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Abstract

Background: In complex Metazoans a given gene frequently codes for multiple protein isoforms, through processes
such as alternative splicing. Large scale functional annotation of these isoforms is a key challenge for functional genomics.
This annotation gap is increasing with the large numbers of multi transcript genes being identified by technologies such
as RNASeq. Furthermore attempts to characterise the functions of splicing in an organism are complicated by the
difficulty in distinguishing functional isoforms from those produced by splicing errors or transcription noise. Tools
to help prioritise candidate isoforms for testing are largely absent.

Results: In this study we implement a Time-course Switch (TS) score for ranking isoforms by their likelihood of
producing additional functions based on their developmental expression profiles, as reported by modENCODE.
The TS score allows us to better investigate functional roles of different isoforms expressed in multi transcript
genes. From this analysis, we find that isoforms with high TS scores have sequence feature changes consistent
with more deterministic splicing and functional changes and tend to gain domains or whole exons which could
carry additional functions. Furthermore these functions appear to be particularly important for essential regulatory
roles, establishing functional isoform switching as key for regulatory processes. Based on the TS score we develop
a Transcript Annotations Pipeline for Alternative Splicing (TAPAS) that identifies functional neighbourhoods of
potentially interesting isoforms.

Conclusions: We have identified a subset of protein isoforms which appear to have high functional significance,
particularly in regulation. This has been made possible through the development of novel methods that make
use of transcript expression profiles.
The methods and analyses we present here represent important first steps in the development of tools to address the
near complete lack of isoform specific function annotation. In turn the tools allow us to better characterise the
regulatory functions of alternative splicing in more detail.
Background
Multicellular organisms must robustly carry out complex
developmental and regulatory tasks with a limited set of
genes. Indeed across the range from simple to complex
organisms, (e.g. as defined by the number of cell types),
there are a surprisingly similar number of genes. Why
gene number is a poor predictor of organism complexity
was initially referred to as the G-value paradox [1]. This
apparent paradox was used to point out that the actual
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‘Information value’ of a genome (or I-value) could be ex-
plained by many other sources such as increased gene
regulation, protein interactions, multi-functional genes
or total proteome size [2].
Increasing the complexity of a genes expression profile

through cis regulation, could also in principal increase
its number of functions [3].
Another source of potential functional expansion comes

from the now common observation of single genes encod-
ing multiple transcript isoforms. Many of these isoforms
have different protein sequences, producing a potential
expanded isoformal proteome. Furthermore, specific tran-
script isoforms are thought to be important for gene
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regulation (e.g. [4]) with roles in human diseases such as
cancer [5] and autism [6]. Domain based annotations
have shown alternative splicing in general to be associated
with cell communication, signalling development and
apoptosis [7].
A major process generating transcript diversity from a

single gene is through alternative splicing (AS), whereby
amongst other mechanisms variable inclusion of exons
and altered exon boundaries can be used to produce
different transcripts. Transcript isoforms can also be
generated from alternative transcript initiation (ATI) and
termination (ATT). An example of this is seen for the
TP73 gene where proteins with opposing functions are
generated [8]. The number of isoforms generated from
ATT and ATI appears to be extremely large [9, 10] and
in combination with splicing can produce a myriad of
isoform patterns requiring a more complete set of defi-
nitions to fully describe them [11].
It has been shown that a multi transcript gene typically

has a major transcript isoform accounting for the major-
ity of the expression. The other minor transcripts from a
gene are generally expressed at much lower levels and
restricted to fewer cell types [12]. It is important to note
that a genes transcript isoforms often code for identical
protein coding sequence, and only alter their 3’ or 5’
untranslated regions (UTRs) although this can also
have functional consequences (Table 1), in this paper we
focus on transcripts which change their protein coding
sequence.
For functionally annotating genes various databases

exist that gather information on genes, or link genes to-
gether allowing the functional neighbourhood of a gene
to be investigated. For multi protein genes, isoform level
annotation is not possible since the annotations are only
rarely isoform specific in sequence annotation databases
(GO [13], INTACT [14] etc.).
In a number of cases changes in the sequence features,

such as gain/loss of a globular domain, transmembrane
anchor or signal peptide allow some high level func-
tional interpretation. In Swiss-Prot, 36 % of the iso-
forms alter the domain architecture of the proteins [15]
and these switch events are amenable to function anno-
tation methods such as the InterPro [16] or FunFam
pipelines [17]. For the remaining sequences other non-
Table 1 Consequences of Alternative splicing. Location of
transcript diversity and examples of functional consequences

Region altered
in transcript

Example functions associated with Change

ORF Protein interactions, Enzymatic activity, stability

5’ UTR Expression level, initiation or degradation rates,
scanning efficiency, Ribosome procession, stability

