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Implications 

Practice: New technologies can support Just-In-Time, Adaptive Interventions (JITAIs) 

that can provide help precisely how and when it is needed. Policy: Research, industry and 

policy communities need to partner to make sure that new technologies are evidence-

based, ethically sound, and will integrate seamlessly into our daily lives. Research: 

Behaviorists, engineers and medical professionals need to collaborate to develop 

computational models of real-time health-related behaviors that can drive JITAIs. 

Implications (explicitly state the impact of the findings for researchers, practitioners, and policymakers; ONE SENTENCE EACH)
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Abstract  

Adverse and suboptimal health behaviors and habits are responsible for approximately 40% of 

preventable deaths, in addition to their unfavorable effects on quality of life and economics. Our 

current understanding of human behavior is largely based on static ‘snapshots’ of human 

behavior, rather than ongoing, dynamic feedback loops of behavior in response to ever-changing 

biological, social, personal and environmental states. This paper first discusses how new 

technologies (i.e., mobile sensors, smartphones, ubiquitous computing, and cloud-enabled 

processing/computing) and emerging systems modeling techniques enable the development of 

new, dynamic and empirical models of human behavior that could facilitate just-in-time 

adaptive, scalable interventions. The paper then describes concrete steps to the creation of robust 

dynamic mathematical models of behavior including: (1) establishing “gold standard” measures; 

(2) the creation of a behavioral ontology for shared language and understanding tools that both 

enable dynamic theorizing across disciplines; (3) the development of data sharing resources; and 

(4) facilitating improved sharing of mathematical models and tools to support rapid aggregation 

of the models. We conclude with the discussion of what might be incorporated into a 

“knowledge commons,” which could help to bring together these disparate activities into a 

unified system and structure for organizing knowledge about behavior. 

Blinded Manuscript (Without Author Contact Information)
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1) Introduction 

Adverse and suboptimal heath behaviors and habits are responsible for approximately 40% of 

preventable deaths, in addition to their undesirable effects on quality of life and the global 

economy [1-4]. Although a solid empirical base exists for the effectiveness of interventions in 

initiating some behavior change[5-8], much less support exists for interventions that sustain 

behavior change or change some of the most challenging, yet prevalent, behaviors (e.g., 

smoking[9], poor diet and lack of physical activity[10, 11], and unsafe sex[7]). This may be due 

to the fact that current understanding of human behavior is largely based on static ‘snapshots’ of 

human behavior[12], rather than ongoing, dynamic feedback loops of behavior in response to 

ever-changing biological, social, personal and environmental states[13, 14]. Traditionally, the 

study of human behavior has postulated a set of concepts, definitions, and propositions that are 

meant to explain behavior by assuming the relationships between variables[15], often in terms of 

linear functions, and then subjecting parts of the theory to empirical testing. However, rich 

streams of continuous data are now becoming available through new and emerging technologies, 

including wearable and deployable sensors[16-19] and mobile phones[20-22]. This data, along 

with sophisticated modeling techniques, provide unprecedented opportunities to understand real-

time behavior in context[12, 13, 23, 24]. The challenge to 21st health behavior change research is 

to move toward computational, dynamic modeling of behavior[25] that can capture complex and 

rapid changes in behavioral state and related influencing factors. To accomplish this challenge, 

we need to: (1) establish “gold standard” measures; (2) develop of ontologies for current 

behavioral constructs;  (3) facilitate improved sharing of mathematical models and tools to 

improve theory falsification and more rapid aggregation of models; and (4) create a “knowledge 

commons” that could help to bring together these disparate activities into a unified system and 
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structure for organizing knowledge about behavior. This paper gives examples of a 

computational behavioral framework and highlights steps for the field to reach this potential and 

create new opportunities including development of new just-in-time interventions that are 

personalized, predictive, and responsive to moment-by-moment context, and drive bold changes 

in health promotion, disease prevention, and healthcare delivery in the next decades. 

