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We compute statistical properties of the stochastic entropy production associated with the non-
stationary transport of heat through a system coupled to a time dependent nonisothermal heat bath.
We study the one-dimensional stochastic evolution of a bound particle in such an environment by
solving the appropriate Langevin equation numerically, and by using an approximate analytic so-
lution to the Kramers equation to determine the behaviour of an ensemble of systems. We express
the total stochastic entropy production in terms of a relaxational or nonadiabatic part together
with two components of housekeeping entropy production and determine the distributions for each,
demonstrating the importance of all three contributions for this system. We compare the results
with an approximate analytic model of the mean behaviour and we further demonstrate that the
total entropy production and the relaxational component approximately satisfy detailed �uctuation
relations for certain time intervals. Finally, we comment on the resemblance between the procedure
for solving the Kramers equation and a constrained extremisation, with respect to the probability
density function, of the spatial density of the mean rate of production of stochastic entropy.

I. INTRODUCTION

It is quite apparent that the macroscopic world largely
operates in an irreversible fashion, to the extent that the
underlying time reversal symmetry of the laws of physics
is often obscured. Processes at the macroscale typically
evolve spontaneously in a speci�c direction and not in
reverse, unless driven to do so by external control. It
is very straightforward to list examples of irreversibility:
heat �ow, chemical reaction, particle di�usion, decay of
coherent motion, inelastic collisions, brittle fracture and
a host of other phenomena of a dissipative character. The
triumph of thermodynamics, from its emergence in the
19th century up to the present day, is to interpret all
these phenomena as aspects of the second law.
Recent studies of irreversible processes at the micro-

scopic level have revealed a richer meaning of the tradi-
tional second law and of the associated entropy produc-
tion that quanti�es the irreversibility of a given process
[1�7]. At microscopic scales, it is clear that a process can
evolve both forwards and backwards as a result of spon-
taneous �uctuations in the system or its environment.
A sequence of improbable but not impossible collisions
between molecules can drive a reaction from products
back into reactants for a short time, or a particle up in-
stead of down a concentration gradient. Developments
in the thermodynamics of small systems in recent years
have made it possible to incorporate this transitory be-
haviour into the same framework that accounts for the
much more clearly irreversible processes operating at the
macroscale. This broader viewpoint can be expressed
through a framework of deterministic dynamics [1, 2],
or alternatively by using the concepts of stochastic ther-
modynamics [6, 8�11], where phenomenological noise is
introduced into the dynamics of a system coupled to an
environment in order to account for and to quantify dis-
sipative behaviour.
The stochastic entropy production that features in this

latter approach is de�ned in terms of the relative likeli-
hood that a system should evolve along a particular path

or along its reverse. This quantity has received consider-
able attention, particularly studies of the way its statis-
tics are governed by identities known as �uctuation rela-
tions [6, 12]. For example, while the stochastic entropy
production can be both positive and negative as a system
evolves, it satis�es an integral �uctuation relation which
implies that its expected rate of change is non-negative
when averaged over many repeated trials of the stochastic
dynamics, real or imagined. When �uctuations are small,
departures from the second law are rare, but excursions
away from mean behaviour can be substantial for small
systems or for short processes, and the rules that govern
this behaviour extend the meaning of the second law at
such scales.

Traditionally there has been just one measure of ir-
reversibility: thermodynamic entropy production, and
many studies have investigated its evolution in systems
subject to dissipation, e.g. [13, 14]. In stochastic thermo-
dynamics, however, it has been possible to de�ne com-
ponents of entropy production associated with di�erent
aspects of irreversibility, each possessing speci�c proper-
ties [15�20]. For example, the irreversibility of the cool-
ing of a saucepan of hot soup di�ers somewhat from the
irreversibility of the steady transport of heat from a hot
plate through the saucepan and into the surrounding air
that can maintain the soup at a desired temperature.
Both are associated with the production of thermody-
namic entropy: in the �rst case it may be described as
relaxational, while in the second it has been referred to as
housekeeping production required to maintain a steady
state [21]. In stochastic thermodynamics each of these
modes of entropy production has been quanti�ed in terms
of the underlying dynamics of a system coupled to an en-
vironment. Analysis has shown, however, that two com-
ponents are not always su�cient, and the housekeeping
element can separate into two parts, one of which has a
transient nature [18�20]. Systems driven by a time de-
pendent environment under constraints that break the
principle of detailed balance in the underlying dynamics
will evolve irreversibly in a fashion characterised by three
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components of stochastic entropy production. A similar
conclusion was later reached by [22] but with an alterna-
tive choice of representation. In this study we investigate
the statistics of the three contributions for a simple case
of thermal transport.
In Section II we introduce the system of interest, a sin-

gle particle performing underdamped Brownian motion
in a con�ning potential while coupled to a nonisother-
mal environment characterised by a time and space de-
pendent temperature. After de�ning the components of
stochastic entropy production, further details of which
are given in Appendix A, we employ in Section III an
approximate solution to the Kramers equation describ-
ing the evolution of an ensemble of such systems, derived
in Appendix B, to quantify the mean behaviour of each
contribution. We note in Appendix C that the solution
method resembles the constrained extremisation of the
spatial density of the mean rate of production of stochas-
tic entropy [23�25], analogous to Onsager's principle [26],
although the interpretation is not unproblematic. In Sec-
tion IV we generate individual realisations of the motion
using a Langevin equation in order to obtain the distri-
bution of �uctuations of stochastic entropy production
about the mean. Our particular aim is to demonstrate
the importance of the transient component of housekeep-
ing entropy production. We also demonstrate that as
long as the friction coe�cient is not too small, the to-
tal entropy production as well as its relaxational com-
ponent satisfy detailed �uctuation relations for certain
time intervals and driving protocols, and in Appendix
D we perform an analysis to provide an understanding
of this behaviour. This is a demonstration that an un-
derlying exponential asymmetry in the production and
consumption of entropy can be made apparent as long
as the conditions are chosen carefully. In Section V we
present our conclusions.

II. STOCHASTIC THERMODYNAMICS IN A

NONISOTHERMAL ENVIRONMENT

A key aspect of stochastic thermodynamics is that it
provides a link between thermodynamic concepts, such
as entropy production, and a description of the mechan-
ical evolution of a system. The stochastic nature of the
dynamics is important in that it ties in with an inter-
pretation of entropy production as the progressive loss
of certainty in the microscopic state of a system as time
progresses. Such loss is perhaps more fundamentally a
consequence of a sensitivity to initial conditions within
a setting of deterministic dynamics, together with the
di�culty in preparing a system in a precise initial state,
but introducing phenomenological noise into a stream-
lined version of the dynamics has a similar e�ect. Ther-
modynamics is the study of the behaviour of a system
in an environment where some of the features are speci-
�ed only approximately (this is particularly the case for
the environment). We therefore expect any modelling

approach to have limited predictive power. In stochastic
thermodynamics it turns out that stochastic entropy pro-
duction, operationally de�ned in terms of certain energy
exchanges, embodies this predictive failure. It is striking
to conclude that microscopic uncertainty may essentially
be measured using a thermometer, and that an appar-
ent determinism in the form of the second law for large
systems can emerge from a fundamentally underspeci�ed
dynamics. It seems that one of the few matters about
which we can be certain, in such a situation, is that mi-
croscopic uncertainty should increase.
We focus our discussion on the one-dimensional (1-d)

motion of a particle coupled to a nonisothermal environ-
ment, described by the following stochastic di�erential
equations (SDEs):

dx = vdt, (1)

dv = −γvdt+
F (x)

m
dt+

(
2kTr(x, t)γ

m

)1/2

dW, (2)

where x and v are the particle position and velocity, re-
spectively, t is time, γ is the friction coe�cient, F (x)
is a spatially dependent force �eld acting on the parti-
cle, assumed to be related to a potential φ(x); m is the
particle mass, Tr(x, t) is a space and time dependent en-
vironmental temperature and dW is an increment in a
Wiener process. Eq. (2) is to be interpreted using Itō
rules of stochastic calculus [27, 28].
We should note that heat baths are normally regarded

as having static thermal properties, so the time depen-
dence of Tr is to be interpreted as the sequential decou-
pling and recoupling of the system to reservoirs at slightly
di�erent temperatures. The e�ect of an evolving thermal
environment on a system can then be taken into account,
retaining the essential requirement that heat exchanges
with the system should not a�ect the properties of the en-
vironment. It should be noted that a similar framework
for discussing an evolving environmental temperature in
stochastic thermodynamics has recently been presented
[29]. Indeed the above SDEs, often with a constant Tr
and in the overdamped limit, have been used a starting
point for discussing a great number of characteristics of
irreversible behaviour.
Following Seifert [9], stochastic entropy production is

