010). These results highlighted that as occurs in ALS 

patients and mouse models of fALS, functional SOD1 is also crucial for maintenance 

of motor axons and their terminals in Sod1-/- mice. 

Muscle pathology is secondary to denervation  

Analysis of Sod1-/- muscles showed a progressive loss of muscle mass, and the presence 

of angular muscle fibres (an indicator of denervation). Specifically gastrocnemius mass 

was reduced by 20 % at 3 months of age and hind limb muscles were reduced by 40 % 

at 20 months of age (Jang et al., 2010; Larkin et al., 2011; Muller et al., 2006). No 

reduction was detected in other organs such as liver, heart and kidney (Muller et al., 

2006). Angular muscle fibres were found to be present starting at 2 months of age and 

increased overtime (Flood et al., 1999). Furthermore at 8 months massive reduction in 

fibre number was detected preferentially in fibres innervated by large motor neurons 

(Larkin et al., 2011; Reaume et al., 1996). The muscle profile of Sod1-/- mice was found 

to be similar to the one described for transgenic mouse models of SOD1-fALS (Frey et 

al., 2000; Kennel et al., 1996) and suggested that muscle pathology is secondary to 

axonal impairment. Confirmation of this hypothesis came from a study were Sod1-/- 

mice were crossed with transgenic mice expressing the Sod1 gene in the CNS but not in 

muscles. Although Sod1 was not present in muscles of double mutant mice, the muscle 

pathology was fully rescued in these animals (Flood et al., 1999). Other evidence 

proving that muscle denervation is secondary to axonal damage came from 

examination of the redox state of the tibial nerve and gastrocnemius muscle in 4 

months old Sod1-/- mice, showing a selective involvement of the nerve (Fischer et al., 

2012). These results taken together indicate that in Sod1-/- mice muscle changes are 

secondary to denervation. 
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3.3.2.2 Motor neurons of Sod1-/- mice have an increased vulnerability to 
stress 

The selective involvement of MNs and their susceptibility to stress are a hallmark of 

ALS. Even if Sod1-/- do not develop MN loss, lack of SOD1 activity was shown to 

induce phenotypes that preferentially affected these neuronal cells, such as 

susceptibility to damage, vulnerability after injuries and mitochondrial function 

impairments. 

Selective susceptibility to damage of the motor system 

Histopathological examination of L3 dorsal and ventral roots in 19 month old Sod1-/- 

mice revealed signs of degeneration and regeneration only in the ventral roots 

suggesting a preferential motor involvement (Flood et al., 1999). Also epidermal 

nerves, which are the most distal tracts of the sensory axons were unaffected while 

NMJs were impaired as described in section 3.3.2.1 (Fischer et al., 2012). 

Other insights on MNs susceptibility came from Sod1-/- primary embryonic MNs 

culture experiments. Firstly MNs from Sod1-/- animals did not survive more than 72 

hours in culture while wild-type mouse embryonic MNs lived for about 10 days (L. 

Greensmith, UCL, personal communication). Secondly analysis of initial stages of  

Sod1-/- MNs culture showed reduced mitochondrial density, a significant oxidation of 

thioredoxin 2 and reduced axonal length and outgrowth, that depend on the intrinsic 

levels of oxidative stress (Acevedo-Arozena et al., 2011; Fischer et al., 2012) Finally 

dorsal root ganglia (DRG) cultures from the same mice were normal for two days and 

then showed a significant reduction in axonal growth (Fischer and Glass, 2010; Fischer 

et al., 2011). 

Motor neuron vulnerability after injury 

SOD1 activity was shown to be important for motor neuron survival after injury. 

Facial axotomy conducted on 5 month old Sod1-/- mice and wild-type littermates 

showed that after 5 weeks there was a significant increase in MN loss in Sod1-/- animals 

compared to controls (Reaume et al., 1996). 

Mitochondrial function is affected by loss of SOD1  

ALS and mitochondrial dysfunction studies underlined the crucial role of mitochondria 

for preservation of functional distal axons (Baloh et al., 2007b; Cassereau et al., 2011; 

Faes and Callewaert, 2011). For example mitochondrial abnormalities were shown in 
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transgenic mouse models of ALS (De Vos et al., 2007), and abnormal mitochondrial 

accumulations were described in lower MNs and proximal axons from, ALS patients 

post-mortem (Sasaki et al., 2009). Interestingly investigation of Sod1-/- mice revealed a 

reduction in mitochondrial density in axons, which could be rescued together with the 

neuromuscular phenotype by replacing SOD1 selectively in the mitochondrial 

intermembrane space of these mice (Fischer et al., 2011). This may be explained by the 

fact that mitochondria of Sod1-/- animals release high levels of free radicals due to the 

absence of dismutase, consequently increasing oxidative stress (Jang et al., 2010). 

Thus, even if mice do not develop MNs degeneration, MNs are more vulnerable to 

damage. 

3.3.2.3 Sod1-/- develop other non-motor neuronal and extra neuronal 
phenotypes 

In addition to the neuronal phenotypes described above, Sod1-/- mice were found to 

develop other neuronal characteristics not directly related to ALS, listed in Table 3.6 

(more details are provided in Appendix 8.4). These animals also presented a series of 

extra-neuronal phenotypes described in Table 3.7 the most relevant of all was the 

susceptibility to hepatocellular carcinoma a feature known to be present in humans and 

in Sod1D83G mice (Elchuri et al., 2005; Joyce et al., 2014), more details are provided 

in Appendix 8.4. 

Phenotype  Reference 

Hearing deficit and ganglion neurons loss (Keithley et al., 2005) 

Progressive retinal degeneration  
(Hashizume et al., 2008; 
Imamura et al., 2006) 

Blood brain barrier disruption and increased lethality after 
cerebral ischemia  

(Kim et al., 2003;  

Kondo et al., 1997) 

Increased damage after brain trauma 
(Lewén et al., 2000; 
Mikawa et al., 1996) 

Increased susceptibility to neurodegeneration (Bechara et al., 2009; 
Murakami et al., 2011) 

Table 3.6 Sod1-/- non-motor neuronal phenotypes. 
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Phenotype  Reference 

Decrease survival and hepatocellular carcinoma 
(Elchuri et al., 2005; 
Takahashi et al. 2002) 

Impaired endothelial-dependent relaxation (Didion et al., 2002) 

Skin thinning and osteoporosis (Murakami et al., 2009) 

Infertility 
(Ho et al., 1998; Matzuk 
et al., 1998; Tsunoda et 
al., 2012) 

Table 3.7 Sod1-/- extra-neuronal phenotypes. 

3.3.2.4 Sod1+/- mice have a 50% reduction of SOD1 activity and develop 
abnormal neuronal function  

Heterozygous Sod1 knockout mice retain 50 % of SOD1 dismutase activity (Reaume et 

al., 1996) mimicking the physiological levels described in SOD1-fALS patients (Figure 

3.1). Several papers have highlighted the presence of an abnormal range of phenotypes 

in Sod1+/- animals such as: progressive cellular damage and deficits in reaction to injury 

and toxic stimuli. Here the relevance of these phenotypes to ALS is investigated. 

Sod1+/- MNs are more susceptible to cell death after axon injury 

Following facial nerve axotomy Sod1+/- mice lost a significantly higher number of MNs 

compared to wild-type controls, but a significantly lower number compared to Sod1-/- 

mice. This intermediate situation suggests a dose-dependent effect, and shows that in 

mouse retaining 50 % SOD1 activity is not sufficient for normal MN function in 

response to injury (Reaume et al., 1996). 

Of note, facial nerve axotomy was also performed on copper chaperone for SOD1 

knockout mice (Ccs-/-). These animals retain only 20 % of SOD1 activity, due to the 

lack of this crucial protein for delivery of copper to SOD1. As happened for Sod1 

knockout mice, MN survival was significantly reduced in Ccs-/-mice (Subramaniam et 

al., 2002). Results from all these mice, are important in light of the potential role for 

injury and trauma as a trigger in ALS pathogenesis (Yip and Malaspina, 2012).  
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Spontaneous denervation, MN sensitivity and reduction in mitochondrial 

numbers, show trends but are not significant in Sod1+/-  

Neuromuscular junction analysis and other studies carried out in Sod1+/- mice failed to 

show a significant pattern of denervation. However, these results even if not 

statistically significant, highlighted a denervation trend. For example in 18 months of 

age Sod1+/- animals 20 % of TA muscle endplates (NMJs) were denervated compared 

to 8 % in controls (Fischer et al., 2011, 2012). 

Of note cultured Sod1+/- MNs (unlikely Sod1-/- MNs ) showed a non-significant trend in 

reduction of axon length and mitochondrial density, whereas axon length and surface 

area of DRGs was normal (Fischer and Glass, 2010). 

Enhanced Glutamate toxicity in Sod1+/- mice 

As mentioned glutamate toxicity is implicated in disease in ALS patients and in animal 

models (Ilieva et al., 2009). Importantly overexpression of SOD1 is known to be 

protective against glutamate toxicity (Cadet et al., 1994; Chan et al., 1990). When 

SOD1 neuronal sensitivity to glutamate toxicity was assessed in vivo by intrastriatal 

injection of and N-methyl-D-aspartic acid and kainite glutamate receptor agonist; 

Sod1+/- mice were susceptible to the neurotoxic effects while mice overexpressing 

SOD1 were not (Schwartz et al., 1998). Thus, SOD1 partial loss of function could play 

a role in facilitating damage from glutamate toxicity, which may have relevance to ALS. 

Increased susceptibility to cerebral ischemia in Sod1+/-mice 

After induced focal cerebral ischemia, Sod1+/- mice had decreased survival along with 

increased early blood brain barrier (BBB) disruption and increased infarct volume 

causing brain swelling (Kondo et al., 1997). Furthermore, augmented apoptotic 

neuronal death demonstrated enhanced ischemia-reperfusion injury (Kondo et al., 

1997). Interestingly, an important mechanism involved in ischemia-reperfusion injury is 

glutamate excitotoxicity (section 1.5.1.1) (Beal, 1992). Of note BBB disruption was 

seen also in transgenic SOD1-ALS mouse models and indirect indication of disruption, 

such as increased cerebrospinal fluid albumin/plasma albumin ratios, was documented 

in ALS patients (Apostolski et al., 1991; Leonardi et al., 1984). 
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Increased memory deficits and plaque formation in an AD model on a Sod1+/- 

background 

Overexpression of the amyloid precursor protein (APP) gene carrying the Swedish 

mutation on a Sod1+/- background, resulted in increased deficits in memory behavioural 

tests and in increased senile plaque formation. Thus, in contrast with what happened 

with a 100 % loss of SOD1 activity, a 50 % loss failed to increase the development of a 

neurodegenerative phenotype in vivo. 

Increased ganglion neuron loss with ageing in Sod1+/- mice 

Sod1+/- mice did not display hearing deficits or altered auditory brainstem response 

thresholds as observed in Sod1 homozygous knockout animals. However, ganglion cell 

density was significantly reduced at 15 months of age demonstrating that a 50 % 

reduction in SOD1 activity results in reduced neuronal survival in vivo (Keithley et al., 

2005). 

Reduction of DNA methylation in Sod1+/- mice 

DNA methylation in prostate tissue of 2 months old Sod1+/- mice was significantly 

reduced, suggesting once again that a reduction of SOD1 activity increases oxidative 

stress (Bhusari et al., 2010), Even though this study was not carried out on ALS-

affected tissues, it could be relevant to the disease since DNA methyltransferases, the 

enzymes involved in DNA methylation, and 5-methycytosine, the end-product of 

DNA methylation, were found to be upregulated in human ALS (Chestnut et al., 2011).  

Development of a contractile vascular phenotype with ageing in Sod1+/- mice  

Loss of 50 % of dismutase activity was sufficient to increase vascular superoxide levels 

and produced vascular contractile dysfunction with ageing in mice (Didion et al., 2006). 

In summary loss of SOD1 activity to 50 % of normal levels does not cause death of 

MNs. However, Sod1+/- animals are a valuable tool to investigate SOD1-ALS. Indeed, 

the increased loss of specific cell types and susceptibility to injury present in these mice 

are mechanisms postulated in human ALS pathogenesis. 
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3.3.3 SOD1 loss of function influence on SOD1-fALS mouse models 

3.3.3.1 Loss of function of mouse endogenous SOD1 does not affect 
lifespan of transgenic SOD1-fALS mouse models 

The role of SOD1 loss of function in ALS pathogenesis has been investigated by 

analysing the double mutant progeny of Sod1-/- or of Ccs-/- mice crossed to three 

transgenic SOD1-ALS lines overexpressing the human mutations: G93A, G37R and 

G85R.  

Experiments carried out by crossing G93A and G37R mutants were not informative 

regarding the role of SOD1 loss of function in ALS, for several reasons. Firstly both 

these mutants retained dismutase activity see Figure 3.1. Secondly they had an increase 

of over 6 fold of SOD1 activity, compared to non-transgenic control mice (Bruijn et 

al., 1997; Deng et al., 2006; Subramaniam et al., 2002) As a result of this, even on a Ccs-

/- background, these two transgenic lines still had SOD1 activity levels comparable to 

those of non-transgenic wild-type mice (Subramaniam et al., 2002).  

On the other hand data from G85R mutants were very informative since this mutation 

was known to have no detectable intrinsic activity (Borchelt et al., 1994; Bruijn et al., 

1997). SOD1 activity was predicted to be 0 % when TgSOD1G85R were crossed with     

Sod1-/- and 20% when crossed with Ccs-/- (Bruijn et al., 1998; Subramaniam et al., 2002). 

Furthermore TgSOD1G85R mice had a late disease onset (8-10 months of age) compared 

to other transgenic SOD1 mouse models of ALS making them ideal for evaluating 

potential modifying effects of lack of SOD1 (Bruijn et al., 1998). Double mutant mice 

coming from both crosses (Sod1-/- n=5 and Ccs-/- n=10) did not showed significant 

effects on lifespan, but unfortunately no analysis was done on age of disease onset and 

pathology (Bruijn et al., 1997; Subramaniam et al., 2002). Thus it is possible to 

conclude only that lack of SOD1 activity does not affect survival, but it is still unclear 

if it affects other features such as age of onset or disease progression. 

3.3.3.2 Influence of SOD1 overexpression on disease 

To investigate if overexpression of wild-type SOD1 had an effect on disease, 

transgenic SOD1-ALS animals were crossed with TgSOD1WT mice. The double mutant 

progeny showed an earlier age of onset and a reduced survival compared to single 

mutant transgenic SOD1-ALS animals (Bruijn et al., 1998; Deng et al., 2006; Fukada et 

al., 2001; Jaarsma et al., 2000; Prudencio et al., 2010; Wang et al., 2009b, 2009c). 
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However, it is important to consider that TgSOD1WT mice develop spontaneous MN 

and axon loss and have misfolded SOD1 accumulations (Jaarsma et al., 2000). 

3.3.3.3 Tissue specific expression and inactivation of mutant SOD1 
suggest a modifying role for dismutase activity 

Experiments using Cre-loxP (causes recombination - locus for crossing over x P1) 

technology were conducted to conditionally eliminate mutant SOD1 expression in 

different cell lineages or used specific promoters to overexpress mutant SOD1 in 

selected cell types. Cre-loxP is a type of site specific recombinase (SSR) widely 

employed to carry out deletions, insertions, translocations and inversions at specific 

sites in the DNA. Briefly Cre recombinase is an enzyme that when expressed can 

recognize and splice specific loxP sites; therefore, depending on the position of the loxP 

sequences specific genes can be activated or repressed in particular tissues and at 

particular developmental time points. The analysis of site specific mutagenized SOD1 

transgenic mice demonstrated a central role for neurons in the determination of age of 

onset and disease progression in SOD1-fALS, and pointed to a role for other cell 

types, such as astrocytes and microglia in influencing the course of the disease (Ilieva et 

al., 2009). Cre-loxP experiments were conducted using two mutant transgenic SOD1 

mouse lines: conditional TgSOD1G37R, which retained intrinsic dismutase activity, and 

conditional TgSOD1G85R, which lacked activity (data are gathered in Table 3.8). This 

data suggested a protective role of SOD1 dismutase activity, at least in some cell types, 

on non-cell-autonomous degeneration and disease in SOD1-ALS. 

Excision TgSOD1G37R TgSOD1G85R 

Neurons  Increased survival 

 Delay of disease onset 

 Increased survival 

 Delay of disease onset 

Microglia  No change in disease onset  Delay of disease onset 

Astrocytes  No change in disease onset  Delay of disease onset 

Shwann cells  Increased disease progression  Delay of disease onset 

 Increased survival 

 Pathology amelioration 

Table 3.8 Consequences of mutant SOD1 excision in TgSOD1G37R and TgSOD1G85R mice. 
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3.4 Conclusions 

3.4.1 Sod1 knockout models share commonalities with ALS and indicate 
specific cell-type sensitivities 

Sod1 homozygous knockout mice have been the most useful tool to investigate in vivo a 

possible modifying role for SOD1 loss of function in ALS. These animals do not 

develop motor neuron degeneration and therefore are not considered a model of the 

human disease. However, several studies pointed out striking features related to ALS. 

To begin with Sod1-/- mice develop a progressive distal motor axonopathy, as happens 

in early stages of ALS (Murray et al., 2010). The most affected motor units in these 

mice are fast-twitch, as observed in other ALS models (Frey et al., 2000). Even if MNs 

are not lost they have a great susceptibility to injury and they are preferentially affected 

compared to other neuronal cells, as seen in patients (Pupillo et al., 2012). Lack of 

SOD1 activity in the mitochondrial intermembrane and decrease in mitochondrial 

density in axons have been demonstrated to be causative of the neuronal phenotype of 

these mice (Fischer et al., 2011). This is not surprising since mitochondrial contribution 

has been proven not only in ALS but also in other motor neuronal diseases (Acsadi et 

al., 2009; Baloh et al., 2007a; Faes and Callewaert, 2011; Sasaki et al., 2009; De Vos et 

al., 2007; Wen et al., 2010). Finally as described above, homozygous Sod1 knockout 

mice present many other phenotypes related to the disease.  

3.4.2 SOD1 activity is reduced in human SOD1-fALS patients  

The meta-analysis conducted on SOD1-fALS patients clearly shows a reduction in 

SOD1 activity of approximately 50 % compared to normal levels Figure 3.1 (Saccon et 

al., 2013). Many papers suggest that this reduction could be even bigger in specific 

tissues and cell types mainly due to mutant SOD1 mRNA half-life decrease in the CNS 

or due to possible effects of SOD1 protein misfolding and aggregation on activity. 

Data from Sod1+/- mice support these hypothesis and match what is known from 

patients. In these animals decrease in SOD1 dismutase activity causes neuronal loss, 

susceptibility to injury, to MN axonal damage and to glutamate toxicity. Moreover 

Sod1+/- mice show spontaneous loss of spiral ganglion cells and increased vulnerability 

of the BBB after injury, as described both in patients and in mouse models of ALS. 

Finally exacerbation of neurodegeneration in an AD mouse model when on a Sod1+/- 

background indicates that 50 % loss of SOD1 activity affects neuronal survival. 
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3.4.3 Absence of loss of function phenotypes in humans 

In this meta-analysis both homozygous and heterozygous Sod1 knockout mice were 

found to have many phenotypes relevant to ALS, but as expected, no studies suggested 

that a loss of SOD1 activity in humans could cause the disease. Indeed, though over 

160 mutation have been reported to be causative of ALS none of them generates a null 

allele. Furthermore no patients with full loss of SOD1 activity were identified in the 

literature search. Even if to date there is no evidence of loss of function phenotypes in 

SOD1-fALS patients, the studies analysed here underlined the importance of 

investigating this aspect in humans. A modifying role for SOD1 loss of function could 

point to new directions in researching therapies for ALS. 

3.4.4 SOD1 gain and loss of function could both play a role in ALS 
pathogenesis 

The mouse data reviewed here show that a reduction in SOD1 dismutase activity is not 

causative for ALS, however, this leaves open the possibility that it may modify disease. 

This disease modification might happen through a direct or indirect increase in 

susceptibility to neurodegeneration, such as for example, effects on respiration in MNs. 

Indeed SOD1 was recently reported to be implicated in energy metabolism by 

repressing respiration, integrating O2, glucose and superoxide levels, through casein 

kinase signalling (Reddi and Culotta, 2013). Loss of SOD1 could therefore affect 

cellular metabolism, and many other patterns still unknown. 

In other neurodegenerative diseases like Huntington’s disease, Parkinson’s disease, 

spinocerebellar ataxia and myotonic dystrophy (DM) mechanisms of gain and loss of 

function coexist (Crespo-Barreto et al., 2010; Lim et al., 2008; Winklhofer et al., 2008; 

Zuccato et al., 2010). For example in DM type 1 the expansion of unstable CTG 

trinucleotide repeats in the 3’ UTR of the dystrophia myotonica protein kinase 

(DMPK) gene, leads to disease through the misregulation of two RNA binding 

proteins; specifically causing a gain of function of CUG-binding protein 1 (CUGBP1) 

and loss of function of muscleblind-like 1 (MBNL-1). Furthermore, the hypothesis that 

a loss of function mechanism might contribute to ALS has been formulated not only 

for SOD1-ALS but also for TDP43-ALS and FUS-ALS (Guo et al., 2011; Lagier-

Tourenne and Cleveland, 2009). SOD1 protein has a crucial role in superoxide 

clearance and its absence increases oxidative stress. SOD1 is also a major target of 

oxidisation in transgenic SOD1-ALS mouse models, (Andrus et al., 1998) and in the 
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presence of oxidative stress, its two monomers have been shown to dissociate after 

oxidation and glutathionylation (Ezzi et al., 2007; Khare et al., 2004; Rakhit et al., 2004; 

Wilcox et al., 2009). These findings reported by several groups point once more to the 

possibility of a co-occurrence of SOD1 loss and gain of function in ALS. Indeed, a 

vicious circle was hypothesized in which oxidized SOD1 has increased propensity to 

misfold, causing seeding and aggregation of SOD1 and a reduction of dismutase 

activity, which therefore feeds more potential oxidative stress to the beginning of the 

loop (Saccon et al., 2013) see Figure 3.2. 

 

Figure 3.2 The cycle of SOD1 loss of function, schematic representation of a potential co-

operation between SOD1 loss and gain of function in SOD1 pathogenesis. SOD1 loss of function 

(LOF) increases levels of oxidative stress, which through glutathionylation and oxidation, can facilitate 

the monomerisation of dimeric SOD1. Once monomerized, SOD1 is more prone to become misfolded, 

oligomerized and aggregated. The monomerization of previously active dimeric SOD1 and the 

recruitment of SOD1 into aggregates further enhance the loss of function, feeding back to the beginning 

of the loop. In this way the gain of function (GOF) effects of misfolded, oligomerized and aggregated 

SOD1, which are known to cause motor neuron degeneration, are amplified by the loss of function 

circle. Mutant SOD1 (mutSOD1) has both a direct effect on reduction of SOD1 activity and induces 

SOD1 misfolding and aggregation. Mislocalisation of both TDP-43 and FUS result in misfolding of 

SOD1. ER = endoplasmic reticulum; MN = motor neuron (Saccon et al., 2013). 
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3.4.5 SOD1 loss of function implications in ALS therapeutic approaches  

Therapies for dominant mutations diseases are being developed using knockdown of 

the mutant allele RNA (Kordasiewicz et al., 2012; Lu and Yang, 2012; Smith et al., 

2006), many of them, for example, against Huntington’s disease, seem very promising. 

Interestingly these approaches have been tested also for SOD1-ALS (Ralph et al., 2005; 

Raoul et al., 2005; Saito et al., 2005; Smith et al., 2006; Towne et al., 2011; Wang et al., 

2010; Wright et al., 2012). In particular a phase 1 clinical trial has been conducted 

(Fratta, 2013; Miller et al., 2013) employing antisense oligonucleotides that silence both 

mutant and wild-type SOD1, known to be effective in rats (Smith et al., 2006). The 

results of this preliminary study only assessed that the treatment was well-tolerated by 

patients for a short period of time. However, it is still unknown if downregulation of 

SOD1 triggers negative effects. Data on Sod1 knockout mouse models give insights for 

the development of these type of strategies (Elchuri et al., 2005). First of all the 

incidence of liver cancer in these animals suggests that it is necessary to monitor non-

neuronal effects also in patients and carefully optimise delivery routes and protein 

levels. Even if it is important to consider that Sod1-/- mice lack Sod1 from birth, and it 

will be more relevant to patients to investigate the case in which Sod1 is knocked down 

in adulthood. Secondly Sod1+/- mice findings raise the necessity to investigate other 

aspects of SOD1-ALS in patients such as: incidence of cardiovascular disease, stroke 

and liver cancer. Lastly, Sod1 knockout animals loss of dismutase activity associate with 

abnormal phenotypes suggest that SOD1-ALS patients should also be screened for 

other non-fatal characteristics for example, age-related macular degeneration, 

progressive hearing loss. 

3.5 Summary 

 SOD1 activity is reduced to approximately half of normal in SOD1-fALS 

patients  

 Sod1-/- mice develop and adult-onset progressive motor axonopathy  

 Sod1-/- mice do not develop MN loss but they have an increased susceptibility 

to MNs degeneration  

 Sod1-/- mice develop a wide range of other neuronal and extra-neuronal 

phenotypes  
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 Sod1+/- mice have 50 % reduction of SOD1 activity and develop abnormal 

phenotypes also within the motor system  

 Mutant SOD1 tissue specific expression and inactivation suggest a modifying 

role for dismutase activity  

 SOD1 loss of function by increasing oxidative stress could facilitate gain of 

function effects such as monomerisation, misfolding and aggregation of SOD1 

which in turn could feed more potential oxidative stress to the loss of function 

mechanism  
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Chapter 4 Sod1D83G a mouse model for motor neuron 
disease 

4.1 Introduction 

Transgenic mouse models overexpressing the SOD1 gene have been extremely useful 

tools in the study of ALS. To date there are number of different transgenic mouse lines 

overexpressing either the wild-type or mutant forms of the human SOD1 gene, and 

one overexpressing a mutant form of the mouse Sod1 gene, see Table 8.1 (Graffmo et 

al., 2013; Gurney et al., 1994; Joyce et al., 2011; McGoldrick et al., 2013; Ripps et al., 

1995; Turner and Talbot, 2008). The majority of these animals are considered models 

of SOD1-ALS since they develop the same features seen in patients: progressive motor 

deficits, hind limb paralysis, degeneration of motor neurons, and premature death 

(Joyce et al., 2011; McGoldrick et al., 2013; Turner and Talbot, 2008). However, these 

mice largely overexpress the mutant SOD1 protein and although they model the toxic 

gain of function that leads to motor neuron degeneration they are not a direct genetic 

representation of human ALS. Such raised expression levels might indeed affect 

aspects of the phenotype like disease onset or survival (Acevedo-Arozena et al., 2011; 

Joyce et al., 2014). For example, mice overexpressing the human SOD1 G93A mutant 

at different levels also present a different disease progression: the higher the number of 

copies of the mutant human SOD1 transgene, the more accelerated the disease 

(Acevedo-Arozena et al., 2011; Jonsson et al., 2006b), indicating that SOD1 dose is 

important in determining the phenotype. Moreover mice overexpressing the SOD1 

gene generally present an increased SOD1 activity thus they do not model the effects 

that a reduction in dismutase activity may have in the pathogenesis of the disease, as 

observed in SOD1-fALS patients (Saccon et al., 2013).  

To investigate the effects of SOD1 mutations at endogenous level and to create a 

model that is genetically more representative of human SOD1-ALS our group in 

collaboration with Linda Greensmith and Abraham Acevedo identified and 

characterised a new mutant line that carries an N-ethyl-N-nitrosourea (ENU)-induced 

point mutation in the mouse Sod1 gene (Joyce et al., 2014) (see Appendix 8.5). This 

mutation is an adenosine to guanidine change that results in a D83G substitution and is 

identical to a pathological change found in several ALS families, mainly characterised 

by early onset and slow disease progression (Millecamps et al., 2010). Of note this 
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mutation is predicted to disrupt SOD1 activity and protein stability since it lies in the 

zinc-binding residue (Krishnan et al., 2006). 

Characterisation of the Sod1D83G mice has revealed several interesting phenotypes 

especially in the homozygous animals. Sod1D83G/D83G mice indeed develop degeneration 

of both upper and lower motor neurons between 6 and 29 weeks of age, but differently 

from fALS patients and transgenic mouse models of SOD1-ALS, motor neuron cell 

death does not progress to paralysis and premature death (Joyce et al., 2014). A 

complete characterisation of Sod1D83G homozygous and heterozygous mice was 

published in 2014 (Joyce et al., 2014), the data I collected are presented in the results 

section of this chapter while other findings most relevant to this work are summarised 

below. 

Loss of upper and lower motor neurons 

To investigate loss of upper and lower motor neurons in the Sod1D83G model, the 

number of LMN in the sciatic motor pool of lumbar spinal cord and the survival of 

corticospinal motor neurons were assessed in Sod1D83G homozygous, heterozygous and 

wild-type littermates see Table 4.1. As mentioned Sod1D83G/D83G mice were found to 

develop loss of both upper and lower MNs that does not progress to paralysis, while 

Sod1+/D83G appeared to be normal. Furthermore astrogliosis and microgliosis were 

detected in lumbar spinal cords of 15 weeks old homozygous animals and were shown 

to aggravate with age (Joyce et al., 2014). 

Phenotype 
Age 

(weeks) 
Sod1+/D83G Sod1D83G/D83G 

% of LMNs compared 
to wild-type 

6 100 % 100 % 

 15 100 % 77 % 

 52 100 % 77 % 

% of UMNs compared 
to wild-type 

15 100 % 100 % 

 29 100 % 78 % 

Table 4.1 Sod1D83G mice upper and lower motor neurons characterisation. Sod1D83G/D83G animals 

develop lower MNs loss by 15 week of age and upper MNs loss by 29 week of age. Data from (Joyce et 

al., 2014). 
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Analysis of functional motor units 

The number of functional motor neurons that innervate the EDL muscle was 

determined by physiological analysis of motor unit survival in Sod1D83G homozygous, 

heterozygous and wild-type littermates at 15 and 52 weeks of age. Sod1+/D83G animals 

did not reveal any significant difference in the number of EDL motor units compared 

to wild-type littermates at both time points. However, Sod1D83G/D83G showed a 

significant reduction in the number of motor units in the EDL at 52 week of age, in 

accordance with the loss of MNs detected in these animals (Joyce et al., 2014). 

Behavioural deficits  

A series of behavioural tests were carried out to investigate Sod1D83G motor functions. 

Sod1D83G/D83G animals presented several behavioural deficits that progressively worsen 

with age, the most important results for homozygous and heterozygous mice are 

gathered in Table 4.2 (Joyce et al., 2014). 

Table 4.2 Sod1D83G mice behavioural tests. All data are compared to wild-type littermates 

(Joyce et al., 2014). 

Analysis of muscle force 

Physiological analysis of TA and EDL muscles of females Sod1D83G/D83G, Sod1+/D83G and 

wild-type mice revealed a progressive loss of muscle strength in homozygous animals 

between 15 and 52 weeks of age see Table 4.3. 

Test  Sod1+/D83G Sod1D83G/D83G 

Weight  Normal Weight loss, starting at 4 weeks 

Grip-strength  Normal Reduced from 6 weeks  

Accelerating 
rotarod 

No deficit 
Deficit at 23 weeks for females 
and at 67 weeks for males 

Wheel running  Not tested  Impaired from 44 weeks 

Tremors 
About 20 % mice develop 
tremors by 96 weeks of age 

100 % of mice develop tremors 
by 22 weeks of age 
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Genotype 
Age 

(weeks) 
 % of TA tetanic force 
compared to wild-type 

% of EDL tetanic force 

compared to wild-type 

Sod1+/D83G 15 100 % 100 % 

 52 100 % 100 % 

 96 100 % 100 % 

Sod1D83G/D83G 15 65 % 100 % 

 52 55 % 65 % 

Table 4.3 Sod1D83G mice EDL and TA muscle force. TA force of Sod1D83D83G animals is affected 

starting at 15 weeks of age, while EDL force is affected starting at 52 weeks of age. Data from (Joyce et 

al., 2014). 

Survival and incidence of hepatocellular carcinoma 

Survival of Sod1D83G homozygous mice was significantly reduced compared to 

heterozygous and wild-type littermates, with a higher incidence in males. Interestingly 

85 % of Sod1D83G/D83G animals develop hepatocellular carcinoma, a feature typical of 

Sod1 knockout models (section 3.3.2) (Elchuri et al., 2005). Of note Sod1D83G/D83G mice 

were not produced with a Mendelian ratio (Joyce et al., 2014). 

In conclusion, Sod1D83G is the first mouse model carrying a pathological point mutation 

in the Sod1 gene which is expressed at endogenous levels, and the presence of a non-

progressive motor neuron degeneration in homozygous Sod1D83G animals make them a 

good system for studying early stages of ALS. Of note another mouse model with a 

spontaneous point mutation in the mouse Sod1 gene has been previously described but 

the equivalent mutation in humans has not been identified as pathogenic (Joyce et al., 

2014; Luche et al., 1997). 

4.2 Aim 

This chapter aims to characterise further the Sod1D83G model and use it to investigate 

the gain of function mechanisms and a possible role of the loss of dismutase function 

in SOD1-ALS.  

To better understand this new model an immunohistochemical, biochemical and 

molecular analysis was carried out for Sod1D83G animals in comparison to wild-type 
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littermates. In particular the morphological innervation pattern of endplate NMJs of 

the EDL muscle was investigated at two different time points using an 

immunohistochemical approach. First to confirm the development of an axonopathy 

in Sod1D83G/D83G animals and second to examine whether in this model axonal 

impairment precedes neuronal body degeneration or if these are two separate events. 

Further, since the D83 residue is predicted to interfere with the correct folding of 

SOD1 and potentially affect its function (Krishnan et al., 2006), SOD1 protein levels 

were measured by western blot and SOD1 dismutase activity was assessed by in gel 

assay, in homozygous and heterozygous Sod1D83G animals compared to wild-type 

littermates at two different time points. 

Sod1D83G homozygous characterisation revealed that these mice present elements of 

both a gain of function and of a loss of function mechanism (Joyce et al., 2014). In 

order to try to dissect these two aspects Sod1D83G mice were crossed with Sod1 

knockout animals and with mice overexpressing the human wild-type SOD1 gene. In 

particular: 

 To investigate whether the Sod1D83G phenotype is dose-dependent, the protein 

levels and the SOD1 activity of the progeny generated by the cross between 

Sod1D83G mice and Sod1 knockout mice were analysed by western blot and in gel 

assay respectively. Specifically SOD1 activity and protein levels of the 

compound heterozygous animals Sod1-/D83G were compared with that of 

Sod1D83G/D83G mice. If the Sod1D83G phenotype is dose-dependent SOD1 protein 

activity levels of Sod1-/D83G mice are expected to be lower compared to those of 

Sod1D83G/D83G. 

 To investigate if the presence of human SOD1 protein rescues the MNs loss or 

if it exacerbates the ALS-like phenotypes described for Sod1D83G animals, SOD1 

protein levels and activity of the progeny generated by the cross between 

Sod1D83G mice and mice overexpressing the human wild-type SOD1 gene, were 

examined by western blot and in gel assay. Specifically the TgSod1D83G/D83G were 

compared to Sod1D83G/D83G mice, to confirm the overexpression of the human 

SOD1 protein. 
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4.3 Results 

4.3.1 Sod1D83G mice characterisation  

In the experiments described in this section female mice were employed to investigate 

NMJ morphology, and male mice were used to asses SOD1 protein level and activity in 

order to minimise gender variability.  

4.3.1.1 Neuromuscular junctions of the EDL 

Neuromuscular junction denervation is considered to be a hallmark of ALS; and 

several studies suggested that the distal degeneration of the skeletal muscle plays a role 

in disease progression (Fischer et al., 2004; Murray et al., 2010). Furthermore 

investigations carried out using SOD1 transgenic mouse models and Sod1 knockout 

mice demonstrated that NMJ degeneration occurs in the early disease stages, long 

before loss of MNs (Kanning et al., 2010).  

To examine the innervation pattern of the EDL muscle in the Sod1D83G line a 

morphological analysis of the endplate neuromuscular junctions was performed for 

Sod1D83G/D83G, Sod1+/D83G, and wild-type littermates at 15 and 52 weeks of age. For each 

muscle the total number of NMJs was counted and NMJs were classified in three 

groups depending on the level of innervation of the postsynaptic apparatus: innervated, 

intermediate and denervated (Table 2.2, Figure 4.1 and Figure 4.2). In particular the 

innervation status of each NMJ was evaluated by determining the co-localisation 

between synaptic vesicles of the axon terminal, and acetylcholine receptors present in 

the foot plate of the skeletal muscle see Figure 4.1 and Figure 4.2. The three genotypes 

were compared at both time points for the total number of NMJs and for each 

classification group using a one-way ANOVA. 

At 15 weeks no significant difference was detect in the number of denervated 

endplates NMJs, or in any of the other categories among the three genotypes (Figure 

4.3 (a) (d); Table 4.4). However, at 52 weeks of age significant denervation had taken 

place in the Sod1D83G/D83G mice compared to wild-type and Sod1+/D83G littermates (Figure 

4.3 (b) (d); Table 4.4). Furthermore the number of partially innervated endplates 

(intermediate) was higher in Sod1D83G/D83G animals compared to other genotypes but it 

was significantly different only to Sod1+/D83G littermates (Figure 4.3 (b); Table 4.4).  
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There was no difference in the total number of endplate NMJs counted among 

genotypes at 15 week, but at 52 weeks the number of NMJs counted was significantly 

reduce in Sod1D83G homozygous animals compared to heterozygous and wild-type 

littermates (Figure 4.3 (c); Table 4.5). 

This analysis confirmed the presence of a distal progressive denervation between 15 

and 52 weeks of age in Sod1D83G/D83G mice (Joyce et al., 2014).  

 

Figure 4.1 Representative image of innervated NMJs from EDL muscle of a 52 weeks old wild-

type mouse. Axon projections and axonal terminals are identified respectively by 2H3 antibody staining 

neurofilaments (green) and SV2 antibody staining synaptic vesicles (green). Motor endplates are 

identified by α-bungarotoxin staining of acetylcholine receptors (red). Nuclei are stained by DAPI (blue). 

Scale bar = 20 µm. 
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Figure 4.2 Representative images of innervated, intermediate and denervated NMJs of the three 

Sod1D83G genotypes at 52 weeks of age. (a; b; c) Wild-type (WT); (d; e; f) Sod1+/D83G; (g; h; i) 

Sod1D83G/D83G. The synaptic vesicles and the axon terminals were visualized with SV2 and 2H3 antibodies 

respectively (both in green), while the acetylcholine receptors in skeletal muscle were labelled with α-

bungarotoxin (red). Scale bar = 20 μm.  
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Figure 4.3 NMJs analysis from EDL muscle of Sod1D83G mice at 15 and 52 weeks. (a) Percentage 

of innervated, intermediate and denervated NMJs for the 3 Sod1D83G genotypes at 15 weeks, and (b) at 52 

weeks. (c) Total number of NMJs at 15 and 52 weeks for the 3 genotypes. (d) Percentage of denervated 

NMJs at 15 and 52 weeks for the 3 genotypes. For all measurements p < 0.001 = ***; p < 0.01 = **; 

p < 0.05 = * n=5 for all genotypes. 
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15 weeks 

Genotype 
Innervated 

(% of total) 

Intermediate 

(% of total) 

Denervated 

(% of total) 

Wild-type 99.0 % ± 0.6 % 0.2 % ± 0.1 % 0.7 % ± 0.6 % 

Sod1+/D83G 99.2 % ± 0.5 % 0.5 % ± 0.3 % 0.3 % ± 0.2 % 

Sod1D83G/D83G 91.0 % ± 7.5 % 8.5 % ± 7.6 % 0.5 % ± 0.3 % 

52 weeks 

Genotype 
Innervated 

(% of total) 

Intermediate 

(% of total) 

Denervated 

(% of total) 

Wild-type 90.5 % ± 3.3 % 6.0 % ± 2.7 % 2.5 % ± 1.0 % 

Sod1+/D83G 94.2 % ± 3.0 % 3.1 % ± 1.5 % 2.7 % ± 1.5 % 

Sod1D83G/D83G 74.0 % ± 6.1 % 16.8 % ± 4.0 % 14.1 % ± 1.0 % 

Table 4.4 Percentage of innervated intermediate and denervated NMJs at 15 and 52 weeks. 

Values represent the mean percentage ± SEM of the total number of NMJs calculate on an n = 5 per 

genotype. 

Genotype 
Total NMJs at  

15 weeks 

Total NMJs at  

52 weeks 

Wild-type 714 ± 33 742 ± 39 

Sod1+/D83G 705 ± 82.5 740 ± 36 

Sod1D83G/D83G 719 ± 100 463 ± 30 

Table 4.5 Total number of NMJs at 15 and 52 week. Values represent the mean of the total NMJs 

counted ± SEM, n = 5 per genotype. 

4.3.1.2 SOD1 protein levels of Sod1D83G mice 

In order to investigate protein stability SOD1 levels were assessed by western blot 

(section 2.6.4.2) from brain homogenates of Sod1D83G/D83G, Sod1+/D83G and wild-type 

mice at 15 and 60 weeks of age. To confirm experimental conditions accuracy SOD1 

levels were also measured for 15 weeks old control mice: Sod1-/-, Sod1+/-, wild-type and 
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TgSOD1G93A(H). Values from control genotypes at 15 weeks and from Sod1D83G animals 

at 15 and 60 weeks were compared using one-way ANOVA. 

As expected, Sod1-/- controls were significantly lacking the SOD1 protein 

(0.4 % ± 0.4 %) compared to wild-type animals (100 % ± 2.7 %) and Sod1+/- mice had 

a significant protein reduction of 53.6 % ± 8.1 % compared to normal. Further 

TgSOD1G93A(H) mice SOD1 protein levels were over six fold (627.1 % ± 2.6 %) of wild-

type, see Figure 4.4 (a) and Figure 4.5 (a). 

SOD1 protein levels of homozygous and heterozygous Sod1D83G mice were significantly 

reduced compared to wild-type littermates both at 15 and 60 week of age. In particular 

at 15 weeks SOD1 protein of Sod1D83G/D83G mice was reduced down to 11.8 % ± 0.4 % 

of wild-type littermates (100 % ± 9.4 %), while Sod1+/D83G mice retained 

70.4 % ± 5.3 % of SOD1 protein compared to wild-type (Figure 4.4 (c) and Figure 4.5 

(c)). Similarly at 60 weeks SOD1 protein levels were reduced to 14.6 % ± 0.4 % in 

homozygous Sod1D8G3 animals and to 57.0 % ± 0.7 % in heterozygous mice compared 

to wild-type littermates (100 % ± 4.3 %) see Figure 4.4 (e) and Figure 4.5 (e). 

4.3.1.3 SOD1 enzymatic activity of Sod1D83G mice 

To investigate SOD1 enzymatic activity gel assays were carried out using brain 

homogenate from Sod1D83G/D83G, Sod1+/D83G and wild-type mice at 15 and 60 week of 

age; and also from Sod1-/-, Sod1+/-, wild-type and TgSOD1G93A(H) animals at 15 weeks 

(section 2.6.4.4). Values from control genotypes at 15 weeks and from Sod1D83G animals 

at 15 and 60 weeks were compared using one-way ANOVA. 

Confirming published data Sod1-/- mice were completely lacking SOD1 activity 

(0.40 % ± 1.6 %) (Reaume et al., 1996), Sod1+/- animals retained 33.8 % ± 9.1 % of 

activity and TgSOD1G93A(H) mice presented a 291.3 % ± 5.3 % increase of dismutase 

activity compared to wild-type-littermates (100 % ± 6.4 %) see Figure 4.4 (b) and 

Figure 4.5 (b). 

As for SOD1 protein levels also SOD1 dismutase activity of homozygous and 

heterozygous Sod1D83G mice was significantly reduced compared to wild-type littermates 

at both time points. Specifically, at 15 weeks SOD1 activity of Sod1D83G/D83G mice was 

1.3 % ± 2.1 %, and SOD1 activity of Sod1+/D83G mice was 55.9 % ± 7.0 % of wild-type 

littermates (100 % ± 14.4 %), see Figure 4.4 (d) and Figure 4.5 (d). While at 60 weeks 
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SOD1 activity was reduce to 1.5 % ± 5.3 % in homozygous Sod1D8G3 animals and to 

34.2 % ± 5.3% in heterozygous Sod1D8G3 mice compared to wild-type littermates (100 

% ± 2.9 %), see Figure 4.4 (f) and Figure 4.5 (f).  

