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Abstract

Despite the proven benefits of combined heat and power (CHP) and recently in-

troduced subsidies to support it, CHP adoption has not met its targets. One of

the possible reasons for this is risk from uncertain electricity and gas prices. To

gain insights into the risk management of a CHP unit, we develop a multi-stage

stochastic mean-risk optimisation model for the medium-term management of

a distributed generation system with a gas-fired microturbine with heat recov-

ery and a boiler. The model adopts the perspective of a large consumer that

procures gas (for on-site generation) and electricity (for consumption) on the

spot and futures markets. The consumer’s risk aversion is incorporated into the

model through the conditional value-at-risk (CVaR) measure. We show that

CHP not only decreases the consumer’s expected cost and risk exposure by 10%

each but also improves expected energy efficiency by 4 percentage points and

decreases expected CO2 emissions by 16%. The risk exposure can be further

mitigated through the use of financial contracts.
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1. Introduction

Mitigating climate change has become one of the main drivers behind energy

policies, especially in the European Union (EU), where the long-term stabili-

sation of CO2 levels has become a priority. The EU aims to achieve 60-80%

CO2 emissions reduction by 2050 relative to 1990 levels by increasing renewable

energy production and by significantly improving the energy efficiency on both

the demand and supply sides [1]. However, since the deregulation of the electric

power industry, private investments have been modest [2]. Thus, in order to

attract investment for sustainable energy, the EU has had to introduce gener-

ous subsidies. This, in turn, has led to more volatile electricity prices and has

posed severe challenges to the transmission network due to the intermittency of

renewables. To alleviate these effects, it will be necessary to retain conventional

generation for the foreseeable future. Nevertheless, it is widely argued that the

current central-station paradigm for electricity generation is unsustainable in

the long term as a result of low energy conversion efficiency and transmission

losses [3, 4, 5, 6].

A possible pathway for a sustainable energy transition is via the use of dis-

tributed generation (DG). As electricity is produced close to consumers, DG re-

duces transmission losses and allows for waste heat recovery. Thus, even though

the electricity conversion rate for DG is lower than that of large power plants,

the overall energy efficiency of DG system with a CHP is significantly higher

[7, 8]. For the aforementioned reasons, Germany has adopted three CHP laws

to support investment into small- and large-scale CHP [9, 10, 11]. However, the

targets regarding the higher share of cogeneration have not yet been achieved

[12]. One of the possible reasons for lower than expected investment in CHP is

uncertainties of electricity and gas prices in deregulated markets [13]. Financial

risk is considered by [14] and [15] as one of the main barriers for investing in

energy-efficient technologies. Likewise, [16] argue that middle-level managers
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show strong bias against risk as a result of flawed reward systems within com-

panies.

In order to examine the risk that investors in CHP face, we formulate a multi-

stage, mean-risk optimisation model for the medium-term management of a DG

system with installed CHP. Our objective is to gain insights into managing risk

using futures contracts and on-site generation. We assume uncertain electric-

ity and gas spot prices and the availability of monthly and weekly electricity

futures and monthly gas futures. We consider a large consumer that meets its

electricity demand by either purchasing electricity from the markets or through

on-site generation. In addition, the consumer satisfies its heat loads by using

either a boiler or heat recovery. We find that the use of CHP not only lowers the

consumer’s expected running cost significantly but also reduces its risk expo-

sure compared to on-site generation without heat recovery or to purchasing all

electricity from the main grid. We also find that the availability of monthly gas

futures increases on-site generation with CHP, thus indicating that CHP and

gas futures are complements. A priori, the conditions under which physical and

financial operational hedges function as substitutes or complements are neither

evident nor explored in the extant literature. Hence, our modelling effort seeks

to tackle this issue in order to provide managerial and policy insights that will

be relevant for Germany and other industrialised nations grappling with a tran-

sition to more sustainable energy technologies.

The remainder of this paper is structured as follows. In Section 2, we pro-

vide a brief literature review of the related work. In Section 3, we introduce the

decision-making framework and the problem formulation. Section 4 presents

the numerical examples, and Section 5 summarises the main insights. Finally,

conclusions are drawn in Section 6.

2. Literature review

Deterministic models for DG demonstrate that consumers with on-site gener-

ation can increase their energy efficiency significantly. [8] compare the economic
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benefit of installing different types of DG at a hypothetical microgrid via the

Distributed Energy Resources Customer Adoption Model (DER-CAM). Using

mixed-integer linear programming (MILP), they find that investing in gas-fired

CHP turbines leads to the lowest energy cost and also reduces CO2 emissions.

Focusing on the medium-term operational problem of an industrial consumer,

[17] also use an MILP to determine the optimal scheduling for a CHP system.

Meanwhile, [18] have a deterministic MILP for long-term strategic decision mak-

ing in public buildings.

Studies with uncertain energy prices also exhibit the economic benefits of

DG. Using real options valuations, [19] find that, under higher price volatility

levels, it is more profitable to invest in a CHP system than in conventional gen-

eration. Similarly, [20] observe that high electricity price volatility relative to

that of natural gas generation cost increases the value of a CHP investment.