de�ned as a measure of the probabilistic mechanical ir-
reversibility of the motion. The dynamics generate a
trajectory ~x, ~v (~x represents a function x(t) in the time
interval 0 ≤ t ≤ τ and ~v its time derivative) under a
`forward' driving protocol of force �eld and temperature
evolution. In Eq. (2) the protocol is a speci�cation of the
time dependence of Tr. The likelihood of the trajectory is
speci�ed by a probability density function PF[~x, ~v] writ-
ten as a product of the probability density of an initial mi-
crostate p(x = x(0), v = v(0), t = 0) ≡ pF

start[x(0), v(0)],
and a conditional probability density P for the subse-
quent trajectory. The dynamics can also generate an an-

titrajectory initiated after an inversion of the particle ve-
locity at time τ , and driven by a reversed time evolution
of the force �eld and reservoir temperature [7, 12, 30],
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until a total time 2τ has elapsed. Evolution in this in-
terval τ ≤ t ≤ 2τ is described by a probability den-

sity PR[~x†, ~v†] for an antitrajectory ~x†, ~v† starting at
x(τ),−v(τ) and ending at x(0),−v(0), with the super-
script R indicating that the potential and reservoir tem-
perature evolve backwards with respect to their evolution
in the time interval 0 ≤ t ≤ τ [18�20]. The total entropy
production associated with the trajectory ~x, ~v is then
de�ned by

∆stot[~x, ~v] = ln

[
PF[~x, ~v]

PR[~x†, ~v†]

]
, (3)

and the key idea of stochastic thermodynamics is that
after multiplication by Boltzmann's constant and a pro-
cedure of averaging over all realisations of the motion,
this should correspond to the change in traditional ther-
modynamic entropy associated with the forward process.
For the system under consideration, the stochastic

entropy production as the particle follows a trajectory
evolves according to the SDE

d∆stot = −d[ln p(x, v, t)]− 1

kTr(x, t)
d

[
mv2

2

]
+
F (x)dx

kTr(x, t)
.

(4)
The derivation of this expression starting from the
stochastic dynamics in Eqs. (1) and (2) is discussed in
more detail in Appendix A. The second and third terms
are negative increments in the kinetic and potential en-
ergy of the particle over the time interval dt, both di-
vided by the local reservoir temperature. Together, they
represent an increment in the energy of the environment
(a heat transfer dQr) divided by the local temperature,
therefore taking the form of an incremental Clausius en-
tropy production d∆sr = dQr/kTr(x, t). The �rst term
in Eq. (4) is the stochastic entropy production associated
with the particle over the time interval. Seifert de�ned a
stochastic system entropy ssys = − ln p(x, v, t) in terms of
the phase space probability density function p generated
by the stochastic dynamics [9], such that we can write
d∆stot = d∆ssys + d∆sr. As the particle follows a tra-
jectory, it moves through a probability density function
p(x, v, t) that represents all the possible paths that could
have been followed, and the system entropy production
emerges from a comparison between the actual event and
this range of possible behaviour. The evaluation of ∆stot

for a speci�c realisation of the motion therefore requires
us to determine the probability density function (pdf) by
solving the appropriate Kramers equation [31]

∂p

∂t
= Lp = −∂J

ir
v

∂v
− v ∂p

∂x
− F

m

∂p

∂v
, (5)

corresponding to the SDEs in Eqs. (1) and (2), where
J ir
v = −γvp − ∂(Dvp)/∂v, with Dv = γkTr(x, t)/m, is

the irreversible probability current for this system, re-
sponsible for the growth of uncertainty and hence mean
stochastic entropy production.

In spite of the �uctuating nature of the total stochas-
tic entropy production, the expectation of this quantity
is non-negative. This may be expressed as d〈∆stot〉 =
d〈∆ssys〉+ d〈∆sr〉 ≥ 0 where the brackets denote an av-
erage over the distributions of system coordinates at the
beginning and end of the incremental time period. Note
that for economy the quali�er `stochastic' is henceforth to
be implied rather than stated when referring to entropy
production.
We now separate the entropy production into compo-

nents, each with a particular character, along the lines
of initial developments by Van den Broeck and Esposito
[15�17] and extended by Spinney and Ford [18�20], using
a framework suggested by Oono and Paniconi [21]. The
total entropy production may be written as three terms
[18, 19]

d∆stot = d∆s1 + d∆s2 + d∆s3, (6)

with the ∆s1 and ∆s2 components de�ned in terms of
ratios of probabilities that speci�c trajectories are taken
by the system, in a manner similar to Eq. (3). Details
are to be found elsewhere [18�20] and in Appendices A
and D. Note that there is no implication of a one-to-one
correspondence between the ∆s1−3 and the three terms
in Eq. (4).
The evolution of the average values of the components

may be related to the transient and stationary system
pdfs (p and pst, respectively) according to

d〈∆s1〉
dt

=

ˆ
dxdv

p

Dv

(
J ir
v

p
− J ir,st

v

pst

)2

≥ 0, (7)

d〈∆s2〉
dt

=

ˆ
dxdv

p

Dv

(
J ir,st
v (x,−v)

pst(x,−v)

)2

≥ 0, (8)

d〈∆s3〉
dt

= −
ˆ
dxdv

∂p

∂t
ln

[
pst(x, v)

pst(x,−v)

]
, (9)

where Lpst = 0, and J ir,st
v = −γvpst−∂(Dvpst)/∂v is the

irreversible probability current in the stationary state.
The mean rate of total entropy production is

d〈∆stot〉
dt

=

ˆ
dxdv

(J ir
v )2

Dvp
≥ 0. (10)

The three contributions to the total entropy production
can be interpreted as follows. ∆s1 is the principal re-
laxational entropy production associated with the ap-
proach of a system towards a stationary state. Its av-
erage over all possible realisations of the motion, namely
〈∆s1〉, increases monotonically with time until stationar-
ity is reached, since d〈∆s1〉/dt→ 0 as p→ pst. Esposito
and Van den Broeck [15�17] denoted it the nonadiabatic
entropy production.

∆s3 is also associated with relaxation, but in contrast
to ∆s1 no de�nite sign can be attached to d〈∆s3〉/dt.
However, if the stationary pdf is velocity symmetric ∆s3

is identically zero. Since a velocity asymmetric stationary
pdf is typically associated with breakage of a principle of
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detailed balance in the stochastic dynamics [15�17], this
component arises in situations where there is a nonequi-
librium stationary state involving velocity variables. It
was designated the transient housekeeping entropy pro-
duction by Spinney and Ford [18].

∆s2 is also associated with a nonequilibrium station-
ary state, since its average rate of change in Eq. (8)
requires a non-zero current J ir,st

v in the stationary state.
The mean entropy production rate in the stationary state
is represented by d〈∆s2〉/dt alone, and this is non-zero
only if the stationary current J ir,st

v is non-zero. Esposito
and Van den Broeck referred to ∆s2 as the adiabatic en-
tropy production and considered it in the context of the
dynamics of spatial coordinates, and Spinney and Ford,
who considered velocity variables as well, denoted it the
generalised housekeeping entropy production.
For a nonisothermal, time dependent environment we

expect all three kinds of entropy production to take place.
The mean rates of production for each component are
examined next, and in Section IV we shall consider the
distributions of �uctuations about the mean.