The SOD1 activity bands detected from brain homogenates of TgSOD1G93A(H) mice 

migrated faster in the gel compared to the SOD1 activity bands from brain 

homogenates of wild-type, Sod1+/- and Sod1D83G mice. Gel electrophoresis was carried 

out in non-denaturing and non-reducing conditions, therefore the electrophoretic 

mobility of the proteins depended only on their charge-to-mass ratio and physical 

shape. Of note in these assays it was not possible to use native ladder markers to detect 

the size of the SOD1 activity bands. 

 



140 
 

 

Figure 4.4 SOD1 western blots and activity gel assays of Sod1D83G mice and controls at 15 and 60 

weeks of age. (a) Western blot and (b) activity gel assay of Sod1-/-, Sod1+/-, wild-type (WT) and 

TgSOD1G93A(H) animals. (c) Western blot and (d) activity gel assay of Sod1D83G homozygous, heterozygous 

and wild-type (WT) littermates at 15 weeks. (e) Western blot and (f) activity gel assay of Sod1D83G 

homozygous, heterozygous and wild-type (WT) littermates at 60 weeks; n = 3 per genotype. 20 µg of 

protein for western blot and 30 µg of protein for activity assay were added per well. In activity gel assays 

SOD1 bands from TgSOD1G93A(H) mice migrate faster compared to SOD1 bands from wild-type, Sod1+/- 

and Sod1D83G mice. 
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Figure 4.5 Quantification of SOD1 protein levels and activity of Sod1D83G mice and controls at 15 

and 60 weeks of age. (a) SOD1 protein levels and (b) activity of Sod1-/-, Sod1+/-, wild-type (WT) and 

TgSOD1G93A(H) animals. (c) SOD1 protein levels and (d) activity of Sod1D83G homozygous, heterozygous 

and wild-type (WT) littermates at 15 weeks. (e) SOD1 protein levels and (f) activity of Sod1D83G 

homozygous, heterozygous and wild-type (WT) littermates at 60 weeks. Values represent the mean ± 

SEM from 3 independent experiments, expressed as % of wild-type, SOD1 protein levels are normalised 

for β-actin. For all measurements p < 0.001 = ***; p < 0.01 = **; p < 0.05 = *, n = 3 per genotype per 

experiment. 
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4.3.2 Sod1D83G X Sod1 knockout cross characterisation 

Characterisation of the Sod1D83G line showed that Sod1D83G/D83G phenocopy several 

aspects of Sod1-/- mice, such as reduced survival, development of hepatocellular 

carcinoma, NMJ denervation, development of axonopathy and lack of dismutase 

activity (Joyce et al., 2011; McGoldrick et al., 2013; Turner and Talbot, 2008). 

However, unlike Sod1-/- mice, Sod1D83G/D83G animals retain about 12 % of SOD1 protein 

and have an additional toxic gain of function that causes degeneration of motor 

neurons (Joyce et al., 2014). To investigate if the gain of function element seen in 

Sod1D83G mice is dose dependent and how it affects axonopathy and motor neuron loss, 

Sod1D83G animals were crossed with the Sod1 knockout line (see breeding scheme in 

section 2.2.8). In particular the phenotype of the compound heterozygous Sod1-/D83G 

was analysed in comparison with Sod1D83G/D83G and Sod1-/- animals. If the Sod1D83G line 

have a dose dependent gain of function mechanism, as expected, the compound 

animals should have a phenotype less severe than the Sod1D83G/D83G mice. 

Mice from this cross were maintained and sampled in collaboration with Dr. Philip 

McGoldrick. Here are present data of SOD1 protein levels and dismutase activity. 

Motor neuron counts, muscle force and EDL motor unit number from the same 

colony were measured by Dr. Philip McGoldrick (data not yet published). 

4.3.2.1 SOD1 protein levels of Sod1D83G X Sod1 knockout progeny at 15 
weeks 

SOD1 protein levels were assessed by western blot (section 2.6.4.2) from brain 

homogenate of 15 weeks Sod1+/D83G, Sod1-/D83G and Sod1D83G/D83G mice. Values were 

compared using one-way ANOVA. Control mice and Sod1+/D83G protein levels relative 

to wild-type are reported in Figure 4.5 (a) and (c). 

SOD1 protein levels of heterozygous Sod1D83G mice (100 % ± 4.7 %) were significantly 

higher compared to homozygous (20.5 % ± 1.6 %) and compound heterozygous 

knockout mice (7 % ± 0.5 %). Furthermore Sod1-/D83G protein levels were significantly 

reduced also compared to Sod1D83G/D83G animals, confirming that the absence of one 

D83G allele results in a reduction of SOD1 protein see Figure 4.6 (a) and Figure 4.7 

(a). 
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4.3.2.2 SOD1 enzymatic activity of Sod1D83G X Sod1 knockout progeny at 
15 weeks 

SOD1 enzymatic activity was measured by activity gel assays (section 2.6.4.4) using 

brain homogenate of 15 weeks Sod1+/D83G, Sod1-/D83G and Sod1D83G/D83G mice. Values 

were compared using one-way ANOVA. Controls and Sod1+/D83G measures relative to 

wild-type can be found in Figure 4.5 (b) and (d). 

SOD1 activity of heterozygous Sod1D83G mice (100 % ± 13.9 %) was significantly higher 

compared to both homozygous (1.2 % ± 0.6 %) and compound heterozygous 

knockout mice (0.4 % ± 0.2 %), where activity was absent as expected, see Figure 4.6 

(b) Figure 4.7 (b). 

 

Figure 4.6 SOD1 western blots and activity gel assays of Sod1D83G X Sod1 KO offspring and 

controls at 15 weeks. (a) Western blot and (b) activity gel assay of Sod1+/D83G, Sod1-/D83G and 

Sod1D83G/D83G mice; n = 3 per genotype. 20 µg of protein for western blot and 30 µg of protein for 

activity assay were added per well. 

 

Figure 4.7 Quantification of SOD1 protein levels and activity of Sod1D83G X Sod1 KO offspring at 

15 weeks. (a) SOD1 protein levels and (b) activity of Sod1+D83G, Sod1-/D83G and Sod1D83G/D83G animals at 15 

weeks. Values represent the mean ± SEM from 3 independent experiments, expressed as % of 

Sod1+/D83G, SOD1 protein levels are normalised for β-actin. For all measurements p < 0.001 = ***; p < 

0.01 = **; p < 0.05 = * n = 3 per genotype per experiment. 
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4.3.3 Sod1D83G X TgSOD1WT cross characterisation 

To see if it was possible to dissect elements of a loss of function and gain of function 

mechanism in the Sod1D83G mice, this line was crossed with mice overexpressing the 

human wild-type SOD1 protein, see breeding scheme in section 2.2.9. In particular the 

aim was to investigate the phenotype of TgSod1D83G/D83G mice to see if the presence of 

the human SOD1 protein can rescue elements of a loss of function, while maintaining 

the gain of function mechanism, or if its presence exacerbates ALS-like features. 

Mice from this cross were maintained and sampled by me in collaboration with Dr. 

Philip McGoldrick. Data of SOD1 protein levels and dismutase activity are presented 

in this section. Motor neuron counts, muscle force and EDL motor unit number from 

the same colony were measured by Dr. Philip McGoldrick (data not published). 

The six genotypes generated from this cross plus a TgSOD1G93A(H) control were used in 

the experiments described in this section. All genotypes are listed in Table 4.6. 

Transgenic allele Sod1D83G allele Nomenclature  

Non-transgenic Wild-type (Sod1+/+) Wild-type 

d +/+
Non-transgenic Sod1+/D83G Sod1+/D83G 

Non-transgenic Sod1D83G/D83G Sod1D83G/D83G 

SOD1WT transgenic Wild-type (Sod1+/+) TgSOD1WT 

SOD1WT transgenic Sod1+/D83G TgWTSod1+/D83G 

SOD1WT transgenic Sod1D83G/D83G TgWTSod1D83G/D83G 

SOD1G93A(H) transgenic Wild-type (Sod1+/+) TgSOD1G93A(H) 

Table 4.6 Experimental genotypes for Sod1D83G X TgSOD1WT characterisation. 

4.3.3.1 Ratio of Sod1D83G X TgSOD1WT 

Pervious data showed that Sod1D83G mice ratios, significantly differ from expected 

Mendelian ratios (Joyce et al., 2014). The number of offspring of the 6 potential 

genotypic ratios from the Sod1D83G X TgSOD1WT cross (Figure 2.2) was monitored from 

6 trios (two females and one male). The observed ratios were significantly different 

from the expected ratios χ2(5) = 14.97 p = 0.0105. Results are summarised in Table 4.7.  



145 
 

Genotype Number of 
animals 

Observed 
ratios 

Expected 
ratios 

Wild-type 25 0.173 0.125 

Sod1+/D83G 37 0.256 0.25 

Sod1D83G/D83G 6 0.041 0.125 

TgSOD1WT 25 0.173 0.125 

TgWTSod1+/D83G 38 0.263 0.25 

TgWTSod1D83G/D83G 6 0.090 0.125 

Total 144 1 1 

Table 4.7 Observed ratios of offspring from Sod1D83G X TgSOD1WT cross. The omnibus χ2 showed 

that observed ratios differ significantly from expected ratios. 

4.3.3.2 SOD1 protein levels of Sod1D83G X TgSOD1WT progeny at 15 weeks 

SOD1 protein levels of transgenic and non-transgenic animals, generated from the 

Sod1D83G X TgSOD1WT cross, were evaluated by western blot (section 2.6.4.2) using 

brain homogenate of 15-week old mice. Since these transgenic animals generally have a 

level of SOD1 protein that is about five-fold of wild-type mice, transgenic and non-

transgenic genotypes were assessed in separate blots and compared among each other. 

A control experiment was performed to show the difference in SOD1 protein between 

transgenic and wild-type non-transgenic animals. Values were compared using one-way 

ANOVA. 

The control experiment confirmed that SOD1 protein levels of TgSOD1WT 

(464 % ± 29.5 %) and TgSOD1G93A(H) (498 % ± 19.9 %) animals were significantly 

higher compare to SOD1 levels of wild-type mice (100 % ± 5.3 %), see Figure 4.8 (a) 

and Figure 4.9 (a). 

As expected SOD1 protein levels of non-transgenic homozygous and heterozygous 

mice were significantly reduced compared to wild-type littermates. In particular SOD1 

protein in Sod1D83G/D83G mice was reduced down to 21.8 % ± 1.4 % of wild-type 

littermates (100 % ± 1.6 %), while Sod1+/D83G mice retained 70.7 % ± 5.1 % of SOD1 

protein compared to wild-type (Figure 4.8 (c) and Figure 4.9 (c)). 
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Instead SOD1 protein levels of the 3 transgenic genotypes were all similar among each 

other. In particular SOD1 protein levels of TgWTSod1+/D83G mice were 101.3 % ± 0.9 % 

compare to SOD1 protein levels of TgSOD1WT (100 % ± 2.4 %) animals, while 

TgWTSod1D83G/D83G SOD1 protein levels (90.9 % ± 4 %) were slightly reduced but not 

significantly different from TgSOD1WTanimals, see Figure 4.8 (e) and Figure 4.9 (e). 

4.3.3.3 SOD1 enzymatic activity of Sod1D83G X TgSOD1WT progeny at 15 
weeks 

SOD1 enzymatic activity of transgenic and non-transgenic animals, generated from the 

Sod1D83G X TgSOD1WT cross, was measured by activity gel assays (section 2.6.4.4) using 

brain homogenate of 15-week old mice. As for SOD1 protein levels, SOD1 activity is 

much higher in transgenic animals compared to wild-type; therefore dismutase activity 

of transgenic and non-transgenic genotypes was assessed in separate gel assays. A 

control experiment showed the difference in SOD1 dismutase activity between 

transgenic and wild-type non-transgenic animals, see Figure 4.8 (b) and Figure 4.9 (b). 

Values were compared using one-way ANOVA. 

SOD1 activity of TgSOD1WT (479.6 % ± 64.8 %) and TgSOD1G93A(H) 

(532.4 % ± 96.2 %) animals was significantly higher compare to dismutase activity of 

wild-type mice (100 % ± 6.2 %), see Figure 4.8 (b) and Figure 4.9 (b). As found in 

previous experiments, SOD1 activity of non-transgenic Sod1D83G homozygous and 

heterozygous mice was significantly reduced compared to wild-type littermates. 

Specifically Sod1D83G/D83G mice did not have any SOD1 activity (0.0% ± 0.0 %) 

compared to wild-type littermates (100 % ± 8 %), while Sod1+/D83G mice retained 

49.9 % ± 4 % of SOD1 activity compared to normal (Figure 4.8 (d) and Figure 4.9 (d)). 

Conversely, there was no significant difference among SOD1 activity of transgenic 

animals. SOD1 activity of TgWTSod1+/D83G mice was 124 % ± 11.6 % compared to 

TgSOD1WT (100 % ± 10.9 %) littermates and TgWTSod1D83G/D83G SOD1 activity was 

134.5 % ± 4.1 % of TgSOD1WT, see Figure 4.8 (f) and Figure 4.9 (f). 

The SOD1 activity bands detected from brain homogenates of TgSOD1G93A(H), 

TgSOD1WT, TgWTSod1+/D83G and TgWTSod1D83G/D83G mice migrated faster compared to 

bands of wild-type and Sod1D83G mice. Gel electrophoresis was carried out in native 

conditions, therefore the electrophoretic mobility of the proteins depended only on 

their charge-to-mass ratio and physical shape. Of note in these assays it was not 

possible to use native ladder markers to detect the size of the SOD1 activity bands. 
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Figure 4.8 SOD1 western blots and activity gel assays of Sod1D83G X TgSOD1WT offspring at 15 

weeks of age. (a) Western blot and (b) activity gel assay of wild-type (WT), TgSOD1WT and 

TgSOD1G93A(H) animals. (c) Western blot and (d) activity gel assay of non-transgenic offspring: Sod1D83G 

homozygous, heterozygous and wild-type littermates. (e) Western blot and (f) activity gel assay of 

transgenic offspring: TgWTSod1+/D83G, TgWTSod1D83G/D83G and TgSOD1WT; n = 3 per genotype. 20 µg of 

protein for western blot and 30 µg of protein for activity assay were added per well. In activity gel assays 

SOD1 bands from TgSOD1G93A(H), TgSOD1WT, TgWTSod1+/D83G and TgWTSod1D83G/D83G mice migrate faster 

compared to SOD1 bands from wild-type and Sod1D83G mice. 
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Figure 4.9 Quantification of SOD1 protein levels and activity of Sod1D83G X TgSOD1WT offspring 

at 15 weeks of age. (a) SOD1 protein levels and (b) activity of wild-type (WT), TgSOD1WT and 

TgSOD1G93A(H) animals. (c) SOD1 protein levels and (d) activity of non-transgenic offspring: Sod1D83G 

homozygous, heterozygous and wild-type littermates. (e) SOD1 protein levels and (f) activity of 

transgenic offspring: TgWTSod1+/D83G, TgWTSod1D83G/D83G and TgSOD1WT. Values represent the 

mean ± SEM from 3 independent experiments, expressed as % of wild-type (a, b, c and d) or % of 

TgSOD1WT (e and f). SOD1 protein levels are normalised for β-actin. For all measurements p < 0.001 = 

***; p < 0.01 = **; p < 0.05 = *, n = 3 per genotype per experiment. 
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4.4 Conclusions 

Transgenic mouse models overexpressing either wild-type or mutant human SOD1 

have been largely employed in the study of ALS (Joyce et al., 2011). In particular mice 

overexpressing the mutant human SOD1 gene recapitulate many characteristics of 

human ALS and have been crucial in our understanding of this disease. However, they 

are not a close genetic representation of human ALS, as they overexpress the human 

SOD1 protein at high levels, alongside the endogenous mouse SOD1 protein (Figure 

4.10). Also Sod1 knockout models have been key in SOD1-ALS research. These mice 

have a slow progressive axonopathy and a range of ALS-like phenotypes but do not 

develop motor neuron degeneration therefore they are not a model of human ALS 

(Figure 4.10). Sod1D83G is the first mouse model described to date that carries the 

equivalent of a human pathogenic mutation in the mouse Sod1 gene expressed at 

endogenous levels (Joyce et al., 2014; Millecamps et al., 2010), and in this mouse line 

the mutant SOD1 protein is endogenous and not overexpressed (Figure 4.10). 

Investigation of the Sod1D83G line demonstrated that mutations in the mouse 

endogenous Sod1 gene model some human ALS features, which are different from the 

characteristics modelled by mice overexpressing human mutant SOD1 transgenes, 

making Sod1D83G a useful tool to study new aspects of ALS. 

 

Figure 4.10 Types of mouse model used in ALS research. Transgenic mouse models of ALS express 

endogenous mouse Sod1 gene (mouse chromosome 16) and overexpress the human mutant SOD1 gene; 

Sod1 knockout models lack the endogenous Sod1 gene; Sod1D83G mouse carries a mutation in the 

endogenous Sod1 gene. Mutant human SOD1 gene (mSOD1); mutant mouse Sod1 gene (mSod1). 
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Characterisation of the Sod1D83G line showed that homozygous Sod1D83G animals 

develop a distal axonopathy and have progressive loss of upper and lower motor 

neurons. This motor neuron degeneration appears to stop in early adulthood, does not 

lead to paralysis and is likely caused by a toxic gain of function mechanism as occurs in 

fALS patients. Heterozygous mice do not have motor neuron loss, at least up until one 

year of age, probably because the dose of mutant SOD1 protein is not sufficient to 

cause degeneration or because wild-type SOD1 has a protective effect. Both 

homozygous and heterozygous mice develop a series of other ALS related phenotypes 

(Joyce et al., 2014). 

Data presented in this chapter highlighted some interesting features of this mouse 

model. Morphological examination of the EDL muscle showed that at 52 weeks of age 

Sod1D83G/D83G animals have a significantly higher percentage of denervated NMJs 

compared to littermates. Also, the total number of NMJs counted is significantly 

smaller compared to the other genotypes, probably because some neuromuscular 

endplates are no longer detectable from muscle sections. Suggesting that the 

degeneration process occurs between 15 and 52 weeks of age. Since in Sod1D83G/D83G 

motor neuron degeneration occurs between 6 and 15 weeks and does not progress 

further with age (Joyce et al., 2014); taken together these findings point to the 

hypothesis that the loss of EDL neuromuscular junction detected in these mice is a 

peripheral neuropathy that is not caused by motor neuron death.  

Investigation of SOD1 protein by western blot showed a dose-dependent decrease of 

SOD1 in homozygous and heterozygous animals, which does not change with age. 

Sod1D83G/D83G mice have a reduction in SOD1 protein to approximately 10 % of wild-

type, while Sod1+/D83G retain about 70 % of SOD1 protein. Analysis of the mRNA levels 

revealed that these SOD1 protein reductions are not caused by allele-specific 

differences in transcription (Joyce et al., 2014), but more likely are the result of mutant 

SOD1 instability and degeneration. Indeed, the D83 residue was predicted to 

coordinate zinc and therefore be crucial for SOD1 stability, see Figure 1.4 (Choi et al., 

2011; Krishnan et al., 2006; Nordlund et al., 2009); moreover mutant SOD1 was 

shown to have a decreased half-life compare to wild-type protein and consequently 

degenerate faster (Kabuta et al., 2006). The low SOD1 protein detected in Sod1D83G/D83G 

mice might explain why the motor neuron loss does not progress with age in these 

animals. It is known from SOD1 transgenic mouse models that there is a positive 
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correlation between toxicity and SOD1 dose. Therefore it is possible to speculate that 

the low SOD1 protein level detected in homozygous animals is sufficient to trigger 

motor neuron denegation but not at the same levels seen in SOD1-ALS patients. 

Activity gel analysis showed that SOD1 dismutase activity in 15 and 60-week old 

Sod1D83G/D83G is approximately 1 % of wild-type animals, while Sod1+/D83G retain about 

50 % of SOD1 activity, similarly to SOD1-fALS patients (section 3.3.1) and to Sod1 

knockout mice (section 3.3.2 and Figure 4.5 (b)). Interestingly homozygous Sod1D83G 

animals share commonalities with Sod1-/- mice (discussed in section 7.1.4), the most 

striking example is the development of a progressive peripheral motor neuropathy. 

This shared phenotype, may be caused by a loss of dismutase function mechanism, 

which might increase the vulnerability of motor axons to oxidative stress (Fischer et al., 

2004) or simply be the result of a lack of a yet unknown SOD1 function. Of note the 

SOD1 protein activity bands detected from brain homogenates of mice carrying either 

the human wild-type or mutant SOD1 G93A transgene, migrated faster in the gel 

compared to the bands from mouse wild-type and mutant D83G samples. This 

difference in migration pattern in native conditions may be explained by diverse 

biochemical and biophysical characteristics of the human and mouse SOD1 proteins. 

Studies carried out in SOD1 transgenic mouse models and ALS patients led to the 

concept that ALS is a “dying back” disorder, meaning that in the disease muscle 

denervation occurs prior to motor neuron cell body death (Fischer et al., 2004; Murray 

et al., 2010). Thus suggesting that a gain of toxic function can contribute to the 

peripheral neuropathy seen in Sod1D83G/D83G animals. However, data presented here and 

findings from other SOD1 mouse models point to the hypothesis that axonal and 

neuron body degeneration are separate events, which may be regulated by different 

genes. The Sod1D83G/D83G mouse may be a good system in which it is possible to dissect 

the early stages of the human ALS and separate the effects of a mutant SOD1 toxic 

gain of function from a loss of function.  

To try and investigate the gain and loss of function mechanisms, Sod1D83G animals were 

crossed with Sod1 knockout and TgSOD1WT mice. To date only SOD1 protein levels 

and activity have been measured from the offspring of these crosses. Data on motor 

neuron counts, muscle force and EDL motor unit survival have not yet been analysed. 
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SOD1 protein levels of the compound heterozygous animals Sod1-/D83G, produced from 

the cross with the Sod1 knockout line, are significantly reduced compared to Sod1+/D83G 

and also compared to Sod1D83G/D83G littermates, while SOD1 activity is absent. 

Investigation of spinal cord and muscles of these animals will tell if the Sod1D83G 

phenotype is dose-dependent and whether one mutant D83G allele is sufficient to 

cause motor neuron degeneration. Moreover it will shed some light on the causes of 

the peripheral axonopathy and the motor neuron loss seen in Sod1D83G/D83G animals. 

Indeed, if a gain of function mechanism is present, the Sod1-/D83G phenotype should be 

less severe than the one of Sod1D83G/D83G mice. 

SOD1 protein levels and activity measured from offspring of the Sod1D83G X 

TgSOD1WT confirmed previous results from Sod1D83G animals and showed five-fold 

increase in protein level and SOD1 activity in transgenic animals compared to wild-

type. Investigation of motor neurons of transgenic offspring will tell if the presence of 

a human wild-type SOD1 protein has a protective effect and rescues the loss of motor 

neurons seen in homozygous Sod1D83G animals or if its exacerbates ALS phenotypes. 

The present work on the Sod1D83G model together with further analysis will hopefully 

give new insights on the contribution of both central neuronal loss and peripheral 

neuronal dysfunction in SOD1-ALS. 

4.5 Summary 

 Sod1D83G/D83G mice develop a distal progressive motor axonopathy between 15 

and 52 weeks of age 

 SOD1 protein levels are reduced to ~65 % in Sod1+/D83G and to ~10 % in 

Sod1D83G/D83G compared to wild-type littermates both at 15 and 60 weeks of age 

 SOD1 dismutase activity is reduced to 50 % in Sod1+/D83G and it is almost 

absent in Sod1D83G/D83G compared to wild-type littermates both at 15 and 60 

weeks of age 

 SOD1 protein levels of Sod1-/D83G mice are significantly reduced compared to 

Sod1+/D83G and Sod1D83G/D83G littermates 
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 SOD1 activity of Sod1-/D83G mice is almost absent and significantly reduced 

compared to Sod1+/D83G littermates 

 TgSOD1WT, TgWTSod1+/D83G and TgWTSod1D83G/D83G have similar SOD1 protein 

levels and activity which are significantly increased compared to wild-type 

littermates  
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Chapter 5 Characterisation of SOD1 proteins 

5.1 Introduction 

5.1.1 Possible prion-like mechanism for SOD1 protein 

SOD1 displays prion-like properties both in vitro and in vivo, as happens for proteins 

causative of other neurodegenerative diseases such as Parkinson’s and Alzheimer’s 

disease (Marciniuk et al., 2013). Proteins that have prion-like properties are able to 

sequester the wild-type form of the protein, seed its aggregation or misfolding, and act 

as transmissible agents between cells (Bunton-Stasyshyn et al., 2014; Polymenidou and 

Cleveland, 2012), Figure 5.1.  

 

Figure 5.1 Possible prion-like mechanism for SOD1 protein. (a) Misfolded SOD1 within a cell 

could (b) sequester and misfold wild-type SOD1 and eventually producing aggregates. (c) If secreted and 

taken up by neighbouring cells misfolded SOD1/aggregated SOD1 could (d) cause a chain reaction of 

misfolding, aggregate formation and transmission in a prion-like manner. 

Indeed, SOD1 protein can form aggregates, which are a well-known hallmarks of 

SOD1-fALS, and have been found also in sALS cases (Bosco et al., 2010; Forsberg et 

al., 2010; Grad and Cashman, 2014). Moreover SOD1 has been shown to seed its own 
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aggregation in vitro and to transmit in human and mouse cell lines and recently also in 

SOD1-fALS mouse models (Ayers et al., 2014; Chia et al., 2010; Furukawa et al., 2013; 

Münch et al., 2011; Weisberg et al., 2012). These findings are in accordance with the 

fact that ALS has a focal start and is a non-cell autonomous disease (Ilieva et al., 2009), 

and point to the hypothesis that mutant forms of the SOD1 proteins are the toxic 

spices causative of SOD1-ALS. Indeed non-amyloid SOD1 inclusions are found in 

SOD1-fALS MNs (Kato et al., 1996, 1997, 2000; Kerman et al., 2010), and there is a 

correlation between disease phenotype and aggregation pathology in SOD1-fALS mice 

(Turner et al., 2003; Wang et al., 2002a, 2002b, 2005a). Furthermore investigation of 

aggregate toxicity in cell culture models has yielded evidence suggesting that increasing 

the level of soluble SOD1 increases toxicity, while increasing recruitment of mutant 

SOD1 into insoluble inclusions decreased toxicity (Brotherton et al., 2013; Weisberg et 

al., 2012). 

5.1.1.1 SOD1 aggregation in vitro  

In vitro Thioflavin-T (ThT) assays, measuring protein aggregation propensity, 

demonstrated that both wild-type and mutant human SOD1 recombinant proteins can 

spontaneously aggregate, seed aggregation of themselves (self-seeding) and of each 

other (cross-seeding), in an autocatalytic manner (Chia et al., 2010). The lag time of 

fibrillization both for self-seeded and cross-seeded reactions was shorter compared to 

spontaneous seeding (Chia et al., 2010). Further, spinal cord homogenates from 

TgSOD1G93A(H) mice were shown to successfully self-seed and cross-seed aggregation in 

vitro with recombinant wild-type and mutant SOD1 proteins (Chia et al., 2010). Of note 

the seeding of SOD1 amyloid fibrilis occurred at acidic pH and in the presence of a 

chaotrophic and a misfolding agent (Bunton-Stasyshyn et al., 2014; Chia et al., 2010). 

Finally self-seeding and cross-seeding with recombinant proteins were shown to 

produce aggregate species with structural properties similar to aggregates found in 

SOD1-fALS (Hwang et al., 2010).  

5.1.1.2 SOD1 transmission in vitro 

Cells experiments showed that mutant SOD1 was secreted extracellularly in exosomes 

from primary astrocytes and neuronal-like stable cell lines (Basso et al., 2013; Grad and 

Cashman, 2014). Moreover, mutant SOD1 protein was detected in medium from 

primary cultures of spinal cord and of astrocytes from SOD1-ALS transgenic mice 

(Basso et al., 2013; Urushitani et al., 2006). Interestingly astrocytes derived from 
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SOD1-fALS mice showed increased secretion of SOD1 in exosomes compared to 

mice overexpressing the wild-type human SOD1 protein and these exosomes resulted 

toxic to primary cultures (Basso et al., 2013). 

Internalisation of recombinant mutant and wild-type SOD1 proteins also occurred in 

cell models, either via macropinocytosis in neuronal-like stable cell lines (Grad and 

Cashman, 2014; Münch et al., 2011; Sundaramoorthy et al., 2013), or via exosome 

internalisation in primary mouse spinal cord cultures and neuronal-like cell lines (Basso 

et al., 2013; Grad and Cashman, 2014). 

Investigations carried out using a mouse neuroblastoma-derived cell line confirmed in 

vitro results showing that once internalised, aggregates of recombinant mutant SOD1 

could self-seed aggregations of stable mutant SOD1 protein, even after the exogenous 

seeds were no longer present in the cells (Münch et al., 2011). Further aggregated and 

non-aggregated recombinant mutant SOD1 could cross-seed the wild-type form of the 

protein, which could also be self-seeded by aggregated recombinant wild-type SOD1 

(Bunton-Stasyshyn et al., 2014; Sundaramoorthy et al., 2013).  

In a human cell line, exogenously applied recombinant mutant SOD1 (both aggregated 

and non-aggregated) and aggregated wild-type SOD1 caused aggregation of 

endogenous SOD1, but also activated ER stress and apoptotic cell death 

(Sundaramoorthy et al., 2013), demonstrating ALS relevant toxicity related to self-

seeded and cross-seeded reactions. Of note self-seeding aggregation of endogenous 

SOD1 was reported in stable cell lines and could be blocked by immune-depletion of 

misfolded SOD1 or by knocking down the SOD1 gene (Grad and Cashman, 2014; 

Grad et al., 2011). 

5.1.1.3 SOD1 transmission in vivo 

In a recent study Ayers and colleagues investigated the prion-like transmissibility of 

mutant SOD1 and motor neuron disease pathology in vivo. Spinal cord homogenates 

from TgSOD1G93A(H) mice were injected in spinal cords of different SOD1 transgenic 

mice. After injection motor neuron disease was induced in and otherwise unaffected 

transgenic animals expressing low level of mutant SOD1 G85R (TgSOD1G85R). 

Interestingly when spinal cord homogenate from induced mice was used to inoculate 

new animals, as happened in prion models, the disease onset of recipient mice was 

early compared to the first passage animals. Also one-third of the TgSOD1G85R animals 
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inoculated with homogenates from TgSOD1WT animals developed degeneration of 

motor neurons. Of note self-seeding experiments carried out by the same group in 

other transgenic mice did not change the phenotype of these animals. There are 

therefore evidence suggesting that mutant SOD1 and motor neuron degeneration may 

be transmitted with a prion-like mechanism but is still unclear if misfolded SOD1 is 

required and sufficient for this to happen (Ayers et al., 2014). 

5.1.2 Human and mouse SOD1 proteins 

Human and mouse SOD1 proteins share a similar structure and are 84 % identical in 

amino acid sequence (Seetharaman et al., 2010). Both mouse and human SOD1 

function as a dimer and accomplish the same function of scavenging superoxide 

radicals from the body. In SOD1 transgenic mouse models the wild-type or mutant 

human SOD1 protein is overexpressed together with the endogenous mouse SOD1 

protein. The presence of SOD1 aggregates in these animals and the possible 

pathogenic role for misfolded SOD1 highlighted the importance of investigating the 

interaction between human and mouse SOD1. Cell culture and mouse model 

experiments showed that when co-expressed with human SOD1 mutants the 

endogenous mouse SOD1 does not co-aggregate (Wang, 2003). However, when 

mutant human SOD1 and wild-type human SOD1 are co-expressed the wild-type form 

of the protein co-aggregates with the pathogenic variant (Prudencio et al., 2009c; 

Seetharaman et al., 2010). Further a recent study on a mouse line carrying the G86R 

mutation (equivalent of human G85R) in the endogenous mouse Sod1 gene 

demonstrated that raising levels of wild-type human SOD1 does not affect disease in 

these animals (Audet et al., 2010). A subsequent study by Qualls and colleagues using 

cell culture models, showed that misfolded mouse SOD1 G86R interacts readily with 

mouse wild-type SOD1 protein and poorly with human wild-type SOD1 (Qualls et al., 

2013). 

5.2 Aim 

Mutant and wild-type human SOD1 recombinant proteins are known to spontaneously 

aggregate, self-seed and cross seed in vitro (Chia et al., 2010). Furthermore, both human 

and mouse SOD1 proteins are found in aggregates in SOD1 transgenic mouse models, 

however, it is still unclear whether the mouse and the human variants can co-aggregate 

in vitro and in vivo.  
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In order to investigate possible interactions between the human and the mouse SOD1, 

the aggregation propensity of human and mouse SOD1 recombinant proteins was 

examined in vitro. In particular human and mouse SOD1 recombinant proteins were 

produced using an E. coli system and purified by affinity chromatography. The purity of 

the preparations was then assessed by measuring protein quantity via western blot and 

coomassie blue. All SOD1 recombinant proteins were characterised by investigating 

their secondary structure with CD, focusing on the possible differences between 

human and mouse structure. Further, two preliminary experiments were carried out to 

investigate whether the mouse SOD1 recombinant proteins can spontaneously seed 

aggregation in vitro as happen for human SOD1.  

As part of a bigger project to study whether SOD1 can act in a prion-like way seeding 

aggregations (Appendix 8.6), mouse spinal cord homogenates were analysed by 

polyacrylamide gel electrophoresis to confirm the presence of SOD1 and possibly 

detect misfolded forms of the protein.  

5.3 Results 

5.3.1 SOD1 recombinant proteins 

To investigate the aggregation propensity of mouse and human SOD1 protein and its 

capacity to co-aggregate, eight SOD1 protein variants were produced, purified and 

characterised. Preliminary experiments were then carried out to study SOD1 protein 

aggregation. 

5.3.1.1 Production and purification of recombinant proteins 

Five human SOD1 and three mouse SOD1 recombinant proteins (Table 5.1) were 

produced using a prokaryotic expression system: E. coli BL21 (DE3), as in (Chia et al., 

2010). The cDNA of the eight SOD1 variants employed in this study had been 

previously cloned by Dr Chia Ruth into pET28a expression vectors downstream of a 

sequence encoding a string of six histidines, so that the SOD1 protein produced would 

be His-tagged. Expression of the SOD1 protein was based on an IPTG induction 

system see sections 2.6.1 and Appendix 8.1. 
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Species Variants 

Human 

Wild-type 

G93A 

D83G 

I113T 

D101G 

Mouse 
Wild-type 

G93A 

D83G 

Table 5.1 Human and mouse SOD1 recombinant proteins produced.  

 

A protein scale preparation from 9 litre culture was carried out for each SOD1 variant. 

E. coli strains transformed with plasmids carrying the SOD1 cDNAs of interest were 

grown as described in section 2.6.1. Once the desired cell density was reached, SOD1 

protein expression was induced using IPTG. Samples of SOD1 protein preparations 

pre-IPTG and post-IPTG treatment were collected and tested by coomassie blue to 

confirm induction (see example for human SOD1 wild-type in Figure 5.2). Prior to 

purification SOD1 proteins were extracted and solubilised as described in 2.6.1.1.  

Affinity chromatography purification was carried out using a Ni-NTA column on an 

ÄKTA pure machine. The soluble fraction from the crude cell extract of each 

preparation was loaded on the Ni-NTA column to remove the contaminating proteins 

from the His-SOD1 protein. After overnight on-column refolding (Figure 5.3 (a)) the 

His-SOD1 protein was eluted (Figure 5.3 (b)), dialysed and incubated with thrombin to 

cleave the His-tag. All SOD1 variants were separated by polyacrylamide gel 

electrophoresis and stained using coomassie blue to confirm cleavage (see example for 

human SOD1 wild-type Figure 5.4). The free His-tag was removed by a second Ni-

NTA affinity chromatography (Figure 5.5) and the SOD1 protein preparation was 

collected and dialysed against storage buffer, see 2.6.1.2. Prior to experiments, all 

SOD1 proteins were loaded with copper and zinc by subsequent dialysis to ensure 

acquisition of their full enzymatic activity see 2.6.1.2. 
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The amount of SOD1 protein produced varied between 20 and 130 mg depending on 

the protein preparation. While the final concentrations of the recombinant proteins 

ranged between 0.5 and 2 mg / ml per SOD1 variant. Protein concentration was a 

crucial parameter for characterisation and aggregation experiments, it was therefore 

carefully calculated using three different methods: absorbance, DC protein assay and 

coomassie blue staining compared to a sample of known concentration, (section 2.6.3 

and 2.6.4.1). Results obtained were consistent among the three methods.  

The images presented in this section are representative of the human wild-type SOD1 

protein, the same procedure was carried out for all other variants. 

 

Figure 5.2 Bacterial growth for human wild-type SOD1 protein pre and post IPTG induction. 

From the left ladder (L); His-tagged human SOD1 wild-type protein (Hu WT un-cleaved); non-His-

tagged variant (Hu WT cleaved); human SOD1 wild-type bacterial growth before IPTG induction (Hu 

WT un-induced); human SOD1 wild-type bacterial growth after IPTG induction (Hu WT induced). 

Approximately 15 µg of protein were loaded on each well. 
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Figure 5.3 Human wild-type SOD1 protein first Ni-NTA affinity chromatography. (a) Human 

wild-type SOD1 protein preparation solubilised in a chaotrope buffer was loaded on the column causing 

an increased in the UV (blue line). During this process the His-tagged SOD1 bound to the column while 

the contaminating proteins flushed through. The His-SOD1 protein was then allowed to refold 

overnight on column over a gradient of 0 to 100 % of a non chaotropic buffer (buffer B; green line), 

causing the UV to drop to zero. (b) The His-SOD1 protein was eluted from the column over a reducing 

gradient of buffer B and an increased concentration of an imidazole buffer, to displace the His-tag from 

nickel co-ordination. The UV peak on the graph correspond to the His-SOD1 protein elution. Due to 

the presence of imidazole UV does not plateau at zero but approximately at 600 mAU. The brown line 

indicates the conductivity of the buffer. 
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Figure 5.4 Human wild-type SOD1 protein before and after His-tag cleavage. The His-tagged 

human SOD1 wild-type protein (Hu WT un-cleaved) has a higher molecular weight compared to the 

non-His-tagged variant (Hu WT cleaved) therefore migrates slower on the gel. (Hu WT) purified and 

metal loaded recombinant human wild-type SOD1 protein; (L) ladder. Approximately 15 µg of protein 

were loaded on each well. 

 

Figure 5.5 Human wild-type SOD1 protein second Ni-NTA affinity chromatography. The human 

wild-type SOD1 protein was loaded on the column and eluted over an increasing gradient of imidazole 

buffer (buffer E), the peak in the UV correspond to the non-His-tagged SOD1 protein. Of note due to 

the presence of imidazole mAU do not plateau at zero. The brown line indicates the conductivity of the 

buffer. 
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5.3.1.2 Sodium dodecyl sulphate - polyacrylamide gel electrophoresis of 
mouse and human purified SOD1 recombinant proteins 

To confirm that the recombinant proteins produced were mouse or human SOD1 

variants and that the preparations were not contaminated by other proteins, all samples 

were separated by SDS-PAGE and tested by western blot and coomassie blue staining. 

Western blot analysis using a commercial polyclonal antibody (SOD-100) that detects 

both mouse and human SOD1, confirmed that the metal loaded recombinant proteins 

produced were SOD1 variants. Both human and mouse SOD1 proteins migrated as a 

monomer with a molecular weight of approximately 16 kDa, see Figure 5.6. 

 

Figure 5.6 Western blot of purified human and mouse SOD1 recombinant proteins. From the left 

ladder (L); human wild-type SOD1 (Hu WT); mouse-wild-type SOD1 (Mo WT); human G93A SOD1 

(Hu G93A); mouse G93A SOD1 (Mo G93A); human D83G SOD1 (Hu D83G); mouse D83G SOD1 

(Mo D83G); human I113T SOD1 (Hu I113T) and human D101G SOD1 (Hu D101G). SOD1 migrated 

as a monomer with a molecular weight of about 16 kDa; 20 µg of protein were loaded per well.  

To test the purity of the SOD1 protein preparations, metal loaded samples were 

separated by SDS-PAGE gel and stained by coomassie blue. As in the western blot, a 

single band of approximately 16 kDa was visible in all samples indicating that the only 

protein present in the preparations was SOD1, Figure 5.7. Both wild-type and mutant 

mouse SOD1 proteins migrated slightly faster than human wild-type SOD1. While 

most of human SOD1 mutants migrated as human wild-type SOD1 with the exception 

of human SOD1 G93A, see Figure 5.7. This difference in migration pattern might be 

due to the difference in metal binding capacity among these SOD1 variants.  
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Figure 5.7 Coomassie blue of purified human and mouse SOD1 recombinant proteins. From the 

left ladder (L); human wild-type SOD1 (Hu WT); mouse-wild-type SOD1 (Mo WT); human G93A 

SOD1 (Hu G93A); mouse G93A SOD1 (Mo G93A); human D83G SOD1 (Hu D83G); mouse D83G 

SOD1 (Mo D83G); human I113T SOD1 (Hu I113T) and human D101G SOD1 (Hu D101G). SOD1 

migrated as a monomer with a molecular weight of about 16 kDa. 20 µg of protein were loaded per well. 

5.3.2 SOD1 recombinant proteins structural profile with circular dichroism  

In order to confirm that the SOD1 recombinant proteins produced were correctly 

folded their secondary structure was investigate by circular dichroism (CD), a form of 

spectroscopy that measures the differential interaction of circularly polarised light with 

proteins in solution (Beychok, 1966). To examine proteins’ secondary structure CD is 

typically measured at a UV interval of 190-250 nm (far-UV). Three possible protein 

conformations are identifiable by the CD spectrum at a far-UV: α-helix, β-sheet and 

random coil.  

Purified SOD1 proteins stored in 20 mM Tris-HCl at pH 7.5, were dialysed in a 

20 mM phosphate buffer at pH 7.5. Tris-HCl indeed absorbs highly in the UV 

wavelength of interest and might interfere with a protein CD spectrum. Each 

recombinant protein was measured for its CD at a far-UV over a series of 10 

accumulations (Figure 5.8 and Figure 5.9). The CD spectra obtained for all the SOD1 

variants, showed a negative peak at approximately 208 nm, with the exception of 

mouse wild-type and mouse G93A SOD1. In particular the CD spectra of human 

SOD1 variants were all very similar among each other and resembled of proteins 

containing β-sheet conformation, as published by Chia and colleagues in 2010 (Figure 

5.8 (a)). Further the CD spectra of mouse SOD1 variants were similar, however, the 
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mouse G93A SOD1 showed a deviation of the negative peak to 200 nm compared to 

the other 2 mouse SOD1 variants, which indicates of an increase in random coil 

conformation (Figure 5.8 (b)). Interestingly when comparing the CD spectra of 

homologous human and mouse SOD1 recombinant proteins (SOD1 wild-type, D83G 

and G93A), the negative peak of the mouse SOD1 variants were always slightly shifted 

towards 200 nm compared to the human forms (Figure 5.9). These results taken 

together indicate that the SOD1 proteins examined have a β-sheet conformation, 

which is consistent with previous SOD1 structural and conformational studies (Chia et 

al., 2010; Getzoff et al., 1989; Khare et al., 2004; Rakhit and Chakrabartty, 2006; Tainer 

et al., 1982). 

