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Abstract

Perovskite materials possess a broad range of novel and useful properties. This has lead

to perovskites being used in a broad range of applications, with considerable ongoing

research being invested into them. While the bulk structure of these materials have been

thoroughly investigated and documented, the polar surface and nanocluster structures of

these compounds are relatively unknown. This is largely due to conventional structural

determination techniques, such as X-ray and neutron scattering, proving ineffective on

these non-bulk phases.

In this thesis computational methods have been used to model the ABZ3 type per-

ovskite materials KTaO3, KMgF3, and KZnF3. Global optimisation techniques have

been employed to predict the structure of the compounds in non-bulk phases. The

global optimisations were performed using interatomic potentials, with the lowest en-

ergy candidates being refined through density functional theory.

Reconstructions of the (001) polar KTaO3 surface were investigated. It was found

that the lowest energy reconstructions involved the migration of the Ta ions from the

surface, towards the bulk, where they were able to achieve a fuller coordination. The

K ions moved in the opposite direction, migrating towards the surface. Defects in the

form of neutral K and O vacancies were introduced to the surface. It was found that

both types of vacancy resulted in an upward band bending towards the surface. This

indicated an accumulation of holes at the surface for K vacancies, and an accumulation

of electrons in the bulk for O vacancies.

The structures of small nanoclusters, containing 5 - 100 atoms, were predicted for

the compounds KMgF3 and KZnF3. The low energy structures revealed that it was

energetically favourable for the B cations, Mg or Zn, to adopt positions close to the

cluster centre, while the K cations resided at the edges of the clusters. The optical

gap of the clusters was found to vary with the size of the cluster. This indicates the

properties may be tuned by controlling cluster size.
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Preamble

This thesis is focused on the structure determination of perovksite materials outside of

their bulk phase, i.e. surfaces and nanoclusters. The work is entirely computational and

simulation based, and makes use of global optimisation techniques. Chapter 1 introduces

the perovskite structure, and highlights its many useful properties and applications.

Chapter 2 discusses the methods and techniques used to perform the computational

simulations. Chapter 3 introduces the compounds modelled in this thesis, and looks at

their bulk properties. Chapter 4 focuses on reconstructions of the polar (001) KTaO3

surface. Chapter 5 investigates nanoclusters of the compounds KMgF3 and KZnF3.

Chapter 6 presents the conclusions of the thesis. The references are given after chapter

6.
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Chapter 1

Perovskites

1.1 Introduction

This chapter introduces the perovskite class of materials on which this thesis is focused.

The first section begins with a description of the cubic phase, typically seen at high tem-

peratures, and then summarises the different lower symmetry variants cause by steric,

magnetic, and electronic effects. The next section reports a number of key properties

and applications of perovskite materials. Finally different surface types of perovskites

are briefly described.

1.2 Structure

Perovskites are a class of material that adopt the same crystal structure as CaTiO3,

the mineral from which the structure is named after. The ideal cubic perovskite has

the chemical formula ABZ3, where A and B are cations, and Z anions. In many cases

the anion is oxygen, and the B cation a transition metal. The structure adopted by

these compounds is visualised as a lattice of corner sharing BZ6 octahedra, with the A

cations residing in the 12-coordinated holes between octahedra (c.f. Figure 1.1). The

space group of the cubic perovskite cell is P3̄m3, resulting in a cubic cell with the A

cations on the corners of the cell, B cations at the centre of the cell, and Z anions on

the face centres.

The perovskite structure is highly flexible in that it is capable of forming from a large

array of element combinations [1–3]. Moreover, the flexibility of this structure enables

it to accommodate a wide range of defects, while maintaining structural stability [4–9].

Perovskites can also form layered heterostructures, in which a perovskite is interlayered

with different compounds or structures [10]. One such example is the Ruddlesden-

Popper phase, [11–13], where layers of ABZ3 perovskite and AZ rock salt are found to

alternate through the material.
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Figure 1.1: (a) ABZ3 Cubic perovskite unit cell, where A are the purple cations on the
corners, B the grey cations at the centre of the octahedra and unit cell, and Z the red
anions on the unit cell face centres forming the octahedra vertices. (b) Extended view
the perovskite lattice; 4x4x4 supercell.

1.2.1 Structural Distortions

The versatility of the perovskite structure is a result of its ability to distort. Deviation

from the ideal cubic structure may occur due to non-ideal atomic radii ratios, or elec-

tronic and magnetic effects. The structural changes are often characterised by rotations

or distortions of the BZ6 octahedra [14].

Atom Size

Goldschmidt, a pioneer in crystal chemistry during the 1920s, devised a “tolerance

factor” to determine the formability of perovskites based on the atomic radii of the

constituents [15]. The Goldschmidt tolerance factor is expressed as:

t =
rA + rZ√
2(rB + rZ)

(1.1)

where ri is the ionic radius of atom species i. It was found, experimentally, that the

perovskite structure is formed when 1.13 > t > 0.75 [16]. Within this range the ideal

cubic structure is formed when 0.89 < t < 1.00. When t is below 0.89, the octahe-

dra rotates to form an orthorhombic or rhombohedral structure, whereas above 1.00 a

hexagonal arrangement is adopted. When t is less than 0.75 the ilmenite structure is

typically formed [16]; see Figure 1.2.

The restraint on the Goldschmidt tolerance factor is a necessary, but not sufficient,

condition in the formability of perovskites. Another restraint on the formability of

perovskites is the octahedral factor [2], with the requirement:

toct =
rB
rZ

> 0.425 (1.2)
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Figure 1.2: The ABZ3 ilmenite structure. The purple spheres are the A cations, the
grey spheres B cations, and the red spheres the Z anions.

This restraint imposes a minimum B to Z size ratio. If the B cation is too small the

octahedra will be unstable due to the Z anions approaching too closely to each other.

Jahn-Teller Distortions

A Jahn–Teller distortion [17, 18] can occur in perovskites if the B cation is an open shell

transition metal. Such distortions are associated with an increased separation in the en-

ergy between an occupied and an unoccupied d-orbital. For the ideal cubic perovskite,

the regular BZ6 octahedra results in the d-orbitals splitting into three degenerate lower

energy t2g orbitals and two degenerate higher energy eg orbitals. Distorting the octahe-

dra results in either the t2g or eg orbitals splitting. If either are partially occupied, the

splitting would result in a stabilisation of the system. Typically, two of the B–Z bonds

in the octahedral complex elongate and the other four shorten or two of the B–Z bonds

contract and the other four elongate. An example of a d9 degeneracy, which may been

seen in a cuprate perovskite such as KCuF3, is shown in Figure 1.3. The distortion is

much more prominent when the degeneracy occurs in the eg orbital, as these orbitals

point towards the ligands.

Ferroelectric Distortion

A material is said to be ferroelectric if it possesses a spontaneous electric polarisation,

which can be reversed by the application of an electric field. The ferroelectric behaviour

of a material occurs at temperatures below the Curie point, Tc. Above this temperature,

the lattice vibrations are large enough to disrupt the spontaneous electronic polarisation

and the material is said to be in a paraelectric phase. In perovskites, the polarisation

often causes the crystal to distort from a cubic to a tetragonal phase by stretching

the octahedra and unit cell asymmetrically in one direction. In PbVO3, the effect is
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Figure 1.3: Example of a d9 degeneracy in the d-orbitals before and after a Jahn–Teller
distortion of an octahedral complex.

Figure 1.4: Example of a ferroelectric distortion in the perovskite PbVO3. The purple
spheres are Pb ions, the grey V ions, and the red O ions.

so pronounced that the corner sharing octahedra become base corner sharing, square

pyramids [19]; see Figure 1.4.

1.3 Properties and Applications

Perovskites possess a number of interesting and useful properties, which has lead to them

being used in a wide range of applications. Discussed below are some of the properties

that make certain perovskites useful for specific applications.

High Dielectric and Ferroelectricity

Many ferroelectric perovskites, such as BaTiO3, possess a large dielectric constant

making them useful as capacitors. The effectiveness of a capacitor is determined

by its ability to store charge, known as capacitance, which is calculated as:

C =
εωA

d
(1.3)

where εω is the frequency dependant permittivity (dielectric constant), A the area
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of the plates, and d the distance between the plates. Thus, using a material with a

higher dielectric constant allows a capacitor of the same size to hold more charge.

Ferroelectric capacitors are used in Ferroelectric RAM [20]. They are read by

applying an electric field to the memory cell and measuring the charge required

to change the state of the cell. The measured charge contains information about

what was previously stored on the cell. The downside to this is once the state of

the cell has been changed the information is lost, and so the data must be used or

written somewhere else.

Piezoelectricity and Pyroelectricity

If a perovskite is a ferroelectric, it will also be pyroelectric and piezoelectric. Thus,

changes in temperature and applied stress will induce a voltage. This makes

perovskites such as PZT useful in sensory applications such as: pressure pads,

microphones and infrared sensors [3].

Superconductivity

A material is said to be in a superconducting state when its electrical resistance

falls to exactly zero. This happens when the temperature falls below its supercon-

ducting critical temperature Tc. Another property of superconducting materials is

that they repel magnetic fields due to the Meissner effect [21]. Cuprates with the

perovskite structure such as YBaCuO make up the majority of High Temperature

Superconductors (HTS) [22]. HTS are materials with Tc > 77 K, and so can be

cooled with liquid nitrogen instead of the more expensive liquid helium.

The main application of superconductors is in electromagnets, where they are

much more efficient than conventional electromagnets. These superconducting

magnets increase the performance of MRI machines, mass spectrometers, and

particle accelerators. Superconductors are also used in Superconducting Quantum

Interference Devices (SQUID) [23] to measure very small magnetic fields.

Future applications for superconductors include: power transmission and storage,

as the absence of resistance prevent power dissipation; and magnetic levitation,

which has so far been used in maglev trains.

Colossal Magnetoresistance

This is the phenomenon seen in some manganese based perovskites, i.e. LnCaMnO3,

where the resistance of the material is changed by orders of magnitude in the pres-

ence of a magnetic field. The main potential application for this property is in

hard drives, where the read heads currently make use of Tunnel Magnetoresistance

[24].

Electro-chemical Properties

The perovskite structure can incorporate a wide range of impurities and defects
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Figure 1.5: The planes in the: (a) (001); (b) (011); and (c) (001) direction of a cubic
ABZ3 perovskite. The A cations are the purple spheres, the B cations the grey, and the
Z anions the red.

and remain structurally stable. Due to this, perovskites such as LaMO3 are promis-

ing candidates in electro-chemical applications such as fuel cells [25, 26], where the

flexibility of the structure may aid ion transport.

Each year more and more novel applications are being discovered for perovskites,

particularly at their surfaces and interfaces. Thus, it is suggested that perovskite oxides

may take over from silicon in the next generation of electronic devices [27–29].

1.4 Perovskite Surface Types

Many of the novel properties attributed to perovskites are associated with their surfaces

and interfaces. When investigating perovskites, there are generally three directions for

which surfaces planes are considered: the (001), the (011), and the (111). The planes in

these directions are shown in Figure 1.5. The (001) surface is generally the most widely

studied, and often the most stable. This direction contains alternating planes of AZ

and BZ2. Thus, a perovskite can be cleaved to produce a (001) surface of either AZ, or

BZ2. The distance separating two planes is half that of the lattice parameter, i.ei 0.5a.

The (011) direction contains alternating planes of ABZ and Z2, with a plane separation

of 0.35a. The (111) direction contains alternating planes of AZ3 and B, with a plane

separation of 0.29a.

Results for the (001) surface will be presented in this thesis. Charge neutral layers

are formed in the (001) direction when the charge on the A cation is equal and opposite

to that of the Z anion and the charge on the B cation is double that of the Z anion. In

the case of charge neutral layers, relaxed bulk terminated planes are generally the most

stable. When the layers are not charge neutral the (001) surface becomes polar and must

be reconstructed to remove the dipole perpendicular to the surface [30]. Predicting the

structure of polar surfaces is often a challenge. This is especially so in ternary compounds
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such as perovskites, as the variety of elements adds an additional level of complexity

compared to the surfaces of single element and binary compounds. This thesis presents

a method that enabled the problem of predicting the structure for polar perovskite

surfaces to be resolved.
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Chapter 2

Methods

2.1 Introduction

The work presented in this thesis revolves around the structure determination of per-

ovskite materials. In this chapter the methods and theory required to perform the work

of this thesis are discussed. Topics included are: crystalline materials and reciprocal

space, atomic and electronic level computational simulation methods, global and local

optimisation techniques, defect calculations, and surface modelling methods. A brief

discussion on the implementation of the software packages used in this thesis is given at

the end.

2.2 Crystalline Systems

Many solid materials possess crystalline structures. These structures, or crystal lattices,

can be thought of as an individual atom or a series of atoms repeated periodically

throughout the system. The crystal lattice can be separated into two components: (a)

the Bravais lattice [31], an infinite array of discrete points with an arrangement and

orientation that appear exactly the same regardless of the point chosen. (b) the local

arrangement of atoms around each lattice point commonly referred to as the unit cell.

The position vector of all the Bravais lattice points from a given point are defined

as:

R = n1a1 + n2a2 + n3a3 (2.1)

where a1, a2, and a3 are the three vectors describing the lattice and n1, n2, and n3 are

integers. A translation by any integer value of one of the lattice vectors finds another

lattice point, and results in the same crystal structure. In the case of cubic perovskites,

the crystal structure of interest in this thesis, the bravais lattice is cubic with a unit cell

containing 5 atoms (ABX3). Any vector r′ within the crystal lattice can be separated

into two components such that:

r′ = R + r (2.2)
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where R is the vector to the nearest lattice site, and r the vector from that lattice site

(i.e contained within a unit cell).

2.2.1 Reciprocal lattice, k-points and the first Brillouin zone

The reciprocal lattice plays a fundamental role in the study of periodic structures.

Reciprocal space, often termed k-space, is widely used in the analysis of X-ray diffraction,

phonon dispersion, and electronic bands; the latter two are used within this thesis.

The reciprocal lattice vectors are defined as:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
,

b2 = 2π
a3 × a1

a1 · (a2 × a3)
,

b3 = 2π
a1 × a2

a1 · (a2 × a3)
.

(2.3)

In the case of a cubic system, where all real space lattice vectors are orthogonal and of

equal length, the reciprocal lattice vectors can be seen to align parallel to the real space

lattice vectors from equation (2.1). A set of reciprocal lattice points can be defined as:

K = n1b1 + n2b2 + n3b3 (2.4)

which relate to plane waves with the periodicity of the real space Bravais lattice such

that:

e±iK·r = cos(K · r′)± isin(K · r′) (2.5)

where r′ is a vector in real space. Using equation 2.2 gives:

e±iK·r
′

= e±iK·(r+R) = e±iK·Re±iK·r = e±iK·r (2.6)

as

eiK·R = 1 (2.7)

i.e. at two points a distance R apart the amplitude of the wave is the same.

Just as real space can be represented by a unit cell, so can reciprocal space. The

most commonly used cell in reciprocal space is the first Brillouin zone. This cell is

formed by joining the bisectors of all the nearest reciprocal lattice sites. Just as any real

space vector r′ can be broken down as in equation 2.2 so that r determines the position

in a unit cell, k′, an arbitrary vector is reciprocal space, can be decomposed such that:

k′ = K + k (2.8)

The significance of the Brillouin zone is that it contains all the unique wave vectors k

required to model interactions outside of the real space unit cell. At a real space lattice
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site R and using equation 2.7:

eik
′·R = ei(k+K)·R = eiK·Reik·R = eik·R (2.9)

Thus, a wave vector not in the Brillouin zone can be translated into it by the addition

or subtraction of some reciprocal lattice vector K.

The usefulness of these wave vectors, or k-points as they are often called, within

the Brillouin zone can be seen in the modelling of periodic systems. Take, for example,

the vibration of atoms, and for simplicity consider a one-dimensional case, where each

unit cell contains just one atom (Figure 2.1 (a)). Note that as an atom within the unit

cell moves, so do all its images, with the same displacement. As the unit cell contains

only one atom, each atom vibrates in phase. To model the system where each adjacent

atom moves in the opposite direction (anti-phase) a cell containing two atoms would

be required (Figure 2.1 (b)). An alternative way to model this is to use the one atom

cell but apply a plane wave across the system with a wavelength equal to the length of

two unit cells, i.e. a wave vector 1
2K. Figure 2.1 (c) shows how the application of this

wave would affect the vibrations. From this it can be seen that the use of k-points allow

the modelling of lattice interactions that would have otherwise required a much larger

periodic cell.
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Figure 2.1: Atom vibrations in one dimension. Each unit cell contains one atom
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2.3 Atomistic Calculations

2.3.1 Introduction

The work of this thesis is heavily based on the atomic structure of perovskite materials.

Atomistic or force field based techniques are an efficient approach to determining the

atomic structure of materials. Atomistic models typically simulate a system based upon

atomic positions, however, they can also be used to model based upon molecular posi-

tions. Generally, atoms are treated as point like particles with a variety of interatomic

potentials used to model the interactions between each particle. As these techniques

do not model at the electronic level they are unable to calculate many of the electronic

properties associated with a material. Force field methods have, however, been shown

to reproduce atomic structure accurately [32–36]. The speed of atomistic methods also

makes them ideal for use in global structural optimisation techniques. All atomistic

simulations in this thesis were performed within the General Utility Lattice Package

(GULP) [37, 38].

2.3.2 Calculating the Energy

As this thesis concentrates on the structure determination of pervoskites, the energy

of a system is a highly important property. The stability of a materials structure is

determined by its energy, with a lower energy indicating greater stability. In general

the energy of a system is calculated from a reference point and so stability is measured

as a change in energy. The change in energy of a system is often decomposed into

an expansion in terms of interactions between different subsets of the total number of

atoms, N [38]:

E =

N∑
i=1

Ei +
1

2!

N∑
i=1

N∑
j=1

Eij +
1

3!

N∑
i=1

N∑
j=1

N∑
k=1

Eijk + . . . (2.10)

where the first term Ei represents the change in self energy of the atoms, the second

term Eij two-body interactions, the third term Eijk three-body etc. For the atomistic

methods used, the self energies of atoms are the result of atomic polarisation due to

external potential fields. The two-body terms are due to pairwise interactions between

atoms such as the Coulomb interaction, and are dependant upon the distance between

the particles. Three-body terms are typically based on bond angles where a penalty, or

increase in energy, is due to the size of the deviation from ideal bond angles. For the

systems modelled in this thesis the energy contributions from each term generally get

smaller the higher the order and so only terms up to two-body have been considered.
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Pair Potentials

The Coulomb interaction is a two-body potential that models the electrostatic interac-

tion between two electrically charged particles and is described by Coulombs law:

ECoulomb
ij =

qiqj
4πε0rij

(2.11)

where q is the charge on the ion, rij is the distance between ions i and j, and the

constant ε0 is the permittivity of free space. The Coulomb potential is a long range

interaction decaying at a slow rate of 1
r . The Coulomb energy is generally the most

dominant contribution to the total internal energy of the system.

Two other two-body potentials types were used to model the short range interactions.

The first is the Lennard-Jones potential [39]:

ELJ
ij =

B

r12
ij

− C

r6
ij

(2.12)

The second term is the attractive dispersion force (van der Waals); a result of the

interaction between fluctuating dipoles on the two atoms. The first term represents the

close range repulsion experienced by atoms due to the Pauli repulsion of overlapping

electron orbitals. This term must increase in magnitude more rapidly than the second

term with decreasing separation to ensure atoms do not approach too closely. B and C

are parameters that are fit to reproduce experimental or ab initio calculated properties.

Due to the form of the potential there will exist a distance, rij , between the atoms

at which the energy will be a minimum, thus corresponding to the equilibrium bond

distance. Above this value the gradient of the dispersive term will be greater and thus

the atom will experience a net attraction. Below this distance the Pauli force is greater

and the ions experience a net repulsion. The Lennard-Jones potentials have been shown

to successfully model the interaction between neutral noble gases [39].

The second short range interatomic potential is the Buckingham model:

EBuck
ij = Ae

(
−rij
ρ

) − C

r6
ij

(2.13)

The second term is the same dispersive term used in the Lennard-Jones potential (2.12).

The Buckingham potential differs in how it models the Pauli repulsion. Instead of

the 1
r12 decay used in the Lennard-Jones potential, an exponential decay is employed.

This is used because the radial decay of electron orbitals is found to be exponential.

Additionally, two fitting parameters, A and ρ, are used in the first term. This gives

more control over the shape of the potential curves. As r → 0 the exponential term

converges to a constant where as the r−6 term diverges. This results in the Buckingham

potential becoming increasingly attractive which is unrealistic (we are not modelling

gravity!). One method for overcoming this is to additionally include the r−12 term.
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Figure 2.2: The interactions experienced by each particle in the Shell Model. The circles
labelled “s” represents a shell and the circles labelled “c” are cores. The core and shell
of and individual ion are coupled solely by a spring. Both the core and shell experience
Coulomb potentials from both cores and shells of other ions. Only the shell of an ion
experiences the short range potentials.

Both the Lennard-Jones (2.12) and Buckingham (2.13) potentials are short range, with

the energy of interaction tending to zero rapidly with increasing r. Thus, computational

costs can be reduced by applying appropriate radial cut-offs to these potentials without

having a significant impact upon the accuracy of the calculation.

Shell Model

In this thesis the incipient ferroelectric material KTaO3 is modelled. The polarisability

of this material is likely play a significant role in the structure, so the Shell Model was

employed [40]. This model separates an individual ion into two point charges labelled

core and shell which are linked by a spring. The point charge of the core represents the

nucleus and the tightly bound inner electrons. The point charge of the shell represents

the centre of the more loosely bound outer electrons of the ion. The sum of the core

and shell charges is simply the total charge of the ion. The core and shell of the same

ion are electrostatically screened from each other so they do not feel a Coulomb force

between each other. Instead, the two components are only coupled to each other by the

spring which is generally harmonic although higher order terms may be included. Note

that the charges of the core and shell of an ion interact electrostatically with both the

core and shell of other ions.

As the shell represents the valence or outer electrons, the short range potentials,

which model the Pauli repulsion and van der Waals (dipoles) interaction, are typically

only applied to the shells. Figure 2.2 highlights the interactions between two different

ions with cores and shells. The energy due to the polarisation of the ion (separation of
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core and shell) is simply the energy stored in a spring and is given as:

Espring
cs =

1

2!
k2xcs +

1

4!
k4xcs (2.14)

where xcs is the core–shell separation on an ion and k2 and k4 are spring constants for

a given species. Typically, the high frequency dielectric constant, ε∞, is used for fitting

the spring constant, as this property is related to the electronic relaxation time.

2.3.3 Periodic calculations

Perovskites in their bulk phase contain a large number of atoms (∼ 1028 m−3). It is

impractical to model a system of this size. Fortunately, the perovskite is an ordered

material and so can be modelled as infinitely repeating periodic units as discussed in

section 2.2. The energy of an infinite lattice is infinite. Instead, it is more practical to

calculate the energy for a single unit cell

The lattice energy of a unit cell is determined as the energy of all interactions within

the cell plus half the energy of the interactions between the cell and the rest of the bulk:

Ecell = Eij +
1

2
Eik (2.15)

where i and j go over all atoms in the unit cell and k goes over all atoms outside the

unit cell. The short range potentials are given radial cut-offs and so only ions within the

cut-off distance of the unit cell need be considered. The Coulomb potential (2.11) on the

other hand, while having a simple form, is much more difficult to calculate in periodic

materials. The reason for this is that while the Coulomb potential decays as 1
r , the

number of interacting ions increases with the surface area of the sphere surrounding the

ion which is 4πr2. This means the energy contributions do not diminish with increasing

radial cut-off. As a result the energy of the system depends upon the cut-off distance

chosen. In this thesis the Ewald Summation [41] technique has been employed to handle

this problem.

2.3.4 Fitting

For this thesis new interatomic potentials were developed to model KTaO3. Creating

potentials that accurately model the behaviour of a system is done by fitting the po-

tential parameters to observables. The observables are typically taken from ab initio

calculations or experimental data. The aim it to minimise the Sum of Squares (SS):

SS =
∑
i=1

wi(f
calc
i − fexpi )2, (2.16)

where f calc and fexp are the calculated and observable data, respectively, and w is

the weighting factor given to each observable. The sum of squares is an indication of
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how closely the potential parameters reproduce the observable values they are being fit

against.

Two different techniques were used to perform the fit. The first method follows a

typical fitting procedure where the potential parameters are optimised such that the

sum of squares relating to the observables is minimized. The second method is the so

called relaxed fit. This method optimises the potential parameters such that the sum

of squares relating to the observables is minimized for the relaxed geometry. I.e. the

potential parameters are modified, the structure is relaxed, and then the sum of squares

is calculated. The process is repeated until the sum of squares is minimized. Due to the

geometry relaxations performed, the second method is computationally more demanding

than the first.

Typically, the first method is used in the initial stages of fitting to obtain a rough

set of parameters. These parameters are then refined using the computationally more

intensive relaxed fit method. It is often helpful to start with initial parameters that

give a reasonable representation of the system. These parameters might come from an

existing set in the literature for the material of interest, an existing set for a similar

compound, or even just a sensible estimate.

2.4 Electronic Structure Calculations

In this thesis the electronic properties of the perovskites are of great interest. Tech-

niques based at the atomic level are unable to calculate many of these properties and so

electronic structure methods must be used. Another advantage of electronic structure

methods is that the potentials are generally more transferable. This makes them more

reliable than atomistic based approaches when modelling systems that can not be bench

marked against experiment, e.g. small atomic clusters. The drawback of using electronic

structure methods is that they are computationally intensive, even when heavily laden

with approximations, and are thus limited to smaller systems or smaller data sets.

Electronic structure codes typically run at varying levels of theory, this thesis utilises

standard density functional theory (DFT) methods based upon the Kohn-Sham equa-

tions described in reference [42]. One of the pitfalls with DFT is that functionals

for exchange (quantum requirement of anti-symmetric wave function) and correlation

(electron-electron interaction) are unknown. A popular approach to this problem is the

generalised gradient approximation (GGA) which uses the density and density gradient

to determine the exchange-correlation energy. The GGA functionals used in this thesis

are the PBE and PBEsol functionals [43, 44].

The molecular orbitals ψ used within the electronic structure methods are formed
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from linear combinations of basis orbitals φ:

ψi =

n∑
j

cjφj (2.17)

where n is the number of orbitals and cj are the coefficients corresponding to the given

basis orbital. The set of basis orbitals used to determine the wave function are defined

to be the basis set. The creation of the wave function from the orbitals is analogous

to the way a three-dimensional vector is composed of an x, y, and z component. There

are two approaches to constructing the basis set: one uses plane waves, the other atom

centred orbitals.

Atom Centred Orbitals

Atom centred orbital basis sets use free-atom-like orbitals centred on each of the atoms

in the system to create their basis set. Typically, these atomic orbitals themselves are

created from a minimal basis set [45, 46].

Plane Wave Orbitals

In some codes where periodic boundary conditions are enforced, the basis set is instead

composed of plane waves such that:

ψi =

Gmax∑
G

cGe
iG·r (2.18)

where G is a reciprocal lattice vector and r a point in real space. Gmax is defined to

be the highest energy plane wave that satisfies h̄2

2mG
2
max ≤ Ecut. Ecut effectively defines

the resolution of the basis set, with a higher value giving a more precise basis set but

at the cost of computational speed. Generally, Ecut is a variable definable within the

software package being used. The way in which the plane waves model the electronic

wave functions is analogous to the method in which the Fourier series can model a square

wave.

Pseudo-Potentials

Close to the nuclei the wave function and gradient may be very large. These regions

are difficult to model using plane waves as they require very large values of Ecut which

would make the calculation very costly. To overcome this problem, many plane based

codes utilise pseudo-potentials [47]. Electrons close to the core are tightly bound and

not involved in molecular bonding. To this end, the effects of the core electrons and the

nucleus can be subsumed into a pseudo-potential. This simplifies the problem so that

the plane wave basis set only has to model the valence electrons, reducing computational
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cost.

2.5 Local Optimisation

As this thesis deals with structure prediction it is important to find the lowest energy

structure, and thus there is a need to perform local minimisations. As the calculated

energy depends upon the atomic separation, such algorithms relax the ion positions in

small steps which result in a gradual downhill step on the energy landscape until certain

criteria are met. The algorithms employed use a combination of functions (energies),

gradients (Forces), and second derivatives (Hessian matrix H), and are based on a

sequence of one-dimensional line searches.

For example, in the method of steepest descents, the direction of the one-dimensional

line search is always in the largest downhill direction. This is repeated until a local min-

imum is reached with respect to the atomic arrangement. The effect of this zigzaging

to the minimum is that a larger distance than necessary is being traversed. A more effi-

cient modification of this method is the conjugate gradients algorithm. This method uses

information from the previous step to determine a more optimal route to the minimum.

When determining the direction of the one-dimensional line search the above meth-

ods only take into consideration the energy and gradients. For small systems and sys-

tems close to the harmonic region algorithms involving the Hessian matrix are more

efficient. A quasi-Newtonian method using a BFGS update of an inverse Hessian [48]

was employed in this thesis.

On occasion, the stationary point found by one of the optimisation techniques may

not be a minimum. For these points, the eigenvectors are used to determine if there are

any imaginary modes, and then downhill displacements are made along such directions.

In this thesis the RFO [49] method was used in such circumstances. Consequently, this

method can be used to locate transition states.

As each method has its advantages and disadvantages, it can be beneficial to switch

between optimisation methods when given criteria are reached.

2.6 Global Optimisation

This thesis is concerned with prediction of surface and cluster structures of perovskite

materials, i.e. the lowest structure in existence is sought after. As the structure in these

phases is currently unknown, or up for debate (no experimentally defined structures),

global optimisation techniques must be employed to test a range of possible configu-

rations with the aim of determining the lowest energy structure, the global minimum

(GM). Unlike local minimisations, the search for a global minimum may require passing

over potential energy barriers, so as to allow the full search space to be covered. As

the search space can be very large, success is not guaranteed; there can be a degree of
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uncertainty in results. Below are the techniques used within this thesis.

Deterministic Quenching

This method was used for both the cluster and surface searches. Initial structures

are created with the atoms in random positions, which are then relaxed using

local minimisation techniques. This process is repeated many times in order to

fully sample the search space. For large systems the number of possible atomic

configurations is going to be extensive, and so the likelihood of finding the global

minimum is going to be small. To narrow down the search, book keeping (keeping

a record of what has already been tested) might be introduced to prevent duplicate

searches. Additionally, constraints based on scientific knowledge can be enforced to

exclude arrangements that are known to be undesirable. For example, a restriction

on the minimum interatomic separation.

Genetic Algorithm (GA)

Genetic algorithms was used in the structure prediction of clusters. This method

Figure 2.3: Flow chart of a typical GA routine

[50–52] mimics natures process of evolution. The competitiveness of a candidate

structure is determined by its energy (lower energy = better).
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Figure 2.3 shows a flow diagram of the steps carried out for a generic GA routine.

The GA begins by generating a set of random candidates to become the initial

population. Depending on the type of GA employed, the measured energy is either

unrelaxed (Darwinian), or relaxed (Lamarckian). The population then undergo a

tournament for the right to procreate. A population of child candidate structures

are created via either crossover or mutation of the tournament winners. The

candidates of the child and current population then compete in a tournament for

survival. The winners become the new population from which the next generation

begins. This process is repeated until a pre-set number of generations have been

completed.

Basin Hopping

The basin hopping technique [53, 54] was also used for cluster generation. This

method is essentially a random walk along an energy landscape from one local

minimum to the next. The process is initialised by creating a random structure

which is relaxed and the energy recorded. The atomic positions of the candidate

structure are then either fractionally altered or swapped, and then relaxed again.

If the new candidate has a lower energy than its predecessor then it becomes the

current structure. Otherwise the predecessor is kept. The process of modifying

and relaxing candidates is repeated until a predetermined number of structures

have been tested.

2.7 Defects

The formation of defects play a vital role in the properties of a material. Defect engi-

neering, the intentional use of defects, is an important method in which to tailor the

properties of a material [55]. The significant effects defects can have on a materials

property, combined with the large array of possible defects in just one system, make

the computational modelling of defects an attractive prospect not only for the sake of

understanding defect properties, but also in the prediction of new materials.

A defect is an imperfection or disorder in an system. In a crystal this could simply

be the displacement of an atom off a lattice site, and thus the breaking or reducing of the

symmetry of the system. Defects can also change the stoichiometry, e.g. vacancies, add

atoms, or the addition of foreign species (impurities). Breaks in the order of a system

occurring at a particular lattice site or point in space are usually termed point defects.

Point defects may cluster to reduce the energy of the system, producing larger systems

of defects such as Frenkel and Schottky, line and planar defects.

The effect a defect has on the energy of a system can be calculated as a difference:

∆E = ED − EIdeal (2.19)
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where ED is the energy of the system that includes the defect and EIdeal is the energy

of the ideal system (no defect). In the computational modelling of defects there are two

commonly used approaches. The first is the cluster approach, which is well suited to

modelling infinitely dilute defects. Of these methods the Mott-Littleton approach [56]

is one of the most popular. The second method is the super cell approach, which is

well suited to modelling systems with a sizeable defect concentration. Details of both

methods are now discussed.

The Mott-Littleton Method

Figure 2.4: The two regions as used in the Mott-Littleton method for defects

The Mott-Littleton approach uses a multi region strategy in which a defect is centred

within an inner spherical region (region 1) that is surrounded by point charges extending

to infinity (region 2); see Figure 2.4. The atoms in the inner region, close to the defect,

are allowed to relax explicitly with respect to their cartesian coordinates. Atoms in the

outer region are expected to interact weakly with the defect. For this reason they are

instead displaced from their normal lattice position by an amount proportional to the net

force experienced. To save on computational effort the outer region is often separated

into two slightly different regions. In the outer of these two regions only electrostatic

interactions are considered. To ensure the approximations of this method are valid the

initial defect free system must be geometry relaxed, and the size of the regions for the

defected system must be converged with respect to defect energy.

2.7.1 The Super Cell Method

The defect is modelled in a super cell. The concentration of defects in the system can

be controlled by the size of the cell. These calculations are performed in the same

manner as any other periodic calculation. For codes in which cluster methods such

as the Mott-Littleton approach are unavailable the super cell method must be used to
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Figure 2.5: A 2-D representation of a defect in a super cell. The image on the left is a
simple 1x1 cell, the image on the right is a 2x2. The size of the super cell controls the
concentration of the defects and the defect-defect interaction

model infinitely dilute defects. To converge the energy of an isolated defect the distance

between the defect and its images is increased by increasing the size of the super cell.

Charge neutral defects, e.g. a Ca2+ impurity replacing a Mg2+ in MgO are relatively

quick to converge in comparison to charged defects. This is due to the long range of the

electrostatic interaction between the charged images. To improve the convergence of an

isolated charged defect in a cubic supercell the following term can be added [57]:

αQ2

2ε0L
(2.20)

the terms α, Q, ε0, and L are the Madelung constant, the defect charge, the static

dielectric constant, and the length of the supercell respectively. This technique can be

generalised to non-cubic systems.

2.7.2 Defect formation energy

Equation 2.19 gives the energetic effect a defect has on a system, however, this value

does not determine how favourable the formation of the defect is. To ascertain whether

a defect is likely to form the formation energy should be computed.