III. MEAN STOCHASTIC ENTROPY

PRODUCTION

We are concerned with the 1-d Brownian motion of
a particle in a potential under the in�uence of a back-
ground temperature Tr that varies in space and time.
The pdf p(x, v, t) evolves according to Eq. (5) subject
to a requirement that p, ∂p/∂v and ∂p/∂x all vanish as
x, v → ±∞ for all t. We shall use an established per-
turbative method [25, 32, 33] to obtain an approximate
expression for p to leading order in the inverse friction
coe�cient.
Integration of the Kramers equation with respect to v

yields the continuity equation

∂ρ

∂t
+
∂(ρv̄)

∂x
= 0, (11)

where we de�ne ρ(x, t) =
´
dvp and ρvn(x, t) =

´
dvvnp,

and multiplication by v followed by integration gives

∂(ρv̄)

∂t
+
∂(ρv2)

∂x
− F

m
ρ = −γρv̄, (12)

which is a momentum transport equation. We represent
the pdf in the form p = f(1 + ψ) with

f(x, v, t) = ρ

(
m

2πkTr

) 1
2

exp

(
−m (v − v̄)

2

2kTr

)
, (13)

such that
´
dvfψ = 0 and

´
dvvfψ = 0. We further sim-

plify the situation by requiring that the time dependence
in the pdf is con�ned to the distribution over velocity.
The spatial pdf ρ is therefore time independent which
in turn implies that the mean velocity v̄ is zero, accord-
ing to Eq. (11). We study situations where the back-
ground temperature is driven in a cyclic manner with

Tr(x, t) = T 0
r (x)[1 + g(t)], but not so violently that ρ is

signi�cantly disturbed from its pro�le when g = 0. We
write ρv2(x, t) = ρv̄2 + ρkTr/m +

´
dvv2fψ, and antici-

pating that the �nal term is of order γ−1 we deduce that
ρv2 ≈ ρkT 0

r /m for the stationary case where v̄ = 0 and
g = 0, so that Eq. (12) reduces to

k
∂(ρstT

0
r )

∂x
− Fρst ≈ 0, (14)

in which case

ρst(x) ∝ 1

T 0
r (x)

exp

(ˆ x

0

dx′
F (x′)

kT 0
r (x′)

)
, (15)

is the approximation we shall employ for the spatial dis-
tribution ρ.
The Kramers equation is

∂p

∂t
+ v

∂p

∂x
+

(
F

m
− γv̄

)
∂p

∂v
=
kTrγ

m

∂

∂v

(
f
∂ψ

∂v

)
, (16)

and we set v̄ = 0 and expand the distribution p = f(1+ψ)
as a series in γ−1. The leading term p ≈ f is independent
of γ and we write

ψ = γ−1ψ1 + γ−2ψ2 + · · · , (17)

with each contribution ψi satisfying
´
dvfψi = 0 and´

dvvfψi = 0. Gathering all terms in Eq. (16) of order
zero in γ−1 and setting v̄ = 0 leads to

∂f

∂t
+ v

∂f

∂x
+
F

m

∂f

∂v
=
kTrγ

m

∂

∂v

(
f
∂(γ−1ψ1)

∂v

)
, (18)

and by solving this for ψ1, the representation of p that
emerges will be correct to �rst order in γ−1.
It is possible to obtain a solution to Eq. (18) using

a variational procedure that is described in more detail
in Appendix B, and to argue that the identi�cation of p
resembles a principle of constrained extremisation of the
spatial density of the mean rate of entropy production
speci�ed to �rst order in the inverse friction coe�cient
(see Appendix C). Here it is su�cient to state that Eq.
(18) is satis�ed by Eq. (13) with v̄ = 0 and with

γ−1ψ1 = ψ0 + av + bv2 + cv3, (19)

where

a =
1

2γTr

∂Tr
∂x

, b = − m

4γkT 2
r

∂Tr
∂t

,

c = − m

6γkT 2
r

∂Tr
∂x

, ψ0 =
1

4γTr

∂Tr
∂t

, (20)

such that upon insertion of Eq. (19) into Eq. (18) the
coe�cients of terms proportional to powers of v vanish.
The evolving pdf is therefore speci�ed by

p(x, v, t) ≈

[
1 +

1

4γTr

∂Tr
∂t

+
1

2γTr

∂Tr
∂x

v
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− m

4γkT 2
r

∂Tr
∂t

v2 − m

6γkT 2
r

∂Tr
∂x

v3

]

×ρst(x)

(
m

2πkTr

) 1
2

exp

(
−mv

2

2kTr

)
, (21)

to �rst order in γ−1, and the stationary pdf for a given
temperature pro�le Tr is

pst(x, v) ≈

[
1 +

1

2γTr

∂Tr
∂x

v − m

6γkT 2
r

∂Tr
∂x

v3

]

× ρst(x)

(
m

2πkTr

) 1
2

exp

(
−mv

2

2kTr

)
. (22)

Now we can evaluate the mean rate of change of each
component of entropy production. Most straightfor-
wardly, from Eqs. (9) and (22) we have

d〈∆s3〉
dt

=−
ˆ
dxdv

∂p

∂t
ln

[
1 + 1

2γTr

∂Tr

∂x v −
m

6γkT 2
r

∂Tr

∂x v
3

1− 1
2γTr

∂Tr

∂x v + m
6γkT 2

r

∂Tr

∂x v
3

]
.

(23)
The logarithm is an odd function of v and its leading
term is proportional to γ−1, and furthermore, according
to Eq. (21), ∂p/∂t is an even function of v to zeroth order
in γ−1, so we conclude that 〈∆s3〉 ≈ 0 to order γ−1.
The irreversible probability current is

J ir
v =

k

2m

[
∂Tr
∂x
− m

kTr

∂Tr
∂t

v − m

kTr

∂Tr
∂x

v2

]

× ρst(x)

(
m

2πkTr

) 1
2

exp

(
−mv

2

2kTr

)
, (24)

so that from Eqs. (8) and (24) we have

d〈∆s2〉
dt

≈
ˆ
dxdv

kf

4γmTr

(
∂Tr
∂x

[
1− m

kTr
v2

])2

=

ˆ
dx

kρst

2γmTr

(
∂Tr
∂x

)2

, (25)

to �rst order in γ−1. Finally, from Eqs. (7) and (24) we
deduce that

d〈∆s1〉
dt

≈
ˆ
dxdv

fm

γkTr

[
1

2Tr

∂Tr
∂t

v

]2

=

ˆ
dx

ρst

4γT 2
r

(
∂Tr
∂t

)2

, (26)

such that

d〈∆stot〉
dt

≈
ˆ
dx

k

2mγTr
ρst

[
m

2kTr

(
∂Tr
∂t

)2

+

(
∂Tr
∂x

)2
]
,

(27)
which can also be obtained by the direct insertion of
Eqs. (21) and (24) into Eq. (10). The relaxational
and housekeeping (nonadiabatic and adiabatic in alter-
native terminology) components of the mean rate of total

Figure 1. Spatial trajectory of a particle according to stochas-
tic dynamics in the presence of an environment where the tem-
perature varies in time and space, illustrated by the text and
background colours. The evolution of the stochastic entropy
production ∆stot associated with the Brownian trajectory is
sketched in the inset.

entropy production, to leading order in γ−1, are clearly
never negative and can be seen to arise from the temporal
and spatial dependence, respectively, of the environmen-
tal temperature. For ∂Tr/∂t = 0, Eq. (27) reduces to
an expression employed previously in studies of entropy
production in a time independent nonisothermal system
[19, 34].

IV. DISTRIBUTIONS OF STOCHASTIC

ENTROPY PRODUCTION

We now turn our attention to �uctuations in the pro-
duction of stochastic entropy away from the mean be-
haviour determined in the last section. We solve the
SDEs (1) and (2) to generate a trajectory of particle po-
sition and velocity and then insert the pdf speci�ed in
Eq. (21) into Eq. (4) to obtain the associated evolution
of total entropy production ∆stot. This is illustrated in
Figure 1 where a particle follows a Brownian trajectory
while coupled to an environment with a temperature that
varies in space and time, represented by the background
colours. The evolution of ∆stot is stochastic, but with a
distinct upward trend.
We choose simple forms of the potential and thermal

background that the particle experiences. We consider a
harmonic force F (x) = −κx where κ is a spring constant,
and an environmental temperature that varies in space
and time according to

Tr(x, t) = T0[1 + κT (t)x2/(2kT0)], (28)

where T0 is a constant and the time dependence is speci-
�ed by κT (t) = κ0

T +B sinωt > 0 with constant B. Four
cycles of such behaviour are sketched in Figure 1. The
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Figure 2. A comparison between the mean total stochastic
entropy production obtained from the integral of the approx-
imate Eq. (27) and the total stochastic entropy production
averaged over 2×107 numerically generated particle trajecto-
ries, each with 40000 timesteps, shown with error bars. The
time interval represents two cycles of temperature variation,
preceded in the simulations by one cycle to establish an evolv-
ing pdf similar to Eq. (21).

environment is hotter as the distance from the particle
tether point increases, and the spatial temperature pro-
�le varies sinusoidally with time. We expect heat to be
carried by the particle, on average, from sources located
away from the tether point towards sinks situated near
the centre of the motion. The average rate of �ow of heat
should be a�ected by the time dependence of Tr.
This choice of pro�le implies that T 0

r (x) = T0[1 +
κ0
Tx

2/(2kT0)] and we evaluate the integralˆ x

0

dx
F (x)

kT 0
r (x)