 

Figure 5.8 CD spectra of human and mouse SOD1 recombinant proteins. CD spectra were 

measured at a wavelength interval of 190 to 250 nm. (a) Wild-type and mutants human SOD1 

recombinant proteins; (b) wild-type and mutants mouse SOD1 recombinant proteins All SOD1 

recombinant proteins, except mouse G93A SOD1 have a comparable CD spectra resembling of proteins 

containing β-sheet conformation. Mouse G93A SOD1 CD spectrum is the only one resembling a 

random coil confirmation. 
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Figure 5.9 CD spectra comparison between human and mouse SOD1 recombinant proteins. CD 

spectra were measured at a wavelength interval of 190 to 250 nm. (a) SOD1 wild-type human and mouse 

proteins; (b) SOD1 human and mouse D83G proteins; (c) SOD1 human and mouse G93A proteins. All 

mouse SOD1 recombinant proteins, have a CD spectra slightly shifted towards the far-UV compared to 

the human variants, resembling a random coil confirmation. 
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5.3.3 Kinetics of spontaneous fibrillization of mouse and human SOD1 
recombinant proteins  

In order to study the kinetics of human and mouse SOD1 fibrillization, some 

preliminary fibrillization assays for spontaneous reactions were carried out using the 

SOD1 recombinant proteins produced. 

For all SOD1 variants, fibrillization was carried using a protein concentration of 20 µM 

in a solution at pH 3.0 in mild denaturing conditions (0.5 GuHCl) similar to what 

described in Chia et al., 2010. Spontaneous fibril formation of SOD1 proteins was 

monitored by following the change in fluorescence of Thioflavin-T (section 2.6.6). The 

fibrillization lag time of the proteins was calculated using the equation described in 

2.6.6. In all the figures fibril formation is reported as % of maximum ThT relative 

fluorescence units (RFU) shown as a function of time (in hours).  

To optimise experimental conditions, two preliminary assays were conducted, testing 

the spontaneous fibrillization for all 8 SOD1 variant over 6 repetitions. In the first 

experiment ThT fluorescence was measured over a period of 250 hours. Formation of 

fibrils occurred evenly among the 6 sample repeats only for human wild-type SOD1 

(Figure 5.10) and mouse and human D83G SOD1 proteins (Figure 5.11). The lag time 

of human wild-type SOD1 was of 125 hours, which is very short compared to 

previously published data where the same recombinant protein was tested under 

similar conditions (Chia et al., 2010). While fibril formation for both human and mouse 

D83G SOD1 occurred at approximately 200 hours, only 50 hours before the 

conclusion of the experiment.  

Since human and mouse D83G SOD1 fibrillization seemed to start only at 200 hours, 

in the second experiment ThT fluorescence was measured over a period of 450 hours. 

In this case fibril formation occurred evenly among the 6 sample repeats for mouse 

wild-type SOD1 (Figure 5.12) and human D83G SOD1 (Figure 5.13). The lag time of 

mouse wild-type SOD1 was of approximately 225 hours. While similarly to the 

previous experiment fibril formation for human D83G SOD1 occurred at 200 hours. 

These results are preliminary, and more experiments are necessary to optimise the 

fibrillization assay. However, these first analysis confirmed that human SOD1 

recombinant proteins can spontaneously form fibrils in vitro and suggest that also 

mouse SOD1 recombinant proteins can spontaneously fibrillize under similar 

conditions. 
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Figure 5.10 Spontaneous fibrillization of SOD1 human wild-type recombinant protein. Data 

shown are average values from 6 replicates (± SEM) from an independent assay. SOD1 human wild-type 

recombinant protein (SOD1 Hu WT). 

 

Figure 5.11 Spontaneous fibrillization of SOD1 human and mouse D83G recombinant proteins. 

Data shown are average values from 6 replicates (± SEM) from an independent assay. SOD1 human 

D83G recombinant protein (SOD1 Hu D83G); SOD1 mouse D83G recombinant protein (SOD1 Mo 

D83G). 
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Figure 5.12 Spontaneous fibrillization of SOD1 mouse wild-type recombinant protein. Data 

shown are average values from 6 replicates (± SEM) from an independent assay. SOD1 mouse wild-type 

recombinant protein (SOD1 Mo WT). 

 

Figure 5.13 Spontaneous fibrillization of SOD1 human D83G recombinant protein over 450 

hours. Data shown are average values from 6 replicates (± SEM) from an independent assay. SOD1 

human D83G recombinant protein (SOD1 Hu D83G). 
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5.3.4  SOD1 transmission project  

As part of the transmission project (Appendix 8.6) mouse spinal cord homogenates 

used to inoculate TgSOD1G93A(H) animals were separated by SDS-PAGE and the SOD1 

protein was detected by western and native blot.  

The inoculum tested by SDS-PAGE were 1 % spinal cord homogenates of Sod1-/-, 

TgSOD1G93A(H) and TgSOD1WT mice in PBS, plus a wild-type controls prepared in the 

same manner. 

5.3.4.1 Western blot analysis  

Western blot analysis (section 2.6.4.2) carried out using a commercial polyclonal 

antibody against SOD1 protein (SOD-100) confirms that SOD1 was absent in Sod1-/- 

homogenates and that it was overexpressed in TgSOD1G93A(H) and TgSOD1WT samples 

compared to wild-type control (Figure 5.14). 

 

Figure 5.14 Western blot of spinal cord homogenates. SOD1 protein is overexpressed in transgenic 

samples and absent in the Sod1 knockout sample. Ladder (L); wild-type (WT) control. 20 µg of protein 

per well. 

5.3.4.2  Native blot analysis 

Native blot analysis was carried as described in section 2.6.4.3 using three different 

antibodies. A commercial polyclonal antibody against SOD1 protein (SOD-100), and 

two conformation specific SOD1 antibodies: SEDI (SOD1 exposed dimer interface) 

(Rakhit et al., 2007) and USOD (unfolded SOD1) (Kerman et al., 2010). In particular 

these two antibodies were shown to detect misfolded SOD1 by immunohistochemistry 

and immunoprecipitation, but accordingly to published date they were never employed 

in native blot analysis.  
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Native blot probed using USOD and SEDI failed to reveal misfolded SOD1 bands in 

any of the samples, probably because these two antibodies are not suitable for the 

detection of SOD1 protein in blots (Figure 5.15 (a) and (b)). Though, the native blot 

probed using SOD1-100 antibody confirmed the result seen in the western blot 

analysis, that SOD1 protein was absent in the Sod1-/- homogenate and it was 

overexpressed in TgSOD1G93A(H) and TgSOD1WT samples compared to wild-type 

control. Interestingly in non-denaturing and non-reducing conditions mouse wild-type 

SOD1 protein appears to migrate slower compared to the human SOD1 variants 

(Figure 5.15 (c)). All bands identified by the SOD1-100 antibody had a molecular 

weight bigger than 20 kDa, suggesting that the SOD1 proteins detected are not in the 

monomeric form. Of note these native blots have been purposely overexposed to 

reveal possible bands corresponding to misfolded SOD1. 

 

Figure 5.15 Native blot of spinal cord homogenates. (a), (b) SOD1 protein is not detected by USOD 

and SEDI antibodies. (c) SOD1 is overexpressed in transgenic samples and absent in the Sod1 knockout 

sample, mouse wild-type SOD1 (WT) migrates slower compared to human SOD1 variants 

(TgSOD1G93A(H) and TgSOD1WT); all SOD1 products detected have a higher molecular weight than 

monomeric SOD1 (16 kDa). 30 µg of protein per well. 
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5.4 Conclusions 

5.4.1 Comparison between SOD1 human and mouse proteins  

Data presented in this chapter showed that it is possible to produce and purify both 

human and mouse SOD1 recombinant proteins from an E. coli system. Western blot 

analysis established that the proteins produced were SOD1. While coomassie blue 

staining confirmed the purity of all the preparations and also showed the presence of a 

different migrations pattern among SOD1 variants, suggesting a diverse metal binding 

capacity between human and mouse SOD1 and also among human SOD1 variants. 

Characterisation of the SOD1 protein folding state by CD showed the presence of β-

sheet conformations in most of the SOD1 variants. The CD spectra of human SOD1 

proteins appeared very similar among each other as describe in Chia et al., 2010. Also 

mouse SOD1 CD spectra seemed comparable among each other with the exception of 

SOD1 mouse G93A, which resembled of a random coil conformation. Comparison 

between SOD1 wild-type human and mouse proteins and SOD1 human and mouse 

carrying the same mutations, revealed that the mouse CD spectra is always deviated 

slightly toward 200 nm, possibly indicating an increase in random coil conformation.  

Preliminary fibrillization experiments showed that both SOD1 human wild-type and 

mutant D83G recombinant proteins can spontaneously form fibrils in vitro under non 

physiological conditions, as indicated in literature (Chia et al., 2010). However, in this 

first analysis, differently from what was published by Chia and colleagues, the lag time 

of human wild-type SOD1 (Figure 5.10) was shorter compare to the lag time of the 

human SOD1 D83G mutant (Figure 5.11 and Figure 5.13), (Chia et al., 2010). 

Furthermore the experiments presented in this section showed that SOD1 mouse wild-

type and mutant D83G proteins could form fibrils in vitro under the same conditions 

used for the human variants. Specifically the lag time of the SOD1 mouse wild-type 

protein was shorter compare to the lag time of the mouse D83G mutant. Of note the 

lag time of human wild-type SOD1 protein was shorter compare to the lag time of the 

homologous mouse SOD1. While in the case of the D83G mutation the human variant 

had a slightly longer lag time compare to the mouse variant. 

Further investigation are necessary to optimise the experimental procedure to conduct 

fibrillization assays, but it is possible to conclude that both human and mouse SOD1 

recombinant proteins can spontaneously seed in vitro under non physiological 
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conditions. Supporting the idea that the ability to fibrilize is a generic and intrinsic 

property of the SOD1 proteins conserved among species. 

Results from native blots of mouse spinal cord indicated that the wild-type mouse 

SOD1 protein migrates slower compared to the wild-type and mutant G93A human 

SOD1 in non-reducing and non-denaturing conditions, possibly suggesting 

conformational and charge differences between the human and the mouse SOD1 

proteins. 

5.4.2 Future work 

5.4.2.1 Further mouse SOD1 proteins characterisation 

Other experiments can be done in order to further characterise the mouse SOD1 

proteins produced, as was extensively done for the human SOD1 variants (Rakhit and 

Chakrabartty, 2006; Valentine et al., 2005). For example the conformational and the 

aggregation state of the proteins could be investigated by analytical ultracentrifugation; 

their stability could be examined by differential scanning fluorimetry and their activity 

could be assessed by gel assays.  

5.4.2.2 Kinetics of mouse and human SOD1 proteins 

In order to optimise the fibrillization assay for SOD1 recombinant proteins it will be 

necessary to investigate a matrix of different experimental conditions. Important 

parameters that could be changed in order to potentiate fibril formations are: pH, 

temperature, experimental time and denaturant concentration. For example it was 

shown that apo-wild-type SOD1 proteins could form ThT-binding structures under a 

more physiological condition (pH 7.0), with very long periods of time (approximately 

5100 hours) (Banci et al., 2008). 

Once optimised fibrillization assays can be used to investigate self-seeding and cross 

seeding aggregation of mouse and human SOD1 proteins. Cross-seeding experiments 

will be crucial to determine whether mouse and human SOD1 variant have the ability 

to co-aggregate in vitro. Moreover, answering this question will be relevant to 

understand the results from the transmission project and the D83G project where 

human and mouse SOD1 proteins coexist and might interact within a living biological 

system. 
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5.5 Summary 

 Eight SOD1 human and mouse recombinant proteins were produced and 

purified 

 Purity and correct folding state were confirmed for all SOD1 recombinant 

proteins  

 All mouse SOD1 and human SOD1 G93A recombinant proteins migrate 

slightly faster compare to other human SOD1 recombinant variants including 

wild-type  

 The CD spectra of mouse SOD1 recombinant proteins always deviated to 

200 nm compared to the homologous human SOD1 recombinant proteins  

 Mouse SOD1 wild-type and D83G recombinant proteins can spontaneously 

form fibrils in vitro 

 In non-reducing and non-denaturant conditions mouse SOD1 wild-type 

migrates slower compared to human SOD1 wild-type and G93A mutant 
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Chapter 6 Galahad mouse 

6.1 Introduction 

Mouse models carrying genetic mutations have been extensively employed in 

neuroscience research since they often present pathologies that mimic the human 

disease state, and they are able to perform behavioural tasks and respond to drugs in a 

comparable way to humans (Acevedo-Arozena et al., 2008; Oliver and Davies, 2012). 

Two complementary strategies are typically applied to generate mouse models: the gene 

driven approach and the phenotype driven approach. In the gene driven approach the 

genome is manipulated to create genetically modified animals starting from a known 

gene, while in the phenotype driven approach mice carrying random mutations are 

screened for abnormal phenotypes (Acevedo-Arozena et al., 2008). Of note mice may 

also have mutations that occur naturally, examples of spontaneous mouse models of 

motor neuron degeneration are: the SOD/Ei mouse carrying a spontaneous mutation 

in the endogenous mouse Sod1 gene (Luche et al., 1997) and the motor neuron 

degeneration mouse (mnd) (Bertamini et al., 2002). 

The gene driven approach employing homologous recombination in embryonic stem 

cells has been extensively used to create knockout mice modelling human diseases and 

for the study of the disruption of specific genes in the whole organism. However, in 

nature many disorders are not caused by complete loss of gene function, but more 

likely they are the consequence of more subtle changes such as: protein structure 

modifications, binding affinity disruption, changes in expression or activity levels and 

more. In the phenotype driven approach N-ethyl-N-nitrosurea (ENU) chemical 

mutagenesis is used to generate point mutations in mice giving rise to a range of subtle 

mutant effects that model the diversity and complexity of human diseases, providing 

the tools to analyse compound genotypes and identify new pathways, genes or function 

involved in pathological mechanisms (Acevedo-Arozena et al., 2008; Justice et al., 

1999; Oliver and Davies, 2012).  

6.1.1 ENU mutagenesis and the phenotype driven approach 

In the last 20 years ENU mutagenesis screenings in conjunction with large-scale 

phenotype-driven approaches have been used to identify mouse models of human 

disorders and also to investigate new genes and pathways involved in complex disease 

pathologies (Acevedo-Arozena et al., 2008). 
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6.1.1.1 ENU properties 

ENU is a mutagen that since its discovery in 1979 has been largely employed to induce 

random point mutations in mouse (Russell et al., 1979). In particular when injected in 

mice ENU can transfer its ethyl group to oxygen or nitrogen radicals of 

deoxyribonucleotides causing random single base pair substitutions in the DNA during 

replication, in a dose-dependent manner, if not removed by DNA repair mechanisms 

(Justice et al., 1999; O’Neill, 2000). ENU preferentially modifies A/T base pairs, 

causing some amino acid changes to be more frequent than others (Table 6.1), 

nevertheless this limitation has not yet prevented the identification of new mutant 

models (Acevedo-Arozena et al., 2008; Justice et al., 1999).  

Base pair change   % 

A/T → T/A transversions 44 

A/T → G/C transitions 38 

G/C → A/T transitions 8 

G/C → C/G transversions 3 

A/T → C/G transitions 5 

G/C → T/A transitions 2 

Table 6.1 ENU base pair substitution frequency. ENU induced point mutations exhibit a preference 

towards specific nucleotide substitutions (Justice et al., 1999). 

6.1.1.2 ENU administration and breeding strategies 

Typically ENU is administrated to male mice as a sequence of two or three 

intraperitoneal injections at a dose of approximately 80-100 mg/kg. The dosage and 

the number of injections vary according to the mouse strain employed. It has been 

estimated that an optimal dose protocol should produce a mutation every 1-1.5 Mb, 

consequently the mutation rate of each gene varies depending on its size (Acevedo-

Arozena et al., 2008).  

ENU mutagenesis is used to carry out various types of screenings; different strategies 

and breeding schemes are applied depending on the chosen approach (genotype or 

phenotype driven), the allelic characteristics (recessive or dominant) and the strains 

required for subsequent genetic mapping (Acevedo-Arozena et al., 2008; Brown and 

Nolan, 1998). For example in a screen for dominant genome-wide mutations, ENU is 
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injected in male mice, causing random base-pair substitution preferentially in the 

spermatogonial stem cells. Mutagenized males are then mated with wild-type females 

and their progeny is screened for aberrant phenotypes through behavioural and 

physiological tests, followed by analysis of specific features of interest (Acevedo-

Arozena et al., 2008; Justice et al., 1999) (Appendix 8.5 and Figure 8.1). Furthermore 

ENU can be used to undertake sensitised screens to identify modifying loci that 

interact with specific mutations, and investigate new genetic pathways. In these screens 

ENU mutagenized male mice are crossed with females that are on a different genetic 

background and are mutant for a disease of interest. Different breeding strategies are 

employed depending on the nature of the mutant model, and the progeny are screened 

for aberrant phenotypes (Acevedo-Arozena et al., 2008). Of note in modifier screens 

analysis of the phenotype is crucial but also very challenging. Indeed animals that are 

not ENU mutant also present disease characteristics of the original model, thus it is 

essential to determine a baseline disease associate-phenotype and variation for the non-

mutagenized population in order to determine a suitable phenotyping strategy for the 

modifier screen (Acevedo-Arozena et al., 2008). 

Sensitised screens have been successfully employed in invertebrate models such as the 

fly Drosophila melanogaster , the nematode Caenorhabditis elegans and the zebrafish Danio 

rerio (St Johnston, 2002). Indeed the first pioneer screen using mutagenesis in a 

multicellular organism was carried out in Drosophila melanogaster and lead to the 

identification of 15 loci that when mutated alter the segmental pattern of the larva 

(Nüsslein-Volhard and Wieschaus, 1980). Since then many other sensitised chemical 

mutagenesis screens in lower organisms have provided models of neurological 

mutations related to human disease (Bach et al., 2003; Bonini and Fortini, 2003; 

Driscoll and Gerstbrein, 2003) and more recently this sensitised genetic systems have 

been developed also in mouse (Rubio-Aliaga et al., 2007). Using mouse models for 

sensitised screens is expensive, but to date mice are still the best model organism for 

the study of mammalian gene function and complex neurodegenerative disorders in the 

context of the whole organism. Indeed mice can be easily genetic manipulated and 

bred. Furthermore the complete genome is known for many inbred lines; therefore 

mutagenesis screens are a great tool for systematically generate new mutants. Also, 

mice complex behaviour makes them an effective model for human neurological 

disorders, hence sensitised screen, by producing a wide range of mutations, can not 
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only identify new mutants but also help elucidate intricate neurological pathways 

(Oliver and Davies, 2005). 

6.1.1.3 Mapping and cloning  

Once an ENU mutant is selected inheritance tests and positional cloning techniques 

are applied to isolate and identify the causative mutation of the new phenotype 

(Acevedo-Arozena et al., 2008; Oliver and Davies, 2012). The mutation is only 

inherited from the ENU mutagenized parent. Initial mapping commonly uses 

heterozygosity to detect areas of linkage, which is assisted by having two different 

inbred backgrounds for the parents. For inheritance testing in dominant screens if on 

the G0 (mutagenized generation and wild-type cross) animals have different 

backgrounds the ENU mutants of the G1 (first generation after mutagenesis) are 

backcrossed to the non-mutagenized strained of the G0, and the G2 (second 

generation after mutagenesis) is used for mapping. Conversely, if the G0 animals have 

the same background, it is not possible to test inheritance in the G2 but two other 

mating with a different inbred strain are required before positional cloning (Acevedo-

Arozena et al., 2008). While for recessive screens, regardless of the background of the 

G0, G2 mice are either intercrossed or mated to the original G1 ENU mutagenized 

parent, recessive mutations can be detected in the resultant G3 progeny. 

Causative mutations can be identified by genome mapping of a number of affected 

mice using single nucleotide polymorphisms (SNPs) as markers, in order to identify 

areas of linkage, followed by a candidate gene approach. Detecting newly induced 

causal variants in a forward genetic screen using these techniques is expensive and time 

consuming however, this process can now be accelerated using next-generation 

sequencing technologies which allow affordable whole-genome sequencing (Boles et 

al., 2009; Sun et al., 2012).  

6.1.2 A sensitised screen for modifiers in SOD1G93A low copy mice 

A sensitised screen focused on the identification of new genetic loci interacting with 

the mutant SOD1 gene was carried out as part of the Harwell ENU mutagenesis 

programme. BALB/c male mice were treated with a sequence of two 100 mg / kg 

ENU intraperitoneal injections. Mutagenized BALB/c males were then mated with 

hemizygous human SOD1G93A transgenic low copy females (TgSOD1G93A(L)/+) on a 

C57BL/6J background (see breeding scheme in Figure 6.1). SOD1 transgenic animals 
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from the G1 underwent a phenotyping analysis starting at 12 weeks of age and were 

compared to a non-mutagenized population of TgSOD1G93A(L)/+ on a hybrid 

C57BL/6J-BALB/c background (Acevedo-Arozena et al., 2011). Specifically every 2 

weeks transgenic G1 mice were tested using the SHIRPA protocol, and measures of 

weight, and grip-strength were taken. During this screen several mice were identified as 

phenodeviant of the SOD1G93A transgenic low copy line, but inheritance tests 

confirmed transmission of the ENU induced phenotype only from one male mouse, 

named Galahad. This animal developed paralysis at 27 weeks of age, showing an early 

disease onset compared to the non-mutagenized population, where the average age of 

paralysis is 35.6 weeks (Figure 6.2) (Acevedo-Arozena et al., 2011). Sperm samples 

from the affected G1 male mouse were collected to allow further breeding and in vitro 

fertilisation (IVF) (Thornton et al., 1999).  

A first IVF was carried out in Harwell soon after the identification of the Galahad 

mouse. Phenotyping of 32 G2 mice carrying the SOD1G93A low copy transgene 

confirmed the presence of an early paralysis onset in some of them, but it was not 

possible to identify any other phenotype. An initial genetic mapping on 9 animals that 

reached paralysis before 33 weeks of age suggested 3 possible regions of interest, 

however in order to confirm these areas of linkage a bigger number of G2 animals and 

a more in depth phenotyping approach will be necessary.  

 

Figure 6.1 Modifier screen in SOD1G93A low copy mice. In the G0 (mutagenized generation) ENU 

mutagenized BALB/c male mice were crossed with C57BL/6J hemizygous SOD1G93A low copy females. 

Transgenic animals of the G1 (first generation after mutagenesis) progeny were phenotypically screened 
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for modifications of the transgenic phenotypes. One phenodeviant mouse with an early paralysis onset 

was identified, named Galahad.  

6.1.3 The SOD1G93A low copy phenotype 

Transgenic human SOD1G93A low copy mice (Tg(SOD1*G93A)dl1Gur) carry 

approximately eight to ten copies of the human SOD1G93A transgene. This mouse line, 

here referred as TgSOD1G93A(L), derives from a deletion in the transgene array of the 

Jackson Laboratory SOD1G93A high copy (http://jaxmice.jax.org/strain/002299.html). 

TgSOD1G93A(L) are considered a model for human ALS, indeed these mice present 

progressive motor neuron loss, accumulations of mutant SOD1 in both spinal cord 

and brain and develop paralysis between 24 and 34 weeks of age that results in 

premature death (Acevedo-Arozena et al., 2011; Alexander et al., 2004; Teuling et al., 

2008). Compared to SOD1G93A high copy TgSOD1G93A(L) animals have a slow 

progressive pathology that make them invaluable for understanding early-stage disease 

mechanisms and testing therapies. Acevedo-Arozena and collegues carried out a 

comphrensive phenotypic analysis of the TgSOD1G93A(L) mice investigating the effects 

of five different genetic backgrounds on lifespan, motor neuron, muscle function and 

pathology (Acevedo-Arozena et al., 2011). Findings relevant to the present study are 

reported below. 

6.1.3.1 Effects of genetic background on time to end stage in 
TgSOD1G93A(L) mice 

The average time to end stage was assessed for TgSOD1G93A(L) animals on a C57BL/6J 

and on a hybrid C57BL/6J-BALB/c background. The humane endpoint was defined 

as loss of 20 % bodyweight, first sign of hind limb paralysis or loss of righting reflex. 

On both backgrounds approximately 92 % of mice were culled for leg paralysis, while 

the remaining 8 % was culled due to substantial weight loss. When on C57BL/6J 

background TgSOD1G93A(L) mice had an average time to endpoint of 37.8 weeks, while 

on a hybrid C57BL/6J-BALB/c background the average survival was of 35.6 weeks 

(Figure 6.2 and Table 6.2). The difference between the average survival of the two 

backgrounds was statistically non-significant. Interestingly gender was shown to affect 

survival on the C57BL/6J-BALB/c background with females reaching end point 

significantly later compared to males, while it had no effect on the C57BL/6J 

background (Table 6.2) (Acevedo-Arozena et al., 2011). 
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Figure 6.2 Representative distribution of TgSOD1G93A(L) mice survival on different genetic 

backgrounds. Mean average survival (µ) of TgSOD1G93A(L) mice on a C57BL/6J background (blue) and 

on a hybrid C57BL/6J-BALB/c background (black). The area of the two curves that fall between 2 

standard deviations (σ) of the mean, μ - 2σ and μ + 2σ, represent 95 % of the values. 

 Survival (weeks) 
Genetic background  Females Males Total 

C57BL/6J 37.5 38.1 37.8 

C57BL/6J-BALB/c 37.6 32.6 35.6 

Table 6.2 Average survival of TgSOD1G93A(L) mice on different genetic backgrounds. Survival was 

calculated on at least 6 animals per category. For the C57BL/6J-BALB/c survival was significantly 

different between genders (p = 0.001) (Acevedo-Arozena et al., 2011).  

6.1.3.2 Grip-strength analysis of C57BL/6J TgSOD1G93A(L) mice  

Grip-strength analysis of TgSOD1G93A(L) mice on a C57BL/6J background revealed that 

females were significantly different compared to gender matched wild-type littermates 

starting at 24 weeks of age (Figure 6.3 (a)) while males showed a difference from 28 

weeks of age (Figure 6.3 (b)). Interestingly at 30 and 32 weeks of age there was a 

significant difference in grip-strength between TgSOD1G93A(L) males and females, and 

the males appeared to be more severely affected (30 weeks: p = 0.020; 32 weeks 

p < 0.001) (Acevedo-Arozena et al., 2011).  
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Figure 6.3 Grip-strength analysis of C57BL/6J TgSOD1G93A(L) mice. (a) Male grip-strength. N = 5 

per genotype, except for week 20 where only four wild-type males were assessed. A significant difference 

was detected from 24 weeks of age (ANOVA; 28 weeks: p = 0.005; 30 and 32 weeks: p < 0.001). (b) 

Female grip-strength. N = 5 per genotype, except for week 20 where only two TgSOD1G93A(L) females 

were assessed. A significant difference was detected from 24 weeks of age (ANOVA; 24 weeks: 

p = 0.006; 26 weeks: p = 0.073; 28 weeks: p = 0.007; 30 weeks: p = 0.001; 32 weeks: p = 0.003). The 

graphs shows the average grip-strength ± SEM per genotype and time point (Acevedo-Arozena et al., 

2011). 

6.2 Aim  

The present work aimed to investigate the progeny of the ENU mutagenized Galahad 

mouse in order to try and identify possible modifying locus/loci interacting with the 

SOD1 G93A mutation. 

In particular the G2 and the G3 generation were phenotypically characterised to 

confirm the abnormal phenotype of the founder and a cross with TgSOD1G93A(H) 

animals was set up to try exacerbate the Galahad phenotype. Moreover a quantitative 

trait locus (QTL) approach was applied to identify regions where the mutation might 

lay.  

6.3 Results 

In this chapter all mice generated from the Galahad founder are named Galahad 

whether they carry or not the ENU mutation.  
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6.3.1 Phenotypic characterisation of the G2 Galahad progeny 

In order to phenotypically characterize the G2 Galahad progeny, and possibly identify 

other distinctive features of the ENU mutagenized animals, the following measure of 

disease progression were investigated: survival, weight and grip-strength. 

6.3.1.1 Galahad breeding strategy 

The Galahad mouse was identified during an ENU sensitised screen at the MRC 

Mammalian Genetics Unit of Harwell, and it was generated by a cross between a 

BALB/c mutagenized male and a C57BL/6J hemizygous TgSOD1G93A(L) female (see 

G0 and G1 in Figure 6.4). The Galahad mouse was found to have an early paralysis 

onset at 27 weeks of age compare to the average described for a TgSOD1G93A(L) line on 

the same hybrid C57BL/6J-BALB/c background, which was of 35.6 weeks (Figure 6.2) 

(Acevedo-Arozena et al., 2011). To recover the Galahad phenotype and characterise the 

second generation of animals after mutagenesis, three IVFs were carried out at MRC 

Harwell, using the sperm of the G1 Galahad founder and oocytes from wild-type 

C57BL/6J females. Mice of the G2 progeny were then, genotyped, phenotyped and 

their DNA was used for positional cloning studies (see G2 in Figure 6.4).  
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Figure 6.4 Galahad breeding scheme. In the G0 ENU mutagenized BALB/c males were crossed 

with C57BL/6J hemizygous SOD1G93A low copy females. Transgenic animals of the G1 were 

phenotypically screened for modifications of the transgenic phenotypes. One phenodeviant mouse with 

an early paralysis onset was identified, named Galahad. IVFs were carried out using the sperm of the 

Galahad mouse and wild-type C57BL/6J females. Mice from the G2 were then genotyped for the 

SOD1G93A transgene, phenotypically characterised and their DNA was used for mapping. 

6.3.1.2 Galahad G2 genotype and ratios 

A total of 142 animals were generated from the three Galahad IVFs. G2 mice were 

genotyped for the presence of the human SOD1G93A transgene as described in section 

2.5.2.1. Ratios and numbers of SOD1G93A transgenic (TgG93A(L)Galahad), and non-

transgenic (NTgGalahad) animals are reported in Table 6.3. The observed ratios were 

not significantly different from the expected ratios χ2(1) = 2.208 p = 0.131 for 
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inheritance of the low copy SOD1 transgene. Of note 50 % of the TgG93A(L)Galahad and 

50 % of the NTgGalahad should also carry the ENU mutation of the founder. 

Genotype Number of animals Observed 
ratios 

Expected 
ratios 

 Females  Males Total    

NTgGalahad 34 28 62 0.44 0.5 

TgG93A(L)Galahad 40 40 80 0.56 0.5 

Total 74 68 142 1 1 

Table 6.3 TgSOD1G93A genotype ratios of Galahad G2 mice. The omnibus χ2 showed that observed 

ratios do not differ from expected ratios. 

6.3.1.3 Survival of TgG93A(L)Galahad mice 

In this study the humane endpoint for the Galahad line was defined as first paralysis 

onset, loss of 20 % bodyweight and loss of righting reflex.  

Fifty TgG93A(L)Galahad mice were employed in survival analysis, among them 64 % were 

culled due to development of hind limb paralysis while the remaining 36 % reached the 

humane end point because of loss of 20 % bodyweight. Of note no NTgGalahad 

animals reached the humane endpoint within the timescale of the TgG93A(L)Galahad 

littermates, suggesting that the ENU mutation alone does not have an effect on 

survival. The survival distribution of TgG93A(L)Galahad mice was investigated to try and 

understand if it was possible to distinguish between two populations: one carrying only 

the SOD1G93A low copy mutation and a phenodeviant population with an early paralysis 

onset, carrying both the SOD1G93A low copy and the ENU mutation of the founder. 

The Shapiro-Wilk normality test gave a p value of p = 0.848, accepting the null 

hypothesis that the data are normally distributed. However, when a graphical 

assessment of normality was carried out using a quantile-quantile (QQ) plot, it was 

observed that the sample quantiles matched the theoretical quantiles only at the median 

and the extremes, suggesting a bimodal distribution of the data (Figure 6.5). A further 

investigation using the EM algorithm of the R mixtools package (Benaglia et al., 2009), 

confirmed that the survival frequency distribution of TgG93A(L)Galahad mice was a 

continuous curve with two different peaks (black dotted line Figure 6.6) compatible 

with a mixture of two normal distributions. One curve with a mean (µ) and a standard 
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deviation (σ) of µ = 32.05; σ = 2.4 weeks, and the other with µ = 37.3; σ = 2.97 weeks 

that most likely represent respectively the population of SOD1G93A low copy mice 

carrying the Galahad founder ENU mutation (mTgG93A(L)Galahad) and the SOD1G93A low 

copy population (TgSOD1G93A(L)) (Figure 6.6). Since it is known that gender affects 

survival in TgSOD1G93A(L) mice on a hybrid C57BL/6J-BALB/c background (Acevedo-

Arozena et al., 2011), the survival frequency of TgG93A(L)Galahad males and females was 

plotted separately, to see if it was still possible to distinguish between two normal 

distributions. In the case of the males two normal distributions were identified one 

with µ = 32.1; σ = 2.5 weeks and the other with µ = 35.8; σ = 3.3 weeks (Figure 6.7 

(a)). While in the case of the females only one normal curve was identified with 

µ = 37.5; σ = 3.1 weeks, while the other curve appeared as a distribution with a 

positive kurtosis (Figure 6.7 (b)); a bigger sample number will be needed to separate the 

two populations. 

 

Figure 6.5 Quantile-quantile plot of TgG93A(L)Galahad mice survival. Survival data of males and 

females are analysed together. The y axis represents the observed values (Sample quantiles), n = 50. The 

x axis represents the predicted values (Theoretical quantiles) which are equally spaced quantiles of a 

normal distribution that has the same mean and standard deviation of the sample dataset. The dots 

indicate each predicated value matched by rank with the corresponding observed value. If the data are 

sampled from a normal distribution the dots are expected to line up to the line of identity (black line). In 

this case the dots line up only at the median and the extremes of the line of identity, showing two kinks 

(red dotted line), characteristic of a bimodal distribution. 
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Figure 6.6 TgG93A(L)Galahad mice survival bimodal distribution. The survival frequency of the 

TgG93A(L)Galahad mice, n = 50, is represented by the histograms. The sample distribution, (black dotted 

line) shows two peaks compatible with two normal distributions. One with a mean of µ = 32.05 (red 

line) corresponding to the mTgG93A(L)Galahad population, and one with a mean of µ = 37.3 (green line) 

corresponding the TgSOD1G93A(L) population. 
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Figure 6.7 TgG93A(L)Galahad males and females survival bimodal distribution. (a) The survival 

frequency of the TgG93A(L)Galahad male mice, n = 26, is represented by the histograms. The sample 

distribution, (black dotted line) shows two peaks compatible with two normal distributions. One with a 

mean of µ = 32.1; σ = 2.5; (red line) corresponding to the mTgG93A(L)Galahad population, and one with a 

mean of µ = 35.8; σ = 3.3; (green line) corresponding the TgSOD1G93A(L) population. (b) The survival 

frequency of the TgG93A(L)Galahad female mice, n = 24, is represented by the histograms. The sample 

distribution, (black dotted line), seems to be compatible with two normal distributions. However, the 

first curve, corresponding to the mTgG93A(L)Galahad population, is not normally distributed (red line) and 

has µ = 32.4; σ = 0.1, the second curve is a normal distribution with µ = 37.5; σ = 3.1; (green line) 

corresponding the TgSOD1G93A(L) population. A bigger n number is needed to distinguish between the 

two populations. 
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6.3.1.4 Definition of two transgenic populations for phenotypic analysis  

In order to analyse weight and grip-strength data of the G2 Galahad progeny, and try to 

identify other phenotypes characteristic of SOD1G93A transgenic ENU mutagenized 

animals, it was crucial to determine which of the transgenic G2 mice to score 

mTgG93A(L)Galahad, and which mice to score TgSOD1G93A(L). Since the survival 

distribution of the transgenic Galahad population is continuous and the two normal 

curves describing it greatly overlap (Figure 6.6), for the phenotypic analysis it was 

defined that: all the mice with survival greater than the mean of the mTgG93A(L)Galahad 

curve plus two standard deviations (µ + 2σ = 36.8) were classified as TgSOD1G93A(L) 

(Figure 6.8 (a)); whereas animals with survival smaller than the mean of the 

TgSOD1G93A(L) curve minus two standard deviations (µ - 2σ = 31.36) were classified as 

mTgG93A(L)Galahad (Figure 6.8 (b)). Hence theoretically only 2.1 % of the TgSOD1G93A(L) 

animals were included in the mTgG93A(L)Galahad population and vice versa only 2.1 % of 

the mTgG93A(L)Galahad mice were included in the TgSOD1G93A(L) population. A total of 7 

animals were defined a mTgG93A(L)Galahad and 25 mice were defined as TgSOD1G93A(L). 

All animals with a time to end point between 31.36 and 36.85 weeks of age were 

excluded from the phenotypical analysis, since it was impossible to statistically 

categorise them into one of the two populations. 
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Figure 6.8 Definition of TgSOD1G93A(L) and mTgG93A(L)Galahad populations for phenotypic 

analysis. (a) All TgSOD1G93A(L) mice that had a survival equal or greater than the mean of the 

mTgG93A(L)Galahad curve plus 2 standard deviations (µ + 2σ = 36.85 weeks) were considered for the 

phenotypic analysis (grey area). Only 2.1 % of the mTgG93A(L)Galahad data might be included in the non-

mutagenized population during analysis (right tail of the red curve). (b) All mTgG93A(L)Galahad mice that 

had a survival equal or smaller than the mean of the TgSOD1G93A(L) curve minus 2 standard deviations 

(µ + 2σ = 31.36 weeks) were considered for the phenotypic analysis (grey area). Only 2.1 % of the 

TgSOD1G93A(L) data might be included in the mutagenized population during analysis (left tail of the 

green curve). 
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6.3.1.5  Correlation between transgene copy number and survival 

There is a positive correlation between the copy number of the SOD1 G93A transgene 

array and the phenotype of the mice (Alexander et al., 2004). To verify whether the 

copy number of G2 TgG93A(L)Galahad mice might influence their survival, a correlation 

was calculated between the copy number and the survival of 21 animals. 

A quantitative real time PCR (qPCR) was carried out as described in section 2.5.4. The 

data presented in Figure 6.9 proves the existence of a significant correlation between 

these two parameters: p = 0.01. The negative r of the correlation test (r = -0.5731) 

confirmed that with a decrease in copy number, there was an increase in survival. 

Finally the r2 (r2 = 0.328) showed that 32.8 % of variance was shared between the two 

variables. However, the copy number of animals that died before 31.36 weeks seemed 

to be quite variable (Figure 6.9, below dotted line), a bigger number of 

mTgG93A(L)Galahad animals will be needed to verify if there is correlation with copy 

number within this population.  

 

Figure 6.9 Correlation between copy number and survival in G2 TgG93A(L)Galahad mice. The r2 

(r2 = 0.328) confirmed that 32.8 % of variance is shared between the copy number and survival. Indeed 

a reduced copy number corresponds to an increase in survival. N = 21; r = -0.5731, p = 0.01. 
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6.3.1.6 Galahad G2 body weight analysis  

To investigate if the presence of the Galahad mutation together with the SOD1G93A low 

copy transgene could cause body weight deficits, weight measures of mTgG93A(L)Galahad 

mice were examined in comparison to TgSOD1G93A(L) and NTgGalahad littermates. 

Weight was assessed weekly as described in section 2.3.2.2. A one-way analysis of 

variance (ANOVA) with Bonferroni post-hoc test was used to evaluate the difference 

in body weight between the 3 genotypes from 24 to 27 weeks of age. The analysis was 

carried out combining the results from the two sexes and for male mice. Of note the 

number of mTgG93A(L)Galahad females was too small to be able to conduct a female only 

analysis. To minimise gender variation and also size variation that might occur due to 

the hybrid background all weight measures of each individual were normalised to its 

maximum bodyweight.  

For the whole cohort the overall ANOVA was significant at 26 weeks (p = 0.007) and 

27 weeks of age (p < 0.001). Similarly for the males the overall ANOVA was significant 

at 26 weeks (p = 0.005) and 27 weeks of age (p = 0.009). In both analysis the pair-wise 

comparison found that mTgG93A(L)Galahad animals were significantly different from 

TgSOD1G93A(L) and NTgGalahad littermates at 26 and 27 weeks of age. No difference 

was found between TgSOD1G93A(L) and NTgGalahad mice (Table 6.4 and Figure 6.10). 

 Weeks mTgG93A(L)Galahad 

vs 

TgSOD1G93A(L) 

mTgG93A(L)Galahad 

vs 

NTgGalahad 

TgSOD1G93A(L) 

vs 

NTgGalahad 

Males and 
females 

24 p = 1 p = 1 p = 1 

25 p = 0.180 p = 0.313 p = 1 

26 p = 0.005  ** p = 0.037  * p = 1 

27 p < 0.001  *** p = 0.001  *** p = 1 

Males 

24 p = 1 p = 1 p = 1 

25 p = 0.213 p = 0.361 p = 1 

26 p = 0.008  ** p = 0.013  * p = 1 

27 p = 0.027  * p = 0.014  * p = 1 

Table 6.4 Galahad G2 mice normalised body weight pair-wise comparisons. Results of Bonferroni 

post-hoc analysis between the three genotypes, for the whole cohort and males only. Significant p-values 

are indicated with (*) p ≤ 0.05; (**) p ≤ 0.01; (***) p ≤ 0.001. 
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Figure 6.10 Normalised body weight of G2 Galahad mice. (a) Male and female normalised body 

weight. At least 7 animals per genotype were assessed. mTgG93A(L)Galahad mice are significantly different 

from TgSOD1G93A(L) and NTgGalahad littermates at 26 and 27 weeks of age. (b) Male normalised body 

weight. At least 6 animals per genotype were assessed. Also for males only by 26 weeks of age 

mTgG93A(L)Galahad mice are significantly different from TgSOD1G93A(L) and NTgGalahad littermates. The 

graphs represent the average normalised weight ± SEM per genotype and time point. (*) indicates the 

significant differences between the two transgenic genotypes: mTgG93A(L)Galahad and TgSOD1G93A(L), 

other significant results are reported in Table 6.4. 
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6.3.1.7 Galahad G2 grip-strength analysis 

To gain more details on the disease progression of the Galahad line, grip-strength was 

assessed weekly for mTgG93A(L)Galahad, TgSOD1G93A(L) and NTgGalahad littermates, as 

described in section 2.3.2.3. A one-way ANOVA with Bonferroni post-hoc test was 

used to evaluate the difference in grip-strength between the 3 genotypes from 23 to 28 

weeks of age. Since it is known that gender has an effect on the grip-strength of 

TgSOD1G93A(L) animals (see above), the analysis was carried out both combining the 

results from the two sexes and for male mice. As for the weight, also for grip-strength 

the n number of the mTgG93A(L)Galahad females was too small to allow a female only 

investigation. To minimise variations each grip-strength measure was corrected for the 

corresponding body weight. 