Considering a perovskite system ABO3, with arbitrary metals A2+ and B4+, the

equation for the formation energies of neutral A, B, and O vacancies are [58, 59]:

EDefect = ED
ABO3

− EABO3 +NAµA +NBµB +NOµO (2.21)

where ED
ABO3

is the energy of the system including the defect, EABO3 the energy of the

perfect system, µi the chemical potential of the corresponding element, and Ni the num-

ber of vacancies of the relevant species. The value for the chemical potentials depends

upon the environment, with a higher concentration of a particular species resulting in a
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Figure 2.6: Ternary phase diagram for hypothetical material ABO3.

larger value. The chemical potentials are constrained to satisfy the condition:

µA + µB + 3µO = µABO3 (2.22)

Additionally, the chemical potential of each element must not be larger than the potential

in its pure phase, i.e.:

µA ≤ µA(s)

µB ≤ µB(s)

µO ≤ µO(g)

(2.23)

otherwise the precipitation of each of these pure phases will be favourable. Assuming

that the binary compounds AO and BO2 are stable, the additional constraints:

µA + µO ≤ µAO

µB + 2µO ≤ µBO2

(2.24)

must also be met to prevent the precipitation of these binary compounds. The result of

these conditions on the chemical potentials are more easily viewed as a phase diagram

as depicted in Figure 2.6. The shaded area represents the region in which the chemical

potential conditions are satisfied. The perimeter of the area corresponds to chemical

potentials in which the system is in thermodynamic equilibrium with reservoirs of ABO3

and another of the materials. The vertices correspond to regions in which reservoirs of

ABO3 and two other materials are in thermodynamic equilibrium. Take for example
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the point labelled 1 in Figure 2.6. At this point reservoirs of ABO3, O2(g) and AO(s)

are in equilibrium and the following conditions are satisfied:

µA + µB + 3µO = µABO3

µA + µO = µAO

µO = µO(g)

(2.25)

This can be rearranged to give:

µO = µO(g)

µA = µAO − µO(g)

µB = µABO3 − 2µO(g) − µAO

(2.26)

Each of the five points in Figure 2.6 produce a set of chemical potential equations similar

to equation (2.26). It is at these vertices in the phase diagram that the defect energies

are typically calculated. Thus, for each type of vacancy VA, VB, and VO, in the example

ABO3 system there would be five different defect formation energies depending on the

environment. The values used for the chemical potentials µABO3 , µAO, µAO2 , µA(s),

µB(s), and µO(g) are typically the final geometry relaxed energies of each of the systems.

Sometimes it is preferable to set the chemical potential of each of the elements in their

pure phase to be zero:

µA → µA − µA(s)

µB → µB − µB(s)

µO → µO − µO(g)

(2.27)

This would then make the values for µABO3 , µAO, and µBO2 equal to their formation

energies, a much more transferable value. For equation (2.21) to consider add atoms

or impurities instead of vacancies, the sign of Ni would change to be negative. For the

consideration of charged defects, equation (2.21) must be further modified. This is not

discussed here, but details can be found in references [60, 61].

The defect energy describe by equation (2.21), while easily calculated within DFT

codes, cannot generally be computed in atomistic based simulations in which stoichiom-

etry is not conserved. The potential parameters used to model the atomic interactions of

a system are usually non-transferable. For example, potentials used to model an ABO3

system may not be suitable to model component systems. Thus, the defect energy in

atomistic calculations is typically used to analyse stoichiometric defects, or the relative

stability of a particular type of defect at different positions.
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2.8 Surface Calculations

In this thesis the structural reconstructions of the polar (001) KTaO3 surface are under

investigation. The surface of materials are of great interest as this is the region which

interacts with the rest of the world. The surface plays an important role in the fields of

catalysis and crystal growth [62]. As the surface represents a break in the periodicity of

the material, it can also lead to interesting intrinsic properties such as electronic band

bending and surface polarisation [29].

Surface properties are typically hard to characterise experimentally due to interfer-

ence from the bulk. This makes computational modelling very important as it aids in

understanding the surface mechanisms that are giving rise to a particular property.

From a computational perspective, a surface is created by breaking the periodicity

of the bulk system in one direction, by removing all atoms from one side of a desired

surface plane. The cleaved surface will generally be in an excited state and must undergo

a structural relaxation. Typically, during the relaxation of the surface, the inter-planar

distances between atomic layers in the direction perpendicular to the surface changes.

The periodicity in the two directions normal to the surface often remains unaffected.

When simple relaxations do not sufficiently stabilise a surface, a reconstruction is re-

quired. This leads to either: the atomic arrangement at the surface differing from the

bulk; or a mismatch in the bulk and surface layer stoichiometry . In some cases the re-

construction is not limited to only the surface layer but may include some of the layers

beneath.

There are two common methods employed for the computational modelling of sur-

faces. The first uses a single slab periodic in two dimensions parallel to the surface and

surrounded by vacuum. For the work in thesis it was desirable to model a one sided

surface. In this case the slab is split into two regions: an upper region containing the

surface of interest, where the atoms are relaxed; and a lower region where the atoms are

held fixed to simulate a bulk-like environment. The number of atomic layers in the fixed

region should be sufficiently large to ensure that the fixed surface does not have an effect

on the calculation. Similarly, the number of atomic layers of the relaxed region must

also be converged to ensure that the atoms near the interface between the two regions

have conformed to their normal bulk arrangement. For a two sided surface calculation,

both sides of the slab are allowed to relax. The slab in these calculations are generally

symmetric with the same surface on both sides. Typically, there is no need to hold any

region fixed, however, if the software being used allows the slab to translate then the

central layer of the slab should be held fixed.

The second, alternative approach to modelling a surface is needed when the mod-

elling software being used requires periodic boundary conditions in all directions. This

situation arises when using plane wave based DFT packages. This alternative method of

surface modelling uses periodically repeating slabs spaced between regions of vacuums.
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As with the first approach both one and two sided surfaces can be modelled, with simi-

lar convergence requirements on the number of atomic layers to be relaxed. The main

difference between this technique and the first is that the slab has periodically repeating

images in the direction perpendicular to the surface. As a three dimensional unit cell

is used a region of vacuum must be included between the slab and its periodic images.

The width of the vacuum region must be sufficiently thick that the repeating slabs do

not interact. The thickness of both the slab and vacuum is converged with respect to

the surface energy.

Of the two methods discussed, the first, which uses an infinite vacuum, is regarded

as the superior as there is no issue regarding slab image interaction. The first method

is also faster as it has one less dimension within which to model interactions. GULP,

an atomic simulation code, is capable of using either technique. VASP, a plane wave

DFT code, requires periodic boundaries and thus can only make use of the periodically

repeating slab technique.

2.8.1 Calculating the Surface Energy

The stability of a surface is determined by its surface energy. The surface energy is

determined as:

Esurface =
Eslab − nEbulk

A
, (2.28)

where Eslab is the relaxed energy of the cleaved system, Ebulk is the energy of the bulk

unit cell, n the number of equivalent bulk unit cells used in the unit cell for the slab,

and A is the surface area exposed within of the unit cell used. In many cases the slab

has two sides and thus the area includes both.

Esurface can be decomposed into two components. The first is the cleavage energy.

This is the energy required to create the surface by breaking the bonds along a plane

of the bulk material and separating the two pieces. The second is the relaxation en-

ergy after cleaving. For a stable bulk phase, the cleaving energy is always greater than

the relaxation energy, otherwise a negative surface energy would be obtained. A nega-

tive surface energy would indicate that the surface phase is more stable than the bulk

suggesting that the spontaneous dissociation of the bulk should occur.

Equation (2.28) is easy to use when the system under investigation is stoichiometric

and contains only one unique surface termination, i.e. a one sided slab or a symmetric

two sided slab. The consideration of just one surface of a non-symmetric two sided slab

can only be truly achieved in atomistic calculations as a determination of the cleavage

energy is required. In electronic structure calculations the cleavage energy cannot be

calculated exactly as an electronic relaxation on both surfaces must be carried out. The

contribution of the relaxation energy from each surface cannot be separated. In atomistic

calculations the electronic relaxation is not required. The methods of calculating the

surface energy of either non-stoichiometric or one sided slabs are discussed below.
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One Sided Surface (Atomistic)

In the atomistic code GULP a single surface can be modelled using a two region strat-

egy [38]. This approach splits the slab into two sections labelled region 1 and region 2.

Region 1 contains the surface of interest and only the atoms in this region are allowed to

undergo geometry relaxation during the calculation. Region 1 should also be stoichio-

metric as the energy of this region will be compared to bulk. Region 2 represents the rest

of the bulk material and so the atoms in this region at held fixed during calculations.

The size of region 1 must be sufficient that there is minimal strain at the interface, and

the size of both regions must be sufficient to converge the surface energy.

The energy of the slab can be decomposed into three parts:

Eslab = E11 + E12 + E22 (2.29)

with E11 the interaction energy between all atoms in region 1, E22 the interaction energy

between all atoms in region 2, and E12 the energy of the atoms in region 1 interacting

with the atoms in region 2. The energy of region 1 is what is required for the calculation

of the surface energy and this is determined as:

Eslab = E11 +
1

2
E12 (2.30)

which is similar to the way the bulk energy of a unit cell is calculated. The surface

energy can then be calculated using equation (2.28), with Eslab the energy of region 1

and n the number of bulk units in region 1.

Non-Stoichiometric Surface (DFT)

As discussed earlier performing DFT calculations on a slab which is not symmetric

presents the problem of separating the energy contributions from each surface. Even

when the atoms of one side are held fixed there is still the issue of the electronic re-

laxations. One way to overcome this – in the cases where it is possible – is to sacrifice

stoichiometry to produce a symmetric slab. In the case of (001) surfaces of cubic per-

ovskites this is possible.

With the problem of different surfaces removed the issue of non-stoichiometry must

be dealt with. One such solution used by Padilla and Vanderbilt [63] is to treat the

surface as an initially stoichiometry slab which has been introduced to a layer of defects.

Using the hypothetical ABO3 perovskite this results in a modified version of equation

(2.28) to produce:

Esurface =
Eslab − nEbulk +NAµA +NBµB +NOµO

2A
(2.31)

where the conditions on Ni and µi are the same as discussed in reference to equation
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(2.21). The number of each species considered in the last four terms of the numerator

of equation (2.31) must be the same as found in the slab. The factor of two in the

denominator is due to there being two surfaces. It should also be noted that another

method in which chemical potentials are not considered is proposed by Heifets et al. [64].

However, this method makes the approximation that the electronic relaxation energy of

the two different (001) surface terminations (AO and BO2) are equal.

2.9 Implementation

This section contains brief details on how to run the codes that are used within this

body of work. All of the atomistic calculations were performed in General Utility Lattice

Program (GULP). GULP requires only a single input file to run. In this file, keywords

relating to the type of calculation are specified, for example, defect, phonon, or opti-

mise. The structure of the unit cell is given if using periodic boundaries along with

the atom positions in either fractional or cartesian coordinates. The charge of each of

the species are specified, as well as the potential parameters and cut-offs for each short

range interaction. Any input variables required for the calculation such as k-points,

force convergence tolerance, etc. are also included. Finally, the desired output file types

can be listed to accompany the standard GULP text output.

The Vienna Ab-initio Simulation Package (VASP) was used for bulk and surface

calculations at the electronic level. VASP requires four input files to run: INCAR,

POSCAR, KPOINTS, and POTCAR. The INCAR specifies the input parameters such

as plane wave cut-off, force tolerances, functional type, optimisation technique etc. The

POSCAR lists the unit cell parameters and atomic coordinates for each atom. The

KPOINTS file specifies the k-points used. VASP can automatically calculate and weight

the k-points given a n× n× n grid. The POTCAR lists the potentials used, in the case

of this thesis pseudo-potentials were used.

The Fritz Haber Institute ab initio molecular simulations package (FHI-aims) was

used in cluster calculations at the electronic level. FHI-aims requires two input files

geometry.in and control.in. The geometry.in file is equivalent to the VASP POSCAR

file, specifying atomic coordinates and unit cell parameters if required. The control.in

file contains similar information as the VASP INCAR, KPOINTS, and POTCAR files.

2.9.1 Knowledge Led Master Controller (KLMC)

To perform a global optimisation of the structure many different atomic configurations

will need to be tested. This will require a large number (1,000+) of input files to be

created, which will be extremely time consuming. To overcome this problem the in-

house code, the Knowledge Led Master Controller (KLMC) [65, 66], was used. KLMC

automates many of the labour intensive tasks associated with performing global optimi-

sations. This includes: creating and modifying input files, renaming input and output
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files, and extracting information from output files.

KLMC also contains various routines for performing the different global optimisa-

tions techniques. For surface calculations the “Solid Solutions” routine was utilised to

predict the surface structure. This routine automates the swapping of ions between dif-

ferent predefined lattice sites. The specifics of how this routine was employed are given

later in chapter 4. For cluster calculations the “Genetic Algorithms (GA)” and “Basin

Hopping (BH)” routines were utilised to predict the atomic structure of nanoclusters.

The principles of these methods have already been discussed in this chapter.
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Chapter 3

Bulk

3.1 Introduction

In this chapter the structure and properties of the perovskite bulk phase for KTaO3,

KMgF3, and KZnF3 are reported. Calculations were performed at the atomistic level

using interatomic potentials (IP) and at the electronic level using density functional

theory (DFT). The calculated properties were compared to experimental data taken from

the literature. The IP parameters for KTaO3 were obtained by fitting to experimental

observables at room temperature. The IP parameters for KMgF3 and KZnF3 were

taken from the literature. Atomistic calculations, including the refinement of IP, were

performed using the General Utility Lattice Package (GULP). The electronic structure

calculations were performed using the Vienna Ab-initio Simulation Package (VASP) and

the Fritz Haber Institute ab initio molecular simulations package (FHI-aims).

While the focus of this thesis is on the structure prediction of nano-clusters and

surfaces it is necessary, for a number of reasons, to first model the bulk phase of each

compound. When performing surface calculations a slab, periodic in two dimensions, is

used. Firstly, the majority of the atoms in the slab will adopt the bulk-like structure,

with only atoms on, or near, the surface showing any significant structural deviation

from the bulk. Thus, to accurately model a surface, the set of potentials, whether

atomistic or electronic, must model the bulk structure well to be reliable. Secondly,

to perform a global optimisation, a large number of different structures will need to

be tested. Due to the comparatively low computational cost of atomistic calculations

compared with electronic structure calculations, it is sensible to use an IP models to

siphon through the vast number of candidate structures, producing a “best” set.

Experimental structural determination techniques, such as X-ray and neutron scat-

tering, work best on large periodic structures. For this reason, it is much easier to

experimentally determine the structure of the bulk than it is for atomic nanoclusters.

In a crystal sample, the majority of the atoms will reside within the bulk and not on the

surface. Thus, for most structural measurement techniques, the properties associated
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Figure 3.1: (a) ABZ3 Cubic perovskite unit cell, where A are the purple cations on the
corners, B the grey cations at the centre of the octahedra, and Z the red anions on the
octahedra corners. (b) Periodic lattice of the ABZ3 unit cell.

with the bulk will be much larger in amplitude than those associated with the surface.

This makes determining surface structure more difficult and leads to the requirement of

surface sensitive techniques.

To this end, the vast array of properties, in particular the lattice parameter, asso-

ciated with the bulk make it the ideal base at which to fit interatomic potentials (IP)

against.

3.1.1 KTaO3

KTaO3 adopts the ABZ3 cubic perovksite structure at all temperatures. The atomic

arrangement is shown in Figure 3.1. The structure consists of a regular corner sharing

TaO6 octahedra, with K sitting in the 12-coordinated holes created by the lattice of

octahedra. The formal charges attributed to the ions in this material are +1, +5, and

-2 for K, Ta, and O respectively, resulting in a closed shell system.

From X-ray diffraction studies, the lattice parameter of the material is determined

to be 3.9885 Å by Vousden [67], 3.9883 Å by Zhurova et al [68], and 3.9884 Å by Samara

and Morosin [69]. This results in a Ta – O bond length of 2.0 Å and a K – O bond

length of 2.82 Å.

Numerous experimental and computational studies on the lattice dynamics have

shown that the cubic phase is maintained even at low temperatures [70–77]. The stud-

ies also labelled KTaO3 as an incipient or virtual ferroelectric (FE) due to it possessing

a transverse optical (TO) FE-like phonon mode. This mode softens (decreases in en-

ergy) with decreasing temperature and in a normal FE would become unstable at a low

temperature leading to a ferroelectric phase change.
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Figure 3.2: Phonon dispersion of low energy modes in KTaO3 at a range of temperatures
from inelastic neutron scattering taken from Ref. [71]. Dashed lines and solid circles are
modes at 20 K, the solid lines and empty circles 296 K, and the dotted line and crosses
1220 K. TO1 is the ferro-electric soft mode.

Figure 3.2 is taken from Ref. [71] and shows the phonon dispersion of KTaO3 at

difference temperatures obtained from inelastic neutron scattering. The dashed lines

and solid circles are modes at 20 K, the solid lines and empty circles 296 K, and the

dotted line and crosses 1220 K. TO1 is the soft mode, and it can be seen that in changing

the temperature from 1220 K to 20 K the mode has softened by 13 meV ( 100 cm−1).

KTaO3 is paraelectric at all temperatures, however, ferro-electricity can be induced

by small modifications. While temperature seems to have the most significant effect on

the soft mode, it has been shown that stress also has a non-negligible effect on the mode

stability [69, 76, 78, 79] and can induce a ferro-electric phase transition. Defects are

also seen as a method to promote the phase change. Investigations using Li dopants on

the K sites and Nb on the Ta sites have confirmed the induced phase change in KTaO3

even in very small concentrations [80–84].

The dielectric properties of KTaO3 are also a source of great interest as they are

found to be strongly coupled to the soft mode [77, 78, 85, 86]. Wemple et al. [77]

show KTaO3 to have a large static dielectric constant (ε0) of 243 at room temperature.

They also show that ε0 is strongly affected by temperature (like the soft mode), with

the constant becoming even larger at low temperatures (see Figure 3.3). They suggest

this will have a large effect on transport properties.

In regards to its electronic structure, KTaO3 possesses a wide indirect (0.5,0.5,0.5)

(R) to (0,0,0) (Γ) band gap of ∼ 3.6 eV [77, 87, 88]. The smallest direct band gap is

determined to be ∼ 4.4 eV and occurs at the Γ point [87, 88]. Many calculations have

also been performed in order to ascertain the electronic structure of bulk KTaO3 [74,

88–92]. Density functional theory appears to greatly underestimate the band gap; many
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Figure 3.3: KTaO3 dielectric constant as a function of temperature; adapted from Ref.
[77].

GGA calculations report a value of ∼ 2.1 eV, almost 1.5 eV below the experimental

value (3.6 eV). The GGA calculations do, however, correctly predict an indirect band

gap between Γ and R. The direct gap at Γ is also underestimated; most GGA calculations

predict this to be ∼ 2.7 eV. The hybrid HSE06 functional has faired better, producing

a band gap of 3.4 eV. GW calculations have led to the best match with experiment,

predicting a value of 3.57 eV.

The properties attributed to KTaO3 have made it useful in a wide range of ap-

plications. These include: electric capacitors for DRAMs, microwave tunable devices,

photocatalysts, luminescence capacitor, and fuel cells [93].

3.1.2 KMgF3

KMgF3 also adopts the ABZ3 cubic perovskite structure at all temperatures. Unlike

many perovskites in which the Z is usually oxygen and B a transition metal, KMgF3 is

composed of corner sharing MgF6 octahedra, with fluorine at the corners and magne-

sium at the centre of the octahedra. Owing to its large band gap of 11.9 eV, KMgF3 is

a promising candidate in: the next generation lithographic devices that require vacuum

ultraviolet (UV) transparent lenses [94–97], electro-optic [98, 99], and UV dosimetry

[100–102] devices. The cubic structure of the material also removes the issue of birefrin-

gence.

KMgF3 is similar in structure and properties to some of the compounds found in

the Earth’s mantle. Due to the stability of the cubic phase over large temperature and
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pressure ranges, this material is easier to model under the conditions experienced within

the Earth’s mantle as structural phases changes will not need to be considered [103–107].

The lattice parameter for KMgF3 has been determined to be 3.988 Å at room tem-

perate from both X-ray and neutron diffraction [103, 108, 109]. Wood et al [103] found

the cubic phase to be stable at all temperatures between 4 K and 1223 K with the lattice

parameter falling to ∼ 3.976 Å at 4 K. Computational studies performed using the LDA

functional underestimate the lattice parameter (3.91 Å [110] and 3.96Å [111]) while the

GGA functional overestimates (4.03 Å [112] and 4.08 Å [111]). Investigations on the

effect of pressure on the system show cubic KMgF3 to be stable under high pressure

[111, 112].

From experimental studies the band gap of the material is found to be ∼ 11.9 eV

[95, 113]. Computational investigations, however, predict an indirect (R – Γ) gap of ∼
7 eV, which significantly underestimates that measured in experiments [110–112]. All

calculations agree that the top of the valence band, at the cubic high symmetry point R

(0.5,0.5,0.5), is dominated by F 2p states, while the bottom of the conduction band, at

the gamma point, is predominantly K 4s states. The lack of hybridisation between the

different elements suggest the material is highly ionic. The computational studies also

show an increase in band gap with increasing pressure (decreasing volume).

3.1.3 KZnF3

The structure and behaviour of KZnF3 is very similar to that already described for

KMgF3. KZnF3 also adopts the ABZ3 cubic structure, with zinc on the B sites (at the

centre of the octahedra) in place of magnesium. The ionic radii of zinc and magnesium

are very similar, 0.88 Å and 0.86 Å, respectively [114]. The lattice constant for KZnF3

is found to be 4.055 Å from X-ray diffraction [108, 115], which is 0.067 Å (1.6%) larger

than that for KMgF3. As with KMgF3, calculations performed using GGA function-

als typically over estimate this parameter (4.150 Å [116], 4.129 Å [117]), while LDA

underestimates (3.981 Å [116], 3.973 Å [117]).

Most of the interest in KZnF3 is driven by its luminescence properties, which are

useful in the application of lasers [118–120]. From experimental studies an indirect band

gap of 4.1 eV is observed [115]. As was seen for the other two perovskite compounds,

both GGA (∼3.64 – 3.68 eV) and LDA (3.73 – 3.81 eV) studies underestimate the band

gap [116, 117, 121] of KZnF3, but all studies concur on a R – Γ indirect band gap.

In contrast to the ionic nature of KMgF3, the KZnF3 valence band is comprised of F

2p orbitals hybridised with Zn 3d orbitals, which suggest a degree of covalent bonding

between zinc and fluorine. The valence band of KZnF3 is akin to that of KTaO3, which

consisted of mixed Ta 5d and O 2p states. The bottom of the conduction band is

made up predominantly of Zn 4s and F 2p states, further up the conduction band K

3d contributions become more dominant, with a small mixture of Zn 4p, F 2s, and K

4s being present. The full occupation of the Zn 3d orbital ensures these states are not
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Figure 3.4: Lattice energy convergence of KTaO3, KMgF3, and KZnF3 as a function of
plane wave energy cut-off; calculated using VASP. The lattice energy shown is relative
to the energy obtained using a 600 eV cut-off.

present in the conduction band.

3.2 Electronic Calculations

Electronic structure calculations for the bulk perovskite phase of KTaO3, KMgF3, and

KZnF3 were performed using two different codes: the Vienna Ab-initio Simulation Pack-

age (VASP) and the Fritz Haber Institute ab initio molecular simulations code (FHI-

aims).

3.2.1 VASP Settings

VASP is a density functional theory (DFT) code that employs plane waves thereby

making it ideal for modelling periodic systems. It is important that the lattice energy is

converged with respect to the energy cut-off. The energy cut-off determines the highest

frequency plane waves employed in the calculations. As the three perovskites have

an experimental lattice parameter close to 4 Å, an initial bulk unit cell with a lattice

parameter of 4 Å and a 6 × 6 × 6 gamma centred k-point mesh were used to test the

convergence. Calculations were performed using the PBEsol functional [44] and the

PAW potentials [47] for the different species.

Figure 3.4 shows the lattice energy of the unit cell as a function of plane wave cut-off

energy. Below 300 eV the trends in lattice energy of the different compounds differ.

The energy of the fluoride based compounds is larger than their converged energy, while

for the oxide based compound it is lower. From 300 eV upwards all three compounds

54



Figure 3.5: Lattice energy convergence of KTaO3, KMgF3, and KZnF3 with respect to
the number of n× n× n k-points sampled; calculated using VASP. The lattice energies
are set relative to the energy at n = 9.

follow very similar trends and at a cut-off of 500 eV a convergence of less than 0.02

eV (0.004 eV / atom) was achieved for the bulk lattice energy. Henceforth, all further

VASP calculations for all three of the materials were performed using a cut-off energy

of 500 eV.

It is also important that the lattice energy is converged with respect to the density

of k-points. Figure 3.5 plots the lattice energy as a function of k-point density. From

the plot, the convergence of the KTaO3 lattice energy is slower than the convergence

of the other two compounds. The initial 6 × 6 × 6 k-point mesh is shown to be highly

converged with denser grids resulting in an energy difference of less than 0.001 eV per

atom for all three compounds. As 6 is divisible by both 2 and 3, the 6 × 6 × 6 k-point

grid is ideal for scaling to larger 2× 2× 2 and 3× 3× 3 super cells whilst maintaining

the same k-point density.

Lastly, the lattice energy must also be converged with respect to the number of elec-

tronic bands used in the calculation. With the chosen PAW potentials used, potassium

contributes 9 valence electrons to the system, tantalum 5, magnesium 8, zinc 12, oxygen

6, and fluorine 7. This results in a total of 32, 38 and 42 electrons per formula unit

for KTaO3, KMgF3, and KZnF3, respectively. This equates to 16, 19, and 21 occu-

pied bands (two electrons per band for collinear calculations). VASP requires at least

one unoccupied band and it was found that with this minimum, the lattice energy was

suitably converged to within 0.01 meV. It is noted that all three of the materials are

wide gap insulators. Thus, for the ideal bulk units the unoccupied states are not going

to have any significant impact on the ground state energy of the system. However, as
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Figure 3.6: Lattice energy as a function of cell volume for KTaO3, KMgF3, and KMgF3;
calculated using VASP. The energy shown is relative to the energy at a volume of 60.24
Å3.

imperfections are added into the system, i.e. from defects or surface cleaving, the un-

occupied states may have an impact on the energy and so more than one empty band

will be tested. Including more empty bands into the system also allows for more of the

conduction band and higher lying states to be analysed in density of states and band

structure plots. Thus, further calculations on the bulk are performed using 32 bands for

all three perovskites.

To summarize, the settings used for the bulk DFT calculations were:

• PBEsol functional

• Plane wave energy cut-off of 500 eV

• 6× 6× 6 gamma centred k-point mesh

• 32 electronic bands

Using these settings, the most stable bulk lattice parameter was determined for each

compound. When DFT geometry relaxations were performed, the lattice parameter and

shape (and hence volume) of the unit cell were held fixed. The lattice parameter was

varied about 4.00 Å in steps of 0.04 Å for each calculation. The unit cell lattice energy

as a function of its volume is shown in Figure 3.6. The lattice energy of the smallest unit

cell tested is set to 0. For KTaO3 and KMgF3 this was 60.24 Å3 and for KZnF3 it was

62.10 Å2. Using the Birch-Murnaghan equation of state [122] the lattice parameter at

which the energy was a minimum was calculated for each compound. For KTaO3, this

lead to a lattice parameter of 3.992 Å (volume of 63.638 Å3) resulting in a lattice energy
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Figure 3.7: Lattice energy convergence of KTaO3, KMgF3, and KZnF3 with respect
to the number of n × n × n k-points sampled; calculated using FHI-aims. The lattice
energies are set relative to the energy at n = 8.

of -40.659 eV. For KMgF3, the lattice parameter was found to be 4.004 Å (volume of

64.186 Å3) which corresponds to a lattice energy of -23.429 eV. While for KZnF3, the

lattice parameter was found to be 4.065 Å (volume of 67.159 Å3) which corresponds to

a lattice energy of -19.547 eV.

3.2.2 FHI-aims Settings

The energy calculated by FHI-aims must also be converged with respect to a number of

settings. FHI-aims is an all electron numeric atom-centred basis set code. The basis set

is formed of atomic-like orbitals. Thus, the number of empty atomic orbitals included

in the calculation in FHI-aims is analogous to the plane wave energy cut-off and number

of empty bands. FHI-aims has a series of predefined basis sets labelled: “light”, “tight”,

“really tight” etc. Where the tighter basis sets include more empty orbitals. The FHI-

aims calculations in this thesis were performed with the “light” basis set; the difference

in relative energies for clusters was found to be less than 0.01 eV/atom between the

light and tight basis sets.

Figure 3.7 shows the convergence of the lattice energy as a function of k-point density

for KTaO3, KMgF3, and KZnF3 using the FHI-aims code. An initial lattice parameter

of 4 Å was used for all compounds. The plot is almost identical to the corresponding

VASP plot (Figure 3.5). Convergence is slowest for KTaO3, however, at n = 6 the lattice

energy of all compounds have converged to within 0.001 eV per atom.

Figure 3.8 plots the lattice energy as a function of unit cell volume when using the

Γ centred 6× 6× 6 k-point grid . The volume plots from FHI-aims are very similar to
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Figure 3.8: Lattice energy as a function of cell volume for KTaO3, KMgF3, and KMgF3;
calculated using FHI-aims. The energy shown is relative to the energy at a volume of
60.24 Å3.

the ones from VASP (Figure 3.6). The Birch-Murnaghan equation was again applied

to calculate the lattice parameter at which the energy was a minimum. For KTaO3,

KMgF3, and KZnF3 the lattice parameters were found to be 3.993 Å, 4.006 Å, and

4.056 Å, respectively.

3.2.3 Formation Energy

The value of the lattice energy for the same system typically varies between codes and

is dependant upon the method by which it is calculated. This can be clearly seen in the

different lattice energies obtained from VASP and FHI-aims. For KTaO3, the lattice

energy is calculated to be -40.659 eV by VASP, whereas it is -459625.833 eV in FHI-

aims. As energy is computed as a difference, it is often desirable to have a reference

point which would allow for comparison between different codes. A commonly used

value to measure the energetic stability of a compound is the formation energy. The

formation energy is defined as the difference in energy between the compound and the

sum of its individual elements. The energy of the individual elements are calculated

from their stable bulk or gaseous phases. This energy difference can be computed across

many simulation packages.

The formation energy for an ABZ3 perovskite can be written as:

Ef = EABZ3 − EA − EB −
3

2
EZ2 (3.1)

EA and EB are the lattice energies per atom reported by the simulation package for
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the elements A and B in their bulk phase. EZ2 is the reported energy of either the

O2 or F2 molecule in the gas phase. As VASP required periodic boundaries, the O2

and F2 molecule calculations were performed in a large cell of length 16 Å to minimize

interactions between periodic images. As FHI-aims does not require periodic boundaries,

the calculations of the gas molecules were performed in an infinite vacuum. For the

metals a much denser k-point grid (15 × 15 × 15) was used. The same plane wave cut

off, 500 eV, was used for calculating EABZ3 , EA, EB, and EZ2 .

The formation energy was obtained by inserting the energies calculated by the codes

for EABZ3 , EA, EB, and EZ2 into equation (3.1). The resulting values are shown in Table

3.1. The formation energies are in very good agreement between the two codes; energy

difference less than 0.1 eV. All three compounds are shown to have a negative formation

energy, i.e. the perovskite structure is more stable than the individual components.

KMgF3 is found to have the highest formation energy of ∼ -16.5 eV, whereas for KTaO3

it is ∼ -13.7 eV, and KZnF3 has the lowest formaiton energy of ∼ -12.9 eV.

Another check on the stability of the perovskite is to see if any other combination

of the elements is more stable. For KTaO3 the stability is compared against the binary

compounds K2O and Ta2O5, KMgF3 is compared against KF and MgF2, and KZnF3

against KF and ZnF2.

Equations (3.2), (3.3), (3.4) are used to calculate the relative stability of the per-

ovskite phase compared to the binary compounds EPV−BC .

EPV−BC = EKTaO3 −
1

2
EK2O2 −

1

2
ETa2O5 (3.2)

EPV−BC = EKMgF3 −
1

2
EKF −

1

2
EMgF2 (3.3)

EPV−BC = EKZnF3 −
1

2
EKF −

1

2
EZnF2 (3.4)

Calculations on these component materials were performed in both FHI-aims and VASP

with the number of k-points in each direction scaled such that the k-point density was

the same or greater than that of the perovskite materials. The relative stability of the

perovskites from VASP are: KTaO3 = -2.050 eV; KMgF3 = -0.447 eV; and KZnF3 =

-0.470 eV. From FHI-aims the values are: KTaO3 = -2.134 eV; KMgF3 = -0.506 eV; and

KZnF3 = -0.492 eV. A negative value indicates the perovskites are more stable than the

binary compounds. Of the three materials KTaO3 is by far the most stable relative to the

binary compounds (2.1 eV). For the other two perovskites the ranking in relative stability

predicted is reversed between the two codes. Results from VASP suggests KZnF3 to have

the larger relative stability by 0.23 eV, whereas FHI-aims predicts KMgF3 by 0.14 eV.

Table 3.1 shows: the lattice constant (a), percentage deviation from experimental

value, formation energy (Ef ), and the time taken to complete one SCF cycle using VASP

and FHI-aims. The value of, a, for both DFT packages are in very good agreement with

experimental values across all three compounds. The agreement between the two codes
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Table 3.1: VASP vs FHI-aims. The lattice constant (a), percentage deviation
from experimental value, formation energy (Ef ), and the time taken to complete one
SCF cycle using VASP and FHI-aims with the PBEsol functional. Room temperature
experimental lattice parameters for KTaO3, KMgF3, and KZnF3 are 3.989 Å [67], 3.988
Å [108], and 4.055 Å [115], respectively.

KTaO3 KMgF3 KZnF3

VASP AIMS VASP AIMS VASP AIMS

a (Å) 3.992 3.993 4.004 4.006 4.065 4.056
∆a% 0.09 0.10 0.40 0.45 0.24 0.02

Ef (eV) -13.78 -13.70 -16.56 -16.48 -12.86 -12.92
SCF (s) 0.84 2.66 0.85 1.69 0.86 2.57

is also very strong. For KTaO3, the difference between the two codes is less than 0.02%

and both agree to within 0.10% of the experimental value. Similarly, for KMgF3, the

agreement between the codes is very strong; less than 0.06%. The difference between

DFT and experimental results is, however, slightly larger, but still less than 0.5%. The

largest disparity in a between the two codes is found for the compound KZnF3; a

difference of 0.22%, however, this is again very small. The value of a generated by FHI-

aims is very close to the experimental value, overestimating by only 0.02%, while using

VASP it is overestimated by 0.24%. The formation energies, Ef , generated by the two

codes correlate very strongly, with the energies never differing by more than 0.08 eV.

To estimate which code is more efficient, the CPU cost for both codes to perform

one SCF cycle, when using the same number of cores, was measured. VASP is shown to

be faster than FHI-aims by a factor of 2 for KMgF3, and a factor of 3 for the other two

compounds. This is expected, as plane wave codes are much better suited for periodic

calculations compared to atom-centred orbital based codes. To put this in perspective,

the VASP calculations of O2 and F2 molecules were performed inside a cubic super

cell of length 16 Å and took 581 and 348 seconds respectively to complete. In FHI-aims

there was no need to use a periodic cell, and for both molecules the calculation was com-

pleted in 2.1 seconds. This highlights the respective strengths of the two codes. Thus,

further calculations in which periodic boundaries are required (bulk and surface) will

be performed using VASP, and molecular / nano-cluster calculations in which periodic

boundaries are not required will be run in FHI-aims.