= −
ˆ x

0

dx
κx

kT0[1 + κ0
Tx

2/(2kT0)]

= −
(
κ/κ0

T

)
ln[1 + κ0

Tx
2/(2kT0)], (29)

such that the normalised stationary spatial pdf according
to Eq. (15) is

ρst(x) =

(
κ0
T

2πkT0

) 1
2 Γ

(
1 + κ/κ0

T

)
Γ
(

1
2 + κ/κ0

T

) [1 +
κ0
T

2kT0
x2

]−1−κ/κ0
T

(30)
and furthermore we can write

∂Tr
∂x

= κT (t)
x

k
, (31)

and

∂Tr
∂t

=
dκT (t)

dt

x2

2k
, (32)

which fully speci�es the evolution of 〈∆stot〉 given in Eq.
(27). A similar system with time-independent κT was ex-
amined in [35] for the purpose of deriving work relations
under nonisothermal conditions.
For the numerical computation of the total entropy

production we integrate

d∆stot = −d[ln p]− m

2kTr
d
[
v2
]
− κx

kTr
dx, (33)

Figure 3. Comparison of the average of ∆s1 predicted analyt-
ically and calculated from the simulation of 2 × 107 particle
trajectories over a time interval of two temperature cycles pre-
ceded by one cycle to establish the periodic stationary state.

Figure 4. As Figure 3 but for the average of ∆s2.

along with the SDEs for x and v, and the components of
entropy production evolve [19] according to

d∆s1 = −d[ln p] + d[ln pst], (34)

d∆s3 = −d[ln pst(x, v)] + d[ln(pst(x,−v)], (35)

together with d∆s2 = d∆stot − d∆s1 − d∆s3.
We select initial coordinates from the stationary pdf

pst(x, v) speci�ed by T 0
r (x), the temperature pro�le at

t = 0, and evolve the system over a time interval 0 ≤
t ≤ 6π/ω corresponding to three cycles of variation in
the temperature pro�le, with parameters ω = 8, m = 1,
kT0 = 1, κ = 1, κ0

T = 0.5, B = 0.2, and γ = 60. The
short relaxation time γ−1 relative to the cycle period
2π/ω ensures that the dynamics do not depart very far
from the overdamped limit such that the expressions for
p and pst given in Eqs. (21) and (22) are reasonably
accurate.
The interval is divided into 40000 timesteps of length

δt = 5.89× 10−5 and samples of entropy production are
generated from 2× 107 realisations of the Brownian mo-
tion. The system relaxes quickly into a periodic station-
ary state but we disregard behaviour taking place in the
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�rst cycle 0 ≤ t ≤ 2π/ω and focus our attention on en-
tropy production during the second and third cycles.

We gauge the quality of the numerical calculations by
checking that 〈∆stot〉 matches the evolution obtained
from integrating the approximate analytical expression
(27). Statistical uncertainty in the numerical results is
assessed by blocking the realisations into 40 subsets, and
the resulting error bars in Figure 2 show that the accu-
racy of the numerical approach is satisfactory. Similar
conclusions are reached by determining the evolution of
〈∆s1〉 by the analytic and numerical routes, illustrated
in Figure 3 and a similar procedure for 〈∆s2〉 in Figure
4. The di�erent character of these two components of
entropy production is apparent. There are two bursts of
relatively rapid mean production of ∆s1 per cycle. The
system responds to the raising and lowering of the tem-
perature pro�le and relaxational entropy generation is
associated with both. In contrast, the time development
of 〈∆s2〉 more closely matches the periodicity of the tem-
perature cycle, since it is a re�ection of the entropy pro-
duction that would characterise a stationary state for a
given nonisothermal pro�le.

The ∆s1 and ∆s2 components of entropy produc-
tion, as well as ∆stot, satisfy an integral �uctuation
relation 〈exp(−∆si)〉 = 1 by construction for any
elapsed time interval [15, 18]. We can demonstrate
further that a detailed �uctuation relation P (∆stot) =
P (−∆stot) exp(∆stot) appears to be satis�ed by ∆stot

for certain time intervals, as illustrated in Figure 5. We
have chosen conditions where the initial and �nal system
pdfs are the same, which will be the case for an inter-
val that is a multiple of the cycle period 2π/ω once the
system has adopted a periodic stationary state; and for
which the evolution of the environmental temperature
pro�le is symmetric about the midpoint of the time in-
terval, for example 7π/2ω ≤ t ≤ 11π/2ω indicated by
the horizontal bar in the inset shown in Figure 5. These
are circumstances where the total entropy production in
a system described by spatial coordinates alone [6, 12] is
expected to satisfy a detailed �uctuation relation. The
backward version of the process in this time interval is
identical to the forward version. Detailed �uctuation re-
lations relate distributions of entropy production in for-
ward and backward processes but here the two are syn-
onymous. For time intervals where this is not the case,
for example 3π/ω ≤ t ≤ 5π/ω, the distribution of total
entropy production will not satisfy a detailed �uctuation
relation.

For systems that possess velocity coordinates, a de-
tailed �uctuation relation for ∆stot will be valid if, ad-
ditionally, the initial pdf for the backward process is the
time-reversed version of the initial pdf for the forward
process. For such a relation to hold for our system, the
pdf at the beginning and end of the cycle should be veloc-
ity symmetric, as demonstrated in Appendix D1. This
condition is not in general satis�ed for a nonequilibrium
system described by underdamped dynamics, but if the
friction coe�cient is not too small, the velocity asym-

Figure 5. Numerical veri�cation of an approximate detailed
�uctuation relation for the pdf of total stochastic entropy
production ∆stot in the time interval 7π/2ω ≤ t ≤ 11π/2ω
(shown as a bar in the inset), driven by the change in tem-
perature pro�le according to the evolving κT (t). Values of
∆stot between ±0.2 from the simulation of 2 × 107 particle
trajectories are collected into 400 bins, and the straight line
represents the outcome expected in the absence of sampling
errors.

metry in Eq. (21) is slight and the detailed �uctuation
relation should hold to a good approximation.
We found that the distribution of ∆s1 over the same

time interval 7π/2ω ≤ t ≤ 11π/2ω also appears to sat-
isfy a detailed �uctuation relation, as shown in Figure 6,
while in contrast the distribution of ∆s2 does not possess
such a symmetry, as illustrated in Figure 7. In Appendix
D2 we consider conditions for the existence of a detailed
�uctuation relation for the ∆s1 component of entropy
production in general systems with spatial and veloc-
ity coordinates. We conclude that P (∆s1) will satisfy
a detailed �uctuation relation if the friction coe�cient is
not too small, such that behaviour under the chosen sys-
tem dynamics and its `adjoint' version are simply related.
A detailed �uctuation relation was observed for the to-
tal entropy production in a stationary state of thermal
transport in [19], and this can now be interpreted as an
approximate result. Furthermore, the conditions that al-
low us to show that detailed �uctuation relations hold
to a certain extent for P (∆stot) and P (∆s1) do not im-
ply a similar property for P (∆s2), as shown in Appendix
D3, allowing us to understand the contrast in behaviour
between Figures 5, 6 and 7.
Distributions P (∆si) of the three components of en-

tropy production generated over two cycles of the vari-
ation in temperature pro�le, namely for the interval
2π/ω ≤ t ≤ 6π/ω, together with the distribution of their
sum ∆stot, are shown in Figure 8. The �uctuations in
the ∆s3 component are the smallest, but all contributions
explore a broad range in comparison with their averages,
which according to Figures 3 and 4 would be of order
10−3 for 〈∆s1〉 and 〈∆s2〉, together with 〈∆s3〉 ≈ 0.
The second law in the stochastic framework corre-

sponds to the non-negativity of the mean values of ∆stot,
∆s1 and ∆s2 over distributions such as these. Although
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Figure 6. As Figure 5 but for ∆s1.

Figure 7. Demonstration that a detailed �uctuation relation
does not appear to hold for ∆s2 in the interval 7π/2ω ≤ t ≤
11π/2ω.

the peak in the distribution of ∆s2 lies slightly to the left
of the origin, its mean is positive as required. We have
clearly demonstrated that there is considerable weight
of probability for the generation of negative values of
these quantities for this small system as it undergoes a
short process. Nevertheless, such �uctuations are gov-
erned by rules in the form of �uctuation relations of vari-
ous kinds. We have also demonstrated that the transient

Figure 8. Distributions of ∆stot, ∆s1, ∆s2 and ∆s3 generated
in two cycles of temperature variation 2π/ω ≤ t ≤ 6π/ω.

housekeeping component of entropy production ∆s3 as-
sociated with the breakage of the principle of detailed
balance in a system evolving in full phase space makes
a signi�cant contribution to the total stochastic entropy
production.