 

2) The imperative and the opportunity: Understanding human behavior in real time 

2.1) Observing and inferring behavior 

What falls under the rubric of behavior, and what falls outside that rubric? This question 

continues to be a topic of hot debate[26-30].  Some behaviors are agreed upon and directly 

observable, such as (but not limited to) utterances, facial expressions, diet, smoking, safe sexual 

practices, sun safety and exercise, although there are divergent opinions on methods for 

observation and measurement of these behaviors. However, focusing solely on these observable, 

proximal behaviors does not give the full picture of human behavior, nor does this narrow focus 

give us information on what we need in order to influence or change these behaviors[31]. The 

numerous influences upon behaviors are difficult to observe, and depend upon the behavior and 

situation at hand, including such factors as feelings, mental states, values and motivations. Thus, 

we need to take into account the full range of behaviors and influences upon these behaviors 

through real-time measurements of overt behavior, the environment (both social and physical) 

and self-report. Combined, these measurements will allow us to develop real-time measures and 

inferences of behavior, context and internal states. As a simple example, consider ‘Joe’ – a 48-

year-old, divorced man whose doctor has told him that he needs to lose weight because he is at 

risk for developing multiple health issues. Joe works long hours at a desk job in an environment 
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where the closest food is at a fast food restaurant in the lobby of his building. Joe usually gets 

home from work late and generally does not feel he has the time or energy to engage in any 

physical activities. In the past, we would enroll Joe in a study that used the same intervention for 

all of the participants and that targeted changes in his activity behavior either directly (enrolling 

him in a physical activity program) or indirectly, such as by enhancing his perceived self-

competence or motivation to exercise. But Joe’s activity level is affected by many variables, the 

effects of which we (or he) may not even be fully aware. What used to be measureable only by 

resource-intensive direct observation or self report can now be ‘automated’, allowing us to know 

what the individual is doing and in what context without having live coders watching their every 

move or having to ask repeatedly. Data streams from a broad variety of sources – mobile phones, 

sensors, social media, pictures and videos, location, purchase transactions, apps, internet use and 

self-report, just to name a few, can, when aggregated[32, 33], provide an in-depth view of the 

person as they interact with the world around them. For example, using new technologies, 

internal events or states (for instance increased stress) can be inferred from physiological 

measures[34] to augment self-report. Context, which includes external events, activity cues (such 

as, having his bicycle near the doorway to his garage) and social behavior, can be observed 

unobtrusively using a range of mobile devices and sensors[35-37]. Physical activity can be 

assessed using various sensors[38, 39]. By including all of these variables in real-time, we can 

develop a model of Joe’s activity behavior (see Figure 1) over time that can guide the 

development of a personalized intervention that is sensitive to his skills and environment in a 

way that has not been possible in the past. Further, by aggregating data from multiple sources, 

we can now develop computational models that can precisely specify the relationships between 

variables. These models can be subjected to rigorous mathematical testing, which opens new 



5 
 

opportunities for empirically-driven and computationally derived behavioral models that can be 

further tested, refined, and generalized.  

 

Figure 1: Faster to Slower processes, adapted from[40]  
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2.2) The promise of dynamic mathematical models of behaviori 

The development of computational models of behavioral change is now a key objective of many 

researchers to explain the mechanisms of behavior and actions of various behavioral 

interventions[13, 24, 44-46]. The goal is not to propose many models that are independent of one 

another, but rather to propose multiscale models that can be incrementally improved, expanded 

and integrated. The ultimate goal is to have testable models of behavior with interoperable 

subcomponents that capture the complexity of behavior in the real world.  The models can be 

developed ideographically and then validated against the behavior of large numbers of people in 

a wide variety of circumstances. Such models would be developed incrementally, with initial 

models only responding to small amounts of input capturing only certain aspects of behavior and 

interactions. Eventually, through validation and the addition of new processes and parameters, 

the models can develop to become better representations of behavior and behavior change. 

 

Development of computational models of behavior will require a clear explication not only on IF 

there is a relationship between constructs (e.g., does access to walking paths influence walking), 

but exactly HOW the constructs interact at different timescales[47].  This stronger emphasis on 

how interactions occur places strain on inferential statistics that have been traditionally used to 

                                                                 
i iIt is important to note the difference in what is being described as a model. The term ‘theory’ has been defined 

variously across various disciplines, but is defined here as a formalized set of concepts that organize observations 

and inferences, and is meant to predict phenomena (41. Graziano, A. and M. Raulin, Research is a process of 

inquiry. Research Methods: A Process of Inquiry, 4th Edition. Allyn & Bacon, Needham Heights, MA, 2000: p. 28-