While real options analysis provides insights into the investment decision, it

does not address the operational risk of running a CHP under uncertain prices.

One of the main mathematical tools used to model decision making under un-

certainty is stochastic programming [21]. Stochastic programming is applied

in [22] and [23] to examine the optimal operation of an electricity retailer and

power producer, respectively. The electricity procurement problem of a large

consumer with a self-production unit is considered in [24]. In a similar vein, [25]

approach the problem of a large electricity consumer facing uncertainty in elec-

tricity prices with the possibility of meeting its (deterministic) demand using

spot purchases, supply contracts, and self-generation with a deterministic cost

over a six-month horizon by implementing a multi-stage stochastic programming

framework. Introducing CHP in a stochastic programming model, [26] take the

perspective of a risk-averse utility that must meet the stochastic electricity and

heating demands of its customers via cogeneration, electricity spot purchases,

and electricity futures purchases. [27] tackle the day-ahead CHP scheduling

problem of a risk-averse consumer facing uncertainty in electricity prices and

demand with a deterministic self-generation cost. In contrast to the numerous

deterministic and real options papers on CHP investment, [28] apply stochastic
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programming to examine a consumer’s prospects to invest in CHP.

Our research contributes to the existing literature as follows. Similar to [24],

[25], [26], and [27], we examine the stochastic energy-sourcing problem faced by

a large consumer, but we investigate how both the consumer’s electricity and

heat loads are met as well as the possibility of using CHP in addition to a mi-

croturbine without heat recovery. Furthermore, we assume that both electricity

and gas spot prices are uncertain and futures prices are marked-to-market in

every period, which is not the case in the literature that we have surveyed.

Consequently, the interaction between physical, i.e., pertaining to equipment

operation, and financial, i.e., dealing with forward contracts for both electricity

and gas, hedges has not been adequately explored, thereby limiting managerial

and policy insights. Analogous to [28], our paper provides insights into the inter-

action of financial hedges and on-site generation, but we focus on a consumer’s

risk management in the medium term instead of its long-term investment deci-

sions. We also report on how different technologies can contribute to reaching

the 2020 CO2 emissions targets.

3. Decision-making framework

3.1. Assumptions

We address the operation of a DG system over a one-month time horizon

that comprises four weeks. Each week is subdivided into T time periods of

equal duration. The DG system consists of a gas-fired microturbine with heat

recovery, a boiler unit, and deterministic electricity and heat loads (Fig. 1). The

consumer can purchase electricity from the spot market and from the weekly

and monthly futures markets. The monthly electricity futures have either an off-

peak load, a peak load, or a base load profile, while the weekly electricity futures

contracts can be purchased for base load and peak load periods. Moreover, the

consumer can generate electricity using gas from the spot and monthly futures

markets while recovering waste heat. Similarly, the consumer can produce heat

with the boiler unit using gas from the spot and monthly futures markets.
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To take into account possible risk preferences, we assume that the consumer’s

objective is to minimise its expected cost plus a risk measure with weight B. For

the risk measure, we use the conditional value-at-risk (CVaR), which estimates

the expected loss with a confidence level A ∈ [0, 1) in the worst (1−A)× 100%

of cases (Fig. 2). CVaR is formulated with the help of the value-at-risk (VaR),

which defines losses at the (A× 100)-th percentile. As VaR is a threshold value

(i.e., the probability that the loss exceeds this value is 1 − A), in contrast to

CVaR, it does not provide any information regarding the size of loss beyond

this level. In addition, CVaR is a coherent risk measure [29], and therefore,

unlike VaR, it does not violate the sub-additivity property, i.e., the CVaR of a

portfolio of different assets is always less than or equal to the sum of CVaRs of all

assets considered individually. Finally, as CVaR can be formulated using linear

programming, it is suitable for optimisation problems [30]. For these reasons,

we prefer to use the CVaR rather than the VaR to examine different regimes

for the consumer in terms of risk aversion, such as B = 0 for risk neutral and

B > 0 for risk averse.

Figure 1: Stylised distributed generation system with CHP

To reduce computational complexity, we approximate the true distribution

of the random electricity and gas prices by an approximation in the form of a

five-stage scenario tree (Fig. 3) in which each non-root node corresponds to a

state of the world spanning one week. Each node of the tree represents a point

at which decisions are taken based on the realisation of the random parameters
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Figure 2: CVaR in relation to VaR

up to the stage of that node. Note that in our nodal formulation the non-

anticipativity constraints are incorporated implicitly (i.e., before the scenario

tree branches), and therefore we do not know at which node we will be at the

next stage. A path in the tree from the root (i.e., first-stage) node to a node at

the last stage represents a scenario.

The consumer’s decision sequence is as follows. At stage 1, the consumer

chooses how many monthly and week-1 electricity and gas futures it purchases.