V. CONCLUSIONS

The irreversibility of a stochastic process can be quan-
ti�ed through the consideration of three components of
stochastic entropy production. In order to illustrate this
we have studied the behaviour of a particle coupled to
an environment characterised by a temperature that de-
pends on time and space. The system is complex enough
to manifest all three components of entropy production,
and yet simple enough for us to obtain an approximate
expression for the time dependent probability density
function (pdf) of particle position and velocity that is
required to perform the computations. In order to solve
the Kramers equation and determine the pdf, we use a
variational approach that resembles the maximisation of
an Onsager function. Such an approach has been re-
garded as the use of a principle of maximisation of the
rate of thermodynamic entropy production under con-
straints, but there is a certain ambiguity in the thermo-
dynamic interpretation and we have discussed a point of
view where it might instead be regarded as a constrained
minimisation. A cautious thermodynamic interpretation
is probably necessary.
Mean relaxational or nonadiabatic entropy production
〈∆s1〉 is driven by the time dependence of the environ-
mental temperature, and arises from the tendency of the
system to evolve towards a state of local thermal equi-
librium with respect to the environment, which here is
frustrated by the continual environmental change. Mean
housekeeping entropy production 〈∆s2〉 is brought about
by the spatial dependence of the environmental temper-
ature, and is associated with the passage of heat, on av-
erage, from hotter to cooler parts of the environment by
way of the particle. We have provided analytic expres-
sions, correct to �rst order in inverse friction coe�cient,
for the evolution of the mean values of ∆s1 and ∆s2. The
mean of the third component, the transient housekeeping
entropy production ∆s3, is zero at the level of approx-
imation employed, and in order to compute a nonzero
mean for this quantity we would need to determine the
system pdf to second order in inverse friction coe�cient.
The ∆s3 component contributes to the �uctuations in
stochastic entropy production when the system is in a
stationary state characterised by a velocity asymmetric
pdf, and would be expected to have a nonzero mean when
a system undergoes relaxation: it is therefore indicative
of both relaxational and housekeeping behaviour.
We have determined the distributions of entropy pro-

duction for certain time intervals, and investigated situ-
ations where both ∆stot and ∆s1 satisfy a detailed �uc-
tuation relation. Analysis given in Appendix D suggests
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that ∆s2 does not have this property in the same circum-
stances, and that the detailed �uctuation relations hold
for the system and circumstances under consideration as
long as the friction coe�cient is not too small. Detailed
�uctuation relations are a rightly celebrated centrepiece
of the thermodynamics of small systems, since they ex-
press an asymmetry in the production and consumption
of entropy, but they rely on the validity of certain initial
and �nal conditions for the forward and backward pro-
cesses considered, and we have illustrated this feature
for a particular underdamped system. Finally, we have
computed the distributions of the three components of
entropy production, showing that in the case studied the
∆s3 component has a smaller variance than the other
two.
The basis of the second law in stochastic thermody-

namics is the adherence of ∆stot, ∆s1 and ∆s2 to in-
tegral �uctuation relations, and we have succeeded in
demonstrating the consequent monotonic increase in the
mean values of these forms of stochastic entropy produc-
tion for a system processed in a way that gives rise to
nonstationary thermal transport. We have also clearly
demonstrated the existence of the third component ∆s3

in a situation where the stationary state of the system is
asymmetric in velocity. These observations provide fur-
ther illustration of the rich structure of stochastic ther-
modynamics.

Appendix A: Components of stochastic entropy

production

We summarise results that are derived in more detail
in Spinney and Ford [19], concerning the dynamics of
components of stochastic entropy production. For Itō-
rules stochastic di�erential equations (SDEs)

dxi = Ai(x, t)dt+Bi(x, t)dWi, (A1)

where x represents a set of dynamical variables
(x1, x2, · · ·) such as (x, v), we de�ne

Air
i (x, t) =

1

2
[Ai(x, t) + εiAi(εx, t)] = εiA

ir
i (εx, t), (A2)

and

Arev
i (x, t) =

1

2
[Ai(x, t)− εiAi(εx, t)] = −εiArev

i (εx, t),

(A3)
where εi = 1 for variables xi with even parity under time
reversal symmetry (for example position x) and εi = −1
for variables with odd parity (for example velocity v), and
εx represents (ε1x1, ε2x2, · · ·). De�ning also Di(x, t) =
1
2Bi(x, t)

2, it may be shown that the following Itō-rules
SDE for the total entropy production (de�ned in Eq. (3))
emerges:

d∆stot = −d(ln p) +
∑
i

Air
i

Di
dxi −

Arev
i Air

i

Di
dt+

∂Air
i

∂xi
dt

−∂A
rev
i

∂xi
dt− 1

Di

∂Di

∂xi
dxi +

(Arev
i −Air

i )

Di

∂Di

∂xi
dt

−∂
2Di

∂x2
i

dt+
1

Di

(
∂Di

∂xi

)2

dt, (A4)

where p is the time dependent pdf of variables x. The
corresponding Itō SDE for the principal relaxational en-
tropy production is

d∆s1 = −d(ln p)− ∂ϕ

∂xi
dxi −Di

∂2ϕ

∂x2
i

dt, (A5)

where ϕ = − ln pst and pst is the stationary pdf. We also
have

d∆s2 =
∑
i

−A
ir
i A

rev
i

Di
dt+

Air
i

Di
dxi + εiϕ

′
i(εx)dxi

− 1

Di

∂Di

∂xi
dxi +

1

Di

(
∂Di

∂xi

)2

dt+Di(ϕ
′
i(εx))2dt

−2εiϕ
′
i(εx)

∂Di

∂xi
dt+ εi(A

ir
i −Arev

i )ϕ′i(εx)dt

− (Air
i −Arev

i )

Di

∂Di

∂xi
dt, (A6)

specifying an increment in ∆s2, using notation ϕ′i(εx) =
εi∂ϕ(εx)/∂xi and

d∆s3 = −d ln pst(x) + d ln pst(εx)

=
∑
i

ϕ′i(x) ◦ dxi − εiϕ′i(εx) ◦ dxi, (A7)

for the third component. Stratonovich notation is used
in the second line for reasons of compactness, but a more
elaborate Itō-rules version can be constructed. For the
dynamics speci�ed by Eqs. (1) and (2) we have Air

x = 0,
Arev
x = v, Air

v = −γv, Arev
v = F/m, Dx = 0 and Dv =

kTrγ/m and using Eq. (A4) we recover Eq. (3).

Appendix B: Variational solution to the Kramers

equation

We wish to obtain a solution to the approximate
Kramers equation

∂f

∂t
+ v

∂f

∂x
+

(
F

m
− γv̄

)
∂f

∂v
=
kTrγ

m

∂

∂v

(
f
∂(γ−1ψ1)

∂v

)
,

(B1)
that results from inserting Eq. (13) into Eq. (16) without
setting ρ = ρst or v̄ = 0, and using the leading term in
Eq. (17). For simplicity of notation we henceforth write
ψ = γ−1ψ1. The approach involves a variational princi-
ple employed for a similar purpose by Kohler [23], Ziman
[24] and Cercignani [25], and which has been discussed
in a broader context by Martyushev and Seleznev [36].