53. The term ‘model’, on the other hand, has been used by different disciplines to mean different things. There are 

conceptual models, conceived of as proposed causal linkages between a set of concepts believed to be related to a 

specific outcome (42. Eime, R.M., et al., A systematic review of the psychological and social benefits of 

participation in sport for children and adolescents: informing development of a conceptual model of health through 

sport. Int J Behav Nutr Phys Act, 2013. 10: p. 98.which is very similar to the definition of theory given here. There 

are statistical models, such as Structural Equation Models, a family of multivariate statistical techniques that 

incorporate factor analysis and path analysis (43. Weston, R. and P.A. Gore, A brief guide to structural equation 

modeling. The Counseling Psychologist, 2006. 34(5): p. 719-751. This paper proposes the development of 

computational models of behavior. 
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develop static models of understanding behavior (e.g., structure equation modeling).  Often, 

these models do not provide an easy process for modeling all of the plausible inter-relationships 

between constructs, especially non-linear effects like habituation to interventions[48]. A 

quantifiable representation of such inputs on behavior and decision-making would permit the 

selection of interventions that are optimal and tailored to both long-term and short-term behavior 

and contextual situations[49].  

 

There are numerous modeling methodologies to choose from, ranging from system identification 

complemented with model-predictive control[50-53], to agent-based modeling[54-57], and 

dynamic Bayesian network analysis[58], such as Markov modeling[59] or related machine-

learning approaches.[60, 61]  A full discussion on how each of these methods could conceivably 

be applied to into a behavioral context is beyond the scope of this paper. However, we provide 

an illustrative example as it relates to Joe’s need to increase his physical activity, whereby social 

cognitive theory[62] and control systems modeling[51] allows us to quantify behavioral theory 

and guides us in the development of personalized adaptive interventions.  

  For example, co-authors, Hekler and Rivera, and colleagues[48, 63] have been working 

on developing a dynamic model of social cognitive theory (SCT). SCT was chosen for several 

reasons including that it is an extensively used conceptual framework for behavioral 

interventions[64] and postulates a number of dynamic feedback loops between an individual’s 

thoughts, environment and behavior (“triadic reciprocal determinism”) that lend themselves well 

to a dynamical model;[65-68] The first step in translating SCT from a relatively static to more 

dynamic model is to establish a “fluid-analogy” (see Figure 2) to start to articulate a general 

model structure. The use of a fluid-analogy (e.g., with representations of various inputs in the 
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model as values and the use of “reservoirs” to represent accumulation of a factor, particularly 

across timescales) provides a starting framework for mapping path diagrams (a common practice 

within behavioral science) to control systems methods for mathematically specifying the model. 

For this initial theorizing, the goal was to articulate the inter-relationships occurring at a daily 

timescale.[69, 70] 

 

Figure 2. Fluid Analogy of Social Cognitive Theory  

 
.   
 This fluid analogy of SCT provides a general model structure and also provides insights on 

which factors are likely more transient (i.e., represented as values) versus those that might have a 

more of an accumulating affect (i.e., represented as reservoirs) across a daily timescale. The 

model illustrates, for instance, how the ‘reservoir’ of Joe’s physical activity behavior can be 

influenced by inflows, outflows and feedback loops from various constructs.  
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  While this dynamic model version of SCT highlights the complexity and feedback loops 

implied by SCT, this model is only focused on the daily timescale for understanding inter-

relationships.  A second step is to start to articulate a timescale separated model that can 

articulate the “nested” effects and inter-relationships that function at different timescales.  Figure 

3 illustrates a draft visualization of a dynamic theory that builds on SCT [71], but now with an 

emphasis placed on understanding how timescale impacts constructs. As can be seen from this 

visualization, it is feasible that constructs have varying meaning, measurement strategies, and 

intended purposes depending on the aggregation method.  Take, for example, the central pathway 

that delineates the proximal outcomes from the perspective of Joe’s physical activity that 

ultimately lead to the target distal outcome of preventing atherosclerotic plaque formation.  At 

the minute timescale, the construct under study is Joe’s specific body movements.  This construct 

is nested within the construct of bouts of moderate to vigorous intensity physical activity 

(MVPA) at the hour timescale, which is nested within the minutes per day of MVPA at the daily 

timescale, which is nested within minutes per week of MVPA (the focus of the national 

guidelines) at the weekly timescale, and so on.  These nested effects can be observed with other 

more psychological constructs as well.  For example, the operant conditioning construct of 

consequences at the minute timescale is conceivably nested as a factor that influences Joe’s 

behavioral outcomes at an hourly timescale, which is a nested component of Joe’s outcome 

expectancies. As can be seen from this, when accumulation across timescales occurs, it is quite 

plausible that new emergent properties (e.g., moving from a behavioral construct such as 

outcomes to a cognitive construct such as outcome expectancies) can emerge. We highlight this 

timescale segmented model not to suggest that the structure and inter-relationships are correct 

(as, indeed, a core point of this paper is that we do not have enough data to develop these sorts of 
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models yet) but to help provide a more concrete example of how timescale quickly highlights 

how to think more dynamically. 