At stage 2, the consumer observes the realised spot prices for week 1. Depend-

ing on how much electricity and gas it purchased from the futures markets, it

then decides, for each subperiod of week 1, how much electricity and gas to

purchase on the spot markets, how much electricity to produce on-site, and

whether to meet the heat demand using the boiler or heat recovery. While

there are no monthly futures purchases at stages 2–5, the weekly futures and

spot decision-making procedure is repeated analogously for the remaining three

weeks. Finally, as this paper concerns only the operational decisions of a con-

sumer, we disregard the investment costs of the on-site generation units as sunk

costs will not affect generation and hedging decisions.
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Figure 3: Scenario tree

3.2. Model formulation

3.2.1. Objective function

The objective function in Eq. (1) minimises the sum of the expected value

and a weighted CVaR of the operational cost of running the DG system:

minimise
∑

s∈S

qsγs +B
(

ξ +
1

1−A

∑

s∈S

qsηs

)

(1)
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Note that as B increases to the point that all hedging options are fully utilised,

the bi-objective function in Eq. (1) collapses to one of pure risk minimisation.

3.2.2. Constraints

Eqs. (2)–(3) are necessary for calculating the CVaR of the cost of running

the DG system up to the end of the time horizon, ∀s ∈ S:

γs − ξ − ηs ≤ 0 (2)

ηs ≥ 0 (3)

Eq. (4) calculates the cost of running the DG system in scenario s ∈ S:

γs =
∑

n∈Ns\{1}

∑

t∈T

(

∑

c∈C

(zecL
e
cHc,w(n),t + yec,a(n)F

e
a(n)Hc,w(n),t)

+ xen,tP
e
n,t + (zg + zb)LgJw(n),t + (xgn,t + xbn,t)P

g
n,t

)

(4)

Eqs. (5)–(6) ensure that the electricity and heat demands are met at all time,

∀n ∈ N−1, ∀t ∈ T :

xen,t +
∑

c∈C

(yec,a(n)Hc,w(n),t + zecHc,w(n),t)

+ Ee(xgn,t + zgJw(n),t) ≥ De
w(n),t (5)

EhEe(xgn,t + zgJw(n),t)

+ Eb(xbn,t + zbJw(n),t) ≥ Dh
w(n),t (6)

Eqs. (7)–(8) ensure that the capacity limits of the electricity generation unit

and the boiler are observed, ∀n ∈ N−1, ∀t ∈ T :

Ee(xgn,t + zgJw(n),t) ≤ KeJw(n),t (7)

Eb(xbn,t + zbJw(n),t) ≤ KbJw(n),t (8)

Finally, all of the purchase decision variables must be non-negative, ∀n ∈

N−1, ∀t ∈ T , ∀c ∈ C:

xen,t ≥ 0, xgn,t ≥ 0, xbn,t ≥ 0, ye
c,a(n) ≥ 0,

zec ≥ 0, zg ≥ 0, zb ≥ 0 (9)
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4. Numerical example

While Germany is one of the largest CHP markets in the world, the share of

cogeneration in its electricity production at 14.5% is still relatively low compared

to other European countries, such as the Netherlands and Denmark with a 30%

and a 53% share, respectively. Germany, with similar weather conditions as the

Netherlands and Denmark, has huge potential to increase its CHP generation

both in the residential and commercial sectors [31]. Furthermore, additional

CHP capacity can also contribute to efficient and more reliable energy supply

to counteract the growing intermittent production. Consequently, the German

government has set a target to raise the level of electricity produced by CHP to

25% by 2020. To examine how operational risk from energy price uncertainties

can be managed by a large consumer in Germany, we solve the optimisation

problem using German electricity and gas spot and futures prices. By contrast,

barriers to CHP adoption in developing countries do not arise from risk aver-

sion because investors typically do not face uncertain energy prices. Instead,

distributed generation investment is inhibited primarily by institutional [32] and

technical [33] factors such as intellectual property rights and lack of protocols

for voltage control, respectively.

4.1. Spot market data

The parameters to generate the electricity and gas price scenarios are esti-

mated using data from the European Energy Exchange’s (EEX) German elec-

tricity and gas spot markets between 1 January 2010 and 2 December 2012 (Fig.

4). We use the hourly electricity spot prices to calculate the daily average peak

(8 AM–8 PM) and off-peak (8 PM–8 AM) prices (P̂ e
t̂
). By using a daily peak

and off-peak (T = 14) instead of an hourly (T = 168) granularity, we keep our

problem tractable while capturing the daily variability of the electricity price.

We assume that electricity prices can be described by a seasonal autoregres-

sive integrated moving average (SARIMA) process because it takes into account

the seasonal patterns and periods of volatility that electricity prices typically
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Figure 4: German off-peak and peak load electricity (log) prices

exhibit [35, 36]. While other models, such as generalised autoregressive con-

ditional heteroscedasticity (GARCH) and reduced-form regime switching [37],

may be more appropriate for forecasting, since we are using time-series analysis

for risk management, SARIMA models are adequate in this context. In fact,

[38] compare linear and non-linear models for electricity and gas prices for the

purposes of capturing the value of a gas-fired power plant and demonstrate that

the models with the best forecasting performance (both in- and out-of-sample)

are not necessarily better in terms of asset valuation.