Casting Eq. (B1) in the form Z = L̂ψ where L̂ is the lin-

ear operator given by L̂(·) = (kTrγ/m)∂/∂v(f∂(·)/∂v),
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we seek a solution by extremising the functional

I[ψ̃] = −(ψ̃, Z) +
1

2
(ψ̃, L̂ψ̃) (B2)

over trial solutions ψ̃ that satisfy relevant constraints´
dvfψ̃ = 0 and

´
dvvfψ̃ = 0. The meaning of the brack-

ets is (A,B) =
´
dvAB such that

(ψ̃, L̂ψ̃) =

ˆ
dvψ̃

kTrγ

m

∂

∂v

(
f
∂ψ̃

∂v

)

= −
ˆ
dv
∂ψ̃

∂v

kTrγ

m
f
∂ψ̃

∂v
. (B3)

The approach can be justi�ed by writing ψ̃ = ψ + η in
which case it may be shown that

I[ψ̃] = I[ψ] +
1

2
(η, L̂η), (B4)

as long as L̂ satis�es (L̂ψ, η) = (ψ, L̂η). It is clear from

Eq. (B3) that (η, L̂η) for the operator L̂ in question is
never positive, so the variational principle may be char-
acterised as the maximisation of I[ψ̃], which is achieved

when ψ̃ = ψ. The value of the functional in such a cir-
cumstance is

I[ψ] =
1

2
(ψ, L̂ψ)− (ψ,Z) = −1

2
(ψ, L̂ψ) ≥ 0. (B5)

We clearly need to evaluate

(ψ̃, Z) =

ˆ
dvψ̃

∂f

∂t
+

ˆ
dvψ̃v

∂f

∂x
+

ˆ
dvψ̃

(
F

m
− γv̄

)
∂f

∂v
,

(B6)
and for the �rst term we writeˆ

dv ψ̃
∂f

∂t
=

ˆ
dv ψ̃

[
∂ρ

∂t

f

ρ
− f

2Tr

∂Tr
∂t

+f

(
m(v − v̄)

kTr

∂v̄

∂t
+
m(v − v̄)2

2kT 2
r

∂Tr
∂t

)]
=

ˆ
dv ψ̃f

(
m(v − v̄)2

2kT 2
r

∂Tr
∂t

)
, (B7)

having used
´
dvfψ̃ = 0 and

´
dvvfψ̃ = 0. For the

second term we getˆ
dv ψ̃v

∂f

∂x
=

ˆ
dv ψ̃v

[
∂ρ

∂x

f

ρ
− f

2Tr

∂Tr
∂x

+f

(
m(v − v̄)

kTr

∂v̄

∂x
+
m(v − v̄)2

2kT 2
r

∂Tr
∂x

)]
=

ˆ
dv ψ̃vf

(
mv

kTr

∂v̄

∂x
+
m(v − v̄)2

2kT 2
r

∂Tr
∂x

)
, (B8)

and by similar reasoning the third term in Eq. (B6)
vanishes. We therefore �nd that

I[ψ̃] = −1

2

ˆ
dv
∂ψ̃

∂v

kTrγ

m
f
∂ψ̃

∂v
− m

2kT 2
r

∂Tr
∂t

ˆ
dvψ̃f(v − v̄)2

−
ˆ
dvψ̃vf

(
m(v − v̄)

kTr

∂v̄

∂x
+
m(v − v̄)2

2kT 2
r

∂Tr
∂x

)
, (B9)

is the expression that has to be maximised over ψ̃ subject
to
´
dvψ̃f = 0 and

´
dvvψ̃f = 0.

The Euler-Lagrange equation that speci�es the optimal
ψ is

−kTrγ
m

∂

∂v
f
∂ψ

∂v
= λ1f + λ2vf −

m

2kT 2
r

∂Tr
∂t

f(v − v̄)2

−vf
(
m(v − v̄)

kTr

∂v̄

∂x
+
m(v − v̄)2

2kT 2
r

∂Tr
∂x

)
= −kTrγ

m

(
−∂ψ
∂v

m(v − v̄)

kTr
f + f

∂2ψ

∂v2

)
, (B10)

where Lagrange multipliers λ1,2 associated with the con-
straints appear. Inserting a trial solution

ψ = ψ0 + a(v − v̄) + b(v − v̄)2 + c(v − v̄)3, (B11)

we get

λ1 + λ2(z + v̄)− m

2kT 2
r

∂Tr
∂t

z2

−(z + v̄)

(
mz

kTr

∂v̄

∂x
+

mz2

2kT 2
r

∂Tr
∂x

)
=
kTrγ

m

((
a+ 2bz + 3cz2

) mz
kTr
− 2b− 6cz

)
, (B12)

where z = v − v̄, and by requiring that the coe�cients
of z2 and z3 be zero together with imposing

´
dvψf =´

dvvψf = 0, we obtain

a =
1

2γTr

∂Tr
∂x

b = − m

4kTrγ

(
1

Tr

∂Tr
∂t

+ 2
∂v̄

∂x
+

v̄

Tr

∂Tr
∂x

)
c = − m

6γkT 2
r

∂Tr
∂x

ψ0 =
1

4γ

(
1

Tr

∂Tr
∂t

+ 2
∂v̄

∂x
+

v̄

Tr

∂Tr
∂x

)
, (B13)

which speci�es the approximate nonequilibrium pdf p =
f(1 +ψ) for transient conditions. If we make the further
approximations v̄ = 0 and ρ ≈ ρst, this reduces to the
solution given in Eq. (21).

Appendix C: Rate of entropy production and

Onsager's principle

We discuss the relationship between the variational ap-
proach to solving the Kramers equation reviewed in Ap-
pendix B and proposals for identifying a nonequilibrium
stationary state based on extremising the rate of ther-
modynamic entropy production. Such a principle has
been discussed many times before [36, 37]. The version
that is most appropriate in the present context is the
maximisation of the Onsager function, the di�erence be-
tween the rate of entropy production and a quantity de-
noted the dissipation function [26]. In classical nonequi-
librium thermodynamics, the rate of entropy production
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Ṡ({Fi, J̃i}) is given by
∑
FiJ̃i, in terms of currents J̃i

(such as the heat �ux or a particle current) and their
respective driving thermodynamic forces Fi (gradients
in the inverse temperature �eld and the negative of the
chemical potential, respectively). The dissipation func-

tion is de�ned as 1
2

∑
J̃iLij J̃j where the Lij is a matrix

of coe�cients. Maximisation of the Onsager function

Ω({J̃i}) =
∑
FiJ̃i −

∑ 1

2
J̃iLij J̃j , (C1)

over currents J̃i for a given set of forces Fi produces
linear relationships between the two in the form J̃i →
Ji =

∑
RijFj , where R = L−1, in agreement with the

phenomenological linear response, and hence provides a
description of a nonequilibrium state. This has been re-
ferred to as Onsager's principle and interpreted as the
constrained maximisation of the rate of production of
entropy. The maximised value of the Onsager function
is 1

2

∑
FiJi [namely, half the rate of entropy production

Ṡ({Fi, Ji}) =
∑
FiJi] if it is assumed that such linear

relationships prevail, and the dissipation function then
takes the value 1

2

∑
JiLijJj = 1

2

∑
FiJi. The formalism

written here in terms of summations could be taken to
apply to integrations over spatially dependent currents
and forces. However, the origin of the dissipation func-
tion and the basis of the variational procedure are not
altogether apparent.
Kohler [23] and Ziman [24] noticed the similarity be-

tween the Onsager function Ω({J̃i}) and the variational

functional I[ψ̃] used in the solution of the stochastic dy-
namics in Appendix B and suggested that the latter pro-
vided a microscopic dynamical underpinning of Onsager's
principle. However, the latter is clearly founded upon
a classical thermodynamic viewpoint where the primary
representation of entropy production is the product of
forces and currents. In contrast, in traditional statistical
mechanics and in stochastic thermodynamics the primary
representation is given in terms of properties of the sys-
tem pdf. We can demonstrate this for the system under
consideration in this study. By multiplying Eq. (5) by
− ln p and integrating, we obtain after some manipula-
tion

∂ρs
∂t

+
∂js
∂x

=

ˆ
dv
∂ ln(1 + ψ)

∂v

kTrγ

m
f
∂ψ

∂v
+
γρ (Tr − T )

Tr
,

(C2)
where ψ speci�es the pdf that satis�es the Kramers equa-
tion, and ρs(x) = −

´
dvp ln p and js(x) = −

´
dvvp ln p

can be regarded as the density and current of (dimen-
sionless) mean system entropy, respectively. We de-
�ne the local temperature of the system T (x, t) through´
dv(v − v̄)2p = ρ(v2 − v̄2) = kTρ/m. The �nal term

in Eq. (C2) corresponds to a Clausius-style entropy �ow
to the system associated with heat transfer from the en-
vironment brought about by the di�erence between Tr
and T . We can therefore identify the spatial density of

the rate of entropy production from a statistical mechan-
ical perspective, valid for transient as well as stationary
situations, as

qs ≈
ˆ
dv
∂ψ

∂v

kTrγ

m
f
∂ψ

∂v
, (C3)

to leading order in inverse friction coe�cient, which cor-
responds to v̄ = 0 and ψ � 1. Notice that qs is therefore
related to the quantity

−(ψ, L̂ψ) = −
ˆ
dvψ

kTrγ

m

∂

∂v

(
f
∂ψ

∂v

)
≈ qs(ψ), (C4)

using the notation of Appendix B.
This interpretation may be demonstrated more di-

rectly from the expression for the mean rate of stochastic
entropy production, d〈∆stot〉/dt in Eq. (10). We have

d〈∆stot〉
dt

=

ˆ
dxdv

m

pkTrγ

(
J ir
v

)2
=

ˆ
dxdv

[
∂ ln(1 + ψ)

