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Abstract

Health economic evaluations have recently built upon more advanced
statistical decision-theoretic foundations and nowadays it is officially re-
quired that uncertainty about both parameters and observable variables
be taken into account thoroughly, increasingly often by means of Bayesian
methods. Among these, Probabilistic Sensitivity Analysis (PSA) has as-
sumed a predominant role and Cost Effectiveness Acceptability Curves
(CEACs) are established as the most important tool. The objective of
this paper is to review the problem of health economic assessment from
the standpoint of Bayesian statistical decision theory with particular at-
tention to the philosophy underlying the procedures for sensitivity anal-
ysis. We advocate here the use of an integrated vision that is based on
the value of information analysis, a procedure that is well grounded in the
theory of decision under uncertainty, and criticise the indiscriminate use
of other approaches to sensitivity analysis.
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1 Introduction

Health economic evaluations have recently built upon more advanced statistical
decision-theoretic foundations and nowadays it is officially required that uncer-
tainty about both parameters and observable variables be taken into account
thoroughly, increasingly often by means of Bayesian methods (Briggs 2001,
O’Hagan and Stevens 2001, O’Hagan et al. 2001, Parmigiani 2002b, Spiegel-
halter and Best 2003, Spiegelhalter et al. 2004). Consequently, sensitivity anal-
ysis has become a major part of any new drug approval or reimbursement files
and is explicitly required by organisations such as NICE in the UK (Claxton
et al. 2005).

This issue has been addressed under two somehow different but complemen-
tary perspectives in the health economics literature. On the one hand, much
of the work in the late 1990s and in the early years of the new millennium has
been devoted to justify sensitivity analysis on the grounds that the so-called
“second order uncertainty” (i.e. that deriving from the decision maker’s imper-
fect knowledge of the population parameters) played a major role in the final
economic assessment. This was in line with the development of Bayesian meth-
ods for cost effectiveness analysis, and produced many specific indicators widely
used to report the results of sensitivity analysis.

At the same time, a second point of view was developed more in line with
the theory of statistical decision making, which included formally not only an
analysis of the cost effectiveness properties of a given intervention, but also
a scheme of prioritising future research. In this framework, the uncertainty
about the components of the economic model has to be taken into account
with reference to the possibility of reviewing the current decision as to which
intervention should be selected, in light of new evidence becoming available.

The objective of this paper is to review the problem of health economic
assessment from the standpoint of Bayesian statistical decision theory, with
specific attention to the philosophy underlying the procedures for sensitivity
analysis. In particular, in line with a few recent contributions to the literature,
we advocate here the use of an integrated vision that is based on the value of
information analysis, a procedure that is well grounded in the theory of decision
under uncertainty, and criticise the indiscriminate use of other approaches to
sensitivity analysis.

2 Framework

We consider a collection of experimental units , labelled by i. We can apply an
intervention t (∈ {0, 1}, say) to any unit, and observe a (possibly multivariate)
response, Yi. The unit i might itself be a population, and the treatment t
some population-level policy intervention. Sometimes, though not always, the
relevant population-level response Yi would be an average, or other summary,
of individual-level responses within that population.

We wish to decide which treatment to apply to a new unit i′, judged as
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similar, or exchangeable (de Finetti 1974), with all the others receiving the
same treatment. In other words, the joint subjective distribution of all the Yi’s
can be regarded as produced as follows. First let a random pair of distributions
Π = (Π0,Π1) have some (subjective) random joint law L. Conditionally on the
values π = (π0, π1) of Π, generate each Yi independently, with distribution πt

if unit i received treatment t.
For the sake of simplicity, we would typically regard the components of the

pair Π as taking values in some parametric family of distribution-pairs of the
form P = {p(· | θt)}, indexed by a vector of variation-independent parameters
θ = (θ0, θ1), where the (subjective) law L of Π can be represented by a joint
prior density λ(θ) for the parameter-pair Θ = (Θ0,Θ1) — a similar general
framework has also been described by O’Hagan and Stevens (2001).