In SARIMA models, autoregression terms express that the modelled vari-

able depends linearly on its past values, while the moving average terms in-

corporate the effect of previous error terms. Once we decide how many sea-

sonal, autoregressive, and moving average terms to use, we fit the model using

the maximum likelihood function with starting values minimising the condi-

tional sum of squared errors [34]. SARIMA models can be substantially large in

terms of the number and combination of terms. Thus, we estimate the number

of (seasonal and non-seasonal) autoregressive and moving average terms iter-
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atively by comparing the Akaike information criterion [36], and we find that

the following SARIMA process provides the best fit to the electricity prices

P̂ e
t̂
, t̂ ∈ T̂ := {1, . . . , T ·W}:

(1− φ1 − φ2 − φ3)(1− Φ1B
14)(1−B)(1−B14)P̂ e

t̂
=

(1 + θ1 + θ2 + θ3 + θ4)(1 + Θ1B
14 +Θ2B

15)ǫe
t̂
. (10)

Here, we apply the backshift operator Bk to specify lagged prices, i.e., BkP̂ e
t̂
=

P̂ e
t̂−k

, and we assume that ǫe
t̂
, t̂ ∈ T̂ , are independent and identically distributed

normal random variables with zero mean and constant standard deviation, σe.

The parameters of process (10) are given in Table 1. Both the autocorrelation

and partial autocorrelation functions demonstrate that the peak and off-peak

electricity prices exhibit strong weekly seasonality (Figs. 5-6), which equals to

a 14-period seasonality. As Fig. 7 shows, the selected model results in residuals

that are approximately white noise.

Figure 5: Autocorrelation function of electricity price

The gas price (P̃ g

t̃
) is assumed to follow a dynamic regression process de-
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Figure 6: Partial autocorrelation function of electricity price

pendent on the generated electricity price. Since gas spot prices have a daily

granularity, we calculate the daily electricity price using the average of the re-

spective peak and off-peak prices, ∀t̃ ∈ T̃ := {1, . . . , T2 ·W}:

P̃ e
t̃
=
P̂ e
2t̃−1

+ P̂ e
2t̃

2
. (11)

The best fit to the daily gas spot prices P̃ g

t̃
, t̃ ∈ T̃ , is the following dynamic

regression model:

P̃
g

t̃
= ζ + µ1P̃

g

t̃−1
+ µ4P̃

g

t̃−4
+ µ6P̃

g

t̃−6

+ψP̃ e
t̃
+ ψ3P̃

e
t̃−3

+ ψ5P̃
e
t̃−5

+ ǫ
g

t̃
, (12)

where we assume that ǫg
t̃
, t̃ ∈ T̃ , are mutually independent and identically dis-

tributed normal random variables with zero mean and constant standard devia-

tion, σg, and independent from ǫe
t̂
, t̂ ∈ T̂ . The estimated parameters of process

(12) are displayed in Table 1.
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Figure 7: Autocorrelation function of residuals

For our numerical example, we build a scenario tree with seven branches per

non-terminal node, resulting in a total of S = 2401 scenarios. We demonstrate

that seven branches is adequate for our purposes by solving the problem of a

risk-neutral consumer repeatedly for an increasing branching factor (i.e., number

of branches per non-terminal node). For each branching factor, the problem is

solved for ten statistically independent scenario trees. Fig. 8 shows the average

and the 10% and 90% quantiles of the optimal objective value. For a branching

factor of seven, the optimal value estimator exhibits a high degree of precision,

manifested by the narrow empirical confidence interval. Therefore, we conclude

that a branching factor of seven is an appropriate choice for ensuring results

stability.

In order to build the scenario tree, we sample S electricity price paths
{

P̂ e
s,t̂

}

t̂∈T̂
, s ∈ S := {1, . . . , S}, from process (10) and corresponding S gas

price paths
{

P̃
g

s,t̃

}

t̃∈T̃
, s ∈ S, from process (12). These scenario paths are

then used to construct the scenario tree according to the following relations,
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∀t ∈ T , ∀s ∈ S, ∀n ∈ Ns \ {1}:

P e
n,t = P̂ e

s,t+T [w(n)−2] (13)

P
g
n,t =











P̃
g

s, t
2
+T

2
[w(n)−2]

if t is even

P̃
g

s, t+1

2
+T

2
[w(n)−2]

if t is odd

(14)

Note that, while we generate gas prices for T
2 · W periods, the scenario tree

contains T ·W time periods. For this reason, Eq. (14) assigns the same gas

price to consecutive peak and off-peak periods. Furthermore, to obtain a valid

scenario tree, electricity and gas prices at a given time period, but in different

scenarios s and s′ have to be equal if they share the same history of observations.

In other words, the relations P̂ e
s,t̂

= P̂ e
s′,t̂

(

P̃
g

s,t̃
= P̃

g

s′,t̃

)

must be enforced if

scenarios s and s′ pass through the same nodes up to and including the stage

of time period t̂ ∈ T̂
(

t̃ ∈ T̃
)

.