∂v

kTrγ

m
f
∂ψ

∂v
+

m

kTr
γρv̄2

]
, (C5)

which for v̄ = 0 and ψ � 1 reduces to the spatial integral
of qs given by Eq. (C3). This formulation emphasises
that qs represents the spatial density of mean stochastic
entropy production for any function ψ and associated pdf
p.
These considerations provide a thermodynamic inter-

pretation of the −(ψ̃, L̂ψ̃) term in the functional I[ψ̃] but
they imply an important change in perspective. The vari-
ational principle can also be cast as the minimisation of
−2I[ψ̃] = −(ψ̃, L̂ψ̃) + 2(ψ̃, Z) = qs(ψ̃) + 2(ψ̃, Z), which
would then be regarded as a minimisation of the spatial
density of the mean rate of stochastic entropy produc-
tion qs(ψ̃) with respect to the trial function ψ̃, under the

constraint of a �xed value of (ψ̃, Z). By identifying the
optimal trial function variationally, we are able to deter-
mine the solution to the Kramers equation. As noted
by Kohler, Ziman and others, such an approach essen-
tially provides a thermodynamic shortcut to solving the
dynamical problem.
The negative of the expression (ψ̃, Z), when restricted

to a stationary state with ∂Tr/∂t = 0 and v̄ = 0, is given
by

−(ψ̃, Z) ≈ −∂Tr
∂x

ˆ
dvψ̃f

mv3

2kT 2
r

=
∂(T−1

r )

∂x

ˆ
dv
[
f + ψ̃f

] mv3

2k
, (C6)

which is the product of the gradient of inverse tempera-
ture and the particle kinetic energy �ux (divided by k)
at position x, therefore resembling the spatial density of
an entropy production rate in classical thermodynamics,
for a trial ψ̃. However, in the context of stochastic ther-
modynamics −(ψ̃, Z) is not to be primarily identi�ed as
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the entropy production, whereas qs most de�nitely can
be so interpreted.
We have followed Kohler and Ziman in regarding the

variational procedure used in Appendix B as a princi-
ple founded in dynamics (i.e. ψ̃ is selected in order to
satisfy the Kramers equation) but which is capable of
a thermodynamic interpretation. However, the appar-
ent thermodynamic principle in operation is not quite as
clear as has been suggested. The semantic subtlety is
whether, following Onsager, we must maximise classical
entropy production

∑
FiJ̃i, subject to a �xed dissipation

function 1
2

∑
J̃iLij J̃j , over currents J̃i for a given set of

forces Fi, or minimise a stochastic thermodynamic rep-
resentation of the spatial density of entropy production,
in this case qs(ψ̃), with respect to a function ψ̃ subject to

a �xed (ψ̃, Z). The fact that both interpretations can be
maintained, depending on whether we use a classical or
a stochastic framework of entropy production, suggests
that taking a particular thermodynamic viewpoint of the
procedure should be treated with caution.

Appendix D: Detailed �uctuation relations

1. Detailed �uctuation relation for ∆stot

The total entropy production associated with a trajec-
tory takes the form

∆sF
tot[X] = ln

[
pF

start[X(0)]PF[X(τ)|X(0)]

pF
end[X(τ)]PR[X†(τ)|X†(0)]

]
, (D1)

where X corresponds to ~x, ~v and X(t) represents the co-
ordinates x(t), v(t) taken by the system under what we

shall call a forward protocol of driving, while X† cor-

responds to ~x†, ~v† with X†(t) representing x†(t), v†(t)
where x†(t) = x(τ − t) and v†(t) = −v(τ − t). The
superscript R indicates driving according to the reverse
of the protocol that operates in the forward process,
which is labelled F. The above expression is compati-
ble with Eq. (3) with PF[~x, ~v] here explicitly written
as pF

start[X(0)]PF[X(τ)|X(0)] in terms of a pdf of initial
coordinates pF

start and a conditional probability density
PF. Note that the expression takes the form of a ratio of
probabilities of a trajectory and a (nominal) reverse or
antitrajectory, the initial pdf of which is pF

end[X(τ)], the
pdf of coordinates at the end of the forward trajectory.
There is an implied inversion [30] of the velocity coor-
dinate such that X(τ) → X†(0) before the continuation
with the reverse trajectory X†(0) → X†(τ). The pdf of
initial coordinates for the reverse trajectory is therefore
determined by the forward process.
The distribution of entropy production for the forward

process can be written as

PF(∆sF
tot = A) (D2)

=

ˆ
dX pF

start[X(0)]PF[X(τ)|X(0)]δ(A−∆sF
tot[X]),

and this depends on the form taken by the initial pdf,
and the nature of the prevailing dynamics.
We next consider the entropy production for a trajec-

tory generated in a process starting from a pdf pR
start and

driven by a reverse protocol. This is

∆sR
tot[X̄] = ln

[
pR

start[X̄(0)]PR[X̄(τ)|X̄(0)]

pR
end[X̄(τ)]PF[X̄†(τ)|X̄†(0)]

]
. (D3)

The trajectory shown here is general but it will prove
fruitful to write X̄ as X† and therefore related to X, i.e.
X̄(0) represents x(τ),−v(τ); X̄(τ) is x(0),−v(0); X̄†(0)
represents x(0), v(0) or X(0); and X̄†(τ) is x(τ), v(τ) or
X(τ). Clearly this speci�cation of X̄ satis�es the dy-
namics under reverse driving. We have

∆sR
tot[X

†] = ln

[
pR

start[X
†(0)]PR[X†(τ)|X†(0)]

pR
end[X†(τ)]PF[X(τ)|X(0)]

]
,(D4)

and we compute the distribution of total entropy produc-
tion in this process:

PR(∆sR
tot = A) (D5)

=

ˆ
dX†pR

start[X
†(0)]PR[X†(τ)|X†(0)]δ(A−∆sR

tot[X
†]).

Writing Eq. (D4) in the form

pR
start[X

†(0)]PR[X†(τ)|X†(0)]

= pR
end[X†(τ)]PF[X(τ)|X(0)]e∆sRtot[X

†], (D6)

and noting that dX = dX†, we �nd that

PR(∆sR
tot = A) =

ˆ
dX† pR

end[X†(τ)]PF[X(τ)|X(0)]

×e∆sRtot[X
†]δ(A−∆sR

tot[X
†]) (D7)

= eA
ˆ
dXpR

end[X†(τ)]PF[X(τ)|X(0)]δ(A−∆sR
tot[X

†]).

Now, if it can be arranged that pR
end[X†(τ)] =

pF
start[X(0)] or pR

end[x,−v] = pF
start[x, v]; and

pR
start[X

†(0)] = pF
end[X(τ)] or pR

start[x,−v] = pF
end[x, v],

then it would follow that

∆sR
tot[X

†] = ln

[
pF

end[X(τ)]PR[X†(τ)|X†(0)]

pF
start[X(0)]PF[X(τ)|X(0)]

]
= −∆sF

tot[X], (D8)

in which case we would obtain the detailed �uctuation
relation

PR(∆sR
tot = A) =

eA
ˆ
dX pF

start[X(0)]PF[X(τ)|X(0)]δ(A+ ∆sF
tot[X])

= eA PF(∆sF
tot = −A). (D9)

It is necessary to state clearly what this means. It relates
the pdf of total entropy production in a forward process
to the pdf of total entropy production when the system is
driven by a reverse protocol instead, with the condition
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that the initial pdf for the reverse process is a velocity
inverted version of the �nal pdf in the forward process,
and similarly the initial pdf for the forward process is a
velocity inverted version of the �nal pdf from the reverse
process. We have essentially followed [6] and [38] in this
derivation.
A single system can be subjected to a forward and

reverse process sequentially such that pR
start[x, v] =

pF
end[x, v] but the condition for the detailed �uctuation
relation to hold would then require the pdf at the end
of the forward sequence to be velocity symmetric. For
a system driven by a repeated sequence of forward and
reverse processes, pF

start[x, v] = pR
end[x, v] would apply as

well, implying velocity symmetry in the pdf at the end
of the reverse sequence. Furthermore, if the forward and
reverse protocols are identical, which requires each to be
symmetric about the midpoint in the interval, the con-
dition for the validity of the detailed �uctuation relation
requires the initial and �nal pdfs to be the same, in which
case Eq. (D9) would reduce to

P (∆stot) = e∆stot P (−∆stot), (D10)

for such an interval, which is the detailed �uctuation re-
lation that is tested in Section IV. The required velocity
symmetry of the pdf at the beginning and end of the
interval does not hold in general, and indeed is not sat-
is�ed by p(x, v, t) in Eq. (21) for the particular system
we have studied, but for large γ the asymmetry is small
and in such circumstances Eq. (D10) will apply to an
approximate extent.