3.2.4 Atomistic Calculations

All atomistic calculations for the perovskites were performed using the General Utility

Lattice Package (GULP) [38]. A combination of Buckingham and Lennard-Jones in-

teratomic potentials were used to model the short range interaction, and the Coulomb

potential modelled the long range interactions (no radial cut-off) between the ions. In

the case of KTaO3, the shell model was used to account for the polarisability of the
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Table 3.2: Potential parameters for KMgF3. A radial cut-off of 25 Å and 10 Å
was used for the Buckingham potentials and Lennard-Jones potentials, respectively.

Charge K = 0.83 Mg = 1.66 F = -0.83

Buckingham A (eV) ρ (Å) C (eV Å−6)

K – K 36831.045 0.26578 0.0000
K – F 6770.553 0.23169 0.0000
F – F 17039.097 0.21500 15.1680
Mg – F 4166.274 0.21500 2.9010
Mg – Mg 905.517 0.21500 0.5557

Lennard – Jones B (eV Å−12)

Mg – K 10.00

Table 3.3: Potential parameters for KZnF3. A radial cut-off of 10 Å was used for
all potentials.

Charge K = 1.0 Zn = 2.0 F = -1.0

Buckingham A (eV) ρ (Å) C (eV Å−6)

K – K 2189.190 0.1916 0.00
K – F 3521.600 0.2672 0.00
F – F 911.690 0.2707 13.80
Zn – F 1482.300 0.2664 0.00

Lennard – Jones B (eV Å−12)

Zn – K 5.00
Zn – Zn 5.00

system. Details of the potentials and their parameters are given in chapter 2, equations

(2.12), (2.13), (2.11), and (2.14).

The potential parameters for KMgF3 and KZnF3 were taken from the literature

[123, 124] and reported in Tables 3.2 and 3.3. For KTaO3, the potential parameters

were refined from an existing set of potentials published by Exner et al. [125], and are

reported in Table 3.4. Although potassium is generally considered purely ionic, shells

were included on the K+ ions as it has been shown that modelling the polarisability

of K+ is important near surfaces [126]. Initially, the spring constants were refitted to

reproduce the room temperature high frequency dielectric constant with an emphasis

on the O2− spring. The other IP parameters were then fitted to reproduce the observed

lattice parameter (a), elastic constants (Cxx) and dielectric constants (εx), as listed in

Table 3.5, at room temperature. The fit was performed using the “relaxed fit” method

implemented in GULP and discussed in chapter 2.

In a second stage, a set of 31 phonon frequency points, measured at room temperature
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Table 3.4: Potential parameters for KTaO3. A radial cut-off of 15 Å was used for
all potentials.

Charge K = 1.0 Ta = 5.0 O = -2.0

Ion shell charge (e) k2 (eV A−2) k4 (eV2 Å−4)

K+ -4.723061 356.91688 20000
Ta5+ -3.700216 68867.76829 10000
O2− -2.891878 33.45182 33000

Buckingham A (eV) ρ (Å) C (eV Å−6)

K – O 1222.43483 0.346334 39.48
Ta – O 1410.97032 0.369327 10.00
O – O1 22700.00000 0.149000 113.26

aFor the O – O interaction the original Buckingham potential of Catlow [32] was modified so that
below 2Å only the repulsive terms were considered, while above 2.6Å only the attraction was considered,
a polynomial fit was used to smooth the potential between the two cut-offs.

[71], were included in the fit. The dispersion plots from which the phonon data was

extracted are shown Figure 3.9.

Preliminary tests revealed that the potentials modelling the O – O interaction allowed

the ions to collapse toward each other during global optimisation runs. To remedy this,

the Buckingham potential was modified so that: below a radial separation of 2.0 Å the

potential was modelled solely by the repulsive Ae
(−r
ρ

)
term; at distances greater than

2.5 Å the potential was modelled by the attractive C
r6
ij

dispersion term; and in the range

2.0 – 2.5 Å the potential was modelled by a polynomial function that smoothed the

potential curve between the other two terms.

Bulk properties of the three perovskite materials, as calculated using the IP within

GULP and DFT within VASP, are shown in Table 3.5. The corresponding room tem-

perature (when available) experimental values are also included in Table 3.5 for easy

comparison with the calculated values. The IP lattice parameters were determined by

constraining the unit cell to be cubic during relaxations of both the atomic positions

and the unit cell volume. The IP lattice parameter, a, for KTaO3 agrees well with

experiment lying within 0.02% of the observable. A very good agreement between IP

and DFT is also found for the value of a; a difference of less than 0.09%. Similarly,

for KZnF3 the IP closely reproduce the experimental (0.09%) and DFT (0.15%) values

of a. The value of a calculated by the KMgF3 IP also show good agreement with the

experiment (0.92%). The KMgF3 IP calculations underestimate a compared to experi-

ment, whereas DFT overestimates; this leads to a difference of 1.31% between the two

different calculations. With the exception of KMgF3 simulations, the IP produce lattice

parameters closer to experiment than that from DFT.

The DFT bulk modulus, B0, was not calculated directly by VASP, but was deter-
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Table 3.5: Observables. The lattice parameter (a), bulk modulus (B0), elastic con-
stants (Cxx), dielectric constants (ε) and lowest energy transverse optical phonon mode
(TO1) as calculated in GULP and VASP, and experimental values, at room temperature
when available, from the literature.

Observable KTaO3 KMgF3 KZnF3

a (Å) GULP 3.98896 3.9514 4.0586
VASP 3.99244 4.00388 4.06476
Exp. 3.98948 [67] 3.988 [109] 4.055 [109]

B (GPa) GULP 219.1 79.8 76.7
VASP 203.1 72.6 82.5
Exp. 230.0 [89] 73.5 [127] 77.6 [127]

C11 (GPa) GULP 433.44 153.1 141.8
VASP 465.88 142.4 155.7
Exp. 396.30 [70] 132 [128] 134.5 [128]

C12 (GPa) GULP 111.69 43.1 44.2
VASP 82.92 36.2 54.6
Exp. 130.00 [73] 39.6 [128] 52.7 [128]

C44 (GPa) GULP 111.69 43.1 44.2
VASP 92.44 38.4 34.2
Exp. 107.10 [70] 48.5 [128] 38.1 [128]

ε0 GULP 243.016 4.055 4.250
VASP 5.598 2.102 2.400
Exp. 243.000 [77] 5.98 [129] 7.78 [129]

ε∞ GULP 4.657 N/a N/a
VASP
Exp. 4.300 [130] 2.04 [129] 2.34 [129]

TO1 (cm−1) GULP 39 130 152
VASP 88 148 132
Exp. 85 [71] 168 [129] 141 [129]
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Figure 3.9: Phonon data taken from Ref. [71]. Dots are experimental results and solid
lines are calculated from fitted force constants for KTaO3. Dashed lines are calculated
from force constants for SrTiO3

mined using the Birch-Murnaghan equation of state during the energy optimisation of

the volume. The calculated value of B0 for KTaO3, using the IP model, is in good

agreement with the experimental value, underestimating by only 4.7%. The DFT re-

sult, however, underestimates by a larger amount of 11.7%. Results for KZnF3 are

similar in this regard, with the IP calculated value of B0 being closer to experiment,

underestimating by only 1.2%, than DFT which overestimates by 6.3%. KMgF3 differs,

in that the DFT value is closer to experiment (1.2%) than the IP value (8.6%).

For KTaO3 the IP calculated elastic constants show much better agreement to exper-

iment than the DFT. The IP errors for the elastic constants C11, C12, and C44 are 9.4%,

14.1%, and 4.3%, respectively, while for DFT they are 17.6%, 36.2%, and 13.7%. For

the other two materials there was no clear winner between DFT and IP. All calculated

values provided a reasonable estimate with all differences less than 20%.

There is strong agreement between experiment and the IP calculations in regards to

the static dielectric constant, ε0, of KTaO3. This is likely a result of KTaO3 being an

incipient ferroelectric. The DFT value was greatly underestimated; smaller by a factor

of almost 50. The calculated values of ε0 from the IP models of the other two materials

were smaller than the experimental values; 30% for KMgF3 and 45% for KZnF3. The

DFT calculated values of ε0 were more severely underestimated, being smaller by a

factor of about 3 compare with experiment in both cases.

For the high frequency dielectric constant, ε∞, the only calculated value presented

is that for KTaO3. There are no IP values for the other two systems as rigid ion models

were employed for the simulations. ε∞ determines how a systems electrons responds to
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high frequency electric fields, which is modelled by allowing only the shells to respond

to a electric field with a frequency greater than the highest energy vibration.
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Figure 3.10: Electronic band structure for bulk KTaO3, as calculated using VASP. The
valence band maximum is set to 0 (red line). The DOS is shown, in line, on the right.

Electronic Density of States and Band Structure

One of the advantages of electronic structure models over atomistic models is that they

enable the calculation of the electronic density of states (DOS) and band structure.

Figures 3.10 shows the band structure and total DOS (along the right side) close to

the fermi level for the bulk KTaO3. The band structure was calculated in VASP using

10 k-points between each of the special cubic symmetry points Γ (0,0,0), X (1
2 ,0,0), M

(1
2 ,1

2 ,0), and R (1
2 ,1

2 ,1
2). The electronic bands were shifted so that the valence band

maximum (VBM) was at 0 eV. The band structure shows the VBM to be at the R

point and a highly disperse conduction band minimum (CBM) at the gamma point.

The prediction of the indirect Γ – R band gap is in agreement with other computational

studies [74, 88–92]. The width of the band gap is calculated to be 2.03 eV, which is

in close agreement with the other computational studies. As with most calculations

using the GGA functional, this calculated band gap is a large underestimate (44%)

when compared to the experimental value of ∼ 3.6 eV [77, 87, 88]. The smallest direct

gap is located at the gamma point, and is determined to be 2.66 eV. This is again an

underestimate compared to the experimental value of 4.35 eV [88].

Figure 3.11 shows the DOS for KTaO3 decomposed into its separate elements, as

well as an orbital decomposed DOS for each of the species. As with the band diagram,

the DOS plot is shifted so that the VBM is at 0 eV. The valence band is seen to be

composed of mixed O and Ta states and has a width of just under 6 eV. The top of the
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Figure 3.11: Species decomposed DOS for KTaO3, and orbital decomposed DOS for
each species in KTaO3; calculated using VASP.

valence band is made up solely of O 2p states. Further down the valence band the O 2p

states are hybridised with the Ta 5d, 6s, and 6p states.

The conduction band has a width of about 15 eV, extending from 2 eV all the way

up to 17 eV. The CBM at 2 eV is composed of Ta 5d states and from ∼ 2.5 eV there is

a small mixing of O 2p states. Further up the conduction band exists the K 3d orbitals

as well as the Ta 6s orbital. The filled K 3s and 3p orbitals result in narrow bands at

-27 eV and -11 eV respectively. The filled O 2s band lies at -17 eV and possesses some

Ta character. The heavy mixing of the Ta and O states would suggest a large degree of

covalency in the Ta – O bonds, while the lack of K mixing may suggest it remains ionic.

Figures 3.12 and 3.13 show the band structure and DOS profile for KMgF3. The

calculations were performed in the same manner as the KTaO3 plots, with the VBM

again shifted to 0 eV. From the band diagram, KMgF3 (3.12 is found to also possess an

indirect Γ – R band gap but with a much larger width of 7.04 eV. As expected for GGA

calculations, the band gap is underestimated (41%); the experimentally determined gap

is ∼ 11.9 eV [95, 113]. The DOS profile (Figure 3.13) shows the valence band to have a

width of ∼ 4 eV and almost purely of F 2p character.

The CBM at 7 eV is a low density Mg 3s, 3p, F 2s, and 2p hybridised band almost

invisible on the plot. From the band diagram (3.12, this region of low density can be

attributed to one or two highly disperse bands. From 10 eV the K 3d states become

the dominant feature in the conduction band all the way up to 20 eV. The filled K 4s

and 4p orbitals result in bands at -9 eV -26 eV, while the F 2s orbital results in a band

at -19 eV. The lack of mixing in the valence band would suggest that KMgF3 is fairly

ionic.
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Figure 3.12: Electronic band structure for bulk KMgF3, as calculated using VASP. The
valence band maximum is set to 0 (red line). The DOS is shown, in line, on the right.

Figure 3.13: Species decomposed DOS for KMgF3, and orbital decomposed DOS for
each species in KMgF3; calculated using VASP.
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Figure 3.14: Electronic band structure for bulk KZnF3, as calculated using VASP. The
valence band maximum is set to 0 (red line). The DOS is shown, in line, on the right.

Figure 3.15: Species decomposed DOS for KZnF3, and orbital decomposed DOS for
each species in KZnF3; calculated using VASP.
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Table 3.6: Atomistic defect energies. The values presented are the difference in
energy between the defected and bulk systems in eV. Mott. indicates the Mott-Littleson
method of defect calculation described in chapter 2. The correction used for the super
cells is also described in chapter 2.

Vacancy Mott. Super cell Super cell corrected
2x2x2 3x3x3 4x4x4 2x2x2 3x3x3 4x4x4

KTaO3 : K 5.39 5.25 5.36 5.39 5.26 5.37 5.39
KTaO3 : Ta 125.27 119.93 123.52 124.94 120.20 123.70 125.07
KTaO3 : O 21.02 21.16 21.20 21.11 21.20 21.23 21.13
KMgF3 : K 4.26 3.77 3.96 4.05 4.41 4.39 4.36
KMgF3 : Mg 20.36 18.77 19.31 19.55 21.32 21.01 20.83
KMgF3 : F 4.62 4.27 4.36 4.42 4.91 4.78 4.74
KZnF3 : K 5.80 5.13 5.40 5.52 5.74 5.81 5.82
KZnF3 : Zn 26.50 24.66 25.15 25.42 27.09 26.78 26.63
KZnF3 : F 6.10 5.60 5.74 5.83 6.21 6.15 6.13

Lastly, the band structure and DOS profile for KZnF3 can be seen in Figures 3.14

and 3.15. As with the previous two perovskites this material is found to possess an

indirect Γ – R band gap. The width is calculated to be 3.65 eV, which is 11% smaller

than the experimental value of 4.1 eV [115]. This is the best estimate of the band gap

calculated for the three ABZ3 perovskites. Like KTaO3, and unlike KMgF3, the KZnF3

valence band is a mixture of the metal B cation and Z anion states, zinc and fluorine

in this case. Unlike KTaO3, however, the heavily mixed states exist even at the VBM

and the zinc character is almost purely d states. The bottom of the conduction band

is hybridised Zn 4s and F 2p orbitals with K 3d states becoming the dominant feature

from 9 eV. The low lying K 4s and 4p bands are at -27 eV and -11 eV, while the F 2s

band resides at -21 eV. As with KTaO3 there is a significant mixing of the B and Z ions

in the valence band and so covalent bonding between zinc and fluorine may be expected.

3.3 Bulk Defects

3.3.1 Atomistic Defects

Single ion vacancy calculations were performed for all three systems at the atomistic

level using GULP. The defect energies calculated for these vacancies are shown in Table

3.6.

The values shown represent the difference in energy between the system containing

a vacancy and the perfect bulk system, ∆E. Physically, the energy being measured is

that required to remove an ion from the system to a distance infinity away. Both the

Mott-Littleton and the periodic super cell approach have been utilised, see chapter 2.

The Mott-Littleton method models the infinitely dilute defect, whereas the super cell

technique models a defect concentration dependant on super cell size. Values in which a
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correction has been applied to the super cell approach – with the aim of converging more

rapidly to the infinitely dilute defect energy – are also presented. From the table it can

clearly be seen that the corrected values do converge more rapidly to the Mott-Littleton

values. The correction appears to have less impact on the KTaO3 vacancies than it

does for the other two perovskites. This is likely a result of the KTaO3 IP employing a

shell model which screens the charge, whereas the IP for the other two compounds use

rigid ions (no shells). The ratio ∆E between the different vacancy types in a compound

are approximately proportional to the square of the charge, suggesting the Coulomb

contribution to the defect energy is large (as one would expect). Thus, for all three

compounds the K ion has the lowest defect energy, followed by the anion (O, F), and

lastly the cation at the octahedral centre. Counter intuitively, the defect energy (un-

corrected) is seen to increase with increasing super cell size (decreasing concentration).

This result is likely an effect of the uniform background charge applied for modelling

charged cells.

3.3.2 DFT defects

To calculate how a defect affects the stability of a system the defect formation energy

must be determined. This can be calculated using the following equation:

EDefect = ED
ABZ3

− EABZ3 +NAµA +NBµB +NZµZ (3.5)

where EABZ3 is the relaxed energy of the ABZ3 perovskite system before a defect was

introduced and ED
ABZ3

the energy after. Ni and µi are the number of vacancies and the

chemical potential respectively of element i. See chapter 2 for more details.

To calculate the formation energy the chemical potential of defect species must be

determined. This is usually done for the limiting cases in a phase diagram. Figure

3.16 shows a phase diagram from KTaO3 (left) and KXF3 (right), where X = Mg or

Zn. Each of the pentagon vertices represents a limiting case at which the reservoirs

of the two connected compounds are in thermal equilibrium with the perovskite under

investigation. For example, point 1 on the left diagram is a system in which KTaO3,

K(s), and K2O are all in thermal equilibrium.

The chemical potentials calculated at each point for KTaO3 are shown in equations

(3.6) to (3.20).

Point 1: µK = µK(s) (3.6)

µTa = µKTaO3
− µK − 3µO (3.7)

µO = µK2O − 2µK (3.8)

Point 2: µK = (µK2O − µO)/2 (3.9)

µTa = µKTaO3
− µK − 3µO (3.10)
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Figure 3.16: Phase diagrams for KTaO3 (left) and KXF3 (right), where X = Mg or Zn.

µO = µO(g) (3.11)

Point 3: µK = µKTaO3
− µTa − 3µO (3.12)

µTa = (µTa2O5
− 5µO)/2 (3.13)

µO = µO(g) (3.14)

Point 4: µK = µKTaO3
− µTa − 3µO (3.15)

µTa = µTa(s) (3.16)

µO = (µTa2O5
− 2µTa)/5 (3.17)

Point 5: µK = µK(s) (3.18)

µTa = µTa(s) (3.19)

µO = (µKTaO3
− µK − µTa)/3 (3.20)

Similarly, the chemical potentials for KXF3 (X = Mg, Zn) are shown in equations (3.21)

to (3.35).

Point 1: µK = µK(s) (3.21)

µX = µKXF3
− µK − 3µF (3.22)

µF = µKF − µK (3.23)

Point 2: µK = µKF − µF (3.24)

µX = µKXF3
− µK − 3µF (3.25)

µF = µF(g) (3.26)

Point 3: µK = µKXF3
− µX − 3µF (3.27)

µX = µXF2
− 2µF (3.28)

µF = µF(g) (3.29)
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Table 3.7: Chemical potentials. The chemical potentials for each species in KTaO3,
KMgF3, and KZnF3, calculated at the points shown in the relevant phase diagrams
(Figure 3.16).

Element Chemical potential (eV) at phase diagram point
1 2 3 4 5

KTaO3: K -0.90 -2.53 -5.76 -3.98 -0.90
KTaO3: Ta -16.36 -24.51 -21.28 -12.36 -12.36
KTaO3: O -7.80 -4.54 -4.54 -8.11 -9.13
KMgF3: K -0.90 -6.36 -6.80 -1.47 -0.90
KMgF3: Mg -1.81 -12.72 -12.28 -1.62 -1.62
KMgF3: F -6.91 -1.45 -1.45 -6.78 -6.97
KZnF3: K -0.90 -6.36 -6.83 -3.36 -0.90
KZnF3: Zn 2.07 -8.84 -8.37 -1.44 -1.44
KZnF3: F -6.91 -1.45 -1.45 -4.92 -5.74

Point 4: µK = µKXF3
− µX − 3µF (3.30)

µX = µX(s) (3.31)

µF = (µXF2
− µX)/2 (3.32)

Point 5: µK = µK(s) (3.33)

µX = µX(s) (3.34)

µF = (µKXF3
− µK − µX)/3 (3.35)

The values of µ used for the metals (K, Ta, Mg, Zn), gas (O2, F2), and binary compounds

(K2O, Ta2O5, KF, MgF2, ZnF2) were the energies of these systems calculated in VASP.

Table 3.7 shows the calculated chemical potentials for each species in KTaO3, KMgF3,

and KZnF3 at the points shown in the phase diagram (Figure 3.16. Points 2 and 3 on

the phase diagram represent oxidising conditions and so at these points µ is largest for

the anions. Conversely, µ for the cations at these points are typically at a minimum.

Thus, cation vacancies would be most favourable at points 2 and 3, whereas anion va-

cancies would be least favourable at these points. The other points represent metal rich

environments and so lead to reduced µ for the anions and increased µ for the cations.

DFT calculations were performed to investigate neutral vacancies using VASP in

2x2x2 and 3x3x3 super cells. The defect energies for KTaO3, KMgF3 and KZnF3 are

given in Table 3.8. The defect formation energy is calculated at each of the points

described in the relevant phase diagrams (Figure 3.16). The ordering of ∆E with respect

to the different vacancies within each compound agrees with the atomistic calculations.

The K vacancy results in the smallest energy change, the B cation at the octahedral

centres the largest, and the anions somewhere in the between.

∆E for K vacancies is smallest in KTaO3 suggesting that K is more strongly bound

in the other two compounds. Decreasing the vacancy concentration from 1/8 (2x2x2) to
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Table 3.8: DFT neutral vacancy energies. ∆E is the difference in energy between
the perfect bulk system and the system containing one vacancy. The defect energies are
calculated using chemical potentials at the points shown in the relevant phase diagrams
(Figure 3.16).

Vacancy Defect formation energy (eV) at phase diagram point
∆E 1 2 3 4 5

KTaO3: K 2x2x2 5.34 4.44 2.81 -0.42 1.36 4.44
KTaO3: K 3x3x3 5.27 4.37 2.74 -0.49 1.30 4.37
KTaO3: Ta 2x2x2 31.05 14.69 6.54 9.77 18.69 18.69
KTaO3: Ta 3x3x3 30.71 14.35 6.21 9.44 18.36 18.36
KTaO3: O 2x2x2 10.71 2.91 6.17 6.17 2.60 1.58
KTaO3: O 3x3x3 10.11 2.31 5.57 5.57 2.00 0.97
KMgF3: K 2x2x2 7.44 6.54 1.08 0.63 5.96 6.54
KMgF3: K 3x3x3 7.41 6.51 1.05 0.60 5.93 6.51
KMgF3: Mg 2x2x2 14.49 12.68 1.77 2.21 12.87 12.87
KMgF3: Mg 3x3x3 14.37 12.56 1.64 2.09 12.75 12.75
KMgF3: F 2x2x2 8.51 1.60 7.06 7.06 1.73 1.54
KMgF3: F 3x3x3 8.50 1.59 7.05 7.05 1.72 1.53
KZnF3: K 2x2x2 6.41 5.51 0.05 -0.42 3.05 5.51
KZnF3: K 3x3x3 6.24 5.34 -0.11 -0.58 2.88 5.34
KZnF3: Zn 2x2x2 8.02 10.09 -0.82 -0.35 6.59 6.59
KZnF3: Zn 3x3x3 7.89 9.96 -0.95 -0.48 6.45 6.45
KZnF3: F 2x2x2 7.05 0.15 5.60 5.60 2.13 1.31
KZnF3: F 3x3x3 7.02 0.11 5.57 5.57 2.10 1.28

1/27 (3x3x3) typically changes ∆E by less than 2%. O vacancies in KTaO3 represent

the largest change in ∆ with reduced concentration at 6% implying O vacancies have

the longest range of effect. For KTaO3 the formation energy of K vacancies is favourable

(negative) at point 3 on the phase diagram implying defects would spontaneously form.

The formation energy of Ta vacancies is large at all points on the phase diagram and

thus it is not expected Ta vacancies would form. The O vacancy formation energy is

lowest at point 5 with values of 1.58 eV (2x2x2) and 0.97 eV (3x3x3) and so O vacancies

may form under high temperature.

For KMgF3 formation energy of K vacancies is again lowest at point 3, however, the

formation energy is positive (0.63 eV for 2x2x2 and 0.60 eV for 3x3x3). The Mg vacancy

has the largest formation energies although not as high as Ta in KTaO3 and are higher

than the K vacancies at every point. The formation energy of F vacancies are lowest

at point 5 on the phase diagram and are of comparable energy to the O vacancies in

KTaO3.

For KZnF3 the K vacancies are found to be favourable (negative formation energy) at

points 3 and 2 with the energies at point 3 similar to those seen for KTaO3. Interestingly,

the Zn vacancies are also shown to be favourable at points 2 and 3. At point 2 the Zn

vacancy is more stable, while at point 3 the K vacancy is more stable. The B cation
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vacancies were shown to have large formation energies in the previous two compounds.

The formation energy of the F vacancies are found to be small (∼0.1 eV) at point 1

implying anion vacancies are also more easily formed in KZnF3 than in the other two

perovskites.

Structurally, cations moved towards the site of cation vacancies and away from anion

vacancies in all three compounds. The opposite was true of anions. These shifts were

typically less than 0.1 Å.

3.4 Summary

In this chapter the bulk properties of three cubic perovskites, KTaO3, KMgF3, and

KZnF3 have been investigated at both the atomistic and electronic level. The electronic

structure calculations were performed using density functional theory with the GGA-

PBEsol. Implementations within both the VASP and FHI-aims packages were employed.

The results obtained showed a very good agreement between the two codes (within 1%)

in regards to the lattice parameter, a, and formation energies of the three perovskites.

As expected, VASP was found to be the faster code for periodic systems, while FHI-

aims proved better for molecular calculations. Thus, VASP was chosen to perform the

remaining bulk calculations. The values of a obtained from VASP were within 0.5%

of the experimental values, thus a satisfactory structural model for the perovskites was

achieved.

In anticipation of the future global optimisations to be performed, which would

involve the investigation of a large number structures, a suitable set of interatomic

potential parameters was also targeted. Interatomic potential parameters for all three

perovskites were found in the literature [123–125]. The set for KTaO3 were refined in

order to achieve a better fit to room temperature experimental data and to include

shells on the K ions. It was found that the IP calculations accurately reproduce the

experimentally observed lattice parameters. The largest discrepancy in a was found for

KMgF3, with a difference of only 0.92% from the experimental value.

Both the IP and DFT calculated bulk modulus and three elastic constants (C11, C12,

and C44) were found to be within good agreement of experiment. Moreover, for KTaO3,

the IP results gave a much better match to experiment than that achieved using DFT

for all four constants, whereas for the other two compounds the IP and DFT showed

similar levels of agreement to experiment.

For the static dielectric constant, only the KTaO3 IP produced a good estimate,

with the DFT and other two IP sets severely underestimating the experimental value.

The band structure and partial density of states (DOS) of the perovskites were cal-

culated. Analysis of the bands showed all three of the compounds to possess an indirect

Γ – R band gap. The width of all three band gaps are underestimated, but match closely

to previous computational studies using the GGA functional. The DFT calculated band
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gap for KZnF3 gave the best match to experiment, underestimating by only 11%. The

calculated gaps for other two compounds underestimated the experimental gap by about

40%. The DOS profile revealed a mixing of the B cation and anion states in the va-

lence band for KTaO3 and KZnF3 indicative of possible covalent bonding between the

B cation and anions. No such mixing was observed for KMgF3 suggesting it to be ionic.

Defect calculations revealed K vacancies to be the most easily formed, and are most

favourable under oxidising conditions. The B cation vacancies generally had the largest

formation energies, Ta in particular which even under oxidising conditions possessed

a minimum formation energy of 6.21 eV. An exception was seen with Zn vacancies

in KZnF3 which showed favourable defect formation under oxidising conditions. The

anion vacancies were found to have reasonably low formation energy under metal rich

conditions and thus may be formed under high temperature.
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Chapter 4

The (001) KTaO3 Surface

4.1 Introduction

In this chapter reconstructions of the polar KTaO3 (001) surface are investigated. The

structure of the reconstructions are initially predicted using global optimisations routines

on the interatomic potential (IP) energy landscape. The IP structures are refined using

density functional theory (DFT) to ascertain the electronic structure. The formation

energy of vacancies in the slab are investigated. Lastly, the reconstructions found for

KTaO3 were applied to other perovskite compounds to see how the energetic ordering

of the different structures varied.

4.1.1 The KTaO3 (001) Surface

With the recent discovery of two-dimensional electron gases (2DEG) on the cleaved (001)

surfaces of the wide gap insulators KTaO3 [131, 132] and SrTiO3 [133, 134], perovskite

surfaces are now the focus of much increased attention. Previously, similar 2DEG had

been observed at the interface between strontium titanate (SrTiO3) and lanthanum

aluminate (LaAlO3) [135–137]. In contrast to the SrTiO3 surface 2DEG, the KTaO3

2DEG existed immediately after cleaving before the irradiation (although irradiation

did allow for a tuning of the 2DEG). The difference in the formability of the 2DEG was

hypothesised to be due to the polar nature of the (001) KTaO3 surface.

As discussed in previous chapters, KTaO3 is a typical ABX3 perovskite material,

possessing corner sharing TaO6 octahedra with K ions situated in the holes. The formal

charges of the ions in this material are K+, Ta5+, and O2−. This leads to alternating

charged planes of KO− and TaO+
2 in the (001) direction, which results in Tasker type 3

surfaces [30] when bulk terminated. As mentioned in chapter 2, these surfaces are unsta-

ble due a dipole moment perpendicular to the surface that diverges with increasing slab

thickness. In order for these surfaces to become stable they must undergo reconstruction

such that the dipole is removed. This is usually achieved by the removal and/or addition

of atoms at the surface.
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While the surfaces of SrTiO3 have been thoroughly investigated [64, 138–147], there

is relatively little data on the KTaO3 surface and, in particular, its structure.

Fritsch and Schroder [148] performed a computational study on the KTaO3 (001)

surface at the density functional theory level. They investigated (2 × 1) reconstructions

of the KO terminated surface. The reconstruction was performed by removing every

other row of KO resulting in a dipole free, stepped surface. A relaxation of this initial

reconstruction proved to be the most stable surface configuration they found.

Li et al. [149, 150] performed elastic and inelastic helium atom scattering exper-

iments on the KTaO3 (001) vacuum cleaved surface. Their investigation revealed the

presence of metastable periodic features immediately after cleaving. These metastable

states were found to decay to a stable (1 × 1) surface over a few hours. Upon thermal

cycling of the sample it was found that (2 × 1) and (1 × 2) surface domains were formed.

These structures could be removed by heating to above 330 K. The surface was found

to be KO dominant. A migration of potassium from the bulk to the surface was the

suggested cause of the KO dominance. This result supported previous findings by Szot

et al. [151] in which the (001) surface was subject to thermal treatment under oxidising

conditions between 700°C and 1100°C. They also found cation segregation at the near

surface region.

So, while there is a consensus on the KTaO3 surface being KO rich, there is only one

study in which an attempt has been made to characterise the exact atomic arrangement,

and even then only limited arrangements were sampled. The surface is polar and so

could reconstruct in many different ways. This chapter focuses on determining the

atomic structure of the reconstructed KTaO3 surface by means of global optimisation.

4.2 Interatomic Potentials (IP)

To successfully perform a surface structure global optimisation a vast number of struc-

tural arrangements will need to be considered. To ensure a sufficient number of con-

figurations can be investigated within reasonable time and computational costs a fast,

effective method of computation is required. Interatomic potential (IP) based calcula-

tions are faster than equivalent electronic structure calculations by orders of magnitude.

Over the years IP have been shown to successfully model surface structures [126, 152–

161]. This makes IP models ideal for surface structure global optimisation.

In chapter 3 potential parameters for KTaO3 were fit against bulk properties. The K

– O and Ta – O Buckingham interactions both possess non-zero values for the attractive

−C/r6 terms. As discussed in chapter 2, the potential energy of a Buckingham potential

with a non-zero C term tends to −∞ as r → 0. Generally, this problem is not realised

as sensible interatomic distances are chosen for calculations, and so r is sufficiently

large that the energy of the system resides within a potential well. However, when

performing global optimisations, atomic configurations may be produced where atoms
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Figure 4.1: Interatomic pair potentials used in GULP calculations. a) is the K–O
interaction, b) the Ta–O interaction.

do not lie within a potential well, but instead reside close to a neighbouring atom where

the potential energy decreases infinitely with decreasing separation. In these cases, the

dispersion term will cause atoms to collapse on top of each other. To compensate for

this, repulsive LJ B/r12 terms were introduced, where B = 10 eV Å−12 for both the K

– O and Ta – O interactions.

Figure 4.1 highlights the change the LJ term had on the IP energy as a function of

separation distance r. At distances greater than the equilibrium r0 (bottom of energy

basin) the LJ term has no effect. As r gets smaller than r0, the LJ term acts to put in

place a new potential barrier that tends to +∞ as r → 0 thus preventing atoms getting

too close.

4.3 A Polar Surface

As previously mentioned, the KTaO3 (001) surface is a Tasker type 3 surface. These

surfaces are considered unstable due the intrinsic dipole they possess perpendicular to

the surface when bulk terminated. To stabilise these surfaces a reconstruction must

occur such that the dipole is removed.

To highlight the surface instability the visual interface package GDIS was used to

create (001) bulk terminated KTaO3 slabs suitable for GULP two-region surface cal-

culations. There are two different (001) terminations, the KO− layer, and the TaO+
2

layer. For the atomistic surface calculations a region 2 (fixed region) with a thickness

of six unit cell layers was used. This led to convergence better than 0.0001 Jm−2. Slab

relaxations were performed for different sizes of region 1 while the size of region 2 was

held fixed. For each termination two calculations were performed: one in which only

ion cores were considered, and another in which shells were included. To calculate the
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Figure 4.2: Surface energies of bulk terminated surfaces. (c) indicates core only calcu-
lations. (s) indicates shells were included in the calculations.

surface energies (Esurface) equation (4.1) was used:

Esurface =
Eregion1 − nEBulk

A
(4.1)

where: Eregion1 is the energy of region 1, EBulk the lattice energy of one unit cell, n the

number of bulk units contained in region 1, and A the surface area of the slab cell being

modelled; see chapter 2 for more details.

Figure 4.2 shows the relaxed surface energy of the surface models as a function of

region 1 thickness. In all of the calculations the surface energy appears to diverge with

increasing thickness. The KO termination is seen to be slightly more stable than the

TaO2 termination both in the core only calculation and the shell calculation. Incor-

porating shells results in a polarisation effect that opposes the dipole and slows down

the surface energy divergence. The inclusion of the shells also opens the gap in surface

energy between the KO and TaO2 terminations. The gap is likely due to the greater

polarisability of the surface K ions compared to the Ta ions. In all cases, however, the

surfaces are unstable, as indicated by the diverging surface energy.

4.3.1 Reconstructed Surface

To overcome the problem of the dipole a 2 x 2 surface slab is created and then re-

constructed by removing half of the top layer to below the bottom layer. Figure 4.3

highlights this reconstruction for a model 2 x 2 two-region KO terminated slab. The

green shaded region represents region 2 in which the atoms are fixed during any ge-

ometry relaxations. This region must also be reconstructed to ensure charge neutrality

within both regions. The same process is applied to the TaO2 terminated slab. These

reconstructions result in surfaces that are free of any dipole moment perpendicular to

the surfaces due to a symmetric charge distribution about the slab centre.
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Figure 4.3: Initial reconstruction of the 2 x 2 slab

Figure 4.4: (a) Surface energies of the 2 x 2 reconstructed slab. (b) Surface energy
convergence of the 2 x 2 reconstructed slab. The surface energy convergence is calculated
as |Sn − Sn+1| where Sn is the surface energy for n layers thickness
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Figure 4.5: An interlayer reconstruction process that occurs during the geometry relax-
ation of the KTaO3 (001) half TaO2 terminated surface. Goes from left to right.