For the whole cohort the overall ANOVA was significant at all weeks tested: 23 weeks 

(p = 0.006); 24 weeks (p = 0.04), 25 weeks (p = 0.014); 26 weeks (p = 0.021), 27 weeks 

(p = 0.012) and 28 weeks (p = 0.001). While for the males the overall ANOVA was 

significant at 23 week (p = 0.017), 27 weeks (p = 0.037) and 28 weeks of age 

(p = 0.003). In the whole cohort analysis, the pair-wise comparison found that 

mTgG93A(L)Galahad animals were significantly different from TgSOD1G93A(L) at 23, 25, 26, 

27 and 28 weeks of age, while they differ significantly from NTgGalahad littermates 

only at 27 and 28 weeks of age. No difference was found between TgSOD1G93A(L) and 

NTgGalahad mice (Figure 6.11 (a) and Table 6.5). When only male mice were 

investigated a significant difference was found between mTgG93A(L)Galahad and 

TgSOD1G93A(L) littermates at 27 and 28 weeks of age. mTgG93A(L)Galahad were also 

significantly different form NTgGalahad mice at 28 weeks of age. Of note at 23 weeks 

of age the grip-strength of NTgGalahad animals appeared significantly reduced 

compared to TgSOD1G93A(L) littermates, however a difference was detected only for the 

first time point examined, suggesting that there is not a real variance between the two 

groups (Figure 6.11 (b) and Table 6.5). 
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 Weeks mTgG93A(L)Galahad 

vs 

TgSOD1G93A(L) 

mTgG93A(L)Galahad 

vs 

NTgGalahad 

TgSOD1G93A(L) 

vs 

NTgGalahad 

Males and 
females 

23 p = 0.011  * p = 0.433 p = 0.7 

24 p = 0.064 p = 0.747 p = 0.207 

25 p = 0.012  * p = 0.057 p = 1 

26 p = 0.024  * p = 0.541 p = 0.207 

27 p = 0.012  * p = 0.024  * p = 1 

28 p = 0.001  *** p = 0.001  *** p = 1 

Males 

23 p = 0.058 p = 1 p = 0.036  * 

24 p = 0.819 p = 1 p = 1 

25 p = 0.163 p = 1 p = 0.869 

26 p = 0.581 p = 1 p = 0.483 

27 p = 0.041  * p = 0.151 p = 1 

28 p = 0.003  ** p = 0.012  * p = 1 

Table 6.5 Galahad G2 mice normalised grip-strength pair-wise comparison. Results of Bonferroni 

post-hoc analysis between the three genotypes, for the whole cohort and males only. Significant p-values 

are indicated with (*) p ≤ 0.05; (**) p ≤ 0.01; (***) p ≤ 0.001. 
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Figure 6.11 Normalised grip-strength of G2 Galahad mice (a) Males and females’ normalised grip-

strength. At least 6 animals per genotype were assessed for every time point. mTgG93A(L)Galahad mice are 

significantly different from TgSOD1G93A(L) littermates at all-time points except 24 weeks, and they are 

significantly different from NTgGalahad mice at 27 and 28 weeks of age. (b) Males normalised body 

weight. At least 5 animals per genotype were assessed for every time point. mTgG93A(L)Galahad mice are 

significantly different from TgSOD1G93A(L) littermates at 27 and 28 weeks, and they are significantly 

different from NTgGalahad mice at 28 weeks of age. There is also a significant difference between 

NTgGalahad and TgSOD1G93A(L)  at 23 weeks. The graphs represent the average grip-strength normalised 

by weight ± SEM per genotype and time point. (*) indicates the significant differences between the two 

transgenic genotype: mTgG93A(L)Galahad and TgSOD1G93A(L), the other significant difference are noted in 

Table 6.5. 
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6.3.2 Phenotypic characterisation of the G3 Galahad progeny 

A first genome-wide scan (GWS) carried out at MRC Harwell on G2 SOD1G93A(L) 

transgenic Galahad mice that reached paralysis before 33 weeks of age, suggested 3 

potential areas of linkage for the ENU mutation, located in in chromosomes 1, 3 and 

10. In order to see if the selected regions were of interest and if it was possible to 

refine their map position, it was necessary to carry out additional backcrossing 

followed by a phenotypical investigation and genetic mapping of the new progenies. 

6.3.2.1 Galahad G2 breeding strategy 

G2 SOD1G93A(L) transgenic Galahad animals were genotyped for markers specific for the 

3 regions of interest, which were polymorphic between BALB/c and C57BL/6J 

background strains (see section 2.5.3). Since the Galahad founder (hybrid C57BL/6J-

BALB/c) was backcrossed to C57BL/6J mice and the ENU mutation must within 

DNA from the inbred strain used for chemical mutagenesis (BALB/c), G2 mice that 

were heterozygous in one or more of the 3 regions of interest were selected for further 

backcrosses. Twelve G2 TgG93A(L)Galahad mice, 7 females and 5 males were backcrossed 

with C57BL/6J mice in 9 crosses. Females that were heterozygous for the same 

regions were crossed in trio matings. 

6.3.2.2  Galahad G3 genotype and ratios 

A total of 132 animals were generated from the 9 crosses. Interestingly the number of 

males produced was considerably higher than the number of females, respectively 80 

and 48. The observed sex ratios were indeed significantly different from the expected 

χ2(1) = 8.00 p = 0.0047.  

Only G3 females were kept and genotyped for the presence of the human SOD1G93A 

transgene as described in section 2.5.2.1. Among them 22 were TgG93A(L)Galahad and 26 

were NTgGalahad, in this case the observed ratios between transgenic and non-

transgenic females was not significantly different from the expected: χ2(1) = 0.333 

p = 0.564. 

6.3.2.3 Survival of G3 TgG93A(L)Galahad mice 

Because of the low number of TgG93A(L)Galahad females it was not possible to 

statistically investigate if the survival data could fit a bimodal curve, as it was done for 

the G2 progeny. Hence, the same parameters applied for the G2 mice were used to 
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define which of the SOD1G93A(L) transgenic G3 females were mTgG93A(L)Galahad and 

which were TgSOD1G93A(L) (Figure 6.8). Five female mice reached the humane end 

point before 31.36 weeks and were defined as mTgG93A(L)Galahad, and 9 mice reached 

the humane endpoint after 36.85 weeks and were defined as TgSOD1G93A(L). 

Interestingly all mTgG93A(L)Galahad were culled due to substantial weight loss. Of note 

among all the transgenic SOD1G93A(L) females only 13.6 % reached the humane end 

point because of paralysis while the remaining 86.4 % were culled due to weight loss.  

The five mTgG93A(L)Galahad females from the G3 progeny were genotyped for the 3 

regions of interest selected by the MRC Harwell GWS, their genotype together with 

the genotype of the corresponding G2 parents are reported in Table 6.6. 

Cross G Sex Survival 

(weeks) 

Chr 1 

20 Mb 

Chr 1  

59 Mb 

Chr 3     

58 Mb 

Chr 3  

108 Mb 

Chr 10 

105 Mb 

1 G2 f 36.3 B/B B/B B/B B/B B/C 

G2 f 36.3 B/B B/B B/B B/B B/C 

G3 f 28.7 B/B B/B B/B B/B B/C 

2 G2 f 38.7 B/C B/C B/B B/B B/B 

G2 f 38.1 B/C B/C B/B B/B B/B 

G3 f 27.14 B/C B/C B/B B/B B/B 

3 G2 f 39.6 B/B B/B B/C B/C B/C 

G2 f 38 B/B B/B B/C B/C B/C 

G3 f 30.7 B/B B/B B/B B/B B/B 

G3 f 31.3 B/B B/B B/B B/C B/B 

4 G2 m 34.2 B/C B/C B/C B/C B/B 

G3 f 31.1 B/B B/B B/B B/C B/B 

Table 6.6 Haplotype of the G3 mTgG93A(L)Galahad females and G2 parents. Four crosses produced 

mTgG93A(L)Galahad females. Column (Cross) indicates the cross number, column (G) indicates the 

generation: parental generation (G2) and progeny generation (G3). Five SNPs were employed for the 

genotype of the 3 interesting regions, they are labelled by chromosome (chr) location. Regions of 

heterozygosity between C57BL/6J and BALB/c are indicated in yellow (B/C) while regions on 

homozygosity (both alleles C57BL/6J), are indicated in grey (B/B). Of note even though the G3 animals 

reached the humane end point before 31.36 weeks of age, none of the parents died within that period. 
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6.3.2.4 Galahad G3 body weight analysis 

To investigate whether the significant difference in bodyweight detected in G2 

mTgG93A(L)Galahad mice compared to littermates was presented also in the G3 progeny; 

body weight of G3 mTgG93A(L)Galahad, TgSOD1G93A(L) and NTgGalahad was assessed 

weekly (see 2.3.2.2). Analysis was carried out using a one-way ANOVA with 

Bonferroni post-hoc correction, from 24 to 27 weeks of age. All weight measures of 

each individual were normalised for its maximum bodyweight.  

The overall ANOVA was significant only at 27 weeks (p < 0.0001), and the pair-wise 

comparison found that mTgG93A(L)Galahad animals were significantly different from 

TgSOD1G93A(L) and NTgGalahad littermates at 27 weeks of age while no difference was 

found between TgSOD1G93A(L) and NTgGalahad mice (Table 6.7 and Figure 6.12) 

Weeks 

mTgG93A(L)Galahad 

vs 

TgSOD1G93A(L) 

mTgG93A(L)Galahad 

vs 

NTgGalahad 

TgSOD1G93A(L) 

vs 

NTgGalahad 

   24 p = 0.569 p = 0.241 p = 1 

   25 p = 1 p = 1 p = 1 

   26 p = 1 p = 0.594 p = 0.790 

   27 p = 0.001  *** p < 0.001  *** p = 1 

Table 6.7 Galahad G3 normalised weight pair-wise comparisons. Results of Bonferroni post-hoc 

analysis between the three genotypes, for females only. Significant p-values are indicated with (*) 

p ≤ 0.05; (**) p ≤ 0.01; (***) p ≤ 0.001. 
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Figure 6.12 Normalised body weight of G3 Galahad females. At least 5 animals per genotype were 

assessed for every time point. mTgG93A(L)Galahad mice are significantly different from TgSOD1G93A(L) and 

NTgGalahad littermates at 27 weeks of age. The graphs represent the average normalised weight ± SEM 

per genotype and time point. (*) indicates the significant differences between the two transgenic 

genotype: mTgG93A(L)Galahad and TgSOD1G93A(L), other significant results are reported in Table 6.7. 

6.3.3 NTgGalahad X TgSOD1G93A(H) cross 

Preliminary results of a second GWS carried out on the IVF1 G2 progeny, suggested 

two potential regions of linkage in chromosome 1 and 7 (data not shown). Considering 

the difficulties in the identification of this new ENU mutation, NTgGalahad animals 

carrying the potential areas of linkage were crossed with TgSOD1G93A(H) mice, to 

investigate whether it was possible to exacerbate the Galahad phenotype by having 

more copies of the human SOD1G93A transgene. 

In particular G2 NTgGalahad animals were genotyped for markers specific for the 2 

regions of interest, which were polymorphic between BALB/c and C57BL/6J 

background strains (as described section 2.5.3). Eight NTgGalahad females carrying 

one or more regions of interest were then crossed with TgSOD1G93A(H) males. A total of 

52 animals were generated: 28 females and 24 males, the observed sex ratios were not 

significantly different from the expected χ2(1) = 0.308 p = 0.5791. Among 52 mice, 24 

were non-transgenic for SOD1G93A(H) (NTgGalahad), 23 were transgenic 

(TgG93A(H)Galahad) and 5 died for other causes and were not genotyped. From these 
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mice the observed ratios between transgenic and non-transgenic animals was not 

significantly different from the expected: χ2(1) = 0.021 p = 0.884.  

The average survival for TgSOD1G93A(H) animals on a C57BL/6J background is of 19.5 

weeks of age (data from Dr. Rosie Bunton-Stasyshyn), so far 16 TgG93A(H)Galahad mice 

reached the humane end point with an average survival of 20 weeks. A bigger sample 

number will be necessary to statistically investigate if it possible to distinguish between 

a non-mutagenized and an ENU-mutagenized population, and determine whether the 

ENU mutation can worsen the phenotype of TgSOD1G93A(H) mice. 

6.3.4 Genetic mapping  

The breeding strategy applied to generate the Galahad line was based on the cross 

between two different inbred strains: BALB/c (ENU-mutagenized) and C57BL/6J. 

Animals from inbred strains are as genetically alike as possible, being homozygous at 

virtually all of their loci. Therefore when the Galahad founder was backcrossed to the 

non-mutagenized paternal strain (C57BL/6J), the G2 progeny produced were obligate 

heterozygous (BALB/c-C57BL/6J) at the mutation affected locus/loci. Furthermore 

recombination events and the presence of C57BL/6J homozygosity excluded unlinked 

areas.  

6.3.4.1  Genome wide scan 

To try to identify the Galahad mutation the DNAs of 28 G2 TgG93A(L)Galahad animals 

that died between 26 and 39.6 weeks of age were sent for GWS. The 19 mouse 

autosomal chromosomes were genotyped for 1358 polymorphic SNPs markers, that 

were uniformly distributed at a density of approximately three SNPs every 5 Mb 

intervals across the genome. The genome coverage by chromosome is reported in 

Figure 6.13. Of note the marker position is expressed in centimorgan (cM) a unit of 

linkage that represent the genetic distance between two loci determined by 

recombination frequency. The genetic distance does not always correspond to the 

physical distance expressed in base pair, since recombination rate is not constant along 

the length of the chromosomes.  
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Figure 6.13 SNPs genome coverage. The image shows the coverage density in Mb for every 

autosomal chromosome. This SNP array provided a medium density genome coverage.  

6.3.4.2 QTL analysis 

A quantitative trait locus (QTL) analysis was carried out to try and link the phenotypic 

data (survival) and genotypic data (SNP markers) in an attempt to identify the new 

modifier mutation/s. 

In particular a single QTL genome scan analysis was performed in R using the method 

of maximum likelihood via the EM algorithm (Lander and Botstein, 1989). Briefly the 

hidden Markov model was used to calculate QTL genotype probability and correct for 

missing values, using a step size of 1 cM. For each marker, a logarithm of the odds 

(LOD) score was calculated, which is an estimation of the probability that the 

difference seen between homozygous and heterozygous individuals in a specific locus 

is linked to the phenotype tested; details of the genotype data per chromosome per 

mouse are shown in Figure 6.14.  
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The results of the QTL analysis are presented in Figure 6.15 as a plot of the LOD 

score against the chromosomal map position. Results of the top LOD score obtained 

for each chromosome are listed in Table 6.8. Of note for the purpose of this analysis a 

threshold of significance for the LOD score was not calculated, the significance 

depends on a series of factors, such as species, genome length and recombination, and 

requires complex algorithms. Instead the 3 highest LOD scores obtained for 

chromosome 6, 12 and 18 were graphically investigated. 

 

Figure 6.14 Genotype data for the G2 Galahad mice. Regions of homozygosity (red), regions of 

heterozygosity (blue), and missing data (white) plotted for each G2 mouse for every chromosome.  
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Figure 6.15 LOD scores for Galahad G2 progeny. Logarithm of the likelihood odds ratio (LOD) 

score curves along the genome (minus the X chromosome). The positions of the markers are shown as 

black lines on each chromosome. A significance threshold has not been calculated for this data set, 

however it was possible to identify 3 peaks: on chromosome 6, 12 and 18. 
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Chr Position 
(cM) 

Marker LOD 

1 12.19 c1.loc9 0.419 

2 131.99 rs4223511 0.288 

3 154.84 rs13477506 0.441 

4 26.96 rs13477617 0.384 

5 34.91 rs13459085 0.6308 

6 16.06 rs13478641 1.438 

7 22.23 c7.loc18 1.060 

8 106.80 gnf08.108.032 0.353 

9 121.91 rs13459114 0.859 

10 4.96 rs6185923 0.658 

11 77.55 c11.loc74 0.411 

12 117.72 rs3692361 1.814 

13 99.09 c14.loc91 1.321 

14 92.09 c14.loc84 0.804 

15 74.85 rs8259436 0.735 

16 87.49 rs4214396 0.866 

17 94.13 rs3706382 0.318 

18 79.94 rs3720876 1.955 

19 53.44 rs13483682 1.095 

Table 6.8 Top LOD score marker per chromosome. The markers with the highest LOD score values 

per chromosome (Chr) are shown with relative position in cM.  

The three most significant markers identified by QTL analysis were located on 

chromosomes 6, 12 and 18. To further investigate these three SNPs the genotypes of 

each animal were plotted against the corresponding survival values and the 

heterozygosity and homozygosity regions of each mouse were plotted for the 

corresponding chromosome (Figure 6.16, Figure 6.17 and Figure 6.18). This graphic 

analysis suggested that regions located in chromosome 6 and 18 were possible areas of 

linkage since the majority of animals that reached an early time to end point presented 

areas of heterozygosity along the chromosomes in contrast to mice that displayed a 
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longer survival (Figure 6.16 (a), Figure 6.18 (a)). Furthermore on the top hit markers 

the mean of the heterozygous animals was significantly lower compared to the 

homozygous: p = 0.005 for chromosome 6 top hit marker and p = 0.001 for 

chromosome 18 top hit marker (Figure 6.16 (b), Figure 6.18 (b)). Instead chromosome 

12 appeared to be a false positive, indeed the majority of animals were homozygous for 

C57BL/6J along the whole chromosome (Figure 6.17(a)), and on the top hit marker 

the mean of the heterozygous animals was higher compared to one of the homozygous 

(Figure 6.17 (b)). Plots showing the regions of homozygosity and heterozygosity with 

recombination events, for all mice per each chromosome are presented in Appendix 

8.7. 
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Figure 6.16 Chromosome 6. (a) Genotype and recombination events per mouse along chromosome 6. 

(b) Maximum LOD score marker for chromosome 6 (LOD = 1.438). Each animal is plotted for the 

genotype (homozygous or heterozygous, x axis) and survival (y axis). The bars indicate the average 

survival time for animals that are heterozygous (green) and homozygous (red) in that position. 
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Figure 6.17 Chromosome 12. (a) Genotype and recombination events per mouse along chromosome 

12. (b) Maximum LOD score marker for chromosome 12 (LOD = 1.814). Each animal is plotted for its 

genotype (homozygous or heterozygous, x axis) and survival (y axis). The bars indicate the average 

survival time for animals that are heterozygous (green) and homozygous (red) in that position. In this 

case the high LOD score is a false positive. 
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Figure 6.18 Chromosome 18. (a) Genotype and recombination events per mouse along chromosome 

18. (b) Maximum LOD score marker for chromosome 18 (LOD = 1.955). Each animal is plotted for the 

genotype (homozygous or heterozygous, x axis) and survival (y axis). The bars indicate the average 

survival time for animals that are heterozygous (green) and homozygous (red) in that position. 
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6.4 Conclusions 

6.4.1 Concluding remarks on Galahad mice 

The aim of the work presented in this chapter was to phenotypically characterise the 

progeny of the ENU mutagenized Galahad mouse and identify possible modifying 

locus/loci interacting with the SOD1 G93A mutation. 

The results from the behavioural screen provided valuable data towards the 

characterisation of the Galahad mice. 

Investigation of the survival phenotype of the second generation of Galahad after 

mutagenesis, confirmed the presence of an early onset phenotype in a subset of 

TgG93A(L)Galahad mice. Analysis of transgenic SOD1G93A(L) survival distribution showed 

that it was possible to discern between two normal populations, allowing the 

identification of statistical criteria to classify the TgG93A(L)Galahad mice as ENU 

mutagenized (mTgG93A(L)Galahad) or non-mutagenized (TgSOD1G93A(L)). 

A correlation between survival and the number of SOD1 G93A transgene copies was 

found in TgG93A(L)Galahad animals. However, a measure of copy number should not be 

applied as a strategy to identify mTgG93A(L)Galahad within the transgenic Galahad 

population, since the copy number of the mice with the smallest survival appeared to 

be extremely variable.  

A significant reduction in body weight was detected in mTgG93A(L)Galahad mice 

compared to TgSOD1G93A(L) and NTgGalahad littermates from 26 weeks of age. Of 

note, even if not significant, a reduction in mTgG93A(L)Galahad body weight was visible 

already at 25 weeks. This was true both when the males and females were analysed 

together and for males alone. However, a body weight reduction a few weeks before 

death is expected in mice carrying several copies of the human SOD1 G93A transgene. 

A significant and progressive reduction in grip-strength was found in mTgG93A(L)Galahad 

compared to TgSOD1G93A(L) littermates, starting at 25 weeks of age when males and 

females were assessed together and from 27 weeks in males only. Interestingly in the 

whole cohort there was a significant difference between the two transgenic populations 

already at 23 weeks of age, suggesting that the impairment in grip-strength might start 

even earlier in mTgG93A(L)Galahad animals. Further analysis at earlier time points will be 

needed to confirm this hypothesis, however if true, grip-strength analysis could be 
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employed as a strategy to identify mTgG93A(L)Galahad mice within the transgenic 

population. mTgG93A(L)Galahad showed a reduction in grip-strength also in comparison 

to NTgGalahad animals, from 27 weeks of age in the mixed gender group and from 28 

weeks in males. Of note a significant difference in grip-strength was detected also in 

NTgGalahad animals compare to TgSOD1G93A(L) littermates at a single time point of 23 

weeks of age. In the literature wild-type animals show difference in grip-strength 

compared to TgSOD1G93A(L) from 24 weeks of age (Acevedo-Arozena et al., 2011). 

Grip-strength investigation on a bigger number of animals will clarify whether this is a 

random difference or if this might be due to presence of ENU mutagenized animals 

within the NTgGalahad group that may display a subtle phenotype in reduction of grip-

strength.  

Analyses of body weight of Galahad G3 female mice confirmed the same pattern seen 

in the G2 generation. Indeed the body weight of mTgG93A(L)Galahad mice was 

significantly reduced at 27 weeks of age compared to littermates. Interestingly all these 

animals were culled due to loss of body weight and none of them reached paralysis. 

This might be an effect of the backcross to the C57BL/6J background as it was shown 

that SOD1 G93A transgenic mice display a milder phenotype when on a C57BL/6J 

background compare to others strains (Acevedo-Arozena et al., 2011; Heiman-

Patterson et al., 2005). However, the G2 mice that generated the G3 progeny were 

chosen on the basis of a GWS carried out on a small number of animals and is 

important to note that the QTL analysis presented in this work excluded those areas as 

possible regions of linkage. Furthermore none of the G2 parental animals reached the 

humane end point early enough to be considered mTgG93A(L)Galahad, therefore there is 

the possibility that none of the transgenic animals of the G3 generation that were 

analysed were carrying the ENU mutation/s of interest.  

So far a cross between the G2 NTgGalahad and TgSOD1G93A(H) mice did not exacerbate 

the phenotype of the progeny compared to the parental TgSOD1G93A(H)  animals. This 

might be simply because a bigger number of samples is needed, or because the animals 

selected on the base of a previous GWS were not carrying the ENU mutation of the 

founder. Alternatively no difference in survival can be detected because the presence of 

the high copy SOD1G93A transgene causes such a severe phenotype that the ENU 

mutation if present gives rise only to subtle charges. 
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The QTL analysis carried out on the G2 progeny suggested two main regions of 

linkage, one located in chromosome 6 and one located in chromosome 18. The fact 

that the exact location of these regions is still unclear suggests that the effect of the 

Galahad ENU mutation on the SOD1G93A(L) phenotype might be caused either by a 

dominant mutation with low penetrance or by a more than one mutations.  

6.4.2 Future work 

6.4.2.1 Further phenotypic characterisation 

To further phenotypically characterise the Galahad line it would be necessary to 

generate a bigger number of animals both for the G2 and the G3 generation. This 

should allow the investigation of survival, weight and grip-strength of males and 

females separately, to see if the gender has effect as happens in TgSOD1G93A(L) mice 

when in a hybrid background (Acevedo-Arozena et al., 2011). Analysis of the grip-

strength from an earlier time point should also reveal if this measure can be employed 

as a strategy to select ENU mutagenized animals. 

The G3 mice that have been investigated should be genotyped for the new areas of 

linkage identified by the QTL analysis, in order to further investigate the reasons for 

the differences detected in the sex ratios and the high percentage of animals reaching 

the humane end point because of weight loss and not paralysis.   

6.4.2.2  Further QTL analysis and next-generation sequencing  

For the QTL analysis it will be crucial to increase the number of animals in the analysis 

to better identify the locus/loci that are related to the early onset of the founder. It will 

be also important to calculate the threshold for the LOD score based on the data to 

see if there are significant QTLs. Furthermore the whole genome of the Galahad 

founder has now been sequenced using next-generation sequencing technology. These 

new sequence data together with the result of the QTL analysis will possibly allow the 

identification of candidate modifier genes of the SOD1G93A(L) phenotype. 

6.4.2.3 Pathology investigation 

During this study, spinal cord, brain, TA and EDL samples have been collected from a 

large number of Galahad animals. It will be very interesting to carry out experiments 

such as motor neuron counts in the spinal cords, and neuromuscular junction counting 

to investigate the pathology of this line.  
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6.5 Summary 

 Survival data from the transgenic SOD1G93A(L) G2 progeny can fit two normal 

distributions  

 From the transgenic SOD1G93A(L) G2 progeny it was possible to define statistical 

criteria to classify Galahad transgenic SOD1G93A(L) mice as ENU mutagenized or 

non-mutagenized 

 There is a correlation between SOD1G93A(L) copy number and survival in the G2 

progeny  

 G2 mTgG93A(L)Galahad mice have a reduction in body weight compared to 

littermates starting at 26 weeks of age  

 G2 mTgG93A(L)Galahad mice appear to have early grip-strength impairment, that 

might be help to distinguish them from the TgSOD1G93A(L) population 

 In the G3 progeny Galahad transgenic SOD1G93A(L) animals that have a short 

survival all reach a humane end point because of substantial weight loss 

 The QTL analysis suggests two areas of linkage, on chromosomes 6 and 18 

 Chromosome 12 appears to have an area of linkage but is a false positive 
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Chapter 7 Discussion 

The work described in this thesis has focused on the characterisation of the role that 

the SOD1 protein plays in ALS, investigating the human and the mouse variants in vivo 

and in vitro. In particular a meta-analysis was carried out on the literature to review 

measures of SOD1 activity from SOD1-fALS patients and the phenotype of Sod1 

knockout animals, aiming to understand if a loss of SOD1 function could play a role in 

disease. Further the phenotype of a novel mouse model, Sod1D83G, carrying a point 

mutation in the endogenous mouse Sod1 gene was investigated. Then the Sod1D83G 

mouse was crossed with Sod1 knockout mice and mice overexpressing the human wild-

type SOD1 to see if it was possible to dissect elements of a loss of function (the 

peripheral axonopathy) and aspects of a gain of function (the central body 

degeneration). Recombinant SOD1 proteins were produced, purified and characterised 

and preliminary spontaneous aggregation experiments were conducted, to try to 

investigate human-mouse SOD1 protein interactions. Finally the phenotype of the 

progeny of the Galahad ENU mutagenized mouse was examined and a QTL analysis 

was carried out in order to try to identify possible modifying locus/loci interacting with 

the SOD1 G93A mutation. 

7.1 Gain and loss of function could coexist in SOD1-ALS 

When in 1993 mutations in the SOD1 gene were identified as causative of fALS, it was 

thought that the absence of functional SOD1 could increase oxidative stress, causing 

neurodegeneration (Smith et al., 1991; Stadtman, 1992; Stadtman and Berlett, 1997). 

Indeed patients showed oxidative stress markers in tissues and reduction of SOD1 

activity in blood (Deng et al., 1993; Fitzmaurice et al., 1996; Rosen et al., 1993; Shaw et 

al., 1995). However, subsequent findings carried out in SOD1-fALS mouse models 

soon dismissed the idea that SOD1-ALS could arise from a loss of SOD1 function 

demonstrating that the disease is caused by a toxic gain of function (Bruijn et al., 1998). 

Only in recent years, a number of studies investigating Sod1 knockout and SOD1 

transgenic mice reopened the possibility that a loss of SOD1 function could play a role 

in SOD1-ALS (Saccon et al., 2013). Loss and gain of function mechanisms are already 

known to coexist in other neurodegenerative diseases such as Huntington’s disease and 

Parkinson’s disease (Winklhofer et al., 2008; Zuccato et al., 2010) and have been both 

hypothesised to contribute to TDP-43-ALS and FUS-ALS (Lagier-Tourenne and 

Cleveland, 2009; Petkova et al., 2005). 
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7.1.1 Reduction of SOD1 activity in SOD1-fALS patients 

In the present work published data was analysed from patients carrying SOD1-fALS 

mutations and it was found that on average the overall SOD1 activity is reduced to 

approximately 50 % (Figure 3.1). However, we did not find any description of ALS 

patients with complete loss of SOD1 activity, not even when SOD1 mutations were 

present in homozygosity. Moreover from human genetic studies no evidence was 

found suggesting that SOD1 loss of function alone causes ALS. Of note none of the 

160 mutations linked to SOD1-ALS generate an effectively null allele, reflecting the 

situation of Sod1-/- mice. Indeed there are no truncation mutations in the N-terminal of 

the SOD1 protein (Figure 1.5). The only described SOD1 mutation that might be a 

null is a frameshift in exon 2 predicting a protein of 35 amino acid, but segregation 

data are unclear therefore no assumption can be made (Hu et al., 2012). 

7.1.2 SOD1 loss of function worsens the phenotype of transgenic mouse 
models pointing to a neuroprotective role for SOD1 activity 

Although data from transgenic mouse models of SOD1-fALS show that ALS arises 

from a toxic gain of function, some experiments also point to the possibility that a loss 

of SOD1 activity might worsen the disease phenotype of these animals. 

As reviewed in 3.3.3.3 selective excision of mutant SOD1 from microglia and 

astrocytes improves the phenotype of transgenic SOD1 mouse models, producing a 

greater amelioration when the SOD1 mutation is dismutase inactive (Ilieva et al., 2009; 

Wang et al., 2011b). Further knockdown of mutant SOD1 from Schwann cells worsens 

the disease progression of enzymatically active SOD1 mutants and ameliorates disease 

from dismutase inactive SOD1 mutants (Kiernan et al., 2011; Lobsiger et al., 2009; 

Wang et al., 2012). These results suggest that, in addition to the gain of function, 

microglia cells and astrocytes of dismutase active mutant SOD1 mice have a 

neuroprotective effect on the disease, thanks to the presence of residual SOD1 activity. 

7.1.3 Sod1 knockout mice have specific cell-type sensitivities and share 
characteristics with ALS 

Sod1 knockout mice do not develop motor neuron loss and therefore are not a model 

of ALS, but they are considered a model of chronic oxidative stress. These mice are 

indeed the most useful tool to investigate the effects of the absence of SOD1 protein 

in vivo.  
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The meta-analysis carried out in the present work shows that although Sod1-/- mice do 

not develop MN degeneration, they present several ALS-related phenotypes. For 

example, these mice are characterised by a progressive distal axonopathy (Murray et al., 

2010) and their motor neurons are preferentially affected and susceptible to injuries 

compared to sensory neurons (Pupillo et al., 2012). Furthermore they develop other 

phenotypes such as increased susceptibility to APP-induced neurodegeneration, or 

progressive loss of auditory ganglion neurons and retinal cells, that emphasise the 

importance of SOD1 in neurodegeneration. 

Interestingly also heterozygous knockout animals present an increased neuronal loss 

and susceptibility to injury. Confirming that in mice a 50 % reduction in SOD1 activity, 

as in SOD1-fALS patients, has direct consequences on neuronal survival and increases 

predisposition to neurodegeneration. This is different from other human disease data 

involving loss of enzyme activity, where usually 50 % loss of activity is not sufficient to 

cause disease related phenotypes (Mitchell et al., 2011). 

7.1.4 Sod1D83G a novel mouse model to investigate axonal and neuronal body 
degeneration  

We have recently published a paper describing the characterisation of a novel mouse 

model carrying an ENU-induced point mutation in the mouse Sod1 gene, which is 

identical to a human fALS causative mutation (Joyce et al., 2014; Millecamps et al., 

2010). 

Since the Sod1D83G mouse mutation is within the endogenous mouse Sod1 gene, it 

overcomes one of the limitations of the transgenic mouse model of SOD-ALS: the 

overexpression of mutant human SOD1, which is known to affect various features of 

the disease phenotype and pathology (Jaarsma et al., 2000; Jonsson et al., 2006b). 

Analysis of the Sod1D83G mouse has shown that homozygous Sod1D83G/D83G mice develop 

both upper and lower motor neuron degeneration, modelling the situation in humans, 

but with a different profile than in mice carrying a human mutant SOD1 transgene 

array. Indeed, although the degeneration of motor neurons in Sod1D83G/D83G animals is 

progressive, LMN death appears to stop in early adulthood and mice do not become 

paralysed. Since MN degeneration is never reported in Sod1-/- animals (Table 7.1) we 

believe that the MN loss phenotype in these mice arises from the same toxic gain of 

function seen in patients (Fischer et al., 2011; Flood et al., 1999). The fact that MN loss 

in Sod1D83G/D83G does not progress to paralysis could be explained by the fact that the 
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SOD1 protein in these mice is present at a reduced level, ~10 % compared to wild-

type (Figure 4.4 and Figure 4.5). Since SOD1 expression levels show a dose-dependent 

toxicity in other fALS models (Acevedo-Arozena et al., 2011; Jonsson et al., 2006b), 

this dose of SOD1 protein in Sod1D83G/D83G mice may be sufficient to cause some degree 

of MN degeneration but not at the same levels seen in SOD1-fALS mouse models or 

in patients. Such low levels of SOD1 protein could be explained by the location of the 

D83G mutation. The D83 is one of the four residues implicated in the zinc binding 

(Figure 1.4) (Valentine et al., 2005), and its mutation is predicted to disrupt the metal 

binding site of the SOD1 dimer causing it to become instable and more likely to 

monomerise (Choi et al., 2011; Krishnan et al., 2006; Nordlund et al., 2009). Of note 

Sod1+/D83G heterozygous do not develop LMN loss up to one year of age, this might be 

because the presence of a wild-type SOD1 allele has a protective effect. Alternatively 

Sod1+/D83G heterozygotes mice might develop MN loss later in life, given that the dose 

of mutant SOD1 protein is known to correlate with the progression of ALS-like 

phenotypes (Acevedo-Arozena et al., 2011). 

Investigation of the innervation pattern of endplate NMJs presented in Chapter 4 

(Figure 4.2 and Figure 4.3) shows that Sod1D83G/D83G animals develop a severe peripheral 

neuropathy between 15 and 52 weeks of age, similar to the one described for Sod1-/- 

mice. This result is also confirmed by physiological analysis of motor unit survival 

(Joyce et al., 2014). Interestingly analysis of SOD1 protein levels and activity revealed 

that in Sod1D83G/D83G the SOD1 dismutase activity is only 1 % of the wild-type animals 

(Figure 4.5). These findings together with details, gathered in Table 7.1 show that 

Sod1D83G/D83G mice mimic several characteristics of the Sod1-/- animals suggesting that 

the peripheral neuropathy present in this novel mouse may be due to a loss of SOD1 

function, potentially leading to oxidative stress and consequently to an increased 

vulnerability of motor neuron axons. Another indication that SOD1 loss of function 

plays a role in the pathology of SOD-ALS comes from the analysis of the 

mitochondrial membrane potentials of embryonic MN cultures of Sod1+/D83G and 

Sod1+/- mice, which are both hyperpolarised, suggesting that mitochondria 

abnormalities can be caused by loss of dismutase activity (Joyce et al., 2014).  

Although ALS has been proposed to be a ‘dying back’ disorder because NMJ 

denervation appeared to precede motor neuron cell body death (Bilsland et al., 2008; 

Duchen et al., 2003). Data on the Sod1D83G mouse presented in this thesis and in Joyce 
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et al., 2014 suggest that axonal and neuronal cell body degeneration may be two 

separate events. Experiments carried out in SOD1 G93A transgenic mouse models 

where the BCL2-associated X protein (Bax) is ablated support this hypothesis. In these 

animals indeed Bax deficiency protects MN cell bodies from degeneration without 

altering muscle denervation and mice survival, compared to normal SOD1 G93A 

transgenic animals (Gould et al., 2006). 

Overall, our data suggest that Sod1D83G/D83G mice model early stages of human ALS, and 

are a good system in which is possible to separate the effects of central neuronal loss 

from the peripheral distal neuropathy. 

Phenotype  Sod1-/- Sod1D83G/D83G 

Weight loss Reduced from 20 weeks 
(Larkin et al., 2011) 

Reduced from 4 weeks  

Rotarod Reduced from 36 weeks 
(Flood et al., 1999)  

Reduced from 23 weeks 

Grip-strength  Reduced from 52 weeks 
(Fischer and Glass, 2010) 

Reduced from 6 weeks 

Motor unit number  Reduced from 15 weeks 
(data from our group) 

Reduced from 52 weeks 

NMJ innervation Denervation from 16 weeks 
(data from our group) 

Denervation at 52 weeks  

Development of HCC 56 % females, 79 % males 
(Elchuri et al., 2005) 

78 % females, 91 % males 

Survival Reduced to ~86 weeks 
(Elchuri et al., 2005) Reduced to ~86 weeks 

MN loss No MN loss                   
(data from our group) 

MN loss occurs from 15 
weeks 

Table 7.1 Comparison between Sod1-/- and Sod1D83G/D83G animals. Data refer to Sod1-/- and 

Sod1D83G/D83G mice on a C57BL/6J background. 

7.1.5 Separation of gain of function and loss of function phenotypes in the 
SOD1D83G mouse model  

As explained above the work described in this thesis suggests that mice carrying a 

D83G mutation in the Sod1 gene develop phenotypes typical of gain and loss of SOD1 

function, in the absence of protein overexpression. To confirm that motor neuron loss 

and distal neuropathy arise respectively from a gain of function and loss of function of 
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SOD1, we have crossed Sod1D83G mice with Sod1-/- and TgSOD1WT mice to examine the 

effects of varying SOD1 activity on these phenotypes. 

Our preliminary findings seem to confirm that the distal neuropathy in Sod1D83G/D83G 

mice was due to a loss of SOD1 function. Indeed Sod1-/D83G mice show a reduction in 

TA force similar to Sod1D83G/D83G animals, but no lower motor neuron loss was detected 

in contrast to the 20 % loss of lower motor neurons seen in Sod1D83G/D83G mice 

(courtesy of Dr Philip McGoldrick). Data presented in Chapter 4 show that SOD1 

protein levels in the compound heterozygous animals Sod1-/D83G are significantly 

reduced compared to Sod1+/D83G and also compared to Sod1D83G/D83G littermates, but are 

not absent as in Sod1-/-mice (Figure 4.4 and Figure 4.5). Taken together these results 

suggest that the distal neuropathy seen in Sod1D83G/D83G mice occurs independently of 

motor neuron loss, which is dependent on the dose of SOD1 protein and occurs due 

to a toxic gain of function of mutant SOD1. As mention before dose-dependent 

toxicity of mutant SOD1 has been reported for other transgenic mice overexpressing 

mutant SOD1 (Acevedo-Arozena et al., 2011; Deng et al., 2006; McGoldrick et al., 

2013). 

The cross between Sod1D83G and TgSOD1WT mice further confirmed that the distal 

axonopathy of Sod1D83G/D83G mice was due to a loss of SOD1 function. Indeed TA force 

data show that the distal neuropathy of Sod1D83G/D83G mice and of Sod1-/- mice can be 

completely rescued by the presence of human wild-type SOD1 (courtesy of Dr Philip 

McGoldrick). These results are consistent with previously published reports in which 

central nervous system specific expression of SOD1 could rescue distal neuropathy in 

Sod1-/- mice (Flood et al., 1999). 

Analysis of SOD1 protein levels and activity of the transgenic progeny generated from 

the cross between Sod1D83G and TgSOD1WT mice, confirms as expected the presence of 

a high level of SOD1 and dismutase activity (Figure 4.8 and Figure 4.9). Data from 

double transgenic mutant mice overexpressing the wild-type human SOD1 together 

with the mutant protein, have been shown to accelerate ALS-like phenotypes (Deng et 

al., 2006). Crucially our TgWTSod1D83G/D83G mice have not shown any exacerbation of the 

mutant SOD1-mediated phenotypes. This might be because the human wild-type 

SOD1 and the mutant mouse SOD1 D83G fail to interact (Sakellariou et al., 2014). 

Alternatively it may be because wild-type SOD1 only exacerbates mutant SOD1 

toxicity in a transgenic line showing high expression of mutant SOD1 (Deng et al., 
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2006). If the latter is true it may suggest that a threshold limit of mutant SOD1 

expression is needed for the manifestation of ALS-like phenotypes. Most probably this 

limit is not reached in Sod1D83G/D83G mice, since SOD1 protein level is 10 % of wild-type 

and only a non-progressive motor neuron degeneration is present in these mice. In vitro 

experiments using mouse and human recombinant SOD1 proteins described in 

Chapter 5 could elucidate whether mouse and human SOD1 proteins can interact, and 

if there is a threshold under which cross-seeding of two SOD1 variants does not occur 

(Chia et al., 2010). 

Preliminary data from these crosses seems to confirm that motor neuron degeneration 

in Sod1D83G/D83G mice is due to a gain of function of mutant SOD1 while the peripheral 

axonopathy is the result of a loss of SOD1 function.  

Although the role of SOD1 loss of function still needs to be investigated and it is 

insufficient to provoke motor neuron degeneration, the data presented in this thesis 

suggest that it is crucial for normal motor neuron function. Interestingly many new 

roles for the SOD1 protein are emerging and understanding them might help to 

elucidate the roles that an absence of SOD1 protein may play in the pathogenesis of 

SOD1-ALS. 

7.1.6 Co-existence of a SOD1 gain and loss of function in ALS 

Superoxide clearance is the best known function of SOD1 and its loss of function 

causes oxidative stress. SOD1 has also been demonstrated to be a target of oxidisation 

in transgenic SOD1-fALS mice (Andrus et al., 1998). Additionally following oxidative 

stress, SOD1 oxidation and glutathionylation, increase the propensity of the dimer to 

dissociate and become misfolded (Ezzi et al., 2007; Khare et al., 2004; Rakhit et al., 

2004; Wilcox et al., 2009). All these findings together with the work presented in this 

thesis support our hypothesis, previously published, of a potential co-operation of 

SOD1 loss of function and gain of function in ALS pathogenesis (Saccon et al., 2013). 

Confirming that a vicious circle can be postulated in which oxidized SOD1 has 

increased propensity to misfold, causing seeding and aggregation of SOD1 and 

determining a reduction of dismutase activity, which therefore feeds more potential 

oxidative stress to the beginning of the loop (Figure 3.2). Evidence from recent 

findings suggest that this mechanism can be relevant not only to SOD1-fALS but also 

to sporadic cases (Bosco et al., 2010; Forsberg et al., 2010) and to non SOD1-ALS; 
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indeed misfolding of SOD1 was shown to be induced by both TDP-43 and FUS 

mislocalisation (Pokrishevsky et al., 2012). 

7.2 Human and mouse SOD1 proteins in ALS 

Mutant SOD1 proteins have been intensively investigated in the study of ALS, but the 

mechanism through which they exert toxicity is still unknown (Bruijn et al., 2004; 

Seetharaman et al., 2009). Over the years a number of transgenic mouse models 

recapitulating the features of human SOD-ALS have been generated, introducing the 

human SOD1 gene into mice. In all of these mouse models of SOD1-fALS it is 

possible to detect accumulation of mutant SOD1, as happen in patients, leading to the 

concept that SOD1-ALS is a protein misfolding disorder. This feature together with 

the focality of the clinical onset and the regional spreading of neurodegeneration 

pointed to the idea that ALS spreads through a prion-like mechanism (Grad et al., 

2015; Lee and Kim, 2015). Such mechanism of seeded aggregation and spread of 

pathology have been demonstrated both in vivo and in vitro for many neurodegenerative 

diseases such as Alzheimer disease and Parkinson’s disease (Marciniuk et al., 2013). 

Genetic mutation is not the only way through which SOD1 can misfold and aggregate. 

Indeed post-translational modification and aberrant oxidation of wild-type SOD1 have 

been shown to drive aggregation in vivo (Casoni et al., 2005; Rakhit et al., 2004), and 

human wild-type SOD1 has been found to co-aggregate with mutant SOD1 variants in 

cell cultures. This discovery underlined the importance that in SOD1-fALS transgenic 

mouse models the mutant human and the mouse wild-type SOD1 protein coexist, and 

to interpret mouse SOD1-ALS research it is crucial to understand whether the human 

and the mouse SOD1 variants interact. 

7.2.1 In vivo interaction of human and mouse SOD1 proteins  

Evidence from previous studies suggest that there is no interaction between mouse and 

human SOD1 in mouse models of SOD1-fALS. When human wild-type SOD1 protein 

was overexpressed in a mutant mouse carrying a several copies of the G86R mutation 

in the mouse Sod1, no effect was detected on the motor phenotype or survival of the 

G86R mouse line, and the mouse and the human variants were not co-aggregating 

(Audet et al., 2010; Ripps et al., 1995). Further in SOD1-fALS mouse models 

endogenous mouse SOD1 has previously been reported as having little or no effect on 

the phenotype (Bruijn et al., 1998; Deng et al., 2006) and wild-type mouse SOD1 is 
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usually absent from mutant human SOD1 aggregates (Bruijn et al., 1998; Deng et al., 

2006; Jonsson et al., 2004). 