 

Figure 3. Timescale separate model that builds on SCT Fluid Analogy 

 

 
  

 Articulating the dynamics can be further explicated via a better articulation of the inter-

relationship between constructs implied by this separated timescale model.  Take for example the 

concept of setting a recommended daily step goal for Joe as a specific instance of daily goal-

setting.  Previous clinical experience and theory[72] highlights the likelihood that establishing an 



11 
 

appropriate recommended step goal for any given day is a dynamic problem.  If a step goal is too 

low, it is likely not challenging enough to be useful for promoting behavior change, but if it is 

too high, it is possible that it will be demotivating, particularly over repeated instances whereby 

the goals is consistently not achieved as lack of success would diminish self-efficacy[73].  Not 

only that, but the optimal step goal for any given day is going to be influenced by time-varying 

moderators such as previous instances of meeting or not meeting the goal, current location, day 

of the week, stress-levels for the day, or impact of others.  Based on this, articulation of an 

algorithm for setting a daily step goal number requires a non-linear dynamic model 

representation. While there is some work highlighting strategies for developing a dynamic 

algorithm for setting a step goal (e.g. [74]), much more work is still need to explore a variety of 

algorithms or “decision rules[40].” From a control systems perspective, setting an appropriate 

step goal is akin to an equilibrium curve within a dynamic model and thus can provide some 

insights on how to mathematically specify this model as well as provide insights on how an 

experiment might be designed to help parse out and identify the right goal-number at any given 

moment.  This is only one example of a potential dynamic relationship between two constructs.  

Based on the how many plausible inter-relationships are possible (as indicated in Figure 3), 

mapping out dynamics is truly a complex and nested problem.  

 This example provides a transdisciplinary example of lessons being melded from 

disciplines.  In this case, the behavioral scientists in the team established meaningful behavioral 

goals, a conceptual framework to work from, and plausible behavioral strategies to use.  The 

process involved a great deal of specifications on each of the variables, as well as “learning the 

language” of the other discipline, i.e. control systems engineering.  It is this sort of interactive, 

iterative collaboration and melding of skills that will likely be required for each of the methods 
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described above. This is a major challenge to development as it is often difficult to foster the 

appropriate “team science” model[75] to allow this melding of lessons from disciplines to 

emerge.  These challenges are discussed in more detail below and include actionable steps that 

the field could take to help alleviate this problem. 

 

3. Challenges & Research Opportunities Implied by Dynamic Behavioral Modeling 

While these techniques from engineering and computer science can be used to generate dynamic, 

empirically-supported, mathematical models of behavior, there is much work required to realize 

this potential beyond the few cases where the work is being done now (e.g.,[76, 77]).  We 

contend that there are four core challenges if behavioral modeling is to become used as a 

mainstay in behavioral research. First, we lack appropriate gold-standard metrics, particularly for 

constructs measured at a rapid timescale. Second, behavioral research is plagued with a veritable 

“Tower of Babel” problem, whereby there is an over-abundance of similar concepts that use 

different terms [78], which makes quantitatively specifying them in computational models 

challenging. Third, and related to the second issue, is that data that are collected now, in the 

“Tower of Babel” scenario, lacks consistent data tags or code, which makes it hard to compare, 

share or pool. Fourth, even if dynamic behavioral models are developed, it is quite plausible for 

the research community to follow the “Tower of Babel” problem into mathematically specified 

models by creating segmented and disjointed knowledge. As such, a core long-term challenge is 

ensuring the computational behavioral models created are developed incrementally, 

hierarchically, and modularly such that they can be incorporated and linked to one another.   In 

the remainder of the paper, we will provide suggestions on research agendas that could be 

accomplished to resolve these four domain issues.  
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3.1) Enabling dynamic mathematical models via improved measures 

We lack appropriate gold-standard metrics for important constructs, especially those measured at 

a rapid timescale. Thus, recent work on variables such as stress, which has traditionally been 

measured in a static fashion, suggests that it can be measured much more frequently through the 

use of physiological sensing[79]. While this advance is critical to understanding stress in the real 

world, how do we validate it? New measures need to be compared against the gold standard, but 

with the understanding that the real-time measures will likely not map easily on existing static 

measures[45]. This is expected because we are measuring these constructs in real-time with the 

goal of capturing what should be significant variability when compared to static measures, 

otherwise why increase the measurement frequency? Unfortunately, it challenges conventional 

ideas of reliability and validity and will require innovation throughout the validation process.    