Note that we can not identify the distribution λ from data. But given
extensive empirical evidence, we can discover the realised value θ of Θ, and thus
the realised pair π =

(

p(· | θ0), p(· | θ1)
)

. This consideration is instrumental to
the procedures of sensitivity analysis to parameters uncertainty — cfr. § 4.

2.1 Decision making in health economics

The problem of allocating the best treatment to the new unit i′ is a typical exam-
ple of decision making under uncertainty, generated by the imperfect knowledge
of the random quantities (Y,Θ), as well formalised by Parmigiani (2002b) in the
medical setting (for a more general discussion, see Raiffa 1968).

We take the standpoint of a governing body who is responsible for guidance
on the implementation of alternative interventions for specific public health
matters. Typically, a standard programme will be available and a new one is
suggested to replace it, perhaps partially or only on specific sub-populations of
individuals.

For each possible intervention t, patient-level data, for instance produced by
a set of randomised trials or observational studies, will generally be available in
the form Dt = {yi : i = 1, . . . , nt}. We shall generally refer to the whole set of
background information as D =

⋃

t Dt, and for the sake of simplicity consider
only the situation where t = 0, 1.

The overall value of applying treatment t and obtaining response y is given
by a utility u(y, t). A common form of utility is the net benefit (Stinnett and
Mullahy 1998)

u(y, t) = ke− c. (1)

Here e (typically a function of y only) denotes the realised benefit, suitably
measured for instance in terms of Quality Adjusted Life Years (QALYs), while
c (which might depend on y as well as t) is the realised cost; k is a “willingness
to pay” parameter used to put cost and benefits on the same scale. The main
advantage of the net benefit over other forms of utility function is its linearity
in (e, c), which allows a simple interpretation and easier calculations.

Notice though that its extensive use in the health economics literature is
dictated purely by this pragmatical reason. In principle, other choices might
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be more indicated: for example, the net benefit presupposes that the decision
maker is risk neutral, which is not always the case in health policy problems
(Koerkamp et al. 2007). Therefore, other forms of utility could be used instead,
in order to explicitly include a measure of risk aversion.

According to the precepts of Bayesian decision theory and on the basis of
the current data D, the quality of the future decision t is the expected utility

U t := E[u(Y, t) | D)]

=

∫

dθt λt(θt | D)

∫

dy p(y | θt)u(y, t) (2)

where λt(·) is the marginal prior (i.e. conditional on the background infor-
mation) density of the random quantity Θt. The expected utility is obtained
averaging over the uncertainty in both population (“objective”) and parameters
(“subjective”) domains.

We would choose the intervention t to maximise U t: equivalently, we choose
t = 1 if (and, henceforth ignoring ties, only if) EIB > 0, where

EIB := U1 − U0

is the expected incremental benefit (of treatment 1 over treatment 0). Notice
that using the net benefit as the utility function, the EIB is more precisely a
function of k (here we consider this dependence only implicitly, though).

The overall utility is obtained as:

U∗ := max
t

U t

= max {EIB, 0} + U0.

2.2 Cost effectiveness analysis

The objective of health economic evaluations is to compare the population ex-
pected performance of the interventions along the two dimensions of interests,
i.e. the cost and the benefits. In particular, we can define the increment in
mean effectiveness

∆e := E[e | θ1] − E[e | θ0]

and the increment in mean cost

∆c := E[c | θ1] − E[c | θ0].

When the net benefit is used as the utility function, then the cost effectiveness
analysis is focused on the estimation of

EIB = E[k∆e − ∆c] = kE[∆e] − E[∆c]

where the expectations are now over the subjective distribution of θ.
Apparently, any uncertainty over the values of θ, and hence of (∆e,∆c) does

not influence the decision process. But is this appropriate?
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3 Sensitivity Analysis

The definition of the expected utility shows explicitly how, under the Bayesian
approach, both individual variations and uncertainty in the value of the param-
eters are averaged out. From the decision-theoretic point of view, the identifi-
cation of the overall utility is all that is needed to reach the best decision given
the current state of knowledge available to the decision maker. This point has
been argued by Claxton (1999b) in the context of health economics.

However, implementing an intervention is typically associated with some
risks such as the irreversibility of investments; for this reason, it has been ad-
vocated in the literature that health economic evaluations should be subject to
some form of Sensitivity Analysis (SA), in order to quantify and qualify the
uncertainty underlying the decision process.