As with the 1 x 1 surface, the 2 x 2 surfaces were relaxed using both the core only

and core-shell models on a number of slabs where the thickness of region 1 was varied.

Figure 4.4 shows the surface energies for the different models (a) and the surface energy

convergence (b) as a function of region 1 thickness. It is found that the energy of the

reconstructed TaO2 surface converges faster than the KO surface. The TaO2 surface

has a energy convergence of less than 0.01 Jm−2 at a region 1 thickness of two unit cells

for both core only and core-shell models, whereas the KO surface requires a thickness

of four unit cells to achieve a similar convergence.

Interestingly, the TaO2 surface has become more stable than the KO termination

after the reconstructions. This is the result of an interlayer reconstruction that has

occurred during the geometry relaxation procedure within GULP. Figure 4.5 are snap

shots taken at different steps of the relaxation which highlight the interlayer reconstruc-

tion process. From the initial half TaO2 terminated surface the two K ions positioned

in the sub surface layer below the occupied surface O row push up towards the surface.

The oxygen in the row above rise in response. As the rising potassiums get closer to

the top of the surface, the surface tantalums fall into the vacated row below, but are

located half a (1 × 1) unit cell (2 Å) further along the row than the K ions were. This

results in a mixed sub-layer (layer directly beneath the outer most surface layer) which

can be perceived as alternating unit cell rows of KO and TaO2. At the top layer oxygen

resides directly above the sub-layer tantalums with K ions taking up positions slightly

above the O ions and on either side of the row. The resulting surface structure is a KO

zig-zag pattern in which K resides at the zig-zag corners. Thus, this structure is labelled

the K-cornered zig-zag surface and is discussed in more detail later on.

4.4 Global Optimisation and KLMC

The Knowledge Led Master Controller (KLMC) [65, 66], an the in-house code, was

employed to perform the global optimisation. Many of the features of KLMC have been

discussed in chapter 2.

In the global optimisation of the KTaO3 surface the solid solutions routine of KLMC
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Figure 4.6: A KLMC reconstruction process of the half TO2 terminated surface. (a)
represents the initial configuration in a typical KLMC solid solution surface run. The
faded atoms represent unoccupied lattice sites which are available for occupation during
the KLMC reordering. Atoms positioned within the blue region will not be involved in
the KLMC reordering process. (b) shows an example structure created by the KLMC
re-ordering process

was employed. This method works by redistributing the ions over a given set of lattice

points under imposed restrictions. An initial configuration of the system may include

unoccupied lattice sites. KLMC will then redistribute the ions in a Monte-Carlo (MC)

fashion. Restrictions can be imposed on the redistribution by labelling each lattice site.

A lattice site can be labelled so that it does not take part in the MC step or to ensure

that ions can only switch with like-labelled lattice sites. The cost function used in

the global optimisation is the energy of a two-region surface model implemented in the

GULP code.

Figure 4.6 shows: (a) an example of an initial atomic set up of region 1 within

KLMC, and (b) an example atomic arrangement after a single KLMC MC step. The

main difference between the KLMC and GULP input is that the lattice sites in region

1 were divided into 3 types. The first type of lattice site contains atoms that are to be

held fixed during each KLMC MC step. These are shown in the region shaded blue. The

second type of site contains atoms to be involved with the MC process. The last site

are unoccupied sites and are shown as faded atoms. These sites can become occupied

during the MC process by atoms moving from the second type of site. The site the atom

moved from will then become an unoccupied site.

To ensure a thorough search of energy landscape was completed, the number of layers

involved in the KLMC process varied between runs. The reason behind this is that when
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Figure 4.7: The seven different initial KLMC set ups showing only the lattice sites
involved in the KLMC Monte-Carlo process of the half TaO2 terminated surface. Below
each of the images shown would exist the rest of the slab

the search space is smaller, the likelihood of exploring the entirety of it is more likely, i.e.

there are fewer combinations to test. However, the smaller search space may not include

the global minimum. Thus, by performing the separate searches the smaller landscapes

can be entirely covered, while the larger ones are at the very least sampled. Figure 4.7

shows the seven different KLMC set ups for the half TaO2 terminated surface, where

only atoms involved in the ion redistribution are included: (a) only the half terminated

surface layer and its corresponding empty lattice sites; (b) the surface layer and one

empty layer above; (c) the surface layer and one occupied layer below; (d) the surface

layer, one layer below, and one layer above; (e) the surface layer, two layers below,

and one layer above; (f) the surface layer, two layers below, and two layers above; (g)

the surface layer, three layers below, and one layer above. The same seven KLMC set

ups are also applied to the half KO terminated surface. For each of these set ups two

different type of runs were performed. The first type allows any of the different species

to occupy any of the lattice sites. The second type enforces a restriction such that only

the cations (K and Ta) can occupy the standard cation lattice sites, while the oxygen

can only occupy oxygen lattice sites.

4.5 Stable Atomistic Reconstructions

After the global optimisation runs were completed the lowest energy surfaces from both

terminations were inspected. A summary of the findings is given in section 4.5.3 includ-

ing surface energies and key interatomic distances and angles presented in Table 4.1.

The z-position (height perpendicular to surface) of the layer planes is taken to be an

average of all the atoms associated with that plane.
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4.5.1 IP KO Terminated Reconstructions

The lowest energy half KO terminated surfaces found from the global optimisation are

discussed first. These reconstructions are less interesting than the TaO2 terminated

reconstructions as well as higher in energy. However, they are presented so the TaO2

reconstructions can be compared against them. The TaO2 reconstructions are discussed

in section 4.5.2.

KO Termination: K-cornered Zig-zag Surface (1.52 Jm−2)

Figure 4.8: KO terminated reconstruction: K-cornered zig-zag surface arrangement. a)
top view. b) side view.

The most stable reconstruction of the half KO termination was the K-cornered zig-

zag surface. This is illustrated in Figure 4.8. The surface layer consists of KO zig-zag

chains with K situated on the corners. The potassium is located 1.02 Å further above

the surface than the oxygen. The O ions in this layer are positioned in rows directly

above the sub-layer Ta ions with a bond distance of 1.84 Å. The K ions are arranged

on alternating sides of the O rows at a horizontal separation of 0.89 Å from the row.

This results in a K–O bond distance of 2.41 Å, much smaller than the bulk separation

of 2.82 Å due to the under-coordination at the surface. The surface O–O separation is

3.99 Å and the surface K–K separation is 4.37 Å. The corner O–K–O angle is found to

be 111.5°, while the K–O–K angle, arising purely from the difference in z-position of the

ions, is 129.7°.
The sub-layer is (001) bulk-like TaO2 plane having not changed significantly from

the initial input geometry. The distance between the sub-layer and the surface plane is
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found to be 2.44 Å (1.93 Å to the surface oxygen, 2.95 Å to the potassium), an increase

in the separation of the layers compared to the bulk. The sub-layer Ta ions below the

surface O are positioned slightly above the plane (0.09 Å), while the sub-layer O lying

along the same row between these Ta ions move downwards (0.15 Å) towards the slab

centre. The rows in which the Ta ions are exposed to the surface are under-coordinated

(5-coordinated) and show the opposite behaviour. The Ta ions move downwards (0.19

Å) and the O move upwards (0.15 Å). The oxygen ions not lying in the Ta rows move

closer towards the 5-coordinated Ta ions, forming smaller bonds of length 1.90 Å, and

away from the 6-coordinated Ta ions (2.10 Å). This is likely due to two complementary

effects, a stronger O–O repulsion at the Ta 6-coordinated ions because of the short

bonded surface O, and a reduced repulsion at the 5-coordinated Ta ions as there is no

surface O present.

The 3rd layer (layer below sub-layer) has an inter-planar separation of 2.03 Å to

the sub-layer and 2.01 Å to the layer below, suggesting the bulk-like separation of 1.99

Å is being more closely adhered to. The greatest shift out of plane is experienced by

the O atom directly below the 5-coordinated sub-layer Ta. The downward shift of the

tantalum has pushed the oxygen 0.09 Å below the plane. All other vertical shifts are

less than 0.04 Å. The K ions on this layer have moved away from the 5-coordinated Ta

row in an opposite fashion to the O only rows in the sub-layer. In the next layer below

all ionic displacements are less than 0.03 Å.

Subsequent surfaces are discussed in a similar level of detail and the reader is advised

to move to section 4.5.2 if the finer details are not of great interest.

KO Termination: KO Island Surface (1.64 Jm−2)

The second most stable KO terminated reconstruction is the KO island surface shown in

Figure 4.9 As the name suggests the surface layer contains square K–O–K–O islands. As

with the K-cornered reconstruction the K ions reside higher above the surface than the

O ions with a vertical separation of 0.71 Å. This is 30% smaller than the 1.02 Å found for

the K-cornered reconstruction. The difference is a result of the K – K repulsion. If the

K–O vertical separation were much larger, the K–K distance would need to be greatly

reduced, or the K–O bond length increased to increase the K–K separation. Neither of

which appear to be as energetically favourable as reducing the K–K vertical separation

above the surface. The surface K–O bond length is very similar to the K-cornered

surface at 2.43 Å. The surface K–K separation is 3.31 Å much smaller than seen on

the previous surface due to the new position taken up by the K ions. The surface O

ions occupy similar positions as in the previous surface but have a reduced separation

of 3.25 Å due to the presence of two K ions between them. The surface O–K–O angle

is found to be 84.2°, while the K–O–K angle is found to be slightly larger at 86.0°. The

bond length between the surface O and sub-layer Ta is 1.82 Å. The distance between

the averaged surface layer and sub-layer is 2.25 Å, which is smaller than the equivalent
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Figure 4.9: KO terminated reconstruction: KO island surface arrangement. a) top view.
b) side view.

distance for the K-cornered surface due to the lower lying surface K ions. The relative

heights of the ions in the sub layer are very similar to those seen for the previous surface.

The sub-layer – 3rd layer separation and 3rd – 4th layer separation is found to be 2.04

Å and 2.01 Å, respectively.

KO Termination: O-cornered Zig-zag Surface (1.67 Jm−2)

The third most stable KO terminated reconstruction was the O-cornered zig-zag sur-

face shown in Figure 4.10 The surface layer consists of KO zig-zag chains with K ions

positioned in a line and O ions situated on the corners. This surface differs from the

previous two in that the oxygen no longer reside on the same row. The surface K–O

bond length is 2.61 Å which is almost 10% larger than the previous two surfaces. This

is because the surface O ions are held rigidly in place by the sub-layer Ta ions, reducing

how far the O ions can move towards the zig-zag centre line compared to the K ions in

the previous surfaces. An additional consequence is a much larger O–O separation of

5.08 Å. The K–K separation is found to be 3.99 Å. The vertical separation between the

K and O ions is found to be 0.63 Å, the smallest seen so far. The O–K–O angle is the

largest seen so far at 152° and the K–O–K angle is 99.5°. The bond length between the

surface O and sub-layer Ta is 1.81 Å. The distance between the sub-layer and surface

is 2.20 Å reduced compared to the previous surfaces due to the reduced K–O vertical

separation. As the surface O ions no longer lie in a row the distortion of the sub-layer is

altered. The Ta ions directly below the O ions are located 0.12 Å above the plane while

the other under-coordinated Ta ions lie 0.23 Å below the plane. The O ions on the same
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Figure 4.10: KO terminated reconstruction: O-cornered zig-zag surface arrangement.
a) top view. b) side view.

row as the Ta ions lie 0.50 Å above the plane. The O ions situated beneath empty rows

lie 0.30 Å above the plane. The O ions beneath the K ion row are the lowest lying set

positioned 0.01 Å below the plane. The sub-layer – 3rd layer separation and 3rd – 4th

layer separation is found to be 2.03 Å and 2.01 Å respectively.

KO Termination: KO Diagonal Chain Surface (1.72 Jm−2)

Of the four KO terminated reconstructions presented, the KO diagonal chain surface

shown in Figure 4.11 was found to be the least stable. The surface layer consists of a

linear diagonal KO chain. Unlike the previous reconstructions all the K–O distances at

the surface are unique. The K–O bond at the bottom left of Figure 4.11 is found to be

2.41 Å which is similar to the bond distances seen on the other surfaces. The distance

from this O to the K at the centre of the cell, which are not drawn connected, is 3.47 Å.

The distance from the central K ion to the other O ion is 2.38 Å the smallest KO bond

length seen. The distance from this O to the corner K ion is 3.37 Å. The O ions lie at

the same height but the K ions differ in height by 0.02 Å, the K ion at the centre of the

cell being the higher lying. This leads to vertical K–O separations of 0.67 Å and 0.69 Å.

The oxygen are also seen to be displacing slightly towards the bottom left corner relative

to the Ta below them. Due to the diagonal arrangement the O–O and K–K separation

are all large varying between 5.55 Å to 5.70 Å. The asymmetry of the surface appears

to be a result of the K ion positions. The bond distance between the surface O and

sub-layer Ta ions is 1.81 Å, the same as in the O-cornered surface. The distance between

the surface and sub-layer planes is 2.26 Å. The sub-layer plane is arranged similarly to
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Figure 4.11: KO terminated reconstruction: KO diagonal chain surface arrangement.
a) top view. b) side view.

the O-cornered surface. The Ta ions below the surface O ions are located 0.12 Å above

the plane and the other under-coordinated Ta ions lie 0.23 Å beneath the plane. The

sub-layer O ions with the smallest horizontal component of separation to the surface K

ions are the lowest lying O ions; there are four of this type. The two O ions closest to

the central surface K ion lie 0.02 Å above the plane and the other two lie exactly on the

plane. The remaining four O ions in this layer are positioned 0.05 Å above the plane.

The sub-layer – 3rd layer separation and 3rd – 4th layer separation is found to be 2.03

Å and 2.01 Å respectively, exactly the same as in the O-cornered surface.

4.5.2 IP TaO2 Terminated Reconstructions

For the half TaO2 termination the reconstructions were much more interesting. The

most stable surfaces were produced by not only a re-arrangement of the surface layer

but also of the sub-layer. This new reconstruction mechanism was discussed previously

and was shown in Figure 4.5. The reconstruction results in a KO surface layer similar

to the KO-terminated reconstructions and a mixed sub-layer containing both KO and

TaO2. Figure 4.12 shows this sub-layer, which can be described as alternating rows of

bulk-like KO and TaO2. Below, the two most stable reconstructions are discussed.

TaO2 Termination: K-cornered Zig-zag Surface (0.52 Jm−2)

The most stable half TaO2 terminated reconstruction is the K-cornered zig-zag surface

shown in Figure 4.13. This has a similar surface arrangement to the most stable KO
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Figure 4.12: The stable mixed sub-layer produced during reconstructions of the half
TaO2 terminated surface.

terminated reconstruction. Both possess K-cornered KO zig-zags across the surface. In

the case of the TaO2 terminated reconstruction, the surface layer K and O ions have a

greater vertical separation of 1.15 Å. This allows the K ions to approach much closer to

the O ion row making the zig-zag corners appear more obtuse when viewed from above,

but more acute when viewed from the side. The O–K–O angle is found to be 117.3°
and the K–O–K angle is 121.1°. The effect of the new K position has been to increase

the O–K–O angle while reducing the K–O–K angle when compared to the analogous

surface layer for the KO reconstructions. The K–O bond distance is also slightly smaller

at 2.3 Å. The O–O separation is found to be 3.99 Å and the K–K separation is 4.07

Å. As is the case in all previous reconstructions, the surface O ions are located directly

above Ta in the sub-layer. This Ta–O bond distance is 1.86 Å, slightly larger than for

all previously discussed reconstructions.

The most interesting feature, and major difference from previous surfaces, is that

the sub-layer is split into rows of TaO2 and KO units. Pre-reconstruction the sub-layer

would have been a KO plane while the surface would have been TaO2. However, during

the reconstruction the TaO fell into the sub-layer while K migrated to the surface. The

mixed sub-layer is much less planar than for previous reconstructions with the difference

between the highest and lowest lying ions being 0.99 Å. The highest positioned atoms

on this plane are the Ta and O that lie in the same row. The O resides 0.53 Å and the

Ta 0.39 Å above the plane. The K ions are located 0.02 Å below the plane, and the

remaining O are situated the lowest, 0.45 Å below. The reason for the low lying O is

likely due to the strong attraction felt from the Ta in the plane below directly beneath

these O ions and the lack of any countering attraction above.

The separation between the sub-layer and 3rd layer is 2.38 Å, very large compared

to the previous reconstructions. The bond between the O ion on third layer and the

high lying Ta ion in the sub-layer is stretched to 2.68 Å, a third larger than the typical

bulk bond distance. The 3rd – 4th and 4th – 5th layer separations are much more bulk
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Figure 4.13: KO terminated reconstruction: K-cornered zig-zag surface arrangement.
a) top view. b) side view.

like at 2.02 Å and 2.00 Å respectively.

TaO2 Termination: KO Island Surface (0.84 Jm−2)

The next most stable TaO2 terminated reconstruction is the KO island shown in Figure

4.14. As with the KO terminated KO island reconstruction, this surface has square

K–O–K–O islands residing at the top layer. The vertical separation between the K and

O in the island is 0.66 Å, slightly smaller than for its KO reconstructed counterpart.

This has the effect of increasing the O–K–O angle to 88.5° and reducing the K–O–K

angle to 83.0° when compared to the equivalent KO terminated reconstruction. The

surface K–O bond length is found to be 2.41 Å, 0.02 Å smaller than its KO terminated

counterpart. The O–O separation is found to be 3.36 Å and the K–K separation 3.19 Å.

The bond between the surface O and sub-layer Ta is 1.86 Å, and the planar separation

between the surface and sub-layer is large at 2.56 Å. The arrangement of the atom in

the sub-layer is the same as for the other TaO2 terminated reconstruction with some

minor modifications to the vertical position of the atoms. The Ta and O on the same

row are again situated high above the averaged plane. The Ta reside 0.41 Å above. Of

the two O ions in this row, the one furthest from the surface K ion is positioned 0.49

Å above the plane, whereas the other surface O ion lies substantially lower, only 0.21

Å above the plane. The sub-layer K ion that forms a horizontal line with the surface K

ions is positioned 0.11 Å below the plane. The other sub-layer K ion lies 0.08 Å above

the plane. The remaining O ions reside 0.38 Å below the plane strongly attracted to
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Figure 4.14: KO terminated reconstruction: KO island surface arrangement. a) top
view. b) side view.

the Ta in the layer below.

As with the other TaO2 reconstruction the sub-layer 3rd layer separation is large

2.31 Å, with the sub-layer Ta 3rd layer O bond being stretched to 2.60. The 3rd – 4th

and 4th – 5th layer separations are again more bulk like at 2.02 Å and 2.00 Å.

4.5.3 Summary of Atomistic Surfaces

Table 4.1 gives the surface energy and some of the key interatomic distances and angles

for the different reconstructions. There is a large difference in the surface energy (∼0.7

Jm−2 / ∼0.04 eV Å−2) between the half TaO2 terminated and half KO terminated

reconstructions. The sub-layer of the TaO2 terminations undergoes a rearrangement

during the reconstruction process going from a standard KO bulk-like plane to a mixed

plane consisting of rows of TaO2 and KO, which is more rumpled. The sub-layer of the

KO terminations does not undergo any rearrangement and remains a bulk-like TaO2

plane. The result of the TaO2 mixed sub-layer is that all Ta ions are six-coordinated,

which is not the case in the KO reconstructions where two Ta ions are five-coordinated.

The maximising of the Ta coordination is proposed to be energetically favourable and

thus why the TaO2 reconstructions are so low in energy.

For all reconstructions the surface is made up purely of KO units. The lowest energy

surface configuration for both terminations was the K-cornered zig-zag (Figures 4.8 and

4.13). This had the largest surface K–O vertical separation, given by ∆z K–O in Table

4.1.
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Table 4.1: Surface energy and key inter-atomic distances for the most stable
GULP reconstructions. γ is the surface energy. K–O the bond length between
surface K and O ions. O–O and K–K the smallest separation between like-species at the
surface. Ta–O the bond length between the surface O and sub-layer Ta ions. O–K–O
and K–O–K are the angles between surface ions. ∆z K–O is the vertical separation
between K and O ions on the surface. ∆z L1–L2 the separation between the surface and
sub-layer planes. ∆z L2–L3 is the separation between the sub-layer and 3rd layer planes.
The height of the plane is calculated as the average height of all atoms considered to be
in that plane. The surface arrangements are abbreviated as K-c (K-cornered zig-zag),
Island (KO island), O-c (O cornered zig-zag), Diagonal (KO diagonal chain).

Termination: TaO2 KO
K-c Island K-c Island O-c Diagonal

γ (Jm−2) 0.52 0.84 1.52 1.64 1.67 1.72
K–O (Å) 2.34 2.41 2.41 2.43 2.61 2.38/2.41
O–O (Å) 3.99 3.36 3.99 3.25 5.08 5.68
K–K (Å) 4.07 3.19 4.37 3.31 3.99 5.71
Ta–O (Å) 1.86 1.86 1.84 1.82 1.81 1.81
O–K–O (°) 117.3 88.5 111.5 84.2 152.0 151.1
K–O–K (°) 121.1 83.0 129.7 86.0 99.5 151.9
∆z K–O (Å) 1.15 0.66 1.03 0.71 0.63 0.68
∆z L1–L2 (Å) 2.82 2.56 2.44 2.25 2.20 2.26
∆z L2–L3 (Å) 2.38 2.31 2.03 2.04 2.03 2.03

The second most stable surface configuration for both terminations was the KO

island (Figures 4.9 and 4.14). The KO island differs from the K-cornered arrangement

by the repositioning of one K ion turning the zig-zag chains into square island. The

new position of the K ion results in a shorter K–K separation and thus stronger K–K

repulsion. A compensatory reduction in ∆z K–O and a slightly increased K–O bond

length are also observed. The differences between the K-cornered and KO island surface

layer structure are more pronounced for the TaO2 reconstructions. This is reflected in the

larger energy gap of 0.32 Jm−2 between the two different surface layer structures for the

TaO2 reconstructions when compared to a gap of 0.12 Jm−2 for the KO reconstructions.

For the KO terminated reconstructions, there were two other stable surface arrange-

ments found, the O-cornered zig-zag (c.f. Figure 4.10) and the KO diagonal chain (c.f.

Figure 4.11 On these surfaces, O ions do not lie in a row as in the K-cornered and KO

island arrangements, but are instead located on alternating rows resulting in a much

increased O–O separation. These surface configurations are unable to form during the

TaO2 reconstructions as the mixed sub-layer only has Ta ions in one row and the surface

O ions always prefer to be positioned directly above Ta. As the surface O ions are held

more rigidly in place by the Ta ions below, they are less able to approach the row of K

ions in the O-cornered arrangement than the K ions were able to approach the O row

in the K-cornered arrangement. This results in a much longer bond length of 2.61 Å,

which is likely the cause of the greater surface energy. The increased O–O separation
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compensates for this, but to a smaller degree.

For the KO diagonal case the bond length should be even greater. It appears,

however, that rather than having two long K–O bonds, it is more favourable for one of

the bonds to shorten at the expense of the other lengthening. This results in one short

bond ∼2.4 Å and one long ∼3.4 Å. The long bond is not drawn in Figure 4.11 for clarity.

In summary, the half TaO2 terminated reconstructions are found to be most stable

and involves an atomic rearrangement of both the surface layer and sub-layer. The half

KO terminated reconstructions only involved an atomic rearrangement on the surface

layer. A mixed sub-layer was found for the TaO2 terminated reconstructions consisting

of alternating rows of KO and TaO2 bulk-like units, which is more heavily rumpled

compared to the bulk-like TaO2 sub-layer seen for the KO terminated reconstructions.

The mixed sub-layer is formed by the demotion of TaO from the surface to the sub-layer

and the promotion of K to the surface. This results in all Ta being fully coordinated,

which is expected to play a major role in the stabilisation of the KTaO3 surfaces.

4.5.4 The 4 x 4 Surface

The discovery that a mixed sub-layer has a large stabilisation effect upon the polar (001)

KTaO3 surface opens up many avenues to explore in regards to sub-layer reconstruction.

The investigation of sub-layers for different surface sizes is another project onto itself

and beyond the scope of this thesis.

The 2 x 2 sub-layer contains alternating rows of bulk like KO and TaO2 units. One

question of interest is as to whether the KO and TaO2 units might favour congregating

together on a larger surface rather than alternating. To answer this question a 4 x 4

surface was created that had two KO rows together followed by two TaO2 rows. Figure

4.15 shows the test reconstruction after a geometry relaxation. The surface K and O

Figure 4.15: A 4x4 TaO2 terminated reconstruction possessing a mixed sub-layer.

ions are arranged in such a way as to form two parallel K-cornered zig-zag chains. The

entire surface layer, as well as the sub-layer Ta ions and the O bonded to them, shift
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horizontally in the direction of the row (downwards in the overhead view seen in Figure

4.15). The K-cornered zig-zag chains appear to contract and expand about the K ions.

The K ions that bend away from the centre of the two zig-zags have K–O bond lengths of

2.41 Å and 2.38 Å. The shorter of the two bonds is in the same direction that the surface

leans. The other K ions that point towards the centre of the zig-zags have longer K–O

bond lengths of 2.54 Å and 2.61 Å. The shorter of the two bonds again in the direction

of the surface lean. The sub-layer O beneath the inner surface K ions in the Ta row

bend towards the inner surface K. The surface energy calculated for this structure was

0.83 Jm−2 which is greater in energy than the previously found 2 x 2 ground state (0.52

Jm−2). Thus, at a first glance the TaO2 and KO rows in the sub-layer prefer to alternate

as can be modelled in the 2 x 2 surface reconstructions.

4.6 DFT Refined Surfaces

To analyse the electronic structure of the surface, the KTaO3 reconstructions were re-

fined with DFT using VASP. As VASP requires periodic boundaries in all directions,

the two-dimensional, one-sided slabs modelled in GULP must be converted to two sided,

symmetric slabs that repeat periodically in the direction perpendicular to the surface,

with a vacuum gap separating the slab from its images. As the slab is now two sided,

the area, A, considered in equation 4.1 becomes 2A; see chapter 2 for more details.

The symmetric slab was created by taking half the number of required layers from

the top of the GULP 2-D slabs, and then reflecting this in the direction perpendicular

to the surface to produce a double sided symmetric slab. The cell size was adjusted to

match the DFT optimised bulk lattice parameter as described in chapter 3. The slab

used contained 160 atoms which is equivalent to eight 2 x 2 unit cell layers (combined KO

and TaO2 layer) or 17 individual layers (the two surface layers were only half populated).

The difference in surface energy between an 8 unit cell layer slab and a 7 unit cell layer

slab was found to be less than 0.005 Jm−2, indicating good convergence. The geometry

relaxations were considered converged when the forces on all atoms were less than 0.01

eVÅ−1. The vacuum gap between the periodic slabs was set to be 18 Å, which gave a

surface energy convergence of less than 0.01 Jm−2 (< 0.001 eVA−2).

In addition to the six reconstructions obtained from GULP three other surfaces were

relaxed. The first was the KO terraced surface modelled by Fritsch and Schroder [148]

that was also used as the initial configuration for the global optimisations of the half KO

terminated surface (Figure 4.3). The second was the same KO surface layer arrangement

used by the first additional model, but residing on top of the mixed sub layer, i.e. a

TaO2 terminated reconstruction. The third was a TaO2 terraced structure used as the

initial model for the TaO2 terminated reconstructions (Figure 4.6). These three surface

structures, when tested using the atomistic approach in GULP, reconstructed to one of

the other previously presented surface arrangements.

95



Before performing the DFT calculations on the 2 x 2 structures, stoichiometric 1 x 1

surfaces were tested to prove that the reconstructed surfaces were necessary. Four slabs

of varying thickness were tested. The thicknesses were 4, 5, 6, and 7 unit cell layers

and the surface energies recorded were 0.88, 0.93, 0.98, and 1.02 Jm−2 respectively

showing a lack of surface energy convergence with respect to slab thickness. Thus, the

reconstructions are also proved necessary at the DFT level.

A plane wave cut-off of 500 eV – the same used for the bulk calculations in chapter

3 – was used for all surface calculations. For the 1 x 1 surface a Γ-centred 6 x 6 x 1

k-point mesh was used. For the 2 x 2 surface a Γ-centred 3 x 3 x 1 k-point mesh was

used. A summary discussion of the surfaces is given in section 4.6.3 accompanied by

Table 4.2, which contains some of the key data associated with the surfaces, analogous

to Table 4.1 for the GULP surfaces. The KO terminations are again discussed first, skip

to 4.6.2 for the TaO2 reconstructions.

4.6.1 DFT KO Terminated Reconstructions

KO Termination: KO Diagonal Chain Surface 1.04 Jm−2)

Figure 4.16: KO terminated reconstruction: KO diagonal chain surface arrangement.

Of the half KO terminated reconstructions the most stable according to DFT was the

KO diagonal chain structure shown in Figure 4.16. This structure was the least stable

of four KO reconstructions presented for the atomistic calculations. During the DFT

refinement the surface has undergone some structural adjustments. The most obvious

change is the position of the surface K ions. For the GULP structure the surface K ions

preferred to be positioned closer to one of the surface O ions. After being run through

VASP the surface K ions lie at equal distances from the O ions. The vertical separation
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between the surface K and O ions has also decreased significantly from 0.68 Å in GULP

to 0.05 Å in VASP meaning the surface plane is much flatter and less rumpled. This

results in a K–O bond distance of 2.82 Å. Due to the flatness of the plane the K–O–K

and O–K–O bond angles are both 177.9° very close to 180° indicating a straight K–O–

K–O line across the surface. As the surface K ions are equal distances from the surface

O ions, the O do not shift in any direction and are seen to reside directly above a sub-

layer Ta ion in contract to what was seen in the GULP arrangement. The Ta–O bond

length between the surface O and sub-layer Ta is reduced slightly from 1.81 Å to 1.79 Å.

While the surface layer was found to be much more flatter the sub-layer became slightly

more rumpled. The Ta ions below the surface O ions were found to lie 0.19 Å above the

plane up from 0.12 Å and the under-coordinated Ta sat 0.29 Å below the plane up from

0.23 Å. Due to the symmetry of the O positions they were found to all reside between

0.02 Å and 0.03 Å above the plane. The inter-planar distance between the surface and

sub-surface was found to be 2.00 Å noticeably smaller than the 2.26 Å recorded for the

GULP structure, this reduction clearly being due to the much flatter surface plane. The

inter-planar distance between the sub-surface and the layer below (3rd layer) was found

to be 2.10 Å a slightly increase from 2.04 Å. The rumpling on the 3rd layer, and KO

layer, was found to be minor with the largest vertical separation found to be 0.06 Å.

The rumpling of the 4th layer, a TaO2 layer, was found to be slightly more substantial

with a max vertical separation of 0.22 Å. This suggests the TaO2 layers are more prone

to feel the surface effects likely due to the tight Ta–O bonds between layers.

KO Termination: O-cornered Zig-zag Surface (1.06 Jm−2)

Figure 4.17: KO terminated reconstruction: O-cornered zig-zag surface arrangement.
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The second most stable KO terminated reconstruction according to DFT was the

O-cornered zig-zag structure shown in Figure 4.17. The relaxation in VASP has again

had the effect of flattening the surface layer. The surface K–O vertical separation is

0.01 Å down from 0.68 Å making it the flattest surface layer of all structures analysed.

As in the GULP structure, the surface O ion in the VASP arrangement shift towards

the central K row although to a slightly lesser extent. The K–O bond distance is found

to be 2.69 Å, slightly larger than the GULP equivalent of 2.61 Å. The K–K separation

remains unchanged at 3.99 Å but the O–O separation is increased from the 5.08 Å to

5.38 Å due to the less pronounced shift of the O ion. The K–O–K angle is found to

be 95.8° while the O–K–O angle is 179.5° indicating a straight line. The Ta–O bond

length is 1.79 Å, 0.02 Å smaller than in the GULP structure. The VASP sub-layer is

found to be slightly more rumpled than the GULP case. The Ta bonded to the surface

O lies 0.20 Å above the plane up from 0.12 Å and the under-coordinated Ta lie 0.29 Å

below the plane up from 0.24 Å. The sub-layer O ions positioned beneath the row of

surface K ions, lie 0.04 Å above the plane. All other O ions in the sub-layer lie ∼0.15

Å above the plane. The inter-planar distance between the surface and sub-layer is 1.98

Å and the distance between the sub-layer and the 3rd layer is 2.09 Å. The 3rd and 4th

layers mirror the effects seen in KO diagonal chain surface with the 3rd layer (KO layer)

having a rumpling of only 0.06 Å and the 4th layer (TaO2 layer) having a much stronger

rumpling of 0.23 Å.

KO Termination: K-cornered Zig-zag Surface (1.08 Jm−2)

Figure 4.18: KO terminated reconstruction: K-cornered zig-zag surface arrangement.

The K-cornered zig-zag structure shown in Figure 4.18 was found to be the third most
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stable KO terminated reconstruction according to DFT. As has been seen previously

when going from the GULP structure to the VASP structure, the most prominent change

is the position of the surface K ions. In the GULP structure the surface K–O vertical

separation was 1.03 Å, the largest of all KO terminated reconstructions. After the

DFT relaxation this distance is reduced to 0.20 Å, five times smaller than its GULP

counterpart, representing another significant flattening of the surface layer. However,

this distance is the largest seen for all DFT relaxed KO terminated reconstructions.

The horizontal separation of the surface K ions to the row of surface O ions is in turn

increased so that the K ions reside more closely to their ideal lattice sites. The K–O

bond distance has thus been increased to 2.62 Å from 2.41 Å. The K–K separation has

increased to 5.22 Å from 4.37 Å, while the O–O separation remains unchanged at 4.00

Å. The O–K–O angle is found to be 99.9° and the K–O–K angle is 171.5°, up from

129.7°. The Ta–O bond between the surface O and sub-layer Ta has a length of 1.80

Å, 0.04 Å smaller than seen in the GULP structure. The inter-planar distance between

the surface and sub-layer is found to be 2.05 Å, the largest of all the VASP relaxed KO

terminated reconstructions. The height of the atoms in the sub-layer has also changed

slightly. In the GULP structure the highest lying ions were the O ions that lay in the

same row as the under-coordinated Ta ions 0.16 Å above the plane. After the VASP

relaxation the highest lying ions are the Ta bonded to the surface O 0.16 Å above the

plane. The other lowest positioned ions are the under-coordinated Ta 0.26 Å below the

plane up from 0.19 Å. The O in the under-coordinated Ta row lie 0.09 Å above the plane

while the O in the other Ta row lie 0.08 Å below the plane. The remaining O reside

0.04 Å above the plane. The size of the rumpling in the 3rd and 4th layers are 0.09 Å

and 0.19 Å which is a smaller difference than seen in some of the other VASP relaxed

KO terminated reconstructions. The inter-planar distances between the sub-layer and

3rd layer and the 3rd layer and 4th layer are 2.08 Å and 2.03 Å respectively.

KO Termination: KO Terraced Surface (1.10 Jm−2)

The KO terraced structure shown in Figure 4.19 was the surface model created during

the initial removal of the dipole. The structure proved unstable with the IP and instead

reconstructed to the K-cornered arrangement. The structure has again been tested

in VASP. This surface was found to be the fourth most stable of the KO terminated

reconstructions. The surface atoms shift only fractionally from their bulk lattice points.