 

Further, we often have many different measures of the same behavioral construct. While this is 

the case in many other areas of science, other disciplines have “pruned” their measures so as to 

get consistency across the field. While this is a long-term goal, the first step might be to come up 

with a set of shared measurement tools and to encourage reuse of the same tools in different data 

collection efforts. This is reflected in multiple initiatives funded by the National Institutes of 

Health, such as PhenX [80]  (consensus measures for phenotypes and exposures), the 

Neuroscience Toolbox for cognitive functioning[81] and PROMIS[82] for patient reported 

outcomes. Although created to address a series of specific research issues, each of these efforts 

allows researchers to use common tools to measure prevalent constructs.  These projects aim to 

provide researchers with common tools and acknowledge that, while no measurement tool is 
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perfect, when large numbers of researchers use the same tools in different studies it may 

accelerate scientific discovery. Further, common tools may actually lead to more innovation in 

measurement because there can be comparisons and patterns identified, which cannot be done 

when every research team is using a different instrument.  As well, new tools, especially those 

with a rapid timescale, can be developed with accepted benchmarks.  

 

3.2) Developing a Behavioral Ontology  

Tower of Babel: Even more challenging than measures, is the unique issue in health behavior 

research, where many constructs that are theorized to be important are not yet directly observable 

or represented in a quantitative fashion. Current theories of behavior have introduced many key 

constructs representing aspects of an individual’s state, such as “belief,” “attitude,” “intention,” 

and “motivation.” These are high-level abstractions that are not directly observable and may 

have to be inferred from multiple data streams and signals including momentary self-report. This 

point is only reinforced by the recently published book by Michie et al, which highlights 88 

behavioral theories related to behavior change[83]. The over-abundance of theories and 

constructs poses a huge barrier to entry for other disciplines to engage and build on these 

behavioral theories.  Based on this, far more work on culling through and organizing this “Tower 

of Babel” is required by behavioral scientists and the increased use of ontologies is likely a very 

important target.  

 

An ontology, within the information sciences, is an a well-specified structuring of knowledge 

that provides key building blocks for shared knowledge including a common vocabulary and a 

mapping of the inter-relationships of different concepts within a given domain. At the current 
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stage of the science, a shared ontology of cross-cutting variables that can be measured 

unobtrusively, reliably, objectively, longitudinally and in context is needed. Health-relevant data 

requires insights from across a growing number of disciplines as new technologies become 

increasingly woven into our lives, including (but not limited to) behavior sciences, geographical 

sciences, medicine, computer science, and engineering disciplines. Thus, to build this shared 

inventory, discipline-specific understandings and vocabularies for behavior need to be ‘de-

siloed’, so that data sources can be effectively meshed and shared.  

 

Such an ontology or inventory should be amenable to easy and rapid update, and can highlight 

those variables that are currently easily accessed passively (e.g., on-body and environmental 

sensors), those that may have to be inferred (e.g., diet data from grocery loyalty cards and from 

digital footprints) and those that will come from self-report (which has considerable value, but 

which has a high user burden and which will need to be employed strategically).  

 

There is a great deal of work both within behavioral science and outside focused on creating the 

structures to support such ontologies.  With regard to behavioral theories, co-author Michie has 

been using expert-consensus processes (e.g., Delphi methods) to attempt to tackle the “Tower of 

Babel” problem within behavioral theories.  In particular, she and her colleagues have been 

organizing the behavioral theories via strategies such as the Theoretical Domains Framework, 

the Behavior Change Wheel,[84] a behavior change techniques taxonomy[85], and currently, in 

collaboration with Larry An, the development of an ontology that links the theoretical domains 

to likely mechanisms of change, to specific techniques to use.  All of this is being generated with 
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an expert-consensus process. These efforts are pivotal towards providing a common language 

and structure for progressing the field. 

3.3 Enhancing Data Sharing  

Clearly defined and shared constructs from an ontology, along with common data labels to be 

used across a wide range of studies, will facilitate pooling and sharing, as well as empirical 

comparison of studies.  Further, as new datasets are acquired, raw data from multiple sources can 

be merged to create rich longitudinal data sets. The framework that is developed for data sharing 

must accommodate (or encourage) a shared understanding of what we mean by “behavior,” how 

behavior can be changed and how behavior change can be maintained. The framework must also 

accommodate the complexity of capturing and modeling the (social and built) environments, 

using a variety of methods and sensing systems and allow collaboration among model 

developers. In this way, distributed research teams can collectively improve and validate the 

computational models and document new challenges. Only in this way will we be able to 

effectively learn from successes and mistakes and to move the research front forward. 