Branching factor
3 4 5 6 7

0

10

20

30

40

50

60

70

80

90% Quantile

Average Expected Cost

10% Quantile

Figure 8: Average expected cost and quantiles as a function of the branching factor

4.2. Futures market data

One of the main requirements for price scenario generation is to ensure an

arbitrage-free pricing environment [39], i.e., it is not possible to decrease both
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Table 1: Estimated process parameters for electricity and gas prices

φ1 = −0.7612 θ3 = −0.1612

φ2 = 0.4368 θ4 = −0.1584

φ3 = 0.2010 Θ1 = −0.0897

Φ1 = −0.8610 Θ2 = −0.8714

θ1 = 0.2168 σe = 43.40

θ2 = −0.7014

ζ = 0.5820 ψ = 0.0183

µ1 = 0.9397 ψ3 = −0.0106

µ4 = −0.8830 ψ5 = −0.0126

µ6 = 0.1343 σg = 0.8206

the CVaR and expected cost at the same time by purchasing futures. Thus, to

maintain the no-arbitrage principle, we calculate the gas and electricity futures

prices using the corresponding average spot prices and risk premia as follows,

for all c ∈ C and all non-terminal nodes n ∈ N :

F e
c,n =

(

1
|Dn|

∑

n′∈Dn

1
|Tc|

∑

t∈Tc
P e
n′,t

)

(1 + Πe
w,c) (15)

Le
c =

(

1
|N−1|

∑

n∈N−1

1
|Tc|

∑

t∈Tc
P e
n,t

)

(1 + Πe
m,c) (16)

Lg =
(

1
|N−1|

∑

n∈N−1

1
|T |

∑

t∈T P
g
n,t

)

(1 + Πg
m) (17)

The risk premia for gas and electricity futures are calculated from the EEX

Phelix and Natural Gas Futures markets data and the corresponding spot prices

from the 2011–2012 period (Table 2). Note that, in accordance with the Phelix

market, only monthly electricity futures have off-peak load profiles.

4.3. Demand data

For our numerical example, we consider a small hospital that needs to meet

its own energy demands and has no commercial orientation. The hospital man-

ager aims to either minimise expected costs and/or manage risk and assesses

how CHP contributes to this end without considering the possibility of selling

electricity to the main grid. Since building-level energy loads can be forecasted

with accuracy [40], we assume that the hospital’s electricity and heat loads are
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deterministic. The loads used in this paper are based on a typical winter energy

consumption of a small hospital provided by the Energy Systems Research Unit

at the University of Strathclyde (Fig. 9). Each period refers to a twelve-hour

block (either peak or off-peak) during a day corresponding to the nature of elec-

tricity prices as indicated in Section 4.1. Thus, there are 7×2 = 14 time periods

per week, which becomes 4× 14 = 56 periods per month.

Figure 9: Electricity and heat consumption

Table 2: Risk premia for futures

Πe
m,b

= 0.021 Πe
w,b

= 0.009

Πe
m,o = 0.020 Πe

w,p = 0.041

Πe
m,p = 0.083 Πg

m = 0.004

4.4. Technology data

We compare the energy procurement problem with no on-site generation,

with on-site generation without heat recovery (MT), and with on-site genera-

tion with heat recovery (CHP). The electrical conversion efficiency (Ee) of the
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microturbines is 35%, and the CHP’s heat-recovery rate (Ee · Eh) is 52.5%,

while the boiler’s conversion efficiency (Eb) is 90%. These parameters are in

line with [7], [8], and [19]. Finally, we consider on-site generation at 300 kWe,

600 kWe, and 900 kWe capacity levels.

5. Results

5.1. Main insights

The optimisation problems are implemented in the General Algebraic Mod-

eling System (GAMS) and solved using the GUROBI solver on a Windows work-

station with an Intel Core i7 3.3GHz CPU and 16 GB RAM. The computational

times range from 13 to 278 seconds. Our results support previous findings that,

compared to purchasing electricity from the main grid, on-site generation with

CHP reduces significantly the consumer’s expected energy cost, contributes to

higher energy efficiency, and, hence, to lower CO2 emissions. In addition, we

find that on-site generation with CHP can decrease the consumer’s CVaR and,

consequently, can function as a physical hedge against financial risk. Using

on-site generation reduces both the expected running cost of the consumer and

its CVaR (Table 3). While higher installed capacity results in lower expected

cost for both CHP and MT, interestingly, the 300 kWe CHP unit reduces the

expected cost more than even the 900 kWe MT unit.

Figs. 10 and 11 present the histograms of the cost savings compared to no

on-site generation for each scenario. The distributions of the cost reduction

with MT are right-skewed with similar central tendencies, whereas with CHP,

the distributions of the cost reduction are close to symmetric and the median

saving increases significantly with larger capacity. Thus, with MT, a lower cost

reduction is much more likely than with CHP, the use of which can result in

small and large cost reductions with similar probabilities.

In terms of CVaR reduction, the difference between MT and CHP is even

more pronounced. First, note that the CVaR of the consumer can be decreased

either by reducing the expected cost or by reducing the volatility of the cost of
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Table 3: Results for running the distributed generation under risk-neutral regime (B = 0)

Case Expected

cost (ke)

CVaR

(ke)

Expected

energy

efficiency

Expected

CO2 emis-

sions

(kiloton)

No on-site generation 79.6 86.8 71.2% 0.92

300 kWe MT 78.7 86.0 69.1% 0.69

600 kWe MT 77.9 85.2 67.1% 0.86

900 kWe MT 77.0 84.6 65.2% 0.83

300 kWe CHP 71.8 78.3 75.1% 0.77

600 kWe CHP 64.0 70.0 79.5% 0.62

900 kWe CHP 58.1 64.0 82.2% 0.50

running the DG. While MT reduces the CVaR at each capacity level, the CVaR

reductions are, in fact, smaller than the reduction in expected cost, i.e., the

CVaR relative to the expected cost is increasing. On the contrary, CHP always

results in a larger CVaR reduction than the reduction in expected cost. As the

standard deviation of the gas spot price is lower than that of the electricity spot

price – 4.7% compared to 25.0% – the CHP reduces the CVaR of the consumer

by efficiently swapping electricity for gas. To generate one MWhe of electricity,

both MT and CHP require 2.8 MWh gas, but the CHP unit recovers 1.5 MWh

heat at the same time, thereby reducing the consumer’s gas purchases. Since

heat consumption is on average 60% higher than the electricity consumption in

peak periods, and only 6% larger in off-peak periods, the consumer uses CHP

the most when the electricity price is more volatile. Thus, the CHP not only

needs to swap less gas for a MWhe of electricity but also does this in periods with

more volatile electricity prices. This is why the reduction in relative standard

deviation for each scenario is much lower with MT (Fig. 12) than with CHP

(Fig. 13). Due to the high level of heat consumption in peak periods, operating

CHP units with larger capacity size results, on average, in a higher level of
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Figure 10: Cost savings with MT compared to no on-site generation

Figure 11: Cost savings with CHP compared to no on-site generation

reduction in relative standard deviation.

5.2. On-site generation with futures

To examine further the risk-reducing characteristics of on-site generation,

we run the consumer’s optimisation model with a 600 kWe MT or CHP unit

together with the option of purchasing electricity and gas futures. We find a

strong interaction between on-site generation and financial hedges, i.e., the type
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Figure 12: Reduction in relative standard deviation with MT compared to no on-site genera-

tion

Figure 13: Reduction in relative standard deviation with CHP compared to no on-site gener-

ation

of on-site generation determines which futures the consumer purchases. Fig. 14

shows the efficient frontiers of a consumer with only futures purchases, with

MT installation and futures purchases, and with CHP installation and futures
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purchases. These frontiers are delimited by varying the B parameter in order

to illustrate the mean-risk tradeoff. First, note that on-site generation with MT

on its own (at B = 0) has a higher CVaR than a risk-averse consumer with only

futures purchases (at B = 0.2), thereby indicating that financial futures are

more efficient hedges than an MT. While electricity futures fix the electricity

price and can eliminate price volatility, a DG system with MT requires spot gas

purchases at a variable price. Although the volatility of gas spot price is much

lower than that of the electricity spot price, because of the low total MT effi-

ciency, the consumer needs to purchase more spot gas, which results in a higher

CVaR compared to purchasing only futures. Conversely, a DG system with a

CHP unit achieves a much lower CVaR than the most risk-averse consumer that

buys only futures. In addition, financial futures are more efficient at reducing

CVaR together with CHP, i.e., they have a lower mean-CVaR tradeoff, which is

shown by the flatter efficient frontier.

Considering the consumer with only financial hedges, Fig. 15a indicates that

the more risk averse the consumer becomes, the more monthly base load futures

it purchases. For relatively low values of B, the consumer initially uses weekly

base load futures (Fig. 15b). In the most risk-averse regime at B = 10, the

consumer’s CVaR reduction amounts to e4.9k, which is 5.6% of the CVaR at

the risk-neutral regime at B = 0. The reason why the consumer mostly pur-

chases base load contracts is that the hospital’s electricity consumption differs

only slightly between peak and off-peak periods. Thus, purchasing monthly

electricity base load futures, which have lower risk premia than monthly peak

load contracts and just slightly higher risk premia than monthly off-peak con-

tracts, provides a cheaper hedge. Similarly, with increasing risk aversion, the

consumer purchases more monthly gas futures for the boiler. At its maximum

level of risk aversion (B = 10), the consumer meets 73.7% of its heat demand

through monthly gas contracts (Fig. 16a), which overtakes spot gas purchases

at even low values of B (Fig. 16b).

In comparison to a consumer with only futures trading, for a risk-averse con-

sumer with an MT unit, the share of monthly base load electricity futures de-
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Figure 14: Efficient frontiers with futures purchases
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Figure 15: Electricity consumption without on-site generation

creases significantly and is only non-negligible with higher levels of risk aversion

(Fig. 17a). The consumer meets on average 20% of its electricity consumption

with on-site generation using gas spot. With risk aversion, the share of off-peak

monthly futures and weekly base load futures in electricity consumption first

increases and later slightly decreases, which can be seen more clearly in Fig.