Results presented in this thesis show that the presence of the D83G mutant mouse 

SOD1 protein at endogenous levels does not exacerbate the phenotype of TgSOD1WT 

mice. Although, the presence of the overexpressed wild-type SOD1 protein rescues the 

phenotype of the Sod1D83G/D83G mice. In accordance with previous findings these data 

suggests that there is no interaction between the human and the mouse SOD1 protein, 

and the rescue of the D83G phenotype appears to occur in a dose-dependent manner, 

where high levels of wild-type SOD1 are present. Indeed in double transgenic mice in 

which an exacerbation of the phenotype is seen, the amount of wild-type human 

SOD1 has a dose-dependent effect, with higher levels of expression resulting in more 

profound exacerbation of the phenotype (Prudencio et al., 2010) 

The work presented in this thesis show that when SOD1 enzymatic activity is 

measured from mouse brain homogenates, using non-denaturing and non-reducing 

conditions the human wild-type and human G93A SOD1 transgenic proteins migrate 

faster in the gel, compared to the wild-type and D83G mutant mouse SOD1 variants 

(Figure 4.4, Figure 4.6Figure 4.7, Figure 4.8). In general transgenic human SOD1 animals 

display high levels of activity and the signal detected in activity gel assays is 

considerably more intense compared to that of wild-type or Sod1D83G mice. Thus in 

TgWTSod1D83G/D83G and TgWTSod1+/D83G mice it is not possible to distinguish between the 

human transgenic SOD1 protein and the mouse D83G SOD1, due to the intensity of 

the transgenic SOD1 signal. Further the native blot in Chapter 5 comparing SOD1 

protein from brain homogenates of wild-type, Sod1-/-, TgSOD1WT and TgSOD1G93A(H) 

mice using a commercial antibody against SOD1, confirms that the human SOD1 

transgenic protein migrates faster than the mouse SOD1.  

Unfortunately in native gels it is difficult to determine the size of the protein products 

since their electrophoretic mobility depends only on the charge-to-mass ratio and on 

the physical shape of the protein. Moreover in activity gel experiments it is not possible 

to stain the gel in order to identify the ladder. Besides these limitations it is possible to 

say that the protein products detected using activity gel assays corresponded to dimeric 

SOD1 proteins, or other functional SOD1 forms, but not to monomeric SOD1. 

Indeed monomeric SOD1 is not active and therefore undetectable by activity assays. 

Additionally in the native blot shown in Figure 5.15 (c) the minimum sized SOD1 
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bands electrophoresed higher on the gel than expected for SOD1 monomers. Further 

experiments measuring SOD1 activity and protein levels under native conditions from 

human and mouse brain samples could help clarify whether this difference in protein 

migration is due to species specific SOD1 protein charge or conformation, or if the 

fast migration pattern seen in transgenic SOD1-fALS is a consequence of protein 

overexpression. 

The hypothesis that these differences in migration pattern are due to diverse 

biochemical and biophysical characteristics of the human and mouse SOD1 protein is 

supported by several publications. Indeed, wild-type human SOD1, but not wild-type 

mouse SOD1, was found to co-aggregate with mutant human SOD1 (Prudencio et al., 

2010) while wild-type mouse SOD1, but not wild-type human SOD1, co-aggregates 

with mutant mouse SOD1 (Qualls et al., 2013). Further experiments carried out in cells 

by Grad and colleagues showed that residue tryptophan 32 is crucial for the conversion 

of human wild-type SOD1 to a misfolded form; but that mouse SOD1 possesses a 

serine residue at position 32, which is unable to participate in misfolding reactions with 

human wild-type SOD1 (Grad et al., 2011, 2015). These results taken together suggest 

that there are limited interactions between human and mouse SOD1 and that the 

tryptophan at residue 32 is implicated in species specific interaction limiting the co-

aggregation of human and mouse SOD1. 

7.2.2 In vitro interactions of human and mouse SOD1 recombinant proteins 

To further investigate human and mouse SOD1 interactions, and their role in ALS we 

produced and characterised recombinant human and mouse SOD1 proteins, and 

carried out preliminary spontaneous aggregation experiments. It has already been 

demonstrated that human mutant and wild-type SOD1 proteins can form aggregates in 

vitro. Aggregation can occur either by self-seeding or by cross-seeding with other pre-

formed aggregates, or with SOD1-fALS transgenic mice spinal cord homogenates 

(Chia et al., 2010). In Chapter 5 it is shown that human and mouse SOD1 protein 

share similar conformation characteristics of their secondary structure, this is expected 

since they are 84 % identical in amino acid sequence (Seetharaman et al., 2010). 

Interestingly when proteins were electrophoresed in denaturing and reducing 

conditions and stained by coomassie blue, the mouse SOD1 variants appeared to 

migrate slightly faster compared to the majority of the human variants (Figure 5.7). We 

hypothesise that this difference in migration might be due to a difference in metal 
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binding capacity among the SOD1 variants. Our preliminary experiments also show 

that the wild-type and mutant D83G human and mouse recombinant proteins that we 

produced can aggregate in vitro. Further cross-seeding experiments can be conducted to 

investigate whether the human and the mouse protein can co-aggregate in vitro and will 

help us to understand if the conversion of wild-type SOD1 by misfolded templates is a 

sequence or structure dependent process subject to species specific barriers. 

7.3 The importance of investigating SOD1 modifiers  

In ALS research transgenic SOD1-fALS mouse models have been extensively 

employed in the investigation of genetic modifiers of disease expression, that could 

potentially contribute to the susceptibility or neuroprotection of motor neuron 

degeneration (Heiman-Patterson et al., 2011). Both types of modifiers are quite 

valuable: suppressors can be used as targets for new drugs, and together with 

enhancers they might highlight new disease genes or pathways and lead to new 

therapeutic targets (Acevedo-Arozena et al., 2008). Modifiers can sometimes act both 

as enhancers and suppressors of different genes. For example, the ENU Legs-at-odd-

angles (Loa) mutation in Dync1h1 is known to act as an enhancer modifier in HD 

(Ravikumar et al., 2005) and as a suppressor in SOD1-ALS (Kieran et al., 2005). New 

interesting genes and pathways that may contribute to the disease have been mainly 

investigated by crossing transgenic SOD1-fALS mouse models with other mouse 

models expressing or lacking genes of interest (Oliver et al., 2011; Riboldi et al., 2011; 

Turner and Talbot, 2008). At MRC Harwell ENU mutagenesis, which can create a 

range of mutations from loss to gain of function, has been employed in combination 

with transgenic SOD1 G93A low copy mice to find possible new modifiers of SOD1-

ALS. One mouse with reduced survival was identified: the Galahad mouse. In the 

present work the survival, weight and grip-strength of the G2 progeny generated from 

the Galahad founder were investigated. The results of this study confirmed that the 

only phenodeviant feature of these animals compared to SOD1 G93A low copy mice 

is a subtle reduction in survival. Indeed as shown in Figure 6.8 the average survival for 

the mTgG93A(L)Galahad population is of 32.05 weeks while the average survival for the 

TgSOD1G93A(L) population is of 36.85 weeks. Such subtle difference in survival makes 

the analysis of behavioural data very difficult for two reasons. First the normal 

distribution of the two populations greatly overlap therefore, the majority of the 

animals, 31 out of 50, could not be included in the statistical analysis of the weight and 
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the grip-strength. Second because we could identify whether a mouse was 

mTgG93A(L)Galahad or not only at the time of end stage, it was not possible to carry out 

more accurate behavioural experiments since it would have been too costly to 

investigate all transgenic Galahad mice at the same time. Nevertheless, the results of the 

phenotypic analysis presented here suggests that it might be possible to select 

phenodeviant animals on the basis of their grip-strength, a few weeks before symptoms 

onset. Furthermore a genome scan investigation followed by a QTL analysis helped 

identifying a few regions of linkage where a possible mutation/s may be located. QTL 

analysis has already produced good results in the identification of important loci in 

SOD1-ALS. Indeed genome scan investigations have revealed the presence of modifier 

loci in chromosome 13 for SOD1-G86R mice and in chromosome 17 for SOD1-

G93A mice (Kunst et al., 2000; Sher et al., 2014). However, to date next-generation 

sequencing technology is a fast an affordable approach in the identification of newly 

induced causal variants that might be favoured over QTL analysis in ENU sensitised 

screens. 

As mentioned above genetic modifiers are important in the investigation of 

therapeutics for ALS. However, several reports showed that many therapeutic 

modifiers of mouse ALS did not translate successfully into patients (Perrin, 2014; 

Turner and Talbot, 2008). Indeed when working with SOD1-ALS mouse models it is 

crucial to take into consideration some experimental design guidelines to help ensure a 

standardisation of interpretation. It is therefore important to control for parameters 

such as background effect, a copy number and gender (Perrin, 2014; Turner and 

Talbot, 2008).  

7.4 Conclusions 

The work presented in this thesis proposes that loss of SOD1 function might play a 

modulating role in SOD-fALS, and shows that the Sod1D83G mice represent a good 

mouse model in which is possible to dissect elements of a gain of function and of a 

loss of function mechanism. Further characterisation of SOD1 protein in vivo and in 

vitro suggests that although the mouse and the human SOD1 proteins are capable of 

forming spontaneous aggregates, their conformational differences may prevent them 

from interacting in mouse models. Finally using ENU mutagenesis and QTL analysis 

two regions of linkage have been identified where might lie a possible modifying 

locus/loci interacting with the SOD1 G93A mutation. 
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SOD1 research has significantly contribute to broad our understanding of ALS 

however, in the last ten years several new causative genes have been identified, such as 

TDP-43, FUS, and C9orf72, providing new unforeseen insights into the pathogenesis of 

this disease. For example mutations in the RNA binding proteins TDP-43 and FUS 

exert toxicity through abnormal RNA metabolism or processing (Sreedharan et al., 

2008; Vance et al., 2009), while C9orf72 repeat expansion is hypothesized to drive 

repeat-associated non-ATG (RAN) translation that results in toxic peptides (Mackenzie 

et al., 2014; Mizielinska and Isaacs, 2014). All these mechanisms seem not to be 

implicated in SOD1-ALS suggesting that this disease cannot be explained solely by 

studying mutations in the SOD1 gene. Nevertheless several evidence point to the 

hypothesis that SOD1 might be implicated in the pathogenic mechanism of other 

causative ALS genes and vice versa. For example, as discussed in Chapter 3 mutant 

TDP-43 and FUS, and wild-type TDP-43, but not wild-type FUS can trigger 

misfolding of wild-type SOD1 in neural cells (Pokrishevsky et al., 2012). Moreover 

SOD1-immunoreactive inclusions were detectable in the spinal cords of fALS patients 

with and without SOD1 mutations (Forsberg et al., 2010). Recent reports also 

suggested that SOD1 mutations share similar toxic mechanisms with other ALS 

causative gene mutations. For instance motor protein kinesin 14 (KIF14) and an 

oxidative stress-related catalase CAT were commonly upregulated in transcripts from 

iPSCs derived from patients with C9orf72 expansion and SOD1 A4V mutation 

(Kiskinis et al., 2014). Of note SOD1 has also been suggested to work as a RNA 

binding protein similarly to TDP-43 and FUS (Chen et al., 2014; Lu et al., 2007; 

Volkening et al., 2009). 

Since nearly all ALS associated mutants target motor neurons, it is possible that 

multiple causative gene products share the same targets. Therefore investigating 

SOD1-fALS models can help elucidate important mechanism relative not only to 

SOD1-fALS but also to ALS in general. SOD1 mouse models are the best established 

models of ALS and in the last 30 years they helped elucidate disease mechanism and 

treatments (Ittner et al., 2015). The research carried out in the present work shows how 

studying novel mouse models of SOD1-fALS gives us new insights on disease and also 

reassess concepts of ALS pathology mechanism. Indeed the investigation of the 

Sod1D83G mouse described in Chapter 4, together with other findings, discredited the 

hypothesis that ALS is a dying back disorder, suggesting that the axonal and neuronal 

body degeneration, typical of ALS, may be two separate events possibly modulated by 



227 
 

different sets of genes. Further, the preliminary data on SOD1 recombinant proteins, 

reported in Chapter 5 confirmed that not only human SOD1 but also mouse SOD1 

variants can spontaneously aggregate in vitro, contributing to the current notion that 

SOD1 can propagate in a prion-like manner. A similar mechanism has been proposed 

also for TDP-43 and other neurodegenerative diseases, suggesting once again that 

studying SOD1-ALS might give important contributions not only to ALS but also to 

the broader field of neurodegenerative diseases. Additionally exploring human-mouse 

SOD1 interaction in the context of SOD1-fALS mouse models will help interpret 

SOD1 transgenic mouse models pathology data and their translation into clinical trials. 
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Chapter 8 Appendices 

8.1 Appendix 1 Table of SOD1 transgenic mice 

Transgenic SOD1 mouse lines are reported in Table 8.1. Rows are arranged by the 

location of the mutation used. All figures are for hemizygous mice unless specified. 

The protein level and dismutase activity reported were assayed from spinal cord, unless 

specified. 
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Mutation Promoter Tg 
copy 
number 

Protein level 
(fold 
increase to 
endogenous 
SOD1 level) 

SOD1 
activity 
(fold 
difference 
to non-
transgenic) 

Onset 
(weeks) 

Survival 
(weeks) 

Notes  References  

Wild-type hSOD1 7 50; 24 fold in 
(Jonsson et 
al., 2006b) 

8.6 36 
(hom) 

52 
(hom) 

 (Graffmo et 
al., 2013; 
Gurney et al., 
1994; Jonsson 
et al., 2006b) 

A4V hSOD1 ~5 nr ~1.4 None   (Gurney et al., 
1994) 

G37R (line 106) hSOD1 nr 4.2 brain; 5.3 
spinal cord 

7.2 22-30 25-29  (Wong et al., 
1995) 

G37R (line 29) hSOD1 nr 4 brain; 5 
spinal cord 

7 24-32   (Wong et al., 
1995) 

G37R (line 42) hSOD1 nr 8 brain; 10.5 
spinal cord 

14.5 14-16   (Wong et al., 
1995) 

G37R (line 9) hSOD1 nr 5.4 brain 6.2 
spinal cord 

9 20-24   (Wong et al., 
1995) 
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Mutation Promoter Tg 
copy 
number 

Protein level 
(fold 
increase to 
endogenous 
SOD1 level) 

SOD1 
activity 
(fold 
difference 
to non-
transgenic) 

Onset 
(weeks) 

Survival 
(weeks) 

Notes  References  

G37R Neurofilament 
light chain 
promoter 

nr 4.3 (line 
3156) and 2.8 
(line 4012) 

nr None 
until 1.5 
years  

None 
until 1.5 
years 

Neuron specific 
expression, two lines 
reported  

(Pramatarova 
et al., 2001) 

G37R (see notes) Mouse prion 
promoter 

nr nq nq 28-36 
(hom) 

1 or 2 
weeks 
after 
onest 

Co-integration of SOD1 
transgene with construct 
encoding wild-type 
human presenilin 1 
(hPS1) with PrP 
promoter) 

(Wang et al., 
2005a) 

G37R (floxed) nr nr nq nr 26-30 37-48  (Boillée et al., 
2006) 

G37R and G93A  
(see notes) 

Chicken skillet 
muscle αsk 
actin 

1-8   32-40  Two mutants (G37R and 
G93A, plus the WT) 
created, results do not 
specify which mutant.  

(Wong and 
Martin, 2010) 

H46R hSOD1 nr nr nr 22-26 4 weeks 
after 
onset 

 (Nagai, 2000) 
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Mutation Promoter Tg 
copy 
number 

Protein level 
(fold 
increase to 
endogenous 
SOD1 level) 

SOD1 
activity 
(fold 
difference 
to non-
transgenic) 

Onset 
(weeks) 

Survival 
(weeks) 

Notes  References  

H46R hSOD1 nr nr nr 20 24  (Chang-Hong 
et al., 2005) 

H46R/H48Q     
(line 139) 

hSOD1 nr nq 1 nr 17-26  (Wang et al., 
2002b) 

H46R/H48Q     
(line 58) 

hSOD1 nr nq nr nr 12-47  (Wang, 2003; 
Wang et al., 
2002b) 

H46R/H48Q/ 
H63G/H120G    
(line 121) 

hSOD1 nr nq nr nr Over 69 
weeks 

Experimental mutations 
to disrupt copper binding 

(Wang, 2003) 

H46R/H48Q/ 
H63G/H120G    
(line 125) 

hSOD1 nr nq 1 nr 39-52 Experimental mutations 
to disrupt copper binding 

(Wang, 2003) 

H46R/H48Q/ 
H63G/H120G    
(line 187) 

hSOD1 nr nq nr nr 35-48 Experimental mutations 
to disrupt copper binding 

(Wang, 2003) 
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Mutation Promoter Tg 
copy 
number 

Protein level 
(fold 
increase to 
endogenous 
SOD1 level) 

SOD1 
activity 
(fold 
difference 
to non-
transgenic) 

Onset 
(weeks) 

Survival 
(weeks) 

Notes  References  

E77X hSOD1 nq nr nr None Normal Experiential to see if 
truncated proteins can 
cause disease (RNA 
barely detectable) 

(Deng et al., 
2008) 

L84V hSOD1 nr nr nr 22-26 26  (Kato, 2001; 
Tobisawa et 
al., 2003) 

G85R (line 148) hSOD1 nr 1 1 33 35  (Bruijn et al., 
1997) 

G85R (line 74) hSOD1 nr 0.2 nr 51-61 2 weeks 
after 
onset 

 (Bruijn et al., 
1997) 

G85R Thy1.2  nq nq None 
up to 87 
weeks 

nr Bicistronic expression of 
SOD1 and EGFP in 
postnatal motor neurons 

(Lino et al., 
2002) 

G85R (floxed) nr nr 1.5 1 44 50 LoxP flanked trangene (Wang et al., 
2009c) 



233 
 

Mutation Promoter Tg 
copy 
number 

Protein level 
(fold 
increase to 
endogenous 
SOD1 level) 

SOD1 
activity 
(fold 
difference 
to non-
transgenic) 

Onset 
(weeks) 

Survival 
(weeks) 

Notes  References  

G85R (YFP fusion 
line 641) 

nr  nr nr 36 
(hom) 

  (Wang et al., 
2009a) 

G83R (mouse) nr nr nr 1 13-17 13-17  (Pramatarova 
et al., 2001; 
Ripps et al., 
1995) 

G86R (mouse)    
(line 2) 

Mouse GFAP nq nq  None 
up until 
70 
weeks 

 Astrocyte specific 
expression 

(Gong et al., 
2000) 

G86R (mouse)    
(line 29) 

Mouse GFAP 10 nq  None 
up until 
70 
weeks 

 Astrocyte specific 
expression 

(Gong et al., 
2000) 

D90A (line 134) nr nr nr ~6-9 50 
(hom) 

58 
(hom) 

 (Jonsson et 
al., 2006a) 
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Mutation Promoter Tg 
copy 
number 

Protein level 
(fold 
increase to 
endogenous 
SOD1 level) 

SOD1 
activity 
(fold 
difference 
to non-
transgenic) 

Onset 
(weeks) 

Survival 
(weeks) 

Notes  References  

K91X (stop) hSOD1 nq nr nr None  Normal  Experiential to see if 
truncated proteins can 
cause disease (RNA 
barely detectable) 

(Deng et al., 
2008) 

G93A (line G1) hSOD1 18 nr ~4 12-16 20  (Gurney et al., 
1994) 

G93A (line G20) hSOD1 1.7 nr ~1.6 nr 49  (Dal Canto 
and Gurney, 
1995; Gurney 
et al., 1994) 

G93A (line G1H) hSOD1 25 17 <4; as 8.9 in 
(Wang et al., 
2008) 

13 19.4 High transgene copy 
number derived from G1 

(Chiu et al., 
1995; Tu et 
al., 1996) 

G93A (line G1del) hSOD1 8 nr nr 28 36 Low transgene copy 
derived form G1line 

(Gurney, 
1997; Zhang 
et al., 1997) 
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Mutation Promoter Tg 
copy 
number 

Protein level 
(fold 
increase to 
endogenous 
SOD1 level) 

SOD1 
activity 
(fold 
difference 
to non-
transgenic) 

Onset 
(weeks) 

Survival 
(weeks) 

Notes  References  

G93A Rat myosin 
light chain 
(MLC1) 

nr nq nq Muscle 
atrophy 
from 4 
weeks 

nr Muscle specific  (Dobrowolny 
et al., 2008) 

G93A (T1xT3)     
(see notes) 

Thy1.2 nr   77-104 84-104 Compound hemizygous 
T1 and T3 transgene. 
Postnatal motor neurons 
specific 

(Jaarsma et 
al., 2008) 

G93A (line T1) Thy1.2 nr   None Normal  Postnatal motor neurons 
specific 

(Jaarsma et 
al., 2008) 

G93A (line T3) Thy1.2 nr nq  None 
(54-104 
for 
hom) 

62-104 
(hom) 

Postnatal motor neurons 
specific 

(Jaarsma et 
al., 2008) 
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Mutation Promoter Tg 
copy 
number 

Protein level 
(fold 
increase to 
endogenous 
SOD1 level) 

SOD1 
activity 
(fold 
difference 
to non-
transgenic) 

Onset 
(weeks) 

Survival 
(weeks) 

Notes  References  

G93A (with 
luciferase reporter) 

BiTetO     None Over 64 
weeks  

BiTetO (bicistronic 
tetracycline-repressible 
transactivator) promoter 
expressing a SOD1-
G93A and luciferase 
transgene. WT line also 
made 

(Wang et al., 
2008) 

G93A MLC1f/3f      Skeletal muscle specific.  (Dobrowolny 
et al., 2008) 

G93A TRE    None  Bidirectional 
tetracycline/doxycycline 
response (TRE) 
transgene 

(Bao-Cutrona 
and Moral, 
2009) 

I113T nr nr nr nr 52 nr  (Kikugawa, 
2000) 

T116X (stop) hSOD1 nr nr nr 2 weeks 
before 
survival 

43 
(hom) 

Experiential to see if 
truncated proteins can 
cause disease 

(Deng et al., 
2008) 
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Mutation Promoter Tg 
copy 
number 

Protein level 
(fold 
increase to 
endogenous 
SOD1 level) 

SOD1 
activity 
(fold 
difference 
to non-
transgenic) 

Onset 
(weeks) 

Survival 
(weeks) 

Notes  References  

L126delTT          
(see notes) 

nr nr nr nr None   Mouse created to model 
ALS but resultant 
phenotype was due to 
insertional disruption of 
the single stranded DNA 
binding protein 1 

(Nishioka et 
al., 2005) 

L126delTT (line D1) hSOD1 1 nr nr None    (Watanabe et 
al., 2005) 

L126delTT (line D2) hSOD1 5  1 63 (34 
for 
hom) 

68 (36 
for 
home) 

 (Watanabe et 
al., 2005) 

L126delTT-FLAG 
(line DF2) 

hSOD1 3 nr nr None  FLAG tagged SOD1 (Watanabe et 
al., 2005) 

L126delTT-FLAG 
(line DF7) 

hSOD1 4 nq 1 49 (17 
for 
hom) 

53 (18 
for 
hom) 

FLAG tagged SOD1 (Watanabe et 
al., 2005) 
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Mutation Promoter Tg 
copy 
number 

Protein level 
(fold 
increase to 
endogenous 
SOD1 level) 

SOD1 
activity 
(fold 
difference 
to non-
transgenic) 

Onset 
(weeks) 

Survival 
(weeks) 

Notes  References  

L126Z (stop) hSOD1 nr 0-0.5 nr 30-39 nq SOD1 locus with 
engineered fusion exon 
3,4 and 5 

(Wang et al., 
2005b) 

L126Z (stop) nr nr 0-1 nr 48 51  (Deng et al., 
2006) 

SOD1G127insTGGG 
(line 716) 

nr 19 0.45-0.97 1 7-10 
weeks 
before 
survival 
(hom) 

64 (36 
for 
hom) 

 (Jonsson et 
al., 2004) 

SOD1G127insTGGG 
(line 832) 

nr 28 nr nr nr 30 (18 
for 
hom) 

 (Jonsson et 
al., 2004) 

Table 8.1 Transgenic mice expressing mutant or wild-type SOD1. Transgene (Tg); homozygous (hom); not reported (nr); measured but not quantified (nq). 
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8.2 Appendix 2 Vector and constructs 

The open reading frame (ORF) sequence of the human wild-type SOD1 cDNA was 

determined by sequencing an ‘in house’ plasmid stock, pSP64 Poly(A)Vector, 

containing SOD1 insert. This insert sequence was compared to available sequence 

(accession No.: NM_000454) from the Nucleotide Database on NCBI 

(http://www.ncbi.nlm.nih.gov). Using this as template, site directed mutagenesis was 

performed to generate constructs for other mutants, human G93A, human D101G. 

Constructs were cloned into the pET28 expression vector (Novagen), downstream of 

the T7 promoter between the NdeI and XhoI restriction sites. The SOD1 expression 

was based on IPTG induction of the T7 RNA polymerase (T7 RNAP). Once 

expressed T7 RNAP drove the expression of SOD1 at the IPTG inducible T7 

promoter, located upstream of the cloned SOD1 cDNA. The constructs were cloned 

such that a thrombin cleavage site was created between the protein and the N-

terminally added His-tag. Mutant constructs were generated by Dr. David Emery 

(University of Bristol), Dr Ruth Chia and Julian Pietrzyk (Institute of Neurology, 

University College London).  
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8.3 Appendix 3 Ni-NTA column recharged protocol 

After 6 uses the resin of Ni-NTA columns needs to be recharged with nickel ions. The 

protocol consists in a series of washed with different buffers, see Table 8.2 

Buffer 
Volume 

(column/volume) 

6 M GuHCl, 0.2 M acetic acid in ddH2O 2 

ddH2O 5 

2 % SDS in ddH2O 3 

25 % ethanol in ddH2O 1 

50 % ethanol in ddH2O 1 

75 % ethanol in ddH2O 1 

100 % ethanol  5 

75 % ethanol in ddH2O 1 

50 % ethanol in ddH2O 1 

25 % ethanol in ddH2O 1 

ddH2O 5 

100 mM NiSO4 in ddH2O 2 

ddH2O 2 

6 M GuHCl, 0.2 M acetic acid in ddH2O 2 

ddH2O 2 

20 % ethanol in ddH2O 2 

Table 8.2 Ni-NTA resin recharge protocol. 
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8.4 Appendix 4 Sod1-/- other neuronal and extra-neuronal 
phenotypes  

8.4.1 Sod1-/- non-motor neuronal phenotypes  

Hearing deficit with loss of ganglion neurons  

Keithley and colleagues found that at 12 months of age all Sod1-/- mice developed a 

hearing loss with an increased auditory threshold. This phenotype was accompanied by 

a decrease in ganglion cell density at 7 months (Keithley et al., 2005). 

Progressive retinal degeneration and age related macular degeneration (AMD)  

Sod1-/- mice developed a progressive retinal degeneration with manifestation of necrotic 

cells, and decreasing of wave amplitudes, similarly to AMD patients (Hashizume et al., 

2008). Furthermore they displayed other human AMD features, such as overtime 

build-up of drusen (extracellular accumulations in Bruch's membrane of the eye) 

detectable in over 85% of eyes by 10 months of age. At 12 months Bruch’s membrane 

was strikingly thickened and 15 months old mice showed a choroidal 

neovascularization. Drusen number could also be increase in young animals by 

exposure to light (Imamura et al., 2006). 

Blood-brain-barrier disruption and increased lethality following focal cerebral 

ischemia  

Sod1-/- mice were shown to be susceptible to ischemic brain damage. Mortality 24 hours 

after ischemic insult occurred in 100 % of Sod1-/- animals, compared to 11 % of wild-

type littermates, with evidence of early and severe blood-brain-barrier (BBB) disruption 

(Kondo et al., 1997). Also, BBB disruption following noxious stimuli was increased in 

homozygous Sod1 knockout mice (Kim et al., 2003).  

Increased damage following brain trauma 

Superoxide is known to be produced in vulnerable regions after traumatic brain injury, 

for example in the dentate gyrus or in cortex. Indeed Sod1-/- mice experiencing 

traumatic brain developed increased lesion volume and levels of apoptotic cell death 

compared to wild-type controls (Lewén et al., 2000). In accordance, previous data 

showed a protective role of SOD1 overexpression after brain injury (Mikawa et al., 

1996).  
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Increased susceptibility to neurodegeneration 

Murakami et al. crossed Sod1-/- mice with mice overexpressing the amyloid precursor 

protein (APP). The double mutant progeny obtained showed significantly increased 

memory loss, tau phosphorylation, Aβ oligomerisation and plaque formation, pointing 

to a modulation role of neurodegeneration progression for SOD1 (Murakami et al., 

2011). Furthermore it was shown that Sod1 mRNA binds the Fragile X Mental 

Retardation Protein (FMRP), increasing translation of SOD1 protein. Thus, SOD1 

protein levels were reduced in Fmrp1 knockout mice suggesting that this reduction 

played a role in the physiopathology of Fragile X syndrome (Bechara et al., 2009). 

8.4.2 Sod1-/- extra-neuronal phenotypes  

Decreased survival, hepatocellular carcinoma 

Survival of Sod1-/- mice was significantly decreased compared to wild-type littermates 

(20.8 months versus 29.8 months for controls) due to increased incidence of 

hepatocellular carcinoma (HCC). Tumour nodules and hepatocyte injury were found 

on 70 % of end stage Sod1-/- animals on a C57BL/6J background; which is proven to 

be protective against development of HCC (Elchuri et al., 2005; Takahashi et al 2002). 

Preferential development of HCC in these mice might occur because of the high 

amount of ROS that are constantly generated in the liver, due to lack of SOD1 activity. 

Indeed clinical studies carried out in patients with different stages of HCC showed a 

strong correlation between low levels of SOD and the severity of HCC (Casaril et al., 

1994; Liaw et al., 1997). Furthermore HCC patient’s data demonstrated a positive 

correlation between SOD1 activity in tumours and post-surgery survival time (Lin et 

al., 2001).  

Impaired endothelial-dependent relaxation 

Sod1-/- mice developed increased myogenic tone, augmented vasoconstrictor response 

and impaired endothelium-dependent relaxation in large arteries and microvessels 

(Didion et al., 2002). These phenotypes might occur due to increased levels of 

superoxide that rapidly inactivates nitric oxide, which is released by endothelial cells 

and induces vasodilatation (Fukai and Ushio-Fukai, 2011). This is in accordance with 

previous observations that ROS play an important role in in endothelial cell 

dysfunction, which can be rescued by SOD1 (Niwa et al., 2000) and prevented by 

SOD1 overexpression (Iadecola et al., 1999). 
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Skin thinning and osteoporosis 

Sod1-/- mice have atrophic skin morphology at 4 months of age, accompanied by 

degeneration of collagen and elastic fibres and reduction of skin hydroxyproline. 

Vitamin C derivate treatment were shown to ameliorate these conditions regenerating 

collagen and elastin (Murakami et al., 2009). 

In vivo and in vitro studies demonstrate that Sod1-/- mice have a number of key features 

of human bone aging such as: decreased bone density and cortical areas (typical signs 

of osteopenia), loss of bone volume and quality (involving a significant reduction in 

enzymatic collagen cross-linking) resulting in bone fragility. Vitamin C treatment 

reduced bone loss, leading to normalization of bone strength (Nojiri et al., 2011). 

Infertility 

Fertility of Sod1-/- males was described as normal. However, Sod1-/- sperm suffered 

from oxidative damage during in-vitro fertilization (Tsunoda et al., 2012). Only in some 

studies fertility of Sod1-/- females was reported as decreased due to ovarian defects (Ho 

et al., 1998; Matzuk et al., 1998). 

8.5 Appendix 5 Identification of the Sod1D83G mouse model by ENU 
mutagenesis 

ENU mutagenesis is a powerful technique largely used to generate mouse models of 

human disease. In particular ENU is a chemical that that when injected in mice induces 

random point mutations in the DNA in a dose dependent manner (approximately one 

mutation every 1-1.5 Mb). To produce animals carrying a point mutation in specific 

genes male mice are treated with ENU, which selectively kills spermatogonial cells. 

After a period of sterility spermatogonial cells of mutagenized animals repopulate and 

each of them express an assortment of point mutations along the genome. Treated 

males are then mated with wild-type females, the sperm from their offspring is stored 

while tissue is used to screen for mutations in the gene of interest (Acevedo-Arozena et 

al., 2008; Quwailid et al., 2004). To identify the Sod1D83G model genomic DNA from 

Harwell ENU-induced mutagenesis archive of over 10000 mice was screened for 

mutations in the Sod1 gene (Joyce et al., 2014).  
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Figure 8.1 Sod1D83G identification: ENU mutagenized mice breeding scheme. 

8.6 Appendix 6 Transmission project 

To investigate if SOD1 can seed aggregation in mouse model in a prion-like manner, 

transgenic mice overexpressing human SOD1 were intracerebrally inoculated with 

tissue homogenates of mutant human SOD1 spices, or with control homogenates or a 

vehicle only control to asses misfolded SOD1 aggregate pathology. 

To evaluate SOD1 self-seeded aggregation potential, spinal cord homogenates of 

TgSOD1G93A(H) mice were inoculated in animals of the same line. While, to assess cross-

seeded aggregation potential, spinal cord homogenates of TgSOD1G93A(H) mice, and 

homogenates of motor cortex human SOD1-fALS carrying the I113T and the D101G 

mutations were inoculated in TgSOD1WT mice. 

All animals employed for this project were bred on to a Sod1-/- background, to avoid 

the possible interaction between the human SOD1 proteins and the endogenous 

mouse SOD1 protein. 
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8.7 Appendix 7 Galahad project 

Plots showing the genotype and recombination events along the different chromosome 

for all the G2 animals employed in the QTL analysis are reported below in Figure 8.2. 
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Figure 8.2 Genotype and recombination events per mouse along the 19 autosomal 

chromosomes. Animals are listed in crescent order of survival from top to bottom. Chromosomes 6 

and 18 appears to be the most interesting. 
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Mutations in the gene superoxide dismutase 1 (SOD1) are causative for familial forms of the neurodegenerative disease

amyotrophic lateral sclerosis. When the first SOD1 mutations were identified they were postulated to give rise to amyotrophic

lateral sclerosis through a loss of function mechanism, but experimental data soon showed that the disease arises from a—still

unknown—toxic gain of function, and the possibility that loss of function plays a role in amyotrophic lateral sclerosis patho-

genesis was abandoned. Although loss of function is not causative for amyotrophic lateral sclerosis, here we re-examine two

decades of evidence regarding whether loss of function may play a modifying role in SOD1–amyotrophic lateral sclerosis.

From analysing published data from patients with SOD1–amyotrophic lateral sclerosis, we find a marked loss of SOD1

enzyme activity arising from almost all mutations. We continue to examine functional data from all Sod1 knockout mice and

we find obvious detrimental effects within the nervous system with, interestingly, some specificity for the motor system. Here,

we bring together historical and recent experimental findings to conclude that there is a possibility that SOD1 loss of function

may play a modifying role in amyotrophic lateral sclerosis. This likelihood has implications for some current therapies aimed

at knocking down the level of mutant protein in patients with SOD1–amyotrophic lateral sclerosis. Finally, the wide-ranging

phenotypes that result from loss of function indicate that SOD1 gene sequences should be screened in diseases other than

amyotrophic lateral sclerosis.

Keywords: amyotrophic lateral sclerosis; motor neuron disease; superoxide dismutase 1; loss of function

Abbreviations: ALS = amyotrophic lateral sclerosis; tgSOD1 = SOD1 transgenic mice

Introduction
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder

characterized by the progressive loss of upper and lower motor

neurons. Its clinical course is relentlessly progressive and typically

causes death within 3 to 5 years of onset, mostly due to respira-

tory failure (Haverkamp et al., 1995). Similar to other major

neurodegenerative disorders, such as Alzheimer’s disease and

Parkinson’s disease, ALS is typically sporadic, but 5–10% of

cases have an autosomal dominant pattern of transmission and

are termed ‘familial’ (Rothstein, 2009). In 1993 the first causative

mutations were found within the gene encoding the enzyme,

superoxide dismutase 1 (SOD1) (Deng et al., 1993; Rosen

et al., 1993). Since then, over 155 SOD1 mutations have been

described (although pathogenicity has not been shown for all of

these changes) and these mutations account for up to 20% of
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familial ALS cases (Fig. 1) and 3% of sporadic ALS cases (Pasinelli

and Brown, 2006; Acevedo-Arozena et al., 2011; Andersen and Al

Chalabi, 2011).

SOD1 is ubiquitously expressed and highly conserved across

species (Fridovich, 1995). The gene is composed of five exons

encoding a 153 amino acid metalloenzyme, also referred to as

Cu/Zn superoxide dismutase. The protein localizes to the cyto-

plasm, nucleus, lysosomes and intermembrane space of

mitochondria (Chang et al., 1988; Keller et al., 1991; Crapo

et al., 1992; Sturtz et al., 2001). It binds copper and zinc ions

and forms a homodimer whose main known function is as a dis-

mutase removing dangerous superoxide radicals by metabolizing

them to molecular oxygen and hydrogen peroxide, thus providing

a defence against oxygen toxicity. Recently, SOD1 has been found

to be critical for repressing respiration and directing energy

metabolism through integrating responses to O2, glucose and

Figure 1 Diagram of human SOD1 mutations, variants and activity in the current literature. The amino acid sequence of SOD1 is

shown, with the location of introns (A). One hundred and fifty-five SOD1 mutations described in patients with ALS are annotated; data

are taken from the ALS online database (ALSoD, http://alsod.iop.kcl.ac.uk, January 2013) and additional literature. Note that only

variations that are predicted to affect the amino acid sequence of the protein have been included. Pathogenicity has not been shown

for all mutations. Mutations listed on ALSoD, InsAexon2 and E133del are the same as mutations V29insA and E133delGAA, re-

spectively, and so have not been annotated separately. Similarly, we believe the mutation D125TT to be L126delTT and mutation

E133insTT to be E132inTT. Information about highlighted structural elements was from Wang et al. (2006). Additional references are

Pramatarova et al. (1995) and Kobayashi et al. (2012). †Locations where two nucleotide changes results in the same amino acid

substitution; �Mutations which result in a frameshift and premature stop codon. (B) Diagram of human SOD1 mutations and overall

enzyme activity measured in red blood cells, fibroblast and lymphoblast cell lines. Measurements from patients carrying 48 SOD1-

familial ALS mutations between 1993 and December 2012; original references are cited in Supplementary Table 1. All measures fall

below 100% normal activity. Three mutations found in homozygous individuals are shown on the right hand side of the figure. Red

circles show measures of intrinsic activity where these are known. We note that all mutations shown here are familial, not sporadic, and

have supporting data indicating they are ALS causative (Supplementary Table 1). Where more than one publication shows overall

activity for an individual mutation the value from the report with the highest sample size has been plotted. Refer to supporting

references for details. Het = heterozygous; Hom = homozygous.
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superoxide levels (through casein kinase signalling); this role is

independent of its function in oxidative stress (Reddi and

Culotta, 2013). Other described functions are nitration of proteins

(Beckman et al., 1993), copper buffering (Culotta et al., 1997),

phosphate activation (Wang et al., 1996), zinc homeostasis (Wei

et al., 2001), thiol oxidation, and immunomodulation—modula-

tion of SOD1 activity may differentially affect the NO-dependent

microbicidal activity and release of cytokines by activated macro-

phages (Marikovsky et al., 2003). Further, SOD1 is produced at

high levels that have not yet been explained by known functions,

therefore, it may well play other roles both neuron-specific and

generally (Reddi and Culotta, 2013).

The finding of loss of dismutase activity in patients with ALS

and the distribution of ALS-causative mutations spread throughout

the SOD1 gene initially suggested loss of function as a mechanism

(Deng et al., 1993; Rosen et al., 1993). However, evidence for a

gain of function mechanism was quick to follow from analysis of

mutant SOD1 transgenic (tgSOD1) mouse models. The first of

these, tgSOD1G93A, carries an ALS-causative point mutation

resulting in a glycine to alanine substitution at residue 93

(Gurney et al., 1994). Currently there are more than 12 different

published human mutant SOD1 transgenic strains (Joyce et al.,

2011) and most of them (including tgSOD1G93A) have increased

dismutase activity because they greatly overexpress transgenic

mutant human SOD1 in addition to endogenous mouse SOD1

and they develop a progressive adult-onset motor phenotype,

accompanied by a striking loss of lower motor neurons.

Thus a loss of function mechanism became less favoured com-

pared with gain of function because: (i) in humans, a lack of

correlation was found between SOD1 dismutase activity and

aggressiveness of clinical phenotypes (Ratovitski et al., 1999);

(ii) in mice, a lack of overt ALS-like phenotype was found in

Sod1 null (Sod1�/�) animals, the first of which was published

by Reaume et al. (1996); whereas (iii) transgenic mouse models

over-expressing mutant human SOD1 have increased SOD1 activ-

ity and a loss of motor neurons that models human ALS.

The death knell for loss of function came in a seminal study

published by the Cleveland laboratory (Bruijn et al., 1998) who

analysed survival time in mice carrying a mutant SOD1 transgene

(tgSOD1G85R) on a normal mouse background (i.e. with two

copies of the endogenous mouse Sod1 gene) compared with the

same transgene on a Sod1�/� background. They found no

change in survival of the mice, thus concluding that survival was

entirely due to a gain of function mechanism, and independent of

mouse SOD1 loss of function. These findings essentially ended the

debate for a role of loss of function as a contributor to SOD1-

familial ALS (Bruijn et al., 1998).

SOD1 mutations remained the only known cause of ‘classical’

ALS until causative mutations in the gene TARDBP were found

(Sreedharan et al., 2008), and therefore have been studied exten-

sively in a variety of animal and cellular models (Ilieva et al.,

2009). The causative gain of function is indisputable and several

mechanisms by which this occurs have been proposed and com-

prehensively reviewed (Turner and Talbot, 2008; Ilieva et al.,

2009; Rothstein, 2009). However, in recent years a number

of laboratories have further investigated Sod1 knockout mice,

examining their neuromuscular involvement and non-neurological

features. Data from these investigations and recent experiments

using transgenic SOD1 overexpressing mice have pointed to the

possibility of a modifying role played by loss of dismutase activity

on familial ALS disease course.

Here we review what is known about SOD1 loss of function

and the evidence to suggest it may play a role in ALS pathogenesis

after all, possibly through increased susceptibility to neurodegen-

eration. It is important and timely to consider these data because

they are relevant to current therapeutic strategies to reduce the

level of mutant familial ALS-SOD1 in heterozygous individuals.

Such strategies could provide badly needed approaches to ameli-

orating the ALS phenotype, but clearly SOD1 loss has effects on

both neuronal and non-nervous system tissues. SOD1 loss of func-

tion data also strongly suggest that SOD1 should be screened in

disorders other than ALS.

SOD1 dismutase activity is
greatly reduced in patients
with SOD1-familial
amyotrophic lateral sclerosis
Dismutase activity is the best characterized function of SOD1. Two

other dismutases, encoded by separate genes, have been identi-

fied in mammals: SOD2 (Mn-SOD), which has manganese (Mn)

as a cofactor and localizes to the mitochondrial matrix (Fridovich,

1986; Zelko et al., 2002) and SOD3 (Fe-SOD), which exists as a

homotetramer and is mainly extracellular (Marklund et al., 1982).

The existence of three enzymes with dismutase activity may com-

plicate measures of SOD1 activity alone.

Box 1 Methods of measuring SOD1 dismutase activity

Activity
assay:

A sample is collected from the tissue of interest, such as
red blood cells. Xanthine–xanthine oxidase is added
to the sample to generate superoxide anions (O�2 ),
and then a chromagen is used as an indicator of O�2
production. In the presence of SOD, O�2 concentrations
are reduced, resulting in decreased colorimetric signal.
However, all three SOD isoforms contribute to the ac-
tivity measured, and so SOD1 activity is obtained in-
directly by subtracting SOD2 and SOD3 activity from
total SOD activity. This is achieved by running a
parallel assay with the addition of potassium cyanide
which preferentially inhibits SOD1 (Roe et al., 1988).

Gel
assay:

Proteins from the tissue of interest are separated by elec-
trophoresis in a native gel which is subsequently
stained using a solution of nitro blue tetrazolium and
riboflavin. Riboflavin is a source of O�2 when exposed
to light. The superoxide anions interact with nitro blue
tetrazolium, reducing the yellow tetrazolium within the
gel to a blue precipitate. This reduction reaction stains
the gel blue; however, SOD inhibits this reaction, re-
sulting in colourless bands where SOD is present. As
the intensity of these bands is relative to the amount of
SOD present, quantification can be inferred by measur-
ing the intensity of the bands at the correct molecular
weight using digital software (Weydert and Cullen,
2010).
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In patients with ALS, SOD1 activity has most commonly been

measured using two methods, generally either (i) the ‘activity

assay’ which measures total dismutase activity of all three enzymes

and then subtracts SOD2 and SOD3 activity, to leave only SOD1

activity; or (ii) the ‘gel assay’ in which the three enzymes

are separated by electrophoresis and then dismutase activity is

measured within the band of the correct size for the SOD1

dimer (Box 1).

