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ABSTRACT 

A model, adapted from the Shockley-Queisser detailed balance model to tandem solar 

cells with a monolithically grown GaAsxP1-x top junction on a Si bottom junction, has 

been developed. Updated data have been used for the absorption spectrums. Two 

surface geometries, flat and ideally textured, have been investigated. As an important 

improvement over existing models, the effects of threading-dislocations-related 

Shockley-Read-Hall recombinations in the GaAsxP1-x cell, due to the lattice mismatch 

between the GaAsxP1-x epilayers and the Si substrate, have been taken into 

consideration. Auger recombinations in the Si bottom cell and luminescent coupling 

between the cells have also been considered. For a dislocation-free 2-μm-thick top 

cell, maximal theoretical efficiencies of 41.6% and 39.1% have been calculated for a 

textured and a flat surface, respectively. For threading dislocation (TD) densities 

below 104 cm-2, the impact of TDs in the GaAsxP1-x layers on the solar cell 

performances is very limited. With TD densities over 105 cm-2, the top cell 

open-circuit voltage is reduced, hence the overall efficiency. For TD densities over 

4×106 cm-2, as the diffusion length of minority carriers in the base gets smaller than 

the base thickness, the short-circuit current in the top GaAsxP1-x cell is also reduced, 

resulting in a decrease in the optimal top cell bandgap. Using non-ideal EQEs and 

surface recombination rates from published experimental data, the long-term 

efficiency potential of the investigated technology has been estimated to be ~35.1% 

for an ideally textured GaAsxP1-x/Si tandem cell with a TD density of 105 cm-2 

(~33.0% with a flat surface). 
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1. INTRODUCTION 

The photovoltaic industry has seen a remarkable development in the recent years, 

largely fueled by a continuous reduction of costs along the entire value chain. 

Nevertheless, further improvements are needed in order to keep this sustained pace of 

cost reduction and further expand the adoption of the technology. Among the multiple 

levers for cost reduction, improving the efficiency plays a very significant role as it 

impacts the cost of the whole system.  

With 25.6% record efficiency and 25.0% efficiency achieved with processes used for 

industrial production of solar cells [1,2], the low-cost market-dominant crystalline 

silicon-based solar cell technology is already very close to its theoretical maximal 

efficiency, and the margin for further improvement is very small. On the other hand, 

III-V based multi-junction solar cells have been able to achieve efficiencies close to 

40% without concentration [3,4]. However, the need for expensive substrates makes 

their high scale development unlikely. Although epitaxial Lift-Off (ELO) process is a 

solution pathway to overcome this issue [5], uncertainties remain regarding the costs 

and limits of substrate reuse.  

The combination of III-V single- or multi-junction solar cells integrated on a 

comparatively low-cost silicon substrate are promising alternative candidates for 

cost-efficient fabrication of high efficiency solar cells. Wafer bonding circumvents 

issues arising from polar-on-nonpolar integration and difference in lattice constant 

between materials and has resulted in high efficiency devices [6]. However, the 

fabrication of III-V cells on distinct substrates involves a step of separation in a 

process akin to ELO. Challenges pertaining to this technology are thereby still a 

concern for wafer bonding pathways. On the other hand, direct epitaxial growth of a 

III-V top cell on a silicon bottom cell acting as a substrate is a very elegant and 

potentially industrially relevant way to produce high-efficiency tandem solar cells on 

a low-cost substrate. Following the initial developments by Hayashi et al. in the 

1990’s [7] and the work carried out by Geisz et al. [8,9] in the 2000’s, the technology 

has seen substantial progress in the recent years with the contributions of Grassman et 

al. [10,11] and Lang et al. [12]. 

In order to prove the concept and the feasibility of high-quality III-V devices grown 

on Si substrates, we focus our present work on the development of a dual-junction 

cell, comprising a Si bottom cell and a III-V top cell. In this case, multiple generic 

dual-junction models [13-15] have shown that the top cell bandgap should lie between 

1.6 and 1.8 eV. As there is no nitrogen-free III-V material lattice-matched to silicon in 

this bandgap window, a lattice-mismatched architecture is needed. In order to achieve 

the highest crystal perfection, the lattice mismatch should be as small as possible. 

Among the III-V materials, GaAsxP1-x is the nitrogen-free ternary compound material 

in the targeted bandgap window exhibiting the smallest lattice-mismatch with silicon. 

Moreover, GaP is nearly lattice-matched with silicon, and therefore offers an ideal 

pathway for the integration of a 1.6-1.8 eV GaAsxP1-x top cell on silicon. However 

few material-specific and architecture-specific detailed models of such structures have 

been developed so far to determine the exact bandgap needed for the top cell and the 

parameters influencing the efficiency of the dual-junction cell. Most of the modeling 

work on dual-junction solar cells, including the aforementioned contributions, suffers 

from the lack of architecture-specific features and relies on theoretical absorption 

spectrums, infinite cell thickness hypothesizes or dark-current calculations based on 

theoretical electronic parameters or empirical relations built on outdated cell 
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performances. Moreover the impact of crystal imperfections on dual-junction III-V/Si 

solar cells performances has not been considered in the modeling works reported in 

the literature, although the formation of defects is inevitable for 1.6-1.8 eV III-V 

materials monolithically grown on silicon substrates. 

The main hurdle in accurately simulating bandgap-dependent, material-specific and 

architecture-specific dual-junction solar cells lies in the lack of data regarding the 

chosen material (GaAsxP1-x in the present work). In order to approximate the 

expectable behavior of the real material without using an extensive number of 

electronic parameters, we simulate the device performances as a result of the flow 

equilibrium in the cells, adapting the detailed balance model developed by Shockley 

and Queisser [16]. We consider the radiative limit as the upper thermodynamic 

boundary on the cells performances and use simple models to calculate non-radiative 

recombination rates, such as Auger and Shockley-Read-Hall. The need for specific 

electronic parameters is thus limited to its minimum as the main input in the model is 

the absorption spectrum of the top cell material. 

As an important improvement over already existing models, the impact of threading 

dislocations (TDs), the main source of inefficiencies for lattice-mismatched III-V 

solar cells, has been integrated in the model. Additionally, the luminescent coupling 

between the cells due to photons from radiative recombinations in the top cell 

cascading to the bottom cell has also been taken into account. The impact of two 

geometrical architectures for the front surface (flat and ideally textured) has also been 

investigated. Finally, other sources of non-idealities such as non-perfect EQE and 

surface recombinations are added in section 3.4 in order to give an evaluation of the 

long-term potential performances of the technology. This comprehensive model 

allows for quantitative insights in the design of GaAsxP1-x/Si dual-junction solar cells 

such as the ones currently developed [10-12], highlighting the processes limiting the 

efficiency of the investigated architecture. Moreover, targets are set regarding the 

maximum threading dislocation density (TDD) needed in order to achieve very high 

efficiency devices (>35%). 

2. METHOD 

The model presented hereafter has been developed using MATLAB® R2014a. All the 

calculations are wavelength-dependent with rectangular integration on the wavelength 

between 280 and 1450 nm with a 0.5 nm step. The efficiencies were calculated for air 

mass 1.5 global (AM1.5G) without concentration using data from the ASTM G173-03 

reference spectrum [17]. The percentage of arsenic x in the top GaAsxP1-x cell can 

vary from x=0.55 to 1, representing the direct bandgap domain of GaAsxP1-x [18]. The 

main challenge in accurately simulating a bandgap-dependent GaAsxP1-x/Si dual-

junction solar cell lies in the lack of data regarding the electronic parameters of 

GaAsxP1-x for varying percentages of arsenic x. Using the blackbody theory applied to 

semiconductors and the flow equilibrium in the cells, our model reduces the amount 

of electronic parameters needed to a very limited number, namely the bandgap 

Eg(GaAsxP1-x), the densities of states in the conduction and valence bands 

Nc(GaAsxP1-x) and Nv(GaAsxP1-x), the diffusion coefficient of electrons and holes 

Dn(GaAsxP1-x) and Dp(GaAsxP1-x) and the relative permittivity εr(GaAsxP1-x). The 

formulas used for the calculation of these electronic parameters and their sources are 

summarized in TABLE 1. The five last electronic parameters are moreover solely used 
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for the modeling of the impact of TDs. Hence the bandgap is the single parameter 

needed for the determination of the perfect crystal theoretical maximal efficiency. 