Beyond this, there are a variety of strategies being explored for fostering improved sharing and 

facilitation of common resources. For example, the main mission of the Big Data to Knowledge 

(BD2K)[86] initiative of the National Institutes of Health is to enable biomedical scientists to 

capitalize more fully on the Big Data being generated by various research communities, and they 

are poised to announce several major new initiatives around data modeling.  All of these efforts 

are in alignment with the overall goal of fostering desiloed knowledge via better definitions of 

terms and constructs.  

3.4) Enabling model development that is iterative, hierarchical, and modular 
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Modeling behaviors requires balancing complexity, accuracy (i.e., a model’s ability to 

depict accurately what is being modeled), generalizability (i.e., a models’ ability to adapt to 

different situations or individuals), and model fitting (i.e., estimating model parameters to best fit 

experimental data). For instance, extremely rich conceptual models such as Hovell et al’s 

Behavioral Ecological Model[87], are extremely complex and usually not amenable to full 

measurement. Conceptually, if a model is too complex, it will not be useful as it will mirror the 

real-world and offer no additional insight, while if it is too simple a model will not capture 

important aspects of behaviors. However, a very complex model might be hard to understand but 

perform well, just as a very simple model may be easy to interpret but perform poorly. Ideally, 

models are observable, controllable but also trainable and interpretable. A model that does not 

generalize to a variety of situations or across individuals is also of limited utility. Research teams 

will need to build models incrementally and/or hierarchically, and deploy these models in 

different well-specified contexts for testing and revision. For example, dynamic models can be 

developed by first focusing on one time scale, such as a day, and building towards ‘faster’ and 

‘slower’ models incrementally[40].  

 

Beyond incremental growth, a second facet that will enable this work to happen more rapidly is 

via an emphasis on modularity. Specifically, a possible approach, informed by system theory, is 

to start small and build and validate modular models in well-defined contexts with available 

datasets, gradually linking modules to enhance the feature understood and complexity to 

facilitate the adaption of the overall models to new contexts and/or individuals. This incremental, 

hierarchical, and modular approach, which is long standing in fields such as aviation and 

network systems, would result in series of experimentally validated behavioral models, which 
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may be directly compared against large datasets for performance, complexity, and 

generalizability beyond initial context. 

4. Tying it all together – A Knowledge Commons 

To encourage an ongoing dialectic process between theories that are inevitably developed in the 

course of science, and computational validation of these ideas, we propose a knowledge 

commons. A knowledge commons is comprised of three elements: (1) Access to an organized 

data warehouse, (2) Tools and methods for data cleaning, signal fusion (combining data or 

‘signals’ from various sensors) and data mining, and (3) A library of computational models of 

behavior and behavioral decision making and tools for experimental evaluation of those models.  

We will delineate strategies for moving forward on each of these tasks below. 

4.1) Access to an organized data warehouse 

The research community will need to become more creative at systematically collecting data and 

more open to approaches where the volume of data acquired overcomes the limitations of any 

single measurement. Instead of using only traditional measures, which may be high burden for 

both the participant and experimenter, these new data may be acquired via a variety of passive 

methods, such as the sensors, inference algorithms, related data that is collected in the course of 

daily life (e.g., loyalty cards) described above, or could be developed especially for a database by 

incentivizing participants for more burdensome measures, such as have been used in behavioral 

economics [88]. Data may also be generated using interactive game interfaces that also infer 

function[44]. Some data may be collected by mining data from devices or data services used by 

individuals that are intrinsically rewarding, such as social networking services.  Mobile phones 

provide several data collection opportunities, including usage data, location data, contacts, social 

networks, and voice recognition, which has recently been used for understanding such things as 
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social interactions[37] or depression. Sometimes we may recruit specific target populations and 

deploy sensors specifically to generate a large, robust data set. At other times, we may 

opportunistically study data contributed by large convenience samples of people willing to 

contribute data as citizen scientists. Both types of data will allow scientists to generate new and 

more accurate models that will allow for greater, more reliable behavior measurement and 

modeling of behavior change. With the help of technology, these same models should permit a 

new class of real-time, tailored interventions to be created.  

 

These datasets could be made available to the entire research community in virtual data 

warehouses, although this would require agreements between researchers and technology 

companies on data sharing and costs that are equitable for all involved. New models derived 

from such data could be evaluated against well-known and well-understood baseline datasets. 