Intrinsic and overall SOD1
activity
The dismutase activity of SOD1 can be measured in two ways

depending on whether the focus is on (i) the ‘intrinsic’ SOD1

activity, which reflects the enzymatic efficiency of the protein

and is obtained by measuring the activity of recombinant SOD1

protein normalized to its quantity; or (ii) the ‘overall’ activity

within a tissue sample, which may be affected by various factors

in the cellular environment (as described below), and is obtained

by normalizing dismutase activity to the quantity of tissue. This

last measure has generally been used with patients with familial

ALS, and is a reflection of the amount of activity present in a

biological context.

Intrinsic activity influences the overall activity, but is only one of

the determinants; the others being any factor that affects the

quantity, biological availability and functionality of SOD1.

Amongst these are SOD1 messenger RNA half-life, SOD1 protein

half-life, correct folding of SOD1, Cuþ2 -loading of SOD1 and other

post-translational modifications (Wilcox et al., 2009). In general,

the ‘overall’ activity is an unbiased measure that takes into ac-

count known and unknown influences on SOD1 enzyme activity.

Measurements are generally expressed relative to normal control

samples.

Overall SOD1 activity is
reduced in human amyotrophic
lateral sclerosis samples
Intrinsic SOD1 activity has been measured in at least eight mutant

proteins, giving diverse results ranging from 0–150% of human

wild-type SOD1 activity. Correlation between these values and

clinical aspects of the disease was assessed and did not show

significant links (Borchelt et al., 1994; Ratovitski et al., 1999).

However, overall SOD1 activity has most commonly been mea-

sured in red blood cells, fibroblasts and lymphoblastoid cell lines

derived from patients carrying at least 48 different mutations, and

has proved to be more homogeneous than measures of intrinsic

activity. We have searched reports of SOD1 activity from 1993 to

2012 in patients with SOD1–familial ALS and found that the

majority of 48 tested mutations all have a reduction of overall

activity. The average loss of activity is notable and averages

58% (�17, SD) of normal values (Fig. 1). These results are of

strikingly consistency given the variability arising from different

laboratories performing the measurements and the naturally

occurring variation in activity documented in blood samples (de

Lustig et al., 1993; Borchelt et al., 1994; Robberecht et al., 1994).

Overall SOD1 activity is normal or only slightly reduced in two

mutations: the D90A in both homozygous and heterozygous pa-

tients, and the L117V in heterozygotes; although measurement

from a homozygous patient showed a reduction of 67% SOD1

activity compared with control subjects (Andersen et al., 1995;

Synofzik et al., 2012). Both these mutations are atypical, for

example (i) SOD1 misfolding is not detected in cells derived

from patients carrying these mutations (see below for association

between SOD1 misfolding and SOD1 activity); (ii) the disease

allele is homozygous in the majority of patients with D90A ALS

and in one of four reported patients with L117V ALS; (iii) pene-

trance in heterozygotes is low; and (iv) disease progression is

unusually slow (Synofzik et al., 2012). Possibly these mutants

have a slightly increased propensity to aggregate that is sufficient

to start the disease process, although with reduced frequency, in

the CNS, but is not enough to determine misfolding and loss of

dismutase activity in the periphery.

Of note is the non-correspondence between the overall patient

activity and the intrinsic activity; for example, the SOD1G37R

mutant has 150% intrinsic activity but only 40% overall activity

compared with normal control subjects. Given that the intrinsic

activity is only one of the determinants of the overall activity,

other factors, such as the stability of mutant SOD1 protein,

have been investigated to try to account for this loss of activity.

Different mutant SOD1 proteins have been shown to have a

variable half-life, but this is consistently reduced compared to the

wild-type form (Sato et al., 2005). Calculations combining the

measurement of intrinsic activity and half-life of six SOD1-familial

ALS mutant proteins predicted that the overall activity would have

been only 50% of normal levels (Borchelt et al., 1994). Other

studies and Fig. 1 are in accord with this finding (Deng et al.,

1993; Birve et al., 2010). Further, most measures of SOD1 activity

from patients with ALS have been taken in red blood cells, and we

note that these cells have no active protein synthesis and are on

average 60 days old, making the system particularly responsive

to detecting protein half-life changes (Broom et al., 2008).

Nevertheless, when tested in post-mortem brain and spinal cord,

SOD1 activity was found to be reduced to levels similar to those

measured in red blood cells (Bowling et al., 1993; Rosen et al.,

1994; Watanabe et al., 1997; Browne et al., 1998; Jonsson et al.,

2004), and when activity in red blood cells and CNS was

compared in the same subset of patients, results were strikingly

concordant (Rosen et al., 1994).

Is SOD1 dismutase activity
reduction exacerbated in
motor neurons?
SOD1 activity has not been specifically measured in motor neu-

rons and other affected cell types from SOD1–familial ALS post-

mortem material, owing to technical difficulties in conducting

these assays on limited micro-dissected material. The level of
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activity reduction in these cell types is therefore unknown; how-

ever, there is evidence that the dismutase activity reduction may

be enhanced in motor neurons.

RNA
SOD1 messenger RNA was shown to form tissue-specific com-

plexes with ribonucleoproteins from brain and spinal cord and

these interactions prolong its half-life in these tissues. However,

complex formation appears to be impaired when SOD1 messenger

RNA carries ALS-causing mutations, therefore potentially reducing

the half-life of mutant SOD1 messenger RNA preferentially in CNS

of patients with SOD1-familial ALS (Ge et al., 2006).

Aggregation
Indirect evidence indicates that SOD1 aggregation reduces dismu-

tase activity. For example, data from cell experiments in which

SOD1G93A and amyloid-b were co-expressed, suggesting that ag-

gregation results in reduction of SOD1 activity (Yoon et al., 2009).

Further, two transgenic mouse lines over-expressing human wild-

type-SOD1 at a high level and at 2-fold this level, were analysed

for aggregation and SOD1 activity. In liver and muscle samples,

aggregation was not found to be present, SOD1 protein levels

were increased, as expected, 2-fold and SOD1 activity increased

accordingly. However, in spinal cord and brain, where SOD1

aggregation was clearly found, protein levels had a similar increase

as in muscle and liver, but importantly SOD1 activity did not show

an increase, strongly suggesting a link between protein aggrega-

tion and activity (Graffmo et al., 2013). Furthermore, even if

SOD1 retains enzymatic activity in aggregates, it may not

accomplish the same functions as when correctly targeted to the

appropriate cell compartments. SOD1 misfolding and aggregation

are a hallmark of SOD1-familial ALS and have been extensively

documented in SOD1-familial ALS (Jonsson et al., 2008) and wild-

type SOD1 has also been shown to be present in spinal cord

aggregates of both patients with familial ALS (Jonsson et al.,

2004) and SOD1 mouse models (Deng et al., 2006; Wang

et al., 2009a; Prudencio et al., 2010), thus making a dominant

negative loss of function plausible. The recent finding of SOD1

aggregation in cases with sporadic ALS (Bosco et al., 2010;

Forsberg et al., 2010) makes this mechanism potentially relevant

also to sporadic disease.

Oxidative stress
Lastly, oxidative stress induces SOD1 to monomerize as an inter-

mediate step to aggregate formation and it is known that SOD1

does not have dismutase activity in this form (Khare et al., 2004;

Rakhit et al., 2004; Ezzi et al., 2007; Wilcox et al., 2009). Motor

neurons are known to be particularly susceptible to oxidative stress

(Barber and Shaw, 2010) making this process potentially more

pronounced in these cell types.

The tissue-specific changes in SOD1 messenger RNA half-life

and the effect of SOD1 aggregation and monomerization on

dismutase activity, raise the possibility that SOD1 activity in the

affected neurons may be lower than that measured from blood.

How SOD1 activity in blood relates to that in spinal cord motor

neurons is a critical issue that remains to be addressed.

In summary, SOD1 overall activity is consistently reduced in

blood samples of patients with SOD1–familial ALS, likely owing

to changes in protein activity and alterations in mutant protein

half-life. Further, there is an additional possible tissue-specific

dismutase activity reduction in neurons.

Sod1�/� mice have
neuromuscular, neuronal and
extra-neuronal phenotypes
An approach to elucidating the effect of SOD1 loss of function is

to assess the phenotype of Sod1 null (Sod1�/�) mice.

Homozygous Sod1 null mice have been used to analyse the role

of SOD1 in ALS, and for other purposes such as studying oxide

radical-mediated toxicity in reproduction and development (Huang

et al., 1997; Matzuk et al., 1998). To date five Sod1 knockout

mouse lines have been published: Sod1tm1Cpe (Reaume et al.,

1996); Sod1tm1Cje (Huang et al., 1997); Sod1tm1Leb (Matzuk

et al., 1998); Sod1tm1Ysh (Ho et al., 1998); and Sod1tm1Dkd

(Yoshida et al., 2000). All were obtained by targeted deletion of

different regions of the Sod1 gene, ranging from a single exon to

the entire genomic sequence. For all five lines, no SOD1 protein is

detectable in homozygous null mice and SOD1 activity is absent or

very low [which may represent the background of the enzyme

assay or might be caused by an endogenous superoxide dismutase

activity supplied by an alternative scavenging enzyme (Reaume

et al., 1996)].

Deletion of different portions of the same gene may result in

different phenotypes, but the five Sod1 knockout strains have

been compared in a number of studies and are strikingly similar

(Huang et al., 1997; Kondo et al., 1997; Kostrominova, 2010). For

example, skeletal muscles of three different Sod1 null strains were

compared and all developed accelerated age-related muscle

denervation (Kostrominova, 2010). Genetic background may also

influence phenotypes, however the majority of the studies

discussed here, have been carried out on Sod1�/� mice on a

congenic C57BL/6 background, making results from different

laboratories comparable.

When Sod1�/� mice were first generated, a key issue was

whether they developed motor neuron degeneration. The first

analysis, from Reaume et al. (1996), found no reduction in

motor neuron number at 4 months of age, but an increase in

small neurons and astrocytes in spinal cord ventral horns.

Subsequent studies confirmed the lack of motor neuron loss at

6, 9 and 17 months (Flood et al., 1999) and lack of vacuolation

or chromatolysis, key features of ALS, at 4 and 18 months (Fischer

et al., 2012). Microgliosis and ubiquitinated protein accumulation

in motor neurons were ruled out, but mild astrocytosis was found

at 4 and 18 months (Fischer et al., 2012). Evaluation of lumbar

ventral roots confirmed no loss in motor neuron number, but

interestingly axonal diameter was reduced at 6 and 19 months

and evidence of degenerating and regenerating axons was seen

in the ventral L3 root at the latter time point (Flood et al., 1999),
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although another study did not see these results when analysing

the L4 root (Fischer et al., 2012).

Although Sod1 null mice do not develop overt motor neuron

degeneration, there is now a considerable literature, summarized

below and described in more detail in the Supplementary material,

showing that compared with wild-type controls, these mice have

a wide range of phenotypes, including several relevant to ALS,

such as a slowly progressive motor deficit that manifests from

early adulthood and likely involves defects in large motor axons.

Sod1 null mice develop an adult-onset
progressive motor axonopathy

Behavioural data

Sod1 null animals appear indistinguishable from littermates at birth

through to weaning (Reaume et al., 1996). Weight reduces with

age compared with wild-type littermates (Jang et al., 2010; Larkin

et al., 2011) and voluntary wheel running diminishes, which is a

sensitive test for early locomotor defects (Muller et al., 2006). At 9

months of age Rotarod performance and stride-length worsen

(Flood et al., 1999; Muller et al., 2006), although spontaneous

locomotion is normal, thus changes in motivation are not likely to

contribute to these results (Flood et al., 1999; Muller et al., 2006).

At 1 year of age, Sod1�/� mice also have a deficit in grip-

strength, and tremors (Fischer and Glass, 2010)—hallmarks of

neuromuscular disorders in mice (Muller et al., 2006).

Neurophysiological data

Direct neurophysiological measurement of the response to stimu-

lation of nerve and muscle eliminates behavioural/motivational

variability from the outcome. Such studies showed Sod1 null

mice have a reduction in muscle strength suggesting a progressive

deficit in innervation (Larkin et al., 2011). Motor unit number is

reduced at 3 months, with progressive loss with age (Shefner

et al., 1999). Complex repetitive discharges found on needle

examination indicate a deficit in the terminal part of the motor

axon (Shefner et al., 1999). Measures of nerve conduction vel-

ocity and latency analysis on sensory and mixed nerves, show a

reduction only where a motor component is present, compatible

with a deficit in the largest motor axons (Flood et al., 1999). Thus

neurophysiological investigations show clear muscle denervation

and deficits in motor axons and functional motor units in Sod1

null mice.

Axonal damage and early involvement of neuromuscular
junctions

Denervation in Sod1�/� mice has been documented by neuro-

muscular junction analysis of both fast and slow twitch muscles

(Flood et al., 1999; Fischer et al., 2011, 2012; Larkin et al., 2011).

Denervation progresses with age, maintaining a more aggressive

pattern in fast-twitch rather than slow-twitch muscles (Jang et al.,

2010; Fischer et al., 2012). Thus SOD1 is required for mainten-

ance of motor axons and their terminals (Fischer et al. (2011) and

without this protein, fast-twitch motor units are lost preferentially,

as is also observed in patients with ALS and mouse models

of familial ALS (Dengler et al., 1990; Pun et al., 2006). The

involvement of neuromuscular junctions as an early pathological

target has been extensively documented in mouse models of

SOD1–familial ALS (Murray et al., 2010) and was shown to pre-

cede motor neuron cell body loss in early disease in a patient with

ALS (Fischer et al., 2004).

Muscle pathology is secondary to denervation

Muscle mass is progressively lost (Muller et al., 2006; Jang et al.,

2010; Larkin et al., 2011) but has not been reported for organs

such as liver, heart or kidney (Muller et al., 2006). Angular muscle

fibres, indicating denervation, are present by 2 months of age

(Flood et al., 1999) and by later time points a massive reduction

in fibre number occurs, preferentially affecting type 2b fibres (fast

glycolytic type innervated by large motor neurons), along with an

increase in angular fibres (Reaume et al., 1996; Larkin et al.,

2011). This muscle profile also occurs in mouse models of familial

ALS–SOD1 (Kennel et al., 1996; Frey et al., 2000) and is typical of

the neurogenic changes that initially affect larger motor neurons,

suggesting that muscle pathology is secondary to axonal events.

Confirmation of muscle pathology being secondary to axonal

damage and denervation was obtained by crossing Sod1�/�

mice with transgenic mice expressing Sod1 in the CNS but not

in muscle. In double mutant progeny, muscle pathology was fully

rescued despite the absence of SOD1 in muscle (Flood et al.,

1999). Further, in Sod1�/� mice, measurements of steady state

redox potential of glutathione (which is routinely used as indicator

of the intracellular redox state) in tibial nerve and gastrocnemius

muscle showed a selective involvement of the nerve at 4 months,

again indicating the primary involvement of the axon (Fischer

et al., 2012). Thus muscle changes in Sod1�/� mice are second-

ary to denervation; they are non-specific and also present in

muscle biopsies from patients with ALS (Baloh et al., 2007a).

Sod1�/� motor neurons show increased
vulnerability to stress
SOD1 activity is important for motor neuron survival after injury as

shown by facial axotomy of Sod1 null mice which resulted in a

significant increase in motor neuron loss compared with wild-type

controls. This is interesting when considering the potential role for

injury and trauma in ALS (Pupillo et al., 2012; Yip and Malaspina,

2012).

Selective susceptibility to damage of the motor system

An important feature of ALS is the selective involvement of motor

neurons and their related circuits, and indeed the phenotypes

induced by lack of SOD1 in mice preferentially affect motor neu-

rons. Sod1�/� mice have no significant deficits in somatosensory

behaviour (Flood et al., 1999). Further, neurophysiology testing

showed preferential motor involvement in Sod1�/� mice and,

on histopathological examination, L3 dorsal roots at 19 months

are normal in contrast to the ventral roots, which have signs of

degeneration/regeneration (Flood et al., 1999). Finally, analysis of

Sod1 null epidermal nerves, which are the most distal tracts of the

sensory axons, showed no abnormality, in contrast to their

severely affected motor counterparts, the neuromuscular junctions

(Fischer et al., 2012).
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Loss of SOD1 affects mitochondrial function

Sod1�/� mice lack superoxide scavenging function in the cytosol

and mitochondrial intermembrane space, which contain O�2 gen-

erated by complex III (Muller et al., 2004). Sod1 null mitochondria

release significantly increased amounts of O�2 and therefore

increased oxidative stress in these compartments was hypothesized

to account for the neuromuscular phenotype of the mice (Jang

et al., 2010). Fischer et al. (2011) demonstrated that mitochon-

drial density is reduced in Sod1�/� axons and, remarkably, they

reversed this loss and the neuromuscular phenotype, by replacing

SOD1 selectively in the mitochondrial intermembrane space of

these mice.

Mitochondrial dysfunction is associated with ALS (Faes and

Callewaert, 2011) and mitochondria are important for distal

axonal maintenance (Baloh et al., 2007b; Cassereau et al.,

2011). Furthermore, mitochondrial transport abnormalities are

described in tgSOD1-ALS mouse models (De Vos et al., 2007).

Also, abnormal mitochondrial accumulations have been described

in lower motor neurons and proximal axons from patients with

ALS, post-mortem (Sasaki et al., 2009). Thus it seems likely that

damage to mitochondria through raised levels of free radicals may

have a significant effect on distal axons of motor neurons.

In summary Sod1�/� mice appear normal up to the age of

weaning, after which they develop a slowly progressive motor-

neuronopathy that involves primarily the motor neuron axons

and neuromuscular junctions and is accompanied by significant

secondary denervation pathology in muscles (Supplementary

Fig. 1). Sensory involvement is negligible. Although no motor

neuron loss has been documented, these are more vulnerable

to damage in Sod1�/� mice.

Other neuronal and extra-neuronal Sod1
null phenotypes
In addition to deficits in the motor system, Sod1 null mice develop

a range of other disorders including: progressive neuronal hearing

loss; progressive retinal degeneration; greatly increased suscepti-

bility to cerebral ischaemia and brain trauma. Most importantly for

studies of ALS, these mice have an increased susceptibility to neu-

rodegeneration, for example, when crossed to a mouse model of

Alzheimer’s disease (Supplementary Box 1).

Extra neuronal phenotypes are also striking, in particular the

well-known susceptibility to hepatocellular carcinoma, a feature

that also manifests in the human population; there is a positive

correlation between SOD1 activity and postoperative hepatocellu-

lar carcinoma survival time, as well as low levels of SOD1 and

severity of hepatocellular carcinoma (Elchuri et al., 2005;

Takahashi et al., 2002; Casaril et al., 1994; Liaw et al., 1997;

Lin et al., 2001). Other non-neuronal features include impaired

endothelial-dependent relaxation, thinning of the skin, osteopor-

osis and female infertility (Supplementary Box 1).

These remarkably wide-ranging phenotypes are perhaps not sur-

prising in an animal that is missing such an important enzyme, but

the tissue specificity partly points to effects in tissues with a high

production of free radicals, such as the nervous system and liver.

Further, the progressive nature of most of these phenotypes is strik-

ing and may be relevant to the mechanism of SOD1–familial ALS,

both in terms of deficits increasing with age and in terms of targeting

of many of the deficits to neuronal tissues.

A SOD1 activity of 50% is
not sufficient for normal
neuronal function

Sod1 + /� mice have abnormal phenotypes including
within the motor system

Sod1 null mice are invaluable for investigating in vivo conse-

quences of SOD1 loss of function, and may provide clues for

the effects of reduced enzyme activity in ALS. However, the

100% loss of enzyme activity is a different setting from the aver-

age 57% reduction in patients with ALS. Thus, although Sod1 null

mice clearly indicate a susceptibility of specific tissues to the

effects of a loss of SOD1 function, any discussion in the context

of ALS must look at phenotypes that arise in Sod1 + /� animals

(Supplementary Fig. 1) that retain 50% SOD1 activity (Reaume

et al., 1996) and so mimic the physiological levels described in

patients with SOD1–familial ALS. Although Sod1 + /� mice clearly

do not develop an ALS-like syndrome, a wide range of studies

show that Sod1 + /� mice have abnormal phenotypes involving

progressive cellular damage and deficits in reaction to injury and

toxic stimuli. Here we consider how these may have implications

for human ALS.

Sod1 + /� motor neurons are more susceptible to cell
death after axon injury

Sod1 + /� mice suffer significantly more motor neuron loss in

response to facial nerve axotomy than wild-type mice. This

result is intermediate between Sod1�/� and control mice, sug-

gesting a dose dependence of this effect and demonstrating that

50% SOD1 activity is not sufficient for a normal function of motor

neurons in response to injury (Reaume et al., 1996).

Facial nerve axotomy was also performed on copper chaperone

for SOD1 null mice (Ccs�/�), that retain only 20% of SOD1

activity, owing to the lack of this crucial protein for delivery of

copper to SOD1 (Box 2). Motor neuron survival was significantly

reduced in Ccs�/� mice (Subramaniam et al., 2002). This result,

BOX 2 Ccs�/� null mice model SOD1 partial loss of
activity
Another mouse model that is relevant to studying the effects of

reduced SOD1 activity is the ‘copper chaperone for SOD1’ (Ccs)

null mouse. Copper chaperones shuttle copper, which is toxic for

cells in its free form, to intracellular target proteins. CCS delivers

copper to SOD1 by direct protein–protein interaction and is

required for full activation of SOD1 (Culotta et al., 1997, 1999).

Mice lacking CCS (Ccs�/�) were generated by gene targeting and

retain only 20% of normal SOD1 activity; CCS-independent copper

loading into SOD1 probably accounts for the remaining activity.

Although the dismutase activity is impaired, there is no difference

in the levels of SOD1 protein among wild-type, Ccs + /� and

Ccs�/� littermates (Wong et al., 2000).
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and the similar result from Sod1 + /� mice, is important in light of

the potential role for injury and trauma as a trigger in ALS patho-

genesis (Pupillo et al., 2012; Yip and Malaspina, 2012).

Spontaneous denervation, motor neuron sensitivity and
reduction in mitochondrial numbers are not significant
in Sod1 + /� mice but all show trends

Although Sod1+ /� mice have been less studied than null animals,

there have been comprehensive investigations of denervation in

these mice (Fischer et al., 2011, 2012). At 18 months, 80% of

tibialis anterior muscle (neuromuscular junctions) were innervated

in Sod1+ /� compared with 92% in controls (Fischer et al., 2011).

This result did not reach statistical significance, but this trend was

repeated in a following study (Fischer et al., 2012). Currently,

there is no evidence for spontaneous denervation in Sod1 + /�

mice. Experiments were conducted up to the time-point of 18

months, the maximum limit when investigating Sod1�/� mice—

which develop and die of liver cancer at this stage—but could be

extremely informative at later time-points for the Sod1 + /� mice.

Whether increased sample size or a later time-point would show a

significant result, remains to be determined.

Glutamate toxicity is enhanced in Sod1 + /� mice

Glutamate toxicity is implicated in disease in patients with ALS and

in animal models (Ilieva et al., 2009). The role of SOD1 in neur-

onal sensitivity to glutamate toxicity was assessed in vivo by

intrastriatal injection of N-methyl-D-aspartic acid and kainite glu-

tamate receptor agonists. Sod1 + /� mice were more susceptible to

the neurotoxic effects of both stimuli and had reduced glutamic

acid decarboxylase and choline acetyltransferase activities com-

pared with controls (Schwartz et al., 1998). Thus SOD1 partial

loss of function could play a role in facilitating damage from

glutamate toxicity, which may have relevance to ALS.

Increased susceptibility to cerebral ischaemia in Sod1 + /

� mice

Sod1 + /� mice have decreased survival after induced focal cerebral

ischaemia, along with increased early blood–brain barrier disrup-

tion and increased infarct volume causing brain swelling. Apoptotic

neuronal death is also increased demonstrating enhanced ischae-

mia–reperfusion injury (Kondo et al., 1997). Intriguingly, an im-

portant mechanism involved in ischaemia–reperfusion injury is

glutamate excitotoxicity, which as discussed above, is postulated

to play a role in ALS pathogenesis (Beal, 1992).

We note that blood–brain barrier alterations are found in

tgSOD1-ALS mouse models and that indirect evidence of disrup-

tion, such as increased cerebrospinal fluid (CSF) albumin/plasma

albumin ratios, has been documented in patients with ALS

(Leonardi et al., 1984; Apostolski et al., 1991).

Increased memory deficits and plaque formation in an
Alzheimer’s disease model on a Sod1+ /� background

Overexpression in mice of the APP gene carrying the Swedish

mutation causes behavioural deficits and plaque formation and

thus models Alzheimer’s disease (Bodendorf et al., 2002). When

this mutation is expressed on a Sod1+ /� background, it results in

increased deficits in behavioural tests used to assess memory and

in increased senile plaque formation, thus showing that lack of

50% of SOD1 activity does indeed increase the development of

a neurodegenerative phenotype in vivo.

Ganglion neuron loss is increased with ageing in Sod1 + /

� mice

A 50% reduction in SOD1 activity results in reduced neuronal

survival in vivo with respect to ganglion cell density, although

this does not cause an apparent hearing deficit (Keithley et al.,

2005).

DNA methylation is reduced in Sod1 + /� mice

The effects of reduced mouse SOD1 activity could be relevant to

ALS because DNA methyltransferases, the enzymes involved in

DNA methylation, and 5-methylcytosine, the end-product of

DNA methylation, were found to be upregulated in human ALS,

suggesting that aberrant regulation of DNA methylation is part of

the pathobiology of ALS (Chestnut et al., 2011). DNA methylation

was significantly reduced at 2 months of age in Sod1 + /� mice,

although this study focused on prostate tissue (Bhusari et al.,

2010).

Sod1 + /� mice exhibit a contractile vascular phenotype
with ageing

High levels of superoxide play a major role in contractile vascular

dysfunction and loss of a single copy of Sod1 is enough to

increase vascular superoxide levels and produce vascular contract-

ile dysfunction with ageing (Didion et al., 2006).

Loss of mouse SOD1 activity to 50% of normal levels
does not cause death of motor neurons but may be
relevant to human SOD1–familial amyotrophic lateral
sclerosis

Sod1 + /� mice show an increased loss of specific neuronal sub-

types with ageing and an increased susceptibility to injury and

toxic stimuli. These results are relevant to SOD1-familial ALS

given the similarity of enzyme activity levels between patients

with SOD1-familial ALS and Sod1+ /� models. The vulnerability

shown in motor neurons after injury, the susceptibility of neurons

to glutamate toxicity, and the blood–brain barrier alterations seen

in these mice are significant elements since they are mechanisms

and alterations postulated to be involved in ALS pathogenesis.

Overall Sod1�/� and Sod1 + /� animals do not recapitulate

mouse ALS, but they have a wide range of phenotypes that are

both related to ALS directly (for example, denervation, increased

susceptibility to glutamate toxicity, increased susceptibility to

axonal damage) and more generally to neuronal degeneration

(for example, loss of ganglion and retinal cells) and therefore

this raises the question of a contribution of SOD1 loss of function

to disease. A further point to consider is that although several

transgenic mice carrying SOD1 mutations have motor neuron de-

generation and characteristics of human ALS, other mouse strains

with well-characterized pathogenic mutations in different ‘ALS

genes’ (for example, TARDBP) have phenotypes less clearly rem-

iniscent of the human disease (Joyce et al., 2011). Thus it remains

debatable as to how a mouse–ALS syndrome might manifest, and

so considering all phenotypes that develop in the CNS of these

SOD1 loss of function in ALS Brain 2013: 136; 2342–2358 | 2349

by guest on January 30, 2015
D

ow
nloaded from

 



models is essential for understanding how ALS mutations cause

disease.

SOD1 activity and its influence
on SOD1–familial amyotrophic
lateral sclerosis mouse models

SOD1 loss of function does not
influence survival of transgenic SOD1
disease models
The possibility that SOD1 loss of function contributes to ALS

pathogenesis has been investigated by analysing the double

mutant progeny of Sod1�/� or of Ccs�/� mice crossed to three

tgSOD1-ALS lines overexpressing the human mutations, G93A,

G37R and G85R. These crosses produce double mutant mice in

which either the transgenic human mutant protein is the only

SOD1 present (in the case of Sod1�/� crosses) or both the en-

dogenous and transgenically expressed SOD1 are mostly inactive

due to the Ccs�/� background.

As both G93A and G37R mutant SOD1 retain dismutase activity

(Fig. 1) they are not informative for the effect of SOD1 dismutase

loss of function when on a Sod1 null background. Further, trans-

genes often form multiple copy concatamers and indeed both

the tgSOD1G93A and the tgSOD1G37R lines have an increase of

46-fold of mouse SOD1 activity, compared with non-transgenic

control mice (Bruijn et al., 1997; Subramaniam et al., 2002; Deng

et al., 2006). As a result, even on a Ccs�/� background, these

two transgenic lines still have SOD1 activity levels comparable

with those of non-transgenic wild-type mice and so are not

useful for examining the effects of SOD1 loss of function on dis-

ease course (Subramaniam et al., 2002).

However, two experiments do examine the effect of mouse

SOD1 loss of function on the disease developed by tgSOD1-ALS

mouse models. These assess progeny from crosses of Sod1�/�

and Ccs�/� with tgSOD1G85R, a human ALS mutation that has

no detectable intrinsic activity (Borchelt et al., 1994; Bruijn et al.,

1997). Activity is predicted to fall to 0% when crossed with

Sod1�/� (Bruijn et al., 1998) and shown to be 20% when crossed

with Ccs�/�, as expected, given the residual SOD1 activity of the

Ccs�/� line (Subramaniam et al., 2002).

The tgSOD1G85R line shows clinical signs of disease between 8–

10 months of age, which aggressively progress to paralysis within

a few weeks (Bruijn et al., 1997). The disease onset is much later

than many other tgSOD1-ALS mouse models, this is appropriate

for evaluating any potential modifying effect of SOD1 loss of

function. Crosses to both Sod1�/� (n = 5 double mutant progeny)

and Ccs�/� (n = 10 double mutant progeny) did not show signifi-

cant effects on lifespan (Bruijn et al., 1997; Subramaniam et al.,

2002).

Both of these studies resulted in seminal papers that have been

extremely important to the field and have answered critical ques-

tions about SOD1 gain of function in ALS. However, neither paper

answered the separate question about whether loss of function

modifies ALS, presumably and quite reasonably because that

was not the focus of the papers. Both studies were performed

using a cohort size too small to detect potential subtle changes

[n = 5 in Bruijn et al. (1997) and n = 10 in Subramaniam et al.

(2002)] and the sex of the mice analysed was not reported, al-

though it is clear that in both humans and mouse, gender plays a

role in ALS natural history (Acevedo-Arozena et al., 2011; Joyce

et al., 2011). Furthermore, neither study evaluated the age of

disease onset or performed behavioural analysis therefore not ad-

dressing the possibility that SOD1 loss of function may have an

impact on onset and disease course. Lastly, both studies lack a

quantitative pathology analysis: Bruijn et al. (1997) noted n = 2 for

axonal count in the L5 ventral roots, and Subramaniam et al.

(2002) perform a qualitative analysis only, at end-stage, therefore

missing any potential modifier effect occurring during the disease

process.

Thus while it remains unclear if SOD1 loss of function modifies

important disease characteristics such as age of onset or progres-

sion, it appears not to affect lifespan. The lack of effect on survival

in the absence of mouse SOD1 activity is an important result be-

cause it shows that life expectancy in this line is determined

uniquely by mutant SOD1. It has been also speculated that the

lack of an effect on lifespan is due to the insufficient levels of

endogenous SOD1 to counteract the oxidative stress present in

the tgSOD1G85R mice, and because the tgSOD1G85R mice die

before developing a significant oxidative stress-mediated motor

axonopathy (Wang et al., 2012). With respect to onset and dis-

ease course, a larger cohort would be required to note differences,

particularly if they are subtle.

SOD1 activity may influence disease
course of transgenic SOD1 disease
models
While the effect of mouse SOD1 activity on disease onset and

progression of tgSOD1-ALS models is unclear from the crosses

to Sod1 null mice, there are other experimental data indicating

that SOD1 activity may play a role in modifying SOD1-

familial ALS.

SOD1 overexpression and influence
on disease
The effect of overexpression of wild-type human SOD1 on disease

course has been tested by crossing mutant tgSOD1-ALS animals

with transgenic mice overexpressing wild-type human SOD1

(tgSOD1-WT). Double mutant progeny carry both the wild-type

and mutant human SOD1 transgenes, with two copies of the en-

dogenous mouse Sod1 in the genetic background (Bruijn et al.,

1998; Jaarsma et al., 2000; Fukada et al., 2001; Deng et al.,

2006; Wang et al., 2009a, b; Prudencio et al., 2010). Generally,

a worsening of both age of onset and survival have been reported,

compared with single mutant tgSOD1-ALS littermates. However,

we note that tgSOD1-WT mice spontaneously develop motor

neuron and axon loss and have misfolded SOD1 accumulations

(Jaarsma et al., 2000) and develop an ALS-like disease when
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expression is further increased (Graffmo et al., 2013), making the

results of these crosses hard to interpret.

Of note, transgenic mice over-expressing CCS have also been

generated and crossed to different tgSOD1 lines, and results have

ranged from no effect to a significant worsening of the phenotype.

However, CCS over-expression was shown to have biological effects

in the absence of SOD1 enzymatic activation and also to have an

influence on the reduced state of SOD1, making these results not

helpful for dissecting the role of dismutase activity on disease

(Proescher et al., 2008; Son et al., 2009; Graffmo et al., 2013).

Tissue specific expression and
inactivation of mutant SOD1 points to a
modifying role for dismutase activity
To address questions regarding the cell-autonomy of SOD1-famil-

ial ALS, investigators have used Cre-loxP technology to condition-

ally eliminate mutant SOD1 expression in different cell lineages or

used specific promoters to overexpress mutant SOD1 in selected

cell types. Analysis of their results is beyond our scope here, but

generally demonstrates a central role for neurons in the determin-

ation of age of onset and disease progression in SOD1-familial

ALS, and has also pointed to a role for other cell types, such as

astrocytes and microglia in influencing the course of the disease

(Ilieva et al., 2009).

Cre-loxP experiments were conducted using two mutant tgSOD1

lines: conditional tgSOD1G37R, which retains intrinsic dismutase ac-

tivity, and conditional tgSOD1G85R, which lacks activity. Neuronal

excision experiments in both lines showed a beneficial effect on dis-

ease onset and survival. Interestingly, for consideration of the effects

of dismutase activity, significant differences were found between the

conditional tgSOD1G37R and conditional tgSOD1G85R lines after

mutant SOD1 excision from microglia and from astrocytes.

A more profound amelioration was observed with the

tgSOD1G85R line in both experiments, with an effect on early

disease with microglia excision and also on disease onset with

excision in astrocytes; neither result occurred in the tgSOD1G37R

experiments (Ilieva et al., 2009; Wang et al., 2009b, 2011). A

possible explanation for these divergent results has been proposed

to lie in differences in dismutase activity (Wang et al., 2012). If in

addition to the toxic gain of function effects, tgSOD1G37R has

neuroprotective effects in microglia and astrocytes due to its en-

zymatic activity, then a knockdown of tgSOD1G37R expression

would have less ameliorative effects on the disease course than

knockdown of the inactive SOD1G85R (Wang et al., 2009b, 2011).

In support of a modifying effect of SOD1 dismutase activity are

findings obtained with the excision of tgSOD1G37R from Schwann

cells. Excision from the tgSOD1G37R made the disease progression

in the mice more severe. Lobsiger et al. (2009) proposed that

SOD1G37R activity in Schwann cell had a neuroprotective effect.

Conversely, excision of the inactive SOD1G85R caused a delay in

disease onset, an increased survival and an amelioration of path-

ology (Wang et al., 2012). Furthermore, increasing SOD1G93A ex-

pression specifically in Schwann cells of the tgSOD1G93A mouse

had a beneficial effect on disease (Turner et al., 2010).

In conclusion, the experimental data overall point to a protective

role of SOD1 dismutase activity, at least in some cell types, on

non-cell autonomous degeneration and disease in SOD1–ALS.

Conclusions

SOD1 loss of function models share
many commonalities with amyotrophic
lateral sclerosis indicating specific
cell-type sensitivities
SOD1 loss of function was initially thought to play a role in ALS

due to the discovery of disease-causing mutations in the SOD1

gene and due to the well-established link between oxidative stress

and neurodegeneration (Smith et al., 1991; Stadtman 1992;

Stadtman and Berlett, 1997). Indeed free radical damage has

been shown in CSF, serum and urine from patients with ALS

(Smith et al., 1998; Simpson et al., 2004; Mitsumoto et al.,

2008) and proteins, lipids and DNA were shown to have elevated

oxidative damage in ALS post-mortem material (Shaw et al.,

1995; Fitzmaurice et al., 1996; Shibata et al., 2001). As SOD1-

familial ALS undoubtedly arises primarily from SOD1 toxic gain of

function, the loss of dismutase activity may play a modifying role.

The most useful tools to study this possibility in vivo have been

the Sod1�/� mice. These mice are a model of chronic oxidative

stress, but do not develop a disease that models human ALS.

Long term studies of Sod1�/� mice show striking features

related to ALS. Notably, these mice develop a progressive distal

motor axonopathy and ALS has indeed been postulated to start by

affecting the distal portions of the neurons including neuromuscu-

lar junctions and axons (Murray et al., 2010). The most affected

motor units in Sod1�/� mice are fast-twitch, which is in accord-

ance with observations in ALS models (Frey et al., 2000). Motor

neurons in Sod1 null mice have an increased susceptibility to injury

and importantly, stimuli such as trauma, could play a role in initi-

ating ALS (Pupillo et al., 2012) where humans, even if carrying

disease-causing mutations, are healthy for decades. Further, in

Sod1�/� mice, motor neurons are preferentially affected com-

pared to sensory neurons, recapitulating the selectivity observed

clinically and pathologically in ALS.

The neuromuscular phenotype in Sod1 null mice has been

demonstrated to be caused by the lack of SOD1 in the mitochon-

drial intermembrane space and a related decrease in axonal mito-

chondrial density (Fischer et al., 2011). The involvement of

mitochondria in ALS and other forms of motor neuron disease

such as spinal muscular atrophy, has been shown in animal and

cellular models and indirectly in post-mortem material (Baloh

et al., 2007b; De Vos et al., 2007; Acsadi et al., 2009; Sasaki

et al., 2009; Wen et al., 2010; Faes and Callewaert, 2011). As

described, Sod1�/� mice have other phenotypes that underline

the importance of this gene in neuronal ageing and in neurode-

generation. Among these are the spontaneous progressive loss of

retinal cells and auditory ganglion neurons, the increased suscep-

tibility to APP induced neurodegeneration and the increased
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susceptibility to apoptotic cell death following brain trauma and

ischaemic injury.

SOD1 activity is greatly reduced in
human SOD1-familial amyotrophic
lateral sclerosis
SOD1 activity is generally reduced to approximately half of normal

in patients with SOD1-familial ALS, as measured in red blood cells,

lymphoblastoid cells and fibroblasts (Fig. 1). Indirect evidence

raises the possibility that a more severe reduction could occur in

susceptible tissues and cell types, owing to reduced mutant SOD1

messenger RNA half-life in the CNS and due to possible effects of

SOD1 protein misfolding and aggregation on activity.

Data from other human diseases involving loss of enzyme ac-

tivity shows many of these are recessive and heterozygotes are

generally unaffected (Mitchell et al., 2011). However, this is

clearly not the case in the Sod1 + /� mouse; these animals have

increased neuronal loss and increased susceptibility to injury.

Further, the stimuli to which these mice are more susceptible are

motor neuron axonal damage and glutamate toxicity, both closely

related to ALS pathogenesis. In addition, the blood–brain barrier is

more permeable following injury in these mice; indirect evidence

of a similar state has also been described in patients with ALS and

in mouse models of ALS. Exacerbation of neurodegenerative

phenotypes in an Alzheimer’s disease mouse model when on a

Sod1 + /� background also indicates a potential predisposition to

neurodegeneration of mice with a 50% reduction in SOD1 activ-

ity. Lastly, as Sod1 + /� mice show a spontaneous loss of spiral

ganglion cells this confirms that decreased dismutase activity has

direct consequences on neuronal survival.

A human SOD1 loss of function
phenotype?
Although both Sod1�/� and Sod1+ /� mice develop characteris-

tics that have obvious relevance to ALS, we have found no data

from human genetic analyses to suggest that SOD1 loss of func-

tion alone causes the human disease. 4155 mutations in SOD1

have been described (Fig. 1), but there have been no truncation

mutations occurring in the N-terminal part of SOD1 that would

generate an effectively null allele (i.e. due to reduced expression

from nonsense mediated decay of the messenger RNA or from

inactivity of just a short stretch of N-terminal amino acids). We

note a frameshift in exon 2 generating a predicted 35 amino acid

protein that might be a null, has been reported in a family with

ALS, but data regarding segregation are unclear making conclu-

sions uncertain (Hu et al., 2012).

Further, we could find no description of patients with full loss of

SOD1 activity, even when SOD1 mutations are found in homo-

zygosity. Of the six homozygous SOD1 mutations (L84F, N86S,

D90A, L117V, L126S and G27delGGACCA) described, activities

for four (D90A, L117V, L126S and G27delGGACCA) have been

measured and vary between 25% and 93% of normal levels

(Andersen et al., 1995; Boukaftane et al., 1998; Hayward et al.,

1998; Kato et al., 2001; Zinman et al., 2009; Synofzik et al.,

2012). Of note, a patient with a CCS homozygous mutation has

been described with SOD1 activity of �25% of normal. This

patient showed a complex neurodevelopmental phenotype; how-

ever, this is attributed to a mutation in SLC33A1 and not a loss of

SOD1 function (Huppke et al., 2012).

SOD1 gain and loss of function could
complement each other in amyotrophic
lateral sclerosis pathogenesis
A reduction in SOD1 activity is not causative for ALS (which is

certainly what the mouse data show), however, it may modify

disease, as suggested by results from the mouse cross experiments

described above. It seems likely such modifying effects would

come through an increased susceptibility to neurodegeneration

either directly through, for example, the increased susceptibility

to axonal damage seen in Sod1+ /� mice, or indirectly through,

for example, effects on respiration in high energy consumers such

as motor neurons—note the recent finding that SOD1 is a critical

focus for integrating O2, glucose and superoxide levels, through

casein kinase signalling, to repress respiration and directing energy

metabolism, and that this role is independent of its function in

oxidative stress (Reddi and Culotta, 2013). Thus SOD1 loss of

function will likely have effects on cellular metabolism and, fur-

ther, as it is still unclear why this enzyme is produced at such high

levels, SOD1 may well have other as yet unknown roles in neur-

onal function.

Loss and gain of function mechanisms coexist in other neuro-

degenerative diseases as shown in models of Huntington’s disease

(Zuccato et al., 2010), Parkinson’s disease (Winklhofer et al.,

2008) and spinocerebellar ataxia 1 (Lim et al., 2008; Crespo-

Barreto et al., 2010). Indeed both loss and gain of function

have been hypothesized to contribute to pathogenesis in ALS

caused by TARDBP and FUS mutations (Lagier-Tourenne and

Cleveland, 2009; Guo et al., 2011).

SOD1 has a crucial role in superoxide clearance and its loss of

function generates an increased state of oxidative stress. In a

tgSOD1-ALS mouse model, SOD1 is itself a major target of oxi-

dization (Andrus et al., 1998) and SOD1 oxidation and glutathio-

nylation, which occurs in response to oxidative stress, both

increase the propensity of the dimer to dissociate and become

misfolded (Khare et al., 2004; Rakhit et al., 2004; Ezzi et al.,

2007; Wilcox et al., 2009).

These findings set the scene for a potential co-operation of

SOD1 loss and gain of function in ALS pathogenesis. Indeed, a

vicious circle can be hypothesized in which oxidized SOD1 has an

increased propensity to misfold, causing seeding and aggregation

of SOD1 and resulting in a reduction of dismutase activity, which

therefore feeds more potential oxidative stress to the start of the

loop (Fig. 2). We note that the strong link between SOD1 mis-

folding and its loss of function (see above) make the two effects

very difficult to assess independently.