3’ UTR Sub-cellular localisation initiation, degradation, stability
domain based approaches are required. Protein function
prediction challenges such as CAFA [18], where teams
compete to predict future GO assignments for proteins
have shown the utility of machine learning approaches
for gene level function prediction. However, the ab-
sence of isoform specific function annotation severely
limits the usefulness of machine learning approaches
for isoform function prediction.
Despite the great abundance and variety of isoforms

produced in complex organisms, demonstration of the
global functional importance of much of this remains to
be established and it is an open question as to how
much is functionally adaptive and how much is noise
from the splicing process [19, 20]. Furthermore, a sig-
nificant proportion of the isoforms produced may code
for unstable and potentially harmful proteins. For ex-
ample, recent analysis of proteins isoforms predicted
from the ENCODE data suggested that functional pro-
teins were “the exception rather than the rule” [21] and
that many of the isoforms are simply tolerated. Further-
more the authors quote “Exhaustive literature searches
on the genes in this data set unearthed very little
evidence of an increase in protein function repertoire”
for alternative splicing. It was also noted in this paper
that at present researchers can “do little more than
hypothesize as to the functional importance of splicing
events”. Hence, any method that could systematically
detect isoform candidates for functional testing would
be a useful research tool.
In this article we develop tools for bridging this gap

and allowing more detailed functional analysis of spli-
cing. We develop a pipeline that identifies alternative
splice variants with significantly different expression
profiles. Here we make use of isoform expression pro-
files over a developmental time series in D.melanoga-
ster [22] to identify alternative protein isoforms that
have expression profiles indicative of function. The
idea of gene expression divergence corresponding to
functional divergence is often found in the literature
(for example [23]), and in this study we adapt these
ideas for comparing intra gene expression profiles
rather than inter gene. The score we developed for this
we name the Time-course Switch (TS) score (see Eq. 1
and Fig. 1a) which takes into account both the magni-
tude and expression profile differences between pri-
mary and minor transcript expression profiles in its
calculation.
Ultimately, the tools we present here help us to better

characterise the roles of alternative splicing in develop-
ment and we find that within the set of genes that
undergo alternative splicing, those with high TS scores are
enriched in regulatory processes. We develop a novel algo-
rithm TAPAS enabling the functional neighbourhood of
isoforms with high TS scores to be investigated.



Fig. 1 TS score explanation. a Hypothetical examples of time course transcript expression profiles from a gene to illustrate the concept of the TS
score. The primary transcript is shown in blue. Minor transcripts are shown in other colours. The red line would have a high TS score since it has
reasonably high expression relative to the primary transcript but with a different shape. The green transcript would have a Low TS score since
although it has high general expression it has the same shape as the primary transcript. The purple transcript would have a low TS score since
although it has a different shape it has low expression relative to the primary transcript. b, Example of a secondary isoform taken from the ‘sdt’
gene with a high TS score when compared to the primary isoform. The legend IDs between brackets are FlyBase transcript ID’s. Along the x-axis
the first 24 hours correspond to embryogenesis stages; time points labelled ‘L’ correspond to subsequent Larval developmental stages; WPP
indicates the white prepupae and,‘P’ indicates pupal stage, ‘F’ and ‘M’ are for female and male adult stages respectively (see Additional file 1:
Figure S1 for an example of a gene with a low TS score)
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Results
Measures of isoforms expression variation and datasets
classification
We obtained the paired end sequence data from the fly
developmental modENCODE project and calculated
expression levels of isoforms from FlyBase 5.45 for all
developmental stages using the same protocol as used
in the original modENCODE analysis (see Methods).
From the outset we restricted our analysis to multi

protein genes, that code for multiple protein isoforms
and where each isoform shows a minimal expression of
1 FPKM (see Table 2) in at least one of the developmen-
tal stages of the modENCODE data.
From the modENCODE dataset for each multi protein

gene, we ranked in decreasing order, each of the transcripts
by their mean expression levels over the developmental
time course in Drosophila. For each gene we identified the
primary transcript as that with the highest average
expression. We refer to the second most highly expressed
transcript with a different protein sequence to the pri-
mary transcript as the secondary transcript. For multi
protein genes we found that 77 % of the genes overall
expression was from the primary transcript, increasing to
89 % if the secondary isoform was included. Hence, it is
observed that the interchange between the primary and
the secondary isoform represents a dominant switching
event in multi protein genes.
We sought a simple metric obtainable from a minor

isoform’s expression pattern that could be used as an in-
dicator of function. At one extreme, if a minor isoform
is expressed at very low levels compared to the primary
one and at the same time and location, we might expect
a reduced chance of it providing extra functions. Con-
versely if a minor isoform is expressed at comparable levels
to the primary one and at times or locations that the pri-
mary isoform is absent or reduced, then this could be a



Table 2 Glossary of Terms. Glossary of common terms and their definitions used in this article

Term Description

High-TS genes We identified isoforms with high TS scores (>0.5) and refer to them as High-TS genes. A value of 0.5
was chosen since this gave significant shape differences on manual visual inspection whilst maintaining
a sufficiently large number of multi protein genes for statistical tests.

Primary isoform The transcript of a gene with the maximum average expression.

Secondary isoform The transcript of a gene with a different protein sequence to the primary isoform and with the next highest
average expression level.

Minor isoform Any transcript with a different protein sequence to the primary isoform.

Multi protein gene A gene coding for at least two different protein isoforms. In this study we also filtered to only include
isoforms if they were expressed >1FPKM in at least one developmental stage.

Intron Retention (IR) Intron retention occurs when the intron of gene fails to be removed from the between neighbouring exons.

Exon Gain/Loss Splicing events where a whole exon is gained or lost in one transcript relative to another.

Conservation Index (CI) The conservation index as defined in the modENCODE validation paper measures the evolutionary distance
at which a genomic element (e.g. exon) can be identified as expressed by RNAseq data. Greater values
indicate greater evolutionary distances.

FPKM FPKM (Fragments per kilobase of exon per million reads mapped) is a standard measure of expression for
RNAseq data.
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useful indicator of some additional functional roles. The
score we developed for this we named the Time-course
Switch (TS) score (see Eq. 1 and Fig. 1a) which takes into
account both the relative magnitude and expression pro-
file differences between primary and minor transcript
expression profiles in its calculation. The TS score has the
desirable property that it gets higher as the primary and
secondary isoforms expression profiles becomes both
more dissimilar in shape, and more equal in overall
expression (Additional file 1: Figure S2).

TS ¼ 2� 1−
s1

sum sð Þ
� �

Equation 1: The TS score calculation is straightforward
using Single Value Decomposition (SVD), where s is a
vector corresponding to the singular values of matrix X
and s1 is the largest singular value. X is simply a matrix
with two row vectors consisting of the primary and sec-
ondary transcripts expression profiles.
The TS score is more useful for our current study than

the Pearson similarity measures which is dominated by
shape differences. For example the minor transcript rep-
resented by the purple line in Fig. 1, is quite flat and
lowly expressed, yet would have a large dissimilarity to
the primary transcript as measured by the Pearson score
(where dissimilarity is measured as 1-Pearson correlation)
and so if this scoring method was used for target priori-
tisation (instead of the TS score) then this minor isoform
would be ranked highly even though it could potentially
just be noise. We have checked against other distance
measures (Additional file 1: Figure S3) and find that the
TS score compares favourably, at least for the current
problem.
The distribution of TS scores (Additional file 1: Figure S4)
shows that 16 % (486 cases) of the multi protein genes
have a high TS score (>0.5) between their primary and
secondary isoforms. The biological significance of an
isoform having a high TS score could correspond to it
having a higher likelihood of an important function for
the organism.

Higher TS scores correspond to general characteristics of
functional gain
Studying isoform specific functions is complicated since
databases rarely have isoform specific information. For
example although the high quality INTACT [14] database
is systematic in its isoform annotation, the isoformal inter-
actome makes up only a tiny proportion of all its interac-
tions. Similarly, database annotations such as those from
the Gene Ontology [13] are almost exclusively at the gene
level for D. melanogaster. Hence in the analysis of the
functional implications of the changes between isoforms
we are limited to using proxies of function to identify
potential changes.
The gain of exons is known to potentially alter the pre-

cise functioning of a protein isoform by changing its inter-
action partners if certain sequence features are present
[24]. Conversely, in the literature Intron retention (IR)
is more often perceived as an aberrant, mis-splicing event
compared to whole exon gain or loss [25]. For this reason
we decided to assess IR events in relation to the TS score
to see if we could see any differences from the background
rate. We find that exon gains and intron retentions have
significantly higher and lower TS scores respectively than
expected by chance (Fig. 2), both with Mann–Whitney
p-values <0.001. This feature was also observed if only
evolutionarily conserved isoform specific exons were



Fig. 2 TS scores for different splicing events. TS score distribution of retained intron and exon gain events for real (blue bars), and randomised
(grey bars) data. The randomised scores were generated by randomly permuting the TS scores between genes. The box extends from the lower
to upper quartile values of the data, with a line at the median. All values more than 1.5 IQR lower than the first quartile or 1.5 IQR higher than
the third quartile are excluded as outliers for visualization purposes. The smallest and highest values that are not outliers are connected with a
line. The notches correspond to 95 % confidence interval for the median
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considered (see methods). This observation is import-
ant since, evolutionary conserved exons are more likely
to be functional than those with low evolutionary con-
servation. Evolutionary conserved exons were detected
using the Conservation Index score [26] (Table 2)
which measures the evolutionary distance at which an
exon is both genomically conserved and shows signs of
expression.
High TS score isoforms gain functional sequence features
Functional motifs mediating protein interactions
We next were interested to see if we could identify other
protein features with relationships to function in the sec-
ondary isoform specific regions. First we assessed if the
secondary isoforms of High-TS Genes (those with TS
scores >0.5, see Table 2) were more likely to gain a lig-
and binding Eukaryotic Linear Motif (LIG-ELM) in their
secondary isoforms which was absent from the primary
isoform (see Methods). LIG-ELMs are short regions of
proteins that can mediate protein interactions [27, 28]
carrying out regulatory roles. We found there was a sig-
nificant enrichment for High-TS Genes to have a LIG-
ELM in their secondary isoform not present in their pri-
mary isoform (Fisher’s p-value = 2.4−7). This indicates
that functional expansions may be obtained from ELM
gain events. As an example, the LIG-NRBOX motif,
which is known to have roles in development, is signifi-
cantly more likely to be gained in secondary isoforms of
High-TS Genes (Fisher’s p-value = 2.3−5) compared to
other multi protein genes.
Domains associated with novel functions
Because of their short sequences, ELMs cannot be
assigned with high confidence. However, domains can
be assigned with much higher confidence and the
mapping of protein domain-family to function is well
established. Hence, we can use the domain contents of
proteins to detect domain differences between the pri-
mary and secondary isoforms to predict any functional
changes. In order to obtain high coverage of domain
assignments to the protein sequences coded by the
isoforms, we made use of the extensive domain anno-
tations in Gene3D [29] a resource that integrates do-
main assignments from CATH [17], Pfam-A (and
Pfam-B) [30] and Superfamily [31]. We found that
High-TS Genes were significantly more likely to have
an additional domain family in their secondary protein
isoform not present in the primary isoform (Fisher’s
p-value < 0.01). As an example we can see that for the
gene Protein kinase C δ, there is a switch in the max-
imally expressed isoform at the end of embryogenesis
and at the WPP stage to a shorter protein isoform, but
which contains an extra domain family (CATH super-
family: 3.30.60.20, C1 domain) (Fig. 3). This domain is
thought to be important for the regulation of the
kinase through ligand binding [32]. Unlike previous
studies which considered all minor isoforms, analyses
using our FunFam pipeline (described in methods) did
not detect any significantly enriched functions associ-
ated with the domains being gained (after correcting
for multiple testing using the Benjamini-Hochberg
method).



Fig. 3 Domain Switching example. Example of a domain (functional) gain on switching from primary to secondary isoforms of a High-TS gene. A
structural representative of the gained domain family is displayed (ID. in CATH database: 3.30.1370.50). Expression profiles of the transcripts are
shown (see Fig. 1b for explanation of axes)

Lees et al. BMC Genomics  (2015) 16:608 Page 6 of 14
High-TS Genes are enriched for regulatory functions
We next investigated what functions were associated
with High-TS Genes. Functional annotations such as
those in the Gene Ontology (GO), protein interaction
and RNAi knockdown [33] databases are almost exclu-
sively defined at the gene level. Hence we need to take
an indirect approach to assessing the potential func-
tional roles of the high TS scoring isoforms by analys-
ing them at the gene level.

Analysing enrichment at the gene level
For function enrichment analysis we tried 2 approaches.
Firstly we ran a threshold free GO enrichment approach,
GORILLA that accepts a ranked list of genes and looks
for enrichment of GO terms near the ‘top’ of the list [34].
Methods such as GORILLA do not require any predefined
threshold, so we could simply provide the list of genes
ranked by decreasing TS score. The top most significantly
enriched terms (q-value < 0.0001) were the general terms
(GO:0050896) response to stimulus, (GO:0050794) regula-
tion of cellular process and (GO:0050789) regulation of
biological process.
Because of the lack of specific terms produced by this,

we ran a second approach using Fisher’s exact test to
look for GO terms enriched in the High-TS Genes com-
pared to the multi protein genes as the background set.
The most significantly enriched GO term for High-TS
Genes was for “direct ligand regulated sequence-specific
DNA binding transcription factor activity” (corrected
p-value = 0.025). A narrow synonym given for this GO
term in the QuickGo website is “nuclear hormone recep-
tor”. We could see that this set includes many different
nuclear hormone receptors that on ligand activation act as
on-off switches for the genes they regulate when bound to
DNA in a sequence specific manner (Fig. 4).
The nuclear hormone receptors are known to be im-

portant in embryonic development and thus our results
suggest that dynamic expression switching of the isoforms
for many of these genes, is important in this process. We
are able to confirm this in the literature for one of these
genes, the EcR gene. Differences in the EcR protein iso-
forms N-terminal regions [35] and expression patterns
have been suggested to provide isoform specific functions
[35]. Experiments have shown that EcR isoform specific
mutants produce lethality at characteristic stages of devel-
opment [36, 37].

Analysing enrichment at the domain level
We can also use protein domain assignments in a differ-
ent way to that used previously. In earlier sections we
used the domains to establish specific changes between
isoforms, whilst here we can use all the domain assign-
ments of a gene to show the genes overall general func-
tion. For certain domain types such as sequence specific
DNA binding domains, the functions they carry out can
be assigned with high confidence (DBD [38]). When we
performed functional assignments to genes in this way,
using the DBD [38], we found that there was a significant
enrichment in transcription factor/sequence specific DNA
binding domains for the High-TS Genes relative to



Fig. 4 Example enriched function of High-TS Genes. Interactions between High-TS Genes annotated with the GO term “direct ligand regulated
sequence-specific DNA binding transcription factor activity” (golden nodes). Predicted functionally related genes (predicted using Fun-L [43],
see methods) are shown as blue nodes to help provide a more connected network

Lees et al. BMC Genomics  (2015) 16:608 Page 7 of 14
other multi protein genes (Fig. 5). We also found en-
richment for proteins containing domains involved in
signalling [39].
Hence, the genes containing isoforms with high TS

scores are particularly related to regulatory processes in-
volved in organismal development and complexity. For
example transcription factors (TF’s) are key drivers of
development, important in patterning, segmentation and
tissue differentiation. In other work [24] examining human
tissue expression, the dynamics of splicing has been identi-
fied as potentially important in regulatory processes and
Fig. 5 Other characteristics of High-TS Genes. Proportions of High-TS Genes,
are essential, contain transcription factors domains or classical signalling dom
exact test enrichment significance
despite major differences in approaches our work further
supports this idea (see discussion).

