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Abstract. In this work, we consider boundary value problems involving either Caputo or Riemann-
Liouville fractional derivatives of order α ∈ (1, 2) on the unit interval (0, 1). These fractional derivatives
lead to non-symmetric boundary value problems, which are investigated from a variational point of view.

The variational problem for the Riemann-Liouville case is coercive on the space H
α/2
0

(0, 1) but the so-
lutions are less regular, whereas that for the Caputo case involves different test and trial spaces. The
numerical analysis of these problems requires the so-called shift theorems which show that the solutions of
the variational problem are more regular. The regularity pickup enables one to establish convergence rates
of the finite element approximations. The analytical theory is then applied to the Sturm-Liouville problem
involving a fractional derivative in the leading term. Finally, extensive numerical results are presented to
illustrate the error estimates for the source problem and eigenvalue problem.
Keywords: fractional boundary value problem, Caputo derivative, Riemann-Liouville derivative, varia-
tional formulation, finite element method, fractional Sturm-Liouville problem

1. Introduction

In this work we consider the following fractional-order source problem: find u such that

(1.1)
− 0D

α
x u+ qu = f in D = (0, 1),

u(0) = u(1) = 0,

where α ∈ (1, 2) is the order of the derivative, and 0D
α
x refers to either the left-sided Caputo or Riemann-

Liouville fractional derivative of order α defined below in (2.1) and (2.2), respectively. Here f is a function
in L2(D) or other suitable Sobolev space. The potential coefficient q ∈ L∞(0, 1) is a bounded measurable
function. Further, to illustrate the abstract theory, we consider the following fractional Sturm-Liouville
problem (FSLP): find u and λ ∈ C such that

(1.2)
−0D

α
xu+ qu = λu in D,

u(0) = u(1) = 0,

1.1. Motivation of the model (1.1). The interest in the model (1.1) is largely motivated by the studies on
anomalous diffusion processes. Diffusion is one of the most prominent and ubiquitous transport mechanisms
found in nature. At a microscopic level, it is the result of the random motion of individual particles, and
the use of the Laplace operator in the canonical diffusion model rests on a Brownian assumption on the
particle motion. However, over the last two decades, a large body of literature has shown that anomalous
diffusion, in which the mean square variance grows faster (superdiffusion) or slower (subdiffusion) than
that in a Gaussian process, offers a superior fit to experimental data observed in a number of important
practical applications, e.g., viscoelastic materials, subsurface flow and plasma physics.

The origin of non-Gaussian diffusion can be attributed to either the existence of long-range correlations
in the dynamics or the presence of anomalously large particle jumps. The former describes subdiffusion
and leads to a diffusion equation with a fractional derivative in time; see [23] and references therein for
an extensive list of applications. The latter is suitable for modeling superdiffusion processes. It can be
derived from the following observation at a microscopic level: the particle motion might be dependent, and
can frequently take very large jumps, following some heavy-tailed probability distribution. The underly-
ing stochastic process deviates significantly from the Brownian motion for the classical diffusion process.
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Instead, a Lévy flight is often adopted, where the probability distribution p(ℓ) of the particle jumps ℓ is
broad in the sense that the variance Varp[ℓ] = ∞. It is well known that in this case, the central limit
theorem cannot be applied, and the limit distribution of the arithmetic mean, instead of being a Gaussian
distribution, is an α-stable Lévy distribution. At a macroscopic level, it gives rise to a spatial fractional
diffusion equation [4, 8]

(1.3)
∂u

∂t
−Dα

θ u+ qu = f.

In the model (1.3), θ ∈ [0, 1] is a skewness parameter, and the differential operator Dα
θ is defined by

Dα
θ u = θ R

0D
α
x u+ (1− θ) R

xD
α
1 u,

where R
0D

α
x and R

xD
α
1 denote the left- and right-sided Riemann-Liouville fractional derivatives, respectively.

Physically, the fractional derivative Dα
θ u can also be interpreted as a nonlocal Fickian law [5].

The majority of experimental studies [4, 8] on the model (1.3) focuses on the case θ = 1/2, which is
suitable for symmetric processes, i.e., p(ℓ) = p(−ℓ). However, in some physical systems, e.g., geophysical
flows and magnetized plasmas [33, 7], asymmetric transport seems inherent. The extreme of asymmetric
case is θ = 0 or θ = 1, and it has been analyzed in [9]. In some models the Riemann-Liouville derivative
may cause a mass imbalance and hence it has been suggested to use the Caputo derivative to approximate
the Riemann-Liouville derivative [38, 31]; see also [20]. Numerous experimental studies have convincingly
demonstrated that the model (1.3) can provide faithful description of superdiffusion processes, and thus
has attracted considerable attentions in practice. The model (1.1) represents the steady state of the model
(1.3), and the choice of the fractional derivative rests on the asymmetric transport assumption (possibly
also with regularization).

Apart from the preceding motivations from anomalous diffusion [20], the FSLP (1.2) also arises in M.
Djrbashian’s construction on certain spaces of analytic functions [10, Chapter 1], where the eigenfunctions
of problems similar to (1.2) are used to construct a certain bi-orthogonal basis. This construction dates at
least back to [12]; see also [24] for a similar study.

1.2. Relevant studies. Because of its extraordinary modeling capability, the accurate simulation of (1.3)
has become imperative. Closed form solutions are available only in a few very limited cases, and hence
a number of numerical methods, prominently the finite difference method, have been developed for the
time-dependent superdiffusion problem (1.3). In [35], a second-order finite difference scheme based on the
Crank-Nicolson formula in time and the shifted Grünwald formula in space was proposed for the one-
dimensional diffusion problem with a Riemann-Liouville derivative in space, and its stability, consistency
and convergence was provided. See also [26, 34] for related works. In [32], Shkhanukov analyzed a finite
difference scheme for a second-order differential equation with a fractional derivative in the lower-order
term. However, the nonlocality of the fractional derivative leads to storage issues for these schemes. Re-
cently, high-order finite difference schemes like the weighted and shifted Grünwald difference have received
some interest, and the Grünwald formula on a uniform stencil leads to Toeplitz matrices, which can be
exploited for space storage reduction and a fast solution via fast Fourier transform [36].

In contrast, the theoretical analysis on (1.1) remains scarce. This is attributed to the fact that it involves
mathematical difficulties that are not present in the analysis of canonical second-order elliptic equations.
In particular, the differential operator 0D

α
x in (1.1) is nonlocal. In [14, 15], a first rigorous analysis of

the well-posedness of the weak formulation of the model (1.1) with a Riemann-Liouville derivative was
presented via their relation to fractional-order Sobolev spaces. In [14] an optimal error estimate was also
provided for the Galerkin finite element method under the assumption that the solution has full regularity,
i.e., ‖u‖Hα(D) ≤ c‖f‖L2(D). Unfortunately, such regularity is not justified in general (see Theorem 4.4
and Remark 4.2). Recently, Wang and Yang [37] generalized the analysis to the case of fractional-order
derivatives involving a variable coefficient, analyzed the regularity of the solution in Hölder spaces, and
established the well-posedness of a Petrov-Galerkin formulation. However, the discrete inf-sup condition
was not established and hence an error estimate of the discrete approximations was not provided.

The numerical analysis on the FSLP (1.2) is scarce. Al-Mdallal [2] applied the Adomian decomposition
method to the FSLP with a Riemann-Liouville derivative. However, there is no mathematical analysis of
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the numerical scheme, and it can only locate one eigenvalue at a time. In [20], a Newton type method
was proposed for computing eigenvalues to the FSLP with a Caputo derivative. However, since it involves
many solves of (possibly stiff) fractional ordinary differential equations, the method is expensive. Hence,
there seems to be no known fast, accurate and yet justified algorithm for the FSLP.

1.3. Our contributions. The goal of this work is to: (1) revisit the variational formulation for problem
(1.1) for both cases of Riemann-Liouville and Caputo fractional derivatives, (2) establish the variational
stability and shift theorems, (3) develop relevant finite element analysis and derive error estimates of
the discrete approximations expressed in terms of the smoothness of the right-hand side only, and (4)
illustrate the theoretical developments on the fractional Sturm-Liouville problem, to approximate multiple
eigenvalues simultaneously with provable error estimates. We note that the Caputo case, which is very
natural with its convenient treatment of boundary conditions, has not been previously considered in this
context. There is an obvious difficulty in the attempt to extend the Caputo derivative operator defined
below in (2.1) from functions in Cn(D) to fractional order Sobolev spaces Hs(D). In this paper we have
developed a strategy that allows us to overcome this difficulty.

In brevity, the study of problem (1.1) from a variational point of view is as follows. The Riemann-

Liouville case leads to a nonsymmetric but coercive bilinear form on the space H
α/2
0 (D), cf. Theorem 4.3.

This fact for the case q = 0 has been established earlier in [14]. The Caputo case requires a test space V
that is different from the solution space U and involves a nonlocal integral constraint. Further, we establish
the well-posedness of the variational formulations, and more importantly, we establish regularity pickup
of the weak solutions of (1.1), cf. Theorems 4.4 and 4.7, and that of the weak solutions to the adjoint
problems. We note that the solution regularity has only been assumed earlier in the error analysis of [14].
The regularity pickup is essential for proving (optimal) convergence rates for the finite element method.
Further, this technique is used for studying the finite element approximation of problem (1.2). The main
theoretical result, i.e., error estimates for the eigenvalue approximations, is stated in Theorem 6.2.

The rest of the paper is organized as follows. In Section 2 we recall preliminaries on fractional calculus,
and study fractional derivatives as operators on fractional Sobolev spaces. Then in Section 3, we explicitly
construct the strong solution representation via fractional-order integral operators. The continuous varia-
tional formulations are developed in Section 4, and their well-posedness is also established. Then in Section
5, the stability of the discrete variational formulations is studied, and error estimates of the finite element
approximations are provided. In Section 6, we illustrate the general theory with the Sturm-Liouville prob-
lem with a fractional derivative. Finally, in Section 7 some illustrative numerical results are presented to
confirm the error estimates. Throughout, the notation c, with or without subscript, refers to a generic
positive constant which can take different values at different occurrences, but it is always independent of
the solution u and the mesh size h, and n denotes a fixed positive integer.

2. Fractional differential operators on fractional Sobolev spaces

We first briefly recall two common fractional derivatives: the Caputo and Riemann-Liouville forms. For
any positive non-integer real number β with n − 1 < β < n, the (formal) left-sided Caputo fractional
derivative of order β is defined by (see, e.g., [21, pp. 92], [25])

(2.1) C
0D

β
x u = 0I

n−β
x

(
dnu

dxn

)
.

and the (formal) left-sided Riemann-Liouville fractional derivative of order β is defined by [21, pp. 70]:

(2.2) R
0D

β
x u =

dn

dxn

(
0I

n−β
x u

)
.

In the definitions (2.1) and (2.2), 0I
γ
x for γ > 0 is the left-sided Riemann-Liouville fractional integral

operator of order γ defined by

0I
γ
x f =

1

Γ(γ)

∫ x

0

(x− t)γ−1f(t)dt,
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where Γ(·) is Euler’s Gamma function defined by Γ(x) =
∫∞

0 tx−1e−tdt, x > 0. As the order γ approaches
0, we can identify the operator 0I

γ
x with the identity operator [25, pp. 65, eq. (2.89)]. The fractional

integral operator 0I
γ
x satisfies a semigroup property, i.e., for γ, δ > 0 and smooth u, there holds [21, Lemma

2.3, pp. 73]

(2.3) 0I
γ+δ
x u = 0I

γ
x 0I

δ
xu.

This identity extends to the space L2(D) by a density argument.
Clearly, the fractional derivatives C

0D
β
x and R

0D
β
x are well defined for functions in Cn[0, 1] and are related

to each other by the formula (cf. [21, pp. 91, eq. (2.4.6)])

(2.4) C
0D

β
x u =R

0D
β
x u−

n−1∑

k=0

u(k)(0)

Γ(k − β + 1)
xk−β .

This relation will be used to construct the solution representation in the Caputo case in Section 3.
The right-sided versions of fractional-order integrals and derivatives are defined analogously, i.e.,

xI
γ
1 f =

1

Γ(γ)

∫ 1

x

(x− t)γ−1f(t) dt,

and
C
xD

β
1u = (−1)nxI

n−β
1

(
dnu

dxn

)
, R

xD
β
1 u = (−1)n

dn

dxn

(
xI

n−β
1 u

)
.

The formula analogous to (2.4) is [21, pp. 91, eq. (2.4.7)]

(2.5) C
xD

β
1u =R

xD
β
1 u−

n−1∑

k=0

(−1)ku(k)(1)

Γ(k − β + 1)
(1− x)k−β .

Finally, we observe that for φ, ϕ ∈ L2(D) and β > −1, there holds
∫ 1

0

∫ x

0

(x− t)β |φ(t)ϕ(x)| dtdx ≤ 1

2

∫ 1

0

∫ x

0

(x − t)β
[
φ(t)2 + ϕ(x)2

]
dtdx

≤ 1

2(1 + β)

[
‖φ‖2L2(D) + ‖ϕ‖2L2(D)

]
.

Here the second line follows from the inequality
∫ x

0 (x − t)βdt ≤
∫ 1

0 (1 − t)βdt = 1
1+β . Therefore, Fubini’s

Theorem yields the following useful change of integration order formula (cf. also [21, Lemma 2.7]):

(2.6) (0I
β
xφ, ϕ) = (φ, xI

β
1 ϕ), for all φ, ϕ ∈ L2(D).