Formally, SA is defined in the risk assessment literature as the study of
“how uncertainty in some model output can be apportioned, qualitatively or
quantitatively, to different sources of uncertainty in the model input” (Saltelli
et al. 2004). Parmigiani (2002b) recognises three different forms of SA.

Marginalisation is implicit in Bayesian decision-theoretic procedures, such
as the one descibed in § 2.1; the relevant input can be represented by the value
of the parameters of the model, Θ, whereas the output is the future health-
economic outcomes on some reference unit, Yi′ . The uncertainty in all the
random quantities is accounted for by the computation of the expected utilities,
that are used to determine the optimal decision, but is not analysed separately.

The second form of SA is Scenario Analysis (sometimes referred to as Deter-
ministic Sensitivity Analysis, DSA). In this case, the experimenter selects a list
of interesting values for (some of) the parameters of the model and evaluates the
expected outcomes under all these different scenarios. This procedure is easy to
implement when the number of parameters involved is relatively small. How-
ever, it fails to consider the possible correlation or the underlying uncertainty
about the parameters of interest, only focusing on a set of arbitrarily chosen
values, regardless on the likelihood of each of them occurring in reality.

These limitations can be overcome by Probabilistic Sensitivity Analysis (PSA),
a procedure in which all input parameters are considered as random quantities
and therefore are associated with a probability distribution that describes the
state of science (i.e. the background knowledge of the decision maker). This
method is clearly in line with the Bayesian analysis, but instead of marginalis-
ing out uncertainty in the parameters, PSA is based on a simulation approach
(Doubilet et al. 1985). For each iteration s = 1, . . . , S, a value θ̂(s) is simu-
lated from the distribution λ(θ | D). The decision analysis is then conducted
using that specific value as if this were the realised one. The resulting vari-
ability in the expected utilities and the influence of each component of θ can
then be suitably summarised. Much of the recent theoretical work has been
devoted specifically to this issue (Briggs et al. 2002, Parmigiani 2002a, O’Hagan
et al. 2004, Claxton et al. 2005, Griffin et al. 2006, O’Hagan et al. 2006).

Another reason why PSA plays a major role in health economic evaluation
is, as suggested among others by Briggs et al. (2006), that public health or
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programme guidance are usually developed as a two-stage, sequential problem.
If gathering additional data to supplement the background information D is
not an option, the decision maker must choose whether to keep the standard
programme t = 0, or to switch to the new one on the basis of some suitable
cost-effectiveness measure of utility (e.g. the net benefit). According to (2), this
evaluation will be based on the predictive distribution of some future outcomes
y, conditionally on D.

Conversely, if deferring the final decision in order to gather more data is an
available option, then the standard intervention t = 0 will be typically main-
tained while additional evidence E is collected. Once this is available, the analy-
sis can be updated and the utility for each possible intervention will be based on
a posterior density of the parameters of interest λt(θt | D, E), which will induce a
predictive distribution for some other future outcomes z (generally of the same
nature as y).

Clearly, the option of postponing the decision on cost effectiveness is asso-
ciated with extra sampling costs. Therefore, it is crucial to assess the impact
of this uncertainty on the final decision. A graphical representation of this se-
quential process is depicted in Figure 1, using a decision tree. In the next two
sections we discuss the implementation of PSA according to this framework.
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Figure 1: A decision tree representation of the sequential problem of health
economic evaluations

4 PSA of parameters uncertainty

Let us consider the situation depicted in Figure 1 and assume that, after ob-
serving the evidence E , the posterior distribution of the parameters is close to
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a one-point distribution at the true value: in this case, we shall have effectively
learned the realised value θ of Θ, i.e. our uncertainty on the knowledge domain
will be resolved.

Now, adopting the intervention t our expected utility will be U(θt), where

U(θ) := E[u(Z, t) | D, E , θ]

=

∫

dz p(z | θ)u(z, t). (3)

Consequently, we would choose treatment t = 1 if U(θ1) > U(θ0), or equiva-
lently if IB(θ) > 0, where

IB(θ) := U(θ1) − U(θ0) (4)

is the incremental benefit under parameter-pair θ. When the net benefit is used
as the utility function, IB(θ) = k∆e − ∆c.