Both the row of surface K and surface O move towards each other slightly. The K–O

vertical separation is found to be 0.11 Å with a K–O bond length of 2.58 Å. The K–K

and O–O separation are that of the unit cell length 4.00 Å. The O–K–O and K–O–K

bond angles are 101.8° and 101.5° respectively. The bond length between the surface O

and sub-layer Ta is recorded to be 1.80 Å. The inter-planar distance between the surface

and sub-layer is 2.01 Å. The sub-layer is rumpled in a fashion similar to the other VASP

KO terminated reconstructions. The Ta below the surface O are located 0.17 Å above
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Figure 4.19: KO terminated reconstruction: KO terraced surface arrangement.

the plane and the under-coordinated Ta lie 0.27 Å below the plane. The high lying O

ions reside on the row directly beneath the surface K row 0.08 above the plane. The

O in the under-coordinated Ta row are located 0.06 Å above the plane. The O in the

fully coordinated Ta row are situated 0.07 Å beneath the plane and the remaining O lie

0.02 Å above the plane. The inter-planar distance between the sub-layer and 3rd layer

is 2.08 Å. The magnitude of the rumpling of the 3rd layer is 0.08 Å and the 4th layer

0.20 Å. The inter-planar distance between the 3rd and 4th layer is 2.03 Å.

KO Termination: KO Island Surface (1.11 Jm−2)

Figure 4.20: KO terminated reconstruction: KO island surface arrangement.
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The least stable of the KO terminated reconstructions according to VASP was the

KO island surface shown in Figure 4.20. The island structure shows a flattening of the

surface layer reducing the K–O vertical separation from 0.71 Å to 0.09Å. The reduction

in vertical separation is accompanied by an increase in the horizontal separation with

the overall effect being an increase in the K–O bond length from 2.43 Å to 2.60 Å and

an increase in K–K separation from 3.31 Å to 3.70 Å. The degree to which the surface O

ions shift towards the surface K ions has decreased slightly resulting in an increase in O–

O separation from 3.25 Å to 3.64 Å. The O–K–O and K–O–K bond angles are 88.8 and

90.9, respectively, becoming more square-like than in the GULP structure. The bond

length between the surface O and sub-layer Ta is 1.79 Å, and the inter-planar separation

between the surface and sub-layer is 2.00 Å. The highest lying ion in the sub-layer is

the O in the under-coordinated Ta row that also lies on the same line as the surface K;

0.23 Å above the plane. The Ta beneath the surface O reside 0.17 Å above the plane,

and the under-coordinated Ta lie 0.26 Å below the plane. The O directly beneath the

centre of the surface KO island is the lowest lying O positioned 0.12 Å below the plane.

The other O on the Ta rows reside 0.04 Å below the plane. The remaining O all lie 0.04

Å above the plane. The magnitude of the rumpling in the 3rd and 4th layers are 0.08

Å and 0.20 Å respectively. The inter-planar separations between the sub-layer and 3rd

layer and the 3rd layer and 4th layer are 2.08 Å and 2.03 Å respectively.

4.6.2 DFT TaO2 Terminated Reconstructions

Apart from the TaO2 terraced structure, all TaO2 reconstructions feature the mixed

sub-layer.

TaO2 Termination: K-cornered Zig-zag Surface (0.87 Jm−2)

Of all the KTaO3 surfaces investigated the K-cornered zig-zag surface residing on top

of the mixed sub-layer obtained from a TaO2 terminated reconstruction proved to be

the most stable both within VASP and GULP. This surface is shown in Figure 4.21. At

the surface, the K–O vertical separation has been significantly reduced from 1.15 Å to

0.51 Å. The K–O horizontal separation has in turn increased, resulting in a K–O bond

length of 2.43 Å up from 2.34 Å. The K–K separation increased from 4.07 Å to 4.76 Å

while the O–O separation remained unchanged at 3.99 Å. The new position of the K

ions lead to a decrease in the O–K–O bond angle from 117.3° to 110.0° and an increase

in the K–O–K angle from 121.1° to 156.2°. The bond length between the surface O ions

and sub-layer Ta is 1.84 Å, which 0.02 Å smaller than in the GULP structure but the

largest of all the VASP structures. The inter-planar separation between the surface and

the sub-layer was found to be 2.41 Å, which is 0.41 Å smaller than the GULP structure

but about 20% larger than any of the VASP KO terminated reconstructions.

The mixed sub-layer found for the stable TaO2 terminated reconstructions was dis-
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Figure 4.21: TaO2 terminated reconstruction: K-cornered zig-zag surface arrangement.

cussed earlier and is a combination of TaO2 and KO rows. The degree of rumpling on

the mixed sub-layer has been significantly reduced compared to the GULP structure.

The highest lying ions on the sub-layer are the Ta which are 0.32 Å above the averaged

plane. The O between the Ta ions lie 0.26 Å above the plane while the other O lie 0.20

Å below the plane. The K ions reside 0.17 Å beneath the plane. The K ions have also

been pushed slightly in the horizontal direction away from the nearest surface K ion.

The magnitudes of the rumpling in the 3rd (TaO2 layer) and 4th (KO layer) layers are

0.20 Å and 0.04 Å, respectively. The inter-planar separations between the sub-layer and

3rd layer and the 3rd layer and 4th layer are 2.17 Å and 2.01 Å, respectively.

TaO2 Termination: KO Terraced Surface (0.89 Jm−2)

The KO terraced surface shown in Figure 4.22 was found to be the second most stable

reconstruction. The structure was found to be unstable with the IP and instead recon-

structed to the K-cornered arrangement discussed above. The surface K ions occupy

positions that differ in their vertical separation from the surface O ions. One K ion is

vertically separated by 0.54 Å while the other is 0.31 Å. This type of break in symmetry

was not observed in the other DFT reconstructions.

The K–O bond length is 2.41 Å for the higher lying K ion and 2.44 Å for the other.

The surface O ions shift very slightly away from the higher K ions giving rise to two

different O–O separation distances of 4.08 Å and 3.91 Å. The K–K separation is 4.01

Å. The O–K–O bond angle involving the higher positioned K is 115.8° and the other K

is 106.7°. The K–O–K bond angle is 111.7°. The bond length between the surface O

and sub-layer Ta was found to be 1.84 Å similar to the K-cornered arrangement. The
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Figure 4.22: TaO2 terminated reconstruction: KO terraced surface arrangement.

inter-planar separation between the surface and sub-layer is 2.36 Å. As with the TaO2

terminated K-cornered arrangement the highest lying ion is Ta, 0.31 Å above the plane.

The difference in height of the between the two surface K ions leads to a difference in

height between the O ions lying in the Ta row. The O ion that lies in this row in line

with the surface K ion resides 0.28 Å above the plane, while the other O is only 0.22 Å

above. Similarly, the sub-layer K ions differ very slightly in height. The K ion in line

with the higher surface K ion is 0.16 Å below the plane, the other K ion is 0.15 Å below.

As all the surface K ions lie to one side of the O row, the sub-layer O ions in the same

row as the K are 0.18 Å below the plane, while the others sub-layer O ions are 0.22 Å

below. The magnitude of the rumpling in the 3rd (TaO2 layer) and 4th (KO layer) layers

are 0.23 Å and 0.05 Å respectively. The inter-planar separations between the sub-layer

and 3rd layer and the 3rd layer and 4th layer are 2.17 Å and 2.01 Å, respectively, the

same as in the K-cornered arrangement.

TaO2 Termination: KO Island Surface (0.99 Jm−2)

The KO island surface shown in Figure 4.22 was the third most stable reconstruction.

As with all VASP relaxed structures this surface shows a flattening of the surface layer

compared to the GULP structure. At the surface the K–O vertical separation has been

reduced from 0.66 Å to 0.12 Å. This is the smallest seen for the surface reconstructions

containing a mixed sub-layer. The K–O bond length has increased to 2.54 Å, up from

2.41 Å. The degree to which the O lean in towards the island centre has decreased,

opening up the O–O separation from 3.36 Å to 3.76 Å. The K–K separation has also

increased from 3.19 Å to 3.42 Å. The O–K–O bond angle is 95.3° and the K–O–K angle

is 84.5°. The bond length between the surface O ion and sub-layer Ta ion is 1.82 Å, 0.02

Å smaller than in the GULP structure. The inter-planar separation between the surface
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Figure 4.23: TaO2 terminated reconstruction: KO island surface arrangement.

and the sub-layer is 2.21 Å, down from 2.56 Å. The sub-layer rumpling is similar to that

of the other mixed sub-layer structures relaxed by VASP. The highest lying ions on the

sub-layer are the Ta, which are 0.34 Å above the averaged plane. The O between the

Ta that lie beneath the island centre are 0.22 Å above the plane while the other O lies

0.24 Å above. The remaining O all reside 0.18 Å below the plane. The K ions in line

with the surface K reside 0.32 Å beneath the plane and the other K 0.09 Å below. The

magnitude of the rumpling in the 3rd (TaO2 layer) and 4th (KO layer) layers are 0.22

Å and 0.06 Å, respectively. The inter-planar separations between the sub-layer and 3rd

layer and the 3rd layer and 4th layer are 2.16 Å and 2.01 Å, respectively.

TaO2 Termination: TaO2 Terraced Surface (1.60 Jm−2)

The TaO2 terraced surface shown in Figure 4.24 is the only TaO2 terminated reconstruc-

tion investigated that has Ta in the top surface layer and does not include the mixed

sub-layer. The TaO2 at the surface is arranged in a TaO chain with the remaining O

bonded to the Ta on one side of the chain. The chain is slightly zig-zagged so that

the O in the chain are angled away from the O protruding off the chain. The surface

O ions lie higher on the surface than the Ta. The O ion in the chain coordinated to

two Ta ions resides slightly higher than the other O (0.32 Å above the Ta), the singly

coordinated O lies 0.27 Å above the Ta. The Ta–O bond distance is 2.07 Å for the

two-coordinated O and 1.75 Å singly coordinated O. The O–Ta–O bond angle where

both O are two coordinated is 149.1°, and when one of the O are singly coordinated is

101.1°. The Ta–O–Ta bond angle is 149.1°. The Ta–Ta separation distance is 3.99 Å;

the same as the lattice constant. A similar separation is found between symmetrically
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Figure 4.24: TaO2 terminated reconstruction: TaO2 terraced surface arrangement.

equivalent surface O. The distance between the two different O types was 2.95 Å.

The sub-layer was a bulk-like KO plane. The bond length between the surface Ta

ion and sub-layer O ion is found to be 1.82 Å. This O ion also shifts horizontally away

from the singly coordinated surface O, creating a non-180° angle, between the Ta above

and below, of 172.9°. The highest lying atoms on sub-layer are the K ions in the same

row as the singly coordinated surface O ion; 0.21 Å above the plane. These K ions have

also moved 0.32 Å horizontally of this would be bulk lattice site away from the surface

Ta row, the position is a result of an attraction to the surface O and a repulsion from the

surface Ta. The other K ions lie 0.14 Å below the plane. The sub-layer O ion bonded to

the surface Ta ion resides 0.09 Å above the plane and the other O ion lies 0.16 Å below.

The inter-planar distance between the surface and sub-layer is found to be 2.10 Å.

The magnitudes of the rumpling in the 3rd (TaO2 layer) and 4th (KO layer) layers are

0.21 Å and 0.09 Å, respectively. The inter-planar separations between the sub-layer and

3rd layer and the 3rd layer and 4th layer are 2.06 Å and 2.03 Å, respectively.

4.6.3 Summary of DFT Surfaces

Table 4.2 highlights some of the key properties of the VASP relaxed surfaces. The DFT

calculations agree with the atomistic calculations in that the TaO2 terminated recon-

structions that feature the mixed sub-layer are the most stable. The TaO2 terminated

reconstruction is the least stable of all the structures investigated, thus, highlighting

the importance the reconstruction of the sub-layer has on stabilising the surface. The

surface energy from the VASP calculations when compared to the GULP calculations

has increased for the TaO2 reconstructions, whereas it has decreased for the KO recon-

structions. This implies the sub-layer reconstruction has a greater stabilising effect in

the atomistic calculations than in the DFT calculations.
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The stability ordering of the surface layer arrangement (the KO on the top layer)

is the same on both types of sub-layer (both KO and TaO2 reconstructions). However,

this order has changed in going from atomistic to DFT calculations The previous order

calculated by GULP was: K-cornered > Island > O-cornered > Diagonal. This has been

reordered to: Diagonal>O-cornered>K-cornered> Island, with the K-terraced surface

slotting between the K-cornered and Island arrangements. As the Diagonal and O-

cornered structures can not reside on the mixed sub-layer, the K-cornered arrangement

on the mixed sub-layer remains the ground state. Thus, the same surface structure is

predicted as the ground state by both GULP and VASP.

The most general and obvious change in the geometry between the GULP and VASP

structures is the flattening of the surface KO layer. In all the structures, the K ion lies

higher than the O ion on the surface. On refining the GULP structures within VASP,

the vertical separation between the two species reduced by ∼0.6 Å. The large rumpling

at the surface seen in the GULP structures may be a result of using a formal charge

model. While the model reproduces the bulk properties well, formal charges might

not be entirely suitable at the surface. The reduced surface rumpling seen for the

DFT structures is accompanied by an increase in the O–O and K–K separation (when

possible). The magnitude of the O–O separation across the different surfaces, anti-

correlates with surface energy, with increased O–O separation typically being associated

with lower surface energy. This suggest the O–O separation distance plays an important

role in surface stability.

In the GULP calculations the rumpling of the mixed sub-layer was almost twice as

large as that seen for KO sub-layer. After the structures were refined in VASP the sub-

layer rumpling was reduced, more significantly so for the mixed sub-layer. This results

in the mixed and KO sub-layers both being flatter with a similar degree of rumpling.

The plane height of each layer was defined as the average of all the atoms considered

to lie in that layer. The inter-planar separation between the surface and sub-layer has

been reduced during the VASP relaxations, an outcome of both the surface and sub-layer

planes becoming flatter.
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Table 4.2: Surface energy and key inter-atomic distances for DFT relaxed
KTaO3 surfaces. The properties listed are the same as in Table 4.1. Bracketed values
indicate the difference between the DFT and atomistically optimised surfaces.

K-c Terrace Island Diagonal O-c

γ (Jm−2) TaO2 0.87 0.89 0.99 x x
(0.35) (0.15)

KO 1.08 1.10 1.11 1.04 1.06
(-0.44) (-0.53) (-0.63) (-0.66)

K–O (Å) TaO2 2.43 2.41/2.44 2.54 x x
(0.09) (0.13)

KO 2.62 2.58 2.60 2.82 2.69
(0.21) (0.17) (0.42) (0.08)

O–O (Å) TaO2 3.99 3.91/4.08 3.76 x x
(-0.01) (0.40)

KO 4.00 4.00 3.64 5.65 5.38
(0.02) (0.39) (-0.03) (0.30)

K–K (Å) TaO2 4.76 4.01 3.42 x x
(0.69) (0.23)

KO 5.22 3.99 3.70 5.65 3.99
(0.85) (0.39) (-0.06) (0.00)

Ta–O (Å) TaO2 1.84 1.84 1.82 x x
(-0.02) (-0.04)

KO 1.80 1.80 1.79 1.79 1.79
(-0.04) (-0.03) (-0.02) (-0.02)

O–K–O (°) TaO2 110.0 106.7/115.8 95.3 x x
(-7.3) (6.8)

KO 99.9 101.8 88.8 177.9 179.5
(-11.6) (4.6) (26.8) (27.5)

K–O–K (°) TaO2 156.2 111.7 84.5 x x
(35.1) (1.5)

KO 171.5 101.5 90.9 177.9 95.8
(41.8) (4.9) (26.0) (-3.7)

∆z K–O (Å) TaO2 0.51 0.54/0.31 0.12 x x
(-0.64) (-0.53)

KO 0.20 0.11 0.09 0.05 0.01
(-0.83) (-0.62) (-0.63) (-0.61)

∆z L1–L2 (Å) TaO2 2.41 2.36 2.21 x x
(-0.41) (-0.35)

KO 2.05 2.01 2.00 2.00 1.98
(-0.39) (-0.25) (-0.26) (-0.22)

∆z L2–L3 (Å) TaO2 2.17 2.17 2.16 x x
(-0.21) (-0.15)

KO 2.08 2.08 2.08 2.10 2.09
(0.05) (0.04) (0.06) (0.06)
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4.7 Electronic Structure

Table 4.3: KTaO3 surface band gaps. All the gaps are found to be direct at the Γ
point. The bulk band gap for KTaO3 was calculated to be 2.03 eV.

TaO2 terminated reconstructions
K-c Terrace Island

Band Gap (eV) 1.88 1.88 1.72

KO terminated reconstructions
K-c Terrace Island Diagonal O-c

Band Gap (eV) 1.80 1.83 1.72 1.89 1.90

Table 4.3 presents the band gaps for the eight surface slabs investigated as calculated

in VASP. All of the band gaps are found be smaller than the calculated bulk Γ – R

indirect gap of 2.03 eV. The KO reconstructed diagonal chain structure has the largest

band gap of 1.90 eV, 0.13 eV smaller than the bulk. The smallest band gap is found

on the KO island structure of both the KO and TaO2 reconstructions and is calculated

to be 1.72 eV. The ground state structure, the TaO2 reconstructed K-cornered zig-zag

surface, is found to have a band gap of 1.88 eV.

Figure 4.25: Band structure for the TaO2 terminated K-cornered zig-zag structure. The
top of the valence band is shifted to 0 eV.
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As slabs with a surface are modelled to be finite in the direction perpendicular to the

surface, electronic band dispersion is only measured in two dimensions. The electronic

band structure for the ground state surface is shown in Figure 4.25. A direct band gap

is measured at the Γ point (0,0,0). The dispersion in the (1
2 ,0,0) and (0,1

2 ,0) direction

differ due to the break in symmetry between these two directions at the surface.

Figure 4.26: The DOS projected onto the different layers in the slab. The DOS is further
decomposed into its different species. The left shows the DOS over the range -30 – 10
eV. The right magnifies the -5 – 5 eV range in which the valence band and conduction
band reside.

To get a more detailed impression of the effect the surface has on the electronic

structure a decomposed DOS profile was created for the ground state structure. The

DOS was decomposed and projected onto each individual atom. For each layer in the

slab the atomic DOS were summed together with the result of the top eight layers being

shown in Figure 4.26. The deeper layers are expected to be representative of the bulk

and so layers 7 and 8 will be referred to as bulk-like.

The DOS profile of the entire slab closely resembles that of the bulk. The filled K

3s and 3p bands are shown as narrow peaks at ∼-27 eV and -11 eV respectively. The O

2s orbital is seen to have a undergone some mixing with the Ta orbitals with the band

located at ∼-17 eV. The valence band is comprised of mixed O 2p and Ta 5d, 6p and 6s
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states, with O 2p being highly predominant close to the valence band maximum (VBM).

The conduction band is dominantly Ta 5d with some mixing from O states.

The most obvious difference between the surface and bulk layers are seen in the

deeper K 3s, 4p and O 2s bands. The energy levels of the K 3s and 3p bands both

decrease towards the surface. The surface bands are the lowest lying with the sub-

surface level lying between the surface and bulk levels. The energy levels of the O 2s

band behave in an opposite fashion; the energy of the bands increase towards the surface.

The shift in these low lying states is likely a result of the under coordination of these

ions at the surface. Closer to the band gap, the top of the valence band is found to

slightly increase in energy closer to the surface. The bottom of the conduction band is

found to significantly increase in energy at the surface layers; upward band bending.

Figure 4.27: Two-dimensional charge density plot of the KTaO3 ground state surface
(TaO2 terminated K-cornered). The image taken is of a plane in the (010) direction.
The blue at the bottom of the spectrum represents low charge density while the red
end is high charge density. The image on the right highlights the atom positions. The
surface lies at the top of images.

Analysis of the charge density agreed with the DOS. No charge was seen between

the K and O ions suggesting highly ionic bonds. Charge is found between the Ta and O

suggesting a degree of covalent bonding between the ions. Figure 4.27 shows the charge

density on a plane in the (010) direction. Not only is there obvious covalency between

the Ta and O, but at the surface the surface O ions and closest sub-layer O ions are

seen to share covalent bonding.

Simulated STM images were also created for three of the surfaces and are shown in

Figure 4.28. The surfaces simulated were a) the TaO2 terminated K-cornered zig-zag

surface (the ground state), b) the TaO2 terminated KO terraced surface, c) the KO
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Figure 4.28: Simulated STM images of the KTaO3 reconstructions. a) the TaO2 termi-
nated K-cornered zig-zag surface. b) the TaO2 terminated KO terraced surface. c) the
KO terminated KO terraced surface. The images were created by looking at constant
charge density levels of bands near the top of the valence band. The brightness indicates
the distance from the top of the surface.

terminated KO terraced surface which was the proposed ground state in the limited

literature. The difference in surface energy between surfaces a) and b) is small (0.02

Jm−2) suggesting it is likely both surfaces could exist simultaneously. The difference in

surface energy between b) and c) is much larger (0.21 Jm−2) making it unlikely surface

c) would exist. Both b) and c) structures possess the same surface arrangement of the

KO and the STM images show it may be hard to distinguish between the two. Thus, it

can be seen that surfaces involving the mixed sub-layer may be mistaken for less stable

reconstructions by STM.
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4.8 Defects

Defect calculations were performed on the ground state surface (Figure 4.13 for atomistic

calculations, Figure 4.21 for DFT) to ascertain where vacancies would be most likely to

form. The atoms on the surface have been labelled in Figure 4.29 for clarity.

Figure 4.29: Labelling of the unique ions at the surface of the KTaO3 (001) reconstructed
ground state.

4.8.1 Atomistic Defect Models

Oxygen vacancies were modelled at the atomistic level to gauge the agreement between

atomistic and DFT calculations on where the vacancies are likely to form. To model the

removal of neutral oxygen from the surface (leaving the surface uncharged) the charge

on the O ions being removed had to be reallocated, this was done in two ways. The

first approach was to delocalise the charge by evenly distributing it over all Ta ions (the

shells) in region 1. In the second approach the charge was evenly distributed between

the two closest Ta ions. Thus, for an O vacancy in a bulk-like TaO2 plane the two Ta4+

would both lie on the same plane as the vacancy. For an O vacancy in the KO plane

one Ta4+ would be in the plane above and the other on the plane below.

The thickness of region 1 was increased to 12 unit cell layers to model the defects

(compared with 6 in previous atomistic calculations). After introducing the vacancy

and distributing the residual charge the geometry of the slabs were relaxed.

Plots of the defect energy relative to the most stable O vacancy configuration are

shown in Figure 4.30 when the charge is delocalised (left) and localised (right). The
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energies are plotted as a function of vacancy depth from the surface. Both plots show

Figure 4.30: Plots of the atomistic defect energy for neutral O vacancies on the KTaO3

(001) reconstructed ground state surface. On the left the charge associated with the O
vacancy has been evenly distributed over all Ta ions. On the right the charge has been
evenly distributed to the two Ta ions closest to the O vacancy.

that the formation of O vacancies is more favourable on KO planes than TaO2 planes.

When the charge is delocalised the defect energies form a parabola about the centre

of the region 1. This arises due to the creation of a dipole which is minimised when

the vacancy is at the centre of region 1. When the charge is localised the most stable

vacancies are found at the surface and correspond to the removal of either O1 or O2

from Figure 4.29. The charge is divided among the two sub-layer Ta ions and both

vacancy types result in the same final structure From the perspective of the O1 vacancy

the two surface K move into the row directly above the line of sub-layer Ta. They also

approach more closely to the remaining surface O ions resulting in a bond length of 2.10

Å. The sub-layer O beneath the surface K rise up out of their plane slightly to approach

the surface K. For the removal of O3 the charge is given to the nearest sub-layer Ta and

a Ta in the plane below. This results in a different relaxed structure which was higher

in energy.

4.8.2 DFT Defects

Neutral O, K, and KO vacancy calculations were performed at the DFT level using

VASP. As the DFT surface was symmetric and double sided, vacancies at the surface

were introduced on both sides to retain symmetry. To model a bulk-like vacancy in

the slab a single oxygen was removed from the central layer of the slab. A slab with a

thickness of five unit cell layers was used to model most vacancies. To model the bulk-

like O vacancy on a TaO2 plane a six unit cell layer thick slab was used to maintain

symmetry.
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The defect formation energies were calculated using:

EDefect = ED
ABZ3

− EABZ3 +NAµA +NBµB +NZµZ (4.2)

where EABZ3 is the energy of the relaxed ABZ3 perovskite system before a defect was

introduced and ED
ABZ3

the energy after. Ni and µi are the number of vacancies and the

chemical potential, respectively, of element i. See chapter 2 for more details.

Figure 4.31: Phase diagram for KTaO3.

The chemical potentials for KTaO3 have been previously calculated in chapter 2

at the five points on the phase diagram shown in Figure 4.31. The vacancy types

investigated include:

• Those labelled in Figure 4.29 from the surface.

• An O vacancy from a KO plane at the centre of the slab.

• An O vacancy from a TaO2 plane at the centre of the slab.

• A K vacancy from the centre of the slab.

• A double vacancy of two O1 ions.

• A double vacancy of two K1 ions.

• A KO vacancy of O1 and K1.

• A double KO vacancy of two O1 and K1.

The formation energy of these vacancies along with the chemical potentials are given

in Table 4.4. µO is most negative – and hence the O vacancies most stable – in the

metal rich environment describe by point 5 on the phase diagram (Figure 4.31). The

order of stability of the DFT oxygen vacancies coincide closely with the atomistic level
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Table 4.4: Defect energies. The defect energy of vacancies in a KTaO3 slab calculated
at the points shown in Figure 4.31.

Vacancy Defect formation energy or µ (eV) at phase diagram point
1 2 3 4 5

O Vacancies

µO -7.80 -4.54 -4.54 -8.11 -9.13
O1 2.02 5.28 5.28 1.71 0.69
O2 1.81 5.07 5.07 1.50 0.47
O3 2.40 5.66 5.66 2.09 1.07
O (KO) 2.36 5.62 5.62 2.05 1.02
O (TaO2) 2.87 6.13 6.13 2.56 1.54
O1 x2 4.65 11.17 11.17 4.03 1.98

K Vacancies

µK -0.90 -2.53 -5.76 -3.98 -0.90
K1 3.36 1.73 -1.50 0.28 3.36
K2 3.81 2.18 -1.05 0.74 3.81
K (KO) 4.29 2.66 -0.57 1.22 4.29
K1 x2 7.14 3.88 -2.58 0.99 7.14

KO Vacancies

KO 2.17 3.80 0.57 -1.21 0.84
KO x2 4.76 8.02 1.56 -2.01 2.10
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calculations where the charge was split between neighbouring Ta ions. The O2 vacancy

(Figure 4.29) is the most stable followed by the O1. The ions in the DFT calculation

are much less mobile and so the systems involving the O1 and O2 vacancy do not relax

to the same structure as they did for the atomistic model. The removal of oxygen from

a KO plane at the centre of the slab is the next most stable followed by the O3 vacancy.

The removal of O from a TaO2 plane at the centre of the slab is the least stable single

O vacancy.

The formation of two O1 vacancies proves to be less stable than all single oxygen

vacancy models. The order in formation energy implies that O vacancies are more likely

to form at the surface than deeper within the material. The surface O vacancies are

lower in energy than the defects seen in both the bulk 2x2x2 and 3x3x3 cells investigated

in chapter 2. The defect energies from vacancies at the centre of the slab more closely

resemble the defect energy seen in the bulk cells. The formation energies for all of these

oxygen vacancies are positive which implies the formation of O vacancies is dependant

on the temperature of the system.

K vacancies are most stable in the O rich environment described by point 3 on

the phase diagram. K1 is the most stable single K vacancy, almost 0.5 eV lower in

energy than K2, which in turn is almost 0.5 eV lower in energy than a K vacancy at

the centre of the slab. The removal of both K1 ions proves to be even more stable than

just the single vacancy at point 3, although less stable at all other points. All formation

energies at point 3 are negative and so the vacancies would be expected to spontaneously

form, independent of temperature (although this is subject to any migration barriers

encountered). As was seen for the O defects, the K vacancies at the surface are lower

in formation energy than those seen in the bulk cells. K vacancies from the slab centre

have a similar formation energy to the bulk vacancies. The K vacancies in the Ta rich

environment described by point 4 on the phase diagram are also seen to have relatively

low formation energies, comparable to the energetics seen for the O vacancies at point

5.

The removal of KO units from the surface layer is found to be favourable (negative

formation energy) at point 4, and the removal of both KO units even more favourable.

Electronic Structure of Defected Slabs

The appearance of the surface 2DEG in KTaO3 has been proposed to be a result of

oxygen vacancy formation. In this section the electronic structure of the slab containing

a surface O vacancy is investigated.

Figure 4.32 compares the density of states (DOS) for a slab containing the O2 va-

cancy to a stoichiometric slab without any vacancies. The DOS are projected onto

individual atomic layers focuses on the top of the valence band and the bottom of the

conduction band. The Fermi level for the slab containing the O2 vacancy is located at

the bottom of the conduction band and this has been set to 0 eV on the plot. The two
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Figure 4.32: The DOS, close to the Fermi level, projected onto layers for a KTaO3 slab
containing a neutral O vacancy (black line) and a stoichiometric slab without vacan-
cies(red line). The Fermi energy is shifted to 0 eV (green line) and sits at the bottom of
the conduction band. Even numbered layers are KO, and odd numbers layers are TaO2.

different slabs being compared were aligned by their oxygen 1s core levels. The even

layers in the DOS plots are KO, and the odd are TaO2.

For the slab containing the O vacancy the valence band bends downwards towards

the surface, whereas no such bending seen for the stoichiometric slab. The conduction

bands of the two different slabs are quite similar. Both slabs show the lowest lying states

to be on the 3rd and 5th layer The slab with the O vacancy does contain a large peak

in the sub-layer significantly lower in energy than any seen for the stoichiometric slab,

likely an effect of the defect.

From the DOS profile the slab with the oxygen vacancy appears to be metallic with

the charge appearing to be concentrated on layers 3 and 5. Figure 4.33 shows the

distribution of charge for the conduction band states in the slab with an O vacancy. a)

shows an isosurface of the conduction band charge density. b) shows a contour plot of

the conduction band charge density for a plane that bisects the Ta ions.
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Figure 4.33: Charge density distribution for a KTaO3 slab containing an oxygen vacancy.
a) shows an isosurface of the conduction band charge density. b) shows a contour plot
of the conduction band charge density for a plane that bisects the Ta ions. a) and b)
are aligned so that the layers are in line with each other, the surface is at the top. The
purple, grey, and red spheres are K, Ta, and O, respectively.

The charge is clearly shown to reside on the Ta ions, and is densest on the ions away

from the surface in the bulk (5th layer). The massing of negative charge in the bulk

is in contrast to what is reported in the literature [131]. However, it should be noted

that while the centre of the slab has converged to its bulk like structure, the slab might

not be thick enough for electronic surface effects to have become negligible at the slab

centre.

To continue the investigation into the cause of the surface 2DEG two avenues may

be explored. Firstly, the thickness of the slab may be increased to ensure that the slab

centre is devoid of any surface effects. Secondly, the quality level of the calculations

can be increased. This would involve including spin-orbit effects [162] and using hybrid

functionals [163–165].
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Table 4.5: Data mining of KTaO3 surface reconstructions. The surface energies
of the KTaO3 reconstructions applied to the ABZ3 cubic perovskite phases of KMgF3,
KZnF3, and BaSnO3.

Surface Reconstruction Surface Energy (Jm−2)
KTaO3 KMgF3 KZnF3 BaSnO3

BZ2 term.: A-cornered 0.87 0.85 0.74 1.38
AZ term.: A-cornered 1.08 0.72 0.58 1.60
BZ2 term.: BZ2 terraced 1.60 0.99 0.78 1.67

4.9 Data Mining Surfaces

In this last section, the reconstructed surface structures of KTaO3 are tested (data-

mined) for the ABZ3 cubic perovskite phases of KMgF3, KZnF3, and BaSnO3. For

KMgF3 and KZnF3 the charges on the A, B, and Z ions are +1, +2, and -1, respectively.

For BSnO3 the charges on the A, B, and Z ions are +2, +4, and -2, respectively. This

results in charge neutral AZ and BZ2 planes. As the planes are charge neutral the bulk

terminated surfaces are going to be stable, with one of the terminations likely being

the ground state. However, the relative energies of the reconstructions for different

compounds may give insight into what makes these surfaces stable. Three of the KTaO3

surface reconstruction were applied to the other cubic perovskites. These reconstructions

were:

• The TaO2 terminated: K-cornered zig-zag surface arrangement (cf. Figure 4.21).

• The KO terminated: K-cornered zig-zag surface arrangement (cf. Figure 4.18).

• The TaO2 terminated: TO2 terraced surface arrangement (cf. Figure 4.24)

The surface slabs were rescaled to match the lattice parameters of the relevant com-

pound. The lattice parameters for KMgF3 and KZnF3 were previously determined in

chapter 3. The bulk unit cell lattice parameter (a) for BaSnO3 was determined in VASP

using the approach described in Chapter 3 for KTaO3, KMgF3, and KZnF3. The value

of a for BaSnO3 was calculated to be 4.136 Å, which is within 0.5% of both the experi-

mentally observed value [166], and calculated values from other DFT investigations [60,

167]. All surface calculations employed a 500 eV plane wave cut-off and a Γ-centred 3 x

3 x 1 k-point mesh.

The surface energies obtained from the data mined reconstructions are given in Table

4.5. The energy rankings for the reconstructions of the two fluoride based compounds are

in agreement. The AZ terminated: A-cornered arrangement is the lowest in energy. For

the BZ2 terminated reconstructions, the A-cornered surface arrangement – the ground

state for KTaO3, which involved the migration of A ions to the surface – is the next

lowest in energy. The BZ2 terraced surface is the highest in energy of the three. The two

fluoride compounds differ most in the relative energies of the two BZ2 reconstructions.
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For KMgF3 the K-cornered arrangement was 0.14 Jm−2 lower in energy than the BZ2

terraced structure. For KZnF3 the difference in energy between the two reconstructions

is only 0.04 Jm−2. This indicates that the migration of A ions to the surface for the

BZ2 termination, is less of a stabilising effect for KZnF3 than it is for KMgF3.

Compared to KTaO3, the effect of maximising the coordination of the B cation is less

stabilising for the fluoride based compounds. This is illustrated by the fact that the AZ

terminated: A-cornered surface is lower in energy than the BZ terminated: A-cornered

surface.

On the other hand, the energy rankings of the BaSnO3 surfaces agree with those of

KTaO3. The BZ2 terminated: A-cornered surface is the lowest in energy. Suggesting

that, like with KTaO3, the maximising the coordination of the B cation is a strongly

stabilising effect. The formal charges are higher for BaSnO3 than for the fluoride based

perovskites, giving weight to the hypothesis that the cation migration is charge driven.

The Goldschmidt tolerance factors (see chapter 1) for these perovskites are 0.964,

0.935, 0.926, and 0.930 for KTaO3, KMgF3, KZnF3, and BaSnO3, respectively. The

ionic radii used for the ions were: K = 1.52 Å, 1.49 Å, Ta = 0.78 Å, Mg = 0.86 Å, Zn =

0.88, Sn = 0.83 Å, O = 1.26 Å, and F = 1.19 Å, all taken from Ref. [114]. The tolerance

factor for BaSnO3 lies between that of KMgF3 and KZnF3, whereas the surface energy

rankings of BaSnO3 agree with KTaO3. This implies that it is unlikely the AZ / BZ

size ratio has as strong an effect as the charge, on how stabilising the A ion migration

is.