17b. This indicates that monthly base load futures are substitutes for weekly

base load and monthly off-peak load electricity futures. Furthermore, the share
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of on-site generation with spot gas also decreases slightly from 19.2% at B = 0

to 16.5% at B = 10. Thus, the consumer uses its MT well below its capacity

limit, which would be 62.5% on average, and, in order to decrease its CVaR,

it has to operate the MT less. As using the MT has a negative effect on the

consumer’s CVaR, it purchases electricity futures with the lowest risk premia,

such as weekly base load and monthly off-peak load contracts. Since a consumer

with MT can use only the boiler to meet its heat demand, its heat consumption

is the same as with no on-site generation, i.e., monthly gas futures purchases

increase with risk aversion (Fig. 16a).
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Figure 16: Heating consumption with only available futures
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Figure 17: Electricity consumption with MT

Finally, Fig. 18a shows the share of on-site generation and futures purchases

24



in the electricity consumption of a DG system with an installed CHP unit. The

presence of CHP increases the demand for monthly gas futures significantly. An

MT unit with lower energy efficiency cannot use monthly gas contracts due to

their higher prices, which would negate its achievable cost reduction. A DG

system with a CHP unit, on the other hand, can tolerate the risk premia, and

with fixed gas prices, it attains greater CVaR reduction. In fact, the total share

of on-site generation with CHP increases from 56.3% at B = 0 to 57.7% at

B = 10. Thus, the CVaR-reducing demand for both gas futures and on-site

generation with CHP increases at the same time, which indicates that they

are complements. Compared to running an MT unit, the consumer with CHP

purchases almost no off-peak monthly and weekly base load electricity futures,

and slightly less monthly base load futures. As CHP decreases the consumer’s

CVaR on its own, the scope for CVaR reduction from electricity futures is

much lower. The consumer purchases first mostly weekly electricity base load

contracts (Fig. 18b) and then only monthly electricity base load futures in a

considerable amount since, as Fig. 15a indicates, these futures can be used

the most efficiently to reduce the consumer’s CVaR when the 600 kWe CHP

unit is not enough to meet all electricity demand. Still, the share of electricity

futures is much lower compared to the one of the consumer with no on-site

generation or with an MT unit, thereby indicating that on-site generation with

CHP and electricity futures are substitutes. As a result of the high share of

on-site generation, on average 64.6% of the consumer’s heat consumption is

met through heat recovery. In the most risk-averse regime at B = 10, the

consumer’s CVaR reduction amounts to e4.1k which is 5.9% of the CVaR at

the risk-neutral regime (B = 0). This is slightly higher in relative terms than

the maximum CVaR reduction in a DG system with no on-site generation, which

indicates that gas futures are more efficient in reducing CVaR when used with

CHP.
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Figure 18: Electricity consumption with CHP

6. Conclusion

With growing demand for cheap and reliable electricity, DG is likely to play

a vital role in the future energy industry. In accordance with previous stud-

ies, our results show that a consumer with an installed CHP unit can, indeed,

contribute to energy savings and lower CO2 emissions. To encourage customer

adoption, numerous initiatives and subsidy schemes have been introduced by

the EU and its member states. However, the development of the DG and CHP

sectors has been slower than expected. One of the possible reasons for this is

the financial uncertainty associated with operating on-site generation due to

deregulated energy markets. Barriers to CHP adoption that are not directly

covered in our work include inconsistent interconnection standards and disin-

centives for utilities to promote energy efficiency because their revenues depend

on the amount of energy sold [41].

We present a multi-stage stochastic mean-risk optimisation model that can

be used to reduce a consumer’s risk exposure through on-site generation and

electricity and gas futures purchases. By applying this model to a hypothet-

ical hospital, we find that on-site generation, either with MT or with CHP,

can reduce the expected operational cost of energy procurement. However, the

reduction in expected cost with MT without heat recovery is minimal, and
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the consumer’s CVaR relative to its expected cost is larger than without on-site

generation. In contrast, a consumer with CHP can lower its expected cost signif-

icantly, on average 8.7-fold more than with MT, and can reduce the consumer’s

CVaR both in absolute terms and relative to its expected cost. Furthermore,

when the consumer has access to futures markets, we find that monthly gas

futures and on-site generation with CHP exhibit complementarity, i.e., the pres-

ence of gas futures increases the demand of a risk-averse consumer for on-site

generation. Therefore, improving gas futures market liquidity can contribute to

customer adoption of DG. On the other hand, we find that electricity futures are

substitutes for on-site generation. Thus, in contrast to the extant literature, we

provide a risk-management strategy for improving the viability of CHP as well

as policy insights regarding access to liquid futures market. In this work, we

disregard the possibility of energy storage or selling electricity on the market,

which we would like to explore in a future study.
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Nomenclature

The notation used in this paper is standard in stochastic programming [42].

Sets and indices

a(n): ancestor node of node n ∈ N−1

C := {b, o, p}: set of futures contracts in terms of load profile, which can be

either base (b), off-peak (o), or peak load (p)
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Dn: descendant nodes of node n ∈ N

N : set of nodes in the scenario tree

N−1: subset of nodes excluding the root node in the scenario tree, i.e., N−1 :=

N \ {1}

Ns: set of nodes that scenario s ∈ S passes through

S: set of scenarios, i.e., s ∈ S is a path from the root node (n = 1) to a node at

the last stage W + 1

T := {1, ..., T}: set of time periods at each node n ∈ N−1

Tc: set of time periods with load profile c ∈ C at each node n ∈ N−1

T̂ := {1, . . . , T · W}: auxiliary set of time periods for electricity spot price

scenario generation

T̃ := {1, . . . , T2 ·W}: auxiliary set of time periods for gas spot price scenario

generation

W := {1, ...,W + 1}: set of stages

Random parameters

F e
c,a(n): price of weekly electricity futures contracts of type c ∈ C fixed in node

a(n), n ∈ N−1, for delivery in the coming week (e/MWhe)

P e
n,t: spot price of electricity at node n ∈ N−1 in time period t ∈ T (e/MWhe)

P
g
n,t: spot price of gas at node n ∈ N−1 in time period t ∈ T (e/MWh)

Fixed parameters

ǫe
t̂
: error term of the ARIMA model for electricity spot prices in time period

t̂ ∈ T̂ (e/MWhe)

ǫ
g

t̃
: error term of the dynamic regression model for gas spot prices in time period

t̃ ∈ T̃ (e/MWh)

ζ, µk, ψk: parameters used in the dynamic regression model for gas spot prices,

k ∈ N

θk,Θk, φk,Φk: parameters used in the ARIMA model for electricity spot prices,

k ∈ N

Πe
m,c,Π

e
w,c: risk premia of monthly and weekly electricity futures contracts of
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type c ∈ C

Πg
m: risk premium of monthly gas futures contracts

σe, σg: standard deviations of the error term of the electricity and gas price

processes

A: confidence level for the conditional value-at-risk (CVaR)

B: risk weight

Eb: boiler conversion efficiency, i.e., volume of useful heat produced from one

MWh of natural gas (MWh/MWh)

Ee: electrical conversion efficiency, i.e., volume of electricity produced from one

MWh of natural gas (MWhe/MWh)

Eh: heat-recovery rate from on-site generation, i.e., volume of useful heat cap-

tured while producing one MWhe of electricity (MWh/MWhe)

De
w(n),t: electricity load in stage w(n) ∈ W, n ∈ N−1, and period t ∈ T (MWe)

Dh
w(n),t: heat load in stage w(n) ∈ W, n ∈ N−1, and period t ∈ T (MW)

Hc,w(n),t: length of energy delivery by a contract of type c ∈ C in stage

w(n) ∈ W, n ∈ N−1, in period t ∈ T (h)

Jw(n),t: length of time period t ∈ T in stage w(n) ∈ W, n ∈ N−1 (h)

Kb: capacity of the boiler unit (MW)

Ke: capacity of electricity generation unit (MWe)

Le
c: price of monthly electricity futures contracts of type c ∈ C (e/MWhe)

Lg: price of monthly gas futures contracts (e/MWh)

P̂ e
t̂
: spot price of electricity in time period t̂ ∈ T̂ used for electricity spot price

scenario generation; P̂ e
s,t̂

for scenario s ∈ S (e/MWhe)

P̃ e
t̃
: spot price of electricity in time period t̃ ∈ T̃ used for gas spot price scenario

generation; P̃ e
s,t̃

for scenario s ∈ S (e/MWhe)

P̃
g

t̃
: spot price of gas in time period t̃ ∈ T̃ used for gas spot price scenario

generation; P̃ g

s,t̃
for scenario s ∈ S (e/MWh)

qs: probability of scenario path s ∈ S

w(n) ∈ W: stage of node n ∈ N
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Decision variables

γs: cost of satisfying the electricity and heat loads in scenario path s ∈ S (e)

ηs: auxiliary variable to estimate the CVaR in scenario path s ∈ S (e)

ξ: value-at-risk at confidence level A (e)

xbn,t: gas purchased from the spot market for boiler heat production in node

n ∈ N−1 during period t ∈ T (MWh)

xen,t: electricity purchased on the spot market in node n ∈ N−1 during period

t ∈ T (MWhe)

x
g
n,t: gas purchased on the spot market for on-site electricity generation in node

n ∈ N−1 during period t ∈ T (MWh)

ye
c,a(n): electricity delivered by weekly futures of type c ∈ C in node n ∈ N−1

(MWe)

zb: natural gas delivered by monthly futures for boiler heat production during

the whole month (MW)

zec : electricity delivered by monthly futures of type c ∈ C during the whole

month (MWe)

zg: natural gas delivered by monthly futures for on-site electricity generation

during the whole month (MW)
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(BGBl. I S. 1494).

[12] Streckiene, G., Martinaitis, V., Andersen, A.N., Katz, J., 2009. Feasibility

of CHP-plants with thermal stores in the German spot market. Applied

Energy, 86(11), 2308–2316.

31



[13] European Cogeneration Review - Germany, 2013. Country report by CO-

GEN Europe. Brussels.

[14] Schleich, J., Gruber, E., 2008. Beyond case studies: Barriers to energy

efficiency in commerce and the services sector. Energy Economics, 30(2),

449–464.

[15] Wang, G., Wang, Y., Zhao, T., 2008. Analysis of interactions among the

barriers to energy saving in China. Energy Policy, 36(6), 1879–1889.

[16] Koller, T., Williams, Z., Lovallo, D., 2012. Overcoming a bias against risk.

McKinsey Insights and Publications, August 2012.
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