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Abstract 

 

Empathy can be broadly defined as the ability to vicariously experience and to 

understand the affect of other people. This thesis will argue that such a capacity 

for vicarious processing is fundamental for successful social-cognitive ability 

and behaviour. To this end, four outstanding research questions regarding the 

behavioural and neural basis of empathy are addressed 1) can empathy be 

dissected into different components and do these components differentially 

explain individual differences in social functioning? [Chapter 2] 2) how does 

empathy relate to trait prosocial behaviour and do additional trait constructs 

moderate the association between empathy and prosocial behaviour? [Chapter 
3] 3) how does the brain represent vicarious information, and does this vary 

dependent on individual differences in typical and atypical empathy? [Chapters 
4-5] 4) what are the behavioural and neural mechanisms that link empathy to 

prosocial behaviour? [Chapter 6] 

The findings of this thesis suggest that: 1) specific components of empathy 

have distinct associations with different kinds of disrupted trait social-cognitive 

ability 2) specific components of empathy are positively associated with trait 

prosocial behaviour and individual  differences  in  the  capacity  to  regulate  one’s  

own emotions moderates the strength with which empathy relates to trait 

prosocial behaviour 3) anterior cingulate cortex function may be critical in the 

perception of vicarious information, including pain and reward processing; and 

individual differences in anterior cingulate cortex function during pain and 

reward processing relates to individual differences in empathy and 4) empathy 

is important for prosocial decision making and underpins the neural 

computations that signal outcomes for others that are different from our 

expectations. Together, these findings contribute to a more complete and 

coherent understanding of the structure, function and neural basis of 

empathic/vicarious processing. 
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 General Introduction CHAPTER 1:

 

1.1. Why should we care about social cognition? 

 

Humans are highly social creatures, living in complex social environments and 

spending much of our lives interacting with, and thinking about, other people. In 

many species, aspects of social interaction are critical for individual fitness and 

well-being. For example, dominant male macaques have greater reproductive 

success than their submissive counterparts (Schülke, Bhagavatula, Vigilant, & 

Ostner, 2010). Humans and non-human primates with larger social networks 

have increased grey matter in brain regions involved in processing social 

information (reviewed in Rushworth, Mars, & Sallet, 2013). The complexity of 

social interactions individuals experience is a major determinant of variability in 

forebrain size, (Shultz & Dunbar, 2010). Taken together, these studies provide 

clear indication of the importance of social interaction for survival and 

evolutionary fitness (Silk, 2007).  

Disturbances in social cognition and behaviour also characterise a number of 

psychiatric and neurological disorders, which have a large negative impact both 

on individuals and society as a whole (Kennedy & Adolphs, 2012). This thesis 

will argue that empathy, the ability to vicariously experience and to understand 

the affect of other people, is one of the key processes that can aid in successful 

social functioning and explains important variability in social cognition and 

behaviour. 
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1.2. What is empathy? 

 

1.2.1. Background, definitions and structure of empathy 

 

The psychologist Edward Titchener first  introduced  the  word  “empathy”  into  the  

English language over 100 years ago, as a translation of the German word 

Einfühlung ("feeling into"). Whilst there is no complete consensus as to the 

precise definition of empathy, most theorists agree that empathy is, broadly, the 

ability to vicariously experience and to understand the affect of other people 

(Bird & Viding, 2014; Decety & Jackson, 2004; Eisenberg, 2000; Hoffman, 

2008; Singer & Lamm, 2009, but see Batson, 2009 for a different perspective). 

The ability to vicariously experience and to understand the affect of other 

people is the definition of empathy that will be adopted in the current thesis. 

An important distinction within the structure of empathy is often made between 

emotional/affective 1  and cognitive aspects. Affective empathy is commonly 

understood as an affective state, caused by sharing the emotions of another 

person through observation or imagination of their experience (de Vignemont & 

Singer, 2006; Singer & Lamm, 2009). Although the observer’s emotional state is 

isomorphic with the other person’s state, the observer is aware that the other 

person is the source of their state (de Vignemont & Singer, 2006). Cognitive 

aspects of empathy are commonly referred to as perspective-taking, 

mentalising or theory of mind. These are those computations that enable the 

observer to understand another person’s   beliefs   and   desires (Frith & Frith, 

2006). It is important to note that some authors define empathy as comprised 

only   of   the   “affective”   components   and   label   the   “cognitive”   components   as   a  

separate  but  related  construct  of  “theory  of  mind”  or  “mentalising”  on  the  basis  

that they rely on largely distinct neurocognitive circuits (e.g. Singer, 2006). In 

this thesis both components are seen as important contributors to the 

experience of empathy (in line with e.g. Bird & Viding, 2014). However, these 

                                            
1 These terms are used interchangeably in the current thesis.  
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different components, although positively associated, can be dissociated (see 

Chapter 2).  

The origins of the distinction between affective and cognitive processes related 

to empathy can be traced back to historical accounts of social cognition 

regarding how we come to know the minds of others (Decety & Ickes, 2011). 

One account, known as theory-theory posited that we understand  others’  minds 

by forming a folk psychological theory, that is, a set of concepts about others 

(beliefs and desires) and governing principles as to how these concepts interact 

(e.g. people act to satisfy their desires according to their beliefs). A second 

account, known as simulation-theory was proposed as an alternative to theory-

theory (Gordon, 1986; Heal, 1996). The core aspect of this alternative theory 

was that we understand the minds of others via a process simulation. The 

simulation-theory of social cognition has been hugely influential in the emerging 

field of social cognitive neuroscience. The discovery of ‘mirror-neurons’, 

neurons that increase their spike rate when a monkey makes a goal-directed 

action and also when the same actions are observed being performed by 

another, was invoked as evidence for simulation-theory (although see Hickok, 

(2014) and Cook, Bird, Catmur, Press, & Heyes, (2014) for critiques of the 

mirror-neuron theory). More recently, it has been generally accepted that both 

theory theory and simulation theory describe central aspects of social cognition 

that are needed to successfully understand and share another person’s 

experience, and thus to empathise with them. However, it is important to keep 

in mind these two historical accounts, since they still influence what kind of 

profile a neural system should have for it to be involved in empathy (which will 

be discussed in further detail in the last section of this chapter, 1.5).  

It is also important to consider how cognitive and affective components of 

empathy relate to one another, as well as the sub-components that they 

comprise. It is generally agreed that affective empathy should be distinguished 

from emotion contagion, mimicry, empathic concern, compassion and sympathy 

(Bird & Viding, 2014; Singer & Lamm, 2009). Although these processes usually 

occur in similar contexts they are not the same as empathy. A recent model of 

empathy, entitled the self-to-other model of empathy (SOME; Bird & Viding, 

2014) highlights that emotional contagion is a key precursor to empathy but 
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does not have to involve a distinction between self and other. Thus, although 

emotion contagion may be necessary for empathy, on its own it is not sufficient. 

Empathic concern, which   is   also   called   ‘sympathy’   or   ‘compassion,’   involves  

‘feeling   for’   the other person (Singer & Lamm, 2009) and is associated with 

motivation to alleviate their suffering. This construct is thus often linked to 

prosocial motivation (Batson, 1998; Singer & Lamm, 2009). Although empathic 

concern is frequently equated with empathy, and empathy may lead to 

empathic concern, empathic concern does not necessarily involve any affect 

sharing and thus is not synonymous with affective empathy. Instead, empathic 

concern is an emotional response stemming from the apprehension or 

comprehension of another’s  emotional  state  or  condition.  This is not the same 

as what the other person is feeling (or is expected to feel) but consists of 

feelings of sorrow or concern for another person (Eisenberg, 2000).  

 

1.3. Individual differences in empathy and their measurement 

 

1.3.1. Typical empathy 

 

It is well known that the capacity for empathy varies substantially between 

individuals (Bird & Viding, 2014; Blair, 2005) Various self-report measures have 

been developed to capture variability in empathic responding. One of the first of 

these measures, the Interpersonal Reactivity Index (Davis, 1983) has been 

hugely influential in the field of empathy research (Bernhardt & Singer, 2012). 

The IRI contains subscales measuring empathic concern, perspective-taking, 

personal distress and fantasy. The perspective taking and fantasy subscales 

are suggested to measure cognitive empathy, whereas the empathic concern 

and personal distress subscales are thought to assess affective empathy. 

However, difficulties in understanding the relationships among the scales have 

been demonstrated. Many studies have often omitted the fantasy scale in their 

analyses as the link with empathy is unclear. The personal distress subscale 
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asks questions about personal responses to emergency situations, rather than 

empathy (Jolliffe & Farrington, 2006), and such responses may involve both 

empathising and sympathising (Jolliffe & Farrington, 2006). Moreover, the IRI 

possesses no specific measure of vicarious experience, only empathic concern, 

and thus does not measure the conceptualisation of empathy adopted in the 

current thesis and the field more generally.  

To overcome these limitations and to create an instrument that assesses the 

multidimensional nature of empathy more closely, the Questionnaire of 

Cognitive and Affective Empathy (QCAE) was developed by Reniers and 

colleagues (Reniers, Corcoran, Drake, Shryane, & Völlm, 2011). The QCAE is 

an instrument devised to measure five key components of empathy. In the 

development of the QCAE, two raters selected items from other well-validated 

and commonly used empathy measures (e.g. Hogan Empathy Scale (HES; 

Hogan, 1969), Interpersonal Reactivity Index (IRI; Davis, 1983), Balanced 

Emotional Empathy Scale (BEES; Mehrabian & Epstein, 1972), and Empathy 

Quotient (EQ; Baron-Cohen & Wheelwright, 2004) if they were deemed to 

measure empathy (see items below). Items deemed to measure other 

processes (e.g. sympathy) were not included. These items were then subjected 

to an exploratory factor analysis to identify the underlying structure of their 

associations and then to a confirmatory factor analysis in a separate sample to 

confirm the identified structure.  

The five subscales that were identified by this procedure are: perspective-taking 

(e.g.   ‘‘I  can  easily  tell   if  someone  else  wants  to  enter  a  conversation.’’);;  online  

simulation  (e.g.  ‘‘Before  criticizing  somebody,  I  try  to  imagine  how  I  would  feel  if  

I  was   in   their  place.’’);;  emotion  contagion   (e.g.   ‘‘I  am  happy  when  I  am  with  a  

cheerful group and sad when the others are   glum.’’);;   peripheral   responsivity  

(e.g.  ‘‘I  often  get  deeply  involved  with  the  feelings  of  a  character  in  a  film,  play,  

or  novel.’’);;  and  proximal  responsivity  (e.g.  ‘‘I  often  get  emotionally  involved  with  

my   friends’   problems’’).   These subscales can be further grouped into two 

factors that the authors named cognitive and affective empathy. Cognitive 

empathy comprises the subscales of perspective-taking and online simulation, 

whereas affective empathy comprises the subscales of emotion contagion, 

peripheral responsivity and proximal responsivity (see Figure 1.1). The QCAE 
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has been shown to have well-validated psychometric properties (Reniers et al., 

2011) and measures empathy as a multidimensional phenomenon comprised of 

related but separable constructs.  

 

 

 

 

Given that the QCAE has been developed relatively recently there is a paucity 

of data regarding this measure and associations with external correlates, 

compared with what is available for the IRI. However, what has been done 

shows that the QCAE is likely to be capturing meaningful variance relating to 

different component processes of empathy and behavioural outcomes. For 

example, Seara-Cardoso, Dolberg, Neumann, Roiser, & Viding (2013) collected 

measures of psychopathic traits measured with the self-report psychopathy 

scale (SRP, to be discussed in the next section) and affective empathy, 

measured with the QCAE, in a large sample (n=100 women). They found that 

affective empathy was negatively associated with affective-interpersonal 

psychopathic traits (Seara-Cardoso et al., 2013). Yoder & Decety (2014) found 

that the cognitive empathy subscale of the QCAE was positively associated with 

ratings of blame in a moral judgment task. In neuroimaging studies, the 

perspective-taking subscale has been associated with neural response when 

punishing others in neural regions associated with processing mentalising 

Figure 1.1. The two factor and five-factor solutions for the Questionnaire of 
Cognitive and Affective Empathy (QCAE, Reniers et al., 2011) 
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related computations (dorsomedial prefrontal cortex (dmPFC), posterior 

superior temporal sulcus (pSTS) (Molenberghs et al., 2014). Taken together 

these studies provide external validity for the QCAE. Where self-reported 

individual differences in empathy in adults are measured, in Chapters 3 and 5 
and 6, the QCAE is adopted as it more precisely captures important facets of 

empathic processing than the IRI and more closely reflects the definition of 

empathy adopted in the current thesis. 

A variety of behavioural tasks have also been developed that measure 

processes associated with empathy. To capture both typical and atypical 

variability in mentalising, a process that may contribute to cognitive empathy, 

one of the most common and well-validated tasks is the Theory of Mind 

animations task (Abell, Happe, & Frith, 2000). 

 

In   this   task   participants’   are   required   to   understand   others’   complex   mental  

states (e.g. tricking, coaxing). Each animation features two characters; a big red 

and small blue triangle either interacting with one another (ToM animations) or 

moving randomly (random animations). Participants are asked to watch each 

animation carefully and to describe what is happening whilst their verbal 

Figure 1.2. Five stills taken from one of the animations scripted as 
Coaxing (mother and child). 

Notes: (a) Mother tries to interest child in going outside. (b) Child is reluctant 
to go out. (c) Mother gently nudges child towards door. (d) Child explores 
outside. (e) Mother and child play happily together. 
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responses are recorded. Participant responses are then rated by two people in 

terms of the use of language terms about intentionality and appropriateness. 

The intentionality scale ranges from 0 (no appreciation of another agent, nor 

actions or mental states) to 5 (the agent acts with the goal of affecting or 

manipulating   the   other   agent’s   mental   states).   The   appropriateness   scale  

ranges from 0-3. This task has been previously used to examine ToM abilities in 

both typical and atypical populations (e.g. Abell et al., 2000; Castelli, Frith, 

Happé, & Frith, 2002; Jones, Happé, Gilbert, Burnett, & Viding, 2010) and it is 

sensitive enough to capture variability in understanding others intentions (See 

Figure 1.2). 

In terms of the measurement of affective empathy there is a lack of empirical 

paradigms that directly measure vicarious experience. A recently developed 

behavioural measure of affective aspects of empathy (as well as cognitive 

aspects) is the Multifaceted Empathy Test (MET; Dziobek et al., 2008). In this 

task participants are presented with photo stimuli showing a naturalistic scene, 

such as a man standing in a kitchen looking sad. Participants make ratings in a 

number of separate stages. To measure “cognitive empathy” they are asked to 

label the emotion that the agent in the photo is feeling by selecting from 4 

separate  options.  To  measure  “indirect”   “affective empathy”  (which  the  authors  

term emotional empathy) they are asked to rate how aroused they feel using 

the Self Assessment Manikin (SAM) scale, which goes from a very unaroused 

looking manikin to an aroused manikin. Finally, to assess “direct” “affective 

empathy” participants are asked to rate how concerned they feel for the person 

in the photo. Dziobek and colleagues found that adults with Asperger’s 

syndrome  were  impaired  in  “cognitive empathy”  but  not  “emotional  empathy” as 

measured by this task. Whilst this task has some strengths, in that it can 

measure multiple components of empathy simultaneously, there are also 

limitations. The rating of calm/aroused for emotional empathy does not capture 

the condition of empathy that the emotional state is isomorphic with the agent 

being empathised with and measures emotional arousal rather than emotional 

valence. The explicit emotional empathy component measures empathic 

concern i.e. how concerned do you feel for the other person, rather than affect 

sharing, whilst the cognitive empathy component involves identification of 
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emotion rather than empathising. In order to develop a task that more closely 

probes vicarious experience, Seara-Cardoso et al., (2012) devised the SAM 

faces task (Seara-cardoso, Neumann, Roiser, Mccrory, & Viding, 2012) (see 

Figure 1.3). 

 

 

 

In this task participants are required to rate their own emotional response to the 

affective state of another on a 9-point manikin (ranging from smiling to a sad 

face with a neutral expression in the middle) whilst viewing images depicting a 

person showing either a sad, fearful, angry, happy or neutral expression. This 

task is thought to tap into the affective empathy construct as it not only 

estimates   participants’   vicarious   response   to   emotional   stimuli,   but   also  

comprises elements of self-awareness (participants have to evaluate their 

emotional response) and self/other distinction (participants are asked how the 

stimulus makes them feel, although note that like the MET this task does not 

measure an emotional response as isomorphic). In Chapter 2 the ToM 

animations and SAM task are used to explore the structure of empathy.  

Figure 1.3. Example trials from the Self-Assessment Manikin Faces task 
(SAM-Faces).  
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1.3.2. Atypical empathy 

 

Disturbances in empathy exist in a number of psychiatric and neurological 

disorders. Studying individuals with disorders of empathy can allow us to 

explore the behavioural and neural basis of empathy, as well as, hopefully, to 

help individuals with these disorders. In the next section I focus on two 

prominent disorders of social abilities, psychopathy and autism. Those who 

suffer from these disorders behave in ways that suggest that they may lack 

empathy. However, their seeming lack of empathy is likely to occur for different 

reasons.  

 

1.3.2.1. Psychopathy 

 

Psychopathy is a disorder characterised by a constellation of cognitive and 

behavioural atypicalities including callousness, shallow affect, lack of guilt, 

antisocial behaviour and impulsivity (e.g. Blair, Mitchell, & Blair, 2005; Blair, 

2013; Cleckley, 1941; Hare, 1999; Hare & Neumann, 2006). These individuals 

commit a disproportionate amount of violent crime, and place a substantial 

economic and emotional burden on society (Anderson & Kiehl, 2012). The 

ability  of  individuals  with  psychopathy  to  seriously  violate  the  rights  of  others’  is  

thought to highlight a disturbance in an appropriate empathic response to other 

people (Blair, 2005), thus psychopathy is perhaps the archetypal empathy 

disorder. Adults with psychopathy show reduced affective response to the 

distress of others (Blair, Jones, Clark, & Smith, 1997), blunted emotional 

reactivity to aversive stimuli (Levenston, Patrick, Bradley, & Lang, 2000), 

impaired recognition of distress cues in others (Blair, Colledge, Murray, & 

Mitchell, 2001) and perhaps also positive facial expressions, (e.g. Brook, 

Brieman, & Kosson, 2013), and atypical neural responses to stimuli depicting 

others experiencing pain (Decety, Skelly, & Kiehl, 2013; Meffert, Gazzola, Boer, 

Bartels, & Keysers, 2013). Similarly, adults with high levels of psychopathic 
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traits seem to show reduced affective resonance with processing of both 

positive and negative emotions (Seara-Cardoso et al., 2013; Seara-cardoso et 

al., 2012). They also report less enjoyment of interacting prosocially with others, 

suggesting reduced vicarious experience more broadly (Foulkes, McCrory, 

Neumann, & Viding, 2014).  

By contrast, one of the defining features of psychopathy is the ability to 

successfully manipulate others (Hare, 1999), a process that requires the ability 

to   understand   another   person’s   thoughts. Thus it might be expected that 

individuals with psychopathy would have intact theory of mind and may even be 

able  to  compute  other’s  likely  emotional  states,  even  if  they  do  not  share  such  

states themselves   (i.e.   they   may   have   intact   “cognitive   empathy”). Several 

studies report no “cognitive empathy” impairments (Blair et al., 1996; Dolan & 

Fullam, 2004; Richell et al., 2003) and even superior ability (Hansen, Johnsen, 

Hart, Waage, & Thayer, 2008) in individuals with psychopathy or high 

psychopathic traits. Some studies have reported problems in tasks that the 

authors have claimed to asses “cognitive empathy” in both incarcerated 

psychopaths (Brook & Kosson, 2013) and healthy samples with high 

psychopathic traits (Ali & Chamorro-Premuzic, 2010). One possibility for these 

mixed findings is that different ‘cognitive  empathy’  paradigms vary in their level 

of affective content, with some measures requiring identification of other 

people’s   feelings,   rather   than   simply processing others’ intentions. Those 

studies that have reported a  negative  association  between  “cognitive  empathy” 

and psychopathy/high psychopathic traits have all involved emotional content, 

and it is currently not clear whether the findings in these studies are driven by 

problems related to basic affective processing, rather than difficulties in 

“cognitive empathy” per se.  

In children, there is abundant evidence that psychopathic traits and behaviours 

can be observed and that the behavioural and affective disturbances that are 

seen generally mirror those observed in adults with high levels of psychopathic 

traits. In childhood, high levels of antisocial behaviour can be diagnosed as 

conduct disorder (DSM-5). Particular subsets of children with conduct disorder 

can also have elevated levels of psychopathic traits, which are termed callous-

unemotional traits in research studies and “limited   prosocial   emotions” in the 



27 
 

new DSM-5 guidelines. Evidence of a similar profile of empathic impairments in 

children with CU traits as compared to adults with psychopathy or high 

psychopathic traits was reported by Jones et al. and Schwenck et al. (Jones et 

al., 2010; Schwenck et al., 2012). These authors found that children with 

psychopathic traits showed less affective resonance (affective empathy) with 

others’   emotions   but   did   not   have   problems   with   cognitive   perspective-taking 

(cognitive empathy). Callous-unemotional traits in children can persist into 

adulthood (Lynam, Caspi, Moffitt, Loeber, & Stouthamer-Loeber, 2007) and are 

highly heritable (Viding, Blair, Moffitt, & Plomin, 2005). In contrast, antisocial 

behaviour in children without callous-unemotional traits appears to be primarily 

driven by environmental influences and is typically less persistent (Frick, Ray, 

Thornton, & Kahn, 2014; Viding et al., 2005).   

In terms of the pathways through which psychopathy develops, researchers 

have proposed that individuals with psychopathy have an atypical experience of 

distress, such as fear or sadness (Blair, 2013) underpinned by dysfunction in 

specific neural systems. Genetic and environmental factors influence the 

development of these neural systems. Throughout development, the reduced 

ability to experience emotions results in impaired associations between 

antisocial actions and outcomes of causing distress in other people (Bird & 

Viding, 2014; Blair, 2013), and also perhaps outcomes of causing positive 

experiences in others (e.g. Brook et al., 2013). Reduced distress in an infant 

also results in fewer opportunities in the environment for learning which cues 

reliably signal distress in other people (Bird & Viding, 2014; Blair, 2013). 

Researchers have argued that it is the reciprocal interaction between atypical 

emotional reactivity and the resulting interactions with the environment that can 

lead to the development of psychopathy (Bird & Viding, 2014).  

 

Measuring psychopathic traits in adults and children 

 

In forensic settings, the most widely used and validated instrument for 

assessing psychopathy is the Hare Psychopathy Checklist Revised (PCL-R; 
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(Hare, 1999). The PCL-R conceptualises psychopathy as consisting of two 

broad dimensions, termed Factor 1 and Factor 2 in the literature. Factor 1 

comprises affective and interpersonal features including reduced empathy and 

guilt, as well as manipulation of others. Factor 2 comprises antisocial behaviour 

and impulsive lifestyle choices (Hare, 1999). 

 

 

 

Psychopathic traits can be reliably measured in a typical adult population, with 

increasing evidence that these traits existing on a continuum (See Hare & 

Neumann (2008) for a review). Self-report measures suitable for non-forensic 

samples include the Self-Report Psychopathy Scale (Paulhus, Neumann, & 

Hare, 2015), which is perhaps the most well validated measure of psychopathic 

traits. The SRP has been shown to have a clear latent structure, which mirrors 

the factor structure of the PCL-R (Carré et al., 2013). The SRP is strongly 

Notes: Modified from Neumann et al. (2012) with permission of the copyright 
owner. 

Figure 1.4. Four-factor model of psychopathy. Labels of Factor 1 and 
Factor 2 show conceptual and empirical overlap with the PCL-R.  
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positively correlated with the PCL-R (Neumann & Pardini, 2014; Neumann, 

Schmitt, Carter, Embley, & Hare, 2012; Paulhus et al., 2015) and is associated 

with related external correlated including criminal offenses and externalizing 

psychopathology (Neumann & Pardini, 2014). There is evidence that external 

correlates of psychopathic traits in community samples mirror those observed in 

forensic samples in both behavioural and neural profiles (e.g. Seara-Cardoso & 

Viding., 2014), Where psychopathic traits in adults are measured in Chapter 2 

the SRP measure is adopted.  

In children, conduct problems are generally assessed using the DSM criteria, as 

specified for example in the Child and Adolescent Symptom Inventory (CASI-

4R; Gadow & Sprafkin, 2009) Conduct Disorder scale (CASI-CD). A research 

diagnosis of conduct disorder can be used where a child meets CASI-CD 

criteria for scores associated with a clinical diagnosis of CD (Gadow & Sprafkin, 

2009). Callous-unemotional traits can be assessed using the Inventory of 

Callous-Unemotional Traits (ICU) (Essau, Sasagawa, & Frick, 2006). The ICU 

has been validated in a large sample (n=1443) of adolescents and contains 

subscales of callous, uncaring and unemotional traits. Fit indices suggest that 

callous-unemotional traits can be represented as this three-factor structure 

(callous, unemotional, uncaring) as well as a single higher order factor (callous-

unemotional traits). In further studies, this three-factor structure was confirmed 

in a sample of juvenile offenders, and the ICU was documented to related to 

key external correlates including increased aggression, delinquency and 

psychophysiological and self-report indices of emotional reactivity (Kimonis et 

al., 2008). Thus, where CU traits are measures in children with conduct 

problems (Chapter 4) the ICU is used. 

 

1.3.2.2. Autism 

 

Autism spectrum disorders (ASD) refer to a class of developmental disorders 

characterised by impaired social and communication skills and a restricted 

repertoire of interests and activities (American Psychiatric Association, 2013). 
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Several decades of research indicate that individuals with ASD have difficulties 

with “cognitive” aspects of empathy (see Hill & Frith, 2003). ASD has often been 

described as a disorder associated with “poor  empathy” (Baron-Cohen, 2011). 

However, it is important to note that the nature of their social information 

processing deficits and behaviours seem very different from those seen in 

individuals with psychopathy/psychopathic traits (Viding, McCrory, & Seara-

Cardoso, 2014).  

A number of studies measuring cognitive and affective processes related to 

empathy have found impairments in cognitive perspective-taking but not 

empathic concern in adults (Dziobek et al., 2008) and reduced cognitive 

perspective-taking (cognitive empathy) but not affective resonance/affective 

empathy in children, with ASD (Jones et al., 2010; Schwenck et al., 2012). 

Studies focusing solely on affective processing have found evidence of 

preserved affective processing, including normal skin conductance response to 

others’   negative   emotions   when   emotions   are   unambiguous   and   presented  

under conditions of low distraction (Blair, 1999). Some theorists have argued 

that affective empathy is actually heightened in individuals with ASD (Smith, 

2009) and reports of greater empathic facial affect in children with ASD 

compared to controls supports this (Capps, Kasari, Yirmiya, & Sigman, 1993).  

However, individuals with ASD have also been found to have lower scores on 

the empathy quotient, a self-report questionnaire of empathy, compared to 

typically developing individuals (Baron-Cohen & Wheelwright, 2004). Another 

study found that parents of children with ASD reported their children to be less 

concerned about emotional situations and less responsive to distress cues than 

control children (Hudry & Slaughter, 2009). Nevertheless, it is unclear in studies 

that do find affective empathy impairments whether these relate to problems in 

social responsivity rather than affective empathy per se. 

 A further consideration for the profile of empathy in ASD is the high comorbidity 

of the disorder with alexithymia. Alexithymia is a sub-clinical condition defined 

by an inability to identify and describe one’s   own   feelings. Preliminary 

behavioural and neuroimaging research suggests that when genuine affective 

and empathy impairments are seen in individuals with ASD, these may be a 
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function of interoceptive difficulties related to alexithymia rather than ASD per 

se (Bird et al., 2010; Silani et al., 2008). After accounting for the variance 

explained by alexithymia in the studies assessing empathy in individuals with 

ASD, there is typically no difference in empathy between individuals with ASD 

and controls (Bird & Cook, 2013). However, one recent fMRI study found no 

significant moderating effects of alexithymia in a task where participants viewed 

pictures   of   other   people   in   pain   (termed   an   ‘empathy   for   pain’ task by the 

authors) in individuals with ASD (Fan, Chen, Chen, Decety, & Cheng, 2014). 

Nevertheless, the variance in alexithymia scores was very limited (SD 3.8 in 

(Fan et al., 2014) vs. 11.8 in (Bird & Cook, 2013), which may explain why no 

effect of alexithymia was observed. 

To capture individual differences in autistic traits in community samples the 

Autism Quotient (Baron-Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001) 

is one of the most commonly used and best validated measures (e.g. 

(Chakraborty   &   Chakrabarti,   2015;;   Haffey,   Press,   O’Connell,   &   Chakrabarti,  

2013). The AQ correlates highly with other measures of ASD severity (e.g. 

ADOS; Brugha et al., 2012). Consequently, where autistic traits are measured 

in Chapter 2 the AQ is used, although it is acknowledged that high levels of 

autistic traits as measured by AQ do not equate to an ASD diagnosis.  

 

1.4.  Empathy and relationship with social behavior 

 

1.4.1.  Antisocial and Prosocial behavior 

 

Associations between empathy and antisocial behaviour have mostly been 

investigated in children with conduct problems and in individuals with high 

levels of psychopathic traits. As highlighted in the previous section, theorists 

have suggested that antisocial behaviour in part occurs due to an atypical 

response to the suffering of others (Blair, 2005) and it is clear that adults with 
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psychopathy and children with psychopathic traits have high levels of antisocial 

behaviour as well as empathy impairments (Anderson & Kiehl, 2012). On the 

flip side, empathy is thought to be a crucial motivation factor for prosocial 

behaviour (Eisenberg, Eggum, & Di Giunta, 2010; Hoffman, 2008; Penner, 

Dovidio, Piliavin, & Schroeder, 2005). Prosocial behaviours can be broadly 

defined as social behaviours intended to benefit other people. Humans are 

thought to have a remarkable capacity to engage in prosocial behaviours with 

genetically unrelated individuals (Fehr & Fischbacher, 2003). People routinely 

engage in charitable donation behaviour and exhibit social preferences, which 

are influenced by positive or negative concern for the welfare of others (Fehr & 

Camerer, 2007).  

Processes related to both affective and cognitive empathy are thought to be 

positively associated with prosocial behaviour (for a review see Eisenberg et al., 

2010). In the majority of these studies the IRI questionnaire (Davis, 1983) and 

cardiovascular and electrodermal indices, such as heart rate deceleration and 

facial electromyography (EMG), have been used as proxy measures of affective 

empathy. For example, heart rate deceleration (which is thought to index 

vicariously induced sadness or sympathy (e.g. Eisenberg, McCreath, & Ahn, 

1988) and increased indicators of facial sadness when watching needy others, 

are associated with increased willingness to help (Eisenberg et al., 1989). 

Dispositional empathic concern, as measured by the IRI, has also been linked 

to higher levels of self-reported charitable giving (Davis, 1983) and greater self-

reported concern for the welfare of others (Batson, 1998).  

In terms of associations between cognitive components of empathy and 

prosocial behaviour, the majority of studies have focused on correlating the 

perspective-taking subscale of the IRI to self-reported prosocial behaviour and 

have found that trait perspective taking is positively associated with frequency 

of volunteering (Carlo, Allen, & Buhman, 1999) and self-reported prosocial 

tendencies (Carlo, Hausmann, Christiansen, & Randall, 2003). As mentioned in 

section (1.3.1), however, the empathic concern and perspective taking scales of 

the IRI tap constructs that, although related, are different from the current 

conceptualisation   of   “affective   empathy”   and   “cognitive   empathy”.  

Consequently, there is a lack of empirical evidence that empathy is indeed a 
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motivating factor for prosocial behaviour. Importantly, the majority of studies 

suggesting empathy as a motivating factor for prosocial behaviour have 

investigated self-reported empathic   concern   (feeling   ‘for’   another   person,  

including compassion and sympathy, e.g.(Batson, 1998; Davis, 1983), rather 

than self-reported affective empathic responses (the ability to vicariously 

experience the emotional experience of others; or feeling ‘as’   another  

individual). While these two processes are no doubt closely related, there is a 

lack of empirical data regarding how feeling in a similar emotional state to 

another may motivate prosocial behaviour. In addition, self-reported cognitive 

empathic  ability   (i.e.   the  ability   to  position  oneself   ‘in  another  person’s  shoes’)  

might also relate to prosocial behaviour, but compared to the role of affective 

empathic processes motivating empathy this has received relatively little 

attention to date (except for work by(Carlo et al., 1999, 2003) that has 

associated perspective-taking as measured by the IRI with prosocial 

tendencies).  

 

1.5. Neural underpinnings of empathy and social decision-
making behaviour 

 

In order to vicariously process the experiences of another person it is first 

necessary to perceive or comprehend their experience. This perception can 

then guide subsequent decision-making behaviour, linking empathy to social 

behaviour. In the next section I review studies that have attempted to uncover 

the neural basis of vicarious perception and vicarious decision-making and 

identify research questions that are still outstanding. 

 

1.5.1. Vicarious perception 
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Studies in the field of social neuroscience have attempted to identify the neural 

substrate of vicarious perception, namely the perception of the experience of 

another person, which can perhaps be seen as a proxy measure of empathy. In 

general, this research has followed two somewhat separate strands. One strand 

has emphasised that social information is processed by a specific set of neural 

circuits  referred  to  as  the  “social  brain” (Behrens, Hunt, & Rushworth, 2009) that 

do not overlap with the processing of self-relevant information. This strand can 

be seen as historically influenced by theory-theory accounts of social cognition, 

and the brain areas implicated are in some cases is referred to as the 

‘mentalising’   system. The second strand has instead focused on regions that 

show overlap between first-person and third-person processing of information, a 

natural derivation from simulation-theory accounts of social cognition. In 

general,  some  researchers  refer  to  this  as  the  ‘mirroring  system’. 

Many studies investigating the neural basis of empathy have focused on the 

observation of other people’s negative experiences. A seminal study by Tania 

Singer and colleagues, now with over 2500 citations, was one of the first to 

investigate the neural underpinnings of the observation of other people’s 

negative experiences, as a proxy measure of empathy (Singer et al., 2004). In 

this study, participants experienced a painful stimulus whilst undergoing 

functional magnetic resonance imaging (fMRI). On “other” trials participants 

observed cues that signalled that their partner, who was present in the same 

room, was receiving a painful stimulus. Singer and colleagues found that the 

anterior insula (AI) and anterior cingulate cortex (ACC) responded both when 

the subject themselves received the painful stimulus and when they viewed a 

cue that indicated that their partner received a painful stimulus (though it is 

important to note the authors used a block design so they were not able to 

separate out cue and outcome related neural responses). In contrast, response 

in the secondary somatosensory cortex and primary somatosensory cortex was 

associated with greater response to the pain participants received themselves, 

compared to not receiving pain themselves. Trait empathic concern, as 

measured by the IRI, was positively associated with blood oxygen level (BOLD) 

response for the pain-no pain for other contrast. Taken together, these findings 

were the first to suggest that the observation of others experiences activates 
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similar   neural   regions   to   one’s   own   experiences,   which   was   interpreted   as   a  

neural marker of empathy. Since this seminal study, many studies have 

replicated the finding of AI and ACC response   to   the   observation   of   others’  

negative experiences, particularly pain (reviewed in Lamm, Decety, & Singer, 

2011), but also disgust (Jabbi, Bastiaansen, & Keysers, 2008; Wicker et al., 

2003).  

More recently paradigms have been used to examine response to other 

people’s   positive experiences, such as rewards (Apps & Ramnani, 2014; 

Braams et al., 2014; Mobbs et al., 2009) and pleasant touch (Lamm, Silani, & 

Singer, 2015). One of the first paradigms to examine neural responses to the 

observation of others’ rewards was conducted by Mobbs and colleagues 

(Mobbs et al., 2009). In their study, participants watched videos of two game 

show contestants answering questions about their political and social views in a 

way that was socially desirable (SD) or socially undesirable (SU). Participants 

were then scanned whilst they watched these two players (SD and SU) play a 

card-guessing game where they could win or lose money. After, the participants 

played the game themselves. Mobbs et al. found that activity in the ventral 

striatum, subgenual cingulate cortex (sgACC) and ventromedial prefrontal 

cortex (vmPFC) correlated with the difference between watching the socially 

desirable and socially undesirable contestant win. Only the ventral striatum 

response was also observed when the participants played themselves. 

However, Mobbs and colleagues also used a block design so were unable to 

separate neural responses to reward prediction and reward consummation. 

More recently, studies have focused on separating neural responses to cues 

and outcomes. This is of particular importance as there is evidence that 

different neural regions may process cues signalling reward, and the actual 

receipt of reward, for oneself (Rademacher et al., 2010). Apps et al., (2014) 

examined activity at the time of cues that signalled the net-value (benefit-cost) 

of anticipated reward magnitude (benefit) to be gained and the level of effort 

(cost) to be incurred either by a participant themselves or by a social 

confederate (Apps & Ramnani, 2014). They observed that the gyral portion of 

the ACC (ACCg) signalled the net-value of rewards gained by others. In 

contrast, activity in the ventral striatum signalled the net-value only for the 
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Figure 1.5. Brain regions that respond in paradigms of vicarious 
perception  of  other  people’s  experience.   

Notes: ACCg: gyral portion of the anterior cingulate cortex. dmPFC: 
dorsomedial prefrontal cortex. sgACC: subgenual portion of the anterior 
cingulate cortex. AI: anterior insula. VS: ventral striatum. IFG: inferior frontal 
gyrus. 

 

participants themselves. This suggests that whilst the ACCg may play a specific 

role in vicarious reward. 

Meta-analysis of the observation of others pain (Lamm et al., 2011) and the 

observation of others positive outcomes (Morelli, Sacchet, & Zaki, 2015) 

suggest that the neural processing of other peoples experiences, in general, 

recruits the AI, the inferior frontal gyrus (IFG), ACC, subgenual ACC, medial 

prefrontal cortex, amygdala and ventral striatum (see Figure 1.5). The meta-

analysis by Lamm et al., identified these regions as the same regions that also 

respond to first-person information in the same task. This fits with the shared 

representation hypothesis of empathy, namely that empathy relies on shared 

neural systems between first-person and third-person experience (which can be 

seen as influenced by simulation theory accounts of social cognition) (Engen & 

Singer, 2013). However, the meta-analysis on neural responses to others 

rewarding outcomes (including food and money) identified regions involved in 

processing both personal and vicarious reward but also regions that show 

distinct contributions to these processes (Morelli et al., 2015). 
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Research in non-human animals can help us to identify neural regions that may 

be involved in empathising, as it allows us to directly record the activity of 

neurons during vicarious perception, and to cause focal lesions in an ethical 

manner (although of course we cannot infer from these studies that animals are 

experiencing the phenomenon of empathy). Of particular relevance, this 

research has identified important divisions within the ACC that appear to be 

central for understanding social behaviour. The cingulate cortex consists of five 

zones: retrosplenial, posterior (PCC), mid (MCC), anterior (ACC) and 

perigenual (including the sgACC) (Palomero-Gallagher, Mohlberg, Zilles, & 

Vogt, 2008; Vogt, Nimchinsky, Vogt, & Hof, 1995). In both the MCC and ACC 

there are differences in cytoarchitecture and connectivity between the sulcus 

(ACCs) and the gyrus (ACCg) that are indicative of distinct functional properties.  

There is converging evidence that the ACCg, as compared to the ACCs, plays a 

key role in social cognition and behaviour in both human and non-human 

primates (Apps, Green, & Ramnani, 2013; Apps & Ramnani, 2014; Behrens, 

Hunt,  Woolrich,  &  Rushworth,  2008;;  Boorman,  O’Doherty,  Adolphs,  &  Rangel,  

2013; Chang, Gariépy, & Platt, 2013; Jones et al., 2011; Rudebeck, Buckley, 

Walton, & Rushworth, 2006, and see Figure 1.6). It has been argued that the 

ACCg and ACCs both processes information that conforms to the principles of 

reinforcement learning theory (to be discussed in further detail in section 1.7) 

but the ACCg does this in social contexts whilst the ACCs does so in ‘non-

social’  contexts (Apps, Lockwood, & Balsters, 2013).  

The claim of a key role for the ACCg in social cognition and behaviour is built 

upon several lines of evidence. Lesions to this region have been shown to 

impair the processing of social stimuli and cause a reduction in the execution of 

social behaviours (Rudebeck et al., 2006). Rudebeck and colleagues examined 

the latency that occurs before reaching for a food item when the food was 

presented simultaneously with different types of social and emotional stimuli. 

Monkeys without lesions, with lesions to the lateral OFC or with lesions to the 

ACC sulcus, showed a similar latency before reaching for a food item when it 

was presented with a social stimulus. In contrast, monkeys with a lesion 

specifically to the ACCg showed significantly decreased latencies in the 

presence of multiple different types of social stimuli.  
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The latencies of the ACCg lesion monkeys were the same as the responses of 

control monkeys when the food was presented at the same time as a neutral 

stimulus, suggesting that the stimuli no longer held the same social significance. 

Figure 1.6. The anterior midcingulate cortex (ACC/MCC).  

Notes: (A) Cytoarchitecture of the MCC taken from Vogt et al., (1995). The 
areas shaded in green lie in the MCCs. The areas shaded in red lie on the 
MCCg. We argue that this area is engaged when processing information 
about   others’   decisions.   Specifically   we   argue   that   areas   24a’   and   24b’,  
which lie on gyral surface of the cingulate cortex, extending on average 
22mm posterior and 30mm anterior the anterior commisure. Lesion site of 
the MCCg and ACCg (B) and the MCCs and the ACCs from Rudebeck et al., 
(2006). The lesions that affected the gyrus caused disruptions to social 
behaviour and disrupted the processing of social stimuli. (C) Subdivisions of 
the MCC and ACC according resting-state connectivity (Beckmann et al., 
2009). The cluster shown in dark red corresponds, broadly, to the 
ACCg/MCCg. Reproduced from Apps, Lockwood and Balsters (2013). 
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ACCg lesions also resulted in a reduction in communicative behaviours such as 

lip smacking and communicative vocalisations. Importantly, in the monkeys with 

lesions of the OFC and ACCs no impairments in communicative behaviours or 

differences in response latencies to social stimuli were observed. This study 

therefore supports the notion that the ACCg processes social information and 

guides behaviours during social interactions.  

A seminal study by Chang and colleagues was the first to record from neurons 

in the ACCs, ACCg and OFC during a social decision-making task (Chang et 

al., 2013). They observed that a greater proportion of neurons in the ACCg, 

compared to the ACCs and OFC, responded to cues that predicted rewards for 

other monkeys and also to decisions to allocate rewards to other monkeys. The 

ACCg is densely connected to regions that process social information, but also, 

to regions that process reward-related information (Haber, Kunishio, Mizobuchi, 

& Lynd-Balta, 1995; Lynd-Balta & Haber, 1994; Williams & Goldman-Rakic, 

1998; Yeterian & Pandya, 1991). Finally, it has been found that in non-human 

primates those with larger social networks have increased grey matter volume 

in the ACCg compared to those with smaller social networks (Sallet et al., 

2011). Taken together these studies provide support for the claim that the 

ACCg  is  important  for  processing  others’  rewards  and  also  more  widely  in  social  

behaviour.  

Overall, studies on vicarious perception have identified a network of regions 

that could be involved in encoding the experiences of other people. Whether 

these are the same regions involved in encoding first-person-experience and 

whether this is a necessary condition for empathy remains to be resolved. Meta-

analyses of the perception of other peoples negative and positive experiences 

have, in general, identified the ACC/MCC, AI, sgACC, IFG and ventral striatum 

as potential neural regions involved in vicarious perception (Fan, Duncan, de 

Greck, & Northoff, 2011; Lamm et al., 2011; Morelli et al., 2015). Studies in non-

human primates have suggested that the ACCg in particular may be key for 

processing others experiences and more widely in social behaviour. In the next 

section the role of these regions and others will be reviewed in relation to how 

the perception of others experiences may guide our social behaviour. 
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1.5.2. Vicarious decision-making behavior 

 

Over more than a decade, research in the field of behavioural neuroscience has 

provided a rich theoretical characterisation of the behavioural and neural 

mechanisms that underpin value-based decision-making (Behrens et al., 2009). 

Recently, this framework has begun to be applied to decision-making in social 

environments (see Rilling & Sanfey, 2011; Ruff & Fehr, 2014 for reviews). 

Relevant contexts in which the ability to vicariously process another’s 

experiences could be important for guiding our behaviour might include reward 

learning (Behrens et al., 2009), prosocial learning, observational learning 

(Burke, Tobler, Baddeley, & Schultz, 2010), and teaching (Apps, Lesage, & 

Ramnani, 2015). These same processes have been argued to be crucial for 

understanding social cognition and behaviour across species (Frith & Frith, 

2012). As in research on vicarious perception, research on the neurobiological 

basis of social decision-making has also followed two somewhat separate 

approaches.  One  focusing  on  neural  regions  of  ‘socially-specific’ cognition and 

one   on   the   ‘common-currency’   of   overlapping   regions   involved in social and 

non-social decision-making processes (Ruff & Fehr, 2014).  

A number of neural regions have been linked to processing decisions in social 

environments. These regions include the ventral striatum, ACCg, sgACC, 

amygdala, insula, OFC, VMPFC, DMPFC and DLPFC (see Moll & Schulkin, 

2009; Rilling & Sanfey, 2011; Ruff & Fehr, 2014 for reviews and Figure 1.7). 
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As mentioned previously, in non-human primates the ACCg was identified as 

containing neurons which respond to the decision of a monkey to allocate a 

reward to another monkey (Chang et al., 2013). A recent study also identified 

neurons in the dorsal ACC (unclear whether this area was ACCg or ACCs) 

during a prisoners dilemma game (Haroush & Williams, 2015). In this latter 

study, the authors observed that stimulation of neurons in the dorsal ACC made 

monkeys more competitive.  

In humans, one of the first studies to examine the neural correlates of rewards 

allocated to others observed that whilst the ventral striatum signalled both 

monetary reward and charitable donation, the sgACC showed a greater 

response for decisions to donate money to charity vs. monetary reward (Moll et 

al., 2006). This suggests support for both the common currency and socially-

specific hypotheses of social decision-making. Whilst the ventral striatum 

signals both monetary reward and charitable donation, the sgACC region could 

be specifically involved in processing information about delivering rewards to 

others. Another neural region consistently identified in social decision-making 

Figure 1.7. Brain regions that respond in vicarious decision-making 
paradigms.  

Notes: Brain regions that are response in paradigms of vicarious decision-
making paradigms. ACCg: gyral portion of the anterior cingulate cortex. dmPFC: 
dorsomedial prefrontal cortex. sgACC: subgenual portion of the anterior 
cingulate cortex. AI: anterior insula. VS: ventral striatum. DLPFC: dorsolateral 
prefrontal cortex.  
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studies is the dorsolateral prefrontal cortex (DLPFC) (see Fumagalli & Priori, 

2012; Young & Dungan, 2012), for recent reviews). For example, the right 

DLPFC responds when individuals make unfair offers in the ultimatum game 

(Sanfey, Rilling, Aronson, Nystrom, & Cohen, 2003) and when allocating money 

to others (Chang, Smith, Dufwenberg, & Sanfey, 2011; van den Bos, van Dijk, 

Westenberg, Rombouts, & Crone, 2009) during the trust game. One advantage 

of studying the DLPFC in social decision-making behaviour is that this region 

can be targeted by brain stimulation techniques such as transcranial magnetic 

stimulation (TMS) and transcranial direct current stimulation (tdcs). TMS studies 

of DLPFC stimulation have consistently supported a crucial role for this region 

in social decision-making. It has been suggested that in these studies the 

DLPFC serves to down-regulate selfish preferences (Knoch, Pascual-Leone, 

Meyer, Treyer, & Fehr, 2006).  

To gain a fuller understanding of the mechanisms that may support social 

decisions and link neural responses and behaviour, studies have begun to 

apply mathematical models borrowed from research in the field of reward-

guided behaviour (see Figure 1.8). This is a relatively new approach to study 

social decision-making, which has previously been investigated mainly using 

economic games such as the prisoners dilemma, trust game and ultimatum 

game. In economic paradigms participants often experience mixed payoffs and 

have contrasting goals between self and other. Such a set up can make it 

difficult to separate self and social preferences, which may be more clearly 

delineated in reward models. These models of reward-guided decision-making 

also have a number of advantages when applied to fMRI. Firstly, these models 

have different internal parameters that can be associated with different precise 

computations within the same behavioural task. Secondly, they allow us to 

examine neural responses parametrically rather than relying on traditional 

subtraction based designs, which average over a number of trials. Third, by 

relating different parameters together in formal equations, these models can 

also predict precisely the effect that differences in neural activity should cause 

in behaviour, reducing the reliance on reverse inference. Finally, hypotheses 

can be formulated not only about brain regions, but also about the 

computational mechanisms they may underpin (Behrens et al., 2009).  
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One of the most replicated findings that have come from mathematical models 

of neural regions is that midbrain dopamine neurons, which project to the 

ventral striatum, encode the difference between expected and actual rewards 

received, rather than just signalling reward outcomes themselves (Schultz, 

2013). Such reward prediction error (PE) signalling is the key computation that 

drives reinforcement learning (RL) models of behaviour (Sutton & Barto, 1998). 

At their most simple, RL algorithms state that expectations of future reward 

(Qt+1) should be a function of current expectations (Qt) and their discrepancy 

from the actual outcome that is experienced—the prediction error (t). These 

reward predictions are updated by the learning rate (𝛼): 

 

(1) RL model 

𝑄௧(௡ାଵ) =   𝑄௧(௡)     +     𝛼  𝑥  𝛿   

  Where: 

 

(2) Prediction error    𝛿 = 𝑟௧ −  𝑄௧(௡)       

 

In these equations n is the number of times an action, t, has been performed 

and α is the learning rate, in other words the extent to which the values are 

updated by new information. In (1) the value of the action in the future (𝑄௧(௡ାଵ)) 

is a function of current predicted value of the action (𝑄௧    ) added to the prediction 

error (𝛿), which is multiplied by the learning rate (𝛼). The learning rate defines 

the extent to which the prediction error updates the predicted value.  

Consequently, a low learning rate will minimise the influence of the prediction 

error and the amount that the value is updated. The prediction error, shown in 

(2), compares the actual outcome achieved by an action (𝑟) to the prediction of 

its value (𝑄௧(௡)). This difference is what determines the updating of the predicted 

value in the future.  
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To fit this model to individual participant’s behaviour an extra free parameter is 

needed, the inverse temperature/exploration-exploitation parameter, (β), which 

is implemented in the softmax function (see 3) and fitted using maximum 

likelihood estimation. The temperature parameter quantifies the noisiness of 

participants choice behaviour, with a high parameter meaning very variable 

choice behaviour and a low parameter meaning very consistent choice 

behaviour. 

 

(3) Softmax function  

 

𝑃𝑡(𝑟)       =   exp ቆ
𝑞𝑡(𝑟)
𝛽

ቇ /෍ 𝑖 = 1exp ቆ
𝑞𝑡(𝑖)
𝛽

ቇ  
௡

 

 

An important aspect of the R-W algorithm and other models based around the 

principles of RLT, are the assumptions that these models make about learning. 

By including a free parameter, the learning rate, the extent to which an 

individual updates the values of a performed action can be defined regardless 

of the magnitude of the prediction error. Thus, RLT assumes learning is 

idiosyncratic, allowing for individual differences in learning and decision-making 

to be accounted for. In addition, this framework also makes the assumption that 

learning the value of actions is underpinned by the same computational 

mechanisms, across individuals and across species, as well as in both 

behaviour and the brain. 
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A number of studies have begun to apply the framework of reinforcement 

learning theory to neural processing in social contexts. In Behrens et al., (2008) 

participants learned the probability of receiving a rewarding outcome from two 

options associated with different reward levels. On each trial, participants 

received advice from a confederate about which option to choose. To maximise 

financial return participants had to track how volatile the environment was (how 

rapidly the better option was shifting between the two) and also the volatility of 

the confederate advice. Whilst response of the ACCs covaried with the 

environmental volatility, response of the ACCg covaried with the volatility of the 

social advice at the time of the outcome. These authors also observed 

responses in the DMPFC, right TPJ/STS and MTG at the time of the outcome 

and in the sgACC and VMPFC at the time of the decision (Behrens et al., 2008).  

Figure 1.8. Schematic of an approach that combines mathematical 
models of behaviour with neural recordings.  

Notes: The model contains parameters that represent specific 
computations underlying behaviour. As the subject/model undergoes 
different experiences, these parameters will fluctuate. The fluctuation in 
these parameters is used to find neural correlates of the specific underlying 
computations. Separately, the same parameter fluctuations come together 
to predict changes in behaviour. Reproduced from Behrens et al., (2009) 
with permission of the copyright owner.  
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In another study prediction errors were created by unexpectedly changing the 

outcome to be either for the participant themselves or for a charity. This showed 

that there was PEs in the ventral striatum whether the outcome was for the 

participant themselves and when the outcome was for a charity (Harbaugh, 

Mayr, & Burghart, 2007). A separate study observed response in the dorsal 

striatum to PEs both when participants made a choice and when they observed 

another person making a choice (Cooper,  Dunne,  Furey,  &  O’Doherty,   2012). 

These studies support the common currency argument that self and other value 

representations are overlapping. However, one limitation of this common 

currency   interpretation   is   none   of   these   studies   had   a   ‘non-self’   control  

condition. Does the ventral striatum signal a common currency of reward, a 

general reward prediction error mechanism regardless of whether the agent is 

self, other or no one? Or a fictive reward signal that reflects a reward that was 

not delivered to self? (E.g. Hayden, Pearson, & Platt, 2009; Lohrenz, McCabe, 

Camerer, & Montague, 2007) (This outstanding question will be addressed in 

Chapter 6).  

Other studies have suggested that vicarious PEs rely on distinct neurocircuitry. 

Burke and colleagues used a task that examines self reinforcement-learning 

and observational reinforcement-learning. Participants performed a probabilistic 

reinforcement-learning task where they were required to pick one of two 

abstract stimuli that were probabilistically associated with monetary outcomes. 

On some trials participants performed individual learning, on some trials they 

were able to observe the action of a social confederate and in a third condition 

they observed both the action and outcome of the social confederate. 

Behaviourally, Burke et al observed that participants were significantly more 

likely to choose the correct stimuli in the observational learning condition. 

Activity in the DLPFC correlated with observational action prediction errors 

whilst activity in the vmPFC corresponded to the observational outcome 

prediction errors (Burke et al., 2010).  

Together, these studies point to a key role for the ventral striatum as well as 

regions of the prefrontal cortex for guiding social decision-making. Surprisingly, 

however, no current study has examined neural regions that signal PEs when 

outcomes are for another person. Moreover, to my knowledge, only a limited 
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number of studies of social decision-making in humans have used a non-social 

control condition in order to directly assess the socially-specific vs. common 

currency conceptions of value-based decision-making. Another issue for the 

studies that support the shared neural circuits or common-currency theories of 

vicarious perception and decision-making is that neural overlap does not 

necessarily mean that the same neurons are responding, or that they are 

performing the same computations. A recent study examining the common 

neural representation theory of physical pain and social rejection showed that 

multivariate pattern analysis was able to separately classify physical pain and 

social rejection patterns of neural response, and showed that they relied on 

distinct  uncorrelated  fMRI  patterns  within  ‘pain-processing’  regions (Woo et al., 

2014). Relatedly, we cannot tell directly from BOLD response the cognitive 

processes that are being instantiated (Iannetti & Mouraux, 2011). It is often 

assumed  in  studies  of  empathy  that  ‘shared  activation’  means  the participant is 

experiencing empathy. Finally, social decision-making studies have rarely 

directly examined trait individual differences to explain variability in social 

decision-making behaviour. Does empathy predict individual differences in 

social decision-making behaviour and its neural substrate? 

 

1.6.  Outstanding research questions 

 

Empathy is a key component of many aspects of social cognition and 

behaviour. There are, however, a number of gaps in the extant literature on 

empathy that have yet to be fully addressed. This thesis identifies four 

outstanding questions regarding the behavioural and neural foundations of 

empathic/vicarious processing and investigates these questions empirically.  
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1.6.1. How separable are different aspects of empathic processing and do 

distinct aspects of empathic processing related to different aspects 

of social functioning? 

 

As highlighted above,  a  distinction   is  often  made  between   ‘affective’  empathic  

processes e.g. being aware of, and resonating with, the feelings of another 

individual such that the awareness of their emotion drives the same state in 

oneself   and   ‘cognitive’   empathic   processes  e.g.   identifying  and  understanding  

what another individual is thinking/feeling without a necessary affective 

response. However, little is known about the degree to which these different 

aspects of empathic processing relate to one another and whether they are 

associated with distinct aspects of social functioning in the general population. 

This lack of knowledge has been compounded by previous studies that have 

used tasks that do not clearly separate demands for affective and cognitive 

content. It has also been suggested that individuals with psychopathy and 

autism may display dissociable empathy impairments (Blair, 2005), but 

relatively few studies have directly tested this hypothesis and no study to date 

has related psychopathic and autistic traits in the general population to different 

aspects of empathic processing. By studying traits associated with these 

disorders  we   can  potentially   ‘pull   apart’   the   different   components   of   empathy.  

The aim of Chapter 2 is thus to characterise the degree to which different 

aspects of empathic processing relate to each other and individual differences 

in psychopathic and autistic traits. An additional aim is to identify whether any of 

these associations can be explained by variance in alexithymic traits. To this 

end, I use two established behavioural paradigms measuring affective and 

cognitive components of empathy (ToM animations and SAM-Faces task) as 

well as self-report measures of psychopathic, autistic and alexithymic traits.  
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1.6.2. How does empathy relate to trait prosocial behaviour and do 

additional trait constructs moderate the association between empathy 

and prosocial behaviour? 

 

Chapter 3 examines (i) associations between different aspects of empathy and 

prosocial behaviour and (ii) how emotion regulation moderates the association 

between empathy and prosocial behaviour. It is widely assumed that empathy is 

an important motivating factor for prosocial behaviour. However surprisingly few 

empirical studies have addressed the associations between these constructs 

directly and those that have done so suggest that the association may not be 

entirely straightforward (Eisenberg, 2000; Singer & Klimecki, 2014). It is also 

unclear how different components of empathy might relate to prosocial 

behaviour:  is  it  the  capacity  to  vicariously  experience  another’s’  emotion  or  the  

capacity   to   understand   another’s’   thoughts,   or   both,   that   motivates   prosocial  

behaviour? Finally, even if empathy does motivate prosocial behaviour, it is 

unknown whether additional variables may moderate the strength with which 

empathy and prosocial behaviour are associated. Consequently, in Chapter 3 I 

collect trait measures of empathy, prosocial behaviour and emotion regulation 

to examine associations between these different constructs in a sample of 

healthy adults (n=110).  

 

1.6.3. Where in the brain is vicarious information (both negative and 

positive) processed, and does this vary in: 

 

1.6.3.1. Children with conduct problems 

 

As highlighted previously, specific neural circuits are thought to be involved in 

processing information about other people’s experiences, such as predictions 
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and outcomes of pain and reward for others. However, we currently have a 

limited understanding of how these regions respond in those with disorders of 

empathy, such as children with conduct problems. It has been suggested that 

part of the reason these children display antisocial behaviour is due to atypical 

responses   to   others’   suffering. Yet it is unknown whether neurobiologically 

children with conduct problems show atypical responses to the observation of 

pain in others. In Chapter 4 I examine the neural basis of vicarious processing 

of   other   people’s   pain in a group of children with conduct problems (n=40) 

compared to a group of typically developing children (n=18) matched for age, IQ 

and SES, using block-design fMRI. By collecting parent and teacher reports of 

callous, unemotional and uncaring traits, using the well-validated Inventory of 

Callous and Unemotional traits (ICU). I also examine whether callousness 

(which in particular denotes lack of empathy) accounts for the degree of neural 

response  to  others’  pain  in  children  with  conduct  problems. 

 

1.6.3.2. Individual differences in typical empathy 

 

The majority of studies measuring the neural basis of vicarious processing have 

focused   on   responses   to   other   people’s   negative   experiences,   such   as   pain.  

There is a paucity of data as to the neural regions involved in processing others’ 

positive experiences, such as predicting and obtaining rewards. A large body of 

research has examined the neural basis of predictions about the likelihood of 

receiving rewards ourselves (Schultz, 2013). However, we do not operate in a 

social vacuum. Successfully cooperating, competing or empathising with others 

hinges on our ability to predict when others will receive rewards. Yet, very little 

is known about the neural mechanisms that underpin vicarious reward 

prediction. In addition, no existing studies have measured how individual 

differences in empathy might explain variability in response   to   other   people’s  

rewards. We know that these are large individual differences in the level of 

empathy between individuals. Do these individual differences also modulate 

how social information is processed in the brain? In Chapter 5 I use event-
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related fMRI in 30 healthy male volunteers (age 18-32) to investigate neural 

responses as participants view cues that indicate either a high or low probability 

of reward for themselves or for a social confederate. I also collect trait 

measures of empathy (QCAE) to examine whether this measure can explain 

variability in response of neural regions that process vicarious reward 

prediction.  

 

1.6.4. What regions of the brain are involved in signaling prosocial 

prediction errors? What are the mechanisms that link empathy to 

prosocial decision-making behaviour and neural response? 

 

In the final empirical chapter, Chapter 6, I examine the behavioural and neural 

mechanisms that might link individual differences in empathy to variability in 

prosocial decision-making behaviour. As mentioned previously, reinforcement 

learning theory has provided a detailed characterisation of neural computations 

that underlie reward-guided behaviour. Specifically, in reinforcement learning 

theory, prediction errors – the difference between a predicted and actual 

outcome of a choice – act as a neural signal to drive learning. The neural and 

behavioural mechanisms of learning from reinforcement delivered to oneself are 

increasingly well understood. However, less is known about how we process 

rewards delivered to other people. To be motivated to make beneficial decisions 

for another person (i.e. behave prosocially), it may be critical to represent and 

vicariously process rewards that others receive following our choices. Despite 

this, to date no studies have, to my knowledge, examined the neural 

mechanisms that underlie learning to obtain rewarding outcomes for others and 

how this may vary with trait empathy.  

Thus in Chapter 6 thirty-one healthy male participants (aged 18-32) performed 

a probabilistic reinforcement learning task in which they were required to learn 

the probability that each of two stimuli (high probability vs. low probability) would 

be rewarded. Participants performed this task for themselves (self 

reinforcement condition), for another participant (confederate, prosocial learning 
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condition) or for no one (no reinforcement, control condition). Participants also 

completed a questionnaire measure of trait empathy (QCAE). Participants’ 

behaviour was modelled using a Rescorla-Wagner (R-W) computational model. 

The model assumes that on each trial, participants make a prediction of the 

value of a stimulus, which is updated by a prediction error – the difference 

between the value of the reward they expected and the value of the reward they 

received. The amount that the prediction is updated is dictated by the learning 

rate, which quantifies how quickly participants learn from experience and can be 

different across different individuals and different contexts. Behaviourally, I 

examine differences in learning rates in the three learning conditions (self, 

prosocial and no one) as well as whether empathy modulates the prosocial-self 

difference in these parameters. At the time of the outcome, the PE parameter is 

used as a parametric modulator to examine common and distinct neural 

processing of self, prosocial and no one PEs in neural regions previously 

implicated in social decisions/social PEs including the ventral striatum, sgACC, 

DLPFC, OFC and ACCg. Finally, individual variability in PE signalling at the 

time of the outcome is examined in relation to trait empathy. 
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 Chapter background CHAPTER 2:

 

As set out in the introduction of this thesis, empathy is a multidimensional 

phenomenon comprised of different social cognitive processes. A distinction is 

often   drawn   between   ‘affective’   empathic   processes  e.g.   being aware of, and 

resonating with, the feelings of another individual such that the awareness of 

their emotion drives the same state in oneself (henceforth affective resonance 

in this chapter)   and   ‘cognitive’   empathic   processes   e.g.   identifying   and  

understanding what another individual is thinking/feeling without a necessary 

affective response (henceforth cognitive perspective-taking in this chapter). 

However, little is known about the degree to which these different components 

are associated with one another and whether they differentially relate to 

psychopathic and autistic traits in the general population. In the current study I 

describe two behavioral paradigms and measures of individual differences in 

social-cognitive functioning (psychopathic, autistic and alexithymic traits) that 

were employed to address these outstanding research questions. 
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2.1. Introduction 

 

2.1.1. Psychopathy as a disorder of empathy 

 

As described in the introduction, psychopathy is a disorder characterised by a 

lack of empathy, shallow affect, and manipulation of others for own gain (Hare, 

1999). In individuals with psychopathy, difficulties with affective resonance are 

often apparent. For example, individuals with psychopathy show reduced 

physiological   response   to   others’   distress   (Blair et al.,1997). Adults with 

psychopathy  display   atypical   neural   responses   to   others’   pain   (e.g. Decety et 

al., 2013). In community samples, high levels of psychopathic traits are related 

to weaker affective responses to fearful faces and happy stories (Seara 

Cardoso et al., 2012; Seara Cardoso et al., 2013) as well as being negatively 

associated with the enjoyment of prosocial interactions (Foulkes et al., 2014). 

Taken together, these findings indicate clear difficulties in resonating with 

others’   emotions   in   both   clinical   samples  with   psychopathy  and   in   community  

individuals with high levels of psychopathic traits.  

In contrast, one of the defining features of psychopathy is the ability to 

successfully manipulate others (Hare, 2003). Thus it might be expected that 

psychopathy would be associated with typical cognitive perspective-taking. 

Several studies report no cognitive perspective-taking impairments 

(Anastassiou-Hadjicharalambous & Warden, 2008; Blair et al., 1996; Dolan & 

Fullam, 2004; Richell et al., 2003) and even superior ability (Hansen et al., 

2008) in individuals with psychopathy or high psychopathic traits. However, 

others have reported problems with tasks related to cognitive perspective-taking 

in both incarcerated psychopaths (Brook & Kosson, 2013) and healthy samples 

with high psychopathic traits (Ali & Chamorro-Premuzic, 2010). One possibility 

for these mixed findings is that different paradigms vary in their level of affective 

content, with some purported cognitive perspective-taking measures requiring 

identification  of  other  people’s  feelings,   rather   than   just   their   thoughts.   It  could  
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be that negative associations between psychopathic traits and cognitive 

perspective-taking are driven by problems related to basic affective processing, 

rather than difficulties in cognitive perspective-taking per se. In fact, all studies 

that have reported that psychopathy/psychopathic traits are associated with 

poorer cognitive perspective-taking have utilised measures with affective 

content (e.g. Ali & Chamorro-Premuzic, 2010; Brook & Kosson, 2013) and 

therefore do not necessarily provide evidence for cognitive perspective-taking 

impairments in psychopathy.  

 

2.1.2.  Autism as a disorder of empathy 

 

Autism spectrum disorders (henceforth ASD) are characterised by problems 

with social interaction, communication and repetitive behaviours. It has been 

argued that individuals with ASD also have reduced empathy (e.g.(Baron-

Cohen & Wheelwright, 2004). Several decades of research indicate that 

individuals with ASD have difficulties with cognitive perspective-taking in 

particular are central to ASD (see Hill & Frith, 2003). The findings from studies 

assessing processes related to affective resonance in ASD are less consistent. 

There is evidence of absent sensori-motor  resonance  when  viewing  others’  pain  

in individuals with ASD (Minio-Paluello et al., 2009). However, other studies 

have shown typical sensori-motor resonance when viewing others in pain (Fan 

et al., 2013) and appropriate physiological responses to others distress (Blair, 

1999) in individuals with ASD. When cognitive perspective-taking and empathic 

concern, a process related to affective resonance, have been compared in 

individuals with ASD, impairments in cognitive perspective-taking but not 

empathic concern were found (Dziobek et al., 2008). Some theorists have 

argued that affective resonance is actually heightened in individuals with ASD 

(Smith, 2009) and reports of greater empathic facial affect in children with ASD 

compared to controls supports this (Capps et al., 1993).  
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2.1.3.  Alexithymia as a disorder of empathy 

 

A further consideration for the profile of empathy in ASD is the high comorbidity 

of the disorder with alexithymia. Alexithymia is a sub-clinical condition defined 

by an inability to identify and describe feelings in the self. Preliminary 

behavioural and neuroimaging research suggests that affective and empathy 

impairments in ASD may be a function of interoceptive difficulties related to 

alexithymia rather than ASD per se (Bird et al., 2010; Silani et al., 2008) and 

that after accounting for the variance explained by alexithymia in these studies 

of ASD there is no difference in empathy between individuals with ASD and 

controls (Bird & Cook, 2013). However, one recent fMRI study found no 

significant moderating effects of alexithymia in a task where participants viewed 

pictures   of   other   people   in   pain   (termed   an   ‘empathy   for   pain’   task by the 

authors) in individuals with ASD (Fan et al., 2013). Nevertheless, the variance in 

alexithymia scores was very limited (SD 3.8 in Fan et al., 2013 vs 11.8 in Bird et 

al., 2010), which may explain why no effect of alexithymia was observed. Less 

is known about the possible contribution of alexithymia to empathy impairments 

seen in individuals with psychopathy. Although the co-occurrence rates of 

alexithymia and psychopathy are lower than for ASD (Louth, Hare, & Linden, 

1998), the two disorders do share some common attributes (Lander, Lutz-Zois, 

Rye, & Goodnight, 2012).  

 

2.1.4.  Associations between psychopathy, autism and alexithymia 

 

To date, only two studies have directly compared the profile of affective and 

cognitive processing related to psychopathy and ASD, and these have both 

been in children. Children with conduct disorder and psychopathic traits showed 

less  affective   resonance  with  others’  emotions  but  did  not  have  problems  with  

cognitive perspective-taking; conversely, children with ASD showed reduced 

cognitive perspective-taking but did not have problems with affective resonance 



57 
 

(Jones et al., 2010; Schwenck et al., 2012). However, no studies have directly 

contrasted psychopathic and ASD traits and processes related to affective 

resonance and cognitive perspective-taking in adults. Moreover, no studies 

have investigated the contribution of alexithymia to ASD and psychopathic traits 

in tandem. Psychopathic, ASD and alexithymic traits are present in varying 

degrees in the general population (Bagby, Parker, & Taylor, 1994; Baron-Cohen 

et al., 2001; Hare & Neumann, 2008). Taxometric studies indicate that 

psychopathy should be viewed as a dimensional construct that is an extreme 

variant of normal personality and not a distinct category of behavior (see Hare & 

Newman, 2008 for review). Similarly, behavioral genetic studies indicate a 

similar etiology of autistic traits in the general population as well as in clinical 

groups (Robinson et al., 2011), thus providing an empirical basis for studying 

variants in traits associated with these disorders in the general population. 

Finally, investigating associations between these traits and potential differences 

in social information processing is one way to dissect the component processes 

that may contribute to empathy, a key aim of the present chapter.  

 

2.1.5.  The current study 

 

The present study investigated (i) whether psychopathic and ASD traits were 

differentially related to performance on affective resonance and cognitive 

perspective-taking tasks and (ii) whether alexithymia contributes to task 

performance. Based on previous research, I predicted that psychopathic traits 

would be negatively associated with performance on the affective resonance 

task but not the cognitive perspective-taking task and that ASD traits would be 

negatively associated with performance on the cognitive perspective-taking task 

but not the affective resonance task. Alexithymia has previously been 

demonstrated to predict empathy deficits while recent neuroimaging results 

suggest cognitive perspective-taking is unlikely to be affected (Bernhardt et al., 

2014). Therefore, I predicted that alexithymia would make a contribution to 

performance on the affective resonance task, but be unrelated to performance 
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on the cognitive perspective-taking task.  

 

2.2.  Materials and Methods 

 

2.2.1. Participants 

 

One-hundred-and-ten healthy adults (50% M; 50% F) aged 18-33 (M = 21.9, SD 

= 3.7) with estimated IQ between 87-129 (M=116.8, SD=8.4) took part. 

Participants were recruited through university participant databases and the 

community. All participants provided written informed consent and the study had 

institutional ethics approval. 

 

2.2.2. Procedure 

 

Participants completed two tasks to assess affective resonance and cognitive 

perspective-taking as part of a larger battery of tasks. All tasks were presented 

in a randomised order followed by the questionnaires. 

 

2.2.3. Experimental tasks 

 

2.2.3.1. Theory of mind animations task (Cognitive perspective-taking 

task)  
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This   task   assessed   participants’   ability   to   understand   others’   complex  mental  

states (e.g. tricking, coaxing) and has been previously used to examine ToM 

abilities in children with autism (Abell, Happé and Firth, 2000) and healthy 

participants (Castelli, Frith, Happé & Frith, 2002). I selected  four  ‘ToM’  and  four  

‘random’   animations   from   Abell   et   al   (2000).   Each   animation featured two 

characters: a big red and small blue triangle either interacting with one another 

(ToM animations) or moving randomly (random animations). Participants were 

asked to watch each animation carefully and to describe what was happening 

whilst their verbal responses were recorded. Two people transcribed the verbal 

descriptions that were coded in terms of intentionality and appropriateness. The 

intentionality scale ranged from 0 (no appreciation of another agent, nor actions 

or mental states) to 5 (the agent acts with the goal of affecting or manipulating 

the  other   agent’s  mental   states).  The  appropriateness   scale   ranged   from  0-3. 

One researcher rated all transcriptions and a second researcher rated a random 

sample of 56. Intra-class correlations (ICC) between raters for intentionality 

(ICC, single measures = .682) and appropriateness (ICC single measures = 

.760) were good. The ratings of intentionality and appropriateness were 

converted to z scores and a composite score was created. 

 

2.2.3.2. Self-assessment manikin faces task (Affective resonance task) 

 

This task assessed  participants’  affective  empathic  response  to  emotional  faces  

using the SAM rating scale (Seara-Cardoso et al., 2012). Participants were 

required to rate their own emotional response to the affective state of another 

on a 9-point manikin (changing from smiling to a sad face with a neutral 

expression in the middle) whilst viewing images depicting a person showing 

either a sad, fearful, angry, happy or neutral expression. The order of images 

was randomised for each participant. Ratings for sad, fear and anger were 

reverse scored so that the higher scores reflected ratings of greater distress, 

and  thus  greater  affective  resonance,  when  viewing  others’  negative  emotions.  
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These variables were then converted to z-scores and a composite score was 

created along with happy ratings. 

 

2.2.4. Questionnaires 

 

2.2.4.1. Assessment of psychopathic traits 

 

Psychopathic traits were assessed with the SRP-4-SF short form (SRP-4-SF; 

Paulhus et al., 2015), a 29-item scale designed to measure psychopathic 

attributes in non-institutionalised samples. The SRP has been shown to have 

good   construct   validity   and   internal   consistency   (Cronbach’s   alpha   .89   in   the  

present study) and is strongly correlated with the PCL-R; the clinical measure of 

psychopathy (Lilienfeld, Fowler, & Patrick, 2006; Paulhus et al., 2015). 

Questions were rated on a 5-point   scale   from   “Disagree   Strongly”   to   “Agree  

Strongly”   and   included   items   such   as   “Most   people   are   wimps”   and   “I   love 

violent  sports  and  movies”.   

 

2.2.4.2. Assessment of autistic traits  

 

ASD traits were assessed with the Autism Quotient (AQ; Baron-Cohen et al., 

2001), a 50 item scale designed to assess ASD traits in both clinical and 

community samples. The AQ has good construct validity and internal 

consistency  (Cronbach’s  alpha  .83  in  the present study). Questions were rated 

on a 4-point  scale  from  “Definitely  Disagree”  to  “Definitely  Agree”  and  included  

items  such  as  “I  enjoy  meeting  new  people”  and  “I  would  rather  go to a library 

than  a  party”.   
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2.2.4.3. Assessment of alexithymia  

 

Alexithymic traits were assessed with the Toronto Alexithymia Scale (TAS, 

(Bagby et al., 1994) a 20-item scale designed to measure subclinical 

alexithymic traits. Questions were rated on a 5-point   scale   from   “I   Strongly  

Disagree”  to  “I  Strongly  Agree”  and  included  items  such  as  “I  am  often  confused  

about  what  emotion  I  am  feeling”  and  “I  am  often  puzzled  by  sensations  in  my  

body”.   The   TAS   has   good   construct   validity   and   internal   consistency  

(Cronbach’s  alpha  .82  in  the  present  study). 

 

2.3.  Results 

 

2.3.1. Correlations between measures 

 

Performance on the affective resonance and cognitive perspective-taking tasks 

was positively correlated (r = .40, p < .001). All questionnaire measures were 

also positively correlated with one another (See Table 2.1). First, bivariate 

correlations were examined to assess whether psychopathic and ASD traits 

were differentially related to affective resonance and cognitive perspective-

taking. As predicted psychopathic traits showed a statistically significant 

negative correlation with performance on the affective resonance task (r = -

.258, p = .02) whilst ASD traits did not (r = -.102, p = .291). Conversely, ASD 

traits showed a statistically significant negative correlation with performance on 

the cognitive perspective-taking task (r = -.209, p = .028) whilst psychopathic 

traits did not (r = -.046, p = .634).  
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Table 2.1 Correlations between questionnaire measures of psychopathic, 
autism spectrum disorder and alexithymic traits and task performance. 

 

  SRP AQ TAS AR 

AQ .244* 

   TAS .252*  .370** 

  AR -.258** -.102  -.245* 

 CPT  -.046  -.209*  -.120 .399** 

Abbreviations: SRP, Self-Report Psychopathy Scale; TAS, Toronto Alexithymia  

Scale; AQ, Autism Quotient; AE, Affective Resonance task; CPT,  

Cognitive Perspective-Taking task 
  

* p<.05 

   ** p<.01 

   
 

2.3.2. Regression analyses 

I conducted hierarchical multiple regression analyses to investigate whether 

psychopathic and ASD traits were uniquely and differentially related to affective 

resonance and cognitive perspective-taking, and to examine whether individual 

differences in alexithymia and/or IQ might explain any associations (see Table 
2.2).  
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Two models were run. For the model predicting performance on the affective 

resonance task, psychopathic traits were entered at the first stage. 

Psychopathic traits significantly predicted reduced affective resonance (p = 

.007). At the second stage ASD traits were entered. Psychopathic traits were 

uniquely negatively associated with affective resonance (t = -2.57, p = .011) 

whilst ASD traits were not (t = -.43 p = .669). The R-squared change was not 

significant (F change = .18, p = .669) indicating that ASD traits did not explain 

significantly more variance in the model. At the third stage, alexithymia scores 

were entered. Controlling for alexithymia did not change the pattern of results, 

but there was a unique negative association between alexithymia and affective 

resonance (t = -1.99, p = .049), and the R-squared change was significant (F = 

3.96, p = .049). At the fourth stage IQ scores were entered. Controlling for IQ 

did not change the pattern of results, nor was IQ a significant predictor of 

affective resonance (p = .73). The same regression sequence was then used 

for cognitive perspective-taking, but with ASD traits at the first stage and 

psychopathic traits at the second. ASD traits were significantly negatively 

associated with cognitive perspective-taking (t = -2.22, p = .028). At the second 

stage psychopathic traits were entered. ASD traits were uniquely negatively 

associated with reduced cognitive perspective taking (t = - 2.16, p = .033) whilst 

Table 2.2. Hierarchical multiple regression between questionnaire 
measures of psychopathic, autism spectrum disorder and alexithymic 
traits and task performance. 
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psychopathic traits were not (t = .06, p = .956). The R-squared change was not 

significant (F change = .00, p = .956) indicating that psychopathic traits did not 

explain significantly more variance in the model. Taking into account 

alexithymia and IQ did not change the pattern of results, nor did either of these 

variables predict cognitive perspective-taking. No further R-squared changes 

were  significant  (all  F’s < 1.24, all ps > .26). 

 

2.4.  Discussion 

 

The current chapter compared associations between psychopathic and ASD 

traits and tasks assessing affective resonance or cognitive perspective-taking. I 

demonstrated unique associations between psychopathic traits and reduced 

affective resonance but not cognitive perspective-taking, and unique 

associations between ASD traits and reduced cognitive perspective-taking but 

not affective resonance. Alexithymic traits did not explain observed associations 

between task performance and psychopathic or ASD traits but rather 

contributed to performance on the affective resonance task independently of 

psychopathic traits. This is the first study in healthy adults to show a differential 

relationship between these variables. Thus, it extends previous findings that 

have reported contrasting profiles of empathy impairments between children 

with psychopathic tendencies or ASD (Jones et al., 2010; Schwenck et al., 

2012). These results also suggest that although affective resonance and 

cognitive perspective-taking measures share some variance, they can capture 

dissociable processes, and thus extends our knowledge regarding the structure 

of empathy.  

Psychopathy is thought to be characterised by problems with affective 

resonance but not cognitive perspective-taking. I used measures that were 

designed to specifically probe affective resonance and cognitive perspective-

taking, without there being cognitive perspective-taking demands on the 

affective resonance task or vice versa. These results therefore extend and 

clarify the findings of previous studies reporting reduced affective resonance in 



65 
 

individuals high in psychopathic traits (Seara Cardoso et al., 2012; Seara 

Cardoso et al., 2013) by indicating a reduction in affective resonance in the 

absence of a reduction in cognitive perspective-taking. These data also 

highlight how high psychopathic traits are not related to atypical cognitive 

perspective-taking when a task without an affective component is used.  

ASDs have been consistently linked to problems with cognitive perspective-

taking (Hill & Frith, 2003). Interestingly, I found that elevated ASD traits in the 

general population were also associated with atypical cognitive perspective-

taking. In contrast, findings of tasks related to affective resonance processing in 

ASD are mixed, with reduced (Minio-Paluello et al., 2009), intact (Blair, 1999; 

Dziobek et al., 2008; Bird et al., 2010; Fan et al., 2013) and elevated (Capps et 

al., 1993) levels of affective processing being reported. These findings suggest 

that ASD traits are not associated with either a reduced or an enhanced ability 

to resonate with the emotions of another, despite the fact that high levels of 

ASD  traits  are   related   to  difficulties  with  understanding  others’  minds.   It  would  

be useful for future studies to assess multiple forms of processing related to 

affective resonance, as the paradigms used in some studies that reported intact 

affective resonance investigated empathic concern, rather than affective 

resonance. Examining both of these processes in tandem may help to shed 

further light on the profile of empathic processing in ASD. Moreover, it would 

also be of interest to further examine the exact cognitive perspective-taking 

mechanisms that may be disrupted in relation to ASD/high ASD traits. It could 

be that some disrupted components of cognitive perspective-taking relate to 

bottom-up processes such as detection of biological movement, whereas others 

might relate to top-down processes such as the influence of situational cues. 

Both psychopathy and ASD have previously been associated with elevated 

levels of alexithymia (Bird & Cook, 2013; Louth et al., 1998; Lander et al., 

2012), and I also observed modest correlations between psychopathic and ASD 

traits with alexithymia in the present study. Nevertheless, controlling for 

alexithymic traits did not change the reported associations between 

psychopathic traits and reduced affective resonance or ASD traits and reduced 

cognitive perspective-taking. In other words, the reduced ability to identify and 

describe feelings in the self did not account for the relationship between 
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psychopathic traits and affective resonance or ASD traits and cognitive 

perspective-taking. The finding that alexithymia did not explain the reduced 

cognitive perspective-taking abilities characteristic of ASD traits is of particular 

interest given recent evidence and theory suggesting that alexithymia does 

account for affective processing deficits related to autism, when they are 

observed (Bird & Cook, 2013). These data extend this account by showing that 

alexithymia does not appear to explain reduced cognitive perspective-taking 

related to high ASD traits. 

I also found that alexithymic traits were negatively associated with a reduction in 

affective resonance independently of psychopathic traits. This suggests that 

reductions in affective resonance can be affected both by reduced ability to 

identify and describe feelings (a characteristic of alexithymia) and a reduced 

tendency to feel what others feel (a characteristic of psychopathy) and 

consequently, that there could be different component processes within the 

construct of affective resonance. Future studies could help to determine the 

mechanisms underlying reduced affective resonance in psychopathy and 

alexithymia. 

 

2.4.1. Limitations and future directions 

 

A few limitations to the present study should be highlighted. In everyday life 

empathic responses to others occur in the context of social interactions, the 

present tasks did not present such scenarios in the interest of isolating affective 

resonance and cognitive perspective-taking demands. However, this will be 

explored further in Chapters 5 and 6. Although I chose paradigms to 

specifically examine two process that contribute to the experience of empathy, 

these are not exhaustive and further research would benefit from examining a 

larger collection of tasks that tap a multitude of processes related to empathy 

i.e. empathic concern, mimicry and identifying others emotions. It will also be of 

interest to determine whether the processing atypicalities associated with 

psychopathic, ASD and alexithymia traits explain real life observations of 
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unempathic behavior, as rated by others or observed in an experimental setting. 

Finally, replication of these results with clinical populations would be 

informative. 

 

2.4.2.  Conclusions 

 

This chapter described a behavioural study where I investigated how different 

aspects of empathic processing can be associated and dissociated in the 

general population. Overall, the findings are that two key components of 

empathic processing: affective resonance and cognitive perspective-taking, 

show a modest positive association in the general population. However, clear 

distinctions are also evident. This study showed, for the first time, that elevated 

psychopathic traits are related to reduced affective resonance but not cognitive 

perspective-taking, whilst elevated levels of ASD traits are related to reduced 

cognitive perspective-taking but not affective resonance in a community sample 

of adults. Consequently, these data suggest that although some level of 

‘empathic  competence’  appears  to  generalise  across  paradigms,  it  also  appears  

that different social information processes (potentially underpinned by 

separable neural circuits) account for individual differences in different types of 

empathic/social behaviour. 

In the next chapter, Chapter 3, I will turn to the question of the degree to which 

empathy predicts prosocial behavior. I will also examine whether additional 

variables,   namely   the   capacity   to   regulate   one’s   own emotional experience, 

moderates the strength with which empathy is predictive of prosocial behaviour. 
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 Chapter background CHAPTER 3:

 

Theory and evidence suggest that empathy is an important motivating factor for 

prosocial behaviour, i.e. social behaviour intended to benefit another. However, 

despite the general assumption that empathy will motivate prosocial behaviour, 

surprisingly few studies have addressed this question directly. It is also unclear 

how different components of empathy might relate to prosocial behaviour: is it 

the   capacity   to   vicariously   experience   another’s’   emotion   or   the   capacity   to  

understand   another’s’   thoughts,   or   both,   that   motivates   prosocial   behaviour?  

Finally, even if empathy does motivate prosocial behaviour, it is unknown 

whether additional variables may moderate the strength with which empathy 

and prosocial behaviour are associated. The current study set out to address 

these outstanding questions. A sample of healthy adults (N=110) completed 

questionnaire measures of empathy and prosocial tendencies, as well as a 

questionnaire measure of their ability to regulate their own emotions. I 

examined how different components of empathy and prosocial tendencies were 

related, as well as whether emotion regulation moderated the degree to which 

these constructs were associated. Whilst in the previous chapter (Chapter 2) I 

interrogated two specific aspects of empathy, affective resonance and cognitive 

perspective taking, using behavioural tasks, in the current chapter I used trait 

measures of empathy that probe self-reports of behaviours, feelings and 

reflections that give a proxy for affective and cognitive empathy computations. 
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3.1. Introduction 

 

3.1.1. What is prosocial behaviour? 

 

Prosocial behaviours can be broadly defined as social behaviours intended to 

benefit other people. Humans have a remarkable capacity to engage in 

prosocial behaviours, even with genetically unrelated individuals (Fehr & 

Fischbacher, 2003). For example, people routinely engage in charitable 

donation behaviour and exhibit social preferences, where their preferred 

choices are based on a positive or negative concern for the welfare of others 

(Fehr & Camerer, 2007). However, the processes that influence how and when 

prosocial behaviours occur remain poorly understood. Theory and evidence 

have suggested that empathy is one of the key motivating factors for prosocial 

behaviour (Eisenberg et al., 2010; Hoffman, 2008; Penner et al., 2005), but this 

assertion has received little empirical attention to date. 

 

3.1.2. Empathy and prosocial behavior 

 

There is evidence that processes related to both affective and cognitive 

empathy are positively associated with prosocial behaviour (for a review see 

(Eisenberg et al., 2010). The majority of these studies have used the 

interpersonal reactivity index (IRI; Davis, 1983), which measures trait empathic 

concern/sympathy, or cardiovascular and electrodermal indices, such as heart 

rate deceleration and facial electromyographic (EMG), as proxy measures of 

affective empathy. For example, heart rate deceleration (which is thought to 

index vicariously induced sadness or sympathy, e.g. (Eisenberg et al., 1988), 

and increased indicators of facial sadness when watching needy others are 

associated with increased willingness to help (Eisenberg et al., 1989). 
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Dispositional empathic concern, as measured by the IRI, has also been linked 

to higher levels of self-reported charitable giving (Davis, 1983) and greater self-

reported concern for the welfare of others (Batson, 1998). In terms of 

associations between cognitive components of empathy and prosocial 

behaviour, studies have focused on correlating the perspective-taking subscale 

of the IRI to self-reported prosocial behaviour and have found that trait 

perspective taking is positively associated with frequency of volunteering (Carlo, 

Allen, & Buhman, 1999) and self-reported prosocial tendencies (Carlo, 

Hausmann, Christiansen, & Randall, 2003). It should be noted, however, that 

the empathic concern and perspective taking scales of the IRI tap constructs 

that, although related, are different from the current conceptualisation of 

‘affective   empathy’   and   ‘cognitive   empathy’   (Singer   &   Lamm,   2009).    

Nonetheless, together, these studies broadly suggest that affective and 

cognitive empathic components may motivate prosocial behaviour. 

 

3.1.3. The influence of moderating variables 

 

Whilst   it   is  often  assumed  that  an  empathic  response  to  another’s  distress  will  

motivate prosocial behaviour, Eisenberg (2000) points out that association 

between the two constructs are often modest and sometimes weak. A possible 

reason for these modest associations is the influence of moderating variables 

(Eisenberg, 2000). It has been suggested that emotion regulation, i.e. the 

capacity to modulate or exert control over an emotional response, might be one 

such moderator variable (Eisenberg & Fabes, 1992; Hoffman, 2001). Eisenberg 

and Fabes (1992) propose a model whereby individual differences in both the 

emotional  intensity  and  regulation  capacities  are  related  to  an  individual’s  level  

of prosocial responding. Specifically, they suggest that the perception of 

distress in another leads to emotional arousal, but emotion regulation i.e. and 

how this arousal is evaluated by the observer, will influence the subsequent 

goal directed behaviour, either to improve their own situation  or  help  the  others’  

situation (Eisenberg & Fabes, 1992). The degree of emotion regulation during a 
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state of emotional arousal (over-, optimal-, or under-regulation) is also proposed 

to relate to the likelihood of prosocial behaviour.  For example, individuals who 

are able to optimally regulate their arousal, so that they do not experience 

undue   distress   in   the   face   of   another   person’s   emotions   and   thus   do   not  

become self-focused, are proposed to behave prosocially (Eisenberg & Fabes, 

1992). In contrast, individuals who are over- regulated are proposed to exhibit 

proactive withdrawal, which inhibits prosocial behaviour. Finally, those who are 

under-regulated are proposed to be prone to aggression and thus more likely to 

exhibit antisocial rather than prosocial behaviour in an emotionally arousing 

situation (Eisenberg & Fabes, 1992).  

 

3.1.4. Different types of emotion regulation  

 

The model outlined by Eisenberg and Fabes (1992) discusses the degree of 

emotion regulation (over-, optimal-, or under-regulation) as important for linking 

empathy to prosocial behaviour. However, it is also likely that the type of 

emotion regulation strategy used will be important. Both cognitive reappraisal 

and expressive suppression represent emotion regulation strategies (Gross, 

2013; Gross & John, 2003; Gross & Thompson, 2007). Cognitive reappraisal 

involves reinterpreting an emotional response so that the intensity of its 

emotional impact is modified (Gross & John, 2003). For example, re-framing a 

distressing situation as a situation where someone will benefit from support, as 

opposed to a situation where someone is emotionally labile and potentially 

unpleasant. Consequently, cognitive reappraisal will enable a person to focus 

on strategies to provide constructive helping behaviours, rather than the 

aversive qualities of the situation. Cognitive reappraisal is thought to be a 

successful emotion regulation strategy, decreasing negative affect and resulting 

in an attenuation of blood pressure (Ray et al., 2005; Richards & Gross, 2000).  

In contrast, expressive suppression involves actively inhibiting on-going 

emotion-expressive behaviour (Gross, 1998, 2013; Gross & Thompson, 2007). 

For example, managing an emotional response to an aversive situation in an 
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effortful manner such that cognitive resources are consumed. Expressive 

suppression is thought to be a suboptimal strategy because it creates a conflict 

between heightened emotional arousal and overt expression of the arousal 

(Gross & John, 2003; Gross & Levenson, 1993; John & Gross, 2004; Soto, 

Perez, Kim, Lee, & Minnick, 2011). These two types of emotion regulation 

strategies also appear to lead to different outcomes and consequences for 

interpersonal functioning (Gross, 2013; Gross & John, 2003; Gross & Levenson, 

1993; John & Gross, 2004; Soto et al., 2011). Whilst cognitive reappraisal is 

positively related to having closer relationships with friends, fewer depressive 

symptoms and greater life satisfaction, expressive suppression is associated 

with greater experience of negative emotions, disturbed interpersonal 

interactions, avoidance of close relationships and reports of less life satisfaction 

and optimism (Gross, 2013; Gross & John, 2003; Gross & Levenson, 1993; 

John & Gross, 2004; Soto et al., 2011). 

 

3.1.5. The current study 

 

Despite the evidence linking empathy to prosocial behaviour (e.g. Carlo et al., 

1999; Eisenberg et al., 1989) and the proposal that individual differences in 

emotion regulation may moderate associations between empathy and prosocial 

behaviour (Eisenberg & Fabes, 1992; Hoffman, 2001), this has not, to my 

knowledge, been directly examined. Moreover, how distinct emotion regulation 

strategies might moderate associations between empathy and prosocial 

behaviour has not been explored.  

Importantly, the majority of studies suggesting empathy as a motivating factor 

for prosocial behaviour have investigated self-reported empathic concern 

(feeling  ‘for’  another  person,  including  compassion  and  sympathy,  e.g.  Batson, 

1998; Davis, 1983), rather than self-reported affective empathic responses (the 

ability to vicariously experience the emotional experience of others; or feeling 

‘as’  another  individual).  While  these  two  processes  are  no  doubt  closely  related,  

there is a lack of empirical data regarding how feeling in a similar emotional 
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state to another may motivate prosocial behaviour. In addition, self-reported 

cognitive  empathic  ability  (i.e.  the  ability  to  position  oneself  ‘in  another  person’s  

shoes’)  might   also   relate   to   prosocial   behaviour,   but   compared   to   the   role   of  

affective empathic processes motivating empathy this has received relatively 

little attention to date (c.f. Carlo et al., 1999; Carlo et al., 2003).  

 

3.1.6. Hypotheses 

 

On the basis of previous research and theory (e.g. Batson, 1998; Carlo et al., 

2003; Eisenberg et al., 2010), I predicted that both dispositional cognitive and 

affective components of empathy would be associated with increased prosocial 

tendencies, but the amount of variance in prosocial behaviour explained by the 

two types of empathy may be unequal. I also tested interactions between the 

components of empathy (affective and cognitive) and types of emotion 

regulation strategy (cognitive reappraisal and expressive suppression) to 

examine whether individual differences in emotion regulation strategy moderate 

associations between empathy and prosocial behaviour.  

 

3.2.  Materials and Methods 

 

3.2.1. Participants 

 

One-hundred-and-ten healthy adults (50% males; 50% females) aged 18-33 

(M=21.9, SD=3.7) were recruited through university participant databases 

(comprised of undergraduate and postgraduate students as well as non-student 

community members) and through online advertisement. Exclusion criteria 

included previous or current neurological or psychiatric disorder (as reported by 
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the participants) and non-normal or non-corrected to normal vision. Participants 

were compensated at a rate of £8 per hour. All participants provided written 

informed consent and the study was approved by the University College 

London Clinical, Educational and Health Psychology Research Ethics 

committee. 

 

3.2.2. Procedure 

 

Participants completed questionnaires to assess empathy, emotion regulation 

and prosocial tendencies as part of a larger battery of tasks and questionnaires.  

 

3.2.2.1. Assessment of empathy 

 

The Questionnaire of Cognitive and Affective Empathy (QCAE; Reniers, 

Corcoran, Drake, Shryane, & Vollm, 2011) is a multidimensional empathy 

questionnaire devised to measure the ability to comprehend the emotions of 

another (cognitive empathy) as well as the ability to vicariously experience the 

emotional experience of others (affective empathy). In the development of the 

QCAE, two raters selected items from other well-validated and commonly used 

empathy measures (e.g. Empathy Quotient; Baron-Cohen & Wheelwright, 

2004), Hogan Empathy Scale (Hogan, 1969); the Empathy subscale of the 

Impulsiveness-Venturesomeness-Empathy Inventory; (Eysenck & Eysenck, 

1978) and the IRI; Davis, 1983) if they were deemed to measure affective or 

cognitive empathy. Items from these scales deemed to measure other 

processes (e.g. sympathy) were not included. A Principal Component Analysis 

of the selected items revealed five sub-scales, further organized in two 

components assessing cognitive and affective empathy. The cognitive empathy 

component comprises subscales measuring perspective-taking  (e.g.  “I  am  good  

at   predicting   how   someone   will   feel”)   and   Online   simulation   (e.g.   “Before 
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criticizing  somebody,   I   try  to   imagine  how  I  would  feel   if  I  was  in  their  place.”). 

The affective empathy component assesses emotion  contagion  (e.g.   “People I 

am with have a strong influence on my mood”);;  peripheral   responsivity   (e.g.   “I 

usually stay emotionally detached when watching a film”);;   and   proximal  

responsivity   (e.g.   “I  often  get  emotionally   involved  with  my  friends’  problems”).  

Items are rated on a 4-point  scale  from  “strongly  disagree”  to  “strongly  agree”.  

The QCAE has good validity and internal consistency (Reniers et al., 2011). In 

the   present   study   Cronbach’s   alpha   for   cognitive   empathy   component .87; 

affective empathy component .88). 

 

3.2.2.2. Assessment of prosocial tendencies 

 

The Prosocial Tendencies Measure (PTM; Carlo & Randall, 2002) is a 23-item 

self-report measure that assesses various prosocial tendencies such as 

compliant  prosocial  tendencies  (e.g.  “When  people  ask  me  to  help  them,  I  don’t  

hesitate”),   dire   prosocial   tendencies   (e.g.   “I   tend   to   help   people   who   hurt  

themselves   badly”)   and   emotional   prosocial   tendencies   (e.g.   “I   tend   to   help  

others  particularly  when  they  are  emotionally  distressed”).  Items  are  rated  on  a  

5-point  scale  from  “Does  not  describe  me  at  all”  to  “Describes  me  greatly”.  The  

PTM has good construct validity and internal consistency (Carlo & Randall, 

2002;;  in  the  present  study  Cronbach’s  alpha  .86).   

 

3.2.2.3. Assessment of emotion regulation 

 

The Emotion Regulation Questionnaire (ERQ; Gross & John, 2003) is 

comprised of two dimensions that assess either reappraisal or suppression 

regulation   strategies.   The   reappraisal   dimension   contains   items   such   as   “I 

control my emotions by changing the way I think about  the  situation  I’m  in”  and  

the suppression   dimension   has   items   such   as”I control my emotions by not 
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expressing them”. Items are rated on a 7-point  scale  from  “Strongly  disagree”  to  

“Strongly  agree”.  The  ERQ  has  good  construct  validity  and  internal  consistency  

(Gross & John, 2003); in the present   study   Cronbach’s   alpha   for   reappraisal  

subscale .73; suppression subscale .87). 

 

3.2.3.  Statistical analyses 

 

Bivariate correlations were corrected for multiple comparisons using Benjamini 

& Hochberg False Discovery Rate (Benjamini & Hochberg, 1995). Corrected p-

values  are  reported.  Steiger’s  Z  tests  (two-tailed) were conducted to test if the 

different types of empathy (i.e. affective and cognitive empathy) and the 

different types of emotion regulation strategies (i.e. cognitive reappraisal and 

expressive suppression) presented differential correlation coefficients with 

prosocial tendencies. Moderation analyses were then conducted to investigate 

whether the affective or cognitive empathy subscales interacted with either 

types of emotion regulation (reappraisal or suppression) to predict prosocial 

tendencies. All predictor variables were mean centred prior to analyses. 

Separate regression models using either the affective empathy component of 

the QCAE (QCAE-affective empathy) or the cognitive empathy component of 

the QCAE (QCAE-cognitive empathy) at the first stage; the reappraisal 

subscale of the ERQ (ERQ-reappraisal) or the suppression subscale of the 

ERQ (ERQ-suppression) at the second stage and the interaction term between 

these variables at the third stage were run. Consequently, four regression 

models were examined. Interaction effects were tested in SPSS using 

PROCESS (Hayes, 2013). Significant interactions were followed up by 

examining the conditional effect of empathy on prosocial tendencies at 1 

standard deviation (SD) below the mean, at the mean, and 1 SD above the 

mean of emotion regulation.  
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3.3.   Results 

 

Bivariate correlations between questionnaire measures of empathy, emotion 

regulation and prosocial behaviour were examined (see Table 3.1 for a full list 

of correlations). QCAE-affective empathy and QCAE-cognitive empathy were 

both positively associated with prosocial tendencies (r = .36, p< .001 & r = .43, 

p< .001 respectively) and these correlations were not significantly different (z = -

.80, p > .05). ERQ-reappraisal was not significantly correlated with prosocial 

tendencies (r = .13, p = .24). ERQ-suppression was significantly negatively 

correlated with prosocial tendencies (r = -.27, p = .006). These two correlations 

were significantly different (Z = 2.69, p < .05). 

 

 

 

To examine whether the associations between the affective and cognitive 

empathy components and prosocial behaviour were explained by joint variance 

between the two components or whether they uniquely predicted prosocial 

tendencies I ran an additional multiple regression analysis. There were unique 

associations between each empathy component and prosocial tendencies 

(affective empathy, t = 2.29, p = .024; cognitive empathy, t = 3.67, p < .001) 

suggesting that these components represented both overlapping and unique 

predictors of prosocial tendencies. 

Table 3.1. Correlations between questionnaire measures 
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For the first regression model I entered QCAE-affective empathy (first stage), 

ERQ-reappraisal (second stage), and their interaction term [QCAE-affective 

empathy x ERQ-reappraisal] (third stage) as predictors of prosocial tendencies. 

This analysis revealed a significant positive association between QCAE-

affective empathy and prosocial tendencies (t = 3.98, p < .001) but not between 

reappraisal and prosocial tendencies (t = .57, p = .570). Interestingly, the 

interaction between QCAE-affective empathy and ERQ-reappraisal was 

significant (t = -2.39, p = .019). At 1 SD below the mean on ERQ-reappraisal 

there was a significant positive association between QCAE-affective empathy 

and prosocial tendencies (t = 4.56, p < .001). There was also a significant 

association at the mean (t = 3.27, p = .002). However at 1 SD above the mean 

on ERQ-reappraisal the association between QCAE-affective empathy and 

prosocial tendencies was non-significant (t = 1.08, p = .282) (see Figure 3.1).  

The significant moderation effect of emotion regulation on affective empathy 

was also seen when each of the subscales of the affective empathy component 

(emotion contagion, proximal responsivity, peripheral responsivity) were 

examined in separate models (all ps < .05). 

In other words, affective empathy was associated with prosocial behaviour for 

those with low and average levels of cognitive reappraisal (with the steepest 

slope for individuals with lowest level of cognitive appraisal), but those with high 

levels of cognitive reappraisal presented similar levels of prosocial behaviour 

regardless of level of affective empathy.  

For the second regression model, QCAE-cognitive empathy, ERQ-reappraisal 

and their interaction term were entered as predictors of prosocial tendencies. 

This analysis showed a significant positive association between QCAE-

cognitive empathy and prosocial tendencies (t = 5.00, p < .001) but not between 

reappraisal and prosocial tendencies (t = -.39, p =. 699). The interaction 

between QCAE-cognitive empathy and ERQ-reappraisal was not significant (t = 

-1.18, p = .243). This pattern of findings suggests that QCAE-cognitive empathy 

was positively associated with prosocial tendencies regardless of level of 

reappraisal emotional regulation strategies.  
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I also examined the interaction between the two QCAE subscales and ERQ-

suppression and their association with prosocial tendencies. These two 

regression models showed again that both QCAE-AE and QCAE-CE were 

positively associated with prosocial tendencies (t = 3.98, p < .001 and t = 5.00, 

p < .001) but that ERQ-suppression was not significantly associated with 

prosocial tendencies in either model (t = -1.00, p = .32 and t = -1.36, p = .18). 

Neither of the interactions between QCAE-affective empathy or QCAE-cognitive 

empathy and ERQ-suppression was significant (both ps >.05). 

 

3.4. Discussion 

 

This chapter investigated associations between empathy and prosocial 

behaviour, and whether different types of emotion regulation strategy moderate 

associations between empathy and prosocial behaviour. I found that both 

Figure 3.1. moderation of empathy and prosocial tendencies by 
different levels of emotion regulation. 
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affective and cognitive components of empathy were positively and uniquely 

associated with self-reported prosocial behaviour. Cognitive reappraisal, but not 

expressive suppression, played a role in moderating the association between 

empathy and prosocial behaviour. Specifically, level of cognitive reappraisal 

moderated the relationship between affective empathy and prosocial behaviour. 

The finding that both affective and cognitive empathy are associated with 

prosocial behaviour supports previous studies suggesting that empathy is a key 

motivating factor for prosocial behaviour (e.g. Batson, 1998; Carlo et al., 2003; 

Eisenberg et al., 2010; Eisenberg et al., 1989; Hoffman, 2001). Interestingly, 

associations between affective and cognitive empathy and prosocial behaviour 

were not significantly different. Additional analyses showed that cognitive and 

affective empathy uniquely predicted prosocial behaviour, suggesting that both 

empathy components play a role in motivating prosocial behaviour. 

Consequently, whilst it is likely that these two components will often work 

together in everyday life as they are moderately correlated (e.g. Chapter 2; 

Reniers et al., 2011), this finding raises the possibility that having high levels of 

just one component could motivate prosocial behaviour, but this needs to be 

investigated further.   

I also observed that expressive suppression was negatively associated with 

prosocial tendencies. This pattern fits with previous studies suggesting that 

expressive suppression is a maladaptive emotion regulation strategy (Gross & 

John, 2003; Gross & Levenson, 1993; John & Goss, 2004; Soto et al., 2011). 

My results extend these findings by suggesting that in, addition to being related 

to greater experience of negative emotions, avoidance of close relationships 

and reports of less life satisfaction (Gross & John, 2003; Gross & Levenson, 

1993; John & Goss, 2004; Soto et al., 2011), expressive suppression is also 

associated with less self-reported prosocial tendencies.  

The type of emotion regulation strategy individuals reported to use was 

important for moderating associations between empathy and prosocial 

tendencies. Whilst cognitive reappraisal moderated associations between 

affective empathy and prosocial behaviour, expression suppression did not. In 

addition, the degree of emotion regulation interacted with the degree of 
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empathy to predict prosocial behaviour. Affective empathy was positively 

associated with prosocial behaviour for participants at low and average levels of 

cognitive reappraisal. This positive association was not evident in participants 

who reported a high tendency to reappraise. Instead, these individuals had 

similar levels of prosocial tendencies regardless of level of affective empathy.  

Consequently, although empathy is generally assumed to have a significant 

positive association with prosocial behaviour (Eisenberg et al., 2010; Hoffman., 

2008), this may not be the case for all aspects of empathic processing. This 

finding suggests that affective empathy is an important motivating factor for 

prosocial behaviour only for particular individuals, which fits with accounts 

considering a multitude of factors involved in motivating prosocial behaviour 

(Penner et al., 2005). One explanation is that those with high tendency to 

reappraise are (at least according to their self-report) more able to change their 

strategy and viewpoint when evaluating the situation at hand. This capacity may 

allow one to more readily deduce the desirability of prosocial behaviour even 

without the experience of the affective components empathy. Whilst I observed 

a significant moderation of cognitive reappraisal on the association between 

affective empathy and prosocial behaviour, moderation effects were not evident 

for associations between cognitive empathy and prosocial behaviour. This lack 

of association could be because of the overlap in processes involved in 

cognitive empathy and those involved in cognitive reappraisal. Indeed self-

reports of cognitive empathy and cognitive reappraisal were positively 

correlated in this sample. Processes such as shifting perspective or attention 

are common to both cognitive empathy and reappraisal. In terms of increasing 

prosocial behaviour in those individuals high in reappraisal, it is possible that 

promoting cognitive empathy might elevate the motivation of these individuals 

to behave prosocially. 

Interestingly, I also found that those with the highest levels of self-reported 

prosocial behaviour were individuals low in reappraisal but high in affective 

empathy. Given that cognitive reappraisal is positively related to interpersonal 

functioning (Gross & John, 2003; Gross & Levenson, 1993; John & Gross, 

2004; Soto et al., 2011) and prosocial behaviour is generally seen as a positive 

aspect of interpersonal functioning this result may seem somewhat surprising. 
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In addition, the model proposed by Eisenberg & Fabes (1992) suggests that 

those high in experiences of emotional intensity and low in emotion regulation 

would not manage appropriate prosocial responding and might even display 

antisocial/aggressive behaviour in response to emotional arousal. However, it 

has been suggested that high levels of prosocial and altruistic behaviour are not 

always beneficial and there are cases when acts that are subjectively prosocial 

can be, to the observer, objectively unhelpful (Oakley, 2013). Future research 

needs to determine whether the self-reported prosocial behaviours by 

individuals with high affective empathy and low cognitive appraisal capacities 

are perceived as objectively helpful/prosocial by the observer. Items on the 

prosocial tendencies questionnaire assess the self-reported tendency to 

engage in prosocial behaviours, rather than the quality of them. Future studies 

could include experimental and/or observational measures to examine this. The 

types of prosocial responses of individuals high in affective empathy and low in 

cognitive reappraisal could be compared to those high in cognitive reappraisal 

and high in affective empathy.  

Another promising avenue for future research is to investigate empathy 

components and emotion regulation strategies in tandem in clinical populations 

that are thought to show atypical empathy and emotion regulation. For example, 

autism spectrum disorders, psychopathy and alexithymia have all been 

associated with both atypical empathy and emotion regulation (Schipper & 

Petermann, 2013; Swart, Kortekaas, & Aleman, 2009). Finally, the role of 

empathic concern, i.e. sympathy, in motivating prosocial behaviour has recently 

been studied theoretically by mathematical models (Szolnoki, Xie, Wang, & 

Perc, 2011; Szolnoki, Xie, Ye, & Perc, 2013). These models suggest that the 

development of empathic concern can lead to development of cooperation in 

economic games (termed evolutionary games by the authors). Consequently, 

such models suggest potential mathematical principles that could be applied in 

future studies to model how empathy might lead to prosocial behaviour, which is 

explored in further detail in Chapter 6. 
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3.5. Conclusions  

 

Overall, these findings suggest that both affective and cognitive empathy are 

motivating factors for prosocial behaviour. However, empathy and emotion 

regulation can also interact to predict different levels of self-reported prosocial 

behaviour such that there is not always a significant positive association 

between affective empathy and prosocial behaviour. These results could help to 

account for why associations between empathy and prosocial behaviour can 

sometimes be modest or weak. These results also suggest that further 

investigations of the type of prosocial behaviours exhibited by individuals with 

varying levels of empathy and emotion regulation could be relevant as we try to 

understand how empathy might motivate prosocial ways of interacting with 

others.  

In the next chapter, Chapter 4, I describe an fMRI study that further probes how 

empathic processes relate to social behaviour by examining how children with 

low levels of empathy and high levels of antisocial behaviour process 

information about other people’s  pain. 
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 Chapter background CHAPTER 4:

 

In   the  previous  chapter   I  examined  how  empathy  may  motivate  positive  social  

behaviours,  that  is,  prosocial  behaviour.  In  the  current  study,  I  extend  this  aim  to  

focus   on   how   individual   differences   in   empathy   relate   to   negative   social  

behaviour,  that  is,  antisocial  behaviour.   

Children  with  conduct  problems  display  high  levels  of  antisocial  behaviour  and  

incur   a   considerable   economic   and   social   cost.   These   children   also   display  

atypical   empathic   responses   to   others’   distress,  which  may   partly   account   for  

their  violent  and  antisocial  behaviour.  In  children  with  conduct  problems,  callous  

traits   index   a   lack   of   empathy   and   confer   risk   for   psychopathy   in   adulthood.  

Investigating  neural   responses   to   images  of  other  people   in  pain  can  be  used  

as  a  proxy  measure  of  empathic  processing,  yet  studies  in  children  with  conduct  

problems   have   been   inconclusive.   In   this   chapter   I   report   a   study   that   used  

functional  magnetic  resonance  imaging  (fMRI)  to  examine  neural  responses  to  

images   of   other   people   in   pain   in   a   large   sample   of   children   with   conduct  

problems   and   varying   levels   of   callous   and   unemotional   traits,   and   a   control  

group  matched  for  IQ,  age,  socioeconomic  status  and  ethnicity.   I  also  acquired  

parent   and   teacher   ratings   of   conduct   problem   symptoms   and   callous   and  

unemotional   traits   to   examine   individual   differences   in   neural   response.   I  

hypothesised   that   (1)   children   with   conduct   problems   would   show   reduced  

neural  responses  to  other  peoples  pain,  compared  to  controls,  in  key  regions  of  

the  brain  previously  associated  with  affective  and  social  information  processing  

(anterior   insula,  anterior  cingulate  cortex,   inferior  frontal  gyrus).  (2)  Variation   in  

activation   in   these   regions  would  be  predicted  by  conduct  problem  symptoms  

and  callous  traits.   
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4.1. Introduction 

 

Conduct problems (CP) in children include physical aggression, lying, theft, and 

cruelty to others.  Given that empathy plays a key role in inhibiting aggression 

and promoting prosocial behaviour (see Chapter 1) it has been hypothesised 

that antisocial behaviours in children with conduct problems may reflect atypical 

empathic  responses  to  other  people’s  suffering   (Blair, 2005). While there is no 

clinical diagnosis of psychopathy in childhood, there is abundant evidence that 

psychopathic traits and behaviours can be observed in children. In childhood, 

particular subsets of children with conduct disorder have elevated levels of 

psychopathic traits, which are termed callous-unemotional traits in research 

studies and ‘limited  prosocial  emotions’  in  the  new  DSM-5 guidelines. Callous-

unemotional traits in children can persist into adulthood (Lynam et al., 2007) 

and are highly heritable (Viding et al., 2005). In contrast, antisocial behaviour in 

children without callous-unemotional traits appears to be primarily driven by 

environmental influences (Viding et al., 2005).  Heterogeneity in empathy at the 

behavioural level in children with CP is well captured by a questionnaire 

assessment of callous-unemotional (CU) traits (Kimonis et al., 2008). 

One  method   for   investigating   neural   processing   that   may   be   associated   with  

empathy  is  to  measure  the  perception  of  other  people  in  pain.  Delineating  these  

responses  in  children  with  CP  is  of  particular  interest  given  that  this  group  often  

inflicts  pain  on  others  (Romeo,  Knapp,  &  Scott,  2006).   fMRI  studies   in  healthy  

populations   have   identified   a   network   of   brain   regions   activated   by   the  

observation  of  pain   in  others.  This  network   includes   regions   linked   to  sensory  

processing  such  as  somatosensory  cortices,  regions  linked  to  processing  social  

and   affective   information,   such   as   anterior   insula   (AI)   and   anterior   cingulate  

cortex  (ACC)  (Fan  et  al.,  2011;;  Lamm  et  al.,  2011;;  Singer  &  Lamm.,  2009)  and  

regions  linked  to  cognitive  reappraisal  such  as  the  inferior  frontal  gyrus  (IFG).   

Atypical   function   and   structure   in   several   of   these   regions,   including  AI,   ACC  

and  IFG  have  been  implicated  in  the  pathophysiology  of  childhood  CP  and  adult  

psychopathy   (Anderson   &   Kiehl,   2012).   For   example,   reduced   grey   matter  
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volume  and  atypical   function  of  AI  has  been   reported   in  children  with  conduct  

problems  and  adults  with  psychopathy   (Anderson  &  Kiehl,  2012;;  Sebastian,  et  

al.,   2012;;   Sterzer,   Stadler,   Poustka,   &   Kleinschmidt,   2007).   The   ACC   is   of  

particular   interest   in   the  current   thesis  since,  as  highlighted   in  Chapter   1,   this  
region   is   well   known   for   its   role   in   social   behaviour   (Apps,   Lockwood,   et   al.,  

2013;;  Behrens  et   al.,  2008;;  Rushworth,  Behrens,  Rudebeck,  &  Walton,  2007)  

and  lesions  to  this  region  appear  to  disrupt  the  value  assigned  to  social  stimuli  

(Rudebeck   et   al.,   2006).   Moreover,   individuals   with   psychopathy   have   been  

shown   to   display   a   reduced   error   related   negativity,   putatively   sourced   in   the  

ACC,  when  observing  others  outcomes  during  a  social  interaction  (Brazil  et  al.,  

2011).  Recent  studies  also   indicate  that  grey  matter  volume  and  activity   in  the  

ACC  correlates  with  psychopathic  and  callous   traits   (Anderson  &  Kiehl,  2012;;  

Cope  et  al.,  2012;;  De  Brito  et  al.,  2009).   

However,   to   date,   only   two   studies   have   investigated   processing   of   other  

people’s   pain   in   children   with   CP,   with   inconclusive   results.   Decety   and  

colleagues   found   that,   compared   with   controls,   children   with   CP   showed  

increased   neural   responses   to   others   in   pain   in   regions   including   the   insula,  

anterior   midcingulate,   striatum   and   amygdala   (Decety,   Michalska,   Akitsuki,   &  

Lahey,  2009).  Aggressive  CP  symptoms  were  positively  correlated  with  inferior  

frontal   gyrus,   cingulate   cortex,   amygdala   and   periaqueductal   grey   responses.  

Although  these  findings  are  of  interest,  CU  traits  were  not  measured  and  the  CP  

sample   was   small   (N=8),   making   replication   and   extension   of   this   work  

important.  Another   study  measured  event-related  potentials,   and   found   frontal  

N120,  thought  to  reflect  early  affective  arousal;;  and  central-parietal  late-positive  

potentials   (LPPs),   thought   to   index   reappraisal   of   unpleasant   stimuli   (Cheng,  

Hung,  &  Decety,  2012;;  Fan  &  Han,  2008)  were  reduced  in  children  with  CP  and  

high  levels  of  CU  traits  relative  to  TD  children  when  viewing  pictures  of  others  in  

pain  (Cheng  et  al.,  2012).  Findings  from  these  two  studies  provide  preliminary  

evidence   that  children  with  CP  show  atypical   responses   to  others’  pain,  which  

may  be  partially  driven  by  CU  traits.   
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4.1.1. The current study 

 

In   the  current  chapter   I  compared  neural   responses   to  others’  pain   in  children  

with   CP   and   TD   controls   using   fMRI.   I   also   explored   heterogeneity   of   neural  

responses  within  the  CP  group  by  studying  unique  dimensional  contributions  of  

CU   traits   and  CP  symptoms.  The   standard   research  measure  of  CU   includes  

scales  that  characterise  callous,  uncaring,  and  unemotional  attributes  (Essau  et  

al.,  2006).    I  was  particularly  interested  in  the  effect  of  callous  traits,  since  these  

index  reduced  empathy,  guilt  and  remorse  for  others’  suffering;;  whilst  uncaring  

traits  relate  to  a  lack  of  concern  about  task  performance  and  unemotional  traits  

relate  to  an  absence  of  emotional  expression  (Essau  et  al.,  2006).   

 

4.1.2. Hypotheses 

 

On  the  basis  of  previous  research  suggesting  reduced  empathy  in  children  with  

CP  (Blair,  2005;;  Jones  et  al.,  2010;;  Schwenck  et  al.,  2012),  I  predicted  reduced  

neural  responses  to  Pain  (relative  to  No  Pain)  in  the  CP  compared  to  TD  group  

in  regions  previously  shown  to  respond   in  empathy   for  pain  paradigms  that  all  

thought  to  be  atypical  in  CP,   including  the  AI  and  ACC  and  IFG.  Within  the  CP  

group,  I  also  predicted  that  CU  traits  (in  particular  the  ‘callous’  subscale)  might  

be  negatively   related   to  neural   responses   to  others’  pain,  while  CP  symptoms  

might  show  a  positive  relationship  (Sebastian,  McCrory,  et  al.,  2012).  I  focused  

on  unique  variance  associated  with  CU  traits  and  CP  symptoms  (i.e.  controlling  

for  one  another),  as  several  lines  of  evidence  suggest  that  these  variables  exert  

suppressor   effects   on   one   another   (Hicks   &   Patrick,   2006;;   Sebastian   et   al.,  

2012). 
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4.2. Materials and Method 

 

4.2.1. Participants 

 

Right-handed  boys  aged  10-16  (mean  (SD):  controls=13.68  (1.68);;  CPs=14.05  

(1.69))   were   recruited   from   the   community   via   advertisements   and   local  

schools.   One-hundred-and-forty-three   parents   and   teachers   completed  

screening   questionnaires.   CP   was   assessed   using   the   Child   and   Adolescent  

Symptom   Inventory   (CASI-4R)   (Gadow   &   Sprafkin,   2009)   Conduct   Disorder  

scale   (CASI-CD).  CASI-CD  cut-off   scores   for   inclusion   in   the  CP  group  were:  

Parent  report=4+  (ages  10-12)  3+  (ages  12-16)  or  Teacher  report=3+  (ages  10-

12)   4+   (ages   12-14)   6+   (ages   15-16).   These   scores   are   associated   with   a  

clinical  diagnosis  of  CD  (Gadow  and  Sprafkin.,  2009).  CU  traits  were  assessed  

using   the   Inventory   of   Callous-Unemotional   Traits   (ICU)   (Essau   et   al.,   2006).  

Total   scores   for   the   three   ICU   subscales   (callous,   uncaring   and   unemotional)  

were   calculated.   Both   CASI-CD   and   ICU   were   scored   by   taking   the   highest  

ratings  from  either  the  parent  or  teacher  questionnaire  for  each  item  (Piacentini,  

Cohen,   &   Cohen,   1992).   For   two   children   with   CP   only   parent   ratings   were  

available.  The  Strengths  and  Difficulties  Questionnaire  (SDQ;;  Goodman,  1997)  

was   used   to   screen   for   psychopathology   (hyperactivity,   CP,   emotional  

symptoms,  peer  problems)  in  the  controls.  All  control  participants  scored  below  

the  CP  group  median  on  the  ICU  and  in  the  normal  range  on  the  CASI-CD  and  

SDQ.   For   both   groups,   exclusion   criteria   included   previous   diagnosis   of  

neurological   or   psychotic   disorder,   including   autism   spectrum   disorders,   and  

current  prescription  for  psychiatric  medication  (all  children  were  unmedicated).  

Written  informed  consent  from  parents  and  written  assent  from  participants  was  

obtained. 

Fifty-eight  children  were  scanned  (39  CPs,  19  controls),  with  usable  data  from  

37  CPs  and  18  controls.  Exclusions  were  due   to:  scanner   refusal   (1  CP),  and  

teacher  questionnaire  data  obtained  after  scanning   indicating   that   the  child  no  
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longer  met  group  criteria   (1  CP,  1   control).  Groups  were  matched  on   IQ,  age,  

ethnicity  and  socioeconomic  status  (Table  4.1).   

 

 

Table 4.1. Participant characteristics 
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4.2.2. Procedure 

 

Stimuli  were  192  digital  photographs  showing  another  person’s  hand  or  foot   in  

painful  or  non-painful  situations  (Gu  et  al.,  2010)  ‘Pain’  and  ‘No  Pain’  stimuli  (96  

pictures  per  condition)  were  matched  on  physical  properties,  and  were  validated  

as  eliciting  activations  in  the  hypothesised  regions  in  a  previous  study  (Gu  et  al.,  

2010).  Stimuli  were   presented   in   pain   and  no  pain   blocks   lasting  20   seconds  

and   consisting   of   8   images,   each   displayed   for   2000ms   with   a   500ms   ISI.  

Blocks   were   pseudorandomised,   with   the   same   block   type   never   presented  

more  than  twice  in  a  row.  A  fixation  cross  was  presented  for  15  seconds  every  6  

blocks.   

To  ensure  attention,  participants  performed  a  hand/foot  key  press  judgment  on  

every   trial.   Participants   practiced   outside   the   scanner   with   painful   and   non-

painful   images   not   seen   in   the   main   experiment,   until   ≥80%   accuracy   was  

reached. 

 

4.2.3. Psychometric and questionnaire measures 

 

Participants   completed   the   Weschler   Abbreviated   Scale   of   Intelligence   two-

subtest   version   (Wechsler,   1999),   and   the   Alcohol/Drug   Use   Disorders  

Identification  Tests  (Berman,  Bergman,  Palmstierna,  &  Schlyter,  2005).  A  parent  

or  guardian  completed  the  CASI-4R  scales  for  symptoms  commonly  co-morbid  

with  CP,  including  ADHD,  Generalized  Anxiety  Disorder,  and  Major  Depressive  

Episode  (Table  4.1). 
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4.2.4. fMRI data acquisition and analysis 

 

A  Siemens  Avanto  1.5-T  MRI  scanner  was  used  to  acquire  189  multislice  T2*-

weighted   echo   planar   volumes   with   blood   oxygenation   level–dependent  

contrast  (1  run  of  9  minutes).  The  sequence  was  based  on  (Weiskopf,  Hutton,  

Josephs,   &   Deichmann,   2006).   Functional   sequence   acquisition   parameters  

were  as  follows:  35  2mm  slices  acquired  in  an  ascending  trajectory  with  a  1mm  

gap;;   TE=50ms;;   TR=2975ms;;   slice   tilt=−30°   (T>C);;   flip   angle=90°;;   field   of  

view=192  mm;;  matrix   size=64x64.     A   5.5-minute  T1-weighted  MPRAGE   scan  

was  acquired  for  coregistration,  normalization  and  overlay,  and  fieldmaps  were  

acquired   for   unwarping.   Data   were   analyzed   using   Statistical   Parametric  

Mapping   (SPM8;;   Weiskopf   et   al.,   2006).   The   preprocessing   pipeline   was   as  

follows:  the  first  5  and  last  2  volumes  were  discarded.  Data  were  then  realigned,  

unwarped   using   a   fieldmap,   normalized   via   segmentation   of   participants’  

structural   scans,  written  with   a   voxel   size   of   2x2x2mm,   and   smoothed  with   a  

8mm  Gaussian  filter.   

Given  the  potential  for  motion  artifacts  using  a  developmental  sample,  I  followed  

a  number  of  procedures   to   limit  any   influence  of  motion  on  the  collected  data.  

Firstly,   participants  were   shown  a   short   slide   show  of  brain   scans   taken   from  

previous   participants   who   had   either   stayed   still   or   moved   varying   amounts.  

Participants   were   also   given   a   short   practice/localizer   scan,   after   which  

feedback  was  given  on  how  still   they  kept.  After  estimation  of   the   realignment  

parameters,   I   ran  a   script   to   search   for  motion  of  more   than  1mm   (x,y   and   z  

directions)  or  1  degree  (pitch,  roll,  yaw)  in  any  direction  between  acquisition  of  

one  volume  and  the  next.  Volumes  flagged  by  the  script  (as  well  as  surrounding  

volumes)  were   then   inspected   visually   for  motion   artifacts.   For   a   few   random  

participants,   the  whole   time  series  was   inspected  for  motion  artifacts   to  check  

the   validity   of   the   threshold   chosen   in   the   script.   On   the   basis   of   previous  

studies  from  our  laboratory  I  decided  a  priori  to  exclude  any  participants  where  

more   than   10%   of   the   volumes   were   corrupted   by   motion   artifacts.   No  

participants  reached  this  threshold. 
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For  14  participants  (11  CPs,  3  controls),  extra  regressors  were   included  within  

the  first-level  analysis  design  matrix  to  model  any  images  corrupted  by  motion.  

These   images  were   removed  and   the  adjacent   images   interpolated   to  prevent  

distortion   of   the   between-subjects  mask.   Data   were   high-pass   filtered   at   128  

seconds  to  remove  low-frequency  drifts.  For  one  CP,  half  of  the  fMRI  time  series  

(91  scans)  was  discarded  due  to  the  participant  falling  asleep  midway  through  

scanning. 

 

4.2.4.1. First-level and second-level analysis 

 

After   standard   preprocessing,   a   block   analysis   compared   neural   activity  

associated  with  pain  and  no  pain  conditions.  Regressors  included  Pain  and  No  

Pain   (blocks   of   20   seconds   duration)   and   fixation   (15   seconds),   modeled   as  

boxcar   functions  convolved  with  a   canonical  hemodynamic   response   function.  

The  6  realignment  parameters  were  also  modeled  as  effects  of  no  interest.    At  

the  first  level,  Pain>No  Pain  and  No  Pain>Pain  contrasts  were  created.  Contrast  

images  were  entered  into  second-level  analyses,  where  group  (CP  vs.  control)  

served   as   a   between-subjects   variable   in   independent-samples   t   tests.   Main  

effects   are   reported   at   p  <   .05,   family-wise   error   (FWE)   corrected   across   the  

whole   brain   (See   Appendix   2);;   while   regions   from   a   whole   brain   analysis  
showing   a   condition   x   group   interaction   are   presented   at   p   <   .005,   k   ≥   10,  

uncorrected   in   (See   Appendix   2)   (no   interaction   results   survived   FWE-

correction   across   the   whole   brain).   I   investigated   the   condition   by   group  

interaction  in  three  a  priori  regions  of  interest  (bilateral  AI,  ACC  and  IFG).  ROIs  

were  anatomically  defined  using  masks  from  the  automated  anatomical  labeling  

(AAL)   atlas   (Tzourio-Mazoyer   et   al.,   2002).   The   MarsBaR   toolbox  

(http://marsbar.sourceforge.net)  was  used  to  calculate  mean  contrast  estimates  

across  bilateral  ROIs.  Group  differences  were  assessed  at  a  standard  statistical  

threshold  of  p  <  .05  (Eisenberger  et  al.,  2010;;  Masten  et  al.,  2011).   

I  selected   the  anterior  portion  of   the   insula  by  modifying   the  aal  atlas  mask  to  

include  all  voxels  y>0  on  the  basis  of  several  previous  studies  suggesting  that  it  
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is   the   anterior   portion   of   the   insula   that   is   involved   in   affective-motivational  

aspects  of  vicarious  pain  processing  (Fan  et  al.,  2011;;  Lamm  et  al.,  2011).  For  

ACC  I  used  the  standard  ACC  aal  mask.  The  peak  co-ordinate  from  Lamm  et  al.  

(Lamm  et  al.,  2011)  falls  within  this  mask  in  the  left  hemisphere  and  falls  on  the  

border   of   the   mask   in   the   right   hemisphere.   I   included   hemisphere   as   a  

separate  factor  in  repeated  measures  ANOVAs  for  each  ROI.  These  showed  no  

significant  differences  between  hemispheres  for  the  condition*group  interaction  

effect   of   interest   for   any   ROI   (ps>.40).   Since   I   had   no   a   priori   hypothesis  

regarding  laterality,  I  therefore  collapsed  data  across  bilateral  ROIs. 

I   also  performed  additional  analysis   given   the  particular   interest   of   the   role  of  

the  ACC  in  social  cognition  in  this  thesis.  The  aal  ACC  mask  includes  a  number  

of  sub-regions   including  BA24,  BA32  and  BA25   (Vogt  et  al.,  1995).  Given  that  

previous   studies   have   suggested   the   ACCg   is   particularly   sensitive   to   social  

information   (as   compared   to   other   portions   of   the   ACC),   I   took   the   peak   co-

ordinate   from   4   studies   showing   activation   in   the   ACCg   to   social   information  

processing  (Apps,  Green,  et  al.,  2013;;  Apps  &  Ramnani,  2014;;  Behrens  et  al.,  

2008;;  Chapter   5)  and  averaged   these  coordinates   to  conduct  a  small  volume  
correction  using  a  6mm  sphere  after  initial  thresholding  of  p<.005  uncorrected.   

 

4.3. Results 

 

4.3.1. Behavioural data 

 

Mean   reaction   times   (RTs)   and   percentage   error   rates   were   calculated.   For  

mean  RTs,  a  group  (CP  vs.  control)  by  condition  (pain,  no  pain)  ANOVA  showed  

no  main  effect  of  group  (F(1,53)  =  .02,  p  =  0.89)  but  a  main  effect  of  condition  

(F(1,53)  =  71.85,  p  <.001)  with  significantly  slower  RTs  when  classifying  hands  

and   feet   in   the   pain   condition   (910.08,   SD=140.15)   compared   to   no   pain  

(862.72,  SD  =  129.73).  There  was  no  interaction  between  group  and  condition  
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(F(1,53)  <.001,  p   >  0.99).  Error  data  showed  a  marginal  main  effect   of  group  

(F(1,53)  =  3.17,  p   =  0.08)  with  a   trend   for  more  errors   in   the  CP   than  control  

group,   and   a   main   effect   of   condition   (F(1,53)   =   6.40,   p   =   0.014)   with  

significantly  more  errors  when  classifying  hands  and   feet   in  pain  compared   to  

no  pain  (6.82,  SD  =  5.05  vs.  5.63,  SD  =  4.55).  There  was  no  group  by  condition  

interaction  (F(1,53)  =  .061,  p  =  0.81). 

 

4.3.2. fMRI data: main effect and group x condition interaction 

 

Results  from  whole  brain  analyses  for  the  main  effect  of  Pain>No  Pain  (and  the  

reverse),  and   the  group  by  condition   interaction  are  displayed   in  Appendix   2.  
Main  effects  were  found  in  regions  previously  associated  with  empathy  for  pain,  

and  largely  replicated  a  previous  study  using  the  same  stimuli  (Gu  et  al.,  2010).  

ROI   analyses   for   Pain>No   Pain   revealed   the   predicted   pattern   of   reduced  

response  in  the  CP  relative  to  control  group  in  bilateral  AI  (t(53)=2.08,  p  =  0.02),  

ACC   (t(53)=1.66,   p  =   0.05)   and   IFG   (t(53)=   2.45,  p  <0.01).   Results   from   the  

additional  analysis  of   the  average  ACCg  coordinate  also  showed  a  significant  

group   x   condition   interaction   effect   (MNI   coordinates   x=0   y=20   z=24,   k=14,  

z=2.8,  p  <  .05,  FWE-SVC). 

 

4.3.3. fMRI data: associations with ICU and CP symptoms 

 

I  then  examined  the  second  hypothesis,  that  callous  traits  would  be  associated  

with  reduced  ROI  responses  to  Pain>No  Pain  within  the  CP  group.  On  the  basis  

of  previous  findings  showing  that  CP  symptoms  and  CU  traits  exert  suppressor  

effects   on   one   another   (see  Hicks   &   Patrick,   2006;;   Sebastian,   et   al.,   2012)   I  

conducted   multiple   regressions   to   investigate   unique   contributions   of      ICU  

subscales   (callous,   uncaring,   unemotional)   and   CP   symptoms   to   neural  

responses  in  the  ROIs.  One  participant  was  excluded  from  these  analyses  due  
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to  missing  data.   

In   AI,   a   significant   negative   relationship   was   found   between   unique   variance  

associated  with  callous  traits  and  neural  response  (β  =  -.625,  p  =  0.03)  (Figure  
4.1).   Neither   CP   symptoms   nor   uncaring   or   unemotional   subscales   were  
associated   with   AI   response   (all   ps   >.10).   In   ACC,   a   significant   negative  

relationship  was   found  between  unique  variance  associated  with  callous   traits  

and   neural   response   (β   =   -.729,   p   =   0.01)   (Figure   4.2),   while   a   positive  
relationship  was  found  between  unique  variance  associated  with  CP  symptoms  

scores  and  neural  response  (β  =  .485,  p  =  0.02)  (Figure  4.3).  No  relationships  
were   found   in   relation   to   the   uncaring   or   unemotional   subscale   scores   (ps   >  

0.24).   In   IFG,  no  associations  with  unique  variance  were  found.  To   investigate  

potential   effects   of   commonly   co-morbid   attention-deficit   hyperactivity,  

generalized   anxiety   and   depression   symptoms,   I   included   these   variables   in  

follow-up  regression  analyses.  All  significant   results   remained  at  p  <  0.05  and  

none  of  these  variables  predicted  AI  or  ACC  response  (all  ps  >  .25).  In  addition,  

when   age  was   included   in   follow-up   regression   analyses   all   results   remained  

significant  at  p  <  0.05.   
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Figure 4.1. Partial regression plot for the CP group (n=36), showing a 
negative association between bilateral AI response to Pain>No Pain, and 
unique variance associated with ICU-callous traits after controlling for 
CASI-CD, ICU-unemotional and ICU-uncaring scores. 
 

Notes:  (Inset)  Horizontal  section  (z=0)  of  bilateral  AI  ROI  overlaid  on  an  average  
T1  structural  image  from  all  participants.  Bilateral  AI  response  was  calculated  by  
averaging  left  and  right  AI  response.  P  and  r  reflect  partial  correlation  coefficients. 
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Figure 4.2. Partial regression plots showing associations with ACC 
response to Pain>No Pain in the CP group (n=36). Negative relationship 
between ACC response and unique variance associated with ICU-callous 
traits, after controlling for CASI-CD, ICU-unemotional and ICU-uncaring 
scores.  

Notes: (Inset) Sagittal section (x=0) of ACC ROI overlaid on an average T1 
structural image from all participants. Bilateral ACC response was calculated 
by averaging left and right ACC response. P and r reflect partial correlation 
coefficients. 
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Bivariate correlations were also conducted within the CP group between neural 

responses to Pain>No Pain in regions of interest (AI, ACC, IFG) and CP 

symptoms and ICU subscales (callous, unemotional and uncaring traits) to 

determine if the unique associations between these measures and neural 

response were not evident in bivariate associations. In the AI and ACC, no 

significant bivariate relationships were found (all ps > 0.07). In IFG, positive 

correlations were found between neural response and both CP symptoms (r = 

.40, p = 0.02), and unemotional traits (r = .44, p < 0.01). There was no 

significant R-squared change when adding CP symptoms after unemotional 

traits, or vice-versa, into a regression model indicating that common variance 

Figure 4.3. Partial regression plots showing associations with ACC 
response to Pain>No Pain in the CP group (n=36). Positive relationship 
between ACC response and unique variance associated with CASI-CD 
scores after controlling for ICU-callous, unemotional and uncaring 
subscale scores 
 

Notes: (Inset) Sagittal section (x=0) of ACC ROI overlaid on an average T1 
structural image from all participants. Bilateral ACC response was calculated 
by averaging left and right ACC response. P and r reflect partial correlation 
coefficients. 
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between CASI-CD and unemotional traits drove the positive relationship with 

IFG. 

I   also   extracted   the   significant   peak   in   the   ACCg   identified   in   the   additional  

analysis  and  explored  unique  and  bivariate  associations  with  CP  symptoms  and  

ICU  subscales  in  the  CP  group.  This  analysis  largely  replicated  the  results  from  

associations  with  the  average  response  over  the  entire  ACC  mask,  with  unique  

variance  from  callous  traits  being  negatively  associated  with  ACCg  response  (β  

=  -.496,  p  =  .08  [marginal])  and  CP  symptoms  being  positively  associated  (β  =  

.534,  p  =   .01).  Uncaring   and   unemotional   traits   showed   no   significant   unique  

associations  (all  ps  >  .80)  and  these  results  did  not  change  when  commonly  co-

morbid  symptomatology  and  age  were  added  to  the  analyses  (all  ps  <  .10). 

 

4.4. Discussion 

 

In   this  study,   I   show  reduced  neural   responses   to  others’  pain   in  children  with  

conduct   problems   compared  with   controls,   in   three   key   regions,  AI,  ACC  and  

IFG,  associated  with   the  perception  of  others  pain   in  previous  studies.  This   is  

the  first  fMRI  study  to  investigate  the  processing  of  others’  pain  (as  an  index  of  

empathic   processing)   in   a   large   sample   of   children   with   CP,   using   a   well-

controlled   task  matched   for   visual   and   social   content.   I   also   show  a   negative  

association  between  callous   traits  and  AI/ACC  responses.  Additional  analyses  

to  examine  whether  group  differences  were  apparent  in  the  ACCg  also  showed  

reduced   neural   response   to   others’   pain   in   the   CP   group   compared   to   the  

control   group,   and   diverging   associations   between   callous   traits   and   CP  

symptoms.   

Meta-analyses   have   indicated   that   the  AI   and  ACC  are   consistently   activated  

during   the   vicarious   pain   and  have  a   close   functional   relationship   (Fan  et   al.,  

2011;;  Lamm  et  al.,  2011;;  Medford  &  Critchley,  2010;;  Mufson  &  Mesulam,  1982;;  

Pandya,   Van   Hoesen,   &   Mesulam,   1981).   The   AI   is   proposed   to   play   an  

important  role  in  sensory  integration  and  interoceptive  awareness  (Craig,  2009),  
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and  may  be   involved   in  awareness  of   unpleasant   feelings  during  empathy   for  

pain   (Medford   &   Critchley,   2010).   Interestingly,   abnormal   AI   function   and  

structure   has   frequently   been   reported   in   both   children  with  CP  and   in   adults  

with  psychopathy   (Decety  et  al.,  2009;;  Ly  et  al.,  2012;;  Sebastian  et  al.,  2012;;  

Sterzer   et   al.,   2007).   However,   the   observation   of   reduced   AI   response   is   at  

odds   with   one   study,   which   found   increased  AI   response   in   children   with   CP  

(Decety   et   al.,   2009).   This   could   be   because   in   that   study   pain   caused   by  

accident  was  contrasted  with  pain  caused  by  others,  whereas  the  pain  and  no  

pain   conditions   were  matched   for   agency.   Increased   AI   reactivity  may   reflect  

differences   in   agency   processing   rather   than   pain   processing   per   se.  

Differences  in  the  samples  between  the  two  studies  (e.g.  levels  of  callous  traits)  

may   also   have   contributed   to   the   divergent   findings.   These   data   provide  

additional   support   for   the   view   that   atypical   AI   function   represents   a   neural  

marker  of  disrupted  empathic  processing  in  CP  and  that  AI  hypoactivity  relates  

to  differences  in  processing  others’  pain.   

The  ACC  is  well  known  for  its  role  in  social  behaviour  (Apps,  Lockwood,  et  al.,  

2013).  Like  AI,  atypical  ACC  function  in  CP  has  been  reported  previously,  again  

with   mixed   findings   (Sterzer,   Stadler,   Krebs,   Kleinschmidt,   &   Poustka,   2005).  

One  study  reported  reduced  ACC  response  to  negative  pictures  in  CP  (Sterzer  

et  al.,  2005),  while  another  found  greater  ACC  response  in  children  with  CP  to  

videos  of  others  in  pain  vs.  no  pain  (Decety  et  al.,  2009).  This  finding  provides  

converging  evidence   that  ACC  function   is  atypical   in  CP  and   in  particular   that  

there  is  hypoactivity  of  response  during  empathy  for  pain.   

To  address   the  second  aim  I  explored  dimensional  unique  contributions  of  CU  

traits   and   CP   symptoms   to   ROI   responses.   As   predicted,   unique   variance  

associated  with  callous   traits  was  negatively   related   to  AI  and  ACC  response.  

This  association  was  also  at  trend  when  examining  peak  response  in  the  ACCg.  

Since  the  callous  subscale  of  the  ICU  contains  items  reflecting  poor  empathy  in  

everyday   life,   these   findings   provide   evidence   of   convergent   validity   between  

questionnaire  and  neural  measures  of  empathy  in  CP.  Moreover,  callousness  is  

an  important  feature  of  adult  psychopathy  (Blair  et  al.,  2005)  and  childhood  CU  

traits  predict  adult  psychopathy  (Lynam  et  al.,  2007).  Blunted  neural  responses  

to   pain   in   children   with   higher   levels   of   callous   traits   may   characterise   a  
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developmental  vulnerability  to  serious  antisocial  behaviour;;  for  a  minority,  such  

a   pattern  may   interact  with   other   vulnerability   factors   to   increase   risk   of   adult  

psychopathy. 

Interestingly,  CP  symptoms  were  positively  correlated  with  ACC  response,  and  

this   same   association  was   evident   when   examining   the   ACCg.   These   results  

complement   recent   findings   (Sebastian  et  al.,  2012)  showing  opposing  unique  

contributions   of   CU   traits   and   CP   symptoms   to   neural   response   in   the  

amygdala.   Heterogeneity   in   CP   may   help   to   explain   inconsistencies   across  

previous  studies  reporting  both  increased  and  decreased  ACC  responses  in  CP  

(Decety  et  al.,  2009;;  Sterzer  et  al.,  2005). 

More  generally,  these  data  highlight  that  children  with  CP  are  a  heterogeneous  

group  with  varying  neurocognitive  vulnerabilities;;  with  callous  traits  of  particular  

importance  in  predicting  empathic  dysfunction.   

 

4.4.1. Limitations 

 

Limitations  of   the  current  study   include  the  use  of  a  research  diagnosis  of  CP,  

and   a   focus   on   males.   Replication   in   a   clinically   diagnosed   sample   will   be  

important,  as  will   investigation  of  potential  gender  differences.  Additionally,   the  

task  did  not  allow  exploration  of  the  function  of  component  processes  within  the  

empathy  for  pain  response  in  CP.  Future  studies  should  address  whether  there  

is  a  specific  aspect  of  this  response  which  is  atypical  in  CP,  e.g.  basic  arousal,  

interoceptive   processing,   or   higher-level   emotional   responses   to   others’  

suffering.  Finally,  replication  and  extension  of  the  current  study  is  required.  The  

present  paradigm  used  social  pictures  as  stimuli,   rather   than  examining  social  

interactions   with   another   agent,   and   therefore   it   is   unclear   how   the   reduced  

responsiveness   to   others   pain   observed   in   the   current   studies   is   apparent  

during   social   interactions.   Moreover,   given   that   the   current   paradigm   used   a  

block   design   I   cannot   directly   examine   the   specific   component   processes  

associated   with   the   representation   of   others’   pain,   such   as   pain  
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prediction/anticipation   and   the   outcome   of   observing   others   receive   pain.  

Finally,  as  the  current  paradigm  does  not  contain  a  ‘self’  pain  condition  I  cannot  

examine   whether   the   difference   in   neural   responses   relate   specifically   to  

atypical  processing  for  social  information.   

 

4.4.2. Conclusions 

 

Despite   these   limitations,   these  data  extend  understanding  of   the  neural  basis  

of  CP  and  empathy  in  several  important  ways.  To  my  knowledge,  this  is  the  first  

study  to  investigate  empathic  pain  processing  in  a  large  sample  of  children  with  

CP  compared  with  controls  on a task matched for visual and social content.   I  

show   reduced  neural   responses   to  others’  pain   in  children  with  CP.  Second,   I  

show  that  callous   traits   in  particular  may  underlie  atypical  neural   responses  to  

others’  pain  in  CP,  which  may  represent  an  early  neurobiological  marker  for  later  

psychopathy.   Third,   the   finding   that   callous   traits   and   CP   symptoms   show  

opposing  relationships  with  ACC  response  suggests  a  potential  explanation  for  

mixed   reports   of   hyper-activation   (Decety   et   al.,   2009)   and   hypo-activation  

(Sterzer  et  al.,  2005)  of  ACC  to  negative  affective  stimuli  in  CP.  Clinically,  these  

data   may   have   consequences   for   empathy   training   implementation   (e.g.   in  

relation   to   victim   empathy)   in   children   with   high   levels   of   callous   traits.  

Systematic   evaluation   of   training   outcomes   should   take   callous   traits   into  

account.  It  remains  an  empirical  question  whether  empathic  responding  can  be  

normalised  in  children  with  CP  (and  varying  levels  of  callous  traits)  or  whether  

behavioural   equivalence   is   better   achieved   through   compensatory   strategies  

which  leverage  spared  cognitive  processes  (Jones  et  al.,  2010;;  Schwenck  et  al.,  

2012).   

In   the   next   chapter,   Chapter   5,   I   will   present   a   study   investigating   neural  
responses   to   others’   positive   outcomes,   namely   reward,   and   variation   with  

individual  differences  in  empathy  that  extends  the  design  in  the  present  chapter  

and   addresses   some   of   the   limitations   (albeit   in   a   healthy   adult   population).
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 Chapter background CHAPTER 5:

 

In the last chapter I examined neural responses to other people’s pain in 

children with low levels of empathy. In the current study, I extend this aim to 

focus on how individual differences in empathy underpin neural responses to 

others positive   experiences,   in   particular   other   peoples’   reward.   Successful  

empathising can depend on the ability to predict when others are likely to 

receive rewards. Yet, whilst a plethora of research has examined the neural 

basis of predictions about the likelihood of receiving rewards ourselves, very 

little is known about the neural mechanisms that underpin variability in vicarious 

reward prediction. Human neuroimaging and non-human primate studies 

suggest that a sub-region of the anterior cingulate cortex in the gyrus (ACCg) is 

engaged when others receive rewards. Does the ACCg respond when we 

observe others about to receive a reward and does this response vary with 

individual differences in trait empathy? In the present study I used fMRI to 

examine neural responses to cues that signalled the likelihood of others reward 

in a sample of adult males who were matched with a social confederate. I also 

measured individual differences in empathy. I hypothesised that (1) the ACCg is 

engaged when predictions are made about the probability of another person 

receiving a reward and (2) the extent to which the ACCg is specialised for 

processing   others’   rewards   is   positively   associated   with   trait   empathy as 

measured by the QCAE. 

 

 

 

 

 

 



 

104 
 

5.1. Introduction 

 

The successful prediction of future rewards is fundamental for adaptive 

behavior. The neural mechanisms that underpin reward prediction for oneself 

are becoming increasingly well understood (Schultz, 2013). However, during 

social interactions, stimuli are often predictors of rewards for others, not 

exclusively ourselves. Effectively cooperating, competing or empathising with 

another requires the ability to compute the value of stimuli that predict rewards 

for others (Ruff & Fehr, 2014). Yet, very little is known about how vicarious 

reward predictions are processed in the brain. Moreover, there is a dearth of 

knowledge regarding how individual differences in social functioning are related 

to  neural  response  to  others’  reward. 

The dorsal anterior cingulate cortex (dACC) signals predictive information about 

reward value, including the probability and magnitude of future rewards (Rogers 

et al., 2004; Sallet et al., 2007; Shidara & Richmond, 2002). This region is also 

engaged when processing social information (Behrens et al., 2008; Gabay, 

Radua, Kempton, & Mehta, 2014; Lamm et al., 2011). Recently, a model of the 

dACC was proposed that unifies these different facets of its function (Apps, 

Lockwood, et al., 2013). This model posits that a sub-region of the ACC in the 

gyrus (ACCg) – lying in the anterior portions of the midcingulate cortex (areas 

24a’/24b’)   (Vogt et al., 1995) - is sensitive to processing information about 

rewards for other people, including probabilistic predictions about rewards that 

others are likely to receive (Apps, Lockwood, et al., 2013). Several lines of 

evidence support this model. First, there are neurons in the ACCg that respond 

when a monkey views cues that indicate that another monkey will receive a 

reward (Chang et al., 2013), and in the dACC that respond when monkeys 

predict the decisions of a conspecific in an economic game (Haroush & 

Williams, 2015). Second, lesions to the ACCg reduce the value assigned to 

social stimuli, leaving the processing of non-social stimuli intact (Rudebeck et 

al., 2006). Third, hemodynamic responses in this region vary with the net-value 

of rewards received by others, the volatility of social information, predictions 

about  the  value  of  others’  actions  and  predictions  of  social  approval  from  others  
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(Apps & Ramnani, 2014; Behrens et al., 2008; Boorman et al., 2013; Jones et 

al., 2011). Taken together, these studies point to a central role for the ACCg in 

processing information  about   others’   rewards.  Yet,   a   key  untested  hypothesis  

from this model is that the ACCg is engaged when predictions are made about 

the probability of another person receiving a reward. Therefore the first aim of 

this chapter was to test this hypothesis. 

A second hypothesis derived from this model is that individual differences in 

social functioning, specifically empathy, vary with the extent to which ACCg is 

specialised  for  processing  others’  rewards.  Empathy  can  be  broadly  defined  as  

the capacity to understand and resonate with the experiences of others (Singer 

and Lamm, 2009). Empirical and theoretical accounts have suggested that the 

ACC is involved in empathising (Engen & Singer, 2013; Lamm et al., 2011), but 

prior work has largely focused on response  of  this  region  to  processing  others’  

pain and other negative outcomes (reviewed in Lamm et al., 2011), rather than 

positive, rewarding outcomes. The propensity to feel empathy varies 

substantially between individuals (Bird & Viding, 2014; Blair, 2005; Chapter 2) 

but the mechanisms that underpin individual differences in vicariously 

processing   another’s   rewards   are   still relatively poorly understood. Therefore 

the second aim of this chapter was to test the hypothesis that the extent to 

which the ACCg is specialised   for   processing   others’   rewards   is   positively  

associated with trait empathy. 

 

5.2. Materials and method 

 

5.2.1. Participants 

 

Thirty-two right-handed healthy males (age 19-32, M=22.7 SD=3.0) were 

recruited through university participant databases. Exclusion criteria included 

previous or current neurological or psychiatric disorder, non-normal or non-
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corrected to normal vision, non-native English language and previous or current 

study of psychology. This latter criterion was employed due to concerns that 

prior  experience  of  studying  psychology  could  compromise  participants’  belief  in  

the deception used in the protocol. Two participants were excluded from the 

analysis (one due to excessive motion (> 10% of scans) and one due to 

neurological abnormalities) leaving a final sample of 30. All participants gave 

written informed consent and the study was approved by the local departmental 

research ethics committee. 

 

5.2.2. Experimental task  

 

5.2.2.1. Design 

 

I examined the processing of cues that signalled the probability with which a 

first-person and a third-person would receive a reward. A 2 x 2 factorial design 

(agency (self vs. other) and probability (high 80% vs. low 20%)) was employed 

to examine activation time-locked to the cues (see figure 1).  

On each trial during the experiment participants saw cues that indicated the 

probability with which they (first-person,  or   ‘self’)  or  the  other  participant  (third-

person,  or  ‘other’)  were  likely  to  win  points.  These  cues  were  represented  as  pie  

charts in order to depict the level of probability explicitly and minimise any 

requirements  for  reward  learning  across  the  task.  The  cues  for  ‘self’  and  ‘other’  

differed  in  colour  but  were  luminance  matched.  ‘Self’  cues  had  the  word  ‘YOU’  

written  above  them  whilst   ‘other’  cues  had  the  name  of  the other participant (a 

confederate) written above them. This ensured that participants were explicitly 

aware of whether the cues predicted outcomes for themselves or for the other 

participant.  

Following the cue an outcome was presented. To ensure attention to the cues, 

participants indicated (at the time of the outcome) whether the outcome was 
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expected or not with a button press. I specifically investigated passively 

delivered rather than instrumentally obtained rewards so that any activation 

differences between self and other trials could not be related to differences in 

motor preparation (i.e. for example, an action on a self trial but no action on 

another trial).  

Prior to scanning participants completed a practice version of the task during 

which they received feedback as to whether their judgements (expected or 

unexpected) were correct. During scanning, however, participants were 

instructed that they would not receive feedback on their judgements but that 

they should respond as quickly and accurately as possible to the judgement.  

There were 100 trials in total, 50 self trials and 50 other trials presented in a 

pseudo-random order, with no more than 3 trials in a row of self or other cues. 

The 50 self trials consisted of 25 trials of high probability first-person cues and 

25 trials of low probability first-person cues. Similarly, the 50 other trials 

consisted of 25 high probability third-person cues and 25 low probability first-

person cues. For both self and other conditions, 20 outcomes were an expected 

win, 20 outcomes were an expected no win, 5 outcomes were an unexpected 

win and 5 outcomes were an unexpected no win (equivalent to 80%/20% 

probability).  

 

5.2.2.2. Trial structure 

 

Each trial began with a cue that signalled the probability of reward (80%/20%) 

and agent (self/other) for 800 ms (see Figure 1A). After a jittered delay (2500-

6000 ms) participants observed an outcome (win 100 points/win 0 points) (800 

ms) followed by a variable fixation (2000-4000 ms). Participants were then 

presented  with  the  options  ‘YES’  ‘NO’  where  they  were  required  to  press  one  of  

two buttons to indicate whether the outcome was expected or not. The side of 

the screen that these options were presented on was counterbalanced so that 

participants could not form a representation of a specific motor command at any 
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point during a trial. Participants had 1500 ms to indicate their option, or the 

word   ‘MISSED’   appeared   in   red   on   the   screen.   This   was   then   followed   by   a 

fixation cross (1000-2000 ms). 

 

5.2.3. Procedure 

 

Participants were paired with one of two age-matched confederates (who were 

also male), whom they believed were naïve participants and had never met 

prior to the experiment. The participant and the confederate were instructed 

together that they could earn extra payment, based on the outcomes they 

received during the experimental task (see below); but in fact all participants 

were paid the same amount (total £30, representing an additional £7 to the 

standard participant payment for the required time commitment). They also 

believed that the confederate participant could earn an extra payment in the 

same manner during the task. A set of standardised questions completed after 

the scan confirmed that no participant had become suspicious about the 

deception during the experiment.  

Participants attended two sessions. The first session was attended only by the 

experimental participant without a confederate and involved practicing the 

experimental task and completing questionnaires. In the first session, attended 

only by the experimental participant, the   “other”   participant   was   described   as  

‘Player  2’  and  the  experimental  participant  was   instructed   that   in   the  scanning  

session this name would be replaced by the name of the other participant. 

Participants were instructed that during the practice session the points would 

not be converted into any money either for themselves or the other person but 

that when they attended the scanning session these points would be converted 

into additional payment for themselves and the other participant. The second 

session (<7 days later) was attended by both the experimental participant and 

the confederate. During this session the experimental participant performed the 

task whilst inside the MRI scanner. The experimental participant was under the 

impression that the confederate performed the same task, simultaneously. The 
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confederate was seated in the adjacent MRI control room to maintain this 

impression. The participants were instructed that regardless of whether the 

cues and outcomes were for themselves or for the other person, that they 

should perform the same judgment task to indicate whether the outcome was 

expected or not.  Moreover, participants were not instructed to the specific 

payoff matrix, which was in fact equal. This was done to ensure participants 

remained motivated to attend to the cues and outcomes.  

 

 

 

After the scanning session, participants rated how positive they felt when 

observing themselves or the other person winning on a 9 point scale ranging 

Figure 5.1. (A) Trial structure for vicarious reward prediction task. (B) 
behavioural correlation. 
 
 

Notes: (A) Participants performed trials that began with a cue signalling the 
probability of reward (high [80%] or low [20%]) and the agent to whom reward 
would be delivered (self - ‘YOU’;;  or  other  - ‘LEWIS’  in  this  example).  Participants  
judged whether the outcome (win 100 points or win 0 points) was expected or 
unexpected after outcome delivery. Participants believed that the other 
participant outside of the scanner was simultaneously performing the same task 
and that the points they observed would be converted into additional payment at 
the end of the experiment for themselves and for the other participant. (B) 
Scatterplot showing association between self-other RT difference at the time of 
the judgement and trait emotion contagion (n=30). Overall, participants were 
slower when making judgments about the expectedness of outcomes for other 
compared to self. However, this effect was associated with emotion contagion 
such that those highest in emotion contagion showed a relative speeding of 
response for other. 
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from  “not  at  all”  to  “very  positive”.  One-sample t-tests showed that for both self 

and other, participants felt significantly more positive than neutral when seeing 

win outcomes compared to no win outcomes (Other win t(29)=2.1, p<.05, 

M=5.4, SD=.1.04, Self win t(29)=5.3 p<.001, M=6.4, SD=1.43). 

 

5.2.4. Questionnaire measures 

 

Participants completed a measure of empathy, the Questionnaire of Cognitive 

and Affective Empathy (QCAE; Reniers et al., 2011). As outlined in the 

introduction, the QCAE is a multidimensional instrument devised to measure 

five key components of empathy. In the development of the QCAE, two raters 

selected items from other well-validated and commonly used empathy 

measures if they were deemed to measure empathy (see items below). Items 

deemed to measure other processes (e.g. sympathy) were not included. The 

five subscales comprising the QCAE are: perspective-taking  (e.g.   ‘‘I can easily 

tell if someone else wants to enter a conversation.’’);;   online   simulation   (e.g.  

‘‘Before  criticizing  somebody,   I   try   to   imagine  how  I  would  feel   if   I  was   in   their  

place.’’);;  emotion  contagion  (e.g.  ‘‘I am happy when I am with a cheerful group 

and sad when the others are glum.’’);;  peripheral   responsivity   (e.g.   ‘‘I often get 

deeply involved with the feelings of a character in a film, play, or novel.’’);;  and  

proximal responsivity   (e.g.   ‘‘I   often   get   emotionally   involved   with   my   friends’  

problems’’).   Items   are   rated   on   a   four-point   scale   from   ‘‘strongly   disagree’’   to  

‘‘strongly   agree’’.   The   QCAE   has   good   construct   validity   and   internal  

consistency (Reniers et al., 2011). 

 

5.2.5. Statistical analysis of behavioural data 

 

Behavioural analyses were performed in SPSS 22 (Armonk, New York: IBM 

Corp). An agency (self vs. other) by reward (win vs. no win) analysis of variance 
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(ANOVA) was used to examine reaction time (RT) differences to outcome 

judgments. I did not examine the agency (self vs. other) by expectedness 

(expected vs. unexpected) interaction due to the low number of unexpected 

outcomes in this design (<10 valid trials per subject). Relationships between 

behavioural performance and empathy were assessed using bivariate 

correlations. I adopted an alpha level of 0.05, and a power analysis indicated 

that I had  ~80%  power  to  detect  an  effect  size  of  Cohen’s  d=0.50. 

 

5.3. Functional neuroimaging data collection and analysis 

 

5.3.1. fMRI data acquisition 

 

A Siemens Avanto 1.5-T MRI scanner was used to acquire a 5.5-minute 3-

dimensional T1-weighted structural scan and 424 multislice T2*-weighted echo 

planar volumes with blood oxygenation-level–dependent (BOLD) contrast. The 

structural scan was acquired using a magnetization prepared rapid gradient 

echo (MPRAGE) sequence. Imaging parameters were: 176 slices; slice 

thickness=1 mm; gap between slices=0.5 mm; TR=2730 ms; TE=3.57 ms; field 

of view=256 mm x 256mm2; matrix size=256 x 256; voxel size=1×1×1 mm 

resolution. The EPI sequence was acquired in an ascending manner, at an 

oblique  angle  (≈30˚)  to  the  AC-PC line to decrease the impact of susceptibility 

artefact in the orbitofrontal cortex (Bird & Viding, 2014; Blair, 2005)with the 

following acquisition parameters: 424 T2*-weighted echo planar volumes, 35 

2mm slices, 1 mm slice gap; echo time=50 ms; repetition time=2975 ms; flip 

angle=90°; field of view=192 mm; matrix size=64x64. 

 

5.3.2. fMRI data analysis 
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Imaging data were analysed using SPM8 (www.fil.ion.ucl.ac.uk/spm). Data pre-

processing followed a standard sequence. The first four volumes were 

discarded to allow for T1 equilibration effects and last volume was discarded as 

the experimental task ended one volume before the end of the scanning 

sequence. Images were then realigned and co-registered   to   the   participant’s  

own anatomical image. The anatomical image was processed using a unified 

segmentation procedure combining segmentation, bias correction, and spatial 

normalization to the Montreal Neurological  Institute  (MNI)  template  using  SPM’s  

New Segment procedure (Ashburner & Friston, 2005); the same normalization 

parameters were then used to normalize the EPI images. The images were 

resampled to a voxel size of 1.5 x 1.5 x 1.5 mm. Finally, a Gaussian kernel of 8 

mm full-width at half-maximum was applied to spatially smooth the images. 

Before the study, first-level design matrices were examined to ensure that 

estimable GLMs could be performed with independence between all regressors, 

with correlation coefficients of r <0.25. 

 

5.3.3. First-level analysis 

 

Nine (in some subjects ten) event types were used to construct regressors in 

which event onsets were convolved with the synthetic canonical haemodynamic 

response function in SPM, and associated responses were estimated in the 

context of the general linear model. Each of the four conditions (self high 

probability, self low probability, other high probability, other low probability) at 

the time of the cue and at the time of the outcome were modelled as separate 

regressors for correct responses. The onset of the judgement was also 

modelled, in a single regressor across all event types. An additional regressor 

modelled trials where the judgement was missed or participants made an error. 

For those participants where head motion caused visible image corruption in 

particular scans an extra regressor was included. These images were removed 

and replaced with an image created by interpolating the two adjacent images in 

order to prevent distortion of the between-subjects mask (four participants, in 

http://www.fil.ion.ucl.ac.uk/spm
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each accounting for <1% of the total fMRI data). The residual effects of head 

motion were also modelled as covariates of no interest in the analysis by 

including the six head motion parameters estimated during realignment. Data 

were high-pass filtered at 128 s to remove low-frequency drifts, and the 

statistical model included an AR(1) autoregressive function to account for 

autocorrelations intrinsic to the fMRI time-series. Contrast images were 

computed to examine the interaction (agency x probability), and main effects of 

agency (self > other and other > self) and probability (high> low and low> high) 

at the time of the cue. 

Many studies have suggested that situations which involve mixed pay-offs 

between study participants and other people can result in neural responses that 

reflect payoff differences between self and other, i.e. they relate to coding of 

rewards   for   self   relative   for   other,   often   called   ‘inequity   aversion’   rather   than  

‘vicarious’  reward  responses  (see  Ruff  &  Fehr,  2014  and Rilling & Sanfey, 2011 

for reviews). To examine whether identified neural responses in the current 

study to reward predicting cues were reflective of coding of rewards for self 

relative to other, and thus inequity aversion, I constructed a second model that 

was the same as the main model but contained all cues collapsed into a single  

regressor. This regressor had two associated parametric modulators. The first 

coded   the   “inequity”   - the difference in accumulated reward between self and 

other on each trial - and the second coded the agent x probability interaction. 

This allowed us to examine (1) neural responses to inequity and (2) whether 

any neural responses occurred over and above the variance explained by 

inequity. 

 

5.3.4. Second-level analysis 

 

Second-level analysis was performed using the standard summary statistics 

approach to random effects analysis in SPM. Contrast images were input into 

second-level one-sample t-test design matrices. Interactions and main effects 

are reported at p < .05, family-wise error (FWE) corrected at the voxel level 
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across the whole brain. Where significant interactions were identified, I 

conducted illustrative post-hoc analyses with simple main effects contrasts 

using a less conservative statistical threshold of p < .001 (uncorrected). 

 

5.4. Results 

 

5.4.1. Behavioural data 

 

Participants were highly accurate in their judgments of whether the outcome 

was expected or not (mean accuracy >91% for all participants for both trial 

types) and missed very few trials (mean <1% for all participants). For mean 

RTs, a 2 (self vs. other) by 2 (win vs. no win) ANOVA showed significantly 

slower judgments on third-person (M=664 ms, SD=18) than on first-person 

(M=649 ms, SD=16) trials (main effect of agency: F (1,29) = 5.32, p = .03). 

Judgments were also significantly faster after reward (641ms, SD = 16) 

compared to a no reward (672ms, SD=19) outcomes (main effect of outcome F 

(1,29) = 14.34, p = .001). The agency x reward interaction was non-significant 

(F (1,29) = .05, p = .83).  

Given the significant main effect of agency, I calculated the difference score 

between self and other RTs to examine associations between this behavioural 

measure and empathy. The emotion contagion subscale of the QCAE was 

positively associated with the self–other difference score (r = .49, p < .01), i.e. 

participants higher in emotion contagion showed a relative facilitation 

(speeding) when making decisions about the expectedness of outcomes for 

other people (Figure 1, Panel B). No other subscale of the QCAE correlated 

with the self-other difference score (all ps > .49). Multiple regression including 

all QCAE subscales showed that the association between the self-other 

difference score and self-reported empathy was specific to the emotion 

contagion subscale (β = .55, SEM = 2.43, p < .01). 
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5.4.2. fMRI data: agency x probability interaction at time of the cue  

 

To test the first hypothesis, that activity in the ACCg would signal information 

about reward probability for others, I examined the agency x probability 

interaction at the time of the cue. In line with this hypothesis, this analysis 

revealed a significant effect in the ACCg (MNI coordinates [x=8, y=32, z=12], Z 

= 5.05, k=10, p < .05  FWE,  whole  brain  corrected),  putatively  in  area  24a’/24b’  

at the border of the midcingulate and anterior cingulate sub-regions (Figure 
5.2). I examined the nature of this interaction by testing the simple main effects, 

specifically the contrasts of other high vs. low probability and self low vs. high 

probability. Inspection of the other high vs. low probability simple main effect 

revealed a large cluster in the ACCg overlapping with the region identified in the 

interaction (MNI coordinates [x=6, y=33, z=12], Z = 4.14, k=184, p < .001 

(uncorrected)). Inspection of the self low vs. high probability contrast revealed a 

small cluster of overlapping voxels (MNI coordinates [x=9, y=32, z=13], Z = 

3.28, k=5, p < .001 (uncorrected)). This suggests that the ACCg activation 

identified in the interaction mainly signals the probability of rewards that would 

be received by another person.  
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Notes: Activation in the ACCg (A, C-left) signaled the agency (self vs. other) by 
probability (high [80%] or low [20%]) interaction at the time of the cue [x=8, y=32, 
z=12], displayed at p <. 001 (uncorrected). (B) Parameter estimates for the peak 
voxel in the ACCg. (C) Left: overlay of the agency x probability interaction in 
ACCg (yellow, as in A). Middle: only a small number of voxels overlapped 
between the interaction contrast (yellow) and the simple main effect of self low 
vs. high probability (blue, k=5 at p<.001 uncorrected). Right: a large number of 
voxels overlapped between the interaction contrast (yellow) and the simple main 
effect of other high>low probability (green, k=184 at p<.001 uncorrected). Error 
bars indicate SEM. 

Figure 5.2. Interactions and main effects in ACCg. 
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5.4.3. fMRI data: associations with trait empathy 

 

To test the second hypothesis, that the extent to which ACCg responds to the 

probability of rewards specifically for others would be positively associated with 

trait empathy, I used MarsBaR (Brett, Anton, Valabregue, & Poline, 2002) to 

extract individual interaction contrast estimates (other high vs. low probability 

minus self high vs. low probability) from the ACCg cluster identified above, and 

correlated   these   with   participants’   self-reported empathy on the five QCAE 

subscales. Emotion contagion was significantly negatively associated with the 

ACCg interaction contrast estimate (r = -.45, p = .01, all other subscales p > 

.58) and multiple regression including all QCAE subscales showed that this 

effect was specific to emotion contagion (β = -.60, SEM = .062, p = .003, all 

other subscales ps>.15) (Figure 5.3). In other words, the interaction was 

weakest in individuals high in emotion contagion.  

To better understand the nature of this association, I examined the correlations 

for other high vs. low probability and self low vs. high probability in ACCg with 

empathy subscales (see Figure 5.3). There was no significant correlation 

between ACCg response to other high vs. low probability (r = -.05, p = .81) and 

empathy. However, there was a significant negative association between ACCg 

response to self low vs. high probability and emotion contagion (r = -.58, p < 

.001) and these correlations were significantly different from one another (Z=-

2.0, p<.05); again, multiple regression demonstrated that this effect was unique 

to emotion contagion (β = -.66 SEM = .082, p < .001, all other subscales ps > 

.19). In other words, the extent to which ACCg distinguished between low and 

high reward probability for self was attenuated in individuals with high emotion 

contagion.  

In summary, in individuals with high emotion contagion, the ACCg signalled 

information about the relative difference between high and low probability 

rewards only for others; whilst in individuals with low emotion contagion the 

ACCg additionally signalled (negatively) reward probability for self. 
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Notes: (A) Significant association between the cluster in the ACCg showing 
the   interaction   effect   and   participants’   emotion   contagion   scores.   (B) 
Response to self low > high probability decreases as a function of emotion 
contagion, with those lowest in emotion contagion showing the greatest 
response to low>high probability of reward for self. (C) Response to other high 
> low probability shows no significant modulation as a function of emotion 
contagion. 

Figure 5.3. Correlations with significant interaction effect in ACCg. 
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5.4.4. fMRI data: main effects at the time of the cue 

 

The temporal pole showed a significant main effect of other > self (MNI 

coordinates [33, 22, -26]; z = 4. 85; k = 2, p < .05, FWE whole brain corrected).  

No other main effects or interactions survived whole-brain correction for multiple 

comparisons. I provide uncorrected tables thresholded at p < .001 k=10 for 

completeness (Appendix 3). I note that these results should be interpreted with 

caution given that they do not survive correction for multiple comparisons. 

 

5.4.5. fMRI data: agency x outcome interaction and main effects at the 

time of the outcome 

 

No interactions or main-effects survived whole brain-correction for multiple 

comparisons. I provide uncorrected tables thresholded at p < .001 k = 10 

(Appendix 4) for completeness. I note that these results should be interpreted 

with caution given that they do not survive correction for multiple comparisons. 

 

5.4.6. fMRI data: analysis of inequity aversion 

 

Analysis of the inequity parametric modulator showed no whole brain corrected 

results and no uncorrected results in ACCg. I then tested whether the observed 

effects in the ACCg occurred over and above any effects of inequity. This 

analysis showed that there was still a significant effect in the ACCg after 

accounting for the variance explained by inequity (MNI coordinates [x=6, y=32, 

z=13], Z= 4.97, k = 8, p < .05 FWE, whole brain corrected). Consequently, the 

ACCg response was unlikely to reflect differences in accumulated reward 

between self and other.  
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5.5. Discussion 

 

I examined haemodynamic responses in the human brain to cues that predicted 

a high or low probability of a reward for oneself or another person. I show that 

the ACCg robustly signals the probability of rewards for another person. This 

supports the hypothesis that the ACCg is engaged when processing predictions 

about rewards for other people. My second hypothesis that that the extent to 

which   the   ACCg   is   specialised   for   processing   others’   rewards   is   positively 

associated with trait empathy was partially supported. As predicted the 

interaction effect in the ACCg significantly co-varied with emotion contagion. 

However, this effect was driven by the extent to which ACCg signalled reward 

predictions for self, not other. Specifically, for those high in emotion contagion 

the ACCg signalled reward prediction exclusively for others, whilst for those low 

in emotion contagion this same region signalled reward prediction for self (in the 

opposite direction).  

The model of the contributions of ACCg to social cognition (Apps, Lockwood, et 

al., 2013) highlights that this region plays an important role in understanding the 

value  of  others’  rewards,  and  consequently  in  social  behaviour  (Apps, Green, et 

al., 2013; Apps & Ramnani, 2014; Boorman et al., 2013; Chang et al., 2013; 

Jones et al., 2011; Rudebeck et al., 2006). This claim is built upon several lines 

of evidence. Lesions to this region have been shown to impair the processing of 

social stimuli and cause a reduction in the execution of social behaviours 

(Rudebeck et al., 2006). The ACCg is connected to regions that process social 

information, but also, to regions that process reward-related information (Haber 

et al., 1995; Lynd-Balta & Haber, 1994; Yeterian & Pandya, 1991). Single-unit 

recording evidence suggests that a relatively large proportion of ACCg neurons, 

compared to those in other prefrontal regions, respond when a monkey 

anticipates the delivery of reward to another monkey (Chang et al., 2013), and 

human imaging studies have shown that the ACCg responds when tracking the 

value of cues predicting approval from peers (Jones et al., 2011). Taken 

together these studies support the claim that the ACCg is important for 

processing   others’   rewards   and   also   in   social behaviour. However, a key 
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untested component of this model was that the ACCg would be engaged when 

processing the likelihood of rewards being delivered to others. I show for the 

first  time  that  the  ACCg  signals  the  likelihood  of  others’  rewards,  regardless of 

trait levels empathy. I also note that I did not observe responses to reward 

prediction in other candidate regions for reward signals, even at uncorrected 

levels (e.g. ventral striatum, ventromedial prefrontal cortex and amygdala, see 

Morelli et al., 2015 for a meta-analysis), supporting some degree of specificity of 

ACCg response to vicarious rewards in this study.  

The experimental paradigm was designed to ensure participants attended to 

reward cues. By asking participants to make a decision at the time of the 

outcome I cannot purely assess whether outcome related responses are also 

coded in ACCg, as participants were both processing the outcome and 

preparing a motor response during this time. However, there is evidence that 

vicarious prediction error signals may well be coded in ACCg (e.g. Apps et al., 

2013; 2015). I provide the first evidence that this same region also encodes the 

likelihood of others receiving rewards.  

Whilst previous studies have suggested the ACCg plays an important role in 

empathy (Lamm et al., 2011; Engen & Singer, 2013) these studies have largely 

focused   on   neural   responses   to   others’   pain.   These data suggest that the 

degree  of  specialisation   in   this   region’s   response   to  others’  predicted   rewards  

may partly underlie individual differences in emotion contagion. Emotion 

contagion is hypothesised to be a necessary foundation for empathising with 

other individuals (e.g. Bird and Viding, 2014) and is a process that is shared 

with non-human animals (reviewed in (De Waal, 2008). Importantly, emotion 

contagion also covaried with RTs to decisions about rewards delivered to 

others, with those highest in trait emotion contagion showing the greatest 

speeding  of  response.  A  distinction  is  often  made  between  ‘affective  empathy’,  

commonly understood as an affective state caused by vicariously processing 

the  experiences  of  another  person,  and  ‘cognitive  empathy’  which  is  thought  to  

include processes such as perspective-taking and theory of mind (Singer & 

Lamm, 2009). Regression analyses suggested that only emotion contagion, 

part   of   the   ‘affective’   component,   was   associated   with   vicarious   reward  

prediction. In tasks investigating cognitive aspects of empathy an anatomically 
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separate region of the medial prefrontal cortex (mPFC), the dorsal mPFC is 

often responsive (e.g. Amodio & Frith, 2006; Frith & Frith, 2006), suggesting 

partially separate functions of ACCg and mPFC.  

Although I did not predict an association between emotion contagion and ACCg 

response to self reward prediction, a possible explanation relates to the findings 

of Chang et al., (2013) and Haroush and Williams (2015). These authors 

observed   some   ‘self-reward’   selective   neurons   in   the   same   region   of   the  

ACCg/dACC   that   also   contained   ‘other-reward’   selective   neurons,   suggesting  

that some processing of information about rewards for self occurs in ACCg. 

However, given the limited sample sizes in non-human primate studies these 

authors were unable to examine variability in the proportion of neurons that 

signalled self vs. other reward. I speculate that even if at the population level 

the ACCg shows a relative specialisation in processing rewards for others, 

individual variability in the degree to which self rewards are also processed in 

this region could be important for explaining heterogeneity in ACCg function 

and empathy. That is, for those individuals who display the lowest levels of 

emotion contagion, there appears to be reduced specialisation and a potentially 

opposing coding scheme of self and other reward probability in ACCg. Such 

opposing coding within the same anatomical region could have consequences 

for understanding social cognition and behaviour, such as increased weighting 

of rewards to self and higher likelihood of engaging in competitive social 

interactions.  

This interpretation is supported by a recent study, which found that stimulation 

of dACC neurons made monkeys more competitive (Haroush and Williams, 

2015). Similarly, another study showed that single neurons in a region of the rat 

cingulate cortex thought to be homologous with human dACC, coded the value 

of competing with another rat for rewards (Hillman & Bilkey, 2012). These 

findings may help reconcile previous discrepancies in the functions that have 

been imputed to dACC in terms of competitive social behaviours (Hillman & 

Bilkey, 2012; Haroush & Williams, 2015) but also empathy (Lamm et al., 2011; 

Engen & Singer, 2013). I propose that variability in empathy may modulate not 

only the extent to which social information is processed in ACCg, as suggested 

in previous studies and theoretical accounts of empathy (e.g. Lamm et al., 
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2011; Engen & Singer, 2013), but also the extent to which self as well as other 

reward information is computed. However, this hypothesis requires further 

testing in future experiments. 

Empathic abilities are a fundamental building block for successful social 

behaviour and are at the core of many disorders of social cognition, including 

autism and psychopathy (Blair, 2005; Bird & Viding, 2014; Chapter 2). Previous 

studies have suggested that a similar portion of the dACC that was activated in 

this study is anatomically and functionally atypical in individuals with 

psychopathy and in individuals with autism (e.g. (Anderson & Kiehl, 2012; Brazil 

et   al.,   2011;;   Delmonte,   Gallagher,   O’Hanlon,   McGrath,   &   Balsters, 2013; 

Simms, Kemper, Timbie, Bauman, & Blatt, 2009).  

Integrating these previous findings with the present results suggests the 

hypothesis that individual differences in the structure, function and connectivity 

of the ACCg constrain the extent to which this region processes reward 

predicting cues for others compared to self, which may lead to atypical 

empathic processing. However, individuals with psychopathy and autism have 

different profiles of empathic processing and behaviour from one another (Blair, 

2005; Bird and Viding, 2014; Chapter 2). The ACCg has strong connections to 

other regions involved in social and reward processing including the nucleus 

accumbens (Anderson & Kiehl, 2012; Brazil et al., 2011; Delmonte, Gallagher, 

O’Hanlon,   McGrath,   &   Balsters,   2013;;   Simms,   Kemper,   Timbie,   Bauman,   &  

Blatt, 2009), a region also suggested to participate in vicarious reward 

processing (Braams et al., 2014; Fareri, Niznikiewicz, Lee, & Delgado, 2012; 

Mobbs et al., 2009), the temporal poles (which showed greater response to 

other vs. self reward prediction in this study), the temporo-parietal junction and 

paracingulate cortex (Barbas, Ghashghaei, Dombrowski, & Rempel-Clower, 

1999; Markowitsch, Emmans, Irle, Streicher, & Preilowski, 1985; Seltzer & 

Pandya, 1989). Future research into the neurocognitive correlates of 

psychopathy and autism should examine whether distinct social behavioural 

abnormalities can be characterised by differences in the functional and 

connectional fingerprint of the ACCg during vicarious reward processing. 
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5.6. Conclusions 

 

In summary, I demonstrate a central role for the ACCg in processing predictions 

about   the   likelihood   of   others’   rewards.   I also found substantial individual 

variation in the degree to which the ACCg responds to self and other reward, 

with only those highest in trait emotion contagion showing specialisation of 

ACCg for others predicted reward. Taken together, these findings highlight the 

importance of understanding the contributions of the ACCg to social cognition 

and how variability in its function may underlie variability in social behaviour.  

In the final empirical chapter, I present a study that examines vicarious 

decision-making, and combines computational modelling of behaviour, an 

assessment of trait empathy and fMRI to examine the neural and behavioural 

mechanisms that link empathy to prosocial behaviour.   
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 Chapter background CHAPTER 6:

 

In the last chapter, Chapter 5, I examined neural responses to vicarious reward 

and their modulation by individual differences in empathy. In the current chapter 

I aim to identify the behavioural and neural mechanisms that could link empathy 

to prosocial behaviour.  

 

Representing and vicariously processing rewards that others receive following 

our choices is likely to be of central importance when humans learn to be 

prosocial. In reinforcement learning (RL) theory, a prediction error (PEs) – the 

difference between and expected and actual outcome as a choice – is the key 

computation that drives learning. Many studies have highlighted RL 

mechanisms as crucial for learning across species. We can apply this same 

framework to understand how we make prosocial choices, where we learn 

about rewards that others receive following our choices.  

 

In this Chapter I used RL theory as a model to try to understand prosocial 

behaviour and combined computational modelling of behaviour with 

neuroimaging and a trait measure of empathy. Participants (n=31) performed a 

reinforcement learning based task in which they were required to learn the 

probability that each of two stimuli would be rewarded (high probability vs. low 

probability). They performed this task for themselves (self reinforcement 

condition), for another participant (confederate, prosocial reinforcement 

condition) or for no one (no reinforcement, control condition). Using a RL 

algorithm, I was able to model differences in the learning rates between these 

conditions and neural response to PEs in key neural regions associated with 

social decisions and/or social PEs in previous studies, ventral striatum, sgACC, 

ACCg, OFC and DLPFC. Individuals higher in empathy may be more likely to 

engage in prosocial behaviours (Eisenberg, Eggum, & Di Giunta, 2010; 

Hoffman, 2008; Chapter 3). Thus, I also examined how individual differences in 

empathy modulated prosocial learning behaviour and neural response to 

identify mechanisms linking empathy to prosocial behaviour. 
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6.1. Introduction 

 

Humans have a remarkable capacity to engage in prosocial behaviours, even 

with genetically unrelated individuals (Fehr & Fischbacher, 2003, 2004). People 

routinely participate in charitable donation and exhibit social preferences, which 

are influenced by concern for the welfare of others (Fehr & Camerer, 2007). 

Empathy, the capacity to vicariously experience and to understand the affect of 

other people (Bird & Viding, 2014; Decety & Jackson, 2004; Eisenberg, 2000; 

Hoffman, 2001; Singer & Lamm, 2009) is suggested to be an important 

facilitator of such behaviours (Eisenberg, Eggum, & Di Giunta, 2010; Hoffman, 

2008; Chapter 3), yet the mechanisms linking empathy to prosocial behaviour 

are not yet fully understood.  

 

The behavioural and neural basis of prosocial behaviours have often been 

investigated in the context of economic decision-making tasks, such as the 

ultimatum game and dictator game, in tasks of moral decision-making where 

participants read and judge the permissibility of moral scenarios, or where they 

are asked to make decisions to donate to charity (see Rilling & Sanfey, 2011, 

Ruff & Fehr, 2014 and Moll & Schulikin, 2009 for recent reviews). In general, 

these paradigms have shown that a distributed set of neural regions, including 

the ventral striatum, subgenual cingulate cortex (sgACC), orbitofrontal cortex 

(OFC) and dorsolateral prefrontal cortex (DLPFC) respond in the context of 

making social decisions (Rilling & Sanfey, 2011; Ruff & Fehr, 2014; Moll & 

Schulikin, 2009).  

 

A separate line of research has applied reinforcement learning models of 

reward guided behaviour, to understand decision-making motivated by self and 

social preferences. In these models, the prediction error (PE) – the difference 

between a predicted and actual outcome of a choice – act as a key signal to 

drive learning (Sutton & Barto, 1998). Many animal studies have identified 

neurons   that   signal   PEs   when   the   outcomes   of   one’s   own   actions   have  

unexpected consequences for oneself (Rushworth, Mars, & Summerfield, 

2009). However, we can apply this same framework to understand prosocial 
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learning behaviour – where we makes decisions that have consequences for 

another person and learn from outcomes that others receive following our 

choices.  

 

Using RL theory as a model to understand prosocial behaviour provides an 

important compliment to economic games and moral scenarios. Such models 

contain   parameters   that   track   people’s   learning   over   time   in   both   social   and  

nonsocial  contexts,  which  can  be  sensitive  in  predicting  people’s  future  choices.  

In functional magnetic resonance imaging (fMRI), these models allow us to 

examine neural responses parametrically rather than relying on subtraction 

based designs, which average over trials. Hypotheses can be formulated not 

only about the function of specific brain regions, but also about the 

computational mechanisms they may underpin. Finally RL theory has been 

shown to characterise learning in many different contexts and across different 

species (Behrens et al., 2009).  

 

In one of the first paradigms to examine self and social PE signalling, prediction 

errors were evoked by unexpectedly changing the outcome of a decision to 

donate to charity to be either for the participant themselves or for the charity 

(Harbaugh et al., 2007). The authors found PE signals in the ventral striatum 

that responded to rewards for the participant themselves but also for a charity 

(Harbaugh et al., 2007). Recently, it was shown the ventral striatum signalled 

PEs when learning to obtain points to reduce the amount of noise another 

participant will experience, as well as noise to be experienced by oneself (Sul et 

al., 2015). Social PE and reward signals have also been found to covary with 

learning   about   reward   outcomes   by   observing   another   person’s   actions   and  

their outcomes, identified in DLPFC and VMPFC (Burke et al., 2013), in the 

gyral portion of the ACC (ACCg) when learning about the volatility of social 

advice (Behrens et al., 2008) and in the sgACC when making decisions to 

donate to charity vs. oneself (Moll et al., 2006).   

 

A key question that remains unanswered is whether these regions involved in 

decision-making contexts that involve other people (what Ruff & Fehr (2014) 

call   ‘socially-specific’   decision   making)   are   the   same   as   those   involved   in  



 

128 
 

decision-making   for   self   (what   Ruff   &   Fehr   (2014)   call   ‘non-social’   decision  

making) – i.e.  is  there  ‘common  currency’  of  PEs  that supports social and non-

social decision learning (Ruff & Fehr, 2014). There is support for both positions, 

with regions such as the ventral striatum observed to respond to both social and 

non-social PEs (e.g. Harbaugh et al., 2007; Sul et al., 2015) whilst regions such 

as   the  ACCg  and  sgACC  appear   to  code   for  others’   rewards  exclusively   (e.g.  

(Apps, Green, et al., 2013; Apps et al., 2015; Behrens et al., 2008; Moll et al., 

2006). In contrast, regions such as the OFC and the DLPFC respond in tasks 

whether there is a conflict between self and social preferences (e.g. (Lee, 2008; 

Sanfey, 2007), which suggests that these regions could differentially process 

self and prosocial reward. However, the tasks that have been used to study 

‘socially-specific’  and  ‘non-social’  decision  making  have  not  included  a  non-self 

reward  control  condition.  This  means  that  it  is  currently  unclear  whether  ‘social’  

PEs relate to social computations exclusively or reflect foregone/fictive rewards, 

i.e. rewards that are not delivered to oneself (Hayden et al., 2009; Lohrenz et 

al., 2007). Moreover, we know that there are large individual differences in 

people’s  motivation  for  prosocial  behaviour,  with  some  individuals  motivated  by  

selfish preferences and some by prosocial preferences (Sul et al., 2015). Such 

individual differences may be, in part, underpinned by variability in empathy 

(Eisenberg, Eggum, & Di Giunta, 2010; Hoffman, 2008; Chapter 3). Yet the 

mechanisms by which trait individual differences in empathy relate to 

differences in prosocial learning behaviour and neural response are still to be 

identified.  

 

In this study I used reinforcement learning theory as a model for understanding 

prosocial behaviour. I designed a novel prosocial reinforcement-learning (PRL) 

task where participants chose between one of two stimuli on each trial that were 

probabilistically associated with a reward outcome. One stimulus was always 

associated with a high probability (75%) of receiving a reward and the other with 

a low probability (25%). Participants were instructed that they would do the task 

under three different conditions where all outcomes would be received 1) by 

them (self reinforcement condition), 2) by another participant (confederate, 

prosocial reinforcement condition), or 3) by no one (no reinforcement, control 

condition). Using a RL algorithm, I was able to examine differences in the 
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learning rates between these conditions and neural response to PEs in key 

neural regions associated with social decisions and/or social PEs in previous 

studies, ventral striatum, sgACC, ACCg, OFC and DLPFC. There is evidence 

that empathy can modulate processing of social information, such that those 

who are higher in empathy may also be more likely to engage in prosocial 

behaviours (Eisenberg, Eggum, & Di Giunta, 2010; Hoffman, 2008; Chapter 3). 

Thus, I also examined how individual differences in empathy modulated 

prosocial learning behaviour and neural response to identify the mechanisms 

that link empathy to prosocial behaviour. 

 

6.2. Method 

 

6.2.1. Participants 

 

Thirty-four right-handed healthy males (age 19-32, M=22.7 SD=3.0) were 

recruited through university participant databases. Exclusion criteria included 

previous or current neurological or psychiatric disorder, non-normal or non-

corrected to normal vision, non-native English language and previous or current 

study of psychology. This latter criterion was employed due to concerns that 

prior  experience  of  studying  psychology  could  compromise  participants’  belief  in  

the deception used in the protocol. Three participants were excluded from the 

analysis (two due to performance below 50% in all learning conditions and one 

due to neurological abnormalities) leaving a final sample of 31. All participants 

gave written informed consent and the study was approved by the local 

departmental research ethics committee. 

 

6.2.2. Procedure 

 

Participants were paired with one of two age-matched confederates (who were 

also male), whom they believed were naïve participants and had never met 
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prior to the experiment. Participants attended two sessions. The first session 

was attended only by the experimental participant and involved practicing the 

experimental task and completing questionnaires. The second session (< 7 

days later) was attended by both the experimental participant and the 

confederate. The participant and confederate were taken together to the MRI 

centre and filled in consent forms together in the same room. The confederate 

was then led into a behavioural testing room and instructed to complete some 

questionnaires. The experimental participant was taken to the scanning room 

and reminded of the instructions for the task. They were told that they would 

view a pair of symbols on each trial and that they should select one of them. 

They would receive points for some of their choices that would be converted 

into money at the end of the experiment, such that the more points they 

received the more extra money they would earn. They were instructed that the 

two symbols would not be the same in terms of how often they gave points and 

with some symbols they were more likely to win points than other symbols. 

Whether the symbols appeared on the left or right did not affect their meaning.  

Finally, they were told that when they were playing for themselves they would 

receive any money they win.  

 

Crucially, when they were playing for the confederate, that participant would 

receive the money. When they were playing for no one the points they saw 

would not be converted into any additional payment either for themselves or the 

other participant. Importantly, they were told that the other participant was not 

aware that they were performing a task where they could earn extra money and 

that any money they won would be given to the other participant anonymously, 

that is, it would be placed in a sealed envelope and the two participants would 

leave the scanning centre at different times.  

 

Participants were instructed that they would receive extra payment based on 

the outcomes they received during the experimental task (see below); but in fact 

all participants were paid the same amount (total £30, representing an 

additional £7 to the standard participant payment for the required time 

commitment). They also believed that the confederate participant could earn an 

extra payment based on the choices the experimental participant made during 
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the task. A set of standardised questions completed after the scan confirmed 

that no participant had become suspicious about the deception during the 

experiment.  

 

6.2.3. Experimental task  

 

6.2.3.1. Design 

 

The aim of this experiment was to examine BOLD signal that scaled 

parametrically with the size of a PE at the time of an outcome delivered to self, 

other or no one. Participants performed a probabilistic reinforcement-learning 

task where they were required to learn the probability that each of two symbols 

would be rewarded. One symbol of each pair was associated with a high 

probability   (75%)  and  one  with  a   low  probability   (25%)  of   reward.   ‘Self’  blocks  

began  with  the  instruction  ‘Play  for  YOU’  and  had  the  word  ‘YOU’  written  above  

all choice symbols and  outcomes.  ‘Prosocial’  blocks  had  the  name  of  the  other  

participant written above them (the names of the confederate participants). No 

one   blocks   had   the   word   ‘NO   ONE’   written   above   elements   in   a   trial.   This  

ensured that participants were explicitly aware whether the decisions they made 

resulted in outcomes for themselves, for the other participant or for no one. 

 

Participants practiced one block (16 trials) of the task in a separate session ~7 

days before the scanning session to familiarise themselves with the 

experimental task. During this block they were instructed that the outcomes 

would not be converted into any payment. 

 

6.2.3.2. Trial structure 

 

The beginning of each block began with an instruction screen that indicated the 

agent the outcomes would be received by (self, other participant, no one) for 

2000ms (see Figure 6.1). This was followed by the presentation of two abstract 
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stimuli for 3000ms during which participants were required to select one of 

these. These stimuli were letters from the Agathodaimon font as in (Pessiglione, 

Seymour, Flandin, Dolan, & Frith, 2006).  If no response was indicated during 

this   time   the   words   ‘MISSED’   appeared   in   red   on   the   screen.   The   option  

participants selected was shown for 300ms, followed by a delay (2500ms) then 

by the outcome of their choice (win 100 points/win 0 points). A variable fixation 

(2000-4000ms) was shown after the outcome before the two symbols were 

presented again (see Figure 1, Panel A). The side of the screen that the two 

symbols were presented was counterbalanced so that participants could not 

perform action-based learning.  

 

There were 144 trials in total, 48 self, 48 other and 48 no one trials presented in 

three blocks of 16 trials. Each block began with a new pair of symbols to learn. 

Blocks were presented in pseudo-random order, with the same block type never 

presented twice in a row.  

 

6.2.3.3. Questionnaire measures 

 

Participants completed a measure of empathy, the Questionnaire of Cognitive 

and Affective Empathy (QCAE; Reniers et al., 2011). The five subscales 

comprising the QCAE are: perspective-taking  (e.g.  ‘‘I  can  easily  tell  if  someone  

else  wants  to  enter  a  conversation.’’);;  online  simulation  (e.g.   ‘‘Before  criticizing  

somebody,   I   try   to   imagine  how   I  would   feel   if   I  was   in   their  place.’’);;  emotion  

contagion  (e.g.  ‘‘I  am  happy  when  I  am  with  a  cheerful  group  and  sad  when  the  

others  are  glum.’’);;  peripheral  responsivity  (e.g.  ‘‘I  often  get  deeply  involved  with  

the  feelings  of  a  character  in  a  film,  play,  or  novel.’’);;  and  proximal  responsivity  

(e.g.   ‘‘I   often   get   emotionally   involved   with  my   friends’   problems’’).   Items   are  

rated on a four-point   scale   from   ‘‘strongly   disagree’’   to   ‘‘strongly   agree’’.   The  

QCAE has good construct validity and internal consistency (Reniers et al., 

2011). 
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6.2.3.4. Computational modelling of behavioural data.  

 

Learning behaviour in the self, other and no one conditions was modelled using 

a standard Rescorla-Wagner (R-W)-based reinforcement learning algorithm 

(Rescorla & Wagner, 1972), which has been extensively used to examine the 

behavioural and neural basis of arbitrary visuomotor associations in both self 

and social contexts (Brovelli, Laksiri, Nazarian, Meunier, & Boussaoud, 2008; 

Burke et al., 2010; Dayan & Balleine, 2002; Dayan & Daw, 2008; Schultz, 

2006). The R-W model assumes that the associative value of an action (or 

stimulus) changes once new information reveals that the actual outcome of a 

decision is different from the predicted outcome (Rescorla & Wagner, 1972). 

Thus, on each trial, an action has a predicted associative value that is updated 

by a PE signal when the outcome reveals that this prediction is erroneous. At 

their most simple, RL algorithms state that expectations of future reward (Qt+1) 

should be a function of current expectations (Qt) and their discrepancy from the 

actual outcome that is experienced—the prediction error (𝛿 ). These reward 

predictions are updated by the learning rate (𝛼):  

 

(1) RL model 

𝑄௧(௡ାଵ) =   𝑄௧(௡)     +     𝛼  𝑥  𝛿   

  Where: 

 

(2) Prediction error    𝛿 = 𝑟௧ −  𝑄௧(௡)       

 

In these equations n is the number of times an action, t, has been performed 

and α is the learning rate, in other words the extent to which the values are 

updated by new information. In (1) the value of the action in the future (𝑄௧(௡ାଵ)) 

is a function of current predicted value of the action (𝑄௧    ) added to the prediction 
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error (𝛿), which is multiplied by the learning rate (𝛼). The learning rate defines 

the extent to which the prediction error updates the predicted value.  

Consequently, a low learning rate will minimise the influence of the prediction 

error and the amount that the value is updated. The prediction error, shown in 

(2), compares the actual outcome achieved by an action (𝑟) to the prediction of 

its value (𝑄௧(௡)). This difference is what determines the updating of the predicted 

value in the future.  

 

To fit the R-W model  to  participants’  behaviour  I used the maximum a posteriori 

(MAP) approach (Daw, 2011). This is a two-stage procedure which begins by 

using a softmax function to estimate the probability of the subject choosing what 

they chose through maximum likelihood estimation. In the first stage, the 

softmax takes the predicted value from the Rescorla-Wagner model, and 

estimates a trial-by-trial probability of the subject choosing what they did given 

the model parameters (see equation 3). Within the softmax, there is an 

additional free parameter, called the inverse temperature, β, (sometimes 

referred to as the exploration/exploitation parameter) which estimates how 

stable   the  participant’s  choices are. The temperature parameter quantifies the 

noisiness  of  participants’  choice  behaviour,  with  a  high  parameter  meaning  very  

variable choice behaviour and a low parameter meaning very consistent choice 

behaviour. 

 

(3) Softmax function  

 

𝑃𝑡(𝑟)       =   exp ቆ
𝑞𝑡(𝑟)
𝛽

ቇ /෍ 𝑖 = 1exp ቆ
𝑞𝑡(𝑖)
𝛽

ቇ  
௡

 

 

 

In order to estimate the learning rate and temperature parameters, every 

possible different combination of learning rates and temperature parameters 

was fitted to the data using the fmincon parameter search function in MATLAB. 

The probabilities output by the softmax were log-transformed and the 

parameters  that  “best-fit”  (have  the  log-likelihood closest to 0) were selected.  
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In the second stage the group mean and standard deviation of the learning rate 

and temperature parameter was calculated to create a normal distribution 

around these values, which was then used as a prior for the learning rate and 

temperature parameters to be fitted to each participants choices a second time. 

This method provides a better  estimation  of  each  individual’s  true  learning  rate  

and temperature parameter that is less susceptible to the influence of outliers 

(Daw, 2011).  

 

 

 

 

6.2.3.5. Model comparison 

 

I compared the RL model to a null model where it is assumed that participants 

exhibit no learning and choose options at random. In this model the value for 𝛼 

was set to 0 to show that participants exhibited no learning and the value for β 

was varied between 0 and infinity. This null model was compared to the RL 

model using Bayesian Information Criterion scores (BIC) to examine whether 

participant’s   behaviour was better explained by an RL model compared to a 

model that assumed participants selected options randomly. The BIC compares 

the fit of the two models based on the number of parameters and the likelihood 

of the model fits, with models with fewer parameters being favoured.  For all 

participants, their behaviour showed a better fit to the RL model compared to 

with the null model. This suggests that all participants learned during the task 

and a model that represents RL learning fits the data better than the null model, 

which represents random choices.  

 

6.2.3.6. Statistical analysis of behavioural data 

 

Behavioural analyses were performed in SPSS 22 (Armonk, New York: IBM 

Corp). We examined differences in both the learning rate and temperature 

parameters at the group level using a repeated measures ANOVA with there 
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levels (self, other and no one for both learning rate and temperature 

parameters). We also examined bivariate associations between the self-other 

learning rate and temperature difference and empathy components.  

 

 

 

Figure 6.1. Trial structure and behavioural results. 

Notes: (A) trial structure. Participants performed a reinforcement-learning task in 
which they had to learn the probability that abstract symbols were rewarded. One was 
always associated with a high probability and one with a low probability. At the 
beginning of the block participants were told whom they were playing for, either 
themselves, the other participant or in a condition where no person received the 
outcome. (B) Choice behaviour in the three learning conditions, self (blue, prosocial 
(green) no one (orange). (C) Comparison of learning rates (LR) from the 
computational model. Participants had a significantly higher learning rate when 
learning for self compared to the prosocial and no one condition. (D) Individual 
differences in empathy modulated the prosocial vs. self learning rate difference, with 
those higher in empathy having a more similar learning rate between the prosocial 
and self conditions.  
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6.2.4. Functional imaging and analysis 

 

6.2.4.1. fMRI data acquisition 

 

A Siemens Avanto 1.5-T MRI scanner was used to acquire a 5.5-minute 3-

dimensional T1-weighted structural scan and 424 multislice T2*-weighted echo 

planar volumes with blood oxygenation-level–dependent (BOLD) contrast. The 

structural scan was acquired using a magnetization prepared rapid gradient 

echo (MPRAGE) sequence. Imaging parameters were: 176 slices; slice 

thickness=1 mm; gap between slices=0.5 mm; TR=2730 ms; TE=3.57 ms; field 

of view=256 mm x 256mm2; matrix size=256 x 256; voxel size=1×1×1 mm 

resolution. The functional imaging sequence was acquired in an ascending 

manner,  at  an  oblique  angle  (≈30˚)  to  the  AC-PC line to decrease the impact of 

susceptibility artefact in the orbitofrontal cortex (Deichmann et al., 2003)  and 

had the following acquisition parameters: 424 volumes, 1 mm gap; echo 

time=50 ms; repetition time=2975 ms; flip angle=90°; field of view=192 mm; 

matrix size=64x64.  

 

6.2.4.2. fMRI data analysis 

 

Imaging data were analysed using SPM8 (www.fil.ion.ucl.ac.uk/spm). Data 

preprocessing followed a standard sequence: the first 4 volumes and last 

volume were discarded. Images were then realigned and co-registered to the 

participants own anatomical image. The structural image was processed using 

a unified segmentation procedure combining segmentation, bias correction, and 

spatial normalization to the MNI template using the New Segment procedure 

(Ashburner & Friston., 2005); the same normalization parameters were then 

used to normalize the EPI images. Voxel size was resampled to 1.5 x 1.5 x 

1.5mm. Lastly, a Gaussian kernel of 8 mm FWHM was applied to spatially 

http://www.fil.ion.ucl.ac.uk/spm
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smooth the images. Before the study, first-level design matrices were checked 

to  ensure  that  estimable  GLMs  could  be  performed  with  independence  (or  ‘rank  

sufficency’)   between   the   parametric   regressors   (Chosen   value   and   PE   in   the  

three conditions), with correlations coefficients of r <0.25.  

 

6.2.4.3. First-level analysis 

 

Seven event-types were used to construct regressors in which event timings 

were convolved with the canonical haemodynamic response function. The three 

conditions at the time of the cues and 3 conditions at the time of the outcome 

were modelled as separate regressors. Each of these regressors was 

associated with a parametric modulator taken from the computational model. At 

the time of the cue this was the chosen value, and the PE at the time of the 

outcome. The instruction cue at the beginning of each block was also modelled. 

An additional regressor modelled missed trials where participants did not select 

one of the two symbols in the response window.  For those participants where 

there was visible head motion in a particular scan (>1mm or 1 degree between 

one volume and the next) an extra regressor was included. These images were 

removed and replaced with an image created by interpolating the two adjacent 

images in order to prevent distortion of the between-subjects mask (4 

participants, less than 1% of total time series). Six head motion parameters 

modelled the residual effects of head motion as covariates of no interest.  

 

6.2.4.4. Second-level analysis 

 

Contrast images from the first level were input into a second-level flexible-

factorial design with one factor (PE) and three levels (self PE, prosocial PE, no 

one PE). Main effects are reported at p< .05, family-wise error (FWE) corrected 

at the cluster level across the whole brain or p<.05 small volume corrected in a 

priori regions of defined using structural masks taken from the appropriate 

anatomical atlas (ventral striatum, subgenual ACC, ACCg, bilateral DLPFC, and 

bilateral lateral OFC; toolboxes: Harvard-Oxford Atlas, regions 46v and 9 from 
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(Sallet et al., 2013) Anatomy toolbox regions s24 and 25, region 24 from 

(Beckmann, Johansen-Berg, & Rushworth, 2009) orbitofrontal cortex from AAL 

atlas, respectively). We also conducted a conjunction analysis (self PE ^ 

prosocial PE ^ no one PE) to identify regions that responded in all three 

conditions.  

 

6.3. Results 

 

6.3.1. Behavioural results 

 

Analysis of total amount of money won between conditions showed that there 

was a significant main effect condition (F (2,60) = 3.2, p < .05). Post-hoc 

analyses showed a significant difference between money won in the self and no 

one condition only (M = 3165 points vs. 2994 points, p < .05). We also 

examined participants’  choice  behaviour,  which  showed  a  main  effect  condition  

(F (2,60) = 5.4, p < .01). Post-hoc analyses showed that participants selected 

the high probability option significantly more often for self compared to no one 

(M = .84%, SD= .02 vs. M = .77%, SD = .03,   p= .02) and significantly more 

often for prosocial compared to no one conditions (M = .83%, .02 vs. .77%, SD= 

.03, p = .03) but there was no difference between self and prosocial conditions 

(p > .05). (Figure 1, panel B). 

 

Analysis of the difference in LR parameters between the conditions showed a 

significant main effect of condition (F(2,60)=11.47, p< .001). Post-hoc analyses 

showed a significant difference in learning rate between self and prosocial (M = 

3.7, p < .001) and self and no one (M = 3.2,  p= .02) but no difference between 

prosocial and no one (M = 3.4, p = .53) (Figure 1, Panel C). These data 

suggest that people have a self bias in their learning rates, such that they learn 

faster about outcomes for themselves compared to when learning in the 

prosocial condition  or no one. Analysis of the difference in temperature 

parameters between the three conditions also showed a significant main effect 
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(p<.01, Huynh-Feldt correction for sphericity violations). Post-hoc analyses 

showed a significant difference in the temperature parameter between the no 

one and self condition (M = .53 vs. .25,  p = .05) and the no one and prosocial 

condition (M = .53 vs. .20, p<.01) but no significant difference between the self 

and prosocial condition (M = .25 vs. .20, p >.05) .This means that choices were 

made equally consistently for the self and prosocial conditions, but that people 

were more variable in their choice behaviour when selecting choices where no 

one received the outcome.  

 

The second aim was to examine whether differences in learning rates and beta 

parameters between self and other were associated with individual differences 

in empathy. I observed that the online-simulation subcomponent of the QCAE 

was significantly positively associated with the prosocial-self  learning rate 

difference (r = .41, p = .01). This suggests that individuals higher in online-

simulation had a more similar learning rate between self and prosocial 

compared to those low in online-simulation (see Figure 1 panel D). 

 

6.4. fMRI results 

 

6.4.1.1. fMRI data: conjunction analysis to identify common coding of 

PEs 

The ventral striatum responded to the three—way conjunction between self PE 

prosocial PE and no one PE (MNI coordinates [x=10, y=15, z=-9] Z=4.09, k=91, 

p< .01 SVC and [x=12, y=10, z=-11], Z=3.72, k=78 p = .023 SVC) (See Figure 
2, Panel B). Analysis in SPSS using the parameter estimates of the extracted 

clusters showed that responses in all three conditions were significantly above 0 

(all ps<.01). No other regions responded significantly to the three-way 

conjunction whole-brain FWE cluster corrected level or in the ROIs. 
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6.4.1.2. fMRI data: contrasts between conditions to identify distinct 

coding of PEs 

 

6.4.1.3. Prosocial PE > Self PE and No one PE 

 

The sgACC showed a significant response to prosocial PEs exclusively (MNI 

coordinates [x=-2, y=4, z=-15] Z=3.83, k=148, p=.02 SVC) (see Figure 2, Panel 
A). Analysis in SPSS using the parameter estimates of the extracted clusters 

Notes: (A) the sgACC encoded prosocial PEs exclusively and this response 
was modulated by individual differences in empathy. (B) The ventral striatum 
responses to PEs regardless of the agent the outcome was to be received 
by. Images displayed at p<.001 uncorrected. 

Figure 6.2. Neural response in the sgACC and ventral striatum to PEs 
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showed that only the response in the prosocial condition showing a significantly 

different response from 0 (t(30)=4.3, p<.001). No other regions responded 

significantly in our ROIs or FWE whole brain corrected. 

 

6.4.1.4. Self PE + No one PE > Prosocial PE 

I observed opposing coding of self and prosocial PEs in left DLPFC (MNI 

coordinates [x=-36, y=18, z=43] Z=4.47, k=62, p < .01 SVC) and opposing 

coding of no one and prosocial PEs in right DLPFC (MNI coordinates [x=32, 

y=15, z=39] Z=4.36, k=27, p < .02 SVC). Analysis in SPSS using the parameter 

estimates of the extracted clusters showed that the response in the left DLPFC 

were significantly different from 0 for both the prosocial (p < .01) and self 

conditions (p < .001) but not in the no one condition (p = .16) (See Figure 3, 
panel A). We also observed opposing coding of self and prosocial PEs in the 

right OFC (MNI coordinates [x=34, y=48, z=-11] Z=3.82, k=81, p < .03 SVC) 

and opposing coding of no one and prosocial PEs in the left OFC (MNI 

coordinates [x=-34, y=54, z=14] Z=3.47, k=36, p = .08[marginal] SVC) (See 

Figure 3, panel B). One sample t-tests showed that the response to prosocial 

(p = .04) and self PEs (p = .04) in right OFC was significantly different 0 but not 

for no one PEs (p = .20). In the left OFC only the response to prosocial PEs 

was significantly different from 0 (p < .01). No other regions responded 

significantly in our ROIs or FWE whole brain corrected.  

 

6.4.1.5. fMRI data: associations with trait empathy  

 

To test our second hypothesis, that the extent to which these regions would 

signal prosocial PEs would be positively associated with trait empathy, I used 

MarsBaR (Brett et al., 2002) to extract each cluster contrast estimates from the 

neural   regions   defined   above,   and   correlated   these   with   participants’   self-

reported empathy on the five QCAE subscales. 

 

Online simulation, the same empathy subscale that modulated differences in 

learning rates between self and prosocial conditions also modulated the 
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prosocial compared to self PE signalling in the sgACC (r = .39, p < .05). 

Emotion contagion modulated prosocial compared to self PE signalling in the 

right DLPFC (r = -.36, p < .05). No other subscales of the QCAE significantly 

correlated with the prosocial-self PE parameters (all ps > .06). 

 

 

6.5. Discussion 

 

Reinforcement learning (RL) theory provides a powerful framework to 

understand how individuals learn to be prosocial. This framework can be used 

to understand the links between prosocial learning and neural response across 

species and in different learning contexts. In the current chapter I used RL 

Notes: (A) The DLPFC showed opposing coding prosocial PEs relative to no 
one PEs (right DLPFC) or self PEs (left DLPFC). (B) The OFC also showed 
opposing coding of prosocial relative to PEs relative to no one PEs (right 
DLPFC) or self PEs (left DLPFC). Images displayed at p<.001 uncorrected. 

Figure 6.3. Neural response in the DLPFC and OFC to PEs 

A 
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theory as a model to identify neural regions that signal prosocial prediction 

errors and whether these overlap with regions that signal PEs for ourselves. 

Second, I examined how individual differences in empathy modulate prosocial 

learning and neural response. I found that the subgenual cingulate cortex 

(sgACC) encoded prosocial PEs exclusively, and was the only region to do so. 

The ventral striatum responded to PEs in all three conditions, that is, regardless 

of the agent that received the outcome. Both left DLPFC and right OFC showed 

opposing coding of PEs for self and other, with these regions positively scaling 

with self PEs and negatively scaling with prosocial PEs. Individual differences in 

empathy modulated both behavioural and neural responses, with those higher 

in empathy having more similar learning rates between self and other, 

increased responsivity of the sgACC to prosocial relative to self PEs and more 

similar response of the right DLPFC to prosocial relative to self PEs. Together, 

these findings suggest that there are common and distinct neural regions that 

process rewarding outcomes for ourselves and other people and that individual 

differences in empathy can modulate the rate at which we learn about rewards 

for others as well as neural encoding of prosocial PEs. This provides a potential 

mechanism linking individual differences in empathy to variability in prosocial 

learning behaviour.  

 

Previous studies have suggested a specific role for the sgACC in decisions to 

donate money to charity compared to decisions about monetary reward for 

ourselves (Moll et al., 2006). This region has also been consistently observed in 

paradigms of allocating rewards to others (Behrens et al., 2008; Hsu, Anen, & 

Quartz, 2008), in moral scenarios (Wiech et al., 2013; Zahn, Moll, et al., 2009), 

to vicarious reward (Mobbs et al., 2009) and shows increased responsivity in 

individuals higher in empathic concern (Zahn, de Oliveira-Souza, Bramati, 

Garrido, & Moll, 2009). The sgACC is connected to other regions involved in 

reward processing and social decision-making, including the nucleus 

accumbens, amygdala and orbitofrontal cortex (Johansen-Berg et al., 2008; 

Rushworth et al., 2007). We provide the first evidence that this region 

processes a prediction error that scales with the unexpectedness of outcomes - 

exclusively for another person.  
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As compared to other portions of the cingulate cortex, comparatively little is 

known about the role of the sgACC for social behaviour. This is in part because 

it is very difficult to record from this region in non-human primates or to cause 

focal lesions, as lesions to the vmPFC also often cause damage to the 

subgenual ACC, adjacent portions of orbitofrontal cortex and the dorsal ACC 

(Hadland, Rushworth, Gaffan, & Passingham, 2003). In one of the few studies 

to examine the effect of sgACC lesions, Rudebeck and colleagues tested the 

contribution of sgACC to sustaining autonomic arousal associated with positive 

emotional events (Rudebeck et al., 2014). The authors used a Pavlovian 

conditioning procedure where it had been shown that autonomic arousal 

increases in response to cues that predict rewards, and this arousal is 

maintained during an interval before a reward is delivered. They showed that 

although monkeys with lesions of the sgACC showed an initial, cue-evoked 

arousal, they failed to sustain this arousal until the anticipated reward was 

delivered. Rudebeck and colleagues thus suggest that the sgACC may 

contribute to positive affect by sustaining arousal in anticipation of positive 

emotional events. Other studies have implicated the sgACC and adjacent septal 

area in affiliative behaviours in human and animal studies (Depue & Morrone-

Strupinsky, 2005; Insel & Young, 2001). These data suggest that this region 

encodes prosocial PEs, increasing its response when outcomes for others are 

unexpectedly positive and decreasing response when outcomes are 

unexpectedly negative.  

 

In contrast, the ventral striatum responded to PEs in all three conditions, 

regardless of who the reward was to be received by. This supports existing 

studies showing ventral striatum response to self and other reward and PEs 

(Harbaugh et al., 2007; Moll et al., 2006; Morelli et al., 2015; Sul et al., 2015) 

but extends these findings to show that ventral striatum signals are also 

apparent when rewards are not directed to a specific agent. Such a profile is 

suggestive of this region coding a general learning mechanism regardless of 

the agent a reward is to be received by. 

 

Both the left DLPFC and right OFC showed a pattern of opposing coding of self 

and prosocial PEs, i.e. increasing response to unexpectedly positive outcomes 
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for self, but decreasing response to unexpectedly positive outcomes for the 

other person. The DLPFC has previously been shown to respond in paradigms 

where other-regarding and self-regarding preferences come into conflict (e.g. 

(Sanfey, 2007), and thus has been suggested to be of importance in balancing 

prosocial and selfish behaviour (Hunt & Behrens, 2011; Sanfey, 2007). The 

observed opposing coding scheme for self and prosocial PEs is consistent with 

these findings and could have consequences for social behaviour, such as 

increased competitiveness in social interactions. I also found that those 

individuals who reported higher levels of empathy showed a more similar 

response of the right DLPFC to prosocial and self PEs. This suggests that the 

negative coding of prosocial PEs in right DLPFC is reduced in individuals higher 

in empathy.  

 

The OFC is argued to be important for reinforcers to influence behaviour 

(Rushworth et al., 2007) and has been implicated in emotion, reinforcement 

learning and social behaviour. Individuals with lesions to the OFC exhibit 

changes in social behaviour (Willis, Palermo, Burke, McGrillen, & Miller, 2010) 

and neurons in the OFC may encode the motivational value of social 

information (Watson & Platt, 2012). The current results suggest that this region 

may distinguish self and other outcomes by encoding PEs for oneself and for 

another person in opposite directions. 

 

Behaviourally I observed that participants showed a self bias in their learning 

rate, namely that they had a higher learning rate for themselves compared to 

the prosocial or the no one condition. Intriguingly, individual differences in 

online simulation, a key component of empathy, modulated this response with 

those higher in online simulation showing a more similar learning rate between 

self and other than those lower in online simulation. The finding that individual 

differences in empathy can modulate the rate at which we learn about 

rewarding outcomes for others suggests a potential mechanism by which 

empathy could facilitate prosocial decisions, namely by increasing the sensitