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Abstract 

Nitric oxide (NO) functions widely as a transmitter/diffusible second messenger in the central 

nervous system, exerting physiological effects in target cells by binding to specialized guanylyl 

cyclase-coupled receptors, resulting in cGMP generation. Despite having many context-dependent 

physiological roles and being implicated in numerous disease states, there has been a lack of clarity 

about the ways that NO operates at the cellular and subcellular levels. Recently, several approaches 

have been used to try to gain a more concrete, quantitative, understanding of this unique signalling 

pathway. These approaches have included analysing the kinetics of NO receptor function, real-time 

imaging of cellular NO signal transduction in target cells, and the use of ultrasensitive detector cells 

to record NO as it is being generated from native sources in brain tissue. The current picture is that, 

when formed in a synapse, NO is likely to act only very locally, probably mostly within the confines 

of that synapse, and to exist only in picomolar concentrations. Nevertheless, closely neighbouring 

synapses may also be within reach, raising the possibility of synaptic crosstalk. By engaging its 

enzyme-coupled receptors, the low NO concentrations are able to stimulate physiological 

(submicromolar) increases in cGMP concentration in an activity-dependent manner. When many 

NO-emitting neurones or synapses are active simultaneously in a tissue region, NO can act more like 

a volume transmitter to influence, and perhaps coordinate, the behaviour of cells within that region, 

irrespective of their identity and anatomical connectivity. 
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Introduction 

Nitric oxide (NO) is an evolutionary ancient but unique type of intercellular chemical messenger that 

operates widely within the central nervous system (and elsewhere) where it participates in many 

behaviours, including learning and memory, pain, feeding, sleeping, reproductive activity and anxiety 

(Garthwaite 2008; Steinert et al. 2010). Like conventional second messengers, NO is synthesised 

intracellularly in response to external stimuli. In the brain, the best characterised stimulus is the 

neurotransmitter glutamate acting postsynaptically on NMDA receptors (Garthwaite et al. 1988). 

The coupling is aided by the neuronal subtype of NO synthase (nNOS) being physically tethered to 

these receptors through postsynaptic density-95 protein (Brenman et al. 1996), an arrangement that 

localizes the synthetic enzyme to just 18 nm inside the postsynaptic cell membrane (Valtschanoff & 

Weinberg 2001). The influx of Ca2+ through open NMDA receptor channels and their subsequent 

binding to calmodulin leads to nNOS becoming catalytically active, consuming the amino acid L-

arginine and synthesising NO along with the co-product L-citrulline which, in turn, is recycled back to 

L-arginine. 

While the positioning of nNOS close to the mouth of NMDA-receptor channels facilitates NO 

synthesis (d'Anglemont de Tassigny et al. 2007; Sattler et al. 1999), more global increases in Ca2+, as 

brought about, for example, by administering elevated K+ (Alagarsamy et al. 1994) can also be 

effective. When operating as a nitrergic transmitter in autonomic nerves, voltage-dependent Ca2+-

channels (primarily N-type channels) provide the Ca2+-influx that initiates presynaptic NO formation 

(Toda & Herman 2005; Toda & Okamura 2003) and there is evidence that other transmitters, for 

example acetylcholine (de Vente 2004), and other glutamate receptors (Southam et al. 1991), can be 

associated with NO synthesis in the brain. 

NO sources and targets in the brain 

What distinguishes NO from traditional second messengers are its low molecular weight (30 g/mol), 

which enables a large aqueous diffusion coefficient (3.3 µm2/ms) and a corresponding rapid rate of 

aqueous diffusion (about 2.5 µm in 1 ms), paired with its high lipid solubility, allowing rapid 

membrane permeation (Lancaster, Jr. 1997). In respect of the latter, NO concentrates about 4-fold in 

model biological membranes where it has only a 10-fold (rather than the expected 100-fold) lower 

diffusion coefficient than in aqueous buffer (Moller et al. 2005), so that NO would cross the 3 nm 

hydrophobic membrane interior in about 3 ns. These physicochemical properties imply that NO will 

diffuse uniformly in all directions away from its site of synthesis and so can indulge in forms of 

cellular communication that bypass anatomical connectivity. The prototypic example of this type of 

signalling is in blood vessels where NO produced in endothelial cells diffuses to the underlying 

smooth muscle to cause relaxation (Furchgott 1999). In the context of the central nervous system, 

with its closely packed, heterogeneous mixture of neuronal and glial elements, a host of intercellular 

signalling pathways could exist. One constraint is imposed by the cellular location of nNOS, which is 

exclusively neuronal and is usually concentrated in discrete neuronal subtypes, for example in 

interneurones and their processes in the striatum and cerebral cortex, although in other areas, such 

as the cerebellum, it is more widely distributed among the constituent neurones despite being 

absent in Purkinje cells, the sole output neurones of this brain region (Bredt et al. 1991; Vincent & 

Kimura 1992). 
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But what of the cellular targets for NO and how do they relate anatomically to the sites of NO 

formation? Unlike conventional transmitters, the NO molecule lacks the chemical specializations 

normally exploited for binding to receptor proteins. Although a radical species, NO also exhibits only 

low chemical reactivity at the concentrations likely to be relevant physiologically (nM and below; see 

later) but there are two notable exceptions. One is its reactivity with other radicals (e.g. superoxide 

ions and lipid radicals) and the other is its high affinity for binding to transition metals, particularly 

iron (Hill et al. 2010). This latter property is exploited by the only known NO receptors, which consist 

of a prosthetic ferrous (Fe2+) haem group coordinated to a protein possessing intrinsic guanylyl 

cyclase activity. Binding of NO to the vacant coordination site on the metal results in a pivoting of 

the haem group, leading to strain on the bond between the haem and an underlying histidine group 

of the protein; breakage of this bond triggers a conformational change in the protein that 

propagates to the catalytic site, prompting the formation of cGMP from GTP (Ma et al. 2007; 

Waldman & Murad 1987). 

Other haemoproteins with a vacant coordination site can also react with NO, notably haemoglobin 

(forming nitrate and methaemoglobin in the presence of O2) and mitochondrial cytochrome c 

oxidase where binding of NO is in competition with O2, unlike with NO-activated guanylyl cyclase 

whose haem excludes O2. Reaction with haemoglobin in red blood cells inactivates endothelium-

derived NO and is also likely to contribute a slow, basal component to the inactivation of NO formed 

within blood-perfused tissues, imposing on it a half-life of about 1 s (Santos et al. 2011). Binding of 

NO to cytochrome c oxidase leads to inhibition of mitochondrial respiration and remains of 

uncertain physiological significance, in part because in intact cells under normal levels of O2 (about 

30 µM), half-maximal inhibition of respiration requires more than 10-fold higher NO concentrations 

than the 10 nM needed for half-maximal activation of guanylyl cyclase (Bellamy et al. 2002; 

Rodriguez-Juarez et al. 2007), with endogenous NO concentrations probably being well below this 10 

nM value under physiological conditions (Hall & Garthwaite 2009). 

The NO receptor proteins are heterodimers of two main types: α1β1 which predominates in the 

cardiovascular system and α2β1 which predominates in brain and possesses a PDZ domain, enabling 

it to bind to synaptic scaffold proteins, including postsynaptic density protein-95 (Friebe & Koesling 

2009), implying a possible location on either side of the synapse. One approach for identifying NO-

responsive cells has been to find out where NO raises cGMP levels, a method that became feasible 

using immunohistochemistry and a special antibody raised against formaldehyde-fixed cGMP (de 

Vente & Steinbusch 1992). Studies in vivo and in vitro indicated that responsiveness to NO was 

widespread in the brain and spinal cord, with neurones, nerve fibres, and glial cells variously 

labelled, and in a pattern that was grossly complementary to the distribution of NO synthase (de 

Vente et al. 1998; Southam & Garthwaite 1993). A limitation of this technique, however, is its 

relatively low sensitivity, so that cellular cGMP needs to rise above about 10 µM to be detected. In 

the hippocampus, pharmacological manipulations that boost cGMP well beyond this threshold allow 

a much more extensive distribution than was evident beforehand to be visualized, with astrocytes, 

interneurones, axons and pyramidal cells all showing strongly positive NO-evoked cGMP 

accumulation, results that resonate with the location of the NO receptor subunit mRNA by in situ 

hybridization and the protein by immunohistochemistry (Bartus et al. 2013). Clearly, a more precise, 

high-resolution anatomical picture is needed to help understand more clearly the potential lines of 

communication between different NO-generating neurones and their targets. In one of the few 
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studies of this type (Burette et al. 2002) evidence from the hippocampus indicated that nNOS in 

pyramidal neurones is concentrated postsynaptically whereas NO-activated guanylyl cyclase protein 

is mainly found presynaptically in excitatory axon terminals, giving anatomical support to the idea 

that NO can act as a retrograde trans-synaptic messenger of the type deemed of importance for 

NMDA receptor-dependent synaptic plasticity in this brain area, and elsewhere. In another 

investigation, also in the hippocampus, nNOS was, surprisingly, also present postsynaptic to 

GABAergic nerve terminals, with the α1β1 subtype of NO-activated guanylyl cyclase, and NMDA-

evoked cGMP accumulation, being found presynaptically, pointing to a similar retrograde signalling 

by NO at these inhibitory synapses, albeit with fewer NMDA receptors available than at excitatory 

synapses (Szabadits et al. 2007; Szabadits et al. 2011). These examples raise the possibility that NO 

has evolved to signal within discrete synaptic domains in the brain. 

NO signalling at individual synapses 

The feasibility of this type of point-to-point, or "wired" (Agnati et al. 2010) transmission can be 

tested by modelling the production of NO at synapses, its spread by diffusion, and the resultant 

stimulation of cGMP accumulation in immediately adjacent structures. The spread of NO generated 

by an array of 49 postsynaptic nNOS molecules (1 per NMDA receptor) simultaneously producing 20 

NO molecules/s each, had suggested that NO concentration gradients around the source would be 

very steep, reaching 1 nM at a distance of 60 nm away (equivalent to just inside the presynaptic 

terminal), falling to 250 pM, 1 µm away (Hall & Garthwaite 2009). Whilst this extreme degree of 

NMDA receptor activation helps set an upper limit on the size of the NO gradients established 

around a synaptic source, many fewer receptors appear to become active following the normal 

synaptic release of glutamate, possibly only 3-5 (Nimchinsky et al. 2004; Silver et al. 1992). If a single 

active NMDA receptor couples to one nNOS protein producing 10 NO molecules/s (Salerno 2008), 

the total numbers of NO molecules generated within a synapse each second would only be about 40, 

rather than the nearly 1000 considered previously (Hall & Garthwaite 2009).  

These considerations prompt a re-examination of the potential biological significance of the release 

of NO at single synapses. If the zone of NO production in the postsynaptic compartment is modelled 

as a disc of appropriate diameter (400 nm; Fig. 1) that produces NO steadily at 40/s, the NO 

concentration is predicted to peak (at the source) at about 60 pM and fall to 5 pM a distance of 1 µm 

away (Fig. 1A). Superimposing this concentration profile on an image of a synapse (Fig. 1B) 

emphasizes the very local spread of NO away from such a source, suggesting a high degree of 

synapse-specificity.  

NO is subject to a high rate of inactivation in brain tissue which, in cerebellum, appears to be 

through a saturable, enzymatic mechanism having an apparent Michaelis constant (Km) of 10 nM and 

a maximal velocity (Vmax) of 1.5 µM/s (Hall & Garthwaite 2006). At NO concentrations well below the 

Km, NO consumption would correspond to a first-order reaction governed by a rate constant 

(Vmax/Km) of 150 s-1, which is equivalent to an NO half-life of 4.6 ms. The mechanism remains unclear, 

although cytochrome P450 oxidoreductase is a putative participant (Hall et al. 2009). At the level of 

the single synapse, an NO half-life even as short as 5 ms would have very little effect on the local 

distribution of NO (Fig. 1C) because diffusion over these dimensions is so rapid. 
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As the NO concentrations under consideration are so much lower than either the affinity of NO for 

binding to its receptor (Kd = 20-50 nM) or the 10 nM NO concentration required to give 50 % 

activation of guanylyl cyclase in cells (Griffiths et al. 2003; Roy et al. 2008; Tsai et al. 2012), it might 

be thought intuitively that such a tiny NO plume would be irrelevant. But NO-activated guanylyl 

cyclase is an enzyme-linked receptor whose transduction mechanism is most efficient when the 

agonist concentrations are low compared with the binding affinity (Batchelor et al. 2010). In this 

situation, and given a guanylyl cyclase activity found in rat platelets or cerebellar astrocytes 

(maximally, about 100 µM/s), each NO molecule would stimulate the synthesis of 5000 molecules of 

cGMP each second at steady-state, so 10 pM NO translates into 50 nM cGMP being formed per 

second (Batchelor et al. 2010), an astonishing feat for a simple, one-component biological 

transducer. Attesting to these theoretical considerations, experiments in which cGMP was charted in 

real time using a fluorescent biosensor have documented the picomolar sensitivity of cells to 

perfusion of NO in constant concentration, or to sub-second NO "puffs" delivered by a local pipette 

(Batchelor et al. 2010). 