Similar activities have taken place in other fields and have accelerated progress. For example, in 

the field of astronomy, the Strasbourg Astronomical Data Center (CDS), a data warehouse 

developed in 1972, has allowed a whole generation of scientists to study the stars without the 

time and expense of doing independent data collection. Instead, these scientists benefit from a 

few massive data collection sites that are deposited at the CDS to feed the needs of the field 

economically and efficiently. Data warehouses of real-time health-related behavior with shared 

labels and common coding schemes would not only help all researchers working in mobile 

health, but also could fill the needs of other fields in which behavior is a factor (e.g., 

sustainability, human-computer interaction, security).  
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Access to a data warehouse and knowledge commons built on open standards that all developers 

contribute to and share, is key to creating and maintaining a network of model developers. 

Precedent exists today in United States for some federally-funded research 

(http://www.nlm.nih.gov/NIHbmic/nih_data_sharing_repositories.html)  and in Europe, for 

instance in the Virtual Physiological Human research frontier known as VPH-Share[89]. VPH-

Share aims to develop the organizational fabric (the infrastructure) and integrate the optimized 

services to expose and share data and knowledge, jointly develop multi-scale models for the 

composition of new VPH workflows and facilitate collaborations within the VPH community. A 

similar knowledge commons for understanding human behavior in real-time and in context – a 

Virtual Behavioral Human Share – would allow developers to expose and share data and 

knowledge (including models) in a structured way. Further, the various entities listed above are 

also striving towards this type of goal.  

Ideally, with proper consent systems in place, data collection for a warehouse could be facilitated 

by the deployment of sensor toolkits that begin data collection on a cohort. These data could also 

be complimented by simulated behavior data from games and other digital ‘traces’ left as people 

use their devices to navigate their world. These digital traces include posts, emails, messages, 

GPS tracks and web usage. Data can be augmented with the immense amount of real-time data 

available in the environment, such as GIS mapped crime data, weather data from NOAA or the 

Environmental Protection Agency’s (EPA) ongoing air and water data collection.  Data could 

also be merged with epidemiological work and other studies using common ontologies and data 

standards. These rich data can be fused to generate complex models that predict behavior in real 

time.  

 

http://www.nlm.nih.gov/NIHbmic/nih_data_sharing_repositories.html
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Data may be collected from specific cohorts of people of interest due to health disparities, as is 

common in much health behavior change research, but data could also be collected from citizen 

scientist convenience samples. This may enable very large datasets to be acquired rapidly, at low 

cost. 

4.2. Tools and methods for data cleaning, signal fusion and data mining 

A challenge in creating a knowledge commons lies in the fact that the data that will be collected 

and stored will need to be “harmonized” and structured in order that it can be reused by other 

projects. Scaling the datasets to the size needed to develop fully functional computational models 

will require that the data in the repository be quite heterogeneous, with many different types of 

sensors and only modest overlap between them, where data are acquired from totally different 

people and environments. Tools must therefore be developed for not only data cleaning, but also 

data harmonization. 

Technically this means that we need an ontology that covers all data types in the data commons. 

For some data types special ontologies exist already and can be shared. Further, research such as 

that being done within Open mHealth, are focused on trying to build these common structures, 

although much work needs to be done. The approach must be sensor/device independent, which 

means that the ontology must be able to support the full range of devices for a given 

measurement, such as pedometers and their variants for walking. Some behavioral medicine 

ontologies have been created to describe relationships between theoretical constructs, 

intervention methods, goals, and actions that follow certain preconditions, but so far they have a 

limited scope and few practical implementations[90, 91]. Tools are needed that would permit 

crowdsourcing this activity.  



22 
 

The challenge that data cleaning and harmonization create is advantageous because it will force 

model developers to focus on harmonizing the data. In other words, instead of developing 

specific algorithms for each device, developers will need to agree on how to make data acquired 

from different devices comparable.  

 

The engineering communities are already developing algorithms for inference and sensor fusion 

that take relatively low-level sensor data, such as accelerometer data, and use these data to infer 

higher-level behavioral constructs, such as specific types of physical activity. These techniques 

are typically based on statistical models that incorporate uncertainty in both the input data and 

the outputs. Higher-level behavioral models must also be developed to optimize inferences based 

on this uncertain information. And for all of these endeavors, multiple disciplines need to be 

brought to the table to include the full spectrum of expertise needed to address any specific 

measurement, from hardware developers through software and algorithm developers to content 

specialists.  

4.3.) A library of computational models of behavior and behavioral decision-making and tools 

for experimental evaluation of those models 

The sophisticated computational models of behavior and behavioral decision-making discussed 

throughout this paper would use the latent variables inferred from self-report or using sensor 

fusion to provide insight into (and predictions of) behavior. These models would incorporate the 

uncertainty from the latent variables as well as the uncertainty due to the complexity of human 

decision-making and behavior. Therefore, an inventory of tools for analyzing and evaluating 

complex data and models needs to be developed. Complex concepts such as goals and plans and 

desires would be computationally modeled, and models would be connected to available data. 
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This inventory will require partnerships between the behavior science, computer science, and 

engineering disciplines and new research methods to generate and analyze data, as well as to 

evaluate dynamic models, especially longitudinally and in real-world settings.  

 

 

In the data warehouse, the coded definition of each model must be provided. This ensures that 

models are (1) well defined and (2) reusable. In addition, the models must be immediately 

“runnable” over the existing datasets in the repository so that modifications to the models can be 

immediately evaluated. Ideally new investigators trained in modeling as well as behavior and 

behavior change, would be able to run several models on multiple (potentially huge) datasets and 

compare results with only a modest learning curve. The comparison will require yet another 

innovation: development of new tools for visualization the behavioral datasets and the 

predictions of the behavioral models.  

 

4.4.) Knowledge commons structure: practical issues  

Acquisition of real time data on a 24/7 basis of individuals living their lives in dynamic contexts 

entails several practical issues that need to be considered. One is technical, and deals with the 

storage capacity of the data commons. For model identification it is essential to have access to 

quality data in enough quantity to be able to analyze and mine it. What we end up with is “big 

data”[92] where data are generated at the person scale. Computing power and storage capacity 

today can accommodate massive datasets of raw data. Raw data is preferable to data that has 

been reduced a priori, often using proprietary algorithms, because it more easily allows reuse of 

data as better algorithms are developed.  
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Another important practical issue is privacy and security of data. These issues require important 

consideration, especially if personal “big data” are acquired for commercial systems, as opposed 

to research projects where all participants will have given informed consent.  Protecting privacy 

and data security is especially important in the context of behavior change and modeling the 

decision making of individuals. Data from individual sensors that are not considered invasive, 

when combined with the models, may require heightened security. As products result from 

research, society needs to make certain that legal and ethical requirements are satisfied both in 

the design of systems and interventions. Researchers conducting studies and individuals and 

researchers contributing data to the knowledge commons must also be cognizant of privacy and 

security considerations.  

 

5) Conclusions 

The gaps in our understanding of human health-related behavior make it challenging to change 

and maintain healthy behaviors, thus hindering progress in alleviating the high cost in resources 

and human suffering caused by chronic disease. New technologies now enable users to access, 

store, transmit, and manipulate information in real time, anywhere, at any time. We can now 

monitor a host of health related behaviors, states, social interactions, and health indices, as well 

as a host of other physiological, behavioral and contextual signals in real time. Much of this 

observation can be done unobtrusively, although some observations still require user input. Data 

from mobile and environmental sensors and systems must now be exploited to understand human 

behavior in real time by using emerging computational methodologies such as systems modeling. 

Modeling behavior can move the field away from testing theories to build a knowledge base, 

towards compiling data to develop complex models of behavior that can be computationally 
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evaluated and refined. However, there are several steps that need to be taken to harness new 

technologies and the data that they provide to develop new dynamic, personalizable, adaptable, 

contextualized models of health behavior and behavior change.  

 

We have described here 5 concrete steps to the creation of robust dynamic mathematical models 

of behavior including: (1) establishing the appropriate “gold standard” measures for important 

constructs; (2) the creation of tools, resources, and other tutorials that both enable dynamic 

theorizing and “lower the bar” for using modeling techniques by other disciplines; (3) the 

development of ontologies and other strategies of specification of current behavioral theories to 

make them more accessible; and (4) facilitating improved sharing as well as inter-operability of 

mathematical models and tools to support improved theory falsification as well as more rapid 

aggregation of the models, particularly those that are developed. We conclude with the 

discussion of what might be incorporated into what we have labeled a “knowledge commons,” 

which could help to bring together these disparate activities into a unified system and structure 

for organizing knowledge about behavior. These steps will enable the development of dynamic 

computational models of behavior that facilitate incremental model verification, improvement, 

and expansion. These models will move the field of health behavior change to a new level, where 

quantitative, testable models of behavior can provide ongoing adaptive interventions that are 

integrated into daily life that will help individuals move towards health behavior change and 

maintenance.   
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