This is possible through the use of a thermodynamic approach exclusively based on 

the absorption spectrum of the material for the calculation of the radiative 

recombination rate. In order to determine the absorption spectrum of GaAsxP1-x for 

different percentage of arsenic x, we make the hypothesis that the main consequence 

of the incorporation of arsenic is a blue-shift from the absorption spectrum of GaAs 

equal to the difference in bandgap between GaAsxP1-x and GaAs. Given the very 

similar shape of absorption spectrums of III-V materials, this is a rational hypothesis. 

The GaAs absorption reference spectrum has been extrapolated based on data from 

Ref. [22] between 280 and 826.5 nm and from the fitted model from Ref. [23] based 

on experimental data from Ref. [24] above 826 nm. For the bottom Si solar cell, the 

absorption spectrum has been extrapolated from Ref. [25].  

2.1. Cell architecture 

The cell architecture investigated here is detailed in FIGURE 1. We have concentrated 

our efforts on a 2-terminal contact architecture, which is the most established solar 

cell device architecture in practice. In this structure, the two cells are series-connected 

through a high bandgap buffer such as a GaAsxP1-x metamorphic buffer on a GaP 

nucleation layer, as presented in Refs. [10-12]. This buffer has a wider bandgap than 

the top cell, and therefore acts as an essentially transparent window for the light that 

passes through the top cell into the bottom cell. The absorption in this buffer layer 

may therefore be neglected. We furthermore assume that the tunnel junction between 

the two cells produces only negligible resistance.  

 

 
Figure 1. Detail of the architecture of the GaAsxP1-x/Si dual-junction investigated 

 

The top cell material is GaAsxP1-x with variable As content from x=0.55 to 1 and 

variable thickness from 0.2 to 5 μm. The emitter thickness is fixed at Wemit=0.1 μm. A 

p+/n architecture has been chosen in order to reduce the impact of TDs, the diffusion 

coefficient of holes Dp being smaller by an order of magnitude than the diffusion 

coefficient of electrons Dn in GaAsxP1-x. Dopings of the n-doped base and p+-doped 

emitter have been respectively set at Nd=1017 cm-3 and Na=2×1018 cm-3. Given the 

relatively high direct bandgap of GaAsxP1-x in the range of arsenic content considered, 

the dominant bulk non-radiative recombination process is Shockley-Read-Hall type 

and Auger recombinations are neglected in the top cell. 
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Charge transfer along the TDs in the top cell is possible in theory, inducing a low 

shunt resistance. However, a review of the literature [9-12, 26] shows that 

experimental III-V on Si solar cells for the range of TDDs investigated (up to 2×108 

cm-2) do not exhibit such a behavior, with reported J-V characteristics displaying flat 

current densities at low voltage and no evident degradation of the diodes 

characteristics with higher TDDs. The shunt resistances of both cells are therefore 

assumed infinite. 

The silicon bottom cell has a thickness of 150 μm, representative of the industry 

current standards. As we want to investigate the upper limits on the efficiency of 

GaAsxP1-x/Si dual junction solar cells, we assume that extremely high quality 

perfectly mono-crystalline silicon is used. As threading dislocations only propagate 

upward through the grown III-V material due to the higher mechanical strength of 

silicon and the layer-by-layer method of growth, we assume the silicon cell to be 

defect-free. Hence we neglect Shockley-Read-Hall recombinations and only use 

Auger recombinations as bulk non-radiative recombinations in the bottom cell. The 

ambipolar Auger coefficient has been set at CAuger=1.66x10-30 cm6.s-1 with an intrinsic 

carrier concentration of ni=9.7x109 cm-3 [27]. 

We ignore surface recombinations in both cells in the first part of the study as we 

focus on the impact of the threading dislocation density (TDD) on the theoretical 

efficiency of perfect GaAsxP1-x on Si dual-junction solar cells. section 3.4, the impact 

of surface recombinations is added to evaluate the real-world efficiency potentially 

achievable by such a structure.  

Two surface geometries are investigated: flat surface on one hand, ideally textured 

perfectly randomizing the flux on the other hand. The refractive index inside the 

device is supposed constant at nref=3.5, which is a reasonable approximation for the 

materials considered. A perfectly reflecting mirror on the back of the bottom cell is 

assumed, doubling the optical path in the bottom cell and eliminating dark-current 

reemissions from the back side of the cell. Shading from the front contact and 

reflection at the front surface are neglected in the first part of the study. An average 

External Quantum Efficiency (EQE), taking into account the effect of optical losses 

such as grid shading and reflection on the front surface, is added section 3.4 to 

evaluate the real-world potential the structure. 

2.2. Blackbody theory and flow equilibrium model basics  

For each cell, we consider the well-known general diode equation: 

 
𝐽(𝑉) = 𝐽𝑠𝑐 + 𝑞𝑅𝑟,𝑟𝑎𝑑 (1 − 𝑒

𝑞𝑉
𝑘𝐵𝑇) + 𝑞∑𝑅𝑟,𝑚 (1 − 𝑒

𝑞𝑉
𝑛𝑚𝑘𝐵𝑇)

𝑚

 (1) 

where J is the current density, V the voltage, q the elementary charge, kB the 

Boltzmann constant, T the cell temperature set at 300 K, Jsc the short-circuit current 

density, Rr,rad the radiative recombination rate, Rr,m the recombination rates for 

different non-radiative recombination mechanisms and nm the associated ideality 

factors. 

In order to calculate the radiative recombination rate of each cell, we consider the 

flow equilibrium in the cell in the dark. Using the blackbody theory extended to 

semiconductors developed by Würfel [28], the emission rate of each cell in the dark 

under ideal conditions (no non-radiative recombinations) and considering the Bose-
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Einstein approximation (E >> kBT), equal to the dark-current radiative recombination 

rate, is given by: 

 

∫
2𝜋𝑎(𝐸)𝐸2

ℎ3𝑐2

+∞

0

𝑒
𝑞𝑉−𝐸
𝑘𝐵𝑇 𝑑𝐸 = 𝑒

𝑞𝑉
𝑘𝐵𝑇 ∫

2𝜋𝑐𝑎(𝜆)

𝜆4

+∞

0

𝑒
−
ℎ𝑐
𝜆𝑘𝐵𝑇𝑑𝜆 

(2) 

where a(λ) is the wavelength-dependent absorptivity of the cell, E the energy of the 

photons considered, λ their wavelength, h the Planck constant and c the speed of light. 

We therefore have: 

 

𝑅𝑟,𝑟𝑎𝑑 = ∫
2𝜋𝑐𝑎(𝜆)

𝜆4

+∞

0

𝑒
−
ℎ𝑐
𝜆𝑘𝐵𝑇𝑑𝜆 

(3) 

Under the initial hypothesis that at V=0 the recombination contributions are null, the 

short-circuit current density Jsc is equal to the photocurrent density Jph, given by 

basically counting the number of photons absorbed within each cell, assuming perfect 

external quantum efficiency: 

 

𝐽𝑝ℎ,𝑡𝑜𝑝 = 𝑞∫ (
𝜆

ℎ𝑐
)

+∞

0

𝐼(𝜆)𝑎𝑓𝑟𝑜𝑛𝑡,𝑡𝑜𝑝(𝜆)𝑑𝜆 = 𝑞𝑅𝑔,𝑡𝑜𝑝 (4) 

 

𝐽𝑝ℎ,𝑏𝑜𝑡 = 𝑞∫ (
𝜆

ℎ𝑐
)

+∞

0

𝐼(𝜆)(1 − 𝑎𝑓𝑟𝑜𝑛𝑡,𝑡𝑜𝑝)𝑎𝑓𝑟𝑜𝑛𝑡,𝑏𝑜𝑡(𝜆)𝑑𝜆 = 𝑞𝑅𝑔,𝑏𝑜𝑡 
(5) 

where I(λ) is the wavelength-dependent AM1.5 irradiance, afront,top/bot(λ) is the 

absorptivity from the front of the top/bottom cell and Rg is the photo-generation rate.  