Genes with high TS scores are enriched for essential genes
Databases such as OGEE estimate the age of a gene, by
finding the deepest branch in the tree of life in which it
appears to have emerged using sequence based methods
[40]. We found that the High-TS Genes were significantly
enriched in Metazoa genes (Fisher’s p-value = 0.002) and
depleted in young genes (Fisher’s p-value = 1.7-5). This in-
dicates that the High-TS Genes tend to originate from
labelled ‘TS’, and all other multi-protein genes, labelled ‘Other’, which
ains (see methods). Lines and values connecting bars indicate Fisher’s
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a time when complex organisms were first appearing.
The High-TS Genes also tend not to be duplicated
genes (Fisher’s p-value = 0.0014), i.e. they are enriched
in non-duplicated, singleton genes. It has been shown
previously that across multiple organisms, older non-
duplicated genes are indicators of gene essentiality [41].
To further confirm this potential essentiality enrichment
we downloaded the set of essential genes identified from
experiments in the OGEE resource (see Methods). We
found the High-TS Genes to be significantly enriched in
essential genes (Fisher’s p-value = 0.001) (Fig. 5).
It is possible that the gene essentiality may positively

correlate with expression features and various protein
network properties [42]. However the High-TS Genes
were not significantly different in their number of pro-
tein interactions or gene expression levels. We also re-
moved any further potential biases in gene expression
using a Euclidean based similarity normalisation approach
(see methods) and found that the significant enrichment
in essential genes remained after this bias correction.
We also checked if the enrichment in essential genes

could be explained by other factors (such as the High-TS
genes enrichment in signalling, DNA binding or single-
ton genes), however the trends and significant enrich-
ments remained after controlling for these effects, too
(see methods). If as outlined above, the High-TS Genes
provide additional functions through their secondary iso-
forms, we might expect the gene as a whole to be more
essential, since knock down of genes that carry out
multiple tasks by utilising different transcripts at differ-
ent times, would remove multiple functions.

Identification of protein isoform specific functional
neighbourhoods
Having developed our TS method for identifying func-
tional splicing events, we sought to develop an algorithm
that could provide functional characterisation of isoforms
with high TS scores. As mentioned earlier the level of
functional annotation of isoforms in existing databases is
too low to be useful, making this task particularly challen-
ging. As highlighted in Fig. 1, the TS score will prioritise
minor isoforms with an appreciable level of expression to
the primary isoform, but where they have differences in
their expression profile shape.
This led us to develop our Transcript Annotation

Pipeline for Alternative Splicing (TAPAS) (Fig. 6) (For
details of the algorithm see Methods). In brief, the algo-
rithm can be summarised as follows. Firstly, for a query
isoform, it builds a cluster of isoforms from other genes
(different to the query isoforms parent gene) whose ex-
pression patterns correlate to the query isoforms, and
hence are possibly related in the same functional module.
If data is available, TAPAS then builds a network between
the members of the cluster using a combination of
experimental protein interactions [43] and high confi-
dence predicted functional interactions [44]. However if a
cluster lacks annotated interactions we apply an optional
filtering step that checks if the cluster of isoforms, have an
average GO semantic similarity (GOSS) score (see
methods) above a user specified cut-off (see methods), en-
suring that the cluster of isoforms is both coherent in ex-
pression and function when other network data is not
available.
The importance of the filtering step can be clearly seen

in Fig. 6d where the functions of the isoform clusters are
much more similar to the query isoform when the filter-
ing is applied. Note that in this validation the filtering step
does not use the query isoforms gene level function anno-
tations in establishing its homogeneity, so there is no
circularity involved in gaining the improvement of per-
formance by filtering (Fig. 6c).
Running the TAPAS algorithm on minor isoforms hav-

ing a TS score >0.5 enables us to generate a reasonably
large network of associations between isoforms from
different genes (see Fig. 7). We can zoom in on a query
isoform in this network, scrb-PB (Fig. 7b). This isoform
is identified by TAPAS as having a similar expression
pattern and functional associations with isoforms from
other genes involved in processes such as adherens junc-
tion and zonular adherens assembly. The main expression
peak for scrb-PB is from 2–8 hours covering developmen-
tal events such as cellularisation and gastrulation, where
adherens junction and zonula adherens assembly is known
to be important [45]. The primary isoform of scrb-PB is
not identified as belonging to the same functional neigh-
bourhood since it has a distinct expression profile. This
allows us to infer that scrb-PB is more likely than its
primary isoform to operate with these specific co-expressed
partners (Fig. 7b) in adherens junction and zonula adherens
assembly in early embryogenesis.

Discussion
Generating expanded proteomes from the same gene
could provide a means for generating the functional
diversity needed for complex tasks such as metazoan-
development. Indeed we find distinct expression patterns
for a number of splice variants that suggest different iso-
forms can be more important at different times during de-
velopment. It could be interesting to speculate how such
complex patterns emerge. In one scenario, when a protein
isoform first emerges we might expect it to have low
expression relative to the primary isoform. This relatively
low expression would allow for sequence change without
the potentially disruptive effects associated with high
protein abundance. Over evolutionary time scales, some
of these minor splice variants could prove adaptive at
different stages of development. If so the minor transcript
could become expressed more highly at such time points.



Fig. 6 Explanation and validation of the TAPAS algorithm filtering step. For a given query isoform (orange node) a set of other genes (blue genes) are
identified having correlated expression levels in their isoforms. The GO terms of these genes are compared with one another (excluding the query
isoforms gene) to obtain an average GOSS score (see Methods). In example a isoform-P belongs to a cluster with low GOSS similarity and this cluster
is discarded. In example b isoform-Q belongs to a cluster with high average GOSS similarity. The cluster is treated as valid and can be used to help
characterise the functional neighbourhood of the query isoform. In c the link width represents GOSS scores between genes, the red links are used in
the TAPAS filtering step. We find in the validation d that the average GOSS score of a cluster to the query isoforms parent gene (blue links in C) is
significantly higher for filtered clusters. Note the filtering was applied only using the similarities between the non-query members of the cluster
(red links in 5C). The ‘random’ plot is a control where the clusters have been generated randomly to show a background expected GOSS similarity
between a cluster and the query isoform
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Eventually we could find the minor transcript contributes
a substantial proportion to the overall expression profile
diversity of the gene. In this work we potentially identify
such isoforms with diverse transcript expression profiles
using the TS score.
We find that genes with high TS scores have several

characteristics consistent with them being involved in mul-
tiple functions at different times. At the sequence level,
exon gains (and so potential functional gains), are more
likely to be found in primary to minor isoform transitions
with high TS scores. We also find that secondary protein
isoforms with high TS scores tend to gain features such
as ELM motifs or domains not present in the primary
isoform. This demonstrates the secondary isoforms of
High-TS Genes can increase the potential number of
functions performed by these genes.
We show the High-TS Genes to be particularly in-

volved in regulatory processes and supporting organism
complexity through processes such as transcription factor
regulation. This observation is particularly interesting
given that the High-TS Genes seem to originate from a
time when complex multicellular organisms were first
appearing.
High-TS Genes are enriched for genes with regulatory

functions. For example we find a significant enrichment
in nuclear hormone receptors for High-TS Genes. This
is also interesting, given that we identified LIG_NRBOX
motifs as conferring functional diversity to secondary iso-
forms of High-TS Genes. These motifs are often found as
coactivators of nuclear hormone receptors [46]. Hence we
can see how the switching of isoforms in High-TS Genes
could regulate, switching gene expression on and off in an
integrated manner.
Enrichment in similar processes has been noted before,

for a set of human genes that showed significant changes
in exons between different tissues (tissue specific exon
containing genes) [24]. In our analysis we use a different
organism, system (development) and method (TS score)
for identifying our gene sets. We also restrict our analysis
to primary and secondary protein isoform events, rather



Fig. 7 Predicted isoform gene neighbourhoods from TAPAS. a Output from the TAPAS algorithm for all minor isoforms from High-TS Genes. Only
functional links between query isoforms (orange boxes) and co-expressed non query transcripts from different genes (grey boxes) identified by
TAPAS are shown. Only links with a GOSS cut-off of > 6.0, a string score of >800 or an experimentally determined protein interaction (blue links)
are shown. b The box shows a zoom in on two query isoforms scrb-PB and sdt-PE and their predicted functionally associated neighbours
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than considering all transcripts. Hence there are large
differences between these works. However, both papers
support an important connection between the dynamics
of alternative splicing and cell regulatory processes.
We also find High-TS Genes to be enriched in essen-

tial genes. We put forward two possible explanations for
this. Firstly it may be advantageous for essential genes to
functionally expand using alternative splicing. Alternatively
High-TS Genes may carry out greater numbers of func-
tions through their different isoforms and so it could be
that knockdown of these genes equates to knockdown of
multiple functions, leading to a greater chance of them
having been identified as essential.
There is a great need for concerted efforts to function-

ally characterise different protein isoforms. Isoforms with
high TS scores have expression profiles that indicate
specific time points at which they may play an important
role compared to the primary transcript. (see Fig. 2 for
example). This feature is useful in experimental design
since it provides us with the time points under which
we would expect to see a phenotype on knockdown of
a specific isoform.
The TS score we developed is distinct from the Pearson

correlation in that both shape and magnitude are equally
important in the overall score. In this regard the TS
score could be useful for other applications. For example
lncRNAs can negatively regulate a nearby genes expres-
sion which can be detected by anti-correlation in their
expression profiles [47]. In detecting such anti-correlated
gene pairs, the relative magnitude of their expression pro-
files could also be considered through using the TS score,
to capture the strength of the effect for prioritising candi-
dates for experimental validation.
With the TAPAS algorithm we attempted the challen-

ging task of functionally characterising protein isoforms.
The method exploits the observed distinctness in expres-
sion profile shape between primary and minor isoforms
found for High-TS Genes. The TAPAS pipeline identifies
clusters of isoforms from other genes with similar expres-
sion patterns to a query isoform and subsequently applies
functional similarity filters on the clusters. We show this
to be a key step, ensuring the cluster is functionally coher-
ent. The co-expressed neighbours of the query isoform
identified by TAPAS can help in its functional charac-
terisation, further guiding experimental design (Fig. 7 for
example).
A major caveat of this work is that all studies are carried

out at the transcript level. Yet there is great uncertainty as
to which transcripts go on to form stable proteins. Exist-
ing proteomics experiments suggest that only a subset
of the isoforms detected at the transcript level makes it
through to the proteome level [48], with a surprisingly
large proportion of the proteomics-detected, alternate
isoforms showing only subtle changes. As new proteomics
datasets become available we will be able to test these
observations further.
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Another caveat is that we define the primary isoform
as the most expressed isoform. Different definitions for pri-
mary isoform designation have been provided in human
using the APPRIS pipeline [49]. However, these annota-
tions are not available for fly. It would be interesting to
see how often the expression based method and APPRIS
like assignments agree. Clearly our analysis shows that
whilst the notion of a dominant isoform generally holds
for most genes, for some genes this becomes rather fuzzy,
particularly where the isoform contributions become more
equal.
Although the focus of this article has been on High-TS