The overall “known-distribution” utility is then

U∗(θ) := max
t
U(θt)

= max{IB(θ), 0} + U(θ0).

We note also that

U t =

∫

dθ λt(θt | E)U(θt) and EIB =

∫

dθ λ(θ | E) IB(θ).

However, the expectation of the “known distribution” utility calculated with
respect to the posterior distribution of the parameters

V∗ :=

∫

dθ λ(θ | E)U∗(θ)

is not equivalent to the overall utility U∗.
Obviously, in general we shall not be able to learn the value of the parameter

Θ with certainty and the observation of additional evidence E will only be able
to reduce our uncertainty on the parameters. Consequently, some indicator is
required to adequately describe the difference between the ideal and the actual
decision process.

4.1 PSA in practice: an example

Suppose we set up a simple fictional model of the following form. We assume
that the (suitably measured) health economic response y = (e, c | θt,St) ∼
N (θt,St), where θt = (θt

e, θ
t
c) and St is the population covariance matrix. This

is probably the most basic model assuming dependence in (e, c) — see for in-
stance van Hout et al. (1994). In fact, real-world health economic models are
much more complex, but the results that we show throughout the paper using
this simple structure are replicable with different distributional assumptions.
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Based on some relevant prior knowledge, we can define a subjective prior
distribution λ(θ | D) on the parameters, say for the sake of simplicity (θ0,θ1 |
µ,Σ) ∼ N (µ,Σ). Here, µ = (µ0,µ1), with µt = (µt

e, µ
t
c). Also, for the

moment we assume no correlation structure, so that Σ is a diagonal matrix.
We suppose further that the values of the hyper-parameters are known, and
such that the induced distribution for (∆e,∆c) has the following properties:
E(∆c) = sd(∆c) = £11, 000; E(∆e) = sd(∆e) = 0.5 QALYs. Obviously, the
absence of correlation for the components of θ implies that Corr(∆c,∆e) = 0.
To make this constraints hold, one suitable choice is to set µ0 = (0.5; 11, 000),
µ1 = (1; 22, 000) and Σ = diag(0.15; 60× 105; 0.1; 61 × 105).

Simulated parameters Expected utility∗ Incremental

Iter θ̂1
e(s)

θ̂1
c(s)

θ̂0
e(s)

θ̂0
c(s)

U(θ1) U(θ0) benefit IB(θ)

1 0.945 23,100 -0.075 -5,687 538 3,797 -3,259
2 0.941 18,720 0.468 10,200 4,824 1,498 3,326
3 0.435 14,170 -0.537 20,460 -3,271 -33,900 30,629
4 1.484 20,470 0.511 2,717 16,640 10,060 6,580
5 0.595 17,900 0.911 6,753 -3,008 16,030 -19,038
6 0.894 29,400 0.202 19,620 -7,036 -14,550 7,514
. . . . . . . . . . . .

1000 1.075 28,770 0.672 24,270 -1,903 -7,473 5,570

Average over all simulations U1= 3,181.75 U0= 1,398.93 EIB= 1,782.82

∗Obtained for a fixed k = £25, 000.

Table 1: PSA using simulations. For each iteration and for the overall average,
the highest expected utility (i.e. the optimal intervention) is typeset in italics

Table 1 shows the PSA derived by the results of 1,000 simulations from this
model, using a fixed threshold of willingness to pay, k = £25, 000. According to
the procedure described earlier, we draw a value for each component of θ from
their joint distribution and we act as if these values were the realised ones, that
is as if we had observed further evidence E that has resolved our uncertainty on
the parameters. At each step, we conduct the decision analysis conditionally on
these simulated values to compute the expected utilities (3) and the incremental
benefit (4). Averaging over these distributions produces the overall expected
values U t and the expected net benefit, EIB. Since its value is positive, the
optimal decision is then t = 1. Figure 2(a) shows the EIB calculated for a range
of values for the parameter k. In addition, using the simulations we can produce
a synthesis of the uncertainty underlying this optimal decision.

4.2 Cost effectiveness acceptability curves

A very popular indicator commonly used in health economic evaluations to
summarise the results of PSA is the cost effectiveness acceptability curve (CEAC,
van Hout et al. 1994), defined as

CEAC = Pr(IB(Θ) > 0).
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Figure 2: Decision analysis for the simulated data of § 4.1

If the net benefit is used as the utility function, this can be re-expressed as
CEAC = Pr(k∆e −∆c > 0), which obviously depends on the willingness to pay
parameter k.

When EIB > 0, i.e. our optimal decision is treatment 1, this is the probabil-
ity that learning the value of Θ (resolving the uncertainty on the parameters)
would not change that decision. The rational of PSA by means of the CEAC
is therefore to compare the ideal decision process (by means of the IB) to the
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actual one (through the EIB).
By their very nature, CEACs provide a simple synthesis of the uncertainty

about the cost effectiveness of a given intervention (Fenwick et al. 2001) and have
been widely used in the health economics literature (Briggs 2000, O’Hagan et al.
2000, O’Brien and Briggs 2002, Parmigiani 2002b, Spiegelhalter and Best 2003).
The main advantage of CEACs is that they simply allow to summarise the
probability of cost effectiveness upon varying the willingness to pay parameter,
effectively performing a DSA on k. This circumstance proved to be particularly
useful in presenting the results of economic analysis, as decision makers are often
not ready to commit to a single value of k prior to the analysis being performed.

Figure 2(b) shows the CEAC for the fictional example presented above, upon
varying the value of the parameter k in the range £[0; 50, 000]. As is easy to
see, for low values of k in agreement with the region in which EIB < 0, the
probability of cost effectiveness is quite low, indicating higher uncertainty in
the decision. In fact, for k = £25, 000 the probability of cost effectiveness is just
0.547. This figure can be deduced from Table 1 as the proportion of simulations
for which IB(θ) > 0.

Despite their wide use, some critical limitations have been pointed out, the
main one being that CEACs do not contain a decision rule. For instance, Felli
and Hazen (1999) noticed that they can only address the problem of how likely
it is that resolving parameters uncertainty will change the optimal decision.
Nevertheless, no explicit reference is made to the possible change in the payoffs.
More recently, Koerkamp et al. (2007) suggested that very different distributions
for the IB can produce the same value of the CEAC, which makes it difficult to
interpret and might lead to incorrect conclusions for policy makers.

Consequently, by means of CEACs only a partial evaluation of the overall
decision process is provided. For this reason, if sensitivity analysis is performed
bearing in mind the comprehensive scenario depicted in Figure 1 (i.e. with the
possibility of reviewing the decision), then the use of CEACs is clearly not ideal.

4.3 The value of distributional information

A purely decision-theoretic approach to PSA, overtaking the shortcomings of
CEACs, is based on the value of information analysis (Howard 1966), an increas-
ingly popular method in health economic evaluations (Felli and Hazen 1998, Felli
and Hazen 1999, Claxton 1999a, Claxton et al. 2001, Ades et al. 2004, Brennan
and Kharroubi 2005, Briggs et al. 2006, Fenwick et al. 2006). In this approach,
rather than comparing the IB to the EIB, we seek to evaluate the differences
between V∗, the expectation of the overall “known distribution” utility (that is
obtained when the parameters are assumed known), and U∗, the overall utility
calculated averaging out uncertainty in both parameters and observable vari-
ables.

The value of obtaining the distributional information θ is

VDI(θ) := U∗(θ) − U∗,
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which represents for each value of θ the opportunity loss derived by choosing
the alternative associated with the highest expected utility U∗, instead of the
one associated with the highest known distribution utility U∗(θ).

The initial value of the option to learn the parameters before having to
decide — the (prior) expected value of distributional information — is

EVDI :=

∫

dθ λ(θ | E)VDI(θ)

=

∫

dθ λ(θ | E)max{IB(θ), 0} − max{EIB, 0}. (5)

This is necessarily non-negative and it places an upper limit to the amount that
we would be willing to pay (in utiles) to obtain any information, perfect or
imperfect, about Θ.

By construction, the EVDI measures the weighted average opportunity loss
induced by the decision that we make based on the EIB, the weight being
the probability of incurring in that loss. Therefore, this measure gives us an
appropriately integrated indication of: a) how much we are likely to lose if we
take the “wrong” decision, and b) how likely it is that we take it, as is easily
appreciated re-expressing (5) as

EVDI = E [max{IB(θ), 0}] − max{EIB, 0}
= E [IB(θ) | IB(θ) > 0] × Pr(IB(θ) > 0) − max{EIB, 0}
= E [IB(θ) | IB(θ) > 0] × CEAC − max{EIB, 0}

(the expectations are all taken with respect to the joint distribution of θ).
Figure 2(c) shows the analysis of EVDI as a function of the willingness to

pay parameter k for the fictional example of § 4.1. As one can see, the value of
reducing the uncertainty on the parameters increases at a high rate for lower
values of the threshold k (where the probability of changing the decision once
the uncertainty on the parameters is resolved is higher — cfr. Figure 2(b). As
appears obvious, when there is lower uncertainty on the actual cost effectiveness
of the intervention, gathering new data becomes not as valuable and the EVDI
slowly decreases.

Claxton (1999b) argues that if EIB > 0, then selecting the treatment t = 0
just because there is a large variability in IB (i.e. from the analysis of CEAC)
results in imposing unnecessary loss to society as patients can not benefit from
a potentially cost effective treatment. On the contrary, the analysis of EVDI
provides the decision maker with a rational procedure that allows them to over-
come this problem. If the large variability in IB is associated with low cost for
additional research, then the decision maker can rightly temporise, or perhaps
select the treatment t = 1 only for a subset of the population.

As an example, in the analysis depicted in Figure 2 for k ≥ £21, 550 the
EIB is positive suggesting that treatment t = 1 should be preferred, even if the
CEAC implies a significant degree of riskiness associated with this decision, as
the probability of cost effectiveness is only just above 0.5 for k = £21, 550 and
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does not exceed 0.7 for the highest willingness to pay threshold considered. The
analysis of EVDI allows the decision maker to quantify the resources needed
to reduce this riskiness by means of further research, the cost of which can be
balanced with the expected returns in terms of increase in the precision of the
decision process.

5 PSA of parameters uncertainty for instant de-

cisions

In line with the recent developments of the literature, we argued in the previous
section that since decision making is concerned with the integration of value
and uncertainty, CEACs are inadequate to assess the sensitivity to imperfect
knowledge of the parameters, being able to address the latter aspect only.

We now concentrate our attention to situations where the decision maker
has to take an instant decision, i.e. the option of gathering additional evidence
is not formally available. This might be relevant for example in the situation
of completely innovative interventions, when it might be unlikely that a new
evidence base is made available in the short term. In addition, it might be the
case of some reimbursement agencies that are focused only on adoption problems
and do not consider explicitly the issue of research prioritising (Sculpher et al.
2006).

Obviously, in this circumstance, the value of future information is not a
helpful way to investigate sensitivity in the decision process. Nevertheless, we
argue here that also in this case, regardless on the form of the utility function,
the analysis of CEACs is misleading as it involves aspects that are not actually
relevant in terms of decision making.

Consider again the simple multivariate normal model of § 4.1, but now with
a correlation structure for the elements of the parameter vector. That is

Σ =
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is the covariance block matrix describing the joint variability of θe and θc within
and between the two alternative treatments. In particular, the diagonal blocks
of Σ describe the joint variability of the measure of effectiveness and cost within
a single treatment regimen. This would only involve the marginal distribution
of each parameter Θt.

On the contrary, the off-diagonal blocks of Σ include:

— the correlations between the measures of effectiveness across different
treatments, represented by ρe;
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— the correlations between the measures of cost across different treatments,
represented by ρc;

— the cross correlations between effectiveness and cost across different treat-
ments, represented by ψ and ξ,

i.e. they concern the joint distribution of (Θ0,Θ1).
We might reasonably suppose that ψ, ξ = 0, but since the two programmes

are addressing the same disease or condition, it seems plausible to let the average
cost and benefits have a certain degree of correlation between them, captured by
(ρe, ρc). In practice, parameters independence is often assumed across the differ-
ent treatments, that is ρe, ρc = 0 (see for instance the analysis of Spiegelhalter
et al. 2004, page 313), but this more general construction shows that we have to
be very careful to distinguish the within- and between-population components
of variation, even in the case of the simple bivariate normal model.

Considering the usual utility measure u(y, t) = ke − c, the analysis of § 2.1
suggests that the decision between the alternative treatments is based on the
comparison of the expected utilities, which in this case are easily computed as
U t = kµt

e − µt
c.

Similarly, (3) is

U(θt) =

∫

de

∫

dc (ke− c) p(e, c | θt)

= kθt
e − θt

c

and the incremental benefit is easily calculated as

IB(θ) = (kθ1e − θ1c) − (kθ0e − θ0c )

= k(θ1e − θ0e) − (θ1c − θ0c)

= kδe − δc,

where δe and δc are respectively the realised values of the random variables
∆e = (Θ1

e − Θ0
e) and ∆c = (Θ1

c − Θ0
c) — cfr. § 2.2.

In this simple case, the random quantity IB(Θ) is a linear combination of
normally distributed components and therefore it has a normal distribution with
mean

m := E(k∆e − ∆c) = k(µ1
e − µ0

e) − (µ1
c − µ0

c)

and variance

v2 := k2Var(∆e) + Var(∆c) − 2kCov(∆e,∆c).

Setting ψ, ξ = 0, but allowing for dependence across treatments and using
the properties of variance and covariance of a linear transformation, we also
have

α := k2Var(∆e) = k2(τ1
e + τ0

e − 2ρe

√

τ0
e τ

1
e ),
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β := Var(∆c) = τ1
c + τ0

c − 2ρc

√

τ0
c τ

1
c

and

γ := 2kCov(∆e,∆c) = 2k(φ1
√

τ1
e τ

1
c − +φ0

√

τ0
e τ

0
c ),

from which we can finally derive

CEAC = Pr(IB(θ) > 0) = Φ

(

m√
α+ β − γ

)

,

where Φ is the Normal cdf.
As is easy to see, α and β depend on the correlation between Θ0 and Θ1, as

measured by the parameters (ρe, ρc). This is true irrespective of the form of the
utility function. On the contrary, the decision rule is based on m, a quantity
that, regardless on the utility function, only involves the marginal distributions
of Θ0 and Θ1. Notice that due to the linearity of the net benefit, only the mean
values (µt

e, µ
t
c) are involved in this case, i.e. the marginal distributions do not

depend on the correlation between the components of the parameters within a
single treatment group (described by φt). However, different choices for u could
be such that φt — but not (ρe, ρc)! — becomes relevant for the determination
of the expected utility.

This considerations show that PSA should be focused only on the quantities
that matter for the decision process and not consider other (irrelevant) aspects
of the distribution of the random quantity IB(Θ). Therefore, also in this case
the CEAC is not “fit for purpose”. Obviously, if we assume independence across
treatments, this problem is not evident. But this analysis shows that in case
of instant decisions, marginalisation should be the only criterion; within the
Bayesian approach, this would allow to consider the underlying uncertainty in
the random quantities, correctly considering the average values of the utilities.

Figure 3 shows the resulting CEAC from three different scenarios about the
value of the correlation parameters in the running example. As one can see,
despite the fact that the decision process is unique as the marginal averages are
the same in all the scenarios, PSA performed by means of CEAC produces three
different curves and should therefore be treated with caution.

5.1 PSA of the form of the utility function: including a

risk aversion parameter in the net benefit

A more appropriate way of conducting a PSA would be to take into account
more general forms for the utility function, for instance to include the possibility
that the decision maker is not willing to take risks in deciding which intervention
is to be implemented. Consider again the same model for (e, c | θt,St), with

St = S =

(

σ2
e ξσeσc

ξσeσc σ2
c

)

that is, for the sake of simplicity, we assume here that the elements of the pop-
ulation covariance matrix are common to the two treatment groups (although

14
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Figure 3: CEAC for the simulated data of § 4.1 upon variations in the correlation
parameters. The blue line represents the situation where all the correlation
parameters are set to 0; the red line is produced setting φ0 = 0.4, φ1 = −0.6,
ρe = −0.8 and ρc = 0.2; and finally the black line considers the case where
φ0 = 0.4, φ1 = −0.6, ρe = 0.8 and ρc = −0.2

this assumption is not essential). The variable y = (ke− c) has then a normal
distribution y | θ

t,S ∼ N (kθt
e − θt

c, k
2σ2

e + σ2
c − 2kξσeσc).

Instead of the net benefit (1), we now consider a more complex utility func-
tion of the form

u(y, r, t) =
1

r
[1 − exp(−ry)] ,

where r > 0 represents a parameter of risk aversion. This represents a gen-
eralisation of the standard form of utility including (constant) risk aversion
(Raiffa 1968, Jordaan 2005).

Now, in line with the analysis of § 4, the quantity that we should investigate
for PSA of uncertainty in the parameters, the known distribution utility (3), is

U(θt,S) =

∫

dy
1

r
[1 − exp(−ry)] p(y | θt,S)

=
1

r
[1 −MY (−r)]

where MY (−r) := E[exp(−rY )] is the moment generating function of the ran-
dom quantity Y evaluated at the point −r. Notice that in this case, this ex-
pected utility does depend on the population variance matrix S, as the utility
function is no longer linear in (e, c). However, thanks to the assumption of
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normality, it is easy to calculate

U(θt,S) =
1

r

{

1 − exp

[

−r
(

kθt
e − θt

c

)

+
r2

2

(

k2σ2
e + σ2

c − 2kξσeσc

)

]}

.

Consequently, the incremental benefit (4) is in this case

IB(θ, S) = −1

r
exp

[

r2

2

(

k2σ2
e + σ2

c − 2kξσeσc

)

]

×
{

exp
[

−r
(

kθ1e − θ1c
)]

− exp
[

−r
(

kθ0e − θ0c
)]}

,

now a function of two deterministic parameters, the willingness to pay k and
the risk aversion r. Then, it is interesting to summarise the distribution of the
IB upon variations in both these quantities.

Figure 4 shows the expected incremental benefit EIB for some different values
of r and as a function of k. As is possible to see, in this case the EIB is no longer
linear; moreover, for low values of k (i.e. k < £22 000) it is negative regardless
on the level of risk aversion. Therefore, in these cases the new treatment would
not be enough cost effective for the decision maker.
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Figure 4: Analysis of the expected incremental benefit including a parameter of
risk aversion

Depending on the risk aversion of the decision maker, for values of k ∈
£[22 260; 22 630], the EIB becomes positive, so that the optimal decision is
changed and now the new treatment is enough cost effective, increasingly so
when the decision maker is more risk averse, as is shown in see Figure 5 (a zoom
out of the relevant portion of Figure 4).
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Figure 5: The break even points (i.e. the points where the optimal decision is
changed from t = 0 to t = 1) for different values of r

6 Conclusions

In this paper we reviewed the methodology of sensitivity analysis in health eco-
nomics. The recent past years witnessed the establishment of formal statistical
decision-theoretic foundations in this field, along with the increasing awareness
of the relevance of monitoring uncertainty in the decision process.

Our standpoint is that PSA is an important component of any health eco-
nomic analysis; however, we also believe that it should be consistent with the
precepts of formal decision-theory, that is it should only concern those aspects
that turn out to be crucial in determining the optimal decision. While, on
the one hand this concept is not new in the literature, we also argued on the
other hand that care should be taken to consider the appropriate context, e.g.
whether or not further information could be gathered.

In any case, we showed that commonly used methodologies for PSA, such as
the analysis of the probability of cost effectiveness summarised by the CEAC,
violate the above precepts and therefore we argue that they should be replaced
with considerations of expected utility gain, that is the more formal and in-
formative analysis of the value of information, when the option of gathering
additional data is available. Moreover, standard methodologies exist that al-
low the incorporation of risk aversion in the definition of the utility function;
these should be exploited to represent more precisely the objective of the public
decision makers in problem of identification of an optimal strategy.
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