For the non-polar perovskites, the 1 x 1 bulk terminated surface energies were cal-

culated for comparison. Two types of surface calculations were performed. The first

involved stoichiometric slabs possessing two different surface terminations. The second

used symmetric non-stoichiometric slabs with the same termination on each side. The

non-stoichiometric slabs were created by removing either an AZ or BZ2 layer from the

surface of the stoichiometric slabs. For the stoichiometric slabs the average surface en-

ergy of the two different terminations was calculated. For the non-stoichiometric slabs

the surface energy was calculated using:

Esurface =
Eslab − nEbulk +NAZµAZ +NBZ2µBZ2

2A
(4.3)

where Eslab is the energy of the slab, Ni the number of i layers removed, µi the chemical

potential of i, Ebulk the energy of the bulk unit cell, and n the number of equivalent

bulk unit cells required to make the stoichiometric slab before the removal of layers.

The surface simulations were performed using slabs that were seven unit cell layers

thick separated by a vacuum gap of 10 Å. The seven layer thick slabs were found to

have a surface energy difference of less than 0.001 Jm−2 from five layer thick slabs. For

the non-stoichiometric slabs, one layer of either AZ or BZ2 was removed from the seven
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Table 4.6: Perovskite 1 x 1 surface energies. The surface energies (001) 1 x 1
surfaces of KMgF3, KZnF3, and BaSnO3.

Surface Surface Energy (Jm−2)
KMgF3 KZnF3 BaSnO3

Stoichiometric (averaged) 0.52 0.46 1.10
AZ term. (AZ rich) 0.19 0.15 0.27
AZ term. (BZ2 rich) 0.41 0.38 0.79
BZ2 term. (AZ rich) 0.86 0.78 1.95
BZ2 term. (BZ2 rich) 0.64 0.55 1.43

unit cell thick stoichiometric slabs. The chemical potentials were constrained by:

µABZ3 = µAZ + µBZ2 (4.4)

where µABZ3 is the calculated unit cell lattice energy of the perovskite. Thus, the

chemical potential for each binary compound had two different values depending on the

limits. In the AZ rich limit:

µAZ = µAZ(s) (4.5)

µBZ2 = µABZ3 − µAZ (4.6)

and in the BZ2 rich limit:

µBZ2 = µBZ2(s) (4.7)

µAZ = µABZ3 − µBZ2 (4.8)

where µX(s) is the lattice energy of compound X.

The surface energies calculated for the 1 x 1 slabs are given in Table 4.6. KZnF3 is

found to have the lowest surface energy of the three perovskites, while BaSnO3 has the

highest. For all three perovskites, under all conditions, the AZ termination is shown

to be significantly lower in energy than the BZ2 termination. The smallest gap in

surface energy between the AZ and BZ2 terminations in found for KZnF3 under BZ2

rich conditions; calculated to be 0.17 Jm−2. As expected, the bulk terminated 1 x 1

surfaces are generally lower in energy than the reconstructed surfaces (cf. Table 4.5).

However, there are a few exceptions. For all compounds, the A-cornered reconstructions

from either termination are lower in energy than the 1 x 1 BZ2 surface under AZ rich

conditions. All of the reconstructions for the BaSnO3 are lower in energy than the 1 x

1 BZ2 surface under AZ rich conditions. The BaSnO3 A-cornered reconstruction from

the BZ2 termination is lower in energy than the 1 x 1 BZ2 surface under any conditions.

From these results it is clear that surfaces in which the B cations are under-coordinated

and exposed to the surface are higher in energy. The stabilising effect of maximising the
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B cation coordination is greater for the more highly charged BaSnO3, than it is for the

fluoride compounds

4.10 Conclusion

In this chapter reconstructions of the KTaO3 (001) polar surface have been investigated

at both the atomistic level using interatomic potentials (IP), and the electronic level

using density functional theory (DFT).

The stoichiometric 1 x 1 bulk terminated surfaces were shown to be unstable by

both the IP and DFT calculations; as expected for polar surfaces. Using a 2 x 2 slab,

terraced surfaces were created for both terminations to remove the dipole perpendicular

to the surface.

A global optimisation at the IP level was performed using the terraced surfaces

as initial configurations. The global optimisation revealed six low energy surface re-

constructions. The lowest energy configurations were a result of the TaO2 terminated

terrace structures reconstructing so that Ta moved from the surface into the bulk, and

K migrated out towards the surface. These reconstructions resulted in a surface layer

of KO, and a mixed sub-surface layer of alternating rows of KO and TaO2. The Ta ions

in the sub-layer were six coordinated making this type of reconstruction the only one in

which all Ta ions were fully coordinated. It is assumed that this cation interlayer ex-

change is charge driven, with the maximising of the Ta coordination having a stabilising

effect.

The IP surface structures were refined using DFT to investigate the electronic struc-

ture. The DFT geometry optimisation led to the atomic layers near the surface becoming

less rumpled in comparison to the IP structures. As with the IP, the DFT calculations

found the reconstructions in which Ta ions had descended from the surface into the

bulk, with K ions migrating in the opposite direction, to be the lowest in energy, re-

inforcing the idea that a maximisation of the Ta coordination was highly stabilising.

Six of the DFT surface structures presented in this thesis are lower in energy than the

lowest energy structure from the literature [148].

A density of states (DOS) profile for the surface reconstruction with the lowest energy

(ground state) revealed the band gap of the stoichiometric KTaO3 slab similar to the

bulk gap; approximately 2 eV.

Defect calculations involving neutral K, O, and KO vacancies were performed on

the ground state slab. The formation of K and O vacancies were revealed to be more

favourable at the surface than at the centre of the slab. K vacancies were found to be

the most favourable, possessing a negative defect formation energy, when in an oxygen

rich environment. Surface KO vacancies, under Ta rich conditions, were found to have

a negative formation energy. The creation of O vacancies was most favourable under

metal rich conditions, with the lowest formation energy calculated to be 0.47 eV.
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For the slab with a surface O vacancy the Fermi level was found to reside at the

bottom of the conduction band, cause the slab to become metallic. An investigation

into the charge density revealed the charge to be concentrated close to the centre of

the slab. This charge distribution is in contrast to what is seen in the literature for

the (001) KTaO3 surface [131, 132]. It is suggested that further calculations including

spin-orbit coupling and hybrid functionals be carried out, to investigate the formation

of the 2DEG at the surface.

Lastly, three of the KTaO3 surface reconstructions were applied to the ABZ3 cubic

perovskite phases of KMgF3, KZnF3, and BaSnO3. The three reconstructions tested

were: (a) an AZ surface layer on top of the AZ-BZ2 mixed sub-layer. (b) an AZ surface

layer on top of a BZ2 sub-layer. (c) a BZ2 surface layer on top of a AZ sub layer.

(a) and (c) are rearrangements of the same termination. For the fluoride compounds,

(b) had the lowest energy of the three reconstructions. For BaSnO3, (a) was lowest in

energy. In all cases, (c) had the highest energy. The charges on the ions A, B, and Z are

twice as large for BaSnO3 compared with the fluoride perovskites. Thus, the strength

of the stabilising effect associated with B cations moving from the surface into the bulk

appears to have a correlation with the ion charge.

The perovskites KMgF3, KZnF3, and BaSnO3 are all non-polar in (001) direction,

and so the 1 x 1 bulk terminated surfaces are expected to be stable, with one of the

terminations being the ground state. This was indeed found to be the case, with the AZ

termination being the lowest in energy for all three compounds. Thus, the reconstruction

mechanism observed for the KTaO3 (001) surface is expected to be specific to polar

surfaces.

A recent study by Druce et al [168] used Low-Energy Ion Scattering (LEIS) to

investigate the very outermost surface layers of III-III perovskite materials after high

temperature annealing. It was found that the outermost layer of these materials was

rich with A cations. Just below the surface layer existed regions rich in B cations. These

findings support the atomic rearrangement at the surface shown in this chapter.

Further work investigating the stability of these reconstructions applied to per-

ovskites, in which the formal charge on the A and B cations is the same, would help

illuminate how large an effect the charge disparity between the two different cations has

on the stabilisation effect of the B cation maximising its coordination.

123



Chapter 5

KMgF3 and KZnF3 Clusters

5.1 Introduction

The emphasis of the thesis now focuses on the atomic structure that results when the

number of atoms is such that each atom is part of the surface, i.e. nanoclusters. In

this chapter nanoclusters of the perovskite compounds KMgF3 and KZnF3 have been

investigated. This work is part of a international collaborative effort to determine the

efficiencies of a number of global optimisation (GlOp) techniques currently employed by

world leading experts within the field of structure prediction. The GlOp techniques used

were Genetic Algorithms (GA), Basin Hopping (BH), and Stochastic Quenching (SQ).

The techniques were tested on how quickly they found the lowest energy structure, the

global minimum (GM), and the 10 lowest energy, local minima (LM) structures. All

work presented in this chapter is my own.

The first section of results compares the performance of three different global op-

timisation techniques in predicting the low energy structures of the nanoclusters. The

global optimisations are performed on the interatomic potential (IP) energy landscape

for cluster size n = 1 – 9, where n is the number of formula units used. The best IP

structures were refined through DFT. The optical properties were calculated for the

DFT nanoclusters. Lastly, structures with bulk-like features were compared to globally

optimised clusters, over the sizes n = 8 – 12.

5.1.1 Nanocluster Structure Prediction

Nanoclusters have enjoyed a large influx in research over recent decades owing to their

unique catalytic [169–171] and optical [172–174] properties, which tunable by controlling

cluster size [175–177]. Due to the small size of these particles, it is difficult to ascertain

their structural properties from conventional X-ray and neutron scattering methods.

For this reason, the structure of nanoclusters are often “predicted”. Generally, there

are considered to be two styles of approach in predicting these structures [178]: (a) a

“top-down” approach, where the bulk material is scaled down to the nano-scale. (b) a
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“bottom-up” approach, where nanoclusters built up from individual atoms.

The ”top-down” method is typically more useful for larger clusters containing 1,000s

of atoms. This method often makes use of molecular dynamics (MD) and Wulff con-

structions [179]. The “bottom-up” approach is generally more useful for smaller clusters,

such as those investigated in this thesis (5 – 100 atoms). Various global optimisation

techniques have been developed and employed to predict the structure of these small

nanoclusters. Popular techniques that have been employed include: Genetic Algorithms

(GA) [52, 180–184], Basin Hopping (BH) [53, 66, 185, 186], MD [187, 188], and Simu-

lated Annealing (SA) [189, 190]. While there has been extensive research into predicting

the structure of small nanoclusters for single elements and binary compounds [187, 191–

196], there is relatively little on ternary compounds such as perovskites [182].

5.2 Global Optimisation: Performance

Three of Global Optimisation (GlOp) techniques tested were Stochastic Quenching (SQ),

Basin Hopping (BH), and Genetic Algorithms (GA). The SQ method randomly places

ions into a box and then performs a geometry relaxation. BH starts with one such

relaxed random structure, thereafter, each new trial structure is based upon small atomic

displacements and ion interchange of the last successful structure. The GA approach

starts with a population of relaxed random structures. The structures then compete

to “breed” (to produce a new ”child” population) or survive in “tournaments”. The

aim of these GlOp techniques is to find local minima energy structures with the lowest

energy structure efficiently. The global minimum (GM), generally being the favoured

prize. The effectiveness of the GlOp technique is determined by how quickly the GM

structure is located and how many of the lowest energy local minima (LM) are found.

These three techniques were tested using KLMC, with the atomistic relaxations be-

ing performed in the General Utility Lattice Program (GULP). For the BH technique,

the maximum atomic displacement allowed during the cluster modifications was capped

at 1.5 Å per atom. A temperature of 0 K was employed for the metropolis criterion, P

= e
∆E
kT , where P is the probably of the modified cluster being chosen, ∆E the difference

in energy between the previous and current structures, k the Boltzmann constant, and

T the temperature. Thus, the current cluster could only be replaced by a lower energy

cluster. For the GA, a population size of 32 was chosen. It was found that smaller pop-

ulations were more efficient on smaller energy landscapes, while the larger populations

excelled on the larger landscapes. Each of the methods were run four times and the

results averaged.

5.2.1 Efficiency Locating Global Minimum

The first test is how quickly each of the GlOp techniques locate the GM. Figures 5.1

and 5.2 show the statistics relating to finding the GM for the KMgF3 and KZnF3
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clusters when employing the three GlOp techniques. More precisely, the figures report

Figure 5.1: Comparison of the efficiency at finding the (KMgF3)n GM cluster for three
different global optimisation techniques: Stochastic Quenching (SQ), Basin Hopping
(BH), and Genetic Algorithms (GA). The computational cost is measured as the number
of cluster optimisations performed before the GM structure is found, as a function of
cluster size (formula units). The first graph reports the average obtained across four
different runs; the second reports the standard deviation associated with this average;
and the third reports the best (lowest cost) of the four runs.

the average computational cost, over four independent runs, in locating the GM as a

function of cluster size in formula units, n, for (KMgF3)n and (KZnF3)n, as well as the

standard deviation and the cost of the best run. The cost is measured as the number of

cluster optimisations (CO) performed in each run before the GM structure was located

and is displayed on a log scale in the figures.

The number of possible configurations a cluster can form is expected to increase

exponentially with the number of atoms the cluster contains. Thus, a linear trend

would be expected in Figures 5.1 and 5.2.

For KMgF3, it can be seen that at small cluster sizes, up to n = 4 (20 atoms), the

average cost of finding the GM for all three techniques are roughly equal and therefore of

similar efficiency. Above four formula units, the relative performance of the SQ method

rapidly drops and becomes the least efficient approach. Moreover, the SQ method was

not employed above n = 6 as it became ineffective.

Of the other two methods, the GA is found to be the better at locating the GM of the

larger clusters. At n = 6, the BH technique struggles to locate the GM; becoming almost

as inefficient as the SQ method.. The spike in the cost of the BH method is accompanied

by a spike in the standard deviation at this point. In fact the large average in this cost is

due to one of the runs taking exceptionally long to locate the GM, requiring just under

40,000 (CO) to locate the GM, while the other runs all required less than 3,000 (CO)

to locate the GM. This highlights the possible benefit of performing multiple runs over

just one long run. For n = 8 and 9, neither the BH or the GA techniques were able to
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Figure 5.2: Comparison of the efficiency at finding the (KZnF3)n GM cluster for three
different global optimisation techniques: Stochastic Quenching (SQ), Basin Hopping
(BH), and Genetic Algorithms (GA). The computational cost is measured as the number
of cluster optimisations performed before the GM structure is found, as a function of
cluster size (formula units). The first graph reports the average obtained across four
different runs; the second reports the standard deviation associated with this average;
and the third reports the best (lowest cost) of the four runs.

locate the GM on all four runs within 100,000 (CO).

For KZnF3, a similar trend of results is seen. At small cluster sizes there is not a

large difference in efficiency, however, as cluster size grows the SQ technique rapidly

becomes the least efficient. At n = 6 the SQ method fails to locate the GM on all

four runs within 100,000 CO. For the larger cluster sizes, the GA and BH method are

competitive, with the GA being slightly more efficient. A spike is again seen in the

BH technique at n = 6, accompanied by a spike in the standard deviation. This time,

however, the result is not as skewed, with the four runs finding the GM after 7,000,

25,000, 61,000, and 67,000 CO. The difficulty the BH approach has in finding the GM

at n = 6 may be a feature of the IP energy landscape. At n = 8 the BH technique was

only able to find the GM in two of the four runs within 100,000 CO; the GA found the

GM in all four runs. At n = 9 neither method found the GM in all four runs.

5.2.2 Efficiency Locating Top Ten Local Minima

While locating the GM is often a high priority, finding other low energy local minima

(LM) structures can be just as important. This is especially true for larger sized clusters

as the energy difference between different structures can be very small. The significance

of having small energy differences between GM and lowest energy LM is that a range of

the clusters would exist at finite temperature. Furthermore, when the energy difference

between similarly ranked clusters becomes small, the accuracy of the energy function

may begin to affect the ranking of the structures. The shift in relative energy between

different structures due to alterations of the potentials or functional used will have a
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more pronounced effect on the energetic ordering (ranking). Statistics with respect to

how quickly the top ten LM were found for each GlOp technique are discussed. Figures

5.3 and 5.4 show the speed or cost at which the top ten most stable structures are

located during the GlOp runs of the KMgF3 and KZnF3 clusters respectively. For the

Figure 5.3: Comparison of the efficiency at which the three different GlOp techniques,
SQ, BH, and GA found the ten most stable clusters for different sized (KMgF3)n clusters.

KMgF3 clusters, the three techniques are competitive at generating the top ten LC for

smaller sizes. At n = 4 the SQ method can be seen to be lagging behind the other two

methods, moreover, at n = 6 the SQ method fails to find all top ten LM structures.

The GA and BH method remain equally effective up until n = 7, at which point the GA

becomes the more proficient of the two. n = 7 is also the cluster size at which the GA

and BH techniques begin to struggle locating all top ten LM structure within 100,000

cluster optimisations. As the cluster size gets bigger the gap in the efficiency of the

two methods also appears to increase. For the KZnF3 clusters, the results are similar,

except that the GA techniques proves to outperform the others at a much earlier stage

(at n = 5). The GA approach proved to be better at searching the landscape of KZnF3

than KMgF3 in that it finds all ten clusters for KZnF3 at n = 7; whereas the BH misses

one cluster in one of its four runs at n = 6. Overall, it can be seen that when it comes
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Figure 5.4: Comparison of the efficiency at which the three different GlOp techniques,
SQ, BH, and GA found the ten most stable clusters for different sized (KZnF3)n clusters.

to predicting the top ten LM structures, the GA method again appears to be the most

effective, followed by BH, with SQ proving to be much less efficient than the other two

techniques when n is greater than 3.

5.2.3 Cluster Geometry Optimisation Cost

The cost at which the efficiency of the techniques has been measured is simply the num-

ber of cluster optimisations performed. However, not all GlOp techniques chosen by

our collaborators perform cluster geometry optimisations. Additionally, the cost of op-

timising can vary greatly with cluster geometry. To make a fairer comparison between a

wider range of techniques, the cost was converted into units that are more widely appli-

cable. The cluster optimisation unit is broken into the number of individual energy, first

derivative, and second derivative calculations performed. The breakdown is shown for

each GlOp technique at each cluster size in Figures 5.5 and 5.6 for KMgF3 and KZnF3,

respectively. The figures show that the average computational cost of performing a

cluster geometry optimisation varies between the different GlOp techniques! The SQ

method requires the most effort when performing a geometry optimisation. This is a

result of these cluster being created in a highly random way and so the structure re-
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Figure 5.5: Average number of calculations performed for each (KMgF3)n cluster opti-
misation during the three GlOp techniques: Stochastic Quenching (SQ), Basin Hopping
(BH), Genetic Algorithms (GA).

quires a lot of rearranging to find a local minima. The BH method results in the second

most expensive geometry optimisations. The reduced cost compared to the SQ tech-

nique is due to the BH structures (except the first configuration tested on a particular

run) being modifications of previously relaxed structure. As the BH process does not

totally randomise the structure, stable fragments of the cluster may exist at the start

of the geometry relaxation process and so less effort is required. The GA clusters are

the cheapest to relax. Many of the cluster being optimised with this technique are the

result of two different relaxed cluster being halved and merged together. This suggests

many of the atoms are already sitting in relatively stable positions with the atoms at

the interface of the two halves being where most of the effort must be applied. Thus,

the relaxation process starts from a partially relaxed position.

The major difference in going from the KMgF3 clusters to the KZnF3 is the increase

in cost of the BH clusters relative to the GA and SQ clusters. This suggests that the

KZnF3 compound is more sensitive to the modifications performed in the BH method

than the KMgF3 clusters.

Table 5.1 shows the cost of first and second derivative calculations as a ratio against

the cost of a single energy calculation. This data is employed to compute a standard-

ised cost for each of the three GlOp techniques used, allowing for a fairer comparison

between these methods and those used by our collaborators. From the table it appears,

counter-intuitively, that calculating the derivative is cheaper than calculating the en-

ergy. However, determining the derivatives requires computing the energy. The cost of

calculating the energy is the most expensive part in determining the derivative. This

cost is not attributed to the derivative, but recorded as an energy calculation. Thus, the

derivative cost is simply the additional cost on top of these energy calculations, hence

the small expense. Similarly so for the second derivative.
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Figure 5.6: Average number of calculations performed for each (KZnF3)n cluster opti-
misation during the three GlOp techniques: Stochastic Quenching (SQ), Basin Hopping
(BH), Genetic Algorithms (GA).

Table 5.1: Calculation ratios. The relative cost of first (E′) and second (E′) deriva-
tive calculations as a ratio against the cost of an energy calculation (E′/E,E′′/E). Bear
in mind the calculation of a derivative requires the calculation of the energy, the cost of
these energy calculations are not included in the derivative cost.

n 2 3 4 5 6 7 8 9

E′ 0.70 0.47 0.37 0.34 0.29 0.30 0.31 0.32
E′′ 5.96 7.63 9.29 10.95 12.61 14.27 15.94 17.60

Lastly, it should be noted that the settings used for each of the GlOp techniques

will have an impact on how quickly the cluster relaxations are performed. For example,

performing the SQ method using an extremely large box will undoubtedly increase the

cluster relaxation cost as the atoms will have further to travel before residing in a

local minima. Similarly, having a very small step size in the BH method will decrease

relaxation cost as the previously relaxed structure will have undergone a much smaller

alteration, but these parameters will also affect the GlOp ability to span the space of

possible configurations, and therefore the success of finding the desired LM.

5.2.4 Summary

Analysis of the GlOp performance in relation to the structure prediction of KMgF3

and KZnF3 clusters has shown the GA technique to be the most superior of the three

methods tested. When attempting to locate the GM structures it was found that all three

techniques were competitive for the smaller clusters (≤ 20 atoms). For larger cluster

sizes the SQ technique became ineffective. The GA method was found to outperform the

BH at the finding the GM for the larger sized clusters with the difference in efficiency
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becoming more pronounced as cluster size increased. The efficiency at which the clusters

predict the top ten lowest energy structures was also investigated. The results match

closely to those seen in the locating of the GM. The SQ falls behind as soon as the

clusters have more than 20 atoms. The GA method outperforms the BH above n ≈ 7.

Lastly, the average cost required to relax the geometry of each cluster was determined

for each GlOp approach, so as to make the cost function fairer when comparing with

other GlOp techniques. The cost was measured as the number of energy, first derivative,

and second derivatives performed to relax the cluster geometry. It was found that the

GA method, on top of being the most efficient with respect to the number of cluster

optimisations, also had the smallest cost for each cluster optimisation. The SQ approach

had the most expensive cluster optimisations.

5.3 The Global Optimisation Cluster Results

5.3.1 Cluster Energies

Table 5.2: KMgF3 IP Cluster Energies n = 1 – 5 . The IP energies of the ten
lowest energy (KMgF3)n LM clusters for n = 1 – 5. The clusters were found using the
global optimisation routines and match those found by our collaborators.

Rank n = 1 n = 2 n = 3 n = 4 n = 5

1 -24.336 -51.499 -78.318 -105.581 -132.884
2 -23.945 -51.477 -78.233 -105.558 -132.847
3 -22.201 -50.915 -78.158 -105.557 -132.775
4 -50.885 -78.134 -105.484 -132.774
5 -50.876 -78.132 -105.479 -132.773
6 -50.803 -78.128 -105.449 -132.761
7 -50.767 -78.105 -105.424 -132.743
8 -50.760 -78.094 -105.418 -132.738
9 -50.670 -78.089 -105.410 -132.717
10 -50.667 -78.088 -105.394 -132.714

Tables 5.2 – 5.5 report the interatomic potential energies of the ten lowest energy

unique LM for clusters of (KMgF3)n and (KZnF3)n, for sizes n = 1 to 9. These clusters

were found using the global optimisation techniques discussed previously in section 5.2.

The energies in the tables show a trend that the difference in energy between 1st and

10th ranked clusters decreased as cluster size increases. This means that as the cluster

size grows there is likely to be a higher density of unique clusters within the thermal

energy range from the GM. The reason for this is due to the difference at which the

energy and number of possible configurations evolve as cluster size is increased. The

change in energy of adding a formula unit to the cluster is linear while the number of

possible configurations follows a factorial trend.

Figure 5.7 plots the energy per atom of the top ten clusters for each size relative to
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Table 5.3: KZnF3 IP Cluster Energies n = 1 – 5 . The IP energies of the ten
lowest energy (KZnF3)n LM clusters for n = 1 – 5. The clusters were found using the
global optimisation routines and match those found by our collaborators.

Rank n = 1 n = 2 n = 3 n = 4 n = 5

1 -33.802 -71.197 -107.967 -145.957 -183.449
2 -33.224 -71.155 -107.868 -145.945 -183.304
3 -31.025 -70.438 -107.858 -145.850 -183.252
4 -70.420 -107.849 -145.708 -183.173
5 -70.405 -107.846 -145.497 -183.157
6 -70.377 -107.834 -145.443 -183.123
7 -70.351 -107.815 -145.423 -183.089
8 -70.303 -107.794 -145.410 -183.086
9 -70.280 -107.778 -145.397 -183.070
10 -70.235 -107.776 -145.394 -183.033

Table 5.4: KMgF3 IP Cluster Energies n = 6 – 9 . The IP energies of the ten
lowest energy (KMgF3)n LM clusters for n = 6 – 9. The clusters were found using the
global optimisation routines and match those found by our collaborators.

Rank n = 6 n = 7 n = 8 n = 9

1 -160.252 -187.816 -215.292 -242.822
2 -160.207 -187.809 -215.287 -242.791
3 -160.187 -187.739 -215.254 -242.743
4 -160.178 -187.735 -215.228 -242.734
5 -160.174 -187.731 -215.220 -242.729
6 -160.170 -187.730 -215.175 -242.718
7 -160.167 -187.717 -215.163 -242.714
8 -160.166 -187.714 -215.158 -242.698
9 -160.161 -187.680 -215.152 -242.682
10 -160.151 -187.660 -215.141 -242.662

the bulk:

Erelative =
Ecluster

(5n)
− Ebulk

5
(5.1)

where Ecluster and Ebulk are the absolute energies obtained for the cluster and bulk, n

is the number of formula units the cluster contains, and a factor of 5 is used as one

formula unit contains 5 atoms. The bulk energies for KMgF3 and KZnf3 are -28.329

and -38.715 eV per formula unit. For KMgF3, the three relative energies of the n = 1

clusters are 0.799, 0.877, and 1.226 eV per atom. For KZnF3, the three relative energies

of the n = 1 clusters are 0.983, 1.098, and 1.538 eV per atom. These are omitted from

Figure 5.7 to increase the clarity of the remaining data in the plots. The gap in energy

between the GM cluster and LM9 can be seen to decrease with increasing cluster size for

both KMgF3 and KZnF3. The only notable exception occurs at n = 3 for KZnF3 which

shows a energy range narrower than expected. The energy ranges of the KZnF3 clusters
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Table 5.5: KZnF3 IP Cluster Energies n = 6 – 9 . The IP energies of the ten
lowest energy (KZnF3)n LM clusters for n = 6 – 9. The clusters were found using the
global optimisation routines and match those found by our collaborators.

Rank n = 6 n = 7 n = 8 n = 9

1 -220.971 -258.759 -296.454 -334.139
2 -220.965 -258.662 -296.435 -334.104
3 -220.962 -258.642 -296.433 -334.098
4 -220.865 -258.607 -296.431 -334.097
5 -220.856 -258.597 -296.367 -334.092
6 -220.845 -258.573 -296.360 -334.072
7 -220.813 -258.561 -296.350 -334.065
8 -220.780 -258.554 -296.334 -334.063
9 -220.776 -258.542 -296.329 -334.055
10 -220.760 -258.530 -296.329 -334.039

appear to be slightly larger than for KMgF3. This is a result of the overall tighter

binding of the bonds in KZnF3 which can be seen in the difference in the bulk energies

of the two compounds. The graphs show a downward trend of the relative energies with

increasing cluster size, implying that larger clusters are thermodynamically more stable.

It is expected that the energies will tend to 0 with increasing size where the bulk phase

will precipitate due to being the most stable phase.

5.3.2 Atomic Structure of IP Clusters

n = 1

Figure 5.8 shows the three clusters found when n = 1 for both (KMgF3)n and (KZnF3)n.

The same colour scheme for atoms is employed in this and all other figures that follow.

Only three LM configurations are found for n = 1; the same three are found for both

compounds. As these clusters involve so few atoms, they are less complex and so it

is easier to understand their structure. The global minimum (GM) structure adopts a

planar arrangement with the X2+ cation (X = Mg2+ or Zn2+) bonded to all three F

ions and the K ion bonded to two. The X – F bond length to the isolated F is 1.756

Å and 1.763 Å for X = Mg and Zn respectively, a difference of less than 0.5% between

the compounds. The other X – F bond has length 1.825 Å for X = Mg and 1.848 Å for

X = Zn, showing the Zn – F bond to be larger than the Mg – F bond by 1.3%. The

K – F bonds are also found to be longer in the KZnF3 compound by 2.6 % with the

bonds being 2.424 Å and 2.486 Å in length for KMgF3 and KZnF3, respectively. The

F – X – F bond angle between the two identical F ions are 92.2° for X = Mg and 89.9°
for X = Zn. The F – K – F angle is 65.8° for KMgF3 and 63.4° for KZnF3. The F –

F separation between symmetrically equivalent F ions is 2.632 Å for KMgF3 and 2.611

Å for KZnF3, a difference of 0.8%. Thus, the differences in bond lengths and angles
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Figure 5.7: IP energies for top ten structures for each cluster size relative to the bulk.

Figure 5.8: The three stable LM IP clusters found for n = 1. The table shows the energy
for each cluster relative to the GM in eV/atom

between the compounds have not significantly affected the anion separation. The X – K

separation on the other hand has been more strongly affected with the K – Mg distance

being 3.302 Å while the K – Zn distance is 3.7% larger at 3.424 Å. A formal charge model

was used for KZnF3 and a partial change model for KMgF3 and so it is expected that

the cation – cation repulsion will be stronger for the formal charge model. Additionally,

K – F bonds are longer for KZnF3 while the X – F bonds are fairly similar between

compounds suggesting the K ion may be modelled as larger in the KZnF3 compound.

Thus, it appears that the differences between the two compounds can be ascribed to

the stronger cation – cation repulsion and the larger K ion modelled by the KZnF3

potentials.

The second ranked structure, local minimum 1 (LM1), is a more compact, three-

dimensional structure. The three fluorine atoms form an equilateral triangle and the

two cations are positioned in line with the triangle centre either side of the triangular

135



plane. The Mg – F bond distance is 1.798 Å and the Zn – F bond only 0.8% larger at

1.812 Å. The KMg – F bond distance is 2.589 Å and the KZn – F is 2.679 Å which is

3.5% longer. The K – Mg bond distance is found to be 2.812 Å and the K – Zn distance

is 3.7% larger at 2.916 Å. This again shows the K – F bond and cation separation to be

the most sensitive to the change in the divalent cation.

The third ranked cluster, LM2, is a linear stick structure and is by far the least

thermodynamically stable of all n = 1 clusters investigated. The cations reside either

side of a central F ion with the other two F ions at the ends of the stick. This structure

exhibits the same behaviour as the other two structures where the bond lengths and

cation separation are both greater in KZnF3. There is one notable difference: the Mg –

F bond to the outer F ion is 0.2% longer than for Zn – F, which is the first time a longer

bond has been seen in the KMgF3 compound. This is likely to be due to the reduced

number of next nearest neighbour anions, which has the effect of reducing the anion

– anion repulsion experienced by this edge F ion. As the KZnF3 model uses formal

charges, the reduction is more significant for this compound.

n = 2

The n = 2 clusters are composed of 10 atoms and introduce like cation – cation interac-

tions which are absent in n = 1. The top ten most thermodynamically stable structures

(the GM and LM1–9) are shown in Figure 5.9. The same best three structures are found

Figure 5.9: Ten most thermodynamically stable LM IP clusters for n = 2. The table
shows the energy for each cluster relative to the GM in eV/atom

for both compounds. The first two are particularly close in energy, have identical con-

nectivity, and are significantly more thermodynamically stable than the other clusters.

The GM is an almost planar K2X2F4 ring with cations and anions alternating around
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the ring and like cations sitting on opposite sides. The K ions sit slightly off plane in

opposite directions, whereas for LM1 they are both positioned on the same side of the

plane. The X cations have distorted the ring by moving inwards towards the centre and

are linked by two F ions sitting above and below the ring centre. These F ions bonded

to two X cations lean towards the closest K ions, i.e. the K ion that is shifted of the

plane in the same direction as the F ion. The result is that the X ions are much closer

together and closer to the cluster centre than the K ions are. The Mg – Mg separation

is 2.994 Å and the Zn – Zn distance is 3.114 Å. This difference of 5.0% is the largest

seen so far for near-neighbours between the two compounds and emphasises the effect

of the difference in coulomb repulsion. The F ion coordinated to two Mg ions has a Mg

– F bond length of 1.936 Å, while the equivalent bond in the Zn based structure has a

length of 1.971 Å; a difference of only 1.8%. On the other hand, the F – Mg – F angle

involving the two F ions that are coordinated to both Mg ions is 6.1% larger than the

equivalent F – Zn – F angle; the angles calculated to be 78.7° and 74.2°, respectively.

This results in the central F – F separation for KMgF3 being 3.3% larger than in the

KZnF3 structure. The F – F separation, as opposed to the Zn – F bond distance, has

been sacrificed in the KZnF3 cluster to accommodate the increased Zn – Zn separation.

The rest of the clusters follow a pattern similar to the n = 1 clusters with the bonds

being slightly longer in the KZnF3 compound, the K – F bond in particular.

The LM1 structure differs only slightly from the GM. The K ions are now both posi-

tioned on the same side above the plane of the ring as already described. Additionally,

the F ions coordinated to both Mg ions no longer lean in any preferential direction and

so the structure has a vertical plane of symmetry passing through both X ions. The re-

maining F ions are also seen to move slightly upwards following the K ions which reduces

the symmetry of the X – F bonds to the central F ions. As with the GM, the Zn – Zn

separation is 5.0% larger than the Mg – Mg separation, so again showing the prevalent

difference in cation – cation repulsion. The K – F bond length is about 1% smaller in

LM1 compared to the GM for both compounds. The slight increase in energy of this

structure with respect to the GM is likely a result of the increased compactness, which

reduces the cation–cationn and anion-anion separation resulting in stronger Coulomb

repulsion.

The third ranked cluster, LM2, has a structure in which the coordination numbers

are the same as those seen for the GM and LM1, however, the local environment around

the X cations is different. LM2 adopts a linear chain arrangement with the cations

separated by two interlinking F ions. Each subsequent link in the chain is rotated about

the axis to minimize repulsion between the F ions. The X ions reside at the centre of

the chain with the K ions are at either end. The X – X separation is 5.2% larger in the

KZnF3 structure while the X – K separation is only 3.8% larger. As in the case of LM1

and the GM, the F – F separation is sacrificed to accommodate this change.