Genes, the majority of genes have low TS scores. Even if
the majority of splicing events are not functional, they
could provide a great deal of variety for adaptive func-
tions to emerge. Alternative splicing has the ability to
produce large changes in sequences in one go, through
removal of one or more exons from a transcript for ex-
ample. As already discussed, it can be expected that sub-
stantial sequence changes to a protein through processes
such as alternative splicing, are more likely to cause
disruptions of structure and function. Furthermore, it is
known that highly expressed proteins are less likely to
change their sequence [27, 50, 51]. This effect is thought
to stem from deleterious changes in protein sequence
(off target functions, solubility, stability) being amplified
as the protein abundance increases [51]. However, if a
minor protein isoform is only ever expressed at low levels
and in a subset of biological contexts, it will be less likely
to produce such negative consequences. Hence, even
though most minor protein isoforms appear to have no
functional consequence (i.e. low TS scores) they could be
a major source for sequence feature innovation for an
otherwise sequence constrained gene.

Conclusions
In summary, identifying isoform specific annotation is a
challenging yet critically important task. We identified a
subset of genes in fly development whose secondary pro-
tein isoforms show distinct expression profiles (from the
primary isoform) and also provide a large contribution to
overall gene expression. These genes are not only enriched
in regulatory and essential genes, but their secondary
isoforms possess additional sequence features that sug-
gest functional roles for them distinct from the primary
isoform. The TS score and the TAPAS algorithm devel-
oped here provide unique methods to help in isoform
target prioritisation and experimental design. Given the
biological and experimental noise associated with alter-
native splicing, our method prioritises those splicing events
that show a clear expression signal of functional import-
ance. We show how these tools are useful for exploring the
roles of alternative splicing. We anticipate the methods
we develop here to be useful tools for future alternative
splicing research, especially when combined with other
comparative genomics and experimental datasets.

Methods
Isoform expression pattern based scores
For the current study we made use of FlyBase v5.45. We
obtained the paired end sequence data from the fly devel-
opmental modENCODE project [22] from the European
Nucleotide Archive [52] and calculated expression levels
of isoforms from FlyBase 5.45 for all developmental stages.
We used the most recent versions of Cufflinks2.2.1 [53],
Tophat2.0.12 [54] and Bowtie2 [55]. Tophat2 was run
with the following parameters (−F 0 -i 40 -p 4 -g 40 -G -T
-r 200 –mate-std-dev 20).

Identifying different splicing events
GTF files from FlyBase 5.45 were downloaded. For a given
primary/minor isoform pair, an exon was deemed to be
gained in the minor isoform if it did not overlap with any
exons in the primary isoform whilst an intron was deemed
to be retained in the minor isoform if it had an exon that
fully overlapped an intron from the primary isoform.

Identifying evolutionarily conserved exons
The set of exon co-ordinates and Conservation Index
scores were downloaded from the supplementary data in
the modENCODE validation paper [26]. When we plot-
ted the distribution of scores we noticed the score distri-
butions resembled overlapping Gaussian distributions. A
conservation cut-off of 5 was used to separate the high-
est distribution from the low distribution and this was
chosen as a cut-off for identifying conserved exons.

Other datasets
Gene age, duplication status and essentiality data was
downloaded from the OGEE resource, mapping was done
using the gene identifiers. For the ‘young’ category of
genes we took anything that had potentially arisen from
Insecta or younger (ages 1 and 0). We treated genes of
age 0 as species specific. Domain assignments were ob-
tained from Gene3D v12.1 corresponding to Ensembl
v70. So for any of the analyses in the paper using domain
based analyses we used the union of protein sequences
from Ensemblv70 and FlyBase 5.45.
ELMs were assigned using the ELM server, which by

default applies important filters such as structural checks
to ensure the ELMs are exposed and not in secondary
structures of globular domains [28]. Additionally we
applied the taxonomic range filter to remove ELMs not
related to D. melanogaster. Sequence specific DNA bind-
ing domains were obtained from the DBD [38] resource.
Sequences with classical signalling domains were obtained
from the SMART website [39].
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Bias removal for essential gene enrichment analysis
We developed an approach to control for any potential
subtle biases associated with potential differences in gene
expression patterns and levels. For each High-TS gene, we
found the multi protein gene (that was not a High-TS
gene) with the closest matching gene expression profile as
measured by the Euclidean distance. This was done itera-
tively such that after a multi protein gene was paired
with a High-TS gene it could not be paired with another
High-TS gene. We subsequently re-checked for enrich-
ments using this paired set where the gene expression
profiles were highly similar even though the isoform ex-
pression patterns could be very different.
To control for biases in singleton gene enrichment for

High-TS Genes, the essential gene enrichment was re-
peated using only singleton genes. To control for biases
in signalling and DBD gene enrichment the essential
gene enrichment was repeated using multi protein genes
with signalling and DBD domain containing genes removed.
To control for biases in gene age we only included
genes from gene ages Metazoa or older.

Enrichment analysis
The Fisher’s exact test was implemented using the fisher
python package v0.14) for testing gene set enrichments.
The Mann–Whitney rank test was implemented using the
scipy.stats package. For both Fisher and Mann–Whitney
rank test all p-values given are one sided.
Functional enrichment was carried out using the gene

association GO annotation file from FlyBase. We filtered
ND and NOT evidence code annotations. For correcting
for multiple tests we used the Benjamini-Hochberg method.
GO terms with less than 10 gene annotations in the
background set were not considered for testing.

FunFam assignments
Functional families, (FunFams), are clusters of function-
ally related domain sequences, built by agglomerative
clustering of Gene3D [29] domain sequences based on
the similarity of sequence clusters measured by profile–
profile comparisons. Gene3D is a resource providing all
predicted domain sequences assigned to superfamilies in
the CATH structural classification [17]. The method has
recently been updated and makes uses of specific, function
determining, residues in multiple sequence alignments
of the family to determine when to stop merging clusters
[17]. FunFam assignments for Drosophila were down-
loaded from the Gene3D v12 website.

Fun-L ranking
Fun-L provides a means of identifying functionally re-
lated genes using gene networks. FunL converts protein
protein association networks into similarity matrices that
can then be used for identifying related genes [43]. We
used this method to identify a small number of genes
predicted to be highly associated to the set of nuclear
hormone receptors having high TS scores, to help pro-
duce a more connected network. Fun-L is relevant to
Fig. 4 in the results.

GOSS Score
A network of GO term similarities was generated using
the Resnik GO semantic similarity (GOSS) score [56]. The
GOSS score has been widely used previously and pro-
vides a simple means of measuring similarity between
GO terms. The GOSS score between any two GO terms
is inversely related to the number of genes assigned to the
common parent of the GO terms, such that if the shared
parent GO term is assigned many genes (i.e. the term is
non-specific) then the GOSS score linking the GO terms
is relatively low. The usual filters were also applied to
remove annotations with Not Determined (ND) and terms
with negations (NOT) indicating the GO term was not
assigned to the gene. GOSS similarities between two genes
were assigned using the maximum GOSS score from their
genes GO annotations.

TAPAS algorithm
The TAPAS algorithm proceeds as follows. For a query
isoform, it builds a cluster of isoforms from other genes
(different to the query isoforms gene) whose expression
patterns correlate to the query isoforms (By default Pearson
similarity > 0.7), and hence could be related in the same
functional module. From these proteins, a network of pro-
teins interacting with the query isoform is built to identify
clear functional links between the query isoform and other
members of the cluster. The links are made up of ex-
perimental protein interactions, high confidence STRING
predictions (score > 800) and highly specific GO semantic
similarity links (GOSS) (default is GOSS score >6).
In cases where no functional links can be established

using STRING, known interaction or high GO similarity
(GOSS > 6), TAPAS applies a further filtering step, that
checks if the cluster of the closest 20 isoforms with GO
terms, have an average GO semantic similarity (GOSS)
score (see below) above a given cut-off (as default we
chose a GOSS score of 2.5 since this is far above the ran-
dom background score expected). Only GO terms from
the biological process branch of the Gene Ontology were
used since we would expect similarities in GO terms from
this branch to be better reflected in expression profile
similarities than other branches (e.g. Molecular Function).

Availability
The TAPAS code and predictions are available for down-
load for download (ftp://ftp.biochem.ucl.ac.uk/pub/gene3d_
data/CURRENT_RELEASE/TAPAS).

ftp://ftp.biochem.ucl.ac.uk/pub/gene3d_data/CURRENT_RELEASE/TAPAS
ftp://ftp.biochem.ucl.ac.uk/pub/gene3d_data/CURRENT_RELEASE/TAPAS
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Additional file

Additional file 1: Figure S1. Example of a secondary isoform with a
low TS score when compared to the primary isoform. Figure S2: Plot of
average correlation (Pearson), and expression ratio for various TS score
bins. The expression ratio is the average secondary isoform expression/
average primary isoform expression. Figure S3: Correlation plot between
various scores derived from comparing the primary and secondary
isoform expression profiles. The grid of colours and numbers show
correlations between any two scores. Note ‘Pearson * -1’ was used to turn
into a distance measure. The ‘Expression Ratio’ is the ratio of the average
secondary isoform expression to the average primary isoform expression.
The TS score shows high correlation with both the Expression ratio and
Pearson * -1 indicating it is the most suitable score for the study (we
multiply Pearson by -1 for visualisation reasons, so it increases with
distance, like the Euclidean etc.). Jensen-Shannon Divergence is abbreviated
as JSD. For JSD-2 the two input distributions for JSD are changed to
the primary isoform expression profile and the primary expression profile +
secondary expression profile. Figure S4: Histogram of TS scores.
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