Having in hand a quantitative kinetic description of NO-activated guanylyl cyclase in cells (Halvey et 

al. 2009; Roy et al. 2008), modelling synaptic NO diffusion and signal transduction is achievable in 

principle but, without specialized computing resources, the very small time and distance steps 

needed to handle both components accurately makes such an undertaking prohibitive. A good 

approximation, however, can be achieved economically by dividing up the synaptic space into 

multiple concentric hemispheres, with one set of hemispheres whose outer dimensions resemble 

those of a nerve terminal or dendritic spine head (radius = 0.6 µm) being designated the target 

structure. The NO transduction machinery is present in all the hemispheres constituting the target 

structure and NO is generated in a 400 nm diameter disc at its base (Fig. 2A). The fluxes of NO in and 

around the target can be calculated in a manner similar to that done for Ca2+ (McHugh & Kenyon 

2004; Nowycky & Pinter 1993) and the associated cGMP generation and breakdown (by 

phosphodiesterase enzymes) within the target structure hemispheres quantified. To provide a 

minimal stimulus, the input NO profile is set to approximate to the profile of Ca2+ concentration in 

individual dendritic spine heads seen on activation of synaptic NMDA receptors (Sabatini et al. 

2002), peaking after 40 ms and then declining over several 100 ms, and the peak amplitude is set (as 

above) to correspond to the formation of 40 NO molecules/s (inset, Fig. 2B). The resulting diffusional 

spread of NO in the compartmental model matches the spread derived from solving analytically the 

diffusion of NO from a disc source (Fig. 2B), giving credibility to the compartmental approach. If the 

NO-receptive compartments possess 3.3 µM NO-activated guanylyl cyclase, a value similar to that 

estimated for rat platelets and cerebellar astrocytes (Batchelor et al. 2010), a single “synaptic” NO 

pulse results in a cGMP response that is effectively uniform within the target structure (because of 

cGMP diffusion) but peaks at only 10 nM cGMP (Fig. 2C), a concentration that is probably too low to 

have biological activity bearing in mind that its affinity for downstream cGMP-dependent protein 

kinases is in the 100 nM range (Francis & Corbin 1994; Vaandrager et al. 2005). On the other hand, 

with trains of NO pulses to simulate tetanic synaptic stimulation, cGMP accumulates into its 

presumed active concentration range (Fig. 2D). The computed frequency-dependence of cGMP 

accumulation, saturating at about 20 Hz (Fig. 2E), resembles the frequency-dependence of smooth 

muscle relaxation observed experimentally in many tissues when nitrergic nerves are stimulated 

(Gibson 2001). Similarly, orthograde NO-mediated transmission between pairs of snail neurones is 
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not effected by single presynaptic action potentials but becomes readily visible when bursts of 

action potentials at frequencies of 10 Hz or more are delivered (Park et al. 1998). The model predicts 

and explains these biological observations and, more generally, implies that NO in synapses is likely 

to function activity-dependently, a property likely to be important for its participation in synaptic 

plasticity and other phenomena. 

The model also addresses another outstanding question. It has been speculated that the low 

micromolar concentrations of NO-activated guanylyl cyclase found in at least some cells may act as a 

sink for the (up to) million-fold lower NO concentrations present in the vicinity (Batchelor et al. 

2010). With the small size of the cellular compartments of interest here, however, NO gradients 

would be little affected by 3.3 µM NO-activated guanylyl cyclase because diffusion is still rapid 

relative to the rate of NO binding to its receptors whereas a 10-fold higher concentration of receptor 

more effectively hinders NO diffusion (Fig. 2B). 

Synaptic crosstalk through NO 

The foregoing analysis indicates that NO could indeed transmit physiologically-relevant signals in an 

activity-dependent manner at the level of a single synapse. Indeed, at first glance, the limited spread 

of NO expected outside a synapse (Fig. 1) suggests that the principal way it functions would be with 

effective synapse-specificity. This picture, however, ignores the anatomical realities of the 

arrangement of synapses in the brain. In the cerebral cortex, hippocampus and dentate gyrus, for 

example, the mean distance from one synapse to another in the neuropil is only about 0.5 µm and 

some synapses would even be located side-by-side (Merchan-Perez et al. 2014; Rusakov et al. 1999). 

Perhaps even more pertinently, inhibitory GABAergic terminals synapsing onto pyramidal cell bodies 

in the hippocampus are less than 0.2 µm away from excitatory glutamatergic axo-dendritic synapses 

(Merchan-Perez et al. 2009). With these small distances, it must at least be plausible for NO 

generated in one synapse to signal to immediately neighbouring synapses. From the high levels of 

nNOS found in populations of GABAergic nerve terminals in the cerebral cortex and hippocampus 

(Aoki et al. 1997; Fuentealba et al. 2008), it is tempting to suggest that NO formed therein could 

signal inter-synaptically to influence glutamatergic synapses and possibly contribute to plastic 

changes in those synapses. 

Volume transmission by NO in the central nervous system 

Because of its physicochemical nature, NO has long been a candidate volume transmitter (Agnati et 

al. 2010), i.e. one able to influence the activity of cells located within an active area of brain tissue, 

irrespective of synaptic connectivity. Several studies have invoked NO acting in such a way, for 

example, in insect brain (Ott et al. 2007), and in the mammalian optic nerve (Garthwaite et al. 2006), 

hypothalamus (Bellefontaine et al. 2014), auditory brainstem (Steinert et al. 2008) and, for targeting 

oligodendrocytes, the cerebellum (Garthwaite et al. 2015). 

A recent example of presumed volume transmission is in the preoptic area of the hypothalamus in 

which the hormone leptin acts to stimulate NO formation from the abundant nNOS-expressing 

neurones in this region, ultimately to cause release of luteinizing hormone from the pituitary gland 

which then acts on the gonads to affect fertility (Bellefontaine et al. 2014). The proposed mechanism 

here is that when nNOS activity is coordinated across the population of neurones, the NO 
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concentration in between those neurones builds-up to levels capable of stimulating neurones 

residing there to release gonadotrophin-releasing hormone, which then acts on the pituitary gland. 

Realistic modelling of the size and distribution of the nNOS-neurones in this brain area fully supports 

the proposed mechanism provided that two conditions are met: firstly, that the numbers of active 

nNOS neurones prior to leptin administration are half or fewer than those active in the presence of 

leptin and secondly, that the rate of inactivation of NO is high enough to permit the NO-responsive 

cells to discriminate between a sparsely-activated and a more fully-activated population of nNOS-

neurones. The computed NO inactivation rate allowing this mode of signalling is equivalent to a half-

life of 5 ms, a value neatly coinciding with the rate estimated for rat cerebellum (Hall & Garthwaite 

2006). 

In addition to populations of large cells generating a volume signal, modelling of the coordinated 

activity in thin NO synthase-expressing nerve fibres running in parallel or as a branched plexus also 

predict a build-up of NO in the intervening space to an extent dependent on the fibre density 

(Philippides et al. 2005). The conditions under which NO is produced along the whole length of a 

nerve fibre, if any, remain to be defined. The plexus-type anatomical model is probably more 

relevant to volume transmission involving endothelial NO synthase in the dense networks of 

capillaries, whose activity can be sustained by phosphorylation mechanisms and which, in the optic 

nerve, provides signals that target axons throughout the nerve to modify their excitability 

(Garthwaite et al. 2006). 

Where axons express nNOS, it is more likely that NO synthesis is confined to nerve terminals where 

voltage-sensitive Ca2+channels are found, and as occurs in the case of peripheral nitrergic nerves 

(Toda & Herman 2005; Toda & Okamura 2003). Is there scope for volume transmission when NO is 

formed in such small structures? The limited spread of NO beyond the boundaries of individual 

synapses (Fig. 1) might suggest otherwise but it can be tested by modelling arrays of these small 

sources at varying densities. With the sources taken as 0.4 µm diameter spheres each generating 40 

NO molecules/s (as above) and located in a planar array, there is little build-up of NO in between the 

sources when they are relatively well separated (4 µm apart) but as they get closer together, NO 

progressively accumulates in the intervening space (Fig. 3A-C), even when it is subject to rapid 

inactivation (half-life = 5 ms). When the sources are 2 µm apart, this space contains about half the 

peak NO concentration found at the source itself and, in a 3-dimensional array with the same source 

separation, the build-up is more pronounced (Fig. 3C). In fact, this 3-dimensional array approximates 

to a continuum of NO sources (Wood & Garthwaite 1994) which, at the corresponding net rate of 

NO production per unit volume (10 nM/s) and an NO inactivation rate constant of 150 s-1 (half-life = 

4.6 ms), predicts (from the ratio of the two) a steady-state tissue NO concentration of 67 pM, a value 

close to the average found in the array (Fig. 3C). Hence, should a field of bouton-like structures (pre- 

or post-synaptic) simultaneously generate NO, and be close enough together, a volume-type NO 

signal is the expected result. This scenario may explain how NO generated in cerebellar neurones 

signals to astrocytes (de Vente et al. 1990) or to oligodendrocytes, potentially to affect the 

myelination of local afferent and efferent axons (Garthwaite et al. 2015).  

Concluding remarks 
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An initial attempt to gain understanding of the principles of NO signalling in the brain concluded 

that, when produced at a single point source, NO could diffuse in active concentrations within a 

sphere of 200 µm diameter, thereby influencing up to 2 million synapses (Wood & Garthwaite 1994), 

a conclusion that is starkly different from the one made here, which is that NO produced at a single 

synapse is only likely to function very locally, specifically within submicron dimensions. The 

discrepancy arises from the previous reliance on the only estimate then available of the NO 

concentration found outside an NO-producing cell, in this case an endothelial cell, which was 

reported using an electrochemical probe as 1 µM (Malinski & Taha 1992). In the intervening years, 

such probes have given improbably large variations in estimates of NO concentration, ranging across 

6 orders of magnitude (Hall & Garthwaite 2009). The subnanomolar NO concentrations considered 

here, on the other hand, cohere quantitatively with the concentrations that NO receptors are tuned 

to detect, the concentrations expected from nNOS localization and enzymology, and the 

endogenous NO concentrations reported using highly sensitive NO-detector cells when nNOS in 

brain slices is activated (Wood et al. 2011). Accordingly, the rate of NO formation at a single source 

assumed here (7x10-23 mol/s) is more than 5 orders of magnitude lower than the one used initially 

(Wood & Garthwaite 1994). 

With the focus of synaptic NO signalling now narrowed-down to the level of the single synapse, and 

with the elaboration of quantitative descriptions of NO signal transduction through guanylyl cyclase-

coupled receptors in hand (Batchelor et al. 2010; Garthwaite 2010), it has become possible to model 

NO signalling between closely apposed partners (whether synaptic or not). The picture becomes one 

in which pre- or post-synaptically generated NO is likely to function in an activity-dependent 

manner, a property that arises from the elementary NO pulse being of low amplitude (pM) and 

duration (sub-second) balanced by NO receptor activity and cGMP in the target structure being able 

to undergo temporal summation, thereby allowing cGMP to accumulate into the submicromolar 

levels needed to engage downstream pathways. 

At the same time, and as envisaged earlier (Wood & Garthwaite 1994), NO could also subserve a 

more diffuse type of transmission in which NO from multiple sources in a volume of tissue, be they 

whole cells, blood capillaries or discrete pre- or post-synaptic sources, is able to summate spatially 

to provide a local cloud of NO able to engage recipient cells irrespective of anatomical connectivity. 

This diffuse type of signalling has been highlighted as a plausible mechanism for establishing 

synaptic connectivity during development (Gally et al. 1990; Montague & Sejnowski 1994) and, more 

generally, allows NO to target structures located distantly from the individual sources, such as other 

neurones, astrocytes, oligodendrocytes and blood vessels, presumably to transmit information on 

the overall levels of neuronal activity taking place within a given brain subregion. 

With the continuing development of fluorescent biosensors responsive to physiological levels of 

cGMP (Gorshkov & Zhang 2014) it is becoming possible to visualise NO signalling through its 

receptors in real time and even in small synaptic dimensions (Bhargava et al. 2013). Being 

genetically-encoded, these biosensors could be expressed in specific cell types in the brain, or in 

specific subcellular compartments, and are likely to prove invaluable in putting theory to the test 

and so further advance our understanding of NO-mediated transmission.
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Figures 

 

 

 

Figure 1. Synaptic spread of NO. 

The zone of NO formation was modelled as a disc (0.4 µm diameter) that constantly emits 40 NO 

molecules/s, using the equation for an instantaneous disc source [(Carslaw & Jaeger 1986) eq. 

10.3.9, p260] modified to include inactivation of NO as a first order decay term, and differentiated 

with respect to time. The profiles are taken 40 ms after the start, when the concentrations are at 

steady state. The plume of NO above a 1.5 x 1.5 µm grid (A) is shown compressed into 2-dimensions 

in (B) and superimposed on an electron micrograph of an excitatory synapse with the plane of the 

disc centred on the synaptic cleft. In (C), the profile in the plane of the disc surface is shown with 

rate constants for NO decay of 0, 50 and 150 s-1, corresponding to half-lives of approximately 0, 14 

and 5 ms, respectively. 
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Figure 2. Compartmental analysis of synaptic NO signal transduction 

In the model (A), which is an extension of one described previously (Wood et al. 2011), the synaptic 

space is divided into multiple concentric hemispheres, a group of which (outlined in red; radius = 0.6 

µm) are designated the NO target structure. NO is generated in a 0.4 µm diameter zone (thick black 

line) at the base of the target structure and the colour-coded NO profile from Fig. 1B is shown 

centred on this zone. Distances correspond to the x-axis in (B). The target contains NO-activated 

guanylyl cyclase (usually 3.3 µM) and cGMP-stimulated phosphodiesterase-5 having a maximal 

activity of 106 µM/s and a basal activity of 0.2 % of this value. The kinetic schemes describing both 

these components were as published (Batchelor et al. 2010; Wood et al. 2011). NO is produced as a 

pulse having the shape depicted in the inset in (B) and peaking at a rate of 40 molecules/s, with half 

the NO flowing each side of the emission zone through all available surfaces. The fluxes of NO in 

each hemisphere and of cGMP within the target hemispheres are calculated similarly to the way  

adopted for Ca2+ (McHugh & Kenyon 2004; Nowycky & Pinter 1993). The diffusion coefficients for 

NO and cGMP were those used previously (Wood et al. 2011) and NO was subject to first-order 

decay (rate constant = 150 s-1) in each compartment. In (B), the peak NO concentration in each 

hemisphere is plotted as a function of the concentration of NO-activated guanylyl cyclase (GC) 

together with the concentrations obtained by solving analytically the equation for diffusion from a 

disc surface [(Carslaw & Jaeger 1986) eq. 10.3.10, p260] modified to include first-order decay. The 

inset shows sample NO concentration profiles within the target structure, 0.2 µm from the emitting 

zone (orange line: profile from disc; dashed black line, green line and magenta line: profiles from 

model assuming NO-activated guanylyl cyclase concentrations of 3.3 nM, 3.3 µM and 33 µM, 
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respectively. The cGMP responses (blue lines; right-hand ordinates) to either a single NO pulse (C) or 

to repeated pulses at 10 Hz (D) illustrate the likely activity-dependence of NO-mediated synaptic 

transmission effected largely by temporal summation at the level of guanylyl cyclase/cGMP. The 

sample NO traces (red lines; left-hand ordinates) are from the central hemisphere. Panel (E) shows 

the time-courses of cGMP accumulation in response to 10 NO pulses delivered at different 

frequencies. 
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Figure 3. Conditions for volume transmission with multiple small NO-emitters. 

Spheres of radius = 0.2 µm and numbering 25 (A), 49 (B) and 81 (C) are arranged in 2-dimensional 

arrays within a fixed area (16 x 16 µm). The spheres generate NO at their surfaces at the rate of 40 

molecules/s and the resultant NO concentrations throughout the array at steady-state calculated as 

described (Bellefontaine et al. 2014). The upper panels illustrate the distributions of NO within and 

outside the area of emitters and the traces below (black lines) are sample concentrations taken 

through the centre of each array (marked by arrows in A, upper panel). The red trace (C) extends the 

array into 3-dimensions.  
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