Beyond the first three structures the ordering differs and there are different structures
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in the top ten for the two different compounds. A general feature of the structures is

that the divalent ions have a higher coordination and are closer to the centre of the

structure than the K ions. This is a result of the divalent ions having a higher charge

and so are more dominant in maximizing their coordination which achievable at the

centre of the cluster. This has been seen in previous studies involving cluster structure

prediction [182]. Of note are LM3 and LM4 for KZnF3: these structures are not in

the top ten for the KMgF3 compound. These structures succeed in centralising the Zn

ions, making Zn less exposed to the cluster surface. They are also fairly open which

would help reduce the ionic repulsions and more easily accommodate the larger K ions,

features which are more exaggerated in the KZnF3 potentials. Another example are

LM6 and LM7 for KMgF3, which have become LM8 and LM7, respectively, when going

to KZnF3. These two structures are very similar, the only change being the coordination

of the F ion at the top left of the image. For KZnF3, it is favourable to have this F

ion coordinated to just the Mg ion. In this case the Zn – K separation is increased by

over 10% leading to a more energetically favourable arrangement than the K – F bond

would give. For KMgF3, the partial charge model, the additional K – F bond appears to

be the more energetically favourable and hence the difference in order between the two

compounds. The KMgF3 LM5 structure has also undergone a large shift in rank when

going to KZnF3 to become LM9. This structure is similar to LM2 except one of the K

ions has folded over to become triply bonded. In doing so the K ion has approached

closely to the X ion, 2.905 Å of for Mg and 3.007 Å for Zn. This is a particularly small

separation for these ions, and has a more prominent effect on the KZnF3 compound,

hence the large fall in rank.

n = 3

The n = 3 clusters are shown in Figure 5.10. They have 15 atoms and so are much

more complex. This makes characterising the subtle differences that make one cluster

lower in energy than another much more difficult. In addition, due to the larger number

of possible structures, the difference in stability between the clusters in the top ten

is small. This makes it harder to isolate what are the more energetically significant

features, for example, the shortening of one or two bonds by 0.1 Å may be enough

to switch ordering. Instead, it is probably more useful to identify some of the main

structural features present in the better LM clusters, which would indicate low energy

characteristics. The structures ranked first and second for both compounds are the

same. These two clusters resemble a fragment of the n = 2 LM1 cluster. This is easier

to see in LM1. The GM for n = 3 looks to be the n = 2 LM1 combined with the n =

1 LM1. LM1 appears as the n = 2 LM1 combined with the n = 1 GM. In both cases

the X ion of the n = 1 cluster is positioned towards the centre of the n = 2 cluster,

while the K ion points away. The combining of smaller stable pieces to create a large

stable cluster is the mechanism employed by the GA technique and so may be a hint as
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Figure 5.10: Ten most thermodynamically stable LM IP clusters for n = 3. The table
shows the energy for each cluster relative to the GM in eV/atom

to why the GA technique was so effective. The X ions are again found to be positioned

closer to the centre of the cluster than the K ions. This theme is prevalent throughout

all the n = 3 clusters. This shows that it is energetically favourable for the more highly

charged cations to fill their coordination by being near the centre of the cluster despite

the larger Coulomb repulsion that would exist between cations. The bonds of the n = 3

structures follow the pattern of the smaller clusters with the KZnF3 bonds being longer

than the KMgF3 bonds, 1-2% for the X – F bonds and 3% for K – F.

n = 4

The top ten clusters for n = 4 are shown in Figure 5.11. This is the first size at which

the GM differ between compounds. The GM for KMgF3 is a highly ordered symmetrical

structure. The Mg ions are all 5-coordinated and sit in equivalent positions forming a

square about the centre of the cluster. Two of the K ions sit off plane in line with the

centre of this square completing a hollow cage like structure at the centre. The other

two form ‘wings’ with two F ions on opposite sides of the cage. The GM for KZnF3 is

a different structure. There are two unique Zn sites, which reside close to the centre

of the cluster, and are both 5-coordinated. Two of the K ions sit below the Zn ions

forming a K – F – K – F island which also completes a hollow cage region. The other

two K ions form ‘wings’, not too dissimilar to those seen in the KMgF3 GM, that point

139



Figure 5.11: Ten most thermodynamically stable LM IP clusters for n = 4. The table
shows the energy for each cluster relative to the GM in eV/atom

in opposite directions. The GM structure for KMgF3 is LM1 for KZnF3, and the GM

structure for KZnF3 is LM2 for KMgF3. Typically, it is found that many of the highly

stable structures for one compound are also seen to be highly stable for the other, i.e.

small changes in rank. That being said, there are marked differences between the two

potential sets. The difference in energy between the first and tenth ranked potentials

is three times greater for KZnF3 n = 4, (c.f. Figure 5.11). This is much greater than

the scale between their bulk energies of 1.37 and so cannot be attributed to the average

energy scale between the two sets of IP. Instead, the shrinking of the energy gap between

first and tenth ranked clusters for KMgF3 is due to the existence of many very similar

structures. For example, the structure of LM1 is very similar to that of LM2, and the

structure of LM3 closely resembles that of LM4 and LM6. For KZnF3, the generation of

many similar structures is not seen. This suggests the KZnF3 potential energy landscape

is smoother than the KMgF3 landscape with fewer potential barriers. The n = 4 clusters

follow the trend of the smaller sets with the X ions being closer to the centre than the K

ions. The KZnF3 bonds are also longer with the X – X cation separation in particular

being larger for Zn.

n = 5

A brief look at the n = 5 structures shown in Figure 5.12 shows the main features

of the n = 4 clusters are again prevalent. The Mg and Zn ions continue to dominate

the centre of the clusters. Similar low-energy structures exist for the two compounds;
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Figure 5.12: Ten most thermodynamically stable LM IP clusters for n = 5. The table
shows the energy for each cluster relative to the GM in eV/atom

for example, the KMgF3 GM is the KZnF3 LM2, whereas LM1 is the same in both

compounds. Additionally, the highly ordered KMgF3 LM3 structure is LM9 for KZnF3.

Differences in structures between the two compounds are also present; for example, the

highly ordered KZnF3 GM does not exist in the KMgF3 top ten, and neither does the

highly ordered LM3. The emergence of repeated features from the smaller clusters also

becomes more apparent. The K2F2 square island that is seen attached at the bottom

of the KZnF3 n = 4 GM (c.f. Figure 5.11) appears in many clusters, i.e. LM1. The KF

‘wings’ seen in the KMgF3 n = 4 GM are used in a repeating fashion along the edges

of many of the clusters; this can be seen particularly clearly in KMgF3 LM3.

n = 6 – 9

As the cluster size becomes larger the differences and similarities become more difficult

to distinguish. This is highlighted in Figure 5.13, which shows the GM structures found

for n = 6 – 9. As with the previous sets of low energy LM clusters, the GM for n = 6 –

9 all show the X ions to reside at the centre of the cluster while the K ions are pushed

out to the surface. The KZnF3 n = 6 and KMgF3 n = 8 GM structures have higher

symmetry, whilst the rest appear amorphous. Thus, it is undetermined whether high

symmetry is favoured.
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Figure 5.13: The IP GM structures for n = 6 – 9

5.4 IP vs DFT Energies

This section discusses the change in ranking, with respect to energy, of the LM clus-

ters when going from IP to DFT. The majority of DFT calculations are performed in

FHI-AIMS using the PBEsol functional to stay consistent with previous chapters. How-

ever, for the smaller clusters a comparison between the PBEsol and PBE functionals is

investigated. At n = 1 there were only three IP clusters found for both KMgF3 and

KZnF3 (cf. Figure 5.8). For (KMgF3)1, the IP energies relative to the ground state were

0.078 (LM1) and 0.427 (LM2) eV/atom. Relaxing the IP structures through DFT using

the PBEsol functional gave relative energies of 0.091 (LM1) and 0.499 (LM2) eV/atom.

Using the PBE functional the relative energy of LM1 was 0.095. The LM2 structure

proved to be unstable when using the PBE functional and reconstructed to the GM

structure. For (KZnF3)1, the IP energies relative to the ground state were 0.116 (LM1)

and 0.555 (LM2). With the PBEsol functional the energies became 0.118 (LM1), 0.375

(LM2) eV/atom. Switching to PBE the energies were 0.118 (LM1) and 0.354 (LM2).

There were no structural changes observed when refining these structures for KZnF3.

The relative energies of the IP clusters and DFT clusters are of the same magnitude

suggesting the binding energy between the atoms modelled by the IP is of the right

scale. Both the IP and DFT clusters agree that the energy gap between the GM and

LM1 is bigger for KZnF3. There is disagreement for the gap between GM and LM2 with

the IP showing it to be bigger for KZnF3 whereas the DFT have it bigger for KMgF3.

Where there is a one-to-one match between structures the DFT functionals show very

good agreement, with the difference in energies less than 6% in all cases.

Above n = 1 the number of IP clusters obtained from global optimisation becomes

much larger and so it is more sensible to employ statistics and relate these energies

graphically. For n = 2, all IP clusters were included in analysis. Above n = 2, only

the top 100 clusters were considered. For n = 2, the IP global optimisation found

39 KMgF3 unique clusters. Figure 5.14 compares the relative energies of the n = 2

LM structures between the different methods of calculations. The first column of plots
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Figure 5.14: Plots comparing the energy of LM clusters calculated using different the-
oretical models for (KMgF3)n, n = 2. The axis are labelled <structure method> -
<energy method>, where the structure method is the theoretical model used to relax
the LM structure, and energy method is the model by which the energy was calculated
(no additional relaxation). For Example, IP - PBEsol is the energy of a structure which
has been relaxed using the IP model, but had the energy of that structure calculated
using DFT with the PBEsol functional. All energies are relative to the GM and given
in eV/atom.

compare the relative IP relaxed energies to the DFT relaxed energies using PBEsol

(top) and PBE (bottom). In the ideal scenario, all points would lie along a linear

line. This would indicate a perfect linear relationship between the IP and DFT energies

where the energy ranking of each structure would also be the same in both sets of

calculations. The two plots do appear to show a strong correlation between the IP and

DFT calculations, however, there are a few points that sit far away from the linear

relationship; to understand why, additional plots were created.

Column two show the relationship between the IP and DFT single point (unrelaxed)

calculated energies. This determines how well the IP and DFT energy agree when the

structures are exactly the same. The plot in this case shows strong agreement between

the IP and DFT regardless of the functional. The third column plots the relationship

between the DFT single point and DFT relaxed energies. A strong correlation would

indicated that the relaxation energy was constant for the difference clusters. This would

most likely occur when the DFT relaxed structures closely resembled the IP structures.

In this case only small structural changes would occur during the DFT refinement and

thus the relaxation would typically be small and constant. Points that are a signifi-

cant distances from the linear relationship are likely the result of noticeable structural

changes. It can be seen from column three that there are a few outliers. These points
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also closely match the outliers in column one, thus, it is expected that these points are

due to structural changes. Figure 5.15 shows the structures of the two points circled

red in the first column of Figure 5.14 before and after DFT relaxation. The left image

Figure 5.15: The structural changes that occur for the two points circled in red in Figure
5.14. On the left the IP rank 11 cluster when refined through DFT collapses to the IP
rank 2 structure. On the right the IP rank 37 when refined through DFT collapses to
the IP rank 13 structure.

shows the 11th ranked IP cluster, which is 0.0834 eV/atom higher in energy than the

GM, undergoes a significant structural change during the DFT relaxation. The final

DFT structure is the same as the 2nd ranked IP cluster. The DFT relative energy of

the resulting structure is 0.0038 eV/atom, the IP equivalent of this structure has an

energy of 0.0023 eV/atom. The right image shows the 37th ranked IP cluster, which is

0.2541 eV/atom higher in energy than the GM, also undergoes a significant structural

change during the DFT relaxation. The final DFT structure is the same as the 13th

ranked IP cluster. The DFT energy of the resulting structure is 0.1235 eV/atom, the

IP equivalent of this structure has an energy of 0.0852 eV/atom. If the IP energy of

the circled points in Figure 5.14 was amended to that of the post-DFT refined structure

these points would fit much closer to the visible linear trend. Thus, the large deviations

from the trend can be attributed to change in the atomic configuration. Lastly, the

energies obtained using the PBEsol and PBE functionals are compared directly in the

fourth column of Figure 5.14. The top plot shows a comparison of the single point en-

ergies while the bottom compares the relaxed energies. The single point energies show

a very strong correlation between the two functionals with no points deviating from

the linear relationship. The relaxed energies also show a strong correlation; however,

there are a few points that deviate from the general trend. The points above the linear

distribution would indicate the PBEsol energy has decreased significantly, suggesting a

greater structural change of the PBEsol cluster relative to the PBE. The points below

would indicate a greater structural change. Having checked the low or high lying cluster

this is found to be true.

Figures 5.16 and 5.17 show similar plots for n = 3 and n = 4 to those just discussed

for n = 2. At a first glance the energies of the IP vs DFT relaxed clusters (column

one) have a much weaker correlation than was seen for n = 2. The IP vs DFT single

point calculations (column two) also appears to have a more smeared relationship. The

correlation is stronger for the DFT single point vs relaxed energies plots (column three)
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Figure 5.16: Plots comparing the energy of LM clusters calculated using different theo-
retical models for (KMgF3)n, n = 3. All energies are relative to the GM and given in
eV/atom. Refer to Figure 5.14 for details about axis labels.

than the two previous columns of plots suggesting the problem is less to do with struc-

tures obtained by the IP model and more to do with their energies calculated by the IP.

However, the correlation is still not as good as those seen for n = 2 as there appear to be

a much greater spread, although this is partly due to there being more points plotted.

The PBEsol vs PBE plots (column four) also show a stronger correlation than columns

one and two. Further increasing cluster size resulted in the correlation between IP and

DFT energies of the LM clusters becoming worse.

Figure 5.18 compares the energies of the LM clusters between the different methods

of calculation for KZnF3 when n = 2. Straight away it can be seen that the KZnF3

IP energies do not match as closely to DFT as the KMgF3 IP energies did for n = 2.

The first column of plots does not show the almost straight line of points indicative of

a strong linear relationship of the energies as was seen for KMgF3. Looking at column

two it can be seen that the correlation between the IP and DFT energies when the

structures are exactly the same is much weaker than those seen for KMgF3. Thus, the

increased mismatch in KZnF3 cannot be attributed solely to structural changes. Column

three, which compares the relaxed and unrelaxed DFT energies, is also seen to be less

correlated than its KMgF3 counterpart. This indicates the KZnF3 IP and DFT clusters

have a greater structural mismatch than for KMgF3. The fourth column shows a good

agreement between the PBEsol and PBE functionals. Figure 5.19 shows the plots for n

= 3. It is clear that with the increased cluster size, there is even less agreement between

the IP and DFT. The correlation was found to get worse with clusters sized n = 5 –

9, which were refined using the PBEsol functional only. The lack of correlation for the
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Figure 5.17: Plots comparing the energy of LM clusters calculated using different theo-
retical models for (KMgF3)n, n = 4. All energies are relative to the GM and given in
eV/atom. Refer to Figure 5.14 for details about axis labels.

Figure 5.18: Plots comparing the energy of LM clusters calculated using different the-
oretical models for (KZnF3)n, n = 2. All energies are relative to the GM and given in
eV/atom. Refer to Figure 5.14 for details about axis labels.

larger clusters is attributed to both: the discrepancy in energies between the IP the

DFT models; and discrepancies in LM structure between IP and DFT models. A good

agreement is again shown between the two DFT functionals for the KZnF3 structures.

The plots for n = 4 are not shown here; however, as with n = 3 there was poor agreement

between the IP and DFT results.
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Figure 5.19: Plots comparing the energy of LM clusters calculated using different the-
oretical models for (KZnF3)n, n = 3. All energies are relative to the GM and given in
eV/atom. Refer to Figure 5.14 for details about axis labels.

One way to help judge the agreement between sets of calculations without a visual

aid is to calculate the correlation coefficient. The Pearson product-moment correlation

coefficient, r is defined as [197]:

rx,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(5.2)

A value of r = 1 indicates a strong positive linear relationship, whereas r = -1 indicates

a strong negative linear relationship, and r = 0 indicates no linear correlation. The

coefficients for the plots shown in Figures 5.14 – 5.19 as well as KZnF3 n = 4 are shown

in Table 5.6. The statistics shown in the table agree with what was determined from

the plots. The values of r between the IP and DFT relaxed energies are much higher

for KMgF3 than for KZnF3. This indicates that the KMgF3 IP cluster energies match

more closely to DFT values. The value of r decreases with cluster size, with a relatively

large decrease from n = 2 to 3 compared with n = 3 to 4. With the exception of n =

2 the coefficients between the DFT relaxed and single point energies is stronger than

between the IP and DFT single point energies for KMgF3. This suggests that as the

clusters get larger the differences in the ranking of the structures is more influenced by

the relative energy discrepancies between IP and DFT of like structures than it is by

structural mismatch. In relation to the large jumps in correlation from n = 2 to 3, a

large reason for this may be due to the energy range of the IP cluster selected. For

(KMgF3)n n = 2 (Figure 5.14), it can be seen that the IP energy range of clusters was

approximately 0.4 eV/atom, where as for n = 3 (Figure 5.16) it was 0.04 eV/atom, and
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Table 5.6: Correlation between IP and DFT energies. The Pearson product-
moment correlation coefficient between energies calculated from various computational
methods. IP – represents interatomic potentials; PS – DFT calculation in FHI-AIMS
using PBEsol functional; and P – DFT calculation in FHI-AIMS using PBE functional.
The superscript denotes which computational method was used to obtain the LM struc-
ture. For example, PSIP describes the PBEsol energy of the LM found by relaxing with
IP.

KMgF3 KZnF3

n = 2 n = 3 n = 4 n = 2 n = 3 n = 4

IPIP v PSPS 0.840 0.500 0.474 0.669 0.179 0.155
IPIP v PSIP 0.987 0.635 0.647 0.851 0.484 0.188
PSIP v PSPS 0.844 0.745 0.758 0.611 0.388 0.618
IPIP v PP 0.611 0.574 0.545 0.575 0.164 0.038
IPIP v PIP 0.986 0.746 0.728 0.771 0.435 0.038
PIP v PP 0.567 0.822 0.767 0.530 0.390 0.395
PSIP v PIP 0.997 0.879 0.869 0.988 0.987 0.972
PSPS v PP 0.708 0.880 0.720 0.948 0.874 0.650

for n = 4 (0.0) it was 0.02 eV/atom. When the DFT structures are kept identical to

the IP structures (column 2 in the Figures), the variation of the DFT cluster energies

about a given IP energy is ∼0.02 eV/atom. This means the deviations in DFT energy

are of the same order as the total IP energy range, which makes it harder to see the

correlation. To check if this was a major contributing factor a random sample of 100

IP clusters were generated using the SQ technique for n = 4 and 5. It was expected

that this would create a much larger spectrum of clusters energies that was obtained by

only looking at the 100 most stable from a full global optimisation run. These clusters

were relaxed using the PBEsol functional only. The plots for these samples are shown

in Figure 5.20. The IP vs DFT relaxed for n = 4 of this broader spectrum of cluster

energies shows a stronger and more obvious correlation than was seen in Figure 5.17.

For n = 5, the correlation is also very obvious. The IP vs DFT single point energies

(column 2) in particular show a very strong relationship. This suggests that structural

rearrangement is the dominant cause for differences in the IP and DFT energies. The

correlation coefficient between the IP and DFT relaxed energies was 0.746 and 0.660

for n = 4 and 5, respectively. Both of these values are greater than what was recorded

for n = 3 (0.500). The coefficient between the IP vs DFT single point energies was

particularly high at 0.974 and 0.975 for n = 4 and 5, respectively, which is as good

as the n = 2 coefficient of 0.987. This agrees with what was deduced from the plots:

the significant deviations from the linear relationship between IP and DFT energies are

a result of structural change. Looking at the structure of the outliers confirms this.

Also of note is that in all of the cases inspected, the rearranged DFT cluster has the

same, or similar, structure to an IP cluster of lower energy. This indicates that the

DFT refinement is not rearranging the atoms into structures that are unique to the

148



Figure 5.20: Plots comparing the energy of LM clusters calculated using different the-
oretical models for a 100 random cluster sample created using the SQ technique for
(KMgF3)n, n = 4 and 5. All energies are relative to the GM and given in eV/atom.
Refer to Figure 5.14 for details about axis labels.

DFT landscape. To see if there are structures unique to the DFT energy landscape, i.e.

structures with metal-metal bonding, would require a DFT global optimisation. It was

also found that many of the IP structures that underwent significant atomic relaxation

during the DFT refinement were very open, diffuse structures. The DFT relaxation

collapsed these structures to form denser clusters, suggesting that many of the potential

barriers on the IP energy landscape do not exist on the DFT landscape.

In summary, it has been shown that the KMgF3 IP are better at generating and

ranking suitable atomic structures to be modelled on the DFT landscape than the KZnF3

IP. This may be a consequence of the KZnF3 IP using a formal charge model whereas

the KMgF3 IP employ a partial charge model. As the cluster size grows, the ordering of

the clusters change more significantly between IP and DFT. This is a result of the higher

density of possible cluster structures that exist within a given energy range rather than

a deterioration in the agreement between IP and DFT. To be confident that all the top

structures are accounted for (if that is the goal) a suitable energy range of clusters to

be refined must be chosen. Lastly, the majority of clusters that underwent significant

structural change during the DFT refinement resolved into structures that had already

been found on the IP energy landscape at a lower energy.

5.5 DFT Data Mining

Another approach to identify the DFT local minima of a material, is to “data mine”.

Data mining, in this context, is the process of using the DFT structures of one compound
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as candidate structures for another compound. This method is particularly useful when

there are no good IP for the material of interest but a list of structures are available

for another similar material. The procedure of data mining has been applied to the

(KMgF3)n and (KZnF3)n clusters. The DFT LM clusters for KMgF3 and KZnF3, that

were obtained by refining IP clusters using the PBEsol functional, were cross-data-mined

between the two compounds. This means that the KMgF3 DFT LM structures were

used as candidate configurations for KZnF3 by replacing Mg with Zn. The new KZnF3

candidate was then relaxed at the DFT level using the PBEsol functional. The same

process was applied to generate new KMgF3 structures.

For n = 1, the results were unsurprising as the same three structures existed for

both compounds. Plots similar to those presented in the previous section were created

to show the relationship between the energies of the KMgF3 and KZnF3 structures

obtained from data mining. Figure 5.21 shows the results for n = 2. The first column

Figure 5.21: Plots showing the relative energy of (KMgF3)n and (KZnF3)n clusters
when cross data mined for n = 2. * indicates the structure was created by performing
a Mg-Zn swap on a previously found cluster, but the structure was not relaxed before
calculating the energy. ** indicates the structure was created by performing a Mg-Zn
swap on a previously found cluster, and the energy was calculated after performing a
relaxation.

shows the relative relaxed cluster energies of the material of interest against the energies

of the material the structures were data mined from. The second column shows the

single point energies instead of relaxed energies for the material of interest. The third

column makes a comparison of the relaxed and single point energies of the material

of interest. From column one it can be seen that there is a good agreement between

the relaxed cluster energies of KZnF3 and KMgF3. Column two also shows a strong

correlation indicating that the relative energies of clusters with identical structures are
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consistent across both compounds. Column three shows a strong correlation between

the single point and relaxed energies indicating that the two compounds are structurally

very similar. The agreement is found to be stronger when data mining from KZnF3 to

KMgF3. This suggests that KMgF3 more easily adopts the KZnF3 structures while the

KZnF3 compound is more “fussy” opting to change structure more readily to a lower

energy cluster. Figure 5.22 shows similar plots for n = 4. It can immediately be seen

Figure 5.22: Plots showing the relative energy of (KMgF3)n and (KZnF3)n clusters
when cross data mined for n = 4. * indicates the structure was created by performing
a Mg-Zn swap on a previously found cluster, but the structure was not relaxed before
calculating the energy. ** indicates the structure was created by performing a Mg-Zn
swap on a previously found cluster, and the energy was calculated after performing a
relaxation.

that the agreement in energies is not as strong at this size. A strong correlation is

observed in column three, however, indicating that structurally the clusters are very

similar. Increasing the cluster size even further to n = 8 revealed an unexpected result.

Figure 5.23 shows the plots for n = 8. Surprisingly, the correlation is much stronger

for n = 8 than it was for n = 4 despite the energy range being smaller. The relaxed

vs single point energies (column 3) show a particularly strong correlation indicating the

two compounds form very similar structures. Table 5.7 shows the correlation coefficients

between these data mined structures for n = 2 – 9. The table agrees with the plots

showing a high correlation coefficient in all three categories for n = 2. For n = 3 – 7,

the coefficient is found to be much lower, but at n = 8 and 9 becomes much higher

again. The relaxed vs single point coefficients (column 3) are consistently high for each

calculation. This suggests that the two compounds form clusters that are structurally

very similar. Thus, the discrepancy between the relaxed energies of the two different

compounds arises due to the structures having slightly different levels of stability for

151



Figure 5.23: Plots showing the relative energy of (KMgF3)n and (KZnF3)n clusters
when cross data mined for n = 8. * indicates the structure was created by performing
a Mg-Zn swap on a previously found cluster, but the structure was not relaxed before
calculating the energy. ** indicates the structure was created by performing a Mg-Zn
swap on a previously found cluster, and the energy was calculated after performing a
relaxation.

each material. That the largest clusters boast higher correlation coefficients between

the different compounds compared to the mid sized clusters agrees with what was seen

in the plots. This unexpected result suggests that it is in clusters with 15 – 35 atoms

where the differences between the Zn and Mg ions affect the cluster the most; it is

likely that this is a result of the cation coordination at these sizes. Lastly, the list of

correlation coefficients suggests that the DFT data mining is more effective than the

IP to DFT method. This is particularly true for KZnF3 where both the IP energies

and structures were found to transfer poorly to DFT. The drawback to the data mining

method is that the structures must exist already for a similar compound having been

found by refining IP cluster through DFT or performing a computationally expensive

DFT global optimisation. As the pool of data gets larger, however, this method will

become increasingly more valuable and reliable.

5.6 Structures of the Clusters Optimised by DFT

This section looks at the structure and properties of the lowest DFT energy LM clusters

found. The DFT clusters were obtained by a DFT refinement of the top 100 IP structures

(when 100 were available) found using global optimisation, and from data mining these

DFT structures from the other compound. Figure 5.24 plots the energy of the top ten

most stable structures relative to the bulk in eV/atom as a function of cluster size.
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Table 5.7: Data mining correlation. The Pearson product-moment correlation coef-
ficient between relative energies of data mined structures. The three columns correspond
to the respective columns of plots in Figures 5.21 – 5.23.

Relaxed Single Point Relaxed vs SP
KMgF3 KZnF3 KMgF3 KZnF3 KMgF3 KZnF3

n = 2 0.888 0.815 0.922 0.959 0.974 0.792
n = 3 0.655 0.579 0.563 0.777 0.829 0.654
n = 4 0.457 0.475 0.550 0.624 0.825 0.813
n = 5 0.675 0.701 0.606 0.726 0.807 0.877
n = 6 0.626 0.484 0.492 0.646 0.886 0.816
n = 7 0.725 0.645 0.576 0.645 0.877 0.949
n = 8 0.813 0.687 0.792 0.727 0.950 0.929
n = 9 0.750 0.730 0.744 0.812 0.950 0.919

Overall, the range of the relative energies is very similar to what was obtained using the

Figure 5.24: DFT energies relative to the bulk for top ten LM structures for each cluster
size.

IP: i.e. between the top ten for each size, and between the different sizes. In contrast

to what was seen for the IP energies, the KZnF3 DFT cluster energies are closer to the

bulk value than those for the KMgF3 clusters. The n = 8 GM structure for KZnF3 is

lower in energy than the n = 9 GM. This is the only time the GM for a particular size is

seen to be more stable than a GM of a larger size, which suggests that the n = 8 GM is

a particularly stable configuration. As was seen with the IP clusters, the energy range

of the top ten DFT structures gets smaller with increasing cluster size; an exception at

153



n = 8 is observed and this is due to the exceptional stability of the GM.

n = 1

Figure 5.25: The three stable (KMgF3)n and (KZnF3)n DFT clusters for n = 1. The
table shows the energy for each cluster relative to the GM in eV/atom.

The atomic structures of the DFT LM clusters for n = 1 are shown in Figure 5.25,

and possess the same configurations predicted earlier by the IP clusters. The DFT

energetic ordering of these structures is also the same as it was for the IP. The GM

is the planar structure with the X (Mg or Zn) cation triply bonded and the K cation

doubly bonded. The X – F bond distance to the isolated F is 1.794 Å and 1.766 Å

for X = Mg and Zn respectively, a difference of 1.5%. This is a larger difference than

what was seen between the IP bond lengths (0.5%). For the IP, the Zn – F bond was

longer than the Mg – F bond; however, this order has changed upon DFT refinement.

Both sets of bonds are found to be larger than their IP counterparts. The other X –

F bond length was 1.872 Å for Mg and 1.875 Å for Zn (a difference of less than 0.2%).

Again the DFT bonds are longer than their IP equivalents. The K – F bond length was

measured to be 2.418 Å for KMgF3 and 2.412 Å for KZnF3; a difference of less than

0.3%. These bond lengths are smaller than what was seen for the IP structures. The

K – X separation differ by less than 0.2% and are found to be 3.263 Å and 3.258 Å for

X = Mg and Zn, respectively. The DFT K – X separation is only 1.2% smaller than

what was predicted by the KMgF3 partial charge IP model, but 5.0% smaller than what

was predicted by the KZnF3 formal charge model. The F – F separation between the

symmetrically equivalent F atoms are 2.747 Å (KMgF3) and 2.749 Å (KZnF3). This is

almost 5% larger than what was predicted by the IP models.

For the n = 1 GM cluster, it had been shown that the differences in atomic separation

between the two compounds are much smaller for the DFT structures, often by a factor

of 10, than the differences between the IP structures. The cation – cation and anion

– anion separations of the DFT structures are more closely modelled by the KMgF3

partial charge model, although the KMgF3 IP still over estimate the cation separation

by over 4%.

From a Mulliken analysis of the cluster, the charge on the K ion is 0.88e (KMgF3)

and 0.84e (KZnF3), and the charge of X is 1.17e (Mg) and 0.89e (Zn). The isolated
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F ion has Mulliken charges -0.67e (KMgF3) and -0.52e (KZnF3), and the other F ions

-0.69e (KMgF3) and -0.60e (KZnF3). This suggests that KMgF3 represents a more ionic

system than KZnF3 whereas the opposite was used in the IP models. Additionally, the

charges of the F ions indicate that the less coordinated anions have less charge; this

difference is more pronounced for KZnF3 and reflects the change in F – X bond lengths

between IP and DFT models. The charges shown here are much smaller than those used

in either IP model and might explain why the cation – cation separation is overestimated

by the IP. Analysis of the charges also suggest that the under-coordination that exists

in clusters may make a partial charge model favourable to a formal charge model.

The second most stable structure, local minimum 1 (LM1), has both the K and the

X (Mg or Zn) cation triply bonded. The X – F bonds are found to be 1.837 Å (Mg)

and 1.839 Å (Zn), within 0.2% of each other. The K – F bonds are found to be 2.646

Å (KMgF3) and 2.697 Å (KZnF3), showing a much larger difference between the two

compounds of 2.6%. The ordering of the K – F bond length has reversed compared

to the GM, as it is now larger in KZnF3. Despite the longer K – F bond in KZnF3

the cation – cation separation is smaller at 2.754 Å compared to 2.800 Å for KMgF3,

a 2.2% difference. This is due to an increased K – F – X angle of 74.8°(X = Zn); up

from 71.9°(X = Mg) (4.0% difference). This also causes an increase in anion – anion

separation by 1.2%.

The Mulliken charges on LM1 are K = 0.92e (KMgF3) and 0.85e (KZnF3), X =

1.07e (Mg) and 0.87e (Zn), and F = -0.66e (KMgF3) and -0.57e (KZnF3). As with

the GM structure, LM1 is found to be more ionic for KMgF3 than for KZnF3; this is

the suspected cause of the larger cation – cation separation in KMgF3. As with the

GM cluster, the LM1 cation – cation separation calculated by DFT is smaller than

that calculated by the IP model. The charge on the K ion increases for both materials

following the increase in the K ion coordination. Conversely, the charge on the X ions

have reduced. While their coordination number has not changed the arrangement of the

bonded F ions have. The F ions no longer symmetrically surround the cation but all sit

on one side of the ion.

The third structure, LM2, is a linear stick cluster which is much less stable than the

other clusters. The most notable difference between the two materials for this structure

is that both Mg – F bond lengths are ∼3.0% larger than the Zn – F bond lengths. This

is likely a feature of the different ionic radii of the two divalent cations. The K – F

bonds do not show as great a variation in length between the two compounds. The K –

F bond involving the F ion at the end of the structure is about 2.2Å. The K – F bond

involving the other F ion is about 2.7Å; the increased distance is likely a result of cation

– cation repulsion.

The charges on the ions are K = 0.76e (both), X = 1.32e (Mg) and 0.887 (Zn), and F

= -0.78e, -0.68e, -0.62e (KMgF3) and -0.76e, -0.46e, -0.42e (KZnF3). The most highly

charged F ion is the one located on the edge bonded to K. The F ion with smallest
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charge is found on the other edge bonded to the X ion. The charge on the K ion and its

closest bonded F are very similar; this suggests that the charge transferred from the K

ion lies purely on this F. The bond distance between these two is much smaller than the

other K – F bond, suggesting there is a strong ionic bond between these two ions. The

other ions appear to form a F–Mg–F dumbbell structure, with one end loosely attached

to the K ion. The dumbbell segment is more ionic for KMgF3 than KZnF3.

In summary, the n = 1 clusters show the DFT structures between the two compounds

to be much more alike than those found for the IP structures. KMgF3 is found to be more

ionic than KZnF3 in contrast to what was found when the IP model was employed. The

Mulliken charges of the DFT structures suggest that even the partial charge IP model

overestimates the charges on the structures. The consequence of this is that the cation

– cation separation is much smaller in the DFT structures.

n = 2

Figure 5.26: The five lowest energy (KMgF3)n and (KZnF3)n LM DFT clusters for n =
2. The table shows the energy for the top ten clusters relative to the GM in eV/atom.
In the table a superscript “1” indicates the structure was only found by IP to DFT
refinement. A lack of superscript means the structure was found from both methods.

The top five DFT structures for n = 2 are shown in Figure 5.26. The top three

(lowest energy) clusters are the same in structure and rank for both compounds. The

top two structures are in agreement with those predicted by the IP model. The third

ranked structure, LM2, is the cube-like cluster that was actually ranked 5th for KMgF3

and 7th for KZnF3 when using IP. The chain like structure that was ranked third

with the IP is now ranked 4th for KMgF3 and 7th for KZnF3 (not shown). Thus, the

denser structure of LM2 is lower in energy, when refined by DFT, than the more diffuse

structure ((KMgF3)2 LM3). The difference in energy between the GM and LM9 is ∼0.1

eV/atom for both compounds, which is similar to the difference calculated by the IP

models. As was found for the IP clusters, the top two DFT structures are significantly

lower in energy than the other LM.
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The GM has the same ring-like structure as was seen for the IP. The charges on the

cations are K = 0.91e (KMgF3) and 0.84e (KZnF3), X = 1.07e (Mg) and 0.92e (Zn). For

the F ion, there were two unique positions. The F ions between the two X cations have

charges -0.68e (KMgF3) and -0.59e (KZnF3), the other F -0.62e (KMgF3) and -0.58e

(KZnF3). As with the n = 1 clusters, KMgF3 is more ionic. There are two types of

X – F bonds. The X – F bond between the two X ions has length 1.963 Å (X = Mg)

and 2.022 Å (X = Zn). These have a large difference of 3.5%. The other X – F bond

reverses the size order between the two materials; 1.853 Å (Mg) and 1.834 Å (Zn). The

DFT X – F bonds, are in general, larger than their IP equivalents. The K – F bonds

have very similar lengths at 2.485 Å (KMgF3) and 2.494 Å (KZnF3). Surprisingly, the

X – X separation is almost 3% greater for Zn than Mg despite Mg having the larger

charge. Unsurprisingly these distances are smaller than their IP equivalents. The Mg –

K distance is larger than the Zn – K by 1.1%, and both DFT distances are smaller than

the IP distance.