It is to be noted that the assumption of Jsc=Jph does not take into account possible 

recombinations at short-circuit. The underlying hypothesis is that the diffusion lengths 

of minority carriers are longer than the thickness of the base and emitter and charges 

can travel freely to the depletion zone under short-circuit conditions. Though this 

hypothesis is valid when the crystal is assumed perfect, defects such as threading 

dislocations will reduce the diffusion length and the short-circuit current density Jsc 

will be smaller than the photocurrent density Jph. A solution to this issue is proposed 

and implemented in our model in section 2.4. Also note that, for the bottom cell, the 

total absorptivity and the absorptivity from the front surface are equal due to the 

presence of a back mirror so that aback,bot=0 and abot(λ)=afront,bot(λ). However, for the 

top cell, the total absorptivity is the sum of the front and back absorptivities: 

atop(λ)=afront,top(λ)+aback,top(λ); only the former being taken into account in the 

calculation of Jph,top. 

As specified in section 2.1, Auger recombinations are neglected in the top cell, 

Shockley-Read-Hall recombinations are neglected in the bottom cell and surface 

recombinations are neglected in both cells so that: 

 
𝐽𝑡o𝑝(𝑉𝑡𝑜𝑝) = 𝑞 (𝑅𝑔,𝑡𝑜𝑝 + 𝑅𝑟,𝑟𝑎𝑑,𝑡𝑜𝑝 (1 − 𝑒

𝑞𝑉𝑡𝑜𝑝
𝑘𝐵𝑇 ) + 𝑅𝑟,𝑆𝑅𝐻(𝑉𝑡𝑜𝑝)) (6) 

 
𝐽𝑏𝑜𝑡(𝑉𝑏𝑜𝑡) = 𝑞 (𝑅𝑔,𝑏𝑜𝑡 + 𝑅𝑟,𝑟𝑎𝑑,𝑏𝑜𝑡 (1 − 𝑒

𝑞𝑉𝑏𝑜𝑡
𝑘𝐵𝑇 ) + 𝑅𝑟,𝐴𝑢𝑔𝑒𝑟(𝑉𝑏𝑜𝑡)) (7) 



 7 

where Rr,SRH(V) is the voltage-dependent Shockley-Read-Hall recombination rate in 

the top cell and Rr,Auger(V) is the voltage-dependent Auger recombination rate in the 

bottom cell. 

2.3. Absorptivity model depending on front surface geometry 

As shown in FIGURE 2, absorptivities of both cells depend on the front surface 

geometry. Two geometries, planar and perfectly random, are investigated. As stated in 

section 2.2, the absorptivities afront,top and aback,top from the front and back of the top 

cell need to be calculated whereas only the front absorptivity afront,bot=abot is needed 

for the bottom cell due to the presence of a perfect back mirror. 

 

 
Figure 2. Schematic of the two different absorptivity models used: flat surface (a) and 

ideally randomly textured surface (b). The impact of the randomly textured surface is 

greater on the bottom cell absorptivity than on the top cell one. 

 

A. Planar front surface 

Because of the large refractive index of GaAsxP1-x, the incident light is refracted with 

an angle very close to perpendicular inside the cell. The wavelength-dependent front 

surface absorptivity of the top cell is thus well known: 

 𝑎𝑓𝑟𝑜𝑛𝑡,𝑡𝑜𝑝(𝜆) = 1 − 𝑒
−𝛼𝐺𝑎𝐴𝑠𝑃(𝜆)𝐿𝑡𝑜𝑝 (8) 

where αGaAsP(λ) is the wavelength-dependent absorption coefficient of GaAsxP1-x and 

Ltop is the top cell thickness. Similarly the wavelength-dependent front surface 

absorptivity of the bottom cell is: 

 𝑎𝑓𝑟𝑜𝑛𝑡,𝑏𝑜𝑡(𝜆) = 1 − 𝑒
−2𝛼𝑆𝑖(𝜆)𝐿𝑏𝑜𝑡 (9) 

where αSi(λ) is the wavelength-dependent absorption coefficient of Si and Lbot is the 

bottom cell thickness, the optical pathlength being doubled due to the presence of a 

back mirror. 

As previously shown in Ref. [23], absorptivity from the back side of the top cell has 

to take into account the increase due to the possible total internal reflection on the 

front side of the cell. This internal reflection happens when the incident angle is 

superior to the critical escape angle θesc=arcsin(1/nref) and doubles the effective 

optical pathlength. A factor nref
2 also has to be added, the density of states of the 

internal blackbody radiation being multiplied by this factor, so that: 

Arthur Onno Figure 2 Top 

a) 

b) 
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𝑎𝑏𝑎𝑐𝑘,𝑡𝑜𝑝(𝜆) = 2𝑛𝑟𝑒𝑓
2

(

 ∫ (1 − 𝑒−𝛼𝐺𝑎𝐴𝑠𝑃
(𝜆)

𝐿𝑡𝑜𝑝
𝑐𝑜𝑠𝜃)

𝜃𝑒𝑠𝑐

0

𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃

+ ∫ (1 − 𝑒−2𝛼𝐺𝑎𝐴𝑠𝑃
(𝜆)

𝐿𝑡𝑜𝑝
𝑐𝑜𝑠𝜃)

𝜋
2

𝜃𝑒𝑠𝑐

𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃

)

  

(10) 

B. Randomly textured surface 

In the case of a randomly textured surface, the assumption of perpendicular light 

entering the cell is no longer valid and the absorption in the top cell is dependent on 

the polar angle θ. If we consider that the textured front surface is ideal and completely 

randomizes the incident light into a Lambertian distribution, the top cell front 

absorptivity is then: 

 

𝑎𝑓𝑟𝑜𝑛𝑡,𝑡𝑜𝑝(𝜆) = 2∫ (1 − 𝑒
−𝛼𝐺𝑎𝐴𝑠𝑃(𝜆)

𝐿𝑡𝑜𝑝
𝑐𝑜𝑠𝜃)

𝜋
2

0

𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃 
(11) 

For the bottom cell, as the top cell and buffer are windows for the wavelengths in the 

weakly absorbing limit, the light trapping can be considered ideal and, as shown in 

[29], we have: 

 
𝑎𝑓𝑟𝑜𝑛𝑡,𝑏𝑜𝑡(𝜆) =

4𝑛𝑟𝑒𝑓
2 𝛼𝑆𝑖(𝜆)𝐿𝑏𝑜𝑡

1 + 4𝑛𝑟𝑒𝑓
2 𝛼𝑆𝑖(𝜆)𝐿𝑏𝑜𝑡

 (12) 

Again, the absorptivity from the back of the top cell has to take into account the 

possible total internal reflection on the front side of the cell. However this time the 

angle at which the incident light encounter the surface and the angle at which it is 

reflected are both random so that: 

𝑎𝑏𝑎𝑐𝑘,𝑡𝑜𝑝(𝜆) = 2𝑛𝑟𝑒𝑓
2

(

 
2𝜃𝑒𝑠𝑐
𝜋

∫ (1 − 𝑒−𝛼𝐺𝑎𝐴𝑠𝑃
(𝜆)

𝐿𝑡𝑜𝑝
𝑐𝑜𝑠𝜃)

𝜋
2

0

𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃

+ (1 −
2𝜃𝑒𝑠𝑐
𝜋
)∫∫  

𝜋
2

0

(1 − 𝑒
−2𝛼𝐺𝑎𝐴𝑠𝑃(𝜆)(

𝐿𝑡𝑜𝑝
𝑐𝑜𝑠𝜃

+
𝐿𝑡𝑜𝑝
𝑐𝑜𝑠𝜃′

)
)

𝜋
2

0

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃′𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜃′

)

  

(13) 

2.4. Model for bulk non-radiative recombinations 

For the bottom cell, we consider intrinsic or very low doping density silicon in order 

to simplify the model and reduce the Auger recombination rate, although this 

hypothesis does not exactly corresponds to state-of-the-art high-efficiency silicon 

solar cells currently available. The voltage-dependent Auger recombination rate is 

then given by: 

 
𝑅𝑟,𝐴𝑢𝑔𝑒𝑟(𝑉) = 𝐶𝐴𝑢𝑔𝑒𝑟𝐿𝑏𝑜𝑡𝑛𝑖,𝑆𝑖

3 (1 − 𝑒
3𝑞𝑉
2𝑘𝐵𝑇) = 𝑅𝑟,𝐴𝑢𝑔𝑒𝑟 (1 − 𝑒

3𝑞𝑉
2𝑘𝐵𝑇) 

(14) 
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where Lbot is the thickness of the bottom cell. 

We consider that the only source of Shockley-Read-Hall recombinations in the top 

cell is the presence of TDs due to the lattice mismatch between Si and GaAsxP1-x, 

other crystal defects being neglected. Yamaguchi et al. have shown that, for both 

types of carriers, the minority-carrier diffusion length associated with a TD density 

NTD is [30]: 

 

𝐿𝑇𝐷 = √
4

π3𝑁𝑇𝐷
 

(15) 

Although this model is very basic and do not describe in details the SRH 

recombination process on a TD, in particular regarding possible inelastic processes 

during the capture on deep TD energy levels, it has shown excellent agreement with 

experimental data in predicting the minority carrier lifetime, the open-circuit voltage 

and the efficiency of III-V on Si solar cells [30-37]. The voltage-dependent 

recombination rate associated with TDs in the depletion zone is then given by [30]: 

 
𝑅𝑟,𝑆𝑅𝐻,𝐷𝑍(V) =

𝑛𝑖,𝐺𝑎𝐴𝑠𝑃𝑊𝐷
2

𝐷𝑝

𝐿𝑇𝐷
2 (1 − 𝑒

𝑞𝑉
2𝑘𝐵𝑇)

=
𝜋3𝐷𝑝𝑁𝑇𝐷𝑛𝑖,𝐺𝑎𝐴𝑠𝑃𝑊𝐷

8
(1 − 𝑒

𝑞𝑉
2𝑘𝐵𝑇)

= 𝑅𝑟,𝑆𝑅𝐻,𝐷𝑍 (1 − 𝑒
𝑞𝑉
2𝑘𝐵𝑇) 

(16) 

where Dp is the minority-carrier diffusion coefficient of holes and WD is the depletion 

width of the top cell given by: 

 

𝑊𝐷 = √
2𝜀0𝜀𝑟
𝑞

𝑘𝐵𝑇

𝑞
𝑙𝑛 (

𝑁𝑎𝑁𝑑

𝑛𝑖,𝐺𝑎𝐴𝑠𝑃
2 ) (

1

𝑁𝑎
+
1

𝑁𝑑
) (17) 

and ni is calculated using the usual relation: 

 
𝑛𝑖,𝐺𝑎𝐴𝑠𝑃 = √𝑁𝑐𝑁𝑣𝑒

−
𝐸𝑔
2𝑘𝐵𝑇 

(18) 

In the base and in the emitter, the voltage-dependent recombination rates associated 

with TDs are given by [38]: 

𝑅𝑟,𝑆𝑅𝐻,𝑏𝑎𝑠𝑒(𝑉) =
𝑛𝑖,𝐺𝑎𝐴𝑠𝑃
2 𝑊𝑏𝑎𝑠𝑒

𝑁𝑑

𝐷𝑝

𝐿𝑇𝐷
2 (1 − 𝑒

𝑞𝑉
𝑘𝐵𝑇)

=
𝜋3𝐷𝑝𝑁𝑇𝐷𝑛𝑖,𝐺𝑎𝐴𝑠𝑃

2 𝑊𝑏𝑎𝑠𝑒

4𝑁𝑑
(1 − 𝑒

𝑞𝑉
𝑘𝐵𝑇)

= 𝑅𝑟,𝑆𝑅𝐻,𝑏𝑎𝑠𝑒 (1 − 𝑒
𝑞𝑉
𝑘𝐵𝑇) 

(19) 
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𝑅𝑟,𝑆𝑅𝐻,𝑒𝑚𝑖𝑡(𝑉) =
𝑛𝑖,𝐺𝑎𝐴𝑠𝑃
2 𝑊𝑒𝑚𝑖𝑡

𝑁𝑎

𝐷𝑛

𝐿𝑇𝐷
2 (1 − 𝑒

𝑞𝑉
𝑘𝐵𝑇)

=
𝜋3𝐷𝑛𝑁𝑇𝐷𝑛𝑖,𝐺𝑎𝐴𝑠𝑃

2 𝑊𝑒𝑚𝑖𝑡
4𝑁𝑎

(1 − 𝑒
𝑞𝑉
𝑘𝐵𝑇)

= 𝑅𝑟,𝑆𝑅𝐻,𝑒𝑚𝑖𝑡 (1 − 𝑒
𝑞𝑉
𝑘𝐵𝑇) 

(20) 

where Dn is the minority-carrier diffusion coefficient of electrons, Wbase is the top cell 

base width and Wemit is the top cell emitter width. 

The Shockley-Read-Hall recombination rate in the quasi-neutral region can then be 

written from equations (19) and (20): 

𝑅𝑟,𝑆𝑅𝐻,𝑄𝑁𝑅(𝑉) = 𝑅𝑟,𝑆𝑅𝐻,𝑏𝑎𝑠𝑒(𝑉) + 𝑅𝑟,𝑆𝑅𝐻,𝑒𝑚𝑖𝑡(𝑉)

= (𝑅𝑟,𝑆𝑅𝐻,𝑏𝑎𝑠𝑒 + 𝑅𝑟,𝑆𝑅𝐻,𝑒𝑚𝑖𝑡) (1 − 𝑒
𝑞𝑉
𝑘𝐵𝑇)

= 𝑅𝑟,𝑆𝑅𝐻,𝑄𝑁𝑅 (1 − 𝑒
𝑞𝑉
𝑘𝐵𝑇) 

(21) 

The reduced diffusion length will also impact the photon collection and therefore the 

short-circuit current as only a portion of the photo-generated carriers will be able to 

reach the depletion zone. We can assume that the photon collection efficiency will not 

be impacted in the emitter zone as its thickness is smaller than the diffusion length, 

even for very high TD densities (up to NTD=109 cm-2). The carriers generated in the 

depletion zone will also all be collected. 

However, under the approximation of a uniform generation rate, the carriers generated 

in the base at a distance from the depletion zone larger than the diffusion length will 

not contribute to the short-circuit current. This means that, for the calculation of the 

top cell photo-generated current in absorptivity equations (8-13), the actual thickness 

of the cell Ltop must be replaced by an effective thickness Ltop’=Wemit+WD+LTD when 

Ltop’< Ltop. The decrease of the short-circuit current at higher TDDs, due to the 

reduced minority carriers diffusion length, is therefore integrated by evaluating the 

photocurrent over a thickness smaller than the actual geometrical thickness of the top 

cell. For a 2-μm-thick cell, this will be the case for a TD density NTD>4×106 cm-2. As 

shown in Ref. [39] for a cell with a 2.5-μm-thick base, a lower TD density (NTD=0.8–

1.5×106  cm-2, LTD=2.9-4 μm) already has a strong impact on the open-circuit voltage 

but no noticeable effect on the external quantum efficiency and therefore on the 

short-circuit current.  

Current-voltage characteristics in the top and bottom cells are then given by: 

𝐽𝑡𝑜𝑝(𝑉𝑡𝑜𝑝) = 𝑞 (𝑅𝑔,𝑡𝑜𝑝 + (𝑅𝑟,𝑟𝑎𝑑,𝑡𝑜𝑝 + 𝑅𝑟,𝑆𝑅𝐻,𝑄𝑁𝑅) (1 − 𝑒
𝑞𝑉𝑡𝑜𝑝
𝑘𝐵𝑇 )

+ 𝑅𝑟,𝑆𝑅𝐻,𝐷𝑍 (1 − 𝑒
𝑞𝑉𝑡𝑜𝑝
2𝑘𝐵𝑇)) 

(22) 

𝐽𝑏𝑜𝑡(𝑉𝑏𝑜𝑡) = 𝑞 (𝑅𝑔,𝑏𝑜𝑡 + 𝑅𝑟,𝑟𝑎𝑑,𝑏𝑜𝑡 (1 − 𝑒
𝑞𝑉𝑏𝑜𝑡
𝑘𝐵𝑇 ) + 𝑅𝑟,𝐴𝑢𝑔𝑒𝑟 (1 − 𝑒

3𝑞𝑉𝑏𝑜𝑡
2𝑘𝐵𝑇 )) (23) 
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2.5. Luminescent coupling between the cells 

An additional process taken into account is the luminescent coupling between the 

cells, as photons emitted through radiative recombinations in the top cell can cascade 

to the bottom cell. This process has been extensively documented and modeled by 

Friedman, Geisz and Steiner [40-42]. In a first approximation, regardless of the 

surface geometry, the probability of a reemitted photon to escape through the top 

surface is θesc/π so the probability of cascading to the bottom cell is 1-(θesc/π). These 

photons have energies close to the bandgap of the top cell, in the very high absorption 

region of the bottom cell absorption spectrum. We can therefore assume that all these 

photons will contribute to the photocurrent in the bottom cell. The boost to the bottom 

cell photocurrent density from the coupling is then: 

 
𝐽𝑝ℎ,𝐿𝐶,𝑏𝑜𝑡(𝑉𝑡𝑜𝑝) = 𝑞 (1 −

𝜃𝑒𝑠𝑐
𝜋
)𝑅𝑟,𝑟𝑎𝑑,𝑡𝑜𝑝𝑒

𝑞𝑉𝑡𝑜𝑝
𝑘𝐵𝑇  

(24) 

The cells being series-connected, we have J=Jtop=Jbot. Vtop and Vbot can then be 

expressed as a function of one another through: 

𝑅𝑔,𝑡𝑜𝑝 + (𝑅𝑟,𝑟𝑎𝑑,𝑡𝑜𝑝 + 𝑅𝑟,𝑆𝑅𝐻,𝑄𝑁𝑅) (1 − 𝑒
𝑞𝑉𝑡𝑜𝑝
𝑘𝐵𝑇 ) + 𝑅𝑟,𝑆𝑅𝐻,𝐷𝑍 (1 − 𝑒

𝑞𝑉𝑡𝑜𝑝
2𝑘𝐵𝑇)

= 𝑅𝑔,𝑏𝑜𝑡 − (1 −
𝜃𝑒𝑠𝑐
𝜋
)𝑅𝑟,𝑟𝑎𝑑,𝑡𝑜𝑝 (1 − 𝑒

𝑞𝑉𝑡𝑜𝑝
𝑘𝐵𝑇 ) + 𝑅𝑟,𝑟𝑎𝑑,𝑏𝑜𝑡 (1 − 𝑒

𝑞𝑉𝑏𝑜𝑡
𝑘𝐵𝑇 )

+ 𝑅𝑟,𝐴𝑢𝑔𝑒𝑟 (1 − 𝑒
3𝑞𝑉𝑏𝑜𝑡
2𝑘𝐵𝑇 ) 

(25) 

The efficiency of the tandem cell can subsequently be calculated by finding the 

maximum of J(Vtop+Vbot) corresponding to the maximum power point of the dual-

junction cell. 

3. RESULTS AND DISCUSSION 

3.1. Impact of the luminescent coupling 

FIGURE 3 shows theoretical isoefficiency contours as a function of the top cell 

thickness and the top cell bandgap with (3a) and without (3b) taking into account the 

impact of the luminescent coupling. We have considered a flat-surface dual-junction 

solar cell with no TDs (no SRH recombinations). The dashed line represents the 

optimal bandgap of the top cell as a function of its thickness. The diamond-shaped 

dots represent the particular case of a 1.6 eV, 2-μm-thick top cell whose J-V curves 

with and without luminescent coupling are detailed in FIGURE 4. The luminescent 

coupling can greatly improve the efficiency of the stack for non-optimal 

bandgap/thickness combinations by rebalancing the currents between the cells. As 

demonstrated in Ref. [43], this process greatly improves the flexibility in the design 

and the operation of such a dual-junction solar cell, as a non-optimal top cell bandgap 

or non-ideal conditions – such as high temperatures or an incident spectrum different 

from AM1.5 – will have a reduced impact on the cell performances. 

The coupling process only happens on the left of the dashed line, when a too high 

photocurrent is produced in the top cell due to its bandgap being smaller than optimal 

as shown in FIGURE 4. The operating voltage of the top cell (colored dots) will then be 

higher than the maximum power-point of the individual cell in order to match the 
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currents in the two cells, leading to an increased top cell radiative recombination 

current Jr,rad,top. A majority of the associated photons will cascade to the bottom cell. 

This additional current Jph,LC,bot in the bottom cell will reduce the imbalance between 

the currents in the two cells. In the case presented, the short-circuit current of the 

bottom cell is increased from 15.4 mA.cm-2 to 20.0 mA.cm-2, representing an 

improvement of over 30% of the tandem cell short-circuit current and, as the bottom 

cell current is the limiting one, of the final tandem cell efficiency. If the top cell 

bandgap is too high, as shown on the right of the dashed line on FIGURE 3a, this 

process cannot happen as the current will be in excess in the bottom cell. The energy 

of the luminescent photons generated by radiative recombinations in the bottom cell 

will be too low for them to be absorbed in the top cell and this cascading process will 

not occur. 

 

 
Figure 3. Maximal theoretical efficiency of a flat surface GaAsxP1-x/Si dual-junction 

solar cell as a function of the top cell bandgap and thickness, with (a) and without (b) 

taking into account the luminescent coupling. The dashed line represents the optimal 

bandgap depending on the top cell thickness. The diamond-shaped dots represent the 

conditions detailed in FIGURE 4. 
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Figure 4. J-V characteristics of the GaAsP top (full black line), Si bottom (full 

colored lines) and GaAsP/Si tandem (dashed colored lines) cells with (red lines) and 

without (blue lines) taking into account the luminescent coupling (LC). The blue and 

red dots represent the lower boundaries on the voltage of the GaAsP top cell to ensure 

current matching between the cells with and without LC. 

 

 
Figure 5. Efficiency (in red, right scale) and optimal top cell bandgap (in black, left 

scale) as a function of the top cell thickness for flat surface (full line) and ideally 

textured surface (dashed line) GaAsxP1-x /Si dual-junction solar cell. 

 

3.2. Impact of top cell thickness and surface texturing 

FIGURE 5 shows the maximal theoretical efficiency (in red, right scale) and the 

optimal top cell bandgap (in black, left scale) as a function of the top cell thickness 

Ltop for both surface geometries investigated with no TDs (no SRH recombinations). 

When Ltop is higher than 1.5 μm, the surface geometry does not only have an impact 

on the efficiency of the dual-junction cell but also on the optimal bandgap of the top 

cell. This is due to the strong increase in absorptivity in the bottom cell with a 

textured surface while the absorptivity in the top cell is only slightly impacted. This 

difference in optimal top cell bandgaps can represent up to 0.05 eV (1.73 eV for the 

textured cell versus 1.78 eV for the flat cell) for Ltop higher than 4 μm. A smaller 

bandgap in the top cell is then needed to balance the currents in the two cells. The top 

cell current is thus increased while the bottom cell current is decreased. However, for 

very thin top cells (less than 1 μm), the impact of the textured surface on the top cell 

absorptivity is way stronger and counterbalances the increase in absorptivity in the 
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bottom cell. Therefore the optimal bandgaps are nearly identical for both surface 

configurations. 

For the same reasons, the impact of the textured surface on the efficiency of the 

dual-junction solar cell is higher for top cells less than 1-μm thick, as the 

improvement in absorptivity happens in both cells. For thicker top cells, a textured 

surface has a smaller effect on the overall efficiency. The maximal theoretical 

efficiency for the highest top cell thickness investigated (5 μm) is 41.8% with a 

textured surface and 39.6% with a flat surface.  

The overall efficiency increases with the top cell thickness although it is plateauing 

above a certain thickness. For a flat surface cell, a 1-μm-thick top cell is able to 

achieve an efficiency of 37.6% while a 2.2-μm-thick achieves 39.2%. This 

respectively represents 95% and 99% of the highest theoretical efficiency calculated. 

For a textured surface, 0.7-μm and 1.6-μm top cell thicknesses are respectively able to 

achieve efficiencies of 39.7% and 41.4%, representing 95% and 99% of the highest 

calculated efficiency. A 2-μm top cell thickness as therefore been chosen for the 

following simulations. For a dual-junction solar cell with a flat surface, this represents 

a maximal theoretical efficiency of 39.1% and an optimal top cell bandgap of 

1.75 eV. With a textured surface the efficiency increases to 41.6% with a top cell 

optimal bandgap of 1.71 eV. 

3.3. Impact of the threading dislocation density 

FIGURE 6 shows the impact of the TDD, NTD on the efficiency of a GaAsxP1-x/Si dual-

junction solar cell with a 2-μm-thick top cell and flat and textured surfaces. 

FIGURE 6a) displays the theoretical maximal efficiency as a function of the top cell 

bandgap and the TDD only for a flat surface. FIGURE 6b) shows the theoretical 

maximal efficiency and the optimal bandgap as a function of the TDD for both 

surface geometries. Low densities (NTD <104 cm-2) of TDs barely have any impact on 

the maximal efficiency or the optimal bandgap. When the TDD is above 104 cm-2 

(NTD > 104 cm-2), the efficiency begins to slowly drop as a result of the reduction in 

the open-circuit voltage and fill factor of the top cell due to the increased Shockley-

Read-Hall recombination rate associated with TDs. This is clear in FIGURE 7, where 

the drop of Voc of the dual-junction solar cell is evident for NTD > 104 cm-2. However, 

the short-circuit current of the top cell is not impacted and its optimal bandgap is only 

slightly impacted up to NTD≈4×106 cm-2. When the TDD is increased above 4×106 

cm-2 (NTD > 4×106 cm-2), the diffusion length of the minority carriers in the base is 

smaller than the base thickness and the collection of photo-generated charge carriers 

begins to drop as well. The short-circuit current of the top cell is therefore reduced, as 

shown in FIGURE 8 and a lower top cell bandgap is needed to rebalance the currents 

between the two cells. 
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Figure 6. a) Maximal theoretical efficiency of a flat surface GaAsxP1-x/Si dual-

junction solar cell as a function of the top cell bandgap and threading dislocation 

density. The dashed line represents the optimal bandgap for each TDD. b) Optimal 

bandgap of the top cell and maximal theoretical efficiency of a flat surface (full line) 

and textured surface (dashed line) GaAsxP1-x/Si dual-junction solar cell as a function 

of the TDD 

 

 

Figure 7. Open-circuit voltage Voc of a flat surface GaAsxP1-x/Si dual-junction solar 

cell as a function of the top cell bandgap and threading dislocation density.  
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Figure 8. Short-circuit current density Jsc,top of the top GaAsxP1-x solar cell (flat 

surface) as a function of the top cell bandgap and threading dislocation density.  

 

 

Figure 9. Maximum power point current density Jmpp of a flat surface GaAsxP1-x/Si 

dual-junction solar cell as a function of the top cell bandgap and threading dislocation 

density. 

 

FIGURE 9 shows the current density in the dual junction cell (2-μm-thick top cell and 

flat surface) at the maximum power point (MPP). One important aspect is the impact 

of the threading dislocation density on the efficiency of the luminescent coupling. On 

the right part of the graph the MPP current density drops fast with increasing the top 

cell bandgap due to the absence of luminescent coupling, the current in the top cell 

being the limiting one due to a high top cell bandgap. On the bottom left part, the 

MPP current density is kept high thanks to the luminescent coupling. However, on the 

top left part of the graph where the TDD is high, the MPP current density drops fast in 

a similar way as in the absence of luminescent coupling. This phenomenon is due to 

the switching of the main source of recombinations in the top cell: at low TDDs, 

radiative recombinations dominate and an efficient luminescent coupling is possible. 

However, at higher TDDs, the non-radiative SRH recombinations due to the TDs take 

over the radiative ones and the luminescent coupling decreases to the point it gets 

null. Good current-matching between the cells is therefore needed for higher TDDs. 

Note that our model here only approximates the impact of the reduced diffusion 

length on the short-circuit current. In particular for high defect densities, with carrier 
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diffusion lengths shorter than the device thickness, the generation profile becomes 

very relevant for the carrier collection under short-circuit conditions. Since we work 

here with the approximation of a uniform generation rate, the results for NTD > 106cm-

2 are not a quantitatively accurate description of the impact of the dislocations. 

However, the qualitative trends are nevertheless reproduced by this simplifying 

approximation and therefore allow valuable qualitative insights for the design of 

future GaAsxP1-x/Si dual-junction solar cells. In particular, the quality of 

approximation increases with decreasing defect density. Therefore it approximates 

well for the range of material quality that is targeted in practice. A most notable result 

is that the efficiency drops very fast for NTD > 105 cm-2. We therefore conclude that a 

TDD of less than 105cm-2 should be targeted for practical devices. Further reduction 

in NTD, though having a positive impact, does not yield such an increase in efficiency, 

especially once NTD < 104 cm-2. 

3.4. Evaluation of the real-world potential of the investigated GaAsxP1-x/Si dual-

junction architecture  

Two factors strongly contributing to the losses of high efficiency industrial solar cells 

are relatively easy to integrate into our model: non-ideal EQE and surface 

recombinations at the top and bottom interfaces of both cells. A non-ideal EQE will 

mainly reduce the short-circuit current of the cells while the presence of surface 

recombinations will predominantly reduce their open-circuit voltage.  

Dominant processes responsible for a non-ideal EQE are optical losses – such as 

shading from the front grid and reflection at the top surface – and high recombination 

rates of carriers generated close to the top and bottom surfaces, in particular carriers 

generated from high energy photons (blue light) in the emitter where the doping is 

strong and thereby the recombination rate is high. In order to simulate this impact, a 

multiplication coefficient ξ can be added to the front absorptivities equations 

(8,9,11,12) of individual GaAs and Si cells so that the experimental and theoretical 

short-circuit currents fit. Though ξ only represents an average EQE and the 

wavelength dependence of the actual EQE is lost using this artifice, it allows to 

roughly simulate the impact of a non-ideal EQE on the short-circuit current. Using 

data for published results of very high efficiency Si and GaAs solar cells from Refs. 

[44,45], average EQE of ξSi=0.945 and ξGaAs=0.9 are calculated. In our dual-junction 

architecture, as most of the high-energy photons are absorbed in the GaAsxP1-x top 

cell, the absorption in the emitter of the silicon bottom cell, where the recombination 

rate is very high, will be small and a higher EQE in the silicon bottom cell is not 

incoherent.  

Surface recombinations can be simulated by directly adding a surface recombination 

rate Rr,surface(V) with an ideality factor of 1 to the flow-equilibrium equations 

(22,23,25): 

 
𝑅𝑟,𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑆𝑖/𝐺𝑎𝐴𝑠(𝑉) = 𝑅𝑟,𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑆𝑖/𝐺𝑎𝐴𝑠,𝑠𝑐 (1 − 𝑒

𝑞𝑉
𝑘𝐵𝑇) 

(26) 

Note that, once multiplied by the elementary charge q, the voltage-independent part of 

the surface recombination rate Rr,surface,Si/GaAs,sc represents the surface saturation 

current density so that qRr,surface,Si/GaAs,sc=J0e,Si/GaAs. Thereby: 

 
𝑅𝑟,𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑆𝑖/𝐺𝑎𝐴𝑠(𝑉) =

𝐽0𝑒,𝑆𝑖/𝐺𝑎𝐴𝑠

𝑞
(1 − 𝑒

𝑞𝑉
𝑘𝐵𝑇) (27) 
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Experimental data have been published in Ref. [45] for the 1kBT component of the 

saturation current density for very high efficiency GaAs solar cells. The total 

saturation current density from Ref. [45] is the sum of the radiative recombination 

current density and the surface saturation current density. Using our model adapted to 

an individual GaAs solar cell, we can calculate the radiative recombination current 

density expected from such a device. This way a surface saturation current density 

J0e,GaAs=2.75×10-6 fA.cm-2 has been estimated. As the intrinsic carrier concentration of 

GaAsxP1-x is smaller than the one of GaAs, the surface recombination parameter and 

consequently the surface saturation current density need to be normalized by the ratio 

n2
i,GaAsP/n2

i,GaAs, the surface recombination rate being linearly dependent on ni
2, in 

order to be applied to our dual-junction model. We therefore have: 

 
𝐽0𝑒,𝑡𝑜𝑝 = 𝐽0𝑒,𝐺𝑎𝐴𝑠 ×

𝑛𝑖,𝐺𝑎𝐴𝑠𝑃
2

𝑛𝑖,𝐺𝑎𝐴𝑠
2 = 2.75 × 10−6 ×

𝑛𝑖,𝐺𝑎𝐴𝑠𝑃
2

𝑛𝑖,𝐺𝑎𝐴𝑠
2 𝑓𝐴. 𝑐𝑚−2 (28) 

 

 
Figure 10. Maximal theoretical efficiency as a function of the TDD of flat surface 

(full lines) and textured surface (dashed lines) GaAsxP1-x/Si dual-junction solar cells 

with non-ideal EQE and different surface saturation current densities for the Si 

bottom cell 

 

For the GaAsxP1-x top cell, surface recombinations can easily be limited through 

standard processes – such as a window layer on the front side and a back surface field 

on the back side – so the best-in-class surface saturation current densities calculated 

for individual GaAs solar cells are probably achievable with the investigated 

architecture. However, for the silicon bottom cell, only advanced surface passivation 

techniques are able to yield very high efficiencies through low surface saturation 

current densities (around 25 fA.cm-2 for the top and bottom surfaces [46] so around 50 

fA.cm-2 in total). These advanced passivation techniques are probably not compatible 

with epitaxial growth of III-V materials on silicon. As the passivation potential of the 

III-V/Si interface is unknown, the value of 50 fA.cm-2 appears very hopeful and only 

represents an upper limit on the cell performances. In the expected case where the 

III-V/Si interface does not efficiently passivate the silicon cell front surface, it is 

preferable to use very strong emitter doping densities with a sheet resistance range of 

e.g. 30 to 50 Ω.☐-1. This will lead to a surface saturation current density for the 

bottom cell about one order of magnitude higher: in the range of 300 to 500 fA.cm-2 

[46]. As we seek to provide an upper and a lower bound to the expectable realistic 
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performances of a III-V/Si tandem junction, we have investigated the impact of two 

values for the silicon bottom cell surface saturation current density: 50 fA.cm-2 

(unlikely best case scenario with very good passivation from the III-V/Si interface) 

and 500 fA.cm-2 (highly doped silicon bottom cell emitter). 

FIGURE 10 shows the results of our model when taking into account these non-ideal 

EQEs and surface saturation currents for a GaAsxP1-x/Si dual-junction solar cell with a 

top cell thickness of 2 μm and flat and ideally textured surfaces. Noteworthy results 

are also detailed in TABLE 2. For a flat surface, maximum efficiencies of 35.2% and 

34.1% are respectively found for silicon bottom cell surface saturation current 

densities of 50 fA.cm-2 and 500 fA.cm-2 (37.5% and 36.3% with a textured surface). 

The impact of relatively high surface recombination rates due to a strongly doped 

emitter is thus moderate (up to 1.2% absolute efficiency loss). Though the 

optimization of the silicon front-side passivation should be considered at some point, 

it is not a priority as yet. Comparatively, texturing the front side presents greater 

efficiency improvements (up to 2.2%) and is of higher interest in the short term. 

These maximal efficiencies are barely impacted by the TDD up to NTD=104 cm-2. For  

NTD > 104 cm-2 the maximal efficiencies drop pretty fast and, at NTD=107 cm-2, reach a 

level comparable with or lower than the best single junction solar cells achieved so far 

[47].  

 

 

Figure 11. Open-circuit voltage Voc as a function of the TDD of flat surface (full 

lines) and textured surface (dashed lines) GaAsxP1-x/Si dual-junction solar cells with a 

1.7eV GaAsxP1-x top cell and different surface saturation current densities for the 

GaAsxP1-x top cell and the Si bottom cell. 

 

FIGURE 11 gives more insights on the impact of the surface recombinations on the 

open-circuit voltage of the tandem junction solar cell. The drop of Voc due to taking 

into consideration non-perfect EQE and surface recombinations in both cells is about 

60 mV and 120 mV for silicon bottom cell surface saturation current densities of 

respectively 50 fA.cm-2 and 500 fA.cm-2. It is to be noted that the light trapping has 

barely any impact on the open-circuit voltage, the boost in efficiency with light 

trapping being due to an increase in Jsc. 

These results show again that a TDD smaller than 105 cm-2 in the GaAsxP1-x active 

region should be targeted to harness the full potential of GaAsxP1-x/Si tandem solar 

cells. However, up to NTD=106 cm-2, efficiencies over 30% are still achievable. It 

Threading dislocation density (cm
-2

)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

E
ff

ic
ie

n
c

y
 (

%
)

22

24

26

28

30

32

34

36

38

Flat surface, J
0e,Si

= 500fA.cm
-2

Flat surface, J
0e,Si

= 50fA.cm
-2

Textured surface, J
0e,Si

= 500fA.cm
-2

Textured surface, J
0e,Si

= 50fA.cm
-2

Arthur Onno Figure 11 Top 

10
3

10
4

10
5

10
6

10
7

10
8

10
9

1.5

1.6

1.7

1.8

1.9

2

2.1

Threading dislocation density (cm
− 2

)

O
p

e
n

−
c

ir
c

u
it

 v
o

lt
a

g
e

 V
o

c
(V

)

No recombination − Flat surface

No recombination − Textured surface

J
0e,Si

=50fA.cm
− 2

− Flat surface

J
0e,Si

=50fA.cm
− 2

− Textured surface

J
0e,Si

=500fA.cm
− 2

− Flat surface

J
0e,Si

=500fA.cm
− 2

− Textured surface



 20 

should be noted that these are rough estimations as the model does not take into 

account series resistance inside the cells that would reduce the fill factor of the cell 

and henceforth its efficiency by up to a couple of absolute percent. Moreover, the 

average EQEs used here do not fully describe the collection efficiency on both ends 

of the absorption spectrum, specifically for the Si bottom cell in this case.  

3.5.Comparison with experimental data 

As III-V on Si multijunction solar cells is still an early stage technology, directly 

comparing experimental and theoretical efficiencies of GaAsxP1-x/Si dual-junction 

cells offers a limited interest as early stage devices suffer from a lot of non-idealities, 

such as high series resistance responsible for low fill factors, absence of an anti-

reflection coating leading to low short-circuit currents, poor current-matching 

between the cells or non-optimized silicon bottom cell. Moreover, GaAsxP1-x cells 

with varying bandgaps have been fabricated, making the comparison even harder. 

However, an important parameter that can easily be compared between non-optimized 

cells of different bandgaps is the bandgap-voltage offset of the top cell, defined as 

Woc=qEg-Voc. Additionally, as the open-circuit voltage of the top cell is the main 

limiting parameter for the performances of the dual-junction, studying the Woc allows 

for meaningful comparison between theoretical and experimental results. 

 

 

Figure 12. Comparison of theoretical and experimental [9,11,30,48-53] bandgap-

voltage offset Woc=qEg-Voc as a function of the TDD for GaAs and GaAsxP1-x solar 

cell. The cell is supposed to have a flat surface with no light trapping. 

 

FIGURE 12 shows our calculated Woc for GaAs and GaAs0.55P0.45, representing the 

boundaries of direct bandgap GaAsxP1-x, as a function of the TDD with and without 

surface recombinations, as introduced in section 3.4. Experimental data points from 

different research groups [9,11,30,48-53] have been added, with GaAsxP1-x and GaAs 

cells grown on different substrates such as GaP, GaP/Si, GaAs, GaAsP/GaAs and 

SiGe/Si. It is to be noted that, because of the low level of surface recombination 

assumed, surface recombinations have a very limited impact on the Woc. The 

experimental data is in strong agreement with the theoretical model. For GaAs cells, 

the full range of TDD has been investigated and reducing the Woc for low TDDs 

becomes harder as other sources of recombinations begin to dominate, hence the 

lowest Woc values concentrated around 0.4V even for TDDs around 104 cm-2. For 

GaAsxP1-x, few data points are available for a TDD below 4×106 cm-2. Breaking the 
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0.5 V Woc-limit will need further work in order to reduce the TDD by at least an order 

of magnitude.  

4. CONCLUSION 

A theoretical model has been developed for GaAsxP1-x/Si dual-junction solar cell. 

Using the blackbody theory extended to semiconductors and flow equilibrium in the 

cells, the number of parameters needed for the modeling has been reduced to a 

minimum. Impact of Auger recombinations in the Si bottom cell and threading 

dislocations-induced Shockley-Read-Hall recombinations in the top GaAsxP1-x cell 

have been taken into account. Flat and ideally textured surface geometries have also 

been investigated as well as the luminescent coupling between the cells. 

For non-optimal bandgaps, the luminescent coupling greatly increases the efficiency 

of the dual-junction cell by rebalancing the currents between the two cells. This 

strongly improves the flexibility in the design and the operations of such cells. 

However, at high TDDs, the luminescent coupling is strongly reduced as non-

radiative recombinations take over radiative recombinations. 

For tandem cells with GaAsxP1-x top and Si bottom junctions, top cell thickness and 

surface texturing have a strong impact for less than 1-μm-thick top cells. Above 1 μm 

the impact is reduced, with a calculated theoretical maximal efficiency of 39.6% and 

41.8% for a 5-μm-thick top cell with a flat and an ideally textured surface, 

respectively. 

For a 2-μm-thick top cell, the threading dislocation density (TDD) has a very limited 

impact on the cell efficiency for values up to NTD=104 cm-2. For TDD values between 

104 cm-2 and 4×106 cm-2, the efficiency is reduced because of the reduction in open-

circuit voltage and fill factor due to the increased threading-dislocation-related 

Shockley-Read-Hall recombination rate. For a density of threading dislocations above 

4×106 cm-2, the photon collection and short-circuit current are also impacted as the 

diffusion length of the minority carriers in the base is getting smaller than the 

thickness of the base. The optimal bandgap of the top GaAsxP1-x cell is therefore also 

impacted. 

By using non-ideal EQEs and short-circuit surface recombination rates extracted from 

best-in-class Si and GaAs cells data, it is possible to give a rough estimation of the 

potential of the investigated architecture. For a threading dislocation density of 

105cm-2, an efficiency of up to 33.0% could be achieved for a GaAsxP1-x/Si tandem 

cell with a flat surface, a 2-μm-thick GaAsxP1-x top cell and realistic levels of surface 

recombinations at the III-V/Si interface. The efficiency increases to 35.1% with a 

textured surface. 

Comparing the results of our model with published experimental data, a strong 

agreement is found regarding the bandgap-voltage offset Woc of the top cell as a 

function of the TDD. This proves the robustness of our model. The framework of this 

model could be used for other dual-junction architectures with different top and 

bottom cell materials. Additionally, as more experimental work is carried out on 

GaAsxP1-x/Si dual-junction architectures, this model can be used to better understand 

experimental results and design future cells. 
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Electronic Parameter Formula Source 

Bandgap 
𝐸𝑔(𝐺𝑎𝐴𝑠𝑥𝑃1−𝑥) = 

1.42𝑥 + 2.78(1 − 𝑥) − 0.19𝑥(1 − 𝑥) 
[18] 

Density of states in 

the conduction band 

𝑁𝑐(𝐺𝑎𝐴𝑠𝑥𝑃1−𝑥) = 

5.6 × 1019(0.08 − 0.039𝑥)
3
2 

Extrapolated from [19] 

and [20] 

Density of states in 

the valence band 

𝑁𝑣(𝐺𝑎𝐴𝑠𝑥𝑃1−𝑥) = 

2.9 × 1019(0.6 − 0.18𝑥)
3
2 

Extrapolated from [19] 

and [20] 

Diffusion coefficient 

of electrons 

𝐷𝑛(𝐺𝑎𝐴𝑠𝑥𝑃1−𝑥) = 

39 − 57𝑥 + 108𝑥2 

Extrapolated from [19] 

and [20] with 

corrections from [21] 

Diffusion coefficient 

of holes 

𝐷𝑝(G𝑎𝐴𝑠𝑥𝑃1−𝑥) = 

5 − 10𝑥 + 12.5𝑥2 

Extrapolated from [19] 

and [20] 

Relative permittivity ℇ𝑟(𝐺𝑎𝐴𝑠𝑥𝑃1−𝑥) = 12.9 
Extrapolated from [19] 

and [20] 

Table 1. Formulas used for the calculation of the electronic parameters of the 

materials investigated with the respective sources 
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Surface 

geometry 

J0e,bottom 

(fA.cm-2) 

 Efficiency (%) 

 NTD = 

100cm-2 

 NTD = 

104cm-2 

 NTD = 

105cm-2 

 NTD = 

106cm-2 

 NTD = 

107cm-2 

 

Flat 
50  35.2  35.1  34.1  32.0  28.7  

500  34.1  33.9  33.0  30.9  27.6  

Ideally 

textured 

50  37.5  37.4  36.3  34.0  31.0  

500  36.3  36.1  35.1  32.8  29.8  

Table 2. Efficiencies of dual-junction GaAsxP1-x/Si solar cells for different front 

surface geometries (flat and ideally textured) and silicon bottom cell surface 

saturation current densities J0e,bottom. 

 

 

 

 

 