In order to investigate the model (1.1), we study these operators in fractional Sobolev spaces. This
is motivated by the fact that the finite element method for usual second-order elliptic problems is most
conveniently analyzed in Sobolev spaces and, in particular, optimal convergence rates with respect to the
data regularity hinge essentially on the Sobolev regularity of the solutions. Analogously, the regularity
properties of solutions to (1.1) are most naturally studied on fractional order Sobolev spaces. However,
this requires the extension of the formal definition of the fractional derivatives and to this end we first
introduce some function spaces.

For any β ≥ 0, we denote Hβ(D) to be the Sobolev space of order β on the unit interval D, and

H̃β(D) to be the set of functions in Hβ(D) whose extension by zero to R are in Hβ(R). These spaces

are characterized in [18]. For example, it is known that for β ∈ (0, 1), the space H̃β(D) coincides with

the interpolation space [L2(D), H1
0 (D)]β. It is important for our further study to note that φ ∈ H̃β(D),

β > 3/2, satisfies the boundary conditions φ(0) = φ′(0) = 0 and φ(1) = φ′(1) = 0. Analogously, we define

H̃β
L(D) (respectively, H̃β

R(D)) to be the set of functions u whose extension by zero ũ are in Hβ(−∞, 1)

(respectively, Hβ(0,∞)). Here for u ∈ H̃β
L(D), we set ‖u‖H̃β

L(D) := ‖ũ‖Hβ(−∞,1) with the analogous

definition for the norm in H̃β
R(D). Let C̃β

L(D) (respectively, C̃β
R(D)) denote the set of functions in v ∈

C∞[0, 1] satisfying v(0) = v′(0) = . . . = v(k)(0) = 0 (respectively, v(1) = v′(1) = . . . = v(k)(1) = 0) for any
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nonnegative integer k < β − 1/2. It is not hard to see that the spaces C̃β
L(D) and C̃β

R(D) are dense in the

spaces H̃β
L(D) and H̃β

R(D), respectively. Throughout, we denote by ũ the extension of u by zero to R.
The first result forms the basis for our investigation of fractional derivatives in Sobolev spaces. It was

shown in [14, Lemma 2.6], but we provide an alternative proof since the idea will be used later.

Theorem 2.1. For any β ∈ (n − 1, n), the operators R
0D

β
x u and R

xD
β
1 u defined for u ∈ C∞

0 (D) extend

continuously to operators (still denoted by R
0D

β
x u and R

xD
β
1 u) from H̃β(D) to L2(D).

Proof. We first consider the left sided case. For v ∈ C∞
0 (R), we define

(2.7) R
−∞Dβ

x v =
dn

dxn

(∫ x

−∞

(x− t)β−nv(t) dt

)
.

We note the following identity for the Fourier transform

(2.8) F
(

R
−∞Dβ

x v
)
(ω) = (−iω)βF(v)(ω), i.e., R

−∞Dβ
x v(x) = F−1

(
(−iω)βF(v)(ω)

)
,

which holds for v ∈ C∞
0 (R) (cf. [25, pp. 112, eq. (2.272)] or [21, pp. 90, eq. (2.3.27)]). It follows from

Plancherel’s theorem that

‖ R
−∞Dβ

x v‖L2(R) = ‖F
(

R
−∞Dβ

x v
)
‖L2(R) ≤ c‖v‖Hβ(R).

Thus, we can continuously extend R
−∞Dβ

x to an operator from Hβ(R) into L2(R) by formula (2.8).
We note that for u ∈ C∞

0 (D), there holds

(2.9) R
0D

β
x u = R

−∞Dβ
x ũ|D.

By definition, u ∈ H̃β(D) implies that ũ is in Hβ(R) and hence

‖ R
−∞Dβ

x ũ‖L2(R) ≤ c‖u‖H̃β(D).

Thus, formula (2.9) provides an extension of the operator R
0D

β
x defined on C∞

0 (D) to a bounded operator

from the space H̃β(D) into L2(D).
The right sided derivative case is essentially identical except for replacing (2.7) and (2.8) with

R
xD

β
∞v = (−1)n

dn

dxn

(∫ ∞

x

(t− x)β−nv(t) dt

)

and

F
(
R
xD

β
∞v

)
(ω) = (iω)βF(v)(ω).

This completes the proof of the theorem. �

Remark 2.1. We clearly have R
−∞Dβ

x v(x) = 0 for x < 1 when v ∈ C̃β
L(0, 2) is supported on the interval

[1, 2]. By a density argument this also holds for v ∈ H̃β
L(0, 2) supported on [1, 2].

The next result slightly relaxes the condition in Theorem 2.1.

Theorem 2.2. For β ∈ (n − 1, n), the operator R
0D

β
x u defined for u ∈ C̃β

L(D) extends continuously to an

operator from H̃β
L(D) to L2(D). Similarly, the operator R

xD
β
1 defined for u ∈ C̃β

R(D) extends continuously

to an operator from H̃β
R(D) to L2(D).

Proof. We only prove the result for the left sided derivative since the proof for the right sided derivative

case is identical. For a given u ∈ H̃β
L(D), we let u0 be a bounded extension of u to H̃β(0, 2), and then set

R
0D

β
x u =R

0D
β
x ũ0|D.

It is a direct consequence of Remark 2.1 that R
0D

β
x u is independent of the extension u0 and coincides with

the formal definition of R0D
β
x u when u ∈ C̃β

L(D). We obviously have

‖R0Dβ
x u‖L2(D) ≤ ‖ R

−∞Dβ
x ũ0‖L2(R) ≤ c‖u‖H̃β

L(D).

This completes the proof. �
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Remark 2.2. Even though R
0D

β
x makes sense as an operator from H̃β

L(D) into L2(D), it apparently cannot
be extended to useful larger spaces, for example, R

0D
β
x (1) = cβx

−β is not in the space L2(D), if β > 1
2 .

Accordingly, it is not obvious in what space one should seek the solutions of problem (1.1) with a Riemann-
Liouville derivative and in case of a nonzero Dirichlet boundary condition at x = 0. However, it is clear

that, at least for α ∈ (3/2, 2), the solution is not generally in H̃α(D) since such functions satisfy the
additional boundary conditions u′(0) = u′(1) = 0.

Remark 2.3. Lemma 4.1 below shows that for β ∈ (0, 1), the operators C
0D

β
x and R

0D
β
x coincide on the

space H̃1
L(D). Thus, for β ∈ (1/2, 1), the continuous extension of C

0D
β
x defined on C̃β

L(D) to H̃1
L(D) is

C
0D

β
x ≡R

0D
β
x . However, the extension of C

0D
β
x to fractional order Sobolev spaces H̃β

L(D) remains elusive.

3. Strong solutions of fractional order equations

The problem we now face is to make some sense out of the model (1.1). We start by studying the case
of q = 0. We shall construct functions whose fractional derivatives make sense and satisfy (1.1). The

following smoothing property of the fractional integral operators 0I
β
x and xI

β
1 will play a central role in

the construction. We note that the smoothing property of the operator 0I
β
x in Lp(D) spaces and Hölder

spaces was studied extensively in [28, Chapter 1, §3].

Theorem 3.1. For any s, β ≥ 0, the operators 0I
β
x and xI

β
1 are bounded maps from H̃s(D) into H̃s+β

L (D)

and H̃s+β
R (D), respectively.

Proof. The key idea of the proof is to extend f ∈ H̃s(D) to a function f̃ ∈ H̃s(0, 2) whose moments up to
(k− 1)th order vanish with k > β− 1/2. To this end, we employ orthogonal polynomials {p0, p1, . . . , pk−1}
with respect to the inner product 〈·, ·〉 defined by

〈u, v〉 =
∫ 2

1

((x − 1)(2− x))lu(x)v(x) dx,

where the integer l satisfies l > s− 1/2 so that

((x− 1)(2− x))lpi ∈ H̃s(1, 2), i = 0, . . . , k − 1.

Then we set wj = γj((x− 1)(2− x))lpj with γj chosen so that
∫ 2

1

wjpj dx = 1 so that

∫ 2

1

wjpl dx = δj,l, j, l = 0, . . . , k − 1.

Next we extend both f and wj , j = 0, . . . , k − 1 by zero to (0, 2) by setting

fe = f −
k−1∑

j=0

(∫ 1

0

fpj dx

)
wj .

The resulting function fe has vanishing moments for j = 0, . . . , k − 1 and by construction it is in the

space H̃s(0, 2). Further, obviously there holds the inequality ‖fe‖L2(0,2) ≤ C‖f‖L2(D), i.e., the extension

is bounded in L2(D). As usual, we denote by f̃e the extension of fe to R by zero.

Now for x ∈ (0, 1), there holds (0I
β
x f)(x) = (−∞Iβx f̃e)(x), where

−∞Iβx (f̃) =
1

Γ(β)

∫ x

−∞

(x− t)β−1f̃(t)dt.

Meanwhile, we have (see [25, pp. 112, eq. (2.272)] or [21, pp. 90, eq. (2.3.27)])

(3.1) F(−∞Iβx f̃e)(ω) = (−iω)−βF(f̃e)(ω)

and hence by Plancherel’s theorem

(3.2) ‖−∞Iβx f̃e‖2L2(R) =

∫

R

|ω|−2β|F(f̃e)(ω)|2 dω.
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We note that by a Taylor expansion centered at 0, there holds

e−iωx−1− (−iω)x− · · · − (−iω)k−1xk−1

(k − 1)!

=
(−iωx)k

k!
+

(−iωx)k+1

(k + 1)!
+

(−iωx)k+2

(k + 2)!
+ · · · = (−iω)k0I

k
x (e

−iωx).

Clearly, there holds |0Ikx (e−iωx)| ≤ |0Ikx (1)| = xk

k! . Since the first k moments of f̃e vanish, multiplying the

above identity by f̃e and integrating over R gives

F(f̃e)(ω) = (−iω)k
1√
2π

∫

R

0I
k
x (e

−iωx)f̃e(x) dx,

and upon noting supp(f̃e) ⊂ (0, 2), consequently,

|F(f̃e)(ω)| ≤
2k√
πk!

|ω|k‖fe‖L2(0,2) ≤ c|ω|k‖f‖L2(D).

We then have

‖−∞Iβx f̃e‖2Hβ+s(R) =

∫

R

(1 + |ω|2)β+s|ω|−2β |F(f̃e)|2dω

≤ c1‖f‖L2(D)

∫

|ω|<1

|ω|−2β+2kdω + c2

∫

|ω|>1

|ω|2s|F(f̃e)|2dω

≤ c‖f‖H̃s(D).

The desired assertion follows from this and the trivial inequality ‖0Iβx f‖Hβ+s(D) ≤ ‖−∞Iβx f̃e‖2Hβ+s(R). �

Remark 3.1. By means of the extension in Theorem 2.2, the operator 0I
β
x is bounded from H̃s

L(D) to

H̃β+s
L (D), and xI

β
1 is bounded from H̃s

R(D) to H̃β+s
R (D).

A direct consequence of Theorem 3.1 is the following useful corollary.

Corollary 3.2. Let γ be non-negative. Then the functions xγ and (1− x)γ belong to H̃β
L(D) and H̃β

R(D),
respectively, for any 0 ≤ β < γ + 1/2.

Proof. We note the relations xγ = cγ 0I
γ
x (1) and (1 − x)γ = cγ xI

γ
1 (1). The desired result follows from

Theorem 3.1 and the fact that 1 ∈ H̃δ
L(D) and 1 ∈ H̃δ

R(D) for any δ ∈ [0, 1/2). �

Now we are in a position to construct the strong solutions to problem (1.1) in the case of a vanishing
potential, i.e., q = 0. We first consider the Riemann-Liouville case. Here we fix f ∈ L2(D) and set

g = 0I
α
x f ∈ H̃α

L(D). By Theorem 2.2, the fractional derivative R
0D

α
x g is well defined. Now in view of the

semigroup property (2.3), we deduce

0I
2−α
x g = 0I

2−α
x 0I

α
x f = 0I

2
xf ∈ H̃2

L(D).

It is straightforward to check that (0I
2
xf)

′′ = f holds for smooth f and hence also for f ∈ L2(D) by a
density argument. This yields R

0D
α
x g = f . (This relation is reminiscent of the fundamental theorem in

calculus.) We thus find that

(3.3) u = −0I
α
x f + (0I

α
x f)(1)x

α−1

is a solution of problem (1.1) in the Riemann-Louiville case when q = 0 since u satisfies the correct boundary
condition and R

0D
α
x x

α−1 = (cαx)
′′ = 0.

Next we consider the Caputo case. To this end, we choose s ≥ 0 so that α+ s ∈ (3/2, 2). For smooth u
and α ∈ (1, 2), the Caputo and Riemann-Liouville derivatives are related by (cf. (2.4))

C
0D

α
x u = R

0D
α
x u− u(0)

Γ(1− α)
x−α − u′(0)

Γ(2− α)
x1−α.
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Applying this formula to g = 0I
α
x f for f ∈ H̃s(D) (in this case g is in H̃α+s

L (D) by Theorem 3.1 and
hence satisfies g(0) = g′(0) = 0) shows that C

0D
α
x g makes sense and equals R

0D
α
x g = f . Thus a solution u of

problem (1.1) in the Caputo case with q = 0 is given by

(3.4) u = −0I
α
x f + (0I

α
x f)(1)x.

Remark 3.2. The solution representation of the model (1.1) with a Caputo fractional derivative C
0D

α
x u

and low-regularity source term f ∈ H̃s(D) such that α+ s ≤ 3/2 remains unclear.

4. Variational formulations of the fractional derivative problems

In this section we develop variational formulations of problem (1.1) and establish shift theorems for the
variational solution. The shift theorems show the regularity pickup for the variational solution, which will
be essential for deriving error estimates in Section 5. We shall first consider the case q = 0 where we have
an explicit representation of the solutions, and then the case of a general q 6= 0.

4.1. Derivation of the variational formulations. The starting point of the derivation of the variational
formulations is the following lemma.

Lemma 4.1. For u ∈ H̃1
L(D) and β ∈ (0, 1),

R
0D

β
x u = 0I

1−β
x (u′).

Similarly, for u ∈ H̃1
R(D) and β ∈ (0, 1),

R
xD

β
1 u = −xI

1−β
1 (u′).

Proof. It suffices to prove the result for the left sided derivative R
0D

β
x since the right sided case is analogous.

For u ∈ C̃β
L(D), (2.4) implies that

(4.1) R
0D

β
x u = C

0D
β
x u = 0I

1−β
x (u′).

Theorem 2.2 implies that the left hand side extends to a continuous operator on H̃β
L(D) and hence H̃1

L(D)
into L2(D). Meanwhile, Theorem 3.1 implies that the right hand side of (4.1) extends to a bounded
operator from H1(D) into L2(D). The lemma now follows by a density argument. �

We next motivate the variational formulation in the Riemann-Liouville case. Upon taking u as in (3.3),

g = 0I
α
x f ∈ H̃α

L(D) and v ∈ C∞
0 (D), Lemma 4.1 implies

(4.2)
(R0D

α
x u, v) = −

(
(0I

2−α
x g)′′, v

)
=

(
(0I

2−α
x g)′, v′

)

=
(
R
0D

α−1
x g, v′

)
= (0I

2−α
x g′, v′),

where we have used the identity R
0D

α
x x

α−1 = 0 in the second step. Now the semigroup property (2.3) and
the change of integration order formula (2.6) yield

(4.3) (R0D
α
x u, v) =

(
0I

1−α/2
x g′, xI

1−α/2
1 v′

)
.

Since g ∈ H̃α
L(D) and v ∈ H̃1(D), we can apply Lemma 4.1 again to conclude

(R0D
α
x u, v) = −(R0D

α/2
x g, R

xD
α/2
1 v).

Further, by noting the identity R
0D

α/2
x xα−1 = cαx

α/2−1 ∈ L2(D) and v′ ∈ L2(D) from the assumption

v ∈ H̃1(D), we can apply the formula (2.6) to deduce

(R0D
α/2
x xα−1,RxD

α/2
1 v) = (cαx

α/2−1, xI
1−α/2
1 v′)

= (cα0I
1−α/2
x xα/2−1, v′) = c′α(1, v

′) = 0,

in view of the fact v ∈ H̃1(D). Consequently,

(4.4) A(u, v) := −(R0D
α
x u, v) = −(R0D

α/2
x u, RxD

α/2
1 v).
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Later in Lemma 4.2, we shall show that A(u, v) is a coercive and bounded bilinear form on the space

H̃α/2(D), and thus our variational formulation of problem (1.1) (with q = 0) in the Riemann-Liouville case

is to find u ∈ U := H̃α/2(D) satisfying

A(u, v) = (f, v), for all v ∈ U.

We next consider the Caputo case. Following the definition of the solution in (3.4) in Section 3, we

choose β ≥ 0 so that α + β ∈ (3/2, 2) and f ∈ H̃β(D). By Theorem 3.1, the function g = 0I
α
x f lies in

H̃α+β
L (D) and hence g′(0) = 0. Differentiating both sides of (3.4) and setting x = 0 yields the identity

u′(0) = (0I
α
x f)(1), and thus, the solution representation (3.4) can be rewritten as

u = −0I
α
x f + xu′(0) := −g(x) + xu′(0).

Meanwhile, for v ∈ C̃
α/2
R (D), (4.2) implies

−(R0D
α
x g, v) =

(
(0I

2−α
x u)′′, v

)
=

(
(0I

2−α
x g)′, v′

)
,

where we have again used the relation g′(0) = 0 in the last step. Analogous to the derivation of (4.3) and
the identities C

0D
α
x g =R

0D
α
x g and C

0D
α
x x = 0, we then have

(4.5) − (C0D
α
x u, v) = (R0D

α
x g, v) = −A(g, v) = A(u, v)− u′(0)A(x, v).

The term involving u′(0) cannot appear in a variational formulation in H̃α/2(D). To circumvent this issue,
we reverse the preceding steps and arrive at

A(x, v) =
(
0I

2−α
x 1, v′

)
= (Γ(3− α))−1(x2−α, v′) = −(Γ(2− α))−1(x1−α, v).

Hence, in order to get rid of the troublesome term −u′(0)A(x, v) in (4.5), we require our test functions to
satisfy the integral condition (x1−α, v) = 0. Thus the variational formulation of (1.1) in the Caputo case
(with q = 0) is to find u ∈ U satisfying

A(u, v) = (f, v), for all v ∈ V,

with the test space

(4.6) V =
{
φ ∈ H̃

α/2
R (D) : (x1−α, φ) = 0

}
.

We shall show that this is a well-posed problem with a unique solution (for any f ∈ L2(D)).
In the rest of this section, we discuss the stability of the variational formulations. Throughout, we

denote by U∗ (respectively V ∗) the set of bounded linear functionals on U (respectively V ), and slightly
abuse 〈·, ·〉 for duality pairing between U and U∗ (or between V and V ∗). Further, we will denote by ‖ · ‖U
the norm on the space U etc.

Remark 4.1. We have seen that when f is in H̃s, with α + s > 3/2, then the solution u constructed
by (3.4) satisfies the variational equation and hence coincides with the unique solution to the variational
equation. This may not be the case when f is only in L2(D). Indeed, for α in (1, 3/2), the function
f = x1−α is in L2(D). However, the variational solution (with q = 0) in this case is u = 0 and clearly
does not satisfy the strong-form differential equation C

0D
α
x u = f .

4.2. Variational stability in the Riemann-Liouville case. We now establish the stability of the
variational formulations. The following lemma implies the variational stability in the Riemann-Liouville
case with q = 0. The result is well known [14], and the proof is provided only for completeness.

Lemma 4.2. Let α be in (1, 2). Then there is a positive constant c = c(α) satisfying

(4.7) c‖u‖2
H̃α/2(D)

≤ −(R0D
α/2
x u, RxD

α/2
1 u) = A(u, u), for all u ∈ H̃α/2(D).
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Proof. Like in the proof of Theorem 2.1, we find for u ∈ C∞
0 (D),

(4.8)

−(R0D
α/2
x u, RxD

α/2
1 u) = −

∫ ∞

−∞

(iω)α|F(ũ)|2 dω = 2 cos((1 − α
2 )π)

∫ ∞

0

ωα|F(ũ)|2 dω

= cos((1 − α
2 )π)

∫ ∞

−∞

|ω|α|F(ũ)|2 dω.

Now suppose that there does not exist a constant satisfying (4.7). Then by the compact embedding of

H̃α/2(D) into L2(D), there is a sequence {uj} ⊂ H̃α/2(D) with ‖uj‖H̃α/2(D) = 1 convergent to some

u ∈ L2(D) and satisfying

(4.9) ‖uj‖2H̃α/2(D)
> −j(R0D

α/2
x uj ,

R
xD

α/2
1 uj).

It follows from (4.8) and (4.9), the sequence {F(ũj)} converges to zero in
∫∞

−∞
|ω|α| · |2dω, and by the

convergence of the sequence {uj} in L2(D) and Plancherel’s theorem, {F(ũj)} converges in
∫∞

−∞
| · |2dω.

Hence by the inequality (1 + s)p ≤ 1+ sp for s ≥ 0 and p ∈ [0, 1], {F(ũj)} is a Cauchy sequence and hence

converges to F(ũ) in the norm (
∫∞

−∞
(1+ω2)α/2| · |2 dω)1/2. This implies that uj converges to u in H̃α/2(D).

Now Theorem 2.1 and (4.9) imply −(R0D
α/2
x u, RxD

α/2
1 u) = 0, from which it follows that F(ũ) = ũ = 0. This

contradicts the assumption ‖uj‖H̃α/2(D) = 1 and completes the proof. �

We now return to the problem with q 6= 0 and define

a(u, v) = A(u, v) + (qu, v).

To this end, we make the following uniqueness assumption on the bilinear form.

Assumption 4.1. Let the bilinear form a(u, v) with u, v ∈ U satisfy

(a) The problem of finding u ∈ U such that a(u, v) = 0 for all v ∈ U has only the trivial solution u ≡ 0.
(a∗) The problem of finding v ∈ U such that a(u, v) = 0 for all u ∈ U has only the trivial solution v ≡ 0.

We then have the following existence result.

Theorem 4.3 (Riemann-Liouville derivative). Let Assumption 4.1 hold and q ∈ L∞(D). Then for any
given F ∈ U∗, there exists a unique solution u ∈ U solving

(4.10) a(u, v) = 〈F, v〉, for all v ∈ U.

Proof. The proof is an application of the Petree-Tartar lemma [13, pp. 469, Lemma A.38]. To this end,
we define respectively S : U → U∗ and T : U → U∗ by

〈Su, v〉 = a(u, v), and 〈Tu, v〉 = −(qu, v), for all v ∈ U.

Assumption 4.1(a) implies that S is injective. Further, Lemma 4.2 implies

‖u‖2U ≤ cA(u, u) = c(〈Su, u〉+ 〈Tu, u〉) ≤ c(‖Su‖U∗ + ‖Tu‖U∗)‖u‖U , for all u ∈ U.

Meanwhile, the compactness of T follows from the fact q ∈ L∞(D) and the compactness of U in L2(D).
Now the Petree-Tartar lemma directly implies that there exists a constant γ > 0 satisfying

(4.11) γ‖u‖U ≤ sup
v∈U

a(u, v)

‖v‖U
.

This together with Assumption 4.1(a∗) shows that the operator S : U → U∗ is bijective, i.e., there is a
unique solution of (4.10) (see, e.g. [13, Corollary A.45]). �

We now show that the variational solution u in Theorem 4.3, in fact, is a strong solution when 〈F, v〉 =
(f, v) for some f ∈ L2(D). We consider the problem

(4.12) −R
0D

α
x w = f − qu.

A strong solution is given by (3.3) with a right hand side f̃ = f − qu. It satisfies the variational equation
and hence coincides with the unique variational solution. We record this result below.



FRACTIONAL ORDER VARIATIONAL PROBLEMS 11

Theorem 4.4. Let Assumption 4.1 hold, and q ∈ L∞(D). Then with a right hand side 〈F, v〉 = (f, v)

for some f ∈ L2(D), the solution u to (4.10) is in Hα−1+β ∩ H̃α/2(D) for any β ∈ (1 − α/2, 1/2), and it
satisfies

‖u‖Hα−1+β ≤ c‖f‖L2(D).

Proof. It follows from Theorem 4.3 and Assumption 4.1 that there exists a solution u ∈ H̃α/2(D). Next

we rewrite into (4.12) with a right hand side f̃ = f − qu. In view of the fact that q ∈ L∞(D) and

u ∈ H̃α/2(D), there holds qu ∈ L2(D), and hence f̃ ∈ L2(D). Now the desired assertion follows directly
from the representation (3.3), Theorem 3.1 and Corollary 3.2. �

Remark 4.2. In general, the best possible regularity of the solution to (1.1) with a Riemann-Liouville
fractional derivative is Hα−1+β(D) for any β ∈ (1 − α/2, 1/2), due to the presence of the singular term
xα−1. The only possibility of an improved regularity is the case (0I

α
x f)(1) = 0 (for q = 0).

We note that a similar result holds for the adjoint problem: given F ∈ U∗, find w ∈ U such that

(4.13) a(v, w) = 〈v, F 〉, for all v ∈ U.

Then there exists a unique solution w ∈ U to the adjoint problem. Indeed, Assumption 4.1 and (4.11)
immediately imply that the inf-sup condition for the adjoint problem holds with the same constant. Now,
by proceeding as in (3.3), for q = 0 and a right hand side 〈F, v〉 ≡ (f, v) with f ∈ L2(D), we have

w = −xI
α
1 f + (xI

α
1 f)(0)(1− x)α−1.

This implies a similar regularity pickup, i.e., w ∈ Hα−1+β, for (4.13), provided that q ∈ L∞(D). Further,
we can repeat the arguments in the proof of Theorem 4.4 for a general q to deduce the regularity of the
adjoint solution w. We record the observation in a remark.

Remark 4.3. Let Assumption 4.1 hold, and q ∈ L∞(D). Then with a right hand side 〈F, v〉 = (f, v) for

some f ∈ L2(D), the solution w to (4.13) is in Hα−1+β(D) ∩ H̃α/2(D) for any β ∈ (1− α/2, 1/2), and it
satisfies

‖w‖Hα−1+β(D) ≤ c‖f‖L2(D).

4.3. Variational stability in the Caputo case. We next consider the variational formulation for the
Caputo derivative, which, unlike the Riemann-Liouville case, involves a test space V different from the

solution space U . We set φ0 = (1 − x)α−1. By Corollary 3.2, φ0 is in the space H̃
α/2
R (D). Further, we

observe that

(4.14) A(u, φ0) = 0, for all u ∈ U.

Indeed, for u ∈ H̃1(D), by the change of integration order formula (2.6), there holds

A(u, (1− x)α−1) = −(I
1−α/2
0 u′, RxD

α/2
1 (1− x)α−1)

= cα(u
′, I

1−α/2
1 (1− x)α/2−1) = c′α(u

′, 1) = 0.

Now for a given u ∈ U , we set v = u− γuφ0, where the linear functional γu is defined by

(4.15) γu =
(x1−α, u)

(x1−α, φ0)
.

Clearly, the norms ‖ · ‖Hα/2(D) and ‖ · ‖
H̃

α/2
R (D)

for α ∈ (1, 2) are equivalent on the space H̃
α/2
R (D). This

together with the continuity of the embedding from Hα/2(D) into L∞(D) yields

|γu| ≤ c|(x1−α, u)| ≤ c‖u‖L∞(D)‖x1−α‖L1(D) ≤ c‖u‖H̃α/2(D).

Consequently, the function v satisfies v ∈ Hα/2(D) and v(1) = 0, i.e., it is in the space V . By Lemma 4.2,

A(u, v) = A(u, u) ≥ c‖u‖2
H̃α/2(D)

.

Finally, there also holds
‖v‖

H̃
α/2
R (D)

≤ ‖u‖H̃α/2(D) + c|γu| ≤ c‖u‖H̃α/2(D),
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and thus the inf-sup condition follows immediately

(4.16) ‖u‖H̃α/2(D) ≤ c sup
v∈V

A(u, v)

‖v‖
H̃

α/2
R (D)

, for all u ∈ U.

Now given any v ∈ V , we set u = v − v(0)φ0. Obviously, u is nonzero whenever v 6= 0 and by applying
Lemma 4.2 we get

A(u, v) = A(u, u) > 0.

This implies that if A(u, v) = 0 for all u ∈ U , then v = 0. This and (4.16) imply that the corresponding
variational problem is stable, i.e., given F ∈ V ∗, there exists a unique u ∈ U satisfying

A(u, v) = 〈F, v〉, for all v ∈ V.

We next consider the case q 6= 0 and like before we assume the uniqueness of the bilinear form.

Assumption 4.2. Let the bilinear form a(u, v) with u ∈ U, v ∈ V satisfy

(b) The problem of finding u ∈ U such that a(u, v) = 0 for all v ∈ V has only the trivial solution u ≡ 0.
(b∗) The problem of finding v ∈ V such that a(u, v) = 0 for all u ∈ U has only the trivial solution v ≡ 0.

We then have the following existence result.

Theorem 4.5 (Caputo derivative). Let Assumption 4.2 hold and q ∈ L∞(D). Then for any given F ∈ V ∗,
there exists a unique solution u ∈ U to

(4.17) a(u, v) = 〈F, v〉, for all v ∈ V.

Proof. The proof is similar to that of Theorem 4.3. In this case, we define S : U → V ∗ and T : U → V ∗ by

〈Su, v〉 = a(u, v), and 〈Tu, v〉 = −(qu, v), for all v ∈ V.

Assumption 4.2(b) implies that S is injective. By applying (4.16) we get for any u ∈ U

‖u‖U ≤ c sup
v∈V

A(u, v)

‖v‖V
≤ c sup

v∈V

a(u, v)

‖v‖V
+ c sup

v∈V

−(qu, v)

‖v‖V
= c(‖Su‖V ∗ + ‖Tu‖V ∗).

The rest of the proof, including verifying the inf-sup condition,

(4.18) γ‖u‖U ≤ sup
v∈V

a(u, v)

‖v‖U
, for all u ∈ U,

is essentially identical with that of Theorem 4.3. �

To relate the variational solution to the strong solution, we require additional conditions on the potential

term q when α ∈ (1, 3/2]. We first state an “algebraic” property of the space H̃s(D), 0 < s ≤ 1, which is
reminiscent of [1, Theorem 4.39, pp. 106].

Lemma 4.6. Let 0 < s ≤ 1, s 6= 1/2. Then for any u ∈ H̃s(D) ∩ L∞(D) and v ∈ Hs(D) ∩ L∞(D), the

product uv is in H̃s(D).

Proof. Obviously, the product uv has a bounded L2(D)-norm, so it suffices to show that the H̃s(D)-
seminorm exists. First we consider the case s = 1. The trivial identity (uv)′ = u′v + uv′ yields

‖(uv)′‖L2(D) ≤ ‖v‖L∞(D)‖u′‖L2(D) + ‖u‖L∞(D)‖v′‖L2(D) < ∞,

from which the desired assertion follows immediately. For 0 < s < 1, s 6= 1/2, we use the definition of the

H̃s(D)-seminorm [22]

|v|2
H̃s(D)

=

∫ 1

0

∫ 1

0

|v(x) − v(y)|2
|x− y|1+2s

dxdy, s 6= 1/2.
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Using the splitting u(x)v(x) − u(y)v(y) = (u(x)− u(y))v(x) + u(y)(v(x)− v(y)) and the trivial inequality
(a+ b)2 ≤ 2(a2 + b2), we deduce that for s 6= 1

2 ,

|uv|2
H̃s(D)

:=

∫ 1

0

∫ 1

0

(u(x)v(x) − u(y)v(y))2

(x− y)1+2s
dxdy

≤2

∫ 1

0

∫ 1

0

(u(x) − u(y))2v(x)2 + u(y)2(v(x) − v(y))2

(x − y)1+2s
dxdy

≤2‖v‖2L∞(D)

∫ 1

0

∫ 1

0

(u(x)− u(y))2

(x − y)1+2s
dxdy + 2‖u‖2L∞(D)

∫ 1

0

∫ 1

0

(v(x) − v(y))2

(x− y)1+2s
dxdy < ∞,

where in the last line we have used the condition u ∈ H̃s(D)∩L∞(D) and v ∈ Hs(D)∩L∞(D). Therefore,

by the definition of the space H̃s(D), we have uv ∈ H̃s(D). �

Remark 4.4. The L∞(D) condition in Lemma 4.6 is only needed for s ∈ (0, 1/2), since by Sobolev
embedding theorem [1], for s > 1/2, the space Hs(D) embeds continuously into L∞(D). Lemma 4.6 can

also be extended to the case s = 1/2 as follows: if u, v ∈ L∞(D) ∩ H̃1/2(D), then uv ∈ H̃1/2(D). The only
change to the proof is that the equivalent norm then reads [22]

‖v‖2
H̃1/2(D)

=

∫ 1

0

∫ 1

0

(v(x) − v(y))2

(x− y)2
dxdy +

∫ 1

0

(
v(x)2

1− x
+

v(x)2

x

)
dx.

Now by introducing 0 ≤ β < 1/2 so that α+ β > 3/2, then we have the following theorem.

Theorem 4.7. Let s ∈ [0, 1/2) and Assumption 4.2 be fulfilled. Suppose that 〈F, v〉 = (f, v) for some

f ∈ H̃s(D) with α+ s > 3/2, and q ∈ L∞(D) ∩Hs(D). Then the variational solution u ∈ U of (4.17) is

in H̃α/2(D) ∩Hα+s(D) and it is a solution of (1.1). Further, it satisfies

‖u‖Hα+s(D) ≤ c‖f‖H̃s(D).

Proof. Let u be the solution of (4.17). We consider the problem

(4.19) − C
0D

α
x w = f − qu.

By Lemma 4.6, qu is in H̃s(D). A strong solution of (4.19) is given by (3.4) with a right hand side

f̃ = f − qu ∈ H̃s(D). Since this solution satisfies the variational problem (4.17), it coincides with u. The
regularity u ∈ Hα+s(D) is an immediate consequence of Theorem 3.1. �

Remark 4.5. Analogous to the proof of Theorem 4.7, by Theorem 1.4.1.1 of [18], Remark 3.1, and a

standard bootstrap argument, one can show that if f ∈ H̃s and q ∈ Ck[0, 1] with k > ⌊s⌋ + 1, then the
variational solution u is in Hs+α(D). We note that the solution to problem (1.1) in the Caputo case can
achieve a full regularity, which is in stark contrast with that for the Riemann-Liouville case since for the
latter, generally the best possible regularity is Hα−1+β(D), for any β ∈ (1− α/2, 1/2), due to the inherent
presence of the singular term xα−1.

Finally we discuss the adjoint problem in the Caputo case: find w ∈ V such that

a(v, w) = 〈v, F 〉, for all v ∈ U,

for some fixed F ∈ U∗. In the case of 〈F, v〉 = (f, v) for some f ∈ L2(D), the strong form reads

−R
xD

α
1 w + qw = f,

with w(1) = 0 and (x1−α, w) = 0. By repeating the steps leading to (3.4), we deduce that for q = 0, the
solution w can be expressed as

w = cf (1− x)α−1 − xI
α
1 f,

with the prefactor cf given by

cf =
(x1−α, xI1

αf)

(x1−α, (1− x)α−1)
=

(0I
α
x x

1−α, f)

B(2 − α, α)
=

1

Γ(α)
(x, f),
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where B(·, ·) refers to the Beta function. Clearly, there holds

|cf | ≤ c|(x1−α, xI
α
1 f)| ≤ c‖f‖L2(D).

Hence w ∈ H̃α/2(D) ∩ Hα−1+β(D), for any β ∈ (1 − α/2, 1/2). The case of a general q can be deduced
analogously to the proof of Theorem 4.4. Therefore, we have the following improved regularity estimate
for the adjoint solution w in the Caputo case.

Theorem 4.8. Let Assumption 4.2 hold, and q ∈ L∞(D). Then with a right hand side 〈F, v〉 = (f, v) for

some f ∈ L2(D), the solution w to (4.17) is in H̃α/2(D) ∩ Hα−1+β(D) for any β ∈ (1 − α/2, 1/2), and
further there holds

‖w‖Hα−1+β(D) ≤ c‖f‖L2(D).

Remark 4.6. The adjoint problem for both Caputo and Riemann-Liouville cases is of Riemann-Liouville
type, albeit with slightly different boundary conditions, and thus shares the same singularity.

5. Stability of Finite Element Approximation

Now we illustrate the application of the variational formulations developed in Section 4 in the numerical
approximation of problem (1.1). We shall analyze the stability of the discrete variational formulations, and
derive error estimates for the discrete approximations.

5.1. Finite element spaces and their approximation properties. We introduce a finite element
approximation based on an equally spaced partition of the interval D = (0, 1). We let h = 1/m be the
mesh size with m > 1 a positive integer, and consider the nodes xi = ih, i = 0, . . . ,m. We then define Uh

to be the set of continuous functions in U which are linear when restricted to the subintervals, [xi, xi+1],
i = 0, . . . ,m− 1. Analogously, we define Vh to be the set of functions in V which are linear when restricted
to the intervals, [xi, xi+1], i = 0, . . . ,m − 1. Clearly Uh ⊂ U and Vh ⊂ V implies that functions in either
space are continuous and vanish at 1, and functions in Uh vanish at 0 while vh ∈ Vh satisfies the integral
constraint (x1−α, vh) = 0.

We first show the approximation properties of the finite element spaces Uh and Vh.

Lemma 5.1. Let the mesh Th be quasi-uniform, and α/2 ≤ γ ≤ 2. If u ∈ Hγ(D) ∩ H̃α/2(D), then

(5.1) inf
v∈Uh

‖u− v‖Hα/2(D) ≤ chγ−α/2‖u‖Hγ(D).

Further, if u ∈ Hγ(D) ∩ V , then

(5.2) inf
v∈Vh

‖u− v‖Hα/2(D) ≤ chγ−α/2‖u‖Hγ(D).

Proof. Let Πhu ∈ Uh be the standard Lagrange finite element interpolant of u so that for any 0 ≤ s ≤ 1,
infv∈Uh

‖u− v‖Hs(D) ≤ ‖u−Πhu‖Hs(D). Then the estimate (5.1) is an immediate consequence of the local
approximation properties of the interpolant Πhu [13, Corollary 1.109, pp. 61] for p = 2 and Sobolev spaces
of integer order. The result for the intermediate fractional values follows from interpolation.

Now we study the approximation properties of the finite element space Vh. Given a function u ∈ V
we approximate it by a finite element function χ with χ(1) = 0, e.g., the interpolation function, so that
‖u − χ‖Hα/2(D) ≤ chγ−α/2‖u‖Hγ(D). Then we introduce the projection operator P : Hα/2(D) → V by

Pu = u− γu(1−x) where γu = (u, x1−α)/(x1−α, 1− x) ensures that Pu ∈ V . Now in view of the fact that
Pχ ∈ Vh and P is bounded on Hα/2(D)-norm, we get for u ∈ V

‖u− Pχ‖Hα/2(D) = ‖P (u− χ)‖Hα/2(D) ≤ c‖u− χ‖Hα/2(D),

and this completes the proof. �
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5.2. Error estimates in the Riemann-Liouville case. In this case the finite element source problem
is to find uh ∈ Uh such that

(5.3) a(uh, v) = 〈F, v〉, for all v ∈ Uh.

Here F ∈ U∗ is a bounded linear functional on the space U . In Theorem 5.3 below we establish error
estimates on the finite element approximation uh when the source term is given by 〈F, v〉 ≡ (f, v) with
f ∈ L2(D). To derive the error estimates, we first establish a stability result for the discrete variational
formulation, using a technique analogous to that of Schatz [29], from which the existence and uniqueness
of a discrete solution uh follows directly.

Lemma 5.2. Let Assumption 4.1 hold, f ∈ L2(D), and q ∈ L∞(D). Then there exists an h0 such that
for all h ≤ h0 and a constant c > 0 satisfying

(5.4) c‖zh‖U ≤ sup
v∈Uh

a(zh, v)

‖v‖U
, for all zh ∈ Uh.

For such h, the finite element problem: Find uh ∈ Uh such that

(5.5) a(uh, v) = (f, v), for all v ∈ Uh,

has a unique solution.

Proof. The existence and uniqueness of the discrete solution uh when q = 0 is an immediate consequence
of Lemma 4.2. The existence and uniqueness of the solutions to the more general (q 6= 0) discrete problem
is equivalent to the invertibility of the stiffness matrix. Since the stiffness matrix is square, its invertibility
follows from uniqueness and is a simple consequence of (5.4).

To prove (5.4), we first define Rh : U → Uh defined by A(v,Rhu) = A(v, u) for all v ∈ Uh. Céa’s lemma
and finite element duality imply that this problem is uniquely solvable with the solution Rhu satisfying

(5.6)
‖Rhu‖Hα/2(D) ≤ c‖u‖Hα/2(D),

‖u−Rhu‖L2(D) ≤ chα/2−1+β‖u‖Hα/2(D),

for β ∈ (1 − α/2, 1/2). We next use a kick-back argument. For any zh ∈ Uh ⊂ U due to the inf-sup
condition (4.11) we have

γ‖zh‖U ≤ sup
v∈U

a(zh, v)

‖v‖U
≤ sup

v∈U

a(zh, v −Rhv)

‖v‖U
+ sup

v∈U

a(zh, Rhv)

‖v‖U
.

Now using the fact that q ∈ L∞(D), the error estimate in (5.6), and the regularity pickup with β ∈
(1− α/2, 1/2) we get the following bound for the first term

sup
v∈U

a(zh, v −Rhv)

‖v‖U
= sup

v∈U

(qzh, v −Rhv)

‖v‖U

≤ c sup
v∈U

‖zh‖L2(D)‖v −Rhv‖L2(D)

‖v‖U
≤ chα/2−1+β‖zh‖U .

For the second term we use the stability estimate in (5.6) for the operator Rh to get

sup
v∈U

a(zh, Rhv)

‖v‖U
≤ c sup

v∈U

a(zh, Rhv)

‖Rhv‖U
= c sup

v∈Uh

a(zh, v)

‖v‖U
.

Now with the choice h
α/2−1+β
0 = γ/(2c) we arrive at the discrete inf-sup condition for all h < h0. �

Now we give the error estimate for the discrete approximation uh in the Riemann-Liouville case.

Theorem 5.3. Let Assumption 4.1 hold, f ∈ L2(D), and q ∈ L∞(D). Then there is an h0 such that for
all h ≤ h0, the solution uh to the finite element problem (5.5) satisfies, for any β ∈ (1− α/2, 1/2),

‖u− uh‖L2(D) + hα/2−1+β‖u− uh‖Hα/2(D) ≤ chα−2+2β‖f‖L2(D).

Proof. The proof is standard given Lemma 5.2, Lemma 5.1, and Theorem 4.4. �
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Remark 5.1. In view of classical interpolation error estimates and the stability estimate in Theorem 4.4,
the Hα/2(D)-norm estimate of the error for the FEM approximation uh is optimal, whereas the L2(D)-
norm error estimate is suboptimal, which is also confirmed by numerical experiments. The culprit of the
suboptimality is due to the limited global regularity of the adjoint solution, cf. Remark 4.3.

Remark 5.2. The analysis for the adjoint problem (4.13) is similar. The discrete inf-sup condition for
the adjoint problem holds (with the same constant) whenever (5.4) holds. Accordingly, the discrete adjoint
problem: find wh ∈ Uh such that

a(v, wh) = (v, f), for all v ∈ Uh,

for a given right hand side f ∈ L2(D) is uniquely solvable when h < h0 and satisfies for any β ∈ (1 −
α/2, 1/2)

‖w − wh‖U ≤ chα/2−1+β‖w‖Hα−1+β(D).

5.3. Error estimates in the Caputo case. In the case of the Caputo derivative, the finite element
source problem is to find uh ∈ Uh satisfying

(5.7) a(uh, v) = 〈F, v〉, for all v ∈ Vh.

Here F ∈ V ∗ is a bounded linear functional on the space V . The existence and uniqueness of the discrete
solution uh even when q = 0 is not as immediate as the Riemann-Liouville case. The discrete inf-sup
condition in this “simplest” case q = 0 is stated in the lemma below.

Lemma 5.4. There is an h0 > 0 and c independent of h such that for all h ≤ h0 and wh ∈ Uh

‖wh‖U ≤ c sup
vh∈Vh

A(wh, vh)

‖vh‖V
.

Proof. Let wh be in Uh and set v = wh−γwh
φ0 (recall φ0 = (1−x)α−1 ∈ H̃

α/2
R (D)). The argument leading

to (4.16) implies A(wh, v) ≥ c‖wh‖2H̃α/2(D)
and consequently, there holds

(5.8) ‖v‖
H̃

α/2
R (D)

≤ c‖wh‖H̃α/2(D).

However, since φ0 is not piecewise linear, v /∈ Vh. Next we set ṽh = Πhv = wh − γwh
Πhφ0, where Πh

denotes the Lagrangian interpolation operator. We clearly have

‖v − ṽh‖Hα/2(D) = |γwh
|‖(I −Πh)φ0‖Hα/2(D)

≤ c|γwh
|hα/2−1+β‖φ0‖H̃α−1+β

R (D)

for any β ∈ (1− α/2, 1/2) by Lemma 3.2. Now in order to obtain a function vh in the space Vh, we apply

the projection operator P : H̃α/2(D) → V defined in the proof of Lemma 5.1 to ṽh, and set vh = P ṽh. By
the stability of the operator P in Hα/2(D) and using |γwh

| ≤ c‖wh‖U , we deduce

‖v − vh‖Hα/2(D) = ‖P (v − ṽh)‖Hα/2(D) ≤ chα/2−1+β‖wh‖U .
This together with (5.8) and the triangle inequality also implies that ‖vh‖Hα/2(D) ≤ c‖wh‖U . Thus,

‖wh‖U ≤ cA(wh, v)

‖wh‖U
≤ cA(wh, vh)

‖wh‖U
+

cA(wh, v − vh)

‖wh‖U

≤ cA(wh, vh)

‖wh‖U
+ c1h

α/2−1+β‖wh‖U .

By taking h0 so that c1h
α/2−1+β
0 ≤ 1/2 we get

‖wh‖U ≤ cA(wh, vh)

‖wh‖U
≤ cA(wh, vh)

‖vh‖V
from which the lemma immediately follows. �

Now we can show the inf-sup condition for the bilinear form a(·, ·) with a general q defined on Uh × Vh.
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Lemma 5.5. Let Assumption 4.2 be fulfilled. Then there is an h0 > 0 such that for all h ≤ h0

‖wh‖U ≤ c sup
vh∈Vh

a(wh, vh)

‖vh‖V
, for all wh ∈ Uh.

Proof. We define Rh : U → Uh defined by A(Rhu, v) = A(u, v) for all v ∈ Vh. That Rh satisfies (5.6)
follows easily from Lemma 5.4. The remainder of proof is similar to that for Lemma 5.2 but replacing
(4.11) with (4.18). �

Finally we state an error estimate on the finite element approximation uh when the source term is given

by 〈F, v〉 ≡ (f, v) with f ∈ H̃s(D) with s ∈ [0, 1/2) such that α+ s > 3/2.

Theorem 5.6. Let Assumption 4.2 hold, f ∈ H̃s(D), and q ∈ L∞(D)∩ H̃s(D) for some s ∈ [0, 1/2) such
that α + s > 3/2. Then there is an h0 such that for h ≤ h0, the finite element problem: Find uh ∈ Uh

satisfying

(5.9) a(uh, v) = (f, v), for all v ∈ Vh,

has a unique solution. Moreover, the solution uh satisfies that for any β ∈ [0, 1/2)

‖u− uh‖H̃α/2(D) ≤ chmin(α+s,2)−α/2‖f‖H̃s(D),

‖u− uh‖L2(D) ≤ chmin(α+s,2)−1+β‖f‖H̃s(D).

Proof. According to Theorem 4.7, the solution u to (5.9) is in Hα+s(D) ∩ H̃α/2(D). By Lemma 5.5, the

discrete solution uh is well defined. The H̃α/2(D)-norm estimate of the error e = uh−u follows from Céa’s
lemma (cf. e.g. [13, pp. 96, Lemma 2.28]). To derive the L2(D) estimate, we appeal again to the Nitsche’s
trick and introduce the adjoint problem: find w ∈ V such that

a(v, w) = (v, e), for all v ∈ U.

By Theorem 4.8, the solution w lies in the space H̃α−1+β
R (D) for any β ∈ [0, 1/2), and satisfies the a priori

estimate ‖w‖Hα−1+β(D) ≤ c‖e‖L2(D). The rest of the proof is identical with that of Theorem 5.3. �

Remark 5.3. Like in the case of Riemann-Liouville fractional derivative, the L2(D)-norm of the error is
suboptimal due to the insufficient regularity of the adjoint solution, cf. Theorem 4.8.

6. Fractional Sturm-Liouville problem

In this section we apply the variational formulation in Section 4 to the FSLP (1.2). The weak formulation
of the eigenvalue problem (1.2) reads: find u ∈ U and λ ∈ C such that

(6.1) a(u, v) = λ(u, v), for all v ∈ V.

Accordingly, the discrete problem is given by: find an approximation uh ∈ Uh and λh ∈ C such that

(6.2) a(uh, v) = λh(uh, v), for all v ∈ Vh.

Following [3], we introduce the operator T : L2(D) → H̃α/2(D) defined by

(6.3) Tf ∈ H̃α/2(D), a(Tf, v) = (f, v), for all v ∈ V.

Obviously, T is the solution operator of the source problem (1.1). According to Theorems 4.4 and 4.7, the
solution operator T satisfies the following smoothing property:

‖Tf‖Hα/2(D) ≤ c‖f‖L2(D).

Since the space H̃α/2(D) is compactly embedded into L2(D), we deduce that T : L2(D) → L2(D) is a
compact operator. Meanwhile, by viewing T as an operator on the space Hα/2(D) and using the regularity
pickup established in Theorems 4.4 and 4.7 we can show that T : Hα/2(D) → Hα/2(D) is compact. Then
it follows immediately from (6.3) that (λ, u) is an eigenpair of (6.1) if and only if

Tu = λ−1u, u 6= 0,
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i.e., if and only if (µ = 1/λ, u) is an eigenpair of the operator T . With the help of this correspondence, the
properties of the eigenvalue problem (6.1) can be derived from the spectral theory for compact operators
[11]. Let σ(T ) ⊂ C be the set of all eigenvalues of T (or its spectrum), which is known to be a countable
set with no nonzero limit points. Due to Assumption 4.1/4.2 on the bilinear form a(u, v), zero is not an
eigenvalue of T . Furthermore, for any µ ∈ σ(T ), the space N(µI − T ), where N denotes the null space, of
eigenvectors corresponding to µ is finite dimensional.

Now let Th : Uh → Uh be a family of operators for 0 < h < 1 defined by

(6.4) Thf ∈ Uh, a(Thf, v) = (f, v), for all v ∈ Vh.

Next we apply the abstract approximation theory for the spectrum of variationally formulated eigenvalue
problems [3, Section 8]. To this end, we need to establish the approximation properties of (6.2). Let
λ−1 ∈ σ(T ) be an eigenvalue of T with algebraic multiplicity m. Since Th → T in norm, m eigenvalues

λ1
h, . . . , λ

m
h of Th will converge to λ. The eigenvalues λj

h are counted according to the algebraic multiplicity

of µj
h = 1/λj

h as eigenvalues of Th. Further, we define the following finite dimensional spaces

M(λ) =
{
u : ‖u‖Hα/2(D) = 1 a generalized eigenvector of (6.1) corresponding to λ

}
,

M∗(λ) =
{
u : ‖u‖Hα/2(D) = 1 a generalized adjoint eigenvector of (6.1) corresponding to λ

}
,

and the following quantities:

ǫh = ǫh(λ) = sup
u∈M(λ)

inf
v∈Uh

‖u− v‖Hα/2(D),

ǫ∗h = ǫ∗h(λ) = sup
u∈M∗(λ)

inf
v∈Vh

‖u− v‖Hα/2(D).

Then we have the following estimates on ǫh and ǫ∗h.

Lemma 6.1. Let r ∈ (0, α/2− 1/2). Then the following error bounds for ǫh and ǫ∗h are valid.

(a) For Caputo derivative: if Assumption 4.2 holds, q ∈ H̃s(D) ∩ L∞(D), 0 ≤ s ≤ 1, such that
α+ s > 3/2, then ǫh ≤ chmin(α+s,2)−α/2 and ǫ∗h ≤ Chr.

(b) For Riemann-Liouville derivative: if Assumption 4.1 holds, then ǫh ≤ chr and ǫ∗h ≤ Chr.

Proof. The needed regularity for the Caputo case is a simple consequence of Theorem 4.7. We consider

the only the case q ∈ H̃s(D)∩L∞(D). Since the right hand side of the problem (1.2) is λu ∈ H̃α/2(D), we

have u ∈ H̃α/2(D)∩Hα+s(D) in view of Theorem 4.7. Next let Πhu ∈ Uh be the finite element interpolant
of u. Then by Lemma 5.1 we deduce that

‖u−Πhu‖H̃γ(D) ≤ hmin(α+s,2)−γ‖u‖Hmin(α+s,2)(D)

for any 0 ≤ γ ≤ 1. Therefore, by ‖u‖Hα+s(D) ≤ c, we get

ǫh = sup
u∈M(λ)

inf
v∈Uh

‖u− v‖Hα/2(D) ≤ sup
u∈M(λ)

‖u−Πhu‖Hα/2(D) ≤ chmin(α+s,2)−α/2.

The estimate ǫ∗h follows from Theorem 4.8. The Riemann-Liouville case follows analogously from regularity
estimates for the source problem and adjoint source problem in Theorem 4.4 and Remark 4.2, respectively.

�

Now we state the main result for the approximation error of the eigenvalues of problem (1.2). It follows
immediately from [3, Theorem 8.3 and pp. 683–714] and Lemma 6.1.

Theorem 6.2. For µ ∈ σ(T ), let δ be the smallest integer k such that N((µ − T )k) = N((µ − T )k+1).

Suppose that for each h there is a unit vector wj
h satisfying ((λj

h)
−1 − Th)

kwj
h = 0, j = 1, . . . ,m for some

integer k ≤ δ.

(a) For Caputo derivative, if Assumption 4.2 holds, q ∈ H̃s(D) ∩ L∞(D) for some 0 ≤ s ≤ 1 and

α+ s > 3/2, then for any γ < min(α+ s, 2)− 1/2, there holds |λ− λj
h| ≤ chγ/δ.

(b) For Riemann-Liouville derivative, if Assumption 4.1 holds, and q ∈ L∞(D), then for any γ < α−1,

there holds |λ− λj
h| ≤ chγ/δ.
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Remark 6.1. In the case of a zero potential q ≡ 0, it is known that the eigenvalues λ are zeros of the
Mittag-Leffler functions Eα,α(−λ) and Eα,2(−λ), cf. (7.1) below, for the Riemann-Liouville and Caputo
case, respectively. This connection implies that all eigenvalues are simple [27, Section 4.4], and hence the
multiplicity δ = 1. In our computations we observed that for all potentials q the eigenvalues are simple.

Remark 6.2. The (theoretical) rate of convergence for the Riemann-Liouville case is lower than that
for the Caputo case. This is due to limited smoothing property for the Riemann-Liouville derivative op-
erator. It naturally suggests that an adaptive procedure involving a proper grid refinement or enriching
the solution space should be used. Nonetheless, a second-order convergence is observed for the eigenvalue
approximations, i.e., the abstract theory gives only suboptimal convergence rates.

7. Numerical experiments and discussions

In this section we present some numerical experiments to illustrate the theory, i.e., the sharpness of the
finite element error estimates, and the difference between the regularity estimates for the Riemann-Liouville
and Caputo derivatives.

7.1. Source problem. We consider the following three examples:

(a) The source term f = x(1− x) belongs to H̃s(D) for any s ∈ [1, 3/2).

(b) The source term f = 1 belongs to H̃s(D) for any s ∈ [0, 1/2).

(c) The source term f = x−1/4 belongs to the space H̃s(D) for any s ∈ [0, 1/4).

The computations were performed on uniform meshes of mesh sizes h = 1/(2k × 10), k = 1, 2, . . . , 7.
In the examples, we set the potential term q to zero, so that the exact solution can be computed directly
using the solution representations (3.3) and (3.4). For each example, we consider three different α values,
i.e., 7/4, 3/2 and 4/3, and present the L2(D)- and Hα/2(D)-norm of the error e = u− uh.

7.1.1. Numerical results for example (a). The source term f is smooth, and the true solution u is given by

u(x) =

{ 1
Γ(α+2) (x

α−1 − xα+1)− 2
Γ(α+3) (x

α−1 − xα+2), Riemann-Liouville case,

1
Γ(α+2) (x− xα+1)− 2

Γ(α+3) (x− xα+2), Caputo case.

According to Theorems 4.4 and 4.7, the solution u belongs to H̃α−1+β
L (D) and Hα+1+β(D) for any β ∈

(1− α/2, 1/2) for the Riemann-Liouville and Caputo case, respectively. In particular, in the Caputo case,
the solution u belongs to H2(D). Hence, in the Riemann-Liouville case, the finite element approximations
uh would converge at a rate O(hα/2−1/2) and O(hα−1) in Hα/2(D)-norm and L2(D)-norm, respectively,
whereas that for the Caputo case would be at a rate O(h2−α/2) and O(h3/2), respectively. We note that
despite the good regularity of the source term f , the Riemann-Liouville solution is nonsmooth, due to the
presence of the term xα−1, and hence the numerical scheme can only converge slowly in the Hα/2(D)-
norm. The numerical results are shown in Tables 1 and 2, where the number in the bracket under the
column rate is the theoretical convergence rate. The results indicate that the Hα/2(D) estimates are fully
confirmed; however, the L2(D) estimates are suboptimal. The actual convergence rate in L2(D)-norm is
one half order higher than the theoretical one, for both fractional derivatives, which agrees with Remark
5.1. Intuitively, this might be explained by the structure of the adjoint problem: The adjoint solution

contains the singular term (1− x)α−1, with a coefficient (xI
α
1 e)(0) =

1
Γ(α)

∫ 1

0 xα−1e(x)dx for the Riemann-

Liouville case (respectively 1
Γ(α) (x, e) for the Caputo case); the error function e has large oscillations mainly

around the origin, which is however compensated by the weight xα−1 in the Riemann-Liouville case (the
weight is x in the Caputo case) in the integral, and thus the coefficient is much smaller than the apparent
L2(D)-norm of the error. This can be numerically confirmed: the coefficient tends much faster to zero
than the L2(D)-norm of the error, cf. Table 3, and hence in the adjoint technique for deriving the L2-error
estimate, the term xα−1 plays a less significant role than that in the primal problem.
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Table 1. Numerical results for example (a) with a Riemann-Liouville fractional deriva-
tive, f = x(1− x), mesh size h = 1/(2k × 10).

α k 1 2 3 4 5 6 7 rate

7/4 L2-norm 8.53e-3 6.43e-3 4.91e-3 3.77e-3 2.90e-3 2.23e-3 1.72e-3 1.25 (0.75)

Hα/2-norm 1.70e-4 7.05e-5 2.95e-5 1.24e-5 5.21e-6 2.19e-6 9.21e-7 0.39 (0.38)

3/2 L2-norm 1.08e-3 5.40e-4 2.70e-4 1.35e-4 6.74e-5 3.37e-5 1.68e-5 1.00 (0.50)

Hα/2-norm 2.85e-2 2.39e-2 2.00e-2 1.68e-2 1.41e-2 1.18e-2 9.82e-3 0.26 (0.25)

4/3 L2-norm 3.50e-3 1.96e-3 1.10e-3 6.16e-4 3.46e-4 1.94e-4 1.09e-4 0.83 (0.33)

Hα/2-norm 5.40e-2 4.79e-2 4.25e-2 3.76e-2 3.33e-2 2.93e-2 2.58e-2 0.18 (0.17)

Table 2. Numerical results for example (a) with a Caputo fractional derivative, f =
x(1 − x), mesh size h = 1/(2k × 10).

α k 1 2 3 4 5 6 7 rate

7/4 L2-norm 2.45e-5 5.98e-6 1.48e-6 3.72e-7 9.38e-8 2.37e-8 6.00e-9 2.00 (1.50)

Hα/2-norm 1.50e-3 6.88e-4 3.15e-4 1.44e-4 6.62e-5 3.04e-5 1.39e-5 1.13 (1.13)

3/2 L2-norm 4.93e-5 1.25e-5 3.14e-6 7.92e-7 1.99e-7 4.99e-8 1.25e-8 1.99 (1.50)

Hα/2-norm 8.84e-4 3.69e-4 1.54e-4 6.48e-5 2.72e-5 1.14e-5 4.81e-6 1.25 (1.25)

4/3 L2-norm 7.40e-5 1.85e-5 4.62e-6 1.16e-6 2.89e-7 7.24e-8 1.81e-8 2.00 (1.50)

Hα/2-norm 6.24e-4 2.43e-4 9.54e-5 3.77e-5 1.49e-5 5.91e-6 2.35e-6 1.34 (1.33)

Table 3. The coefficient (xI
α
1 e)(0) for Riemann-Liouville case (respectively 1

Γ(α) (x, e) for

the Caputo case) in the adjoint solution representation for example (a), with α = 3/2,
mesh size h = 1/(2k × 10).

k 1 2 3 4 5 6 7

R.-L. 3.65e-3 5.09e-4 6.98e-5 9.46e-6 1.27e-6 1.70e-7 2.26e-8
Caputo 1.76e-3 2.24e-4 2.85e-5 3.59e-6 4.53e-7 5.69e-8 7.13e-9

7.1.2. Numerical results for example (b). In this example, the source term f is smooth, but does not satisfy

the zero boundary condition. It belongs to H̃s(D), s ∈ [0, 1/2). The exact solution u is given by

u(x) =

{
cα(x

α−1 − xα), Riemann-Liouville case,

cα(x− xα), Caputo case,

with the constant cα = 1
Γ(α+1) . The numerical results are shown in Tables 4 and 5 for the Riemann-Liouville

and Caputo case, respectively. In the Riemann-Liouville case, the convergence rates are identical with that
for example (a). This is attributed to the fact that the regularity of the solution u generally cannot go

beyond H̃α−1+β
L (D) for β ∈ (1 − α/2, 1/2). In contrast, in the Caputo case, for α ≥ 3/2, we observe

identical convergence rates as example (a), whereas for α = 4/3, the convergence is slower due to limited
smoothing induced by the fractional differential operator. Like before, for either fractional derivative, the
empirical convergence in L2(D)-norm is better than the theoretical one by one-half order.

7.1.3. Numerical results for example (c). In this example, the source term f is singular at the origin, and

it belongs to the space H̃s(D) for any s ∈ [0, 1/4). The exact solution u is given by

u(x) =

{
cα(x

α−1 − xα−1/4), Riemann-Liouville case,

cα(x− xα−1/4), Caputo case.

with the constant cα = Γ(3/4)
Γ(α+3/4) . The numerical results are shown in Tables 6 and 7. In the Riemann-

Liouville case, the same convergence rates are observed, cf. Tables 1 and 4, concurring with Remark 4.2
and earlier observations. In the Caputo case, due to the lower regularity of the source term f , the numerical
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Table 4. Numerical results for example (b) with a Riemann-Liouville fractional deriva-
tive, f = 1, mesh size h = 1/(2k × 10).

α k 1 2 3 4 5 6 7 rate

7/4 L2-norm 1.07e-3 4.31e-4 1.77e-4 7.37e-5 3.08e-5 1.29e-5 5.43e-6 1.27 (0.75)

Hα/2-norm 5.26e-2 3.90e-2 2.94e-2 2.24e-2 1.72e-2 1.32e-2 1.01e-2 0.40 (0.38)

3/2 L2-norm 6.44e-3 3.18e-3 1.58e-3 7.89e-4 3.94e-4 1.97e-4 9.84e-5 1.01 (0.50)

Hα/2-norm 1.69e-1 1.40e-1 1.17e-1 9.82e-2 8.22e-2 6.87e-2 5.73e-2 0.26 (0.25)

4/3 L2-norm 2.05e-2 1.15e-2 6.42e-3 3.60e-3 2.02e-3 1.13e-3 6.35e-4 0.84 (0.33)

Hα/2-norm 3.17e-1 2.80e-1 2.48e-1 2.20e-1 1.94e-1 1.71e-1 1.50e-1 0.18 (0.17)

Table 5. Numerical results for example (b) with a Caputo fractional derivative, f = 1,
mesh size h = 1/(2k × 10).

α k 1 2 3 4 5 6 7 rate

7/4 L2-norm 1.74e-4 4.21e-5 1.03e-5 2.51e-6 6.16e-7 1.51e-7 3.74e-8 2.00 (1.50)

Hα/2-norm 8.14e-3 3.74e-3 1.72e-3 7.91e-4 3.63e-4 1.67e-4 7.65e-5 1.12 (1.13)

3/2 L2-norm 1.88e-4 4.84e-5 1.24e-5 3.17e-6 8.12e-7 2.07e-7 5.29e-8 1.97 (1.50)

Hα/2-norm 4.81e-3 2.12e-3 9.33e-4 4.08e-4 1.78e-4 7.76e-5 3.37e-5 1.20 (1.25)

4/3 L2-norm 2.48e-4 6.99e-5 1.97e-5 5.53e-6 1.55e-6 4.36e-7 1.22e-7 1.83 (1.33)

Hα/2-norm 3.44e-3 1.55e-3 6.96e-4 3.12e-4 1.40e-4 6.26e-5 2.80e-5 1.16 (1.17)

solution uh converges slower as the fractional order α approaches 1, but the empirical convergence behavior
still agrees well with the theoretical prediction.

Table 6. Numerical results for example (c) with a Riemann-Liouville fractional derivative,
f = x−1/4, mesh size h = 1/(2k × 10).

α k 1 2 3 4 5 6 7 rate

7/4 L2-norm 1.65e-3 6.61e-4 2.69e-4 1.11e-4 4.62e-5 1.93e-5 8.09e-6 1.28 (0.75)

Hα/2-norm 8.07e-2 5.94e-2 4.45e-2 3.38e-2 2.57e-2 1.97e-2 1.51e-2 0.40 (0.38)

3/2 L2-norm 9.31e-3 4.60e-3 2.29e-3 1.14e-3 5.68e-4 2.83e-4 1.41e-4 1.01 (0.50)

Hα/2-norm 2.44e-1 2.03e-1 1.69e-1 1.41e-1 1.18e-1 9.89e-2 8.25e-2 0.26 (0.25)

4/3 L2-norm 2.88e-2 1.61e-2 9.02e-3 5.06e-3 2.84e-3 1.59e-3 8.93e-4 0.84 (0.33)

Hα/2-norm 4.44e-1 3.94e-1 3.49e-1 3.09e-1 2.73e-1 2.41e-1 2.11e-1 0.18 (0.17)

Table 7. Numerical results for example (c) with a Caputo fractional derivative, f =
x−1/4, mesh size h = 1/(2k × 10).

α k 1 2 3 4 5 6 7 rate

7/4 L2-norm 3.04e-4 7.67e-5 1.93e-5 4.88e-6 1.23e-6 3.11e-7 7.86e-8 1.99 (1.50)

Hα/2-norm 1.21e-2 5.85e-3 2.82e-3 1.35e-3 6.46e-4 3.08e-4 1.46e-4 1.07 (1.13)

3/2 L2-norm 3.93e-4 1.09e-4 3.06e-5 8.69e-6 2.49e-6 7.21e-7 2.10e-7 1.81 (1.25)

Hα/2-norm 6.84e-3 3.48e-3 1.75e-3 8.82e-4 4.43e-4 2.22e-4 1.11e-4 0.99 (1.00)

4/3 L2-norm 4.31e-4 1.18e-4 3.33e-5 9.83e-6 3.01e-6 9.47e-7 3.05e-7 1.70 (1.08)

Hα/2-norm 2.60e-3 1.43e-3 7.72e-4 4.13e-4 2.20e-4 1.17e-4 6.19e-5 0.90 (0.92)

7.2. Eigenvalue problem. In this part we illustrate the FSLP with the following three potentials:

(a) a zero potential q1 = 0;
(b) a smooth potential q2 = 20x3(1− x)e−x;
(c) a discontinuous potential q3 = −2xχ[0,1/5] + (−4/5 + 2x)χ[1/5,2/5] + χ[3/5,4/5].
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The potentials q1 and q2 are smooth and belong to the space H̃1(D), while the potential q3 is piecewise

smooth and belongs to the space H̃s(D) for any s < 1/2.
First, we note that the FSLP (1.2) is closely connected with the Mittag-Leffler function [21]

(7.1) Eα,β(z) =

∞∑

k=0

zk

Γ(kα+ β)
, z ∈ C.

It is well known that problem (1.2) for q(x) ≡ 0 has infinitely many eigenvalues λ that are zeros of
the Mittag-Leffler functions Eα,2(−λ) and Eα,α(−λ) for the Caputo and Riemann-Liouville derivatives,
respectively (see [12, 24] for related discussions). This can be numerically verified directly, cf. Fig. 1.
However, computing zeros of the Mittag-Leffler function in a stable and accurate way remains a very
challenging task (in fact, evaluating the Mittag-Leffler function Eα,β(z) to a high accuracy is already
highly nontrivial [16, 17, 30]), and further, it does not cover the interesting case of a general potential q.
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Figure 1. Zeros of Mittag-Leffler function Eα,2(−λ) and the variational eigenvalues for
q = 0 for α = 4/3. The red dots are the eigenvalues computed by the finite element
method, and the contour lines plot the value of the functions log |Eα,2(−λ)| (left) and
log |Eα,α(−λ)| (right) over the complex domain. The red dots lie in the deep blue wells,
which correspond to zeros of the Mittag-Leffler functions.

Like before, we divide the domain (0, 1) into a uniform mesh with a mesh size h. We measure the
accuracy of an FEM approximation λh, by the absolute error, i.e., e(λh) = |λ − λh| and the reference
value λ is computed on a very refined mesh with h = 1/10240 and checked against that computed by the
quasi-Newton method developed in [20]. The resulting discrete eigenvalue problems were solved by built-in
MATLAB function eigs with a default tolerance. Below we shall discuss the Caputo and Riemann-Liouville
cases separately, since their eigenfunctions have very different regularity, and one naturally expects that
the approximations exhibit different convergence behavior.

7.2.1. Caputo derivative case. By the solution theory in Section 4, for the potentials q1 and q2, the eigen-

functions are in the space Hα+1(D) ∩ H̃α/2(D), whereas for the potential q3, the eigenfunctions lie in the

space Hα+s(D) ∩ H̃α/2(D) for any s ∈ [0, 1/2). Hence they can be well approximated on uniform meshes.
Further, the regularity predicts a convergence rate O(hmin(α+s,2)−1/2) (s ∈ [0, 1] is an exponent such that

q ∈ H̃s(D)) for the approximate eigenvalues, with a best possible rate O(h3/2).
In Tables 8-10 we present the errors of the first ten eigenvalues for α = 5/3, where the empirical

convergence rates are also shown. For all three potentials, there are only two real eigenvalues, and the rest
appears as complex conjugate pairs. All the computed eigenvalues are simple. Numerically, a second-order
convergence is observed for all the eigenvalues. The presence of a potential term influences the errors very
little: the errors are almost identical for all three potentials. The empirical rate is one half order higher
than the theoretical one. The mechanism of “superconvergence” still awaits explanation.
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These observations were also confirmed by the numerical results for other α values; see Fig. 2 for an
illustration for the potential q3. As the α value increases towards two, the number of real eigenvalues (which
appear always in pair) also increases accordingly. The overall convergence seems relatively independent of
the α values, except for α = 7/4, for which there are four real eigenvalues. Here the convergence rates
for the first and second eigenvalues are different, with one slightly below two and the other slightly above
two; see also Table 11. A similar but less dramatic difference can be observed for the third and fourth
eigenvalues. The rest of the eigenvalues exhibits a second-order convergence. Hence the abnormality is
only observed for the “newly” emerged real eigenvalues.

Table 8. The errors of the first ten eigenvalues for α = 5/3, q1, Caputo derivative, mesh
size h = 1/(10× 2k), k = 3, . . . , 8.

e\k 3 4 5 6 7 8 rate
λ1 1.03e-3 2.55e-4 6.33e-5 1.57e-5 3.89e-6 9.37e-7 2.01
λ2 1.64e-3 3.33e-4 6.80e-5 1.39e-5 2.87e-6 6.02e-7 2.28
λ3,4 3.75e-2 8.19e-3 1.82e-3 4.11e-4 9.35e-5 2.07e-5 2.15
λ5,6 1.58e-1 3.32e-2 7.08e-3 1.53e-3 3.34e-4 7.18e-5 2.20
λ7,8 4.87e-1 1.00e-1 2.09e-2 4.40e-3 9.35e-4 1.95e-4 2.24
λ9,10 1.18e0 2.39e-1 4.92e-2 1.02e-2 2.13e-3 4.37e-4 2.27

Table 9. The errors of the first 10 eigenvalues for α = 5/3, q2, Caputo derivative, mesh
size h = 1/(10× 2k), k = 3, . . . , 8.

e\k 3 4 5 6 7 8 rate
λ1 1.11e-3 2.75e-4 6.79e-5 1.68e-5 4.14e-6 9.95e-7 2.02
λ2 1.75e-3 3.59e-4 7.38e-5 1.53e-5 3.18e-6 6.74e-7 2.27
λ3,4 3.75e-2 8.21e-3 1.83e-3 4.13e-4 9.39e-5 2.08e-5 2.15
λ5,6 1.58e-1 3.33e-2 7.09e-3 1.53e-3 3.35e-4 7.20e-5 2.21
λ7,8 4.87e-1 1.00e-1 2.09e-2 4.40e-3 9.35e-4 1.96e-4 2.24
λ9,10 1.18e0 2.39e-1 4.92e-2 1.02e-2 2.13e-3 4.37e-4 2.27

Table 10. The error of the first ten eigenvalues for α = 5/3, q3, Caputo derivative, mesh
size h = 1/(10× 2k), k = 3, . . . , 8.

e\k 3 4 5 6 7 8 rate
λ1 1.10e-3 2.71e-4 6.69e-5 1.66e-5 4.08e-6 9.81e-7 2.02
λ2 1.73e-3 3.53e-4 7.23e-5 1.48e-5 3.08e-6 6.47e-7 2.27
λ3,4 3.79e-2 8.31e-3 1.85e-3 4.18e-4 9.52e-5 2.11e-5 2.14
λ5,6 1.58e-1 3.33e-2 7.09e-3 1.53e-3 3.35e-4 7.20e-5 2.20
λ7,8 4.87e-1 1.00e-1 2.08e-2 4.40e-3 9.34e-4 1.95e-4 2.24
λ9,10 1.18e0 2.39e-1 4.92e-2 1.02e-2 2.13e-3 4.37e-4 2.27

The Caputo eigenfunctions are fairly regular. We illustrate this in Fig. 3, where the first, fifth and
tenth eigenfunctions for two different α values, i.e., 4/3, and 5/3, were shown. The eigenfunctions are
normalized to have a unit L2(D)-norm. The profiles of the eigenfunctions generally resemble sinusoidal
functions, but the magnitudes are attenuated around x = 1, which is related to the asymptotics of the
Mittag-Leffler function xEα,2(−λnx

α), the eigenfunction in the case of a zero potential. The degree of
attenuation depends on the order α. Further, the larger is the eigenvalue, the more oscillatory is the
corresponding eigenfunction, and the number of interior zero differs by one for the real and imaginary
parts of a genuinely complex eigenfunction.
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Figure 2. The convergence of the finite element approximations of the eigenvalues with
the potential q3, for Caputo derivative with α = 4/3, and 7/4.

Table 11. The errors of the first ten eigenvalues for α = 7/4, q3, Caputo derivative, mesh
size h = 1/(10× 2k), k = 3, . . . , 8.

e\k 3 4 5 6 7 8 rate
λ1 2.79e-4 7.84e-5 2.14e-5 5.73e-6 1.50e-6 3.74e-7 1.92
λ2 2.19e-3 4.30e-4 8.27e-5 1.54e-5 2.77e-6 4.79e-7 2.40
λ3 8.63e-3 2.29e-3 6.05e-4 1.58e-4 4.06e-5 9.85e-6 1.95
λ4 5.89e-2 1.26e-2 2.71e-3 5.80e-4 1.24e-4 2.57e-5 2.22
λ5,6 3.44e-1 7.44e-2 1.63e-2 3.60e-3 7.96e-4 1.72e-4 2.18
λ7,8 8.46e-1 1.81e-1 3.89e-2 8.41e-3 1.81e-3 3.82e-4 2.21
λ9,10 2.06e0 4.38e-1 9.35e-2 2.00e-2 4.28e-3 8.93e-4 2.22

7.2.2. Riemann-Liouville derivative case. By the regularity theory in Section 4, in the Riemann-Liouville
case, the eigenfunctions are less regular, with an inherent singularity of the form xα−1 concentrated at the
origin. Hence, one would naturally expect a slow convergence of the finite element approximations with
a uniform mesh. Our experiments indicate that finite element approximations of the eigenfunctions for α
close to unity indeed suffer from oscillations near the origin, and thus converge much slower. The finite
element method does converge, and hence the oscillations go away as the mesh refines.

The numerical results for α = 5/3 with the three potentials are presented in Tables 12-14. For all three
potentials, the first nine eigenvalues are real (see Appendix A for the existence of one real eigenvalue)
and the rest appears as conjugate pairs, and in the tables, we show the convergence results only for the
first six eigenvalues. Surprisingly, the eigenvalue approximations still exhibit a second-order convergence.
Like before, the convergence rate is almost independent of the potential term. The preceding observation
remains largely true, except within a “transient” region 1.70 ≤ α ≤ 1.85 to which the value α = 7/4
belongs: the method still converges almost at the same rate, but the convergence is not as steady as for
other cases. However, although not presented, we would like to remark that the convergence for larger
eigenvalues is rather steady.

Our theory predicts that the eigenfunctions for the Caputo and Riemann-Liouville derivative behave
very differently. To confirm this, we plot eigenfunctions for the latter in Fig. 4. One can observe from Figs.
3 and 4 that apart from a stronger singularity at the origin, the Riemann-Liouville eigenfunctions are also
far more significantly attenuated towards x = 1. In case of q = 0, this can be explained by the exponential
asymtotics of the Mittag-Leffler function: the eigenfunctions in the Caputo and Riemann-Liouville cases
are given by xEα,2(−λnx

α) and xα−1Eα,α(−λnx
α), respectively; the former decays only linearly, whereas

the latter decays quadratically [21, pp. 43]; This can also be deduced from Fig. 1: the wells, which
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Figure 3. The profile of the first, fifth and tenth eigenfunctions in case of q3, α = 4/3
(top) and α = 5/3 (bottom), Caputo case.

Table 12. The errors of the first six eigenvalues, which are all real, for α = 5/3, q1,
Riemann-Liouville derivative, mesh size h = 1/(10× 2k), k = 3, . . . , 8.

e\k 3 4 5 6 7 8 rate
λ1 3.53e-4 9.36e-5 2.44e-5 6.31e-6 1.60e-6 3.95e-7 1.95
λ2 2.73e-3 7.30e-4 1.92e-4 4.98e-5 1.27e-5 3.09e-6 1.96
λ3 7.33e-3 1.99e-3 5.32e-4 1.39e-4 3.58e-5 8.64e-6 1.96
λ4 1.81e-2 4.80e-3 1.27e-3 3.31e-4 8.46e-5 2.05e-5 1.96
λ5 2.62e-2 7.11e-3 1.93e-3 5.16e-4 1.35e-4 3.39e-5 1.95
λ6 6.59e-2 1.65e-2 4.24e-3 1.09e-3 2.77e-4 6.81e-5 1.98

Table 13. The errors of the first six eigenvalues, which are all real, for α = 5/3, q2,
Riemann-Liouville derivative, mesh size h = 1/(10× 2k), k = 3, . . . , 8.

e\k 3 4 5 6 7 8 rate
λ1 3.68e-4 9.78e-5 2.56e-5 6.61e-6 1.68e-6 4.13e-7 1.96
λ2 2.78e-3 7.43e-4 1.96e-4 5.08e-5 1.29e-5 3.14e-6 1.96
λ3 7.41e-3 2.01e-3 5.38e-4 1.41e-4 3.62e-5 8.75e-6 1.95
λ4 1.82e-2 4.83e-3 1.27e-3 3.33e-4 8.52e-5 2.06e-5 1.95
λ5 2.63e-2 7.15e-3 1.94e-3 5.20e-4 1.36e-4 3.41e-5 1.94
λ6 6.60e-2 1.65e-2 4.25e-3 1.09e-3 2.78e-4 6.83e-5 1.97
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Table 14. The errors of the first six eigenvalues, which are all real, for α = 5/3, q3,
Riemann-Liouville derivative, mesh size h = 1/(10× 2k), k = 3, . . . , 8.

e\k 3 4 5 6 7 8 rate
λ1 3.60e-4 9.57e-5 2.50e-5 6.46e-6 1.64e-6 4.04e-7 1.96
λ2 2.78e-3 7.44e-4 1.96e-4 5.08e-5 1.29e-5 3.14e-6 1.95
λ3 7.35e-3 1.99e-3 5.34e-4 1.40e-4 3.59e-5 8.68e-6 1.95
λ4 1.80e-2 4.79e-3 1.27e-3 3.31e-4 8.45e-5 2.05e-5 1.95
λ5 2.63e-2 7.13e-3 1.94e-3 5.18e-4 1.35e-4 3.40e-5 1.94
λ6 6.59e-2 1.65e-2 4.24e-3 1.09e-3 2.77e-4 6.81e-5 1.97

correspond to zeros of the Mittag-Leffler functions, run much deeper for Riemann-Liouville case. We refer
interested readers to [19] for further numerical studies on the FSLP with a Riemann-Liouville derivative.
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Figure 4. The profile of the first, fifth and tenth eigenfunctions in case of q3, α = 4/3
(top), α = 5/3 (bottom), Riemann-Liouville case.

7.2.3. Two extensions. In this part, we discuss two possible extensions of the finite element formulation.
A first natural idea of extension is to pursue other boundary conditions, e.g., Neumann, Robin or mixed

type. The derivation of the variational formulation in Section 2 requires highly nontrivial modifications
for these variations. As an illustration, we make the following straightforward attempt for the Riemann-
Liouville case with mixed boundary conditions:

(7.2) −R
0D

α
x u+ qu = f in D, R

0D
α−1
x u(0) = u(1) = 0,
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where f ∈ L2(D). Let g = 0I
α
x f ∈ H̃α

L(D), then R
0D

α
x g = f . We thus find that

u = −0I
α
x f + (0I

α
x f)(1)x

α−2

is a solution of (7.2) in the Riemann-Louiville case (for q = 0) since it satisfies the boundary conditions and
R
0D

α
x x

α−2 = (cα)
′′ = 0. The representation formula is very suggestive. First, the most “natural” variational

formulation for (7.2), i.e., find u ∈ H̃
α/2
R (D) such that

a(u, v) = (f, v) ∀v ∈ H̃
α/2
R (D),

with a bilinear form a(u, v) = −(R0D
α/2
x u, RxD

α/2
1 v) + (qu, v), cannot be stable on the space H̃

α/2
R (D), since

in general the solution u does not admit the H̃
α/2
R (D) regularity, due to the presence of the singular term

xα−2. Hence, alternative formulations, e.g., of Petrov-Galerkin type, should be sought for. Further, the
solution u can have only very limited Sobolev regularity, and a special treatment at the left end point is
necessary. This clearly illustrates the delicacy of properly treating boundary conditions.

We have focused our discussions on the left-sided Riemann-Liouville and Caputo derivatives. There are
several alternative choices of the spatial derivative, depending on the specific applications. For example,
one may also consider a mixed derivative Dα

θ defined by

Dα
θ u = θR

0D
α
x u+ (1− θ)RxD

α
1 u or Dα

θ u = θ C
0D

α
x u+ (1 − θ)CxD

α
1 u,

where θ ∈ [0, 1] is a skewness parameter. The mixed derivative has been very popular in modeling superdif-
fusion process. For such mixed derivative, there is no known variational formulation, solution representation
formula and regularity pickup. Formally, for the fractional SLP with a mixed Riemann-Liouville derivative

and u(0) = u(1) = 0, one would expect that the respective weak formulation reads: find u ∈ H̃α/2(D) and
λ ∈ C such that

θ(R0D
α/2
x u, RxD

α/2
1 v) + (1 − θ)(RxD

α/2
1 u, R0D

α/2
x v) = λ(u, v), for all v ∈ H̃α/2(D).

However, it is still unclear whether this does represent the proper variational formulation, due to a lack of
the solution regularity, especially around the end points. Our numerical experiments with this formulation
indicate that the eigenfunctions have singularity only at one end point, depending on the value of the
parameter θ: for θ > 1/2, the singularity is at the left end point, whereas for θ < 1/2, it is at the right end
point. Due to the presence of fractional derivatives from both end points, the presence of only one single
singularity seems counterintuitive. Nonetheless, in view of the empirically observed solution regularity, the
numerical experiments do confirm a posteriori that the variational formulation in the Riemann-Liouville
case seems plausible. However, a complete mathematical justification of the formulation is still missing.
Further, the case of a mixed Caputo derivative is completely unclear.

8. Concluding remarks

In this work we have developed variational formulations for boundary value problems involving either
Riemann-Liouville or Caputo fractional derivatives of order α ∈ (1, 2). The stability of the variational
formulations, and the Sobolev regularity of the variational solutions were established. Moreover, the finite

element discretization of the scheme was developed, and convergence rates in H̃α/2(D)- and L2(D)-norms
were established. The finite element method has been applied to the fractional Sturm-Liouville problem,

and (suboptimal) convergence rates were obtained. For the source problem, the error estimates in H̃α/2(D)-
norm were fully supported by the numerical experiments, whereas the L2(D)-estimates remain one-half
order lower than the empirical convergence rates, which requires further investigations. For the eigenvalue
problem, it converges at a second-order rate for both fractional derivatives, and can provide accurate
estimates of multiple eigenvalues in the presence of either a smooth or nonsmooth potential term.

There are several avenues for future works. First, in the Riemann-Liouville case, the solution generally
contains a singularity of the form xα−1, and numerically on a uniform mesh we have observed that the
numerical solutions suffer from spurious oscillations around the origin, especially for α close to unity. This
necessitates the use of an adaptively refined mesh or an enriched solution space. Second, it is natural
to extend the analysis to the parabolic counterpart. Third, there are many possible extensions, e.g.,
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mixed left-sided and right-sided Caputo/Riemann-Liouville fractional derivatives and different boundary
conditions. However, the proper variational formulation and solution theory, especially regularity pickup,
for such models are still unclear. Last, the theoretical justification of the superior performance of the finite
element method for the eigenvalue problem is of immense interest.
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Appendix A. Existence of a real eigenvalue

In this appendix, we show that the lowest Dirichlet eigenvalue in the case of a Riemann-Liouville
derivative, with a zero potential, is always positive. To this end, we consider the solution operator T :
C0(D) → C0(D), f → Tf , with Tf defined by

Tf = (0I
α
x f)(1)x

α−1 − 0I
α
x f(x).

By Theorem 4.4, the operator T : C0(D) → C0(D) is compact. Let K be the set of nonnegative functions
in C0(D). Next we show that the operator T is positive on K. Let f ∈ C0(D), and f ≥ 0. Then

Tf(x) =
1

Γ(α)

∫ 1

0

(1 − t)α−1f(t)dtxα−1 − 1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt

=
1

Γ(α)

∫ 1

x

(1 − t)α−1f(t)dtxα−1 +
1

Γ(α)

∫ x

0

((x − xt)α−1 − (x− t)α−1)f(t)dt.

Clearly, for any x ∈ D, the first integral is nonnegative. Similarly, (x − xt)α−1 > (x − t)α−1 holds for all
t ∈ (0, x), and thus the second integral is also nonnegative. Hence, Tf ∈ K, i.e., the operator T is positive.
Now it follows directly from the Krein-Rutman theorem [6, Theorem 19.2] that the spectral radius of T is
an eigenvalue of T , and an eigenfunction u ∈ K \ {0}.
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[12] M. M. Džrbašjan. A boundary value problem for a Sturm-Liouville type differential operator of fractional order. Izv.
Akad. Nauk Armjan. SSR Ser. Mat., 5(2):71–96, 1970.

[13] A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements, volume 159 of Applied Mathematical Sciences.
Springer-Verlag, New York, 2004.

[14] V. J. Ervin and J. P. Roop. Variational formulation for the stationary fractional advection dispersion equation. Numer.

Methods Partial Diff. Eq., 22(3):558–576, 2006.
[15] V. J. Ervin and J. P. Roop. Variational solution of fractional advection dispersion equations on bounded domains in Rd.

Numer. Methods Partial Diff. Eq., 23(2):256–281, 2007.



FRACTIONAL ORDER VARIATIONAL PROBLEMS 29

[16] R. Gorenflo, J. Loutchko, and Y. Luchko. Computation of the Mittag-Leffler function Eα,β(z) and its derivative. Fract.
Calc. Appl. Anal., 5(4):491–518, 2002.

[17] R. Gorenflo, J. Loutchko, and Y. Luchko. Correction: “Computation of the Mittag-Leffler function Eα,β(z) and its
derivative” [Fract. Calc. Appl. Anal. 5 (2002), no. 4, 491–518]. Fract. Calc. Appl. Anal., 6(1):111–112, 2003.

[18] P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA, 1985.
[19] B. Jin, R. Lazarov, J. Pasciak, and W. Rundell. A finite element method for the fractional Sturm-Liouville problem.

preprint, available as arXiv:1307.5114, 2013.
[20] B. Jin and W. Rundell. An inverse Sturm-Liouville problem with a fractional derivative. J. Comput. Phys., 231(14):4954–

4966, 2012.
[21] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo. Theory and Applications of Fractional Differential Equations. Elsevier,

Amsterdam, 2006.
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[24] A. M. Nahušev. The Sturm-Liouville problem for a second order ordinary differential equation with fractional derivatives

in the lower terms. Dokl. Akad. Nauk SSSR, 234(2):308–311, 1977.
[25] I. Podlubny. Fractional Differential Equations. Academic Press, San Diego, CA, 1999.
[26] I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen, and B. M. Vinagre Jara. Matrix approach to discrete fractional

calculus. II. Partial fractional differential equations. J. Comput. Phys., 228(8):3137–3153, 2009.
[27] A. Y. Popov and A. M. Sedletskii. Distribution of roots of Mittag-Leffler functions. J. Math. Sci., 190(2):209–409, 2013.
[28] S. G. Samko, A. A. Kilbas, and O. I. Marichev. Fractional Integrals and Derivatives. Gordon and Breach Science

Publishers, Yverdon, 1993.
[29] A. H. Schatz. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp., 28:959–962,

1974.
[30] H. Seybold and R. Hilfer. Numerical algorithm for calculating the generalized Mittag-Leffler function. SIAM J. Numer.

Anal., 47(1):69–88, 2008/09.
[31] C. Shen and M. S. Phanikumar. An efficient space-fractional dispersion approximation for stream solute transport

modeling. Adv. Water Res., 32(10):1482–1494, 2009.
[32] M. K. Shkhanukov. On the convergence of difference schemes for differential equations with a fractional derivative. Dokl.

Akad. Nauk, 348(6):746–748, 1996.
[33] T. H. Solomon, E. R. Weeks, and H. L. Swinney. Observation of anomalous diffusion and lévy flights in a two-dimensional
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