The second cluster, LM1, is the same structure predicted by the IP model, and

closely resembles the GM. The bond lengths of LM1 are similar to those seen for the

GM structure. The only significant change is that the degeneracy of the X – F bond

distances to the central F ions between the two X ions has been lifted. This is due

to a change in symmetry of LM1 with respect to the GM. The Mg – F bond lengths

changed by ±0.03 Å while the Zn – F bond distances changed by ±0.06 Å. The charge

on most of the cations remain unchanged from the GM structure; only the charge on

the central F ions have changed. The central F ion with the reduced bond length to

the X cations, decreased in charge by ∼0.02e for KMgF3 and ∼0.06e for KMgF3. The

other central F ion increased in charge by ∼0.02e for KMgF3 and ∼0.06e for KMgF3.

The bond distance appears to have a correlation with the charge in this case.

The third ranked cluster, LM3, has a cube-like structure that differs significantly

from the GM and LM1. The charge has increased by 0.05e on the Mg and 0.02e on the

Zn. This is likely a result of the F anions more fully occupying the space around these

cations. The F ions that are bonded to two X ions have the largest charge of the anions.

The isolated F ions have the smallest charge. This conforms to the running theme of

the more coordinated and tightly bound ions exhibiting a higher charge. The Zn – Zn

separation is again larger than the Mg – Mg separation, this time by 1.3%. The X – F

separation is within 0.3% between the two compounds.

For the remaining clusters, including those not shown, some general themes were

discovered. The Zn – F bond distance was marginally larger than the one of the equiv-

alent Mg – F bonds except in the case when the F ion was isolated or singly bonded.

The Zn – Zn separation was marginally larger than the Mg – Mg distance, this is likely

a result of the larger Zn – F bond length rather than any cation – cation interaction. In

all cases, the KMgF3 clusters were found to be more ionic than KZnF3.
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Figure 5.27: The five lowest energy (KMgF3)n and (KZnF3)n DFT clusters for n = 3.
The table shows the energy for the top ten clusters relative to the GM in eV/atom.
In the table a superscript “1” indicates the structure was only found by IP to DFT
refinement, a “2” means the structure was only found through cross data mining. A
lack of superscript means the structure was found from both methods.

n = 3

The top five DFT clusters for n = 3 are shown in Figure 5.27. Three out of the top

five structures are seen in both compounds. These three clusters have the same relative

energy ranking for both compounds. However, the top five DFT structures differ greatly

in ranking from the top IP structures.

The GM DFT cluster is almost flat in shape with two four-coordinated X ions and

one five-coordinated X ion. This cluster has improved significantly in ranking upon

DFT refinement; it was ranked 4th for KZnF3, and 11th for KMgF3 on the IP energy

landscape. There is greater variation for the Zn – F bond lengths (1.824 Å to 2.025 Å)

than there is for the Mg – F bond (1.848 Å to 1.985 Å). For n = 3, the KMgF3 IP, while

less accurate in ranking the cluster energy, reproduce the DFT structure more accurately

than the KZnF3 potentials. The X – X separation was found to be larger for Zn (3.020

Å) than Mg (2.949 Å) by 2.4%. As with the smaller clusters, the KMgF3 structure is

more ionic than KZnF3. Interestingly, the five-coordinated Mg ion has a lower charge

(0.99e) than the less coordinated Mg ions (1.08e), where as the five-coordinated Zn ion

has a higher charge (0.94e) than the other two Zn ions (0.93e).

The second ranked cluster, LM1, has a structure which combines the GM for n = 1

with LM1 for n = 2. This structure was not seen in the top ten for either compound

with IP. The DFT LM1 was ranked 14th for the KZnF3 IP and 24th for KMgF3 IP

with the structure altered slightly breaking symmetry. The large difference in stability

is likely a result of the isolated F ion. As with the DFT GM the Zn – F bonds have a

greater variation in length compared to the Mg – F bonds. The Zn – Zn separation is

again larger than the Mg – Mg separation. KMgF3 is again seen to be more ionic. The

Mg with the highest charge (1.10e) is connected to the isolated F ion, while the Zn with

the highest charge (0.98e) is the most coordinated (five) ion closest to the centre of the
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Figure 5.28: The five lowest energy (KMgF3)n and (KZnF3)n DFT clusters for n = 4.
The table shows the energy for the top ten clusters relative to the GM in eV/atom.
In the table a superscript “1” indicates the structure was only found by IP to DFT
refinement, a “2” means the structure was only found through cross data mining. A
lack of superscript means the structure was found from both methods.

cluster.

LM2 for KMgF3 has the same structure as LM3 for KZnF3. As with the previous

two structures KZnF3 is found to be less ionic, to possess a greater variation in its Zn – F

bond length, and to have a larger X – X cation separation than KMgF3. The remaining

clusters for n = 3 also followed the trend of KMgF3 being more ionic than KZnF3.

n = 4

The top five clusters for n = 4 are shown in Figure 5.28. Three out of the top five

structures are present for both compounds and, when exclusively considered, agree in

energy ranking. Thus, the DFT show a better agreement across compounds than the IP

did, where only three out of ten structures were paired and the energy order different.

The DFT GM for KZnF3 is a moderately flat structure and was ranked 57th with

the KZnF3 IP. The cluster consists of a central six-coordinated Zn ion and three four-

coordinated Zn ions around the edge of the cluster. Three of the K ions adopt positions

around the edge of the cluster and are four-coordinated, the other K ion is located

behind the central Zn (into the page) and is coordinated to three F ions. The central

Zn ion has a relatively high charge of 1.00e, the other Zn ions have a charge of 0.93e.

The KMgF3 GM and KZnF3 LM1 have the same structure resembling a cage with

wings. This cluster was also highly stable with the IP. The structure is high degree

of symmetry, with four identical X ions all five-coordinated. Mulliken analysis of the

charges again prove KMgF3 to be more ionic, however, the average charge of 0.97e on

the Zn ions is larger than seen in previous clusters. The evidence of the clusters charges

so far indicate that the larger the coordination number on the Zn ion the higher the

charge.
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Figure 5.29: The five lowest energy DFT clusters for n = 5. The table shows the energy
for the top ten clusters relative to the GM in eV/atom. In the table a superscript
“1” indicates the structure was only found by IP to DFT refinement, a “2” means the
structure was only found through cross data mining. A lack of superscript means the
structure was found from both methods.

n = 5

The top five clusters for n = 5 are shown in Figure 5.29. The GM and LM1 are found to

be the same for both compounds. The DFT GM, as has been seen at all smaller sizes,

is a highly ordered structure. Two of the X ions are six-coordinated and one is five-

coordinated. The other two are five/six-coordinated depending on the choice of cut-off,

and the F ion at the centre of the cluster lies 2.8 Å away from these X ions. KMgF3

is still found to be more ionic than KZnF3. The Mg with the smallest charge are the

six-coordinated ions (0.91e) and the largest charge is seen on the five/six-coordinated

ions (1.06e). For Zn, the five/six-coordinated ions have the largest charge (0.99e) and

the smallest is seen on the five-coordinated ion (0.91e).

The remaining n = 5 clusters all continue to show KMgF3 to be the more ionic

compound. The average charge on Zn ion is larger at this size than for smaller clusters.

n = 6 – 9

The top three clusters for n = 6 – 9 are shown in Figure 5.30. The clusters show the

same trend seen for the IP. The divalent ions take up positions close to the centre of

the cluster, thus maximising their coordination. Typically, similar structures are found

within the top three LM clusters at each size for both compounds. The average charge

on the Zn ions increases as cluster size grows. There is no obvious relationship between

the charge of the Mg ion and cluster size. Similarly, no trend is seen for the charge of

the K ion in either compound. The absence of any charge/cluster size relationship for

the K ion may be due to a lack of any coordination/cluster size relationship, as K ions

are found to be residing at the surface of the structure for all cluster sizes.

The n= 8 GM and LM1 for KZnF3 are particularly noteworthy. These two structures

are significantly lower in energy than the other clusters in the top ten. The gap in energy
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Figure 5.30: The three lowest energy (KMgF3)n and (KZnF3)n DFT clusters for n = 6 –
9. The tables shows the energy for the top ten clusters relative to the GM in eV/atom.
In the table a superscript “1” indicates the structure was only found by IP to DFT
refinement, a “2” means the structure was only found through cross data mining. A
lack of superscript means the structure was found from both methods.
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from the GM to LM2 is 0.0096 eV/atom, whereas the gap in energy from LM2 to LM9

is less than a third of that, at 0.0028 eV/atom. The highly symmetric n = 8 GM

structure is also lower in energy per atom than the n = 9 GM structure. This is the

only occurrence where a GM at a particular cluster size is more stable a larger sized

GM. This suggests that either the n = 8 KZnF3 GM is a “magic cluster” ?? (a cluster

of exceptionally low energy), or the DFT n = 9 KZnF3 GM has not yet been found.

For the larger cluster sizes, it is difficult to pinpoint any specific structural features,

for a number of reasons, that increase stability: (a) they are visually more complex, and

(b) a greater number of different structures will exist within a small energy range. Thus,

it may be more useful to apply statistics to the top clusters. To better understand the

average local environment of the different cations – as well as to give data for comparison

with experimental radial distribution functions – density distribution plots were created.

The density distribution was calculated for each cluster size by determining the radial

distance (rij) between the ion species of interest, i, and all other ions in the cluster,

j. Each radial distance calculated between a pair of ions is smeared using a Gaussian

function to aid in visualisation. The amplitude of each Gaussian was scaled by r−2
ij to

get a density distribution rather than a number distribution. The amplitude of each

Gaussian was then scaled again by the Boltzmann factor, e−∆Ei/kT , where ∆Ei is the

difference in energy per atom between the GM at that size and the ith cluster, k is the

Boltzmann constant, and T the temperature. A temperature of 300 K was used. The

Gaussians from each cluster for a given size were summed together into a plot, with the

total amplitudes in the final plot being divided by the total weight, i.e. the sum of the

Boltzmann factors.

Figure 5.31 shows the distribution for the two cations in each material at cluster

sizes n = 2, 4, and 9 as well as the bulk. For the bulk distribution, the ion responsible

for each peak has been labelled. From the Mg ion centred plot it can be seen that the

nearest neighbour distance is approximately 2 Å and is shortest for n = 2, as would be

expected due to the under coordination of the Mg ions in small clusters. As the clusters

get larger the peak tends towards the bulk like value. At approximately 3 Å there is

the presence of density in the clusters not seen in the bulk. This arises from Mg – Mg

next-nearest neighbours absent in the bulk. Due to all the K ions being pushed out to

the edges of the clusters the Mg ions are allowed to get closer to each other. The Zn

distribution shows an almost identical behaviour, the only noticeable difference being

the shorter, wider peaks of nearest neighbour Zn – F distances, which suggest that the

Zn – F bond is more flexible in regards to its length which was seen explicitly in the

large variation of bond length for the smaller clusters.

The K centred distributions show the same behaviour in both compounds. The first

peak for the clusters show a significant difference from that of the bulk suggesting an

average K – F bond up to 0.3 Å shorter in the clusters than the bulk. Even as the

cluster size goes from n = 2 to 9, the peaks do not appear to be converging as rapidly
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Figure 5.31:

towards the bulk peak. As with the X ions the shorter bond distances hint at the

under-coordination except it is a much more extreme case for the K ions. The under-

coordination is further implied by the smaller area under the cluster peaks compared to

the bulk peak. Unlike in the case of the X ion distributions the second and third peaks

remain in the bulk order. The second peak representing the K – X separation is shorter

than the bulk value but does appear to approach the bulk value as cluster size grows.

Again the much smaller area under the cluster peak compared to the bulk confirms the

K ions are positioned towards the edge of the cluster.

5.7 Electronic Structure and Optical Properties

Density of States (DOS) plots for the GM clusters of both materials for n = 1, 2 and

9 as well as the bulk are shown in Figure 5.32. The plots are shifted such that the

highest occupied molecular orbital (HOMO) is located at 0 eV. The DOS plots show

that increasing the size of the cluster, increases the density of energy levels close to

the HOMO and LUMO (lowest unoccupied molecular orbital) as would be expected

due to there being more atoms, and hence a greater number of energy levels. For the

KMgF3 clusters, the HOMO region is dominated by F states and the LUMO region

contains mainly K states with some mixing from Mg. For KZnF3, the HOMO is mainly
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Figure 5.32: DOS for KMgF3 (left) and KZnF3 (right), clusters and bulk. The clusters
sizes showns are for n = 1, 4, and 9, where n is the number of formula units.
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Figure 5.33: The HOMO-LUMO gap for the top ten structures at each size for KMgF3

and KZnF3 clusters. The red line tracks the gap for the GM structure at each size. The
calculated values for the bulk band gap of KMgF3 and KZnF3, are 7.02 eV and 3.72 eV,
respectively.

F states with mixture from Zn with the Zn mixing becoming more prominent at lower

orbital energy for all clusters. The LUMO is a mixture of Zn and K states with the Zn

component becoming more dominant as cluster size increases.

The DOS profile for the KZnF3 clusters are similar to that of the bulk DOS. On the

other hand, the DOS profile for the KMgF3 clusters disagree at the LUMO, with the

dominance of K states seen in the clusters not present in the bulk. The K dominance

does not appear to be diminishing as cluster size increases either.

Figure 5.33 shows the HOMO-LUMO gaps of the top ten structures at each size for

KMgF3 and KZnF3 clusters. The figure highlights the gap for the GM with a red line.

For n = 1, the gap calculated for the linear stick (LM2) is 0.85 eV for KMgF3, and

0.86 eV for KZnF3. The clusters for both materials show the same qualitative trend,

a gradual decrease in gap as the cluster size increases with kinks at n = 3 and 5 for

KMgF3 and n = 3 for KZnF3. The downward trend is much more obvious for KZnF3.

The spread in the calculated gap of the top ten structures is found to be greater for

KMgF3 than KZnF3 at each size. With the exception of n = 9 for KZnF3, the GM gap

is always one of the largest gaps calculated for the top ten clusters. The main difference

between the two compounds, is that the KMgF3 gap for clusters is smaller than the

calculated bulk gap (7.02 eV), while the KZnF3 gap for clusters is larger than the bulk

(3.72 eV). This means the calculated gaps for the KZnF3 clusters are tending towards

the bulk value. However, the gap for the KMgF3 clusters are tending away from the

bulk value at the cluster sizes investigated. The DOS profiles (cf. 5.33) for the KMgF3

clusters showed the LUMO to be dominated by K states. Thus, it is suggested here,
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Figure 5.34:

that the differing local environment of the K ions in the clusters, compared to the bulk,

leads to the discrepancy in the optical gap.

The KZnF3 cluster DOS profiles show the LUMO to be made up of Zn states. The

Zn ions in the clusters achieve a coordination much more comparable to that seen in

the bulk, than that achieved by the K ions. Thus, this may be the reason the KZnF3

optical gaps more closely resemble the bulk values.

The way in which the LUMO states are constructed, may also explain the greater

variation in calculated gap found for the top ten structures of KMgF3 compared with

KZnF3. The K ions generally experience a more variable local environment, and the

LUMO of the KMgF3 clusters are heavily influenced by the K ion. Thus, leading to a

more variable gap. It is expected that as the size of the clusters increases, the value

KMgF3 HOMO-LUMO gap will eventually stop decreasing and begin to tend upwards

towards the value of the bulk gap. However, the cluster sizes considered up to now are

still far away from this range. This is consistent with the fact that for the two systems

considered, the cluster sizes have not been large enough for the perovskite unit cell

(which is correlated with the size of the band gap, of course) to be present in the global

minimum structure.

For comparison with future experiments, crude absorption spectra for (KMgF3)n

and (KZnF3)n have been created for n = 4 and 9; see Figure 5.34. The figure shows

the cumulative absorption for the top ten clusters, with the amplitude each cluster

contributed scaled by the Boltzmann factor using a temperature of 300 K. It is assumed

that a constant absorption is contributed from each cluster for all energies larger than

the HOMO-LUMO gap. There is a clear difference in absorption spectra (very little

overlap) between the two compounds, regardless for cluster size, with KMgF3 absorbing

at a higher energy. Similarly, for both compounds there is a clear difference in absorption

spectra between the n = 4 and n = 9 clusters. The n = 4 clusters absorb at a higher

energy than the n = 9 clusters. The sharp differences in the spectra suggest absorption
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Figure 5.35: Calculated infrared spectra for (KMgF3)n and (KZnF3)n clusters, where n
= 2, 4 and 9.

spectroscopy may be a possible method to distinguish between these clusters.

Finally, infrared data is presented in Figure 5.35 for comparison with future experi-

ments. The infrared frequencies and their corresponding intensities were calculated for

the top ten clusters at each size using FHI-aims. The calculated vibrational frequencies

were smeared using a Gaussian function to aid visualisation. The Gaussians for each

cluster at a particular size were scaled according to the Boltzmann factor, and then

summed together. The highest frequencies are found to be slightly higher in KMgF3

than KZnF3, with these frequencies decreasing as cluster size increases.
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5.8 Bulk-like Clusters

So far the structure of all low energy clusters have the Mg and Zn ions residing closer to

the cluster centre, while the K cations are positioned along the outer edges of the cluster.

The structure of a cluster containing even one K ion near the cluster centre remains to

be seen. In this brief section, (KMgF3)n clusters with a structure more similar to the

perovskite bulk phase are investigated. These bulk-like clusters are compared with low

energy structure found through global optimisation in an attempt to determine at what

size do bulk-like clusters begin to emerge.

The cluster size sampled was n = 8 – 20. Three types of structure generation were

employed:

Type 1 Type 1 created structures by performing a global optimisation using Genetic

Algorithms (GA) on the IP landscape. The lowest energy candidates were then

refined through DFT. This techniques has already been used in this chapter to

generate cluster structures.

Type 2 Type 2 used the solid solutions routine of KLMC discussed in chapter 4. A

cubic structure containing a K ion at the centre, with all ions on lattice sites was

created; see Figure 5.36. The cube contained 1 K ion, 8 Mg ions, and 12 F ions.

The remaining atoms were randomly distributed on lattice sites around the cube,

with F ion restricted to F lattice sites, while the cations could occupied either

cation site. The available lattice sites were chosen within a radial cut-off from the

central K ion. The radial cut-off was chosen so that there was not more than one

empty shell of lattice sites when all ions were made to occupy positions as close to

the centre as possible. The ions of the cube were held fixed, while the ions around

the cube were allowed to relax with respect to geometry using the IP. The relaxed

structure was refined through DFT.

Type 3 Type 3 involved taking stoichiometric cuts from the bulk, and relaxing them

using IP. The IP relaxed structures were then refined through DFT.

For Type 1, structures were generated for n = 10, 12, 15, and 20 (n = 8 and 9 had

previously been done). At least 15,000 structures were sampled at each size, with the

top 50 being refined through DFT. It is assumed a sample size of 15,000 candidates will

not lead to all, or even most, of the top structure being found. However, it is expected

that the search will be large enough to yield at least a few of the top structures. For

Type 2, structures were generated for n = 8 – 20. 10,000 structures were sampled at each

size, with the top 50 being refined through DFT. For Type 3, structures were generated

for n = 8 (2 x 2 x 2 cut), 12 (2 x 2 x 3 cut), 16 (2 x 2 x 4 cut), 18 (2 x 3 x 3 cut), and

20 (2 x 2 x 5 cut).

Figure 5.37 plots energy of the global minima (GM) found for each method at each

size. The values plotted are relative to the energy of the Type 1 GM at n = 20. The
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Figure 5.36: The central section of clusters created using Type 2. K, Mg, and F ions
are purple, orange, and grey spheres, respectively.

Figure 5.37: The central section of clusters created using Type 2. K, Mg, and F ions
are purple, orange, and grey spheres, respectively.
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energy of the Type 1 GM are found to be the lowest, which is expected as there are

no constraints on the global optimisation. The Type 2 clusters are found to be the

second lowest in energy, while the Type 3 clusters are highest. From the plot, it is

clear the difference in energy between Type 1 and the other types has decreased with

increasing n. The energies of Type 2 fall almost linearly from n = 8 to 13, after which

the energy difference between clusters sizes varies less. From n = 13 the difference in

energy between the GMs of Type 1 and 2 is small. The difference calculated at n = 15

is 0.007 eV/atom. Compare this to the value of kT at 300 K: 0.026 eV. Thus, is can be

expected that cluster in which K ions are seen towards the centre may exist at around

this size. At n = 18 – 20 the Type 2 clusters increase in energy compare to n = 17.

This may be: a feature of the constraints imposed on the global optimisation technique;

a result of an insufficient number of structure candidates being tested; or the point at

which the IP and DFT disagree more. Additional calculations will need to be performed

to ascertain the cause of the hike in energy.

The Type 3 clusters, which represents bulk cuts, are much higher in energy than

the other two form of clusters. The difference in energy between Type 1 and Type 2

clusters has been reduced with increased cluster size, from 0.127 eV/atom at n = 8,

to 0.069 eV/atom at n = 20. However, the difference in energy at n = 20 does not

suggest bulk cuts will be found yet. The Type 3 cluster at n = 18 appears to off trend

compared to the other clusters. The n = 18 cluster is a 2 x 3 x 3 cut, where as the

other clusters follow a 2 x 2 x X pattern of cut. Thus, it can be deduced that the more

cubic bulk cuts, which have a higher volume to surface ratio are likely to be lower in

energy. This is correlates with what was seen for the GM cluster found from the GA

global optimisations, where the low energy structures for the larger sized cluster are

quite dense, conforming to spherical shapes.

Lastly, it should be noted that at n = 15, none of the top 50 structures found using

Type 1 had a K ion near the centre of the cluster. The DFT energy difference between

the Type 1 and Type 2 GM was 0.007 eV/atom at this size. However, the IP energy

difference was found to be 0.034 eV/atom, almost five times larger. This cannot be

attributed to energy differences between clusters being larger for the IP structures than

the DFT structure. It was shown earlier in the chapter that the energy range of the top

10 clusters was similar for DFT and IP calculations. This indicates the IP find K ions

at the centre of clusters energetically more unfavourable than DFT does. The cause is

likely a result of the IP modelling the K ions to be slightly larger, and possessing a higher

change, than that seen for DFT. As a consequence, global optimisations performed using

IP are more likely to rule out bulk-like clusters, or clusters with K ions near the centre,

than the DFT would have. This highlights why using another method like “data mining”

complimentary to the IP global optimisations could be useful.
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5.9 Conclusion

In this chapter (KMgF3)n and (KZnF3)n nanoclusters have been investigated. The

structure of the nanoclusters were unknown, and so global optimisations using inter-

atomic potentials (IP) were performed to predict the structure. Three global optimi-

sation techniques were tested: Genetic Algorithms (GA), Basin Hopping (BH), and

stochastic Quenching (SQ). The tests were performed on clusters sized n = 1 – 9. The

GA technique was found to be the best, performing slightly better than BH on the larger

clusters (n = 7 – 9). SQ was found to be ineffective above n = 5.

Using the results from the GA the lowest energy structures, at each size from n = 1

to 9, were inspected. It was found that the two compounds, KMgF3 and KZnF3, shared

many of the same low energy structures. The structure of the clusters revealed that

it was energetically favourable for the more highly charged X cation (Mg or Zn) to sit

closer to the centre of the cluster, while the K cation was pushed to the edges. This

allowed the X cation to achieve a higher coordination.

For both compounds, the top 100 structures (when available) at each cluster size

were refined (relaxed w.r.t geometry) through DFT. It was found that the correlation

between the IP and DFT energetic ordering of the structures was better for KMgF3 than

KZnF3. It is suggested this was due to the KMgF3 IP using partial charges, while the

KZnF3 IP used formal charges. This was deduced from the cation separation observed

for the KMgF3 IP structures matching more closely to the DFT ones, where as the

cation separation in the KZnF3 IP structures significantly overestimated those seen for

DFT.

The DFT structures were “data mined” across the two compounds. I.e. a DFT

structure for KMgF3 was refined for KZnF3 (Mg replaced with Zn). The process re-

vealed the IP search had missed some of the low energy DFT structures. The energetic

ordering of the clusters, and the structures themselves, was more similar between the

two compounds for DFT than was seen for the IP. Like the lowest energy IP structures,

the DFT structures had the X ion residing closer to the centre of the cluster, while the

K ions were positioned towards the edges.

The HOMO-LUMO gaps for each DFT cluster were calculated. It was found that

the gaps for the KMgF3 clusters were smaller than the bulk perovskite band gap. The

gap for KZnF3 clusters was larger than the bulk perovskite band gap. Both compounds

showed a trend of decreasing band gap with increased cluster size, indicating that optical

measurements may be useful in determining cluster size. Infrared vibrational frequencies

were also calculated for clusters. KMgF3 was found to have the higher frequencies, with

the top frequencies for both compounds decreasing with increasing cluster size.

Lastly, clusters with a structure more similar to the perovskite bulk phase were

compared against the globally optimised clusters. These clusters were tested over the

size range n = 8 – 20. The global optimisation searches for the larger clusters were
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less extensive than those performed earlier in the chapter, as only rough estimates of

the energy and structure were required. Two different types of clusters were compared

against the globally optimised structures. One type created structures in which a K

ion was forced to be near the cluster centre. The other type used bulk cuts. It was

found that at around n = 13 the clusters with K ions in the centre became energetically

competitive with the structures found from global optimisation. The bulk cuts reduced

the energy gap from the best structures from 0.127 eV/atom at n = 8, to 0.069 eV/atom

at n = 20. However, this gap does not make the bulk cuts competitive, and so the cluster

size will need to become much larger before bulk-like structures begin to form.
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Chapter 6

Conclusion

In this chapter the results and conclusions of the thesis are summarised, along with

suggestions for future work.

The structure of ABZ3 perovskite materials in their non-bulk phases has been the

focus of this thesis. The atomic arrangement of perovskite polar surfaces and nanoclus-

ters are relatively unknown. This is largely due to conventional structure determination

techniques, such as X-ray and neutron scattering, proving ineffective on these phases.

To determine the non-bulk phase structures, global optimisation techniques have been

employed. Such techniques require sampling a number of possible atomic configura-

tions. The size of the sample required typically increasing with system size. Interatomic

potentials (IP) can offer a fast and reliable approach to screen for suitable atomic con-

figurations. Thus, IP are ideal for global structural optimisation searches.

In the first section of results, IP parameters for KTaO3 were refined by fitting to bulk

properties, while IP parameters for KMgF3 and KZnF3 were taken from the literature.

Both IP and density functional theory (DFT) calculations were employed independently

to model the bulk phase and a comparison made to the properties calculated by the two

different levels of theory. To test the suitability of our chosen modelling parameters,

the calculated properties were compared with experimentally observed properties. A

strong agreement between the two levels of theory was found, with the calculations also

matching closely to experiment. The properties calculated using the KTaO3 IP showed

a particularly strong match to experiment. From the DFT calculations, it was also

possible to analyse the electronic structure. A hybridisation of the B and Z ion states

was found for KTaO3 (Ta–O) and KZnF3 (Zn–F), indicative of covalent bonding. No

such mixing of the states was seen for KMgF3, suggesting a more ionic structure.

Defects, in the form of neutral vacancies, were modelled in super cells of the bulk. For

KTaO3, K vacancies under oxidising conditions were the most thermodynamically stable.

O vacancies were found to have a low energy of formation under metal-rich conditions.

Ta vacancies were the most unstable. For the two fluoride perovksites, vacancies of both

cations were found to be favourable under oxidising conditions. F vacancies had higher
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formation energies, but relatively low in any non-oxidising environment.

A global optimisation was performed on the polar (001) surface for KTaO3 to deter-

mine the lowest energy 2 x 2 reconstructions.

Interestingly, the most stable reconstructions required cation interlayer exchange at

the surface. Ta ions moved from the originally TaO2 terminated surface into the sub-

surface layer below, while K ions moved from the sub-surface onto the surface layer. This

enables the Ta ion to achieve a higher coordination which appears to be a stabilising

mechanism for this material. It is proposed the preferential filling of the tantalum coor-

dination is charge driven, as tantalum is the higher charged cation. The reconstructions

did not appear to have any significant effect on the electronic structure of the material.

Note that ABZ3 type perovskites contain alternating layers of AZ and BZ2 (A-B-A-B)

along the (001) direction. Typically, the AZ terminated surface is found to be the most

stable. Thus, computational models are generally set up with an A terminated, A-B-

A-B-A type slab. Here it is shown, that starting with a B terminated, B-A-B-A-B type

slab, and then exchanging the B cation on the surface layer with the A cation in the

sub-surface layer produces a surface of lower energy. This reconstruction results in an

A-AB-B-A-... layered structure, with a A cations on the topmost surface layer and an

mixed sub-layer containing both A and B cations.

Defects, in the form of K and O vacancies, were introduced to the surface slabs. It

was shown that the vacancies were more stable at the surface than in the bulk, thus

suggesting thus suggesting vacancies will migrate to the surface. As with the bulk

calculations, K vacancies, under oxidising conditions, were found to be the most stable.

The creation of O vacancies was most favourable under metal rich conditions, with the

lowest formation energy calculated to be 0.47 eV; 0.52 eV lower than in the bulk. An

upward band bending towards the surface was seen for both K and O vacancies. This

suggests an accumulation of holes at the surface in the presence of K vacancies, and an

accumulation of electrons in the bulk for O vacancies. In the case of the O vacancies,

this is in direct contrast to what is proposed in the literature. Experimentally, a two-

dimensional electron gas (2DEG) is observed on the (001) cleaved surface of KTaO3.

It is suggested that the 2DEG is in part due to oxygen vacancy formation. To further

investigate this phenomenon, it is proposed that additional calculations be performed.

Firstly, to ensure the electronic effects of the surface are distinguished from the bulk, a

slab of larger thickness should be used to model the KTaO3 surface. Secondly, spin-orbit

coupling should be introduced in to the model in order to test whether the 2DEG is

a result of orbital splitting due to spin. Finally, should neither of these modifications

reveal the 2DEG, hybrid calculations which are considered more reliable, but equally

more expensive should be attempted to confirm predictions.

The low energy surface reconstructions discovered for KTaO3 were exploited to in-

vestigate surface of the perovskites: KMgF3, KZnF3, and BaSnO3. The ground state

structure for KTaO3, also proved to be the lowest energy reconstruction for BaSnO3
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when compared against all the surface structures found for KTaO3. Of the surface

structures tested for BaSnO3, the ranking of the reconstructions, with respect to en-

ergy, proved identical to the rankings seen for KTaO3. The change in ranking of the

surfaces, with respect to energy, was greatest for KZnF3. Of the three compounds tested,

BaSnO3 has the ions with the highest oxidations states. This suggests the strength of

the stabilising effect of the reconstruction mechanisms are coupled to the charges of

the system. To verify this, additional calculations should be performed in which the

KTaO3 surface reconstructions are applied to a wider range of perovskite materials. In

particular, III-III perovskites would be a good next step, as I-V and II-IV have already

been investigated. This will allow for the contribution of different effects such as cation

size, bonding covalency, open vs closed shell systems, and orbital effects to be investi-

gated alongside cation charge. Moreover, charge and relative ion size can be changed

continuously in the IP model to investigate the effect they have on the surface energy.

In addition, the surface periodicity should also be varied to reduce the symmetry being

imposed upon the structure. This could include investigating 2 × 4, 4 × 4, 5 × 5, and

greater surfaces.

Further investigation of the surfaces may also include molecular dynamics at the

surface, to simulate the effect of surface melting. This additional technique may result in

new structures being discovered that may have been screened out by the Basin Hopping

approach.

As well as surfaces, stoichiometric nanoclusters of the fluoride perovskites KMgF3

and KZnF3 were also investigated, as part of a international collaborative effort to

determine the most effective global optimisation techniques. The size of the nanoclusters

ranged from 5 to 100 atoms. The structures were determined by performing a global

optimisations on the IP energy landscape for each composition. The performance of

three different global optimisation techniques were tested: Genetic Algorithms (GA),

Basin Hopping (BH), and stochastic Quenching (SQ). The GA were more successful

and more efficient at finding the GM and other low energy LM, although only slightly

outperforming the BH technique. SQ was found to be severely less effective than the

other two methods for systems containing more than 25 atoms.

The 100 lowest energy LM clusters were refined using DFT. The structure of the

low energy clusters showed the B cations (Mg or Zn) to sit close to the cluster centre,

while the K ions resided at the surface of the LM clusters. The agreement in the

energetic ordering, or ranking, of structures between IP and DFT was found to be

strong for KMgF3. The KMgF3 IP were based charge model, whereas the KZnF3 IP

used formal charges. This lead to KZnF3 IP structures overestimating the cation-cation

separation compared to the DFT structure. The ranking of DFT structures were also

shown to correlate strongly across the two compounds. Low energy structures for KMgF3

generally proved to be low energy structures for KZnF3, and vice-versa. Thus, the

process of “data mining”, employing the LM structures of one compound as initial

175



models to be refined for another compound, is a very useful approach in the structure

prediction of nanoclusters. As such, the atomic structures of the DFT LM nanoclusters

reported here, once published, will be uploaded into the WASP@N database [198] for

others to exploit.

The optical gap of the clusters was found to decrease with increasing cluster size, and

therefore, along with other nanocluster properties may be tuned by controlling particle

size.

None of the n = 1 nor the larger low energy LM nanoclusters found from global

optimisation contained K ions near the centre. However, the bulk structure of these

compounds are made up of perovksite cells in which K ions are 12-coordinated. There-

fore, there must be a transition at a larger size than that considered here, where it is

energetically favourable for K ions to reside inside the cluster. In an attempt to find this

transition, two additional constrained searches were conducted for nanoclusters contain-

ing 40 – 100 atoms. In one set of runs, one K ion was fixed at the centre of the cluster.

In the second set, nanoclusters were created from cuts of bulk perovskite. It was found

that at around 60 atoms the clusters with K ions in the centre became energetically

competitive (within 0.02 eV/atom of the GM) with the structures found from global op-

timisation. The bulk cuts reduced the energy gap to the GA GM from 0.127 eV/atom

at n = 8, to 0.069 eV/atom at n = 20. However, these relaxed bulk-cuts are still higher

in energy than those found by the global optimisation techniques; the cluster size will

need to become much larger before bulk-like structures begin to form.

In summary, the structure of surface and nanocluster phases of ABZ3 perovskite

compounds has be investigated. Using global optimisation routines, unsurprisingly it

was found that structures in which the B cation was able to maximise its coordination

were energetically more favourable as this cation has the higher charge. For nanoclusters,

this lead to a segregation of cations species, with B ions at the cluster centre, and A

cations at the surface. For the (001) polar surface, it was previously predicted that

the surface would also be K terminated. However, my results suggests a more complex

picture: a sub-layer composed of both A and B cations. It should also be noted that

there are many similarities in the structures and their respective rankings based on

energy of formation when comparing different compounds that adopt the perovskite

phase. Thus, the method of “data mining” has proved extremely useful.

Further work into the nanoclusters would include looking at non-stoichiometric par-

ticles in case these structures proved to be more stable than their stoichiometric coun-

terparts. This would greatly increase the number of possible candidate structures. The

natural follow on from this would be to then look at charged clusters. To investigate

the size at which the bulk structure begins to form, larger cluster will need to be tested.

Performing global optimisations on clusters containing many hundreds, if not thousands,

of atoms will be very computationally expensive. A suitable alternative may be to per-

form molecular dynamics on bulk cuts, to more effectively determine at what size the
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bulk structure precipitates.

To conclude, this thesis has shed light on the atomic structure of perovskite polar

surfaces and nanoclusters. Although the size of the nanoclusters modelled were not large

enough to contain fragments/features of the bulk and surface structures, the work has

highlighted the usefulness of global optimisations and data mining.
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[119] K. R. German, U. Dürr, and W. Künzel. “Tunable single-frequency continuous-

wave laser action in Co2+:KZnF3”. In: Optics Letters 11.1 (Jan. 1, 1986), pp. 12–

14.
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