A number of recent findings have underlined how such a mech-

anism could be relevant not only to SOD1-familial ALS, but also

to sporadic cases. Hyperoxidized and misfolded SOD1 have been

demonstrated in sporadic ALS cases (Bosco et al., 2010; Forsberg
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et al., 2010; Guareschi et al., 2012) and misfolding of SOD1 was

shown to be induced by both TDP43 and FUS mislocalization

(Pokrishevsky et al., 2012), events that occur in the majority of

sporadic patients with ALS (Maekawa et al., 2009; Deng et al.,

2010; Matsuoka et al., 2011). Recent studies demonstrating that

SOD1 aggregation can be seeded in vitro from mouse

tgSOD1G93A spinal cord material (Chia et al., 2010), and ‘trans-

mitted’ between cells (Munch et al., 2011) extend the potential

role for these pathogenic mechanisms to the clinical and patho-

logical ‘spread’ of ALS (Ravits et al., 2007; Pokrishevsky et al.,

2012). Of note, SOD1 was also found to be oxidized in

Alzheimer’s disease and Parkinson’s disease (Choi et al., 2005).

In fact, it is possible to speculate that the absence of SOD1 in

the loss of function mouse model omits one of the most important

targets of oxidative stress in ALS—that is, SOD1 itself—leaving the

pathogenic cascade incomplete.

Finally, we note the lack of studies addressing the expression of

the SOD1 trans allele in SOD1–familial ALS and the possibility that

this plays a role in modifying the disease. Indeed, a 50 base pair

deletion in the promoter region of SOD1 has been described to

influence SOD1 expression and there have been attempts to cor-

relate this with clinical characteristics in sporadic ALS, although so

far results have not been replicated (Broom et al., 2008). To our

knowledge no studies analyse the SOD1 trans-allele in SOD1–

familial ALS cases for the presence of this variant or other factors

influencing the expression of the trans-allele.

Implications of SOD1 loss of function
for current therapeutic approaches for
amyotrophic lateral sclerosis and other
diseases
Therapies are being developed for ALS and other neurodegenera-

tive disease caused by dominant mutations, which entail knock-

down of the mutant allele RNA (Smith et al., 2006; Kordasiewicz

et al., 2012; Lu and Yang 2012). This approach is showing prom-

ise for Huntington’s disease; a recent report has shown suppres-

sion of huntingtin in Huntington’s disease mouse models and in

the non-human primate brain, and a 75% suppression of hunting-

tin throughout the CNS appears to be well tolerated (Kordasiewicz

et al., 2012).

A number of analogous strategies have been tested for SOD1

(Ralph et al., 2005; Raoul et al., 2005; Saito et al., 2005; Smith

et al., 2006; Wang et al., 2010; Towne et al., 2011; Wright et al.,

2012) and have shown very encouraging results. Excitingly, a phase

1 clinical trial has been conducted in SOD1-ALS (Fratta, 2013; Miller

et al., 2013) using antisense oligonucleotides that silence both

mutant and wild-type SOD1, that were previously shown to be

effective in a transgenic SOD1-ALS rat model (Smith et al., 2006).

The main aim of this study, the first of its kind, was to assess safety

and so the treatment was undertaken for periods too brief to obtain a

biological effect on SOD1 levels, so although the regime is reported

Figure 2 The cycle of SOD1 loss of function, schematic representation of a potential co-operation between SOD1 loss and gain of

function in SOD1–familial ALS pathogenesis. SOD1 loss of function (LOF) increases levels of oxidative stress, which through glutathio-

nylation and oxidation, can facilitate the monomerisation of dimeric SOD1. Once monomerized, SOD1 is more prone to become

misfolded, oligomerized and aggregated. The monomerization of previously active dimeric SOD1 and the recruitment of SOD1 into

aggregates further enhance the loss of function, feeding back to the beginning of the loop. In this way the gain of function (GOF) effects

of misfolded, oligomerized and aggregated SOD1, which are known to cause motor neuron degeneration, are amplified by the loss of

function circle. Mutant SOD1 (mutSOD1) has both a direct effect on reduction of SOD1 activity and induces SOD1 misfolding and

aggregation. Mislocalisation of both TDP43 and FUS result in misfolding of SOD1. ER = endoplasmic reticulum; MN = motor neuron.
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to be well-tolerated, it remains to be determined whether SOD1

downregulation causes unwanted effects.

The Sod1 knockout mouse data presented here are important

for these types of studies in illustrating the need to understand the

full implications of such strategies. These are not only neuronal;

for example, the reason most Sod1 null (and a small percentage of

Sod1 + /�) mice die is liver cancer. Thus particular attention must

be paid to delivery routes, protein levels and distribution.

We note that the null mice lack Sod1 completely, from the

earliest time in development, and no appropriate model appears

to be available currently for evaluating the effects of long-term

endogenous Sod1 knockdown from adulthood. The preclinical

trials with RNA interference technologies used tgSOD1-ALS

adult models to investigate SOD1 reduction on a very early

onset and fast progressing disease, but did not study potential

long term effects (Raoul et al., 2005; Smith et al., 2006).

Experiments using conditional Sod1 alleles would help clarify the

situation. A hopeful note for ALS from the Huntington’s disease

study is that transient knockdown ameliorates disease for an ex-

tended period (Kordasiewicz et al., 2012).

The data from Sod1 + /� animals indicate that in patients with

SOD1–ALS there may be a case for epidemiological studies of the

known phenotypes that arise with a 50% enzyme loss; for ex-

ample, is there a greater incidence of cardiovascular disease and

stroke in families with SOD1–familial ALS? Do these families have

an increased incidence of liver cancer or, protection from tumours

such as lung cancer, given that the majority of human lung adeno-

carcinomas express SOD1 at higher than normal levels (Somwar

et al., 2011).

Finally, knowledge of the effects of SOD1 loss of activity clearly

indicates that this gene should be screened in cohorts with dis-

eases such as hereditary distal motor neuropathies, age-related

macular degeneration and progressive hearing loss, because both

homozygous and heterozygous loss of function are compatible

with life, at least in mice, but have abnormal phenotypes.
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Abstract
Transgenicmousemodels expressingmutant superoxide dismutase 1 (SOD1) have been critical in furthering our understanding of
amyotrophic lateral sclerosis (ALS). However, such models generally overexpress the mutant protein, which may give rise to
phenotypes not directly relevant to the disorder. Here, we have analysed a novel mousemodel that has a pointmutation in the
endogenousmouse Sod1 gene; thismutation is identical to a pathological change in human familial ALS (fALS) which results in
a D83G change in SOD1 protein. Homozgous Sod1D83G/D83G mice develop progressive degeneration of lower (LMN) and upper
motor neurons, likely due to the same unknown toxic gain of function as occurs in human fALS cases, but intriguingly LMN cell
death appears to stop in early adulthood and themice do not become paralyzed. The D83 residue coordinates zinc binding, and
the D83G mutation results in loss of dismutase activity and SOD1 protein instability. As a result, Sod1D83G/D83G mice also
phenocopy the distal axonopathy and hepatocellular carcinoma found in Sod1 null mice (Sod1−/−). These unique mice allow us
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to further our understanding of ALS by separating the centralmotor neuron body degeneration and the peripheral effects froma
fALS mutation expressed at endogenous levels.

Introduction
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegen-
erative disease characterized by a loss of upper and lower motor
neurons (LMNs), which causes muscle weakness, paralysis and
ultimately death, typically within 3–5 years of disease onset.
Approximately 10% of ALS cases have a clear family history
(fALS), caused by mutations in specific genes, usually with a
dominant pattern of inheritance (1–3). Mutations in superoxide
dismutase 1 (SOD1) account for 10–20% of fALS cases (although
pathogenicity has not be demonstrated for all these changes),
and to date >155 mutations have been identified throughout all
five exons of the SOD1 gene, >95% of which are dominant (4).

SOD1 is a 153 amino acid metalloenzyme (also called Cu/Zn
SOD1) that forms a homodimer whose main known function is
to remove superoxide radicals through creating molecular oxy-
gen and hydrogen peroxide, although other functions are
known (5). Mutant SOD1 takes on a toxic gain of unknown func-
tion in SOD1-fALS, causing many cellular abnormalities that
ultimately result in death of motor neurons (6). Recent research
has identified misfolded wild-type (WT) SOD1 in non-SOD1-
fALS and in ‘sporadic’ ALS suggesting that it may also play a
role in the pathogenesis of these ALS cases (7–10).

SOD1 is highly conserved across species (11) and >12 different
transgenic mouse models have been created that overexpress
mutant forms of human SOD1 (6,12,13) and in one case mouse
Sod1 (14). The majority of these mice recapitulate many charac-
teristics of ALS, including progressive motor deficits, hindlimb
paralysis, motor neuron degeneration and early death (6,12,13).
A mouse strain carrying a spontaneous point mutation in
mouse Sod1 has been previously described (15), although the
equivalent mutation in humans has not been identified as
pathogenic.

However, concerns remain regarding the translation of
these models to human SOD1-fALS—particularly because
SOD1 is generally overexpressed in transgenics and such raised
expression levels affect the pathology of these animals (6,12).
For example, the most widely used model of SOD1-fALS, the
high-copy SOD1G93A transgenic, carries ∼24 copies of the
mutant human SOD1 gene, expresses SOD1 protein at ∼17-fold
over the endogenous level, and has greatly accelerated disease
compared with SOD1G93Adl mice, a strain derived from the
SOD1G93A founder line but with lower levels of SOD1 protein be-
cause of a deletion in the transgene array (∼8–10 copies of
SOD1G93A gene, 8-fold SOD1 protein expression over WT)
(16–18). As well as raised levels of mutant SOD1 affecting
phenotype, increased levels of WT SOD1 also give rise to neuro-
degeneration—overexpression of WT human SOD1 at levels
comparable with that found in SOD1G93A transgenics results in
an ALS-like syndrome with progressive loss of spinal motor
neurons and premature death (19). Thus SOD1 ‘dose’ is clearly
important for determining phenotype—and as well as overex-
pression, reduced expression also gives rise to neuronal and
non-neuronal phenotypes in heterozygous and homozygous
SOD1 knockout mice (reviewed in 4).

Mutations in SOD1-ALS cause a toxic gain of function, which
leads to motor neuron degeneration. However, curiously, the
majority of studies that have analysed dismutase activity of
SOD1-fALS patient samples show that SOD1 dismutase activity

is reduced to an average of ∼58% of normal levels (reviewed in 4).
SOD1 transgenic models overexpress mutant SOD1 and also
express two copies of endogenous mouse Sod1, so dismutase ac-
tivity is not reduced in these animals. Therefore, although SOD1
transgenics clearly model the SOD1 toxic gain-of-function lead-
ing to motor neuron degeneration, they do not generally model
the possible effects on ALS pathogenesis of a reduction in dismu-
tase activity, as observed in the majority of SOD1-fALS patient
samples.

The effects of SOD1 loss of function on motor neurons have
been recently readdressed through the study of Sod1−/− mice
(20,21), which suffer from a severe progressive denervation of
hindlimb muscles, leading to striking motor phenotypes (20).
Importantly however, several reports show that aged Sod1−/−

mice do not develop motor neuron degeneration at any age
(20,22,23). Thus, SOD1 activity is critical in maintaining innerv-
ation of neuromuscular junctions, but its removal does not result
in motor neuron cell body loss.

In order to create the genetically closest model of SOD1 ALS
to date, and to investigate the effects of a SOD1 mutation at
endogenous expression levels, we identified a mutant line that
carries an N-ethyl-N-nitrosourea (ENU)-induced point mutation
in the mouse Sod1 gene. Fortuitously, this mutation is identical
to the nucleotide change found in human SOD1 D83G dominant
fALS cases (24). In a D83G SOD1-fALS family, four of the five af-
fected individuals had a rapid disease duration (range: 6–12
months), whilst one family member had a long disease duration
(151 months). Two of the affected SOD1 D83G family members
whowere clinically examined in detail first presentedwith symp-
toms of LMN deficits, which were followed with upper motor
neuron (UMN) symptoms (24).

Results
Identification of an ENU-induced point mutation
in the mouse Sod1 gene

To identify mouse lines carrying the equivalent of human ALS
causative pathogenic mutations, we screened for mutations in
Sod1 using genomic DNA from an ENU-induced mutagenesis
archive containing over 10 000 mice (25,26). We identified a
mouse mutant carrying an adenosine-to-guanine missense mu-
tation resulting in a D83G substitution (Supplementary Material,
Fig. S1). Importantly, the same point mutation (A–G) gives rise to
dominant D83G SOD1-fALS (24).

For all subsequent studies, female andmalemice carrying the
Sod1D83G mutation were assessed on a C57BL/6J genetic back-
ground, backcrossed at least four generations and then inter-
crossed. Homozygous Sod1D83G/D83G mice were not produced in
Mendelian ratios from Sod1+/D83G intercrosses (in total: 167 WT,
362 Sod1+/D83G, 101 Sod1D83G/D83G) (Supplementary Material,
Table S1).

Upper and LMNs die in Sod1D83G/D83G mice

Since degeneration of both LMN and UMNs is the defining hall-
mark of ALS and occurs in fALS patients carrying the D83Gmuta-
tion (24), we first examined the survival of LMN and UMNs. The
number of LMN in the sciatic motor pool in lumbar spinal cord
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was assessed at 6, 15 and 52 weeks of age. At 6 weeks, we found
no loss of motor neurons in heterozygous Sod1+/D83G or homozy-
gous Sod1D83G/D83G mice (WT 483 ± 12 LMN; Sod1+/D83G 481 ± 10
LMN; Sod1D83G/D83G 495 ± 8 LMN; n ≥ 5 per genotype). However,
by 15 weeks there was a 23% reduction in the number of LMNs

in Sod1D83G/D83Gmice only (359 ± 9 LMN) comparedwithWT litter-
mates (442 ± 11 LMN; P < 0.001) (Fig. 1A and B), and this remained
stable at 52 weeks (Fig. 1B). Thus, homozygous Sod1D83G/D83Gmice
develop significant LMN degeneration between 6 and 15weeks of
age, which does not progress.

Figure 1. The Sod1D83Gmutation causes LMN andUMNdegeneration. (A) Representative images of lumbar spinal cord ventral horn sections stained for Nissl fromWTand

15-week-old Sod1D83G/D83Gmice; sciatic pool ofmotor neurons depicted in inset image. Scale bars:main 200 μm, inset 100 μm. (B) LMNnumbers at 6, 15 and 52weeks of age

in female littermates. At 6 weeks of age counts are comparable, but by 15 weeks of age in Sod1D83G/D83G have a 23% loss of LMNs (359 ± 9) compared with WT littermates

(469 ± 11) and Sod1+/D83G (477 ± 11). Motor neuron survival of Sod1D83G/D83G mice (353 ± 9) at 52 weeks is not significantly reduced compared with that at 15 weeks (359 ± 9;

P = 0.47). n≥ 5 animals per group (*P < 0.001). (C) Representative images of ventral horn of lumbar spinal cord from 15- to 52-week-old mice stained for IBA-1 (green), GFAP

(red) and Nissl (blue). Immunoreactivity for micro- and astrogliosis is increased in 15-week-old Sod1D83G/D83G mice, and yet further in 52-week-old Sod1D83G/D83G mice

compared with WT littermates. Scale bar is 20 μm. (D) CTIP2 expression is detected in the striatum, in layer VI, and is restricted to CSMN within layer V of the motor

cortex. (E) CSMN survival of female mice at 15 and 29 weeks of age. CSMNs are reduced in Sod1D83G/D83G mice at 29 weeks (49.7 ± 2.4) compared with WT littermates

(64.1 ± 2.8). CSMNs within layer V were averaged across three slides per animal; n = 5 per group. Scale bar is 50 μm. Numbers represent the mean ± SEM (*P < 0.01).
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Reactive gliosis of both astrocytes andmicroglia is observed in
ALS patients and mouse models. In Sod1D83G/D83G mice, lumbar
spinal cord sections from 15-week-old mice showed striking as-
trogliosis (GFAP) andmicrogliosis (IBA1), which increased further
at 52weeks of age (Fig. 1C). Sod1+/D83Gmice did not showelevation
in reactive gliosis compared with WT littermates (Fig. 1C).

To investigate UMNs in Sod1D83G/D83G mice, we examined the
survival of corticospinal motor neurons (CSMNs) at 15 and 29
weeks of age (Fig. 1D and E). Although Nissl staining of the cere-
bral cortex did not reveal obvious abnormalities in Sod1D83G/D83G

mice at either age (Supplementary Material, Figure S2A), analysis
of Cry-mu, a selective marker of CSMNs in layer V of the
motor cortex (27), revealed signs of cellular degeneration in
Sod1D83G/D83G mice at 29 weeks (Supplementary Material,
Figure S2B). This was supported by staining for the molecular
marker chicken ovalbumin upstream promoter transcription
factor-interacting protein 2 (CTIP2), a transcription factor
expressed by CSMN in layer V of the motor cortex and a subset
of layer VI neurons (27) (Fig. 1D). CTIP2 expression helps distin-
guish between a possible reduction in molecular marker expres-
sion and cellular degeneration, and is restricted to the nucleus,
allowing for reliable quantitative analysis.

CSMN numbers were comparable betweenWT, Sod1+/D83G and
Sod1D83G/D83G littermates at 15 weeks of age (WT 70 ± 4; Sod1+/D83G

67 ± 5; Sod1D83G/D83G 65 ± 5) (Fig. 1E), but reduced by 22% at 29
weeks in Sod1D83G/D83G mice (WT 64 ± 6; Sod1+/D83G 64 ± 4;
Sod1D83G/D83G 50 ± 5; P < 0.05) (Fig. 1D and E). This degeneration
was restricted to CSMNs since analysis of callosal projection
neurons (CPNs), which are developmentally closely related to
CSMN but less vulnerable in ALS, showed that staining with
CPN-specific markers LIM domain only four (LMO4) and special
AT-rich sequence-binding protein 2 (SATB2), did not differ be-
tween WT and Sod1D83G/D83G littermates, at either age (Supple-
mentary Material, Fig. S2C and D). These results therefore
suggest a selective and progressive CSMN degeneration (UMN)
within the cortical component of motor neuron circuitry, which
is likely to affect the motor capability of Sod1D83G/D83G mice.

Analysis of functional motor units reveals a distal
motor neuropathy in Sod1D83G/D83G mice

In view of the MN degeneration observed in Sod1D83G/D83G mice,
we next determined the number of functional motor neurons
that innervated the extensor digitorum longus (EDL) hindlimb
muscle by physiological analysis of motor unit survival
(MUNE). We found no differences in EDL motor unit survival
across genotypes at 15 weeks of age, suggesting that the loss of
LMN cell bodies detected at this age is restricted to populations
of motor neurons that innervate hindlimb muscles other than
EDL. Indeed, EDL has been previously shown to be less vulnerable
to disease in transgenic SOD1 models (28). However, by 52 weeks
of age, we observed a significant reduction in the number of
motor units in EDL muscles of Sod1D83G/D83G mice compared
with WT littermates (P < 0.001; Fig. 2A and B). Comparison be-
tween WT and Sod1+/D83G littermates did not reveal any signifi-
cant differences in EDL motor units at 15, 52 or 96 weeks of age
(Fig. 2A).

Morphological analysis of the innervation pattern of endplate
neuromuscular junctions (NMJ) of the EDL muscle confirmed the
distal progressive denervation occurring between 15 and 52
weeks of age in Sod1D83G/D83G mice (Fig. 2C–E). In agreement
with the MUNE analysis, no significant differences in denervated
EDL endplateNMJwere observed between anyof the genotypes at
15weeks of age (Fig. 2E). However, by 52weeksof age, a significantly

different proportion of endplate NMJ in Sod1D83G/D83G EDL is de-
nervated (WT 2.6 ± 0.9; Sod1+/D83G 2.6 ± 1.1; Sod1D83G/D83G

14.8 ± 2.8; P < 0.001) (Fig. 2E). Since no additional LMNbody degen-
eration occurs between 15 and 52 weeks of age in Sod1D83G/D83G

mice, the progressive denervation and loss of EDL motor units
are likely a peripheral neuropathy that is not the result of
motor neuron death.

Sod1D83G/D83G mice display progressive motor
and behavioural deficits

We next examined whether the loss of motor neurons and
progressive denervation in Sod1D83G/D83G mice was reflected in
deficits in motor function. Longitudinal phenotypic character-
ization of WT, Sod1+/D83G and Sod1D83G/D83G littermates showed
motor function of Sod1D83G/D83Gmice deteriorates progressively
with age, and these mice develop tremors, gait abnormalities
and become severely kyphotic (Supplementary Material,
Video S1).

We found a reduction in body weight of Sod1D83G/D83G from
4weeks of age compared withWT littermates (females, P = 0.001;
males, P = 0.034) (Fig. 3A; Supplementary Material, Fig. S3A). To
evaluate the weight differences between littermates, the relative
levels of lean and fat mass were determined using Echo MRI (29).
Fifty-two-week-old male and female Sod1D83G/D83G mice showed
significantly less fat mass compared with sex-matched WT
littermates, while there were no differences observed between
WT and Sod1+/D83G littermates at 6, 35, 52 or 88 weeks of age
(Fig. 3B; Supplementary Material, Fig. S3B).

To assess motor function, we examined grip strength and
performance on an accelerating rotarod, starting at 6 and
7 weeks of age, respectively. We observed reduced grip strength
in female and male Sod1D83G/D83G mice from 6 weeks of age
(females, P ≤ 0.002; males, P < 0.05), but not in Sod1+/D83G mice
(Fig. 3C; Supplementary Material, Fig. S3C). Female Sod1D83G/D83G

mice displayed earlier deficits in accelerating rotarod compared
with males (23 weeks versus 67 weeks) (Fig. 3D; Supplementary
Material, Fig. S3D).

We also examined the performance of WT, Sod1+/D83G and
Sod1D83G/D83G littermates using a modified SHIRPA analysis,
which comprises of a battery of simple phenotypic tests with
an emphasis on neurological function (30,31). Three traits dif-
fered between genotypes: the presence and progression of tre-
mors, pelvic elevation and the ability to walk down a vertical
wire grate (negative geotaxis) (Table 1).

We found subtle behavioural deficits in heterozygous
Sod1+/D83G animals when examining the performance of mice
on an in-cage wheel running system (32). A similar system has
previously been used to identify presymptomatic motor abnor-
malities in SOD1G93A transgenic mice (33). WT and Sod1+/D83G

littermates were assessed at 44 and 88 weeks of age by recording
activity over 7 days. Sod1+/D83G animals exhibited a significant
deficit in nightly total distance travelled compared with WT lit-
termates (P < 0.05), which declined further with age (Fig. 3E). In
addition, while WT mice at 88 weeks of age showed an increase
in the duration for each running bout (duration per run) when
compared with 44 weeks of age, 88-week-old Sod1+/D83G mice
showed a reduction in duration. Sod1+/D83G mice also displayed
a reduction in the duration per running bout at 44 and 88
weeks of age compared with WT littermates (Fig. 3F). Thus,
Sod1+/D83G mice present with subtle yet progressive deficits in
motor function in the home cage, showing that the deleterious
effects of the SOD1 D83Gmutation are not restricted to homozy-
gous mice.
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Sod1D83G/D83G mice lose muscle force with age

To gain a detailed understanding of the effect of the Sod1D83Gmu-
tation on motor neuron and muscle function, we undertook a
physiological analysis of the tibialis anterior (TA) and EDL hind-
limb muscles of female WT, Sod1+/D83G and Sod1D83G/D83G

littermates at 15 and 52 weeks age. We also assessed Sod1+/D83G

mice at 96 weeks of age.
TAmuscle of 15-week-old Sod1D83G/D83Gmicewas significantly

weaker than in WT littermates (P = 0.02), and muscle force de-
clined further at 52 weeks of age (Fig. 4A and B). This may reflect

Figure 2. MUNE and endplate NMJ analysis from EDL muscle. (A and B) Surviving motor units for the EDL, which are reduced in 52-week-old Sod1D83G/D83G mice (21 ± 1)

comparedwithWT littermates (39 ± 0.4). (B) Representative traces from (A); each twitch trace recording is a singlemotor unit. Numbers represent themean ± SEM, at least

nine legs were assessed per group. (C–E) Percentage of denervated endplate NMJ from EDL muscle at 15 and 52 weeks of age. Motor endplates are identified via

α-bungarotoxin staining (red). Axons are revealed via neurofilament and SV2 (green). Representative images of (C) innervated and (D) denervated NMJ endplates. (E)

Quantitative analysis of the percentage of denervated EDL endplate NMJ (denervated NMJ/total NMJ counted × 100) from all three genotypes at 15 weeks of age reveal

no significant differences between any of the genotypes. By 52 weeks of age, a significant difference in the percentage of denervated endplate NMJ appear between

Sod1D83G/D83G and the other two genotypes (WT and Sod1+/D83G). At 15 weeks of age, at least 700 NMJ endplates were counted per genotype. At 52 weeks of age, at least

465 NMJ endplates were counted per genotype. Percentage of denervated endplate NMJ at 52 weeks: WT: 2.6 ± 0.9; Sod1+/D83G: 2.6 ± 1.1; Sod1D83G/D83G: 14.8 ± 2.8.

***P < 0.001. Scale bar is 20 μm.
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the LMN degeneration detected in the spinal cord at this stage
(Fig. 1B). However, as observed with motor unit survival and
NMJ innervation, no deficit in EDL muscle force was detected in
Sod1D83G/D83G mice at 15 weeks, confirming that this muscle is
less vulnerable to the effects of mutant SOD1 than other hind-
limb fast twitch muscles. However, by 52 weeks, EDL muscle
force in Sod1D83G/D83G mice was significantly reduced by ∼35%
compared with WT (P < 0.001; Fig. 4C and D). Therefore, TA and

EDL muscles undergo a progressive loss in muscle strength in
Sod1D83G/D83G animals between 15 and 52 weeks of age, at a time
when there is no progression in the death of LMN. In addition, as
with SOD1 transgenic mouse models, the TA is affected earlier
than EDL (28).

TA and EDL are fast twitchmuscles that normally fatigue rap-
idly when repeatedly stimulated. Changes in the fatigue charac-
teristics of fast twitch muscles are a typical feature of disease in

Figure 3. Bodymass, behavioural andmotor deficits in female Sod1D83G/D83G mice. (A) Weights recorded weekly from 4 weeks of age to the humane endpoint; cohort sizes

for (A,C andD) started as 11WT, 13 Sod1+/D83G, 11 Sod1D83G/D83G; due to the death ofmicewith age, at least fivemicewere assessed per genotype at later time points.Weight

is reduced in Sod1D83G/D83Gmice from 4weeks of age (P = 0.001). (B) Echo MRI assessment of lean and fat mass for mice at 6, 35, 52 and 88 weeks of age. Fatmass is reduced

and lean mass increased in 52-week-old Sod1D83G/D83G mice by comparison with WT littermates (*P≤ 0.001). (C) Grip strength recorded monthly from 6 weeks of age to

humane endpoint. Grip strength is reduced in Sod1D83/D83G mice (P ≤ 0.002 from 6 weeks). (D) Rotarod recorded monthly from 7 weeks of age to humane endpoint.

Rotarod performance is reduced in Sod1D83G/D83G mice (P < 0.05 from 23 weeks). (E and F) Wheel running activity over 7 days from 44- and 88-week-old singly housed

female WT and Sod1+/D83G littermates. The distance run (E) is shorter in 44-week-old Sod1+/D83G mice compared with WT (P < 0.01), while the distance run (E) and

duration per run (F) both deteriorate with age in Sod1+/D83G mice (44 versus 88 weeks) compared with WT littermates (P < 0.05). n = 7 per genotype per time point.

Numbers shown represent the mean ± SEM.
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Table 1. Semi-quantitative-modified SHIRPA phenotypic analysis of WT (Sod1+/+), Sod1+/D83G and Sod1D83G/D83G littermates

Genotype Sample size Mild tremors Severe tremors Reduced pelvic
elevation

Negative geotaxis

Onset (weeks) % Onset (weeks) % Onset (weeks) % Onset (weeks) %

Sod1+/+ ♂ 12 96 17 – – 88 33 60 42
Sod1+/D83G ♂ 15 94 13 – – 86 20 69 60
Sod1D83G/D83G ♂ 11 20 100 62 82 39 100 29 100
Sod1+/+ ♀ 13 98 15 – – 86 46 90 8
Sod1+/D83G ♀ 14 96 36 – – 78 71 – –

Sod1D83G/D83G ♀ 12 22 100 67 58 32 100 49 75

Onset values are themean age at onset, inweeks, formice presenting each phenotype. Percentage represents the proportion ofmice per line presenting each phenotype at

least twice during their lifetime.

Figure 4. Functional deficits in muscle function in female Sod1D83G/D83G mice. (A) TA tetanic muscle force for mice at 15, 52 and 88 weeks of age; 15-week-old Sod1D83G/D83G

TA tetanicmuscle force (93 g ± 4 g) is reduced comparedwithWT littermates (140 ± 8 g) and deteriorates further at 52 weeks of age (77 ± 4 g). (B) Representative traces of TA

tetanic tension fromWT and Sod1D83G/D83G mice. (C) EDL tetanic muscle force: 52-week-old Sod1D83G/D83G EDL tetanic muscle force (29 ± 1 g) is reduced compared withWT

littermates (43 ± 2 g). (D) Representative traces of EDL tetanic tension fromWT and Sod1D83G/D83G mice. (E) FI of EDLmuscle for mice at 15, 52 and 88 weeks of age. FI of 52-

week-old Sod1D83G/D83G mice (0.32 ± 0.03) is increased compared with WT littermates (0.24 ± 0.03). (F) Representative fatigue traces from WT, and Sod1D83G/D83G mice,

produced by repeated stimulation of the EDL muscle for 180 s. Each line in the trace represents a single tetanic tension; line length is proportional to force produced

(see Materials and Methods). *P < 0.05, **P < 0.001.
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SOD1 transgenic mouse models (34) and so we undertook a fa-
tigue test of EDL muscles in Sod1D83G/D83Gmice (Fig. 4E and F).
The force measured at the beginning of a 3 min period of stimu-
lation was compared with that at the end of the test to produce a
Fatigue Index (FI), ameasure of the fatigability of themuscle. The
results highlight the progressive deterioration of EDL in these
mice, so that at 15 weeks, the FI of EDL in Sod1D83G/D83G mice is
no different from WT, but by 52 weeks of age, EDL FI is increased
by 30% in Sod1D83G/D83G mice compared with WT (P = 0.04) (Fig. 4E
and F). Comparison between WT and Sod1+/D83G littermate mice
did not reveal any significant differences in TA or EDL muscle
function at 15, 52 or 96 weeks of age (Fig. 4).

Sod1D83G/D83G mice have ALS-like changes in the
histochemical phenotype of fast twitch muscles

To further characterize the effect of the Sod1D83G mutation on
muscle physiology, we examined the oxidative capacity of the
muscle fibres in the TA and EDL muscles, by staining for the oxi-
dative enzyme succinate dehydrogenase (SDH) at 15 and 52weeks
of age. Even at 15 weeks of age, Sod1D83G/D83G TA muscle show a
clear change in thehistochemical properties of theirmusclefibres
(Supplementary Material, Fig. S4A and B). Fast twitch muscles,
such as the TA and EDL, normally contain a large proportion of
glycolytic fibres that stain only lightly for SDH activity, a marker
of oxidative fibres. However, in the TA of Sod1D83G/D83G mice at
15 weeks of age, grouping of intensely stained type I slow oxida-
tive muscle fibres was observed and by 52 weeks almost all of the
muscle fibres in the TA of Sod1D83G/D83G mice stain intensely for
SDH, indicating an oxidative phenotype that is more characteris-
tic of slow twitch, type I muscle fibres (Supplementary Material,
Fig. S4A). EDLmuscles of 15-week-old Sod1D83G/D83Gmice, had a simi-
lar SDH staining pattern to WT littermates, but by 52 weeks, there
was a marked increase in the proportion of intensely stained, likely
type I muscle fibres (Supplementary Material, Fig. S4B). These re-
sults once again indicate that in mice expressing mutant SOD1,
EDLmuscles are affected later in the disease than other hindlimb
muscles such as the TA.

Sod1D83G/D83G mice have selective sensory deficits

Although ALS is predominantly a motor neuron disorder, a sub-
set of ALS patients and SOD1G93A transgenicmice develop deficits
in the sensory system (35,36). Thus, we performed behavioural
sensory phenotypic analyses with four sensory tests on female
mice at 22 weeks of age (n≥ 10 per group): (i) cold plate (noxious
cold stimulus), (ii) Randall Sellito test of mechanosensation
(withdrawal to a high-threshold ramp mechanical stimulus),
(iii) Von Frey (low threshold mechanical stimulus), (iv) Har-
greaves method (noxious heat stimulus) (Fig. 5A–D). Interest-
ingly, Sod1D83G/D83G mice have significant sensory deficits in
response to both a low threshold mechanical stimulus (von
Frey; P < 0.05) (Fig. 5C) and a noxious heat stimulus (Hargreaves
method; P < 0.01) (Fig. 5D) but no deficit toward a noxious cold
stimulus (cold plate) (Fig. 5A) or a high-threshold mechanical
stimulus (Randall Sellito) (Fig. 5B). These results suggest that dif-
ferent primary afferent populations have selective vulnerabilities
to the Sod1D83Gmutation, or theymay be a consequence of central
sensorimotor integration.

SOD1 D83G protein is dismutase inactive and at reduced
levels in Sod1D83G/D83G mice

The D83 residue coordinates zinc binding to SOD1, and is re-
quired for the correct folding of human SOD1 (37). Thus,mutating

the D83 residue is likely to interfere with the correct folding of
SOD1 and potentially affect SOD1 activity. We measured SOD1
dismutase activity from the brains of WT, Sod1+/D83G, and
Sod1D83G/D83G littermates, and found Sod1D83G/D83G mice showed
almost no SOD1 dismutase activity (1 ± 2%), whereas Sod1+/D83G

brain homogenates have 56 ± 7% (n = 3 per genotype) ofWT litter-
mate SOD1 activity (Fig. 6A and B).

To assess if the D83G mutation affects SOD1 protein stability,
we also measured protein levels of SOD1 in spinal cord fromWT,
Sod1+/D83G and Sod1D83G/D83G littermates. Intriguingly, SOD1 D83G
protein levels are 12% ± 0.4% in Sod1D83G/D83Gmice comparedwith
100% ± 9% in WT littermates, while in Sod1+/D83G mice SOD1 pro-
tein levels are intermediate at 70% ± 5% (n = 3 per genotype)
(Fig. 6C and D).

The reduction of mutant SOD1 D83G in the soluble fraction
might be due to an unfolding and sequestration to the insoluble
fraction. Therefore, we measured the level of SOD1 in the RIPA-
insoluble fractions from spinal cords of WT, Sod1+/D83G and
Sod1D83G/D83G littermates and found low levels of insoluble SOD1
in all genotypes, with a similar reduction in SOD1 D83G protein
levels in Sod1+/D83G and Sod1D83G/D83G mice as that observed in
the soluble fraction (Supplementary Material, Fig. S5A). Thus,
SOD1D83G protein does not accumulate in the insoluble fraction.

Wewere unable to identify misfolded SOD1 by immunopreci-
pitation using either the SEDI or USOD misfolded SOD1 anti-
bodies from Sod1+/D83G and Sod1D83G/D83G tissue extracts or
immunohistochemistry (Supplementary Material, Figs. S5B and
S6A), or detect overt inclusion pathology using p62 or ubiquitin
staining in Sod1+/D83G and Sod1D83G/D83G mice from spinal cord
and brain (Supplementary Material, Figs. S5C and S6B).

Figure 5. Behavioural sensory deficits in female Sod1D83G/D83G mice. No significant

differences in cold nociceptive sensitivity (A, cold plate) or mechanical pressure

threshold (B, Randall Sellito) between genotypes. (C) von Frey: Sod1D83G/D83G

(1.22 g ± 0.10 g) display increased basal paw withdrawal threshold to von Frey

filaments compared with WT littermates (0.92 g ± 0.06 g). (D) Hargreaves:

Sod1D83G/D83G (14.3 s ± 2.1 s) display increased baseline heat withdrawal latency

compared with WT littermates (7.9 ± 1.0 s). Numbers shown represent the

mean ± SEM. At least 10 animals were assessed per genotype and time point

(*P < 0.05, **P < 0.01).
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To examine whether Sod1D83G mRNA is differentially regu-
lated from WT Sod1, we performed quantitative PCR of Sod1
mRNA isolated from brains of 9-week-old WT, Sod1+/D83G,
Sod1D83G/D83G littermates and did not observe a difference be-
tween genotypes (Supplementary Material, Fig. S7A). In addition,
we directly compared the relative levels of Sod1 WT and D83G
mRNA levels from the brains of 9-week-old Sod1+/D83G mice
using quantitative pyrosequencer analysis (see Materials and
Methods) and did not see a difference between the relative

expression levels of WT and mutant alleles (Supplementary
Material, Fig. S7B).

Sod1D83G/D83G have some phenotypes of Sod1 null mice

Since Sod1D83G/D83G mice are dismutase inactive (Fig. 6A and B),
they are likely to phenocopy at least some aspects of Sod1 null
mice (Sod1−/−). Sod1−/− mice develop a progressive peripheral
motor neuropathy, inwhichmotor axons retract fromneuromus-
cular junctions resulting inmuscle denervation (20,22). However,
unlike Sod1D83G/D83G mice, there is no reported motor neuron loss
in Sod1−/− mice at any age (20,22,23). To verify that LMN loss in
Sod1D83G/D83Gmice is not due to a loss of SOD1 activity and to con-
firm that motor neuron survival is unaffected in Sod1−/− mice, we
compared LMN survival in female Sod1D83G/D83G and Sod1−/− mice
at 15 weeks of age; both genotypes were backcrossed to a C57BL/
6J background. In contrast to Sod1D83G/D83Gmice and in agreement
with all previous reports, Sod1−/−mice do not developmotor neu-
ron cell body loss and the survival ofmotor neurons in the sciatic
pool is similar in WT (484 ± 9 MN, n = 6) and Sod1−/−(489 ± 6 MN,
n = 5; P = 0.47) mice. Therefore, unlike Sod1−/− mice, Sod1D83G/D83G

mice have an additional toxic gain of function that causes the
degeneration of motor neuron cell bodies.

Lifespan is reduced in transgenic SOD1mice that overexpress
mutant SOD1 and in Sod1−/− mice. We set the humane endpoint
of life in Sod1D83G/D83G mice as either the time at which a loss of
20% of maximum bodyweight occurs or the onset of piloerection
(an involuntary erection of fur that is indicative of loss of health).
Themajority ofWT, Sod1+/D83G and Sod1D83G/D83G littermateswere
culled due to a loss of 20% bodyweight (∼70% of Sod1D83G/D83G

mice), while the rest (∼30%)were culled for the presence of piloer-
ection. The survival of Sod1D83G/D83G mice is shortened compared
with Sod1+/D83G andWTmice (Table 2 and Fig. 7A). We also found
that male Sod1D83G/D83G mice had a significantly reduced lifespan
compared with female Sod1D83G/D83G mice (495 ± 22 days versus
588 ± 24 days; P = 0.024).

At autopsy, Sod1D83G/D83G mice had significantly more liver
tumours than WT and Sod1+/D83G littermates (Table 2; P < 0.001).
Interestingly, it has previously been shown that Sod1−/− mice
also develop liver tumours, most likely as a result of an increase
in oxidative damage (38). Given that Sod1D83G/D83G mice are dis-
mutase inactive for SOD1 (Fig. 6A and B), it is likely that the loss
of SOD1 activity in these mice is the cause of liver tumours.

The identification of liver tumours in Sod1D83G/D83Gmice led us
to examine end-stage male Sod1D83G/D83G mouse livers. Livers
from WT littermates had no pathology other than variable
perivenular lymphocytic infiltration (Fig. 7B). In Sod1D83G/D83G

mice, tumours occurred in the presence of otherwise pathologic-
ally normal and abnormal livers. In Figure 7C, there is a single,
well-circumscribed and well-differentiated hepatocellular
carcinoma occurring in a liver that is otherwise morphologically

Table 2. Incidence of hepatocarcinogenesis and average survival of Sod1D83G/D83G mice

Genotype No. of animals examined Average survival (days) No. of animalswith abnormal livera

Males Females Males Females Males Females

Sod1+/+ 9 11 710 ± 21 754 ± 22 1 (11%) 0 (0%)
Sod1+/D83G 15 13 696 ± 14 779 ± 15 2 (13%) 0 (0%)
Sod1D83G/D83G 11 9 495 ± 22 588 ± 24 10 (91%) 7 (78%)

aGross analysis of liver and presence of abnormal nodules.

Figure 6. SOD1D83G is dismutase inactive andunstably expressed. (A andB) SOD1
dismutase activity of brain homogenates from 65-week-old WT, Sod1+/D83G and

Sod1D83G/D83G littermates, assessed using a nitroblue treazolium (NBT) in-gel

assay. (A) Cleared areas indicate SOD activity. (B) Quantification of SOD1

dismutase activity across the three genotypes shows Sod1+/D83G (56% ± 7%) and

Sod1D83G/D83G (1% ± 2%) homogenates have significantly less activity than WT

(100% ± 17%) (*P = 0.002). (C and D) Immunoblot analysis of spinal cord soluble

fractions for SOD1 protein levels from 65-week-old mice showing reduced SOD1

protein levels in Sod1+/D83G (70% ± 5%) and Sod1D83G/D83G (12 ± 0.4%) extracts

compared with WT littermate extracts. Actin provides a protein loading

reference; SOD1 levels are normalized to actin (*P < 0.001). Numbers represent

the mean ± SEM. Values represent the average from three independent

experiments.
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normal. In contrast, another Sod1D83G/D83G liver demonstrated
multiple ill-defined hepatocellular carcinomas and a well-cir-
cumscribed nodular lesion, composed of sheets of pleomorphic

tumour cells with vesicular nuclei and basophilic cytoplasm
compatible with a poorly differentiated hepatocellular carcin-
oma or cholangiocarcinoma (Fig. 7D). This liver also showed dif-
fuse nuclear anisocytosis, moderate parenchymal inflammation
and patchy fatty change (Fig. 7E). Hence, pathological analysis re-
veals that the hepatocellular carcinomas in Sod1D83G/D83G mice
occurred in the presence of bothmorphologically normal and ab-
normal livers.

Mitochondrial membrane potential defects in Sod1+/D83G

embryonic motor neurons

Mitochondrial dysfunctionhas been identified as one of the earli-
est defects in motor neurons of transgenic SOD1 mice and it has
been suggested that mitochondrial dysfunction may play a piv-
otal role in motor neuron degeneration in ALS (39). We therefore
analysed themitochondrialmembrane potential (Δψm) of embry-
onic motor neurons. Δψm is an indicator of mitochondrial ener-
getic state and can be measured using tetramethylrhodamine
methylester (TMRM) (40). Those from Sod1D83G/D83G (as previously
reported for Sod1−/−) did not survive for >72 h in culture and
therefore Δψm could only be examined in motor neurons from
WT and Sod1+/D83G littermates. We have previously shown that
Δψm in embryonic motor neurons from SOD1G93A transgenic
mice is disrupted (41). In embryonic motor neurons of Sod1+/D83G

mice, Δψm was significantly elevated compared with WT litter-
mates (Fig. 8; P < 0.001).

Since the Sod1+/D83Gmice have an∼45% reduction in SOD1 dis-
mutase activity, it was unclear whether the elevation in Δψm in
Sod1+/D83Gmotor neuronswas due to a loss of SOD1 dismutase ac-
tivity, or a gain of function of SOD1 D83G protein. We therefore
analysed the Δψm of embryonic motor neurons derived from
WTand Sod1+/− littermates and found that Sod1+/−motor neurons
also have elevated Δψm (Fig. 8). This indicates that the mitochon-
drial defects present in Sod1+/D83G motor neurons are likely
caused by a partial loss of SOD1 function.

Discussion
We have identified and characterized the first mouse model car-
rying the equivalent of a human ALS pathogenic mutation in the
endogenous mouse Sod1 gene, and this mutation is identical to a
human fALS mutation (24). Since the mutation is within the en-
dogenous Sod1 gene, mutant SOD1 is not overexpressed. Here we
show that homozygous Sod1D83G/D83G mice develop upper and
LMN degeneration, unlike Sod1 null animals. This is therefore
likely due to a toxic gain of function of mutant SOD1—presum-
ably modelling that which causes motor neuron death in
human ALS cases.

We found ∼20% loss of UMN by 29 weeks of age in homozy-
gotes, but did not look at later time points and so do not know
if this phenotype progresses. Given the importance of mutant
SOD1 protein dose in accelerating the ALS-like phenotype (16),
it is possible heterozygotesmay developUMN loss later in life. Al-
ternatively, a copy of WT SOD1 might be protective; this remains
to be determined.

We showed 23% loss of LMN in the lumbar spinal cord of
homozygous Sod1D83G/D83G mutants by 15 weeks of age that re-
mained stable at 52 weeks of age. We speculate whether further
ageing, or a ‘second hit’ might be required to cause a more dra-
matic loss of LMN in this mouse mutant; however, this remains
to be determined. We note that a similar loss of MN in humans
is unlikely to cause sufficient loss of motor function to prompt
a visit to a physician. Sod1+/D83G heterozygous mutants displayed

Figure 7. Lifespan of Sod1D83G/D83G mice and the presence of hepatocellular

carcinoma. (A) Survival of male and female WT, Sod1+/D83G and Sod1D83G/D83G

littermates to humane endpoint (see Materials and Methods). Sod1D83G/D83G

mice reach end-stage sooner than WT and Sod1+/D83G littermates (Table 2) and

male Sod1D83G/D83G mice (495 ± 22 days) reach end-stage earlier than females

(588 ± 24 days) (P = 0.024). (B–E) Hematoxylin and eosin (H&E) stained liver

sections from age-matched (B) WT and (C–E) end-stage Sod1D83G/D83G

mice. Livers from Sod1D83G/D83G mice contain well-defined hepatocellular

carcinoma (C) within an otherwise morphologically normal liver. (D) A poorly

differentiated hepatocellular carcinoma or cholangiocarcinoma (E) within an

otherwise inflamed liver background. Scale bar for (B)–(D) is 100 μm, and for (E)

is 50 μm.

Figure 8.Mitochondrial potential in Sod1+/D83G and Sod1+/−motor neurons. Resting

Δψm, estimated using TMRM, from embryonic WT littermates, Sod1+/D83G and

Sod1+/− motor neurons (WT, 100% ± 3.4%; Sod1+/D83G, 121% ± 1.9%; Sod1+/−,

126% ± 3.8%). Data are normalized to resting Δψm for WT littermates (100%) and

represent the mean ± SEM. Recordings taken from at least 75 cells from 2 or

more independent embryonic motor neuron cultures (*P < 0.001).
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no LMN loss up to 52weeks of age, either because the dose ofmu-
tant SOD1 was insufficient or because WT SOD1 might have a
protective effect.

Our analyses of the Sod1D83G mouse mutant show that muta-
tion in the endogenous mouse Sod1 gene models critical features
of human ALS (U and LMN cell death), albeit with a different pro-
file than found in mice expressing human mutant SOD1 trans-
gene arrays. This corroborates earlier findings in which a
mutant genomic mouse Sod1 transgenic was used to model
human SOD1 G85R-fALS—‘Sod1 G86R’ mice with ‘high transgene
expression’ had both U and LMN degeneration by 3–4 months of
age (14). Therefore, the endogenous mouse SOD1 D83Gmutation
is informative for determining why some U and LMN die in ALS
but removes any possible confounding effects of overexpression
observed in SOD1 transgenic mice. We note that we and others
have not observed MN cell body degeneration in Sod1−/− mice at
any stage, and therefore MN loss in Sod1D83G/D83G mice likely
arises from a toxic gain of function of the mutant SOD1 protein,
as in ALS (20–22).

The significant reduction in SOD1 D83G protein is not due to
allele-specific differences at the transcriptional level, but the
dose-dependent decreases in SOD1 protein in heterozygous
and homozygous D83G mutant mice may result from instability
of mutant SOD1 and its subsequent degradation (42). It has been
previously reported that mutant SOD1 has decreased half-life
compared with WT SOD1 (42), and potentially the inability of
D83G SOD1 to coordinate zinc may contribute to its instability
(37,43,44).

Given that SOD1 expression levels in different transgenic
mouse models show dose-dependent toxicity (16,18), the low le-
vels of SOD1 D83G proteinmay only be sufficient to causemoder-
ate motor neuron degeneration. The low SOD1 mutant protein
level (∼10% of WT in homozygotes) may be sufficient to elicit a
degree of motor neuron degeneration but not the levels of loss
seen in ALS, and may at least partially explain why loss of
motor neurons within the sciatic motor pool appears not to pro-
gress between 15 and 52 weeks of age.

With respect to loss-of-function effects, which are of interest
because of the loss of dismutase activity in the majority of
human pathogenic SOD1-fALS mutations (average dismutase
activity in SOD1-fALS is ∼58% of normal (4)), we foundmitochon-
drial membrane potentials (Δψm) of both Sod1+/D83G and Sod1+/−

embryonic MNs are hyperpolarized. Thus, SOD1 loss of dismu-
tase function to just 56% of WT (Sod1+/D83G level) contributes to
mitochondrial abnormalities. Distal axonopathy in Sod1−/− mice
can be rescued by expressing mitochondrial-targeted WT SOD1
(20); the relevance of this to ALS remains to be determined.

Sod1D83G/D83G mice develop a severe peripheral neuropathy
similar to that arising from the loss of function in Sod1−/− mice.
This peripheral neuropathy is likely driving the phenotypic de-
terioration from 15 weeks of age in Sod1D83G/D83G mice (Supple-
mentary Material, video S1), as no further LMN loss occurs after
that. As dismutase activity is only 1% of WT animals in the
SOD1 D83G homozygotes, this peripheral neuropathy may be
due to a loss of dismutase activity, potentially leading to in-
creased vulnerability of peripheral motor axons to oxidative
stress (45). It is also possible that the neuropathy develops be-
cause of a loss-of-unknown SOD1 function.

In at least one patient with diagnosed ALS who unexpectedly
died from other causes, NMJ degeneration was found to precede
motor neuron cell body death (45). Similarly, in transgenic
human mutant SOD1 mouse models (with normal dismutase le-
vels), NMJ degeneration leading to synaptic dysfunction precedes
motor neuron cell body death and behavioural motor deficits

(45,46). These findings led to the concept of ALS as a “dying
back” disorder in which muscle denervation precedes the death
of the motor neuron cell body, and suggests that SOD1 gain of
function can also lead to NMJ degeneration—and potentially
also contributing to the distal neuropathy seen in Sod1D83G/D83G

mice.
Here our data, and that from other SOD1 mouse models, sug-

gests that the axonal andneuronal cell body degenerationmay be
separate events that could be modulated by different sets of
genes and/or environmental factors. In further support of this
hypothesis, ablation of Bax in the human G93A SOD1 transgenic
mousemodel leads to complete dissociation betweenmotor neu-
ron soma death and motor dysfunction via distal denervation
(47). While cell bodies are protected in Bax deficient G93A SOD1
transgenic mice, the degree of NMJ denervation and overall sur-
vival is not altered compared with G93A transgenic mice alone.
Thus, Sod1D83G/D83G mice provide a novel model to test therapeu-
tics aimed at preserving NMJ as well as ameliorating the early
stages of motor neuron cell body degeneration.

Overall, these results suggest that Sod1D83G/D83G mice not only
model the early stages of humanALS but are also able to separate
the effects of central neuronal death from the peripheral distal
neuropathy in a system in which the mutant gene is expressed
at endogenous levels.

The Sod1D83G model is the first of its kind carrying a known
pathogenic point mutation in the mouse endogenous Sod1
gene, which is identical to a human fALSmutation. Homozygous
Sod1D83G/D83G mice develop a degree of UMN and LMN degener-
ation, as well as progressive motor dysfunction due to a distal
neuropathy, and hence model key aspects of the early stages of
ALS. The Sod1D83G model therefore provides a unique mamma-
lian system in which to assess the contribution of both central
neuronal loss and peripheral axonal dysfunction, which will fur-
ther our understanding of ALS.

Materials and Methods
Mice

Ethics statement: all experiments were performed under licence
from the UK Home Office. WT, Sod1+/D83G and Sod1D83G/D83G mice
were initially on a C57BL/6J-C3H background and backcrossed at
least four generations to C57BL/6J. For all experiments, litter-
mates for all genotypes were used, produced by intercrossing
Sod1+/D83G mice. Experiments were performed blind to genotype
and lifespan was defined as a loss of 20% of maximum body
weight or the presence of piloerection. Animals were assessed
daily and weighed at least biweekly.

Identification of Sod1D83G mutation

The Harwell ENU-DNA archive (http://www.har.mrc.ac.uk/
services/dna_archive/) was screened with high-resolution melt-
ing analysis using the LightScanner platform (Idaho Technology
Inc., Salt Lake City, Utah, USA) (48). Coding sequence from exon 4
of Sod1 including flanking (∼70 bp) splice sites was tested in DNA
derived from ∼10 000 F1 ENU mutagenized animals. Sod1 exon 4
was amplified with the following primers: SOD1_4F CATCCACT
CATACGTATTTGAC, SOD1_4R ACCATAAAGTCATGGGAAGG using
the lightscanner mastermix plus LC green (Idaho Technology
Inc.) and possible mutations analysed with Sanger sequencing
(GATC, Germany). We identified the chromosome 16 A90,224,
530G mutation, corresponding to the D83G amino acid change
in SOD1. The mouse line was rederived using sperm from the
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(C57BL/6J × C3H) F1 founder by in vitro fertilization. Genomic DNA
from the F1 founder carrying the Sod1 D83G mutation was deep
sequenced (see Supplementary Material, Materials and Methods
for details) to identify any other possible ENU-inducedmutations
linked to Sod1 on mouse chromosome 16. The closest ENU-in-
duced coding mutation was ∼46 Mb proximal to the Sod1 gene
and did not segregate with lifespan or weight abnormalities in
Sod1D83G/D83G mice.

Behavioural analysis

See Supplementary Material, Materials and Methods for a de-
scription of behavioural and Echo MRI analysis.

Physiological assessment of hindlimb muscle force,
motor units and fatigue index

Muscle force, motor unit number andmuscle fatigue characteris-
tics for female WT, Sod1+/D83G and Sod1D83G/D83G littermates
were examined at 15 and 52 weeks of age, and female WT and
Sod1+/D83G littermates also at 88 weeks of age, as described previ-
ously (49). Cohort sizes per time point were at 15 weeks: 5 WT,
5 Sod1+/D83G and 5 Sod1D83G/D83G animals; 52-weeks: 5 WT,
7 Sod1+/D83G and 6 Sod1D83G/D83G animals; 88 weeks: 5 WT, 7
Sod1+/D83G. Briefly, micewere anaesthetized (4.5% chlorohydrate),
the distal tendons of the TA and EDL muscles in both hindlimbs
cut and attached to isometric force transducers (Dynamometer
UFI Devices, UK), and the sciatic nerves exposed and sectioned.
Isometric contractions were elicited by stimulating the nerve to
the TA or EDL muscles using squarewave pulses of 0.02 ms dur-
ation at supra-maximal intensity. The number of motor units in-
nervating the EDL muscle was determined by stimulating the
motor nerve with stimuli of increasing intensity, resulting in in-
cremental increases in twitch tension due to successive recruit-
ment of motor axons with increasing threshold. The number of
increments in twitch force was counted giving an estimate of
the number of functional motor units present in muscle. The
fatigue characteristics of EDL were examined by undertaking a
fatigue test in which the EDL muscle was repeatedly stimulated
at 40 Hz for 250 ms every second for 180 s. The resulting contrac-
tions were recorded on a pen recorder (Lectromed Multitrace 2)
producing a fatigue trace from which an FI, a measure of muscle
fatigability, can be determined by expressing the force at the end
of the test as a ratio of the force at the start: FI = Ft180/Ft0. Amuscle
that is completely fatigue resistant has an FI approaching 1.0.

Morphological assessment ofmuscle andneuronal tissue

For assessment of survival ofmotor neurons in the sciatic pool of
the lumbar spinal cord (16,18), animalswere perfusedwith saline
followed with 4% paraformaldehyde (PFA) fixation. Spinal cords
were removed, postfixed in 4% PFA and cryopreserved in 30% su-
crose. Transverse sections (20 μm) of the lower L2–lower L6 lum-
bar region of fixed spinal cords cut on a cryostat serially onto
glass slides and stained for Nissl (gallocyanin) (50). Nissl-stained
motor neurons in the sciatic pool in every third section of the L3–
L6 lumbar region, over 40 sections in total, were counted. Only
large, polygonal neurons with a distinguishable nucleus and nu-
cleolus and clearly identifiable Nissl structure were included in
the counts. This method avoids the possibility of counting the
same motor neuron in consecutive sections. At least five mice
were analysed from each experimental group per time point.

For assessment of CSMNs, brains were removed intact from
animals perfused as above, postfixed (4% PFA, overnight), and

stored in PBS with sodium azide (0.01%) at 4°C. Brains were sec-
tioned in 50 μm coronal planes and serially collected in 12-well
plates. Sections mounted on Superfrost Plus glass slides (VWR)
were stained for Nissl (cresyl violet). Antibodies used for assess-
ment of CSMNs: anti-CTIP2 (1 : 1000; Abcam), anti-Cry-mu
(1 : 500, Sigma), anti-Satb2 (1 : 1000; Abcam) and anti-LMO4 (1 :
500, Millipore). Sections for LMO4 were pretreated with 0.05%
trypsin EDTA at 37°C for 10 min, followed by washes in blocking
solution (0.5% BSA, 2% FBS, 0.1% Triton X-100 and 0.01% saponin,
0.02% sodium azide) and treatment with 50 m ammonium
chloride for 30 min. All sections were incubated with primary
antibodies in blocking solution overnight at 4°C. Appropriate
secondary antibodies (1 : 500 alkaline phosphatase conjugated,
Santa Cruz Biotechnology; 1 : 500 Cy3-conjugated, Millipore)
were applied. Sections with Cy3-conjugated antibodies were
stained with DAPI (1 : 5000 in PBS) for 5 min. Sections for CTIP2
were processed with Vector blue AP substrate kit (Vector Labora-
tories) according to manufacturer’s instructions. Sections were
analysed using a Nikon Eclipse TE2000-E fluorescence micro-
scope equipped with Intensilight C-HGFI (Nikon). Epifluorescent
images were acquired using Digital Sight DS-Qi1MC CCD camera
(Nikon). Three well-defined sections spanning the motor cortex
(Bregma 0.86 mm, interaural 4.66 mm; Bregma 0.02 mm, inter-
aural 3.82 mm; Bregma −1.22 mm, interaural 2.58 mm) (51) were
used for quantitative analysis, as previously described (27,52).

Muscle histochemistry was performed on TA and EDLmuscle
sections by staining for the oxidative enzyme, as previously de-
scribed (53). Briefly, serial cross-sections of fresh frozen TA and
EDL were cut on a cryostat at 12 μm, collected on glass slides
and stained for SDH activity to determine the oxidative capacity
of the muscle fibres.

Neuromuscular junction quantification

EDL muscles were dissected from mice of all three genotypes at
15 and 52 weeks of age. The numbers of whole EDL muscles ana-
lysed at 15 weeks of age: 7WT, 4 Sod1+/D83G and 8 Sod1D83G/D83G. At
52 weeks: 11 WT, 8 Sod1+/D83G and 8 Sod1D83G/D83G. Mice were per-
fused trans-cardial with saline solution and 4% PFA. Muscles
were postfixed in 4% PFA and cryopreserved in sucrose. Whole
EDL muscles were then embedded in OCT media (Tissue-Tek),
frozen on dry-ice and stored at −80°C. A Bright™ cryostat was
used to cut 20 µm longitudinal section of frozen EDL muscles
which were subsequently collected onto poly-lysine-coated
slides. Primary antibodies used: mouse monoclonal anti-synap-
tic vesicle (Developmental Studies Hybridoma Bank) Mouse
monoclonal anti-neurofilament (165 kDa) (Developmental Stud-
ies Hybridoma Bank). M.O.M. biotinylated secondary antibody
(Vector Labs) was used following manufacturer instructions.
α-Bungarotxin-rhodamine was used to label postsynapsis and
sections mounted. Images were acquired on a confocal micro-
scope (Leica DFC 420C) and NMJ were manually counted.

Immunocytochemistry

See Supplementary Material, Materials and Methods for im-
munocytochemistry experiments.

qPCR, western blotting, dismutase activity and
immunoprecipitations

qPCR, western blotting, dismutase activity and immunoprecipi-
tation protocols are available in Supplementary Material, Materi-
als and Methods.
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Embryonic motor neuron culture and mitochondrial
membrane potential

Motor neuron culture and measurement of mitochondrial mem-
brane potential are described in Supplementary Material, Materi-
als and Methods.

Statistical analysis

An ANOVA test was used to compare betweenWT, Sod1+/D83G and
Sod1D83G/D83Ggenotypes per time point followed by Bonferroni’s
multiple comparisons testing correction for weight, dismutase
activity, protein quantification, Echo MRI analysis, grip strength,
rotarod, startle response and sensory analysis. Wheel running
behaviour was analysed using a repeated measures ANOVA.
Cox survival analysis was used to analyse SHIRPA and survival
data. TheMann–Whitney test was used to compare between gen-
otypes per time point or Sod1D83G/D83G cohorts across time points
for TA and EDLmaximummuscle force, survivingmotor units, FI
and motor neuron survival. Two-tailed tests were used in all in-
stances and significance level was set at P < 0.05.

Supplementary Material
Supplementary Material is available at HMG online.
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Review

Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset 
neurodegenerative disease characterized by degeneration 
and death of upper and lower motor neurons (MNs). 
Patients typically suffer from progressive motor weak-
ness, which starts focally and spreads through the body 
leading to paralysis and ultimately death within a few 
years of diagnosis. Although usually sporadic (without a 
family history), approximately 10% of ALS cases are 
familial (fALS) and of those, ~20% are caused by muta-
tions in the gene superoxide dismutase 1 (SOD1) (Kiernan 
and others 2012). More than 160 mutations in SOD1 have 
been identified in ALS sufferers, the majority of which 
are missense point mutations resulting in a dominant 
mode of inheritance. At least 75 of SOD1’s 154 amino 
acids have been reported as mutated in ALS and their 
positions are scattered throughout the five exons of the 
gene (Saccon and others 2013).

SOD1 is highly conserved throughout evolution 
(Wang and others 2006), ubiquitously expressed and 
makes up 1-2% of the total soluble protein in the central 
nervous system (Pardo and others 1995). Its primary 
function is thought to be as a cytosolic and mitochondrial 

antioxidant enzyme, converting superoxide to molecular 
oxygen and hydrogen peroxide; however, in yeast at 
least, less than 1% of total SOD1 is required to carry out 
this canonical function (Corson and others 1998; Reddi 
and Culotta 2013) leaving the question open as to whether 
SOD1 plays other equally important role(s), which might 
account for its abundance.

Many lines of evidence have led to the conclusion that 
mutations in SOD1 cause ALS via an as yet unidentified 
gain of function, although it has been proposed that a loss 
of function may also play a secondary role in disease, at 
least in some cases (Saccon and others 2013). A great 
number of cellular mechanisms has been implicated as 
potentially involved in SOD1-fALS pathogenesis, how-
ever, distinguishing cause from effect and identifying the 
critical processes remains challenging (Redler and 
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Abstract
The canonical role of superoxide dismutase 1 (SOD1) is as an antioxidant enzyme protecting the cell from 
reactive oxygen species toxicity. SOD1 was also the first gene in which mutations were found to be causative for 
the neurodegenerative disease amyotrophic lateral sclerosis (ALS), more than 20 years ago. ALS is a relentless and 
incurable mid-life onset disease, which starts with a progressive paralysis and usually leads to death within 3 to 5 years 
of diagnosis; in the majority of cases, the intellect appears to remain intact while the motor system degenerates. It 
rapidly became clear that when mutated SOD1 takes on a toxic gain of function in ALS. However, this novel function 
remains unknown and many cellular systems have been implicated in disease. Now it seems that SOD1 may play a 
rather larger role in the cell than originally realized, including as a key modulator of glucose signaling (at least so far 
in yeast) and in RNA binding. Here, we consider some of the new findings for SOD1 in health and disease, which may 
shed light on how single amino acid changes at sites throughout this protein can cause devastating neurodegeneration 
in the mammalian motor system.
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Dokholyan 2012). Here, we describe emerging themes in 
SOD1 biology that suggest this enzyme is involved in a 
widening array of cellular processes in both health and 
disease; this may shed new light on the pathogenesis of 
SOD1-ALS.

Transmission of SOD1

Some causative proteins for neurodegenerative diseases 
may have “prion-like” properties: the ability to sequester 
wildtype proteins and seed their aggregation or misfold-
ing, and to act as transmissible agents between cells 
(Polymenidou and Cleveland 2012) (Fig. 1). SOD1 dis-
plays prion-like properties in vitro and in cellular and 
now in animal models, which is particularly of interest 
for SOD1-fALS, given the focal start of ALS, the finding 
that motor neuron death is not cell-autonomous (e.g., see 
Ilieva and others 2009), and the implications for therapy 
to halt the spread of pathology. These findings are also 
important for a potential mechanism for spread, and pos-
sibly even pathogenesis in sporadic ALS (sALS), given 
the presence of aggregated SOD1 in sALS cases (Bosco 
and others 2010; Forsberg and others 2010; Grad and 
Cashman 2014).

SOD1 Seeded Aggregation In Vitro

In vitro assays measuring aggregation propensity show 
recombinant wildtype and ALS-mutant SOD1 can seed 
aggregation of themselves (self-seeding) and of each 
other (cross-seeding). Seeded amyloid fibrilization of 
SOD1 occurred at acidic pH and in the presence of a cha-
otrope (Chia and others 2010), and non-amyloid seeded 
fibrilization was seen at physiological pH (Hwang and 
others 2010). Spinal cord tissue homogenate from a 
SOD1G93A transgenic mouse (which models human ALS) 
was then shown to efficiently self- and cross-seed the 
amyloid fibrilization of recombinant wildtype and mutant 
SOD1 in vitro (Chia and others 2010). However, self- and 
cross-seeding does not, alone, indicate prion-like proper-
ties; the prion-like nature of a protein also comes from its 
ability to transmit between cells and indeed between 
organisms.

Transmission in Cell Models

Mutant SOD1 is found in medium from primary cultures 
of whole spinal cord and of astrocytes from SOD1-ALS 
transgenic mice (Basso and others 2013; Urushitani and 

Figure 1.  Superoxide dismutase 1 (SOD1) may have prion-like properties. (A) Misfolded SOD1 within a cell could (B) sequester 
and misfold wildtype SOD1, ultimately producing aggregates, and (C) if secreted and taken up by neighboring cells could (D) 
cause a “chain reaction” of misfolding, aggregate formation, and transmission in a prion-like manner. The exact nature of this 
process—for example, the roles of monomers and aggregates—remains unknown.
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others 2006). Furthermore, mutant SOD1 is secreted in 
exosomes from primary astrocytes and neuronal-like sta-
ble cell lines, (Basso and others 2013; Grad and Cashman 
2014) (Fig. 2). Thus there is a mechanism for mutant 
SOD1 to get out of cells.

In terms of getting into cells, a range of recombinant 
forms of SOD1 (including wildtype and mutant, aggre-
gated and non-aggregated) are efficiently internalized by 
neuronal-like stable cell lines, via the non-selective 
mechanism, macropinocytosis (Grad and Cashman 2014; 
Münch and others 2011; Sundaramoorthy and others 
2013). Primary mouse spinal cord cultures and neuronal-
like cell lines also take in wildtype and mutant SOD1 via 
internalization of exosomes (Basso and others 2013; 
Grad and others 2014).

Once internalized, recombinant aggregated mutant 
SOD1 can self-seed aggregation of stably expressed 
mutant SOD1; this is sustained for up to 1 month and 
through multiple passages of a mouse neuroblastoma-
derived cell line, long after the exogenous seeds had 
apparently been cleared from the cells (Münch and others 
2011). Furthermore, recombinant mutant SOD1 (both 
aggregated and non-aggregated forms) can also cross-
seed endogenous wildtype SOD1—which can also be 
self-seeded by recombinant aggregated wildtype SOD1 
(Sundaramoorthy and others 2013).

Self-seeded aggregation of endogenous SOD1 by con-
ditioned medium has been shown in stable cell lines 
through multiple passages; this was blocked by both 
SOD1 knock-down and immuno-depletion of misfolded 

Figure 2.  Mutant superoxide dismutase 1 (SOD1) may be transmitted from astrocytes to motor neurons, causing cell death. 
Mutant SOD1 is secreted in exosomes by astrocytes and may be taken in by motor neurons; propagation of misfolding may 
then proceed within the cell (see Fig. 1). Exposure of motor neurons to mutant SOD1 results in increased sodium channel 
permeability, induction of nitroxidative stress, hyperexcitability likely through dysregulation of AMPA receptors as well as sodium 
channel dysfunction and reduced viability.
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SOD1 in the medium (Grad and others 2011; Grad  
and Cashman 2014).

Transmission between Mouse Models

Recently, transmissibility of mutant SOD1 and motor 
neuron disease pathology between different transgenic 
mouse models appears to have been demonstrated. 
Spinal cord homogenates from SOD1G93A mice were 
injected into the spinal cords of different SOD1 trans-
genic models and motor neuron disease was induced in 
an otherwise unaffected transgenic animal expressing 
low levels of a different (SOD1 G85R) mutant SOD1 
protein (Ayers and others 2014). Remarkably, when tis-
sues from the induced mice were used to inoculate new 
SOD1G85R mice (“second passage homogenates”) dis-
ease onset was earlier in recipient animals, exactly as 
seen in prion disease models. Other data shows potential 
SOD1 “strains” akin to prion strains (Ayers and others 
2014). This article offers compelling data to indicate the 
physiological prion-like transmission of mutant SOD1 
and motor neuron disease pathology in vivo. Of note, 
one-third of the SOD1G85R mice inoculated with homog-
enates from wildtype SOD1 transgenic mice also devel-
oped the motor neuron degeneration phenotype, while 
self-seeding experiments in two other mutant SOD1 
transgenic lines failed to accelerate disease in these 
mice. Future work to identify whether a misfolded 
SOD1 species is both necessary and sufficient to induce 
disease, and to determine whether the phenomenon is 
applicable to other SOD1 variants will be needed.

Mutant SOD1 Expressing Glia Are 
Toxic to Motor Neurons

Data from transgenic mice with tissue specific/restricted 
expression of mutant SOD1 demonstrate that non-neuro-
nal cells are involved in the progression of disease-related 
phenotypes (reviewed in Ilieva and others 2009). In vitro 
experiments also clearly demonstrate the toxicity of 
mutant SOD1-expressing glia to motor neurons.

Astrocytes

Toxicity of astrocytes, to motor neurons has been dem-
onstrated by co-culture, and by the application of astro-
cyte conditioned medium (ACM) (Basso and others 
2013; Haidet-Phillips and others 2011; Meyer and oth-
ers 2014; Nagai and others 2007). Intriguingly, this 
interaction appears to be cell-type specific: mutant 
SOD1 expressing primary astrocytes reduced viability 
of both primary and embryonic stem cell-derived MNs 
in co-culture, but interneurons, GABAergic neurons, or 
dorsal root ganglion neurons were not affected. Mutant 

SOD1 fibroblasts, microglia, cortical neurons, or myo-
cytes were not toxic to co-cultured MNs (Nagai and  
others 2007).

Induction of nitroxidative stress and hyperexcitability 
has been proposed as a possible mode of astrocyte toxic-
ity to motor neurons: within 30 minutes of applying 
mutant SOD1 ACM, primary spinal MNs had increased 
excitability and increased sodium channel permeability; 
this exposure, followed by 4 days of culture with normal 
medium, was sufficient to cause ~50% MN death (Fritz 
and others 2013). ACM also produced an increase in 
intracellular nitroxidative stress in cultured MNs (Rojas 
and others 2014) (Fig. 2). Similarly, co-treatment with 
ACM and sodium channel blockers protected MNs from 
hyperexcitability, nitroxidative stress, and cell death, 
while antioxidants protected against nitroxidative stress 
and significantly improved MN survival, although their 
effect on sodium channel activity was not assessed (Fritz 
and others 2013; Rojas and others 2014). MNs co-cul-
tured with mutant SOD1 expressing astrocytes have been 
shown to have dysregulated AMPA receptor subunits and 
increased excitability (Van Damme and others 2007).

However, conversely, a separate study of mutant 
SOD1 transgenic mouse models found MNs with lowest 
basal excitability were the most vulnerable, and pharma-
cologically increasing MN activity reduced misfolded 
SOD1 pathology and markers of cellular stress while 
decreasing activity had the opposite, detrimental, effects 
(Saxena and others 2013).

The toxic factor released by astrocytes has not yet been 
identified and may well be/include mutant SOD1 because 
exosome depletion prevents ACM toxicity (Basso and 
others 2013). Interestingly, astrocytes from mutant TDP43 
transgenic mice, sALS and C9orf72 expansion patients 
have also been shown to cause MN toxicity by co-culture 
and by ACM (Haidet-Phillips and others 2011; Meyer and 
others 2014; Rojas and others 2014) suggesting some 
common toxic pathway in sALS and fALS.

Microglia

Activated microglia are thought to play an initially protec-
tive role in ALS, but then possibly become toxic due to 
increasing neuroinflammatory processes as disease 
advances (Lewis and others 2012). Microglia purified from 
mutant SOD1 mice are toxic to stem cell–derived human 
MNs and this toxicity appears to be dependent on prosta-
glandin signalling: activation of prostaglandin D2 (PGD2) 
receptor 1 (DP1) in wildtype mouse and human microglia 
prior to co-culture with MNs, induced significant MN tox-
icity. Conversely, pretreatment of mutant SOD1 mouse 
microglia with a pharmacological inactivator of DP1, or 
genetic ablation of DP1 expression, significantly attenuates 
toxicity to MNs (de Boer and others 2014).
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Expression of mutant SOD1 up-regulates PGD2 
receptor 1 (PTGDR) transcript levels in mouse and 
human microglia, and increases the release of PGD2 in 
rat microglia and astrocytes suggesting a possible interac-
tion between these glial cell types (Thonhoff and others 
2011). Nitroxidative stress may mediate microglial toxic-
ity to MNs; however, this appears to be specific to 
microglia prepared from symptomatic mutant SOD1 
expressing mice, so this effect is unlikely to be a primary 
cause of MN degeneration (Thonhoff and others 2011).

Protein Homeostasis

Unfolded Protein Response/Endoplasmic 
Reticulum Stress

The endoplasmic reticulum (ER) is a cellular compart-
ment in which post-translation protein processing, includ-
ing chaperone-assisted protein folding, is carried out. 
When the function of the ER is perturbed, ER stress acti-
vates two adaptive pathways: (1) the unfolded protein 
response (UPR) to refold misfolded proteins, and (2) 
ER-associated degradation (ERAD) to export misfolded 
proteins from the ER to the ubiquitin proteasome system 
(UPS) for degradation. Although ER stress pathways are 
initially protective responses, prolonged activation can 
lead to pro-apoptotic consequences.

The UPR has three main pathways (the activating tran-
scription factor 6 [ATF6], endoplasmic reticulum to 
nucleus signaling 1 (also known as inositol-requiring 
kinase 1) [IRE1], and eukaryotic translation initiation 
factor 2-α kinase 3 (also known as protein kinase RNA-
activated (PKR)-like ER kinase) [PERK] pathways) that 
are all activated in spinal MNs in SOD1-ALS mouse 
models (Walker and Atkin 2011). This activation appears 
to be an early, presymptomatic, event in SOD1G93A mice, 
with toxic consequences for the affected cells (Saxena 
and others 2009). Similarly, RNA profiles of MNs derived 
from a SOD1+/A4V fALS patient, show activation of ER 
stress and the UPR, compared with non-mutant isogenic 
controls (Kiskinis and others 2014).

Endoplasmic reticulum stress initially increases phos-
phorylation of eIF2α via PERK activation, which stalls 
protein synthesis (anti-apoptotic ER stress pathways). 
However, chronic ER stress activates GADD34 which 
dephosphorylates eIF2α, reinitiating protein translation 
in a pro-apoptotic pathway (Fig. 3). Blocking the dephos-
phorylation of p-eIF2α, increased survival of SOD1+/A4V 
MNs (Kiskinis and others 2014), and this could be due to 
stopping the pro-apoptotic action of GADD34. However, 
as the basal state of SOD1+/A4V MNs was of increased 
p-eIF2α these results are difficult to interpret.

Mutant SOD1G85R transgenic mice in which Perk is 
reduced (heterozygous knockout), have shortened disease 

duration and lifespan, perhaps because the UPR is over-
whelmed by misfolded mutant SOD1, whereas SOD1G85R 
transgenic mice in which the effect of PERK is increased 
by reduction of Gadd34 (heterozygous knockout), have 
an ameliorated disease and prolonged lifespan (Wang and 
others 2011; Wang and others 2014).

Mutant SOD1 has been implicated in the direct activa-
tion of ER stress through interaction with subunits of coa-
tomer coat protein II complex (COPII) in a transfected 
cell model and in mutant SOD1 transgenic mice as early 
as 10 days of age (Atkin and others 2014). COPII is 
essential for ER-Golgi transport, and expression of 
mutant SOD1 caused ER-Golgi transport disturbance 
before either the earliest markers for ER stress or aggre-
gate formation, implicating the interaction and its effect 
as an early upstream event in mutant SOD1 toxicity. 
Disrupting ER-Golgi transport in this way results in acti-
vation of ER stress responses (Fig. 4). In cellular models, 
co-expression of COPII subunits with mutant SOD1 sig-
nificantly reduced SOD1-induced apoptosis (Atkin and 
others, 2014).

SOD1 as an ER Stress Activating Zinc Sensor

Another recently proposed role for SOD1 is as a zinc sen-
sor, activating ER stress and up-regulating zinc transport-
ers by binding to Derlin1 in zinc-deficient conditions 
(Homma and others 2013). Derlin1 is an ERAD protein 
involved in export of misfolded proteins from the ER to 
the UPS. Under conditions of zinc depletion SOD1, 
which is a copper/zinc dependent enzyme, binds Derlin1 
at a normally hidden Derlin1 binding region, and the 
resulting dysfunction of both Derlin1 and the ERAD pro-
cess causes a build-up of misfolded protein in the ER and 
elicits ER stress (Fig. 5). ATF6, a transcription factor acti-
vated by ER stress, as well as up-regulating ER chaper-
ones, also promotes transcription of the zinc transporter 
ZIP14, which may act to restore intracellular zinc levels 
(Homma and others 2013).

SOD1 mutation in ALS may result in constitutive 
exposure of the Derlin1 binding region and chronic ER 
stress and ERAD dysfunction. Mutant SOD1 activates 
ER stress and the IRE1-ASK1 pro-apoptotic pathway in a 
Derlin1 binding-dependent manner (Nishitoh and others 
2008); further, of 132 ALS associated SOD1 mutations, 
124 co-immunoprecipitated with Derlin1 in transfected 
HEK cells (Fujisawa and others 2012). The mutants 
which did not co-precipitate with Derlin1 also failed to 
activate ER stress and were less toxic in cellular assays 
(Fujisawa and others 2012). In a SOD1G93A transgenic 
mouse model of ALS, knocking-out Ask1 improved sur-
vival and reduced MN death, showing that this pathway 
is also important in vivo, however, age at disease onset 
was unchanged (Nishitoh and others 2008).
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Motor neurons may have an increased basal level of 
ER stress as compared with other neuronal and non-neu-
ronal cell types; this difference might be a source of the 
selective vulnerability of MNs in ALS (Kiskinis and oth-
ers 2014) and might also make them more susceptible to 
perturbation of Derlin1 function by mutant SOD1.

Autophagy

The autophagy pathway for protein clearance has been 
implicated as dysfunctional in sALS and fALS patients 
(unidentified genotypes) and transgenic mouse models of 
SOD1-fALS (Hetz and others 2009, and reviewed in 
Song and others 2012). Pharmacological and genetic 
manipulation of autophagy pathways in SOD1-fALS 

mice and Caenorhabditis elegans models has resulted in 
conflicting findings suggesting both protective and toxic 
roles for autophagy (Hetz and others 2009; Li and others 
2013; Song and others 2012; Zhang and others 2011; 
Nassif and others 2014).

A direct role for mutant SOD1 in abnormal autoph-
agy is suggested as, when overexpressed in a neuronal-
like cell line, mutant SOD1 was found to co-precipitate 
with beclin 1 (BECN1), an autophagy activator, and 
with BCL2L1, a suppresser of BECN1 activity, whereas 
wildtype SOD1 only precipitated with BCL2L1 (Nassif 
and others 2014). The BECN1–BCL2L1 complex was 
weakened by co-expression with mutant SOD1, sug-
gesting mutant SOD1 may activate autophagy by releas-
ing BECN1 from the suppression of BCL2L1. However, 

Figure 3.  Mutant superoxide dismutase 1 (SOD1) may cause chronic activation of endoplasmic reticulum (ER) stress. 
Acute anti-apoptotic and chronic pro-apoptotic ER stress pathways: (A) during acute activation of ER stress the three signal 
transduction pathways (the PERK, ATF6, and IRE1 pathways) mediate the unfolded protein response. PERK, ATF6, and IRE1 
proteins are associated with BiP (binding immunoglobulin protein). (B) However, if there is chronic activation of the ER stress 
PERK, ATF6, and IRE1 dissociate from BiP causing the activation of pro-apoptotic pathways. GADD34 is activated in the PERK 
pathway, promoting the dephosphorylation of p-elF2α and the reinitiation of protein synthesis. Chronic activation of ER stress, 
may mediate the unfolded protein response (UPR) and the ER-associated degradation (ERAD) mechanism.
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the effect of wildtype SOD1, or any other co-expressed 
protein, on the BECN1-BCL2L1 complex was not 
assessed, therefore it is not possible to attribute the 
effect specifically to mutant SOD1 rather than increased 
protein expression per se. The activation of autophagy 
by mutant SOD1 could also be a downstream conse-
quence of early effects on axonal transport and ER stress 
and ERAD (Hetz and others 2009; Zhang and others 
2007).

Other Emerging Roles for SOD1

Several causative “ALS genes” encode RNA binding  
proteins, and this has highlighted how disruption of 

processes involving RNA may play a primary role in the 
pathogenesis of the disease. Among these proteins, 
TDP43 and FUS are to date the most studied (Ling and 
others 2014; Nassif and others 2014). However, recent 
findings also point to a potential role of SOD1 in nucleic 
acid metabolism, as below.

SOD1 as a Transcription Factor

Although this is not their best characterized role, both 
TDP43 and FUS have been shown to act as transcription 
factors and, similarly, recent evidence has shown that 
SOD1 can regulate transcription in response to oxidative 
stress stimuli by moving into the nucleus and binding to 

Figure 4.  Mutant superoxide dismutase 1 (SOD1) activates endoplasmic reticulum (ER) stress by disrupting ER-Golgi trafficking 
through binding to coatomer coat protein II complex (COPII). (A) In normal conditions, COPII transports normal and misfolded 
proteins from the ER to the Golgi (only misfolded proteins are show in the figure) but (B) when mutant SOD1 is present, it interacts 
with a COPII subunit disrupting ER-Golgi trafficking resulting in a buildup of misfolded proteins in the ER, leading to ER stress.
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promoters to regulate the expression of oxidative resis-
tance genes (Hu and others 2009; Tsang and others 2014).

SOD1 as an RNA Binding Protein

TDP43 (Transactive response DNA Binding protein 
43kDa) and FUS (Fused in Sarcoma) are involved in 
mRNA splicing, miRNA biogenesis, and mRNA stabili-
zation and transport (Ling and others 2014). Whilst evi-
dence of a role for SOD1 in the former two is still lacking, 
mutant SOD1 can bind mRNAs and play a role in their 
stabilization (Lu and others 2007; Lu and others 2009; 
Chen and others 2014). Wildtype SOD1 has further been 
shown to interact with TDP43, suggesting a potential 
common action in the regulation of specific RNA stabil-
ity (Volkening and others 2009).

Mutant SOD1 binds sequence elements within the 3′ 
UTR of VEGF (Vascular Endothelial Growth Factor) 
mRNA and forms complexes with other ribonucleopro-
teins such as TIAR and HuR. These interactions, which 
are specific to mutant SOD1, negatively affect levels of 
VEGF mRNA, which is a neuroprotective factor for 
motor neurons (Lu and others 2007; Lu and others 2009). 
Similarly, mutant SOD1 has been shown to bind the 3′ 

UTR of the neurofilament light chain (NFL) mRNA and 
negatively affect its stability. In an induce Pluripotential 
Stem Cell-derived cell model of ALS this reduction of 
NFL mRNA level mediates axonal degeneration, which 
could be a critical first step in ALS (Chen and others 
2014).

SOD1 as a Signaling Molecule

SOD1 and Cell Metabolic State Signaling.  Using yeast and 
human cell lines Reddi and Culotta (2013) identified a 
new role in cellular metabolism for SOD1: to integrate 
signals from oxygen and glucose in order to repress res-
piration within cells. In the mechanism proposed SOD1 
binds the casein kinase gamma homologues Yck1p and 
Yck2p preventing their degradation via its enzymatic 
activity (Fig. 6). This results in repression of aerobic res-
piration and promotion of aerobic fermentation. Without 
SOD1, Yck1p and Yck2p are degraded, resulting in aero-
bic respiration. This finding gives insight into how rap-
idly proliferating cells may favor anaerobic glycolysis. 
Although effects in neurons remain to be determined the 
authors note the link between this signaling pathway and 
responses to hypoxia, a toxic state for motor neurons 

Figure 5.  Superoxide dismutase 1 (SOD1) as an endoplasmic reticulum (ER) stress activating zinc sensor. (A) Under normal 
conditions wildtype SOD1 does not bind Derlin1, allowing export of misfolded proteins to the ubiquitin proteasome system 
(UPS). The three ER stress signal transducers PERK, ATF6, and IRE1 remain inactive and associated with binding immunoglobulin 
protein (BiP). (B) When mutant and/or in conditions of zinc depletion SOD1 assumes a mutant-like conformation exposing a 
binding site for Derlin1. The SOD1-Derlin1 interaction causes an accumulation of misfolded proteins which sequester BiP away 
from PERK, ATF6, and IRE1, activating the homeostatic ER stress response. Therefore, mutation of SOD1 in amyotrophic lateral 
sclerosis (ALS) may lead to constitutive Derlin1–SOD1 binding and ER stress activation.
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(Reddi and Culotta 2013). It is also interesting to note 
that a de novo mutation in casein kinase 1 gamma 3 
(CSNK1G3) was recently identified as a potential ALS 
risk factor (Chesi and others 2014) and, in a yeast screen 
YCK2, a homologue of the human casein kinase 1 gamma 
2, was identified as an enhancer of TDP43 toxicity (Kim 
and others 2014), offering hints that the putative interac-
tion between SOD1 and casein kinase 1 gamma could be 
relevant to ALS.

Conclusions and Outstanding 
Questions

In ALS, SOD1 takes on a toxic unknown gain of function. 
However, as with many proteins involved in neurodegen-
erative disease, it is still not clear what the normal func-
tions are for SOD1, and which cellular pathways rely on 
this protein. We know that it is abundant and ubiquitous, 
but protein levels appear to be far above what would be 
required solely for its role as an antioxidant in the cytosol.

New functions are now coming to light, and intrigu-
ingly—given the roles of other causative ALS genes—
SOD1 is involved in RNA metabolism, including acting 

as a nuclear transcription factor, and in metabolic signal-
ing. Almost certainly there is much more to be discovered 
about SOD1 function in the normal situation, as well as in 
ALS, where there are interesting links and converging 
themes involving excitotoxicity (AMPA receptors, 
sodium channel activation) and ER stress, as well as cell 
specific effects from astrocytes and microglia.

Study of these functions present new opportunities for 
badly needed therapeutics to modulate disease progres-
sion in SOD1-fALS, and possibly even sALS, perhaps in 
combination with anti-sense oligonucleotide therapies 
(Musarò 2013; Yang and others 2013). However, until we 
have a considerably better understanding of SOD1 func-
tions, much about this small protein remains enigmatic.
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