2. Detailed �uctuation relation for ∆s1

We can perform a similar analysis to �nd conditions
for which the relaxational entropy production satis�es a
detailed �uctuation relation. We start with the de�nition
[19, 39]

∆sF
1 [X] = ln

[
pF

start[X(0)]PF[X(τ)|X(0)]

pF
end[X(τ)]PR

ad[XR(τ)|XR(0)]

]
, (D11)

where XR corresponds to ~xR, ~vR with XR(t) represent-
ing xR(t), vR(t) where xR(t) = x(τ − t) and vR(t) =
v(τ − t). Introducing further notation, we have XR(t) =

T̂X†(t) where T̂ is an operator that reverses the sign

of velocity coordinates such that T̂ x = x and T̂ v = −v.
The subscript ad indicates that the trajectoryXR is gen-
erated according to adjoint dynamics, to be discussed
shortly. The distribution of relaxational entropy produc-
tion for the forward process is

PF(∆s1 = A) (D12)

=

ˆ
dX pF

start[X(0)]PF[X(τ)|X(0)]δ(A−∆s1[X]).

Next we consider relaxational entropy production for a
system with a starting pdf pR

start and driven by a reverse

protocol. This is

∆sR
1 [X̄] = ln

[
pR

start[X̄(0)]PR[X̄(τ)|X̄(0)]

pR
end[X̄(τ)]PF

ad[X̄R(τ)|X̄R(0)]

]
. (D13)

Once again we represent X̄ as X† i.e. X̄(0) repre-

sents x(τ),−v(τ), or T̂X(τ); X̄(τ) is x(0),−v(0), or

T̂X(0); X̄R(0) represents x(0),−v(0), and also T̂X(0);

and X̄R(τ) is x(τ),−v(τ) or T̂X(τ). We write

∆sR
1 [X†] = ln

[
pR

start[T̂X(τ)]PR[T̂X(0)|T̂X(τ)]

pR
end[T̂X(0)]PF

ad[T̂X(τ)|T̂X(0)]

]
. (D14)

Now, if it can be arranged that pR
start[T̂X(τ)] =

pF
end[X(τ)] or pR

start[x,−v] = pF
end[x, v]; and

pR
end[T̂X(0)] = pF

start[X(0)] or pR
end[x,−v] = pF

start[x, v];

together with PF
ad[T̂X(τ)|T̂X(0)] = PF[X(τ)|X(0)]

and PR[T̂X(0)|T̂X(τ)] = PR
ad[X(0)|X(τ)], certainly a

demanding set of conditions, then we would be able to
write, using XR(τ) = X(0) and XR(0) = X(τ),

∆sR
1 [X†] = ln

[
pF

end[X(τ)]PR
ad[XR(τ)|XR(0)]

pF
start[X(0)]PF[X(τ)|X(0)]

]
= −∆sF

1 [X]. (D15)

We compute the distribution of relaxational entropy pro-
duction in the reverse process in these circumstances:

PR(∆sR
1 = A) (D16)

=

ˆ
dX†pR

start[X
†(0)]PR[X†(τ)|X†(0)]δ(A−∆sR

1 [X†]),

and writing

pR
start[X

†(0)]PR[X†(τ)|X†(0)]

= pR
start[T̂X(τ)]PR[T̂X(0)|T̂X(τ)]

= pF
end[X(τ)]PR

ad[XR(τ)|XR(0)]

= pF
start[X(0)]PF[X(τ)|X(0)]e−∆sF1 [X], (D17)

which employs several of our assumptions, and also using
∆sR

1 [X†] = −∆sF
1 [X], we �nd that

PR(∆sR
1 = A) =

ˆ
dX pF

start[X(0)]PF[X(τ)|X(0)]

×e−∆sF1 [X]δ(A+ ∆sF
1 [X]) (D18)

= eA
ˆ
dXpF

start[X(0)]PF[X(τ)|X(0)]δ(A+ ∆sF
1 [X]),

and hence obtain the detailed �uctuation relation

PR(∆sR
1 = A) = eA PF(∆sF

1 = −A). (D19)

This relates the pdf of relaxational entropy production in
a backward process starting from pR

start to the pdf of re-
laxational entropy production when the system is driven
by a forward protocol starting from pF

start, subject to the
assumptions made about the relationships between initial
and �nal pdfs and the normal and adjoint dynamics.
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For this �uctuation relation to apply to the case of a
single system driven by a sequence of forward and back-
ward protocols, we require pR

start to equal pF
end and pF

start

to equal pR
end. Bearing in mind the requirements placed

on the pdfs, both pF
start and p

R
start should be velocity sym-

metric, as we found when considering the total entropy
production, and this will hold to an approximation for
large γ for the system we consider here.

The conditions PF
ad[T̂X(τ)|T̂X(0)] = PF[X(τ)|X(0)]

and PR[T̂X(0)|T̂X(τ)] = PR
ad[X(0)|X(τ)], or in more

compact form Pad[T̂X ′|T̂X] = P[X ′|X], can also be jus-
ti�ed for large γ in this system. Adjoint dynamics are
constructed from normal dynamics in order to preserve
a stationary pdf pst but to reverse the probability cur-
rent [6, 15, 39]. In general, if normal dynamics corre-
spond to the SDEs dxi = Aidt + BidWi for dynamical
variables xi then the adjoint dynamics are described by
dxi = Aad

i dt+BidWi [19] with

Aad
i = −Ai + 2

∂Di

∂xi
+ 2Di

∂ ln pst

∂xi
, (D20)

where Di = 1
2B

2
i . We note that for normal dynamics

given by dx = vdt and

dv = −γvdt+
F

m
dt+

(
2kTrγ

m

)1/2

dW, (D21)

corresponding to Ax = v, Dx = 0, Av = −γv + F/m,
Dv = kTrγ/m, and pst ∝ [1 + O(γ−1)] exp(−mv2/2kTr)
according to Eq. (22), then Aad

x = −v and

Aad
v = γv − F

m
− 2kTrγ

m

mv

kTr
+O(γ−1) ≈−γv − F

m
. (D22)

The SDEs for the adjoint dynamics are therefore dx =
−vdt and

dv ≈ −γvdt− F

m
dt+

(
2kTrγ

m

)1/2

dW, (D23)

or dx = V dt together with

dV ≈ −γV dt+
F

m
dt−

(
2kTrγ

m

)1/2

dW, (D24)

where V = −v. Comparing with the SDEs for the nor-
mal dynamics, it is clear that to order γ−1 the velocity
inverted coordinates evolve under adjoint dynamics in
the same way that the original coordinates evolve under
normal dynamics (the change in sign of the noise term is
irrelevant). This is precisely the meaning of the condi-

tion Pad[T̂X ′|T̂X] = P[X ′|X] and we conclude that the
detailed �uctuation relation (D19) should hold for large
γ. It follows that if the forward and reverse protocols are
identical then this relation becomes

P (∆s1) = e∆s1 P (−∆s1), (D25)

which is the detailed �uctuation relation that is investi-
gated in Section IV.

3. No detailed �uctuation relation for ∆s2

The principal component of housekeeping entropy pro-
duction [18, 19] takes the form

∆sF
2 [X] = ln

[
PF[X(τ)|X(0)]

PF
ad[XT(τ)|XT(0)]

]
, (D26)

where XT corresponds to ~xT, ~vT with XT(t) represent-
ing xT(t), vT(t) where xT(t) = x(t) and vT(t) = −v(t).
The subscript ad once again indicates that the trajec-
tory in question is to be generated according to adjoint
dynamics.
The denominator in Eq. (D26) may be written

PF
ad[T̂X(τ)|T̂X(0)] and for small γ−1 we saw previ-

ously that for our system this is approximately equal to
PF[X(τ)|X(0)], which appears in the numerator. The
approximations that support the validity of detailed �uc-
tuation relations for ∆stot and ∆s1 therefore suggest that
∆s2 vanishes, giving us reason not to expect a detailed
�uctuation relation for ∆s2 and to understand the con-
trast between Figures 5, 6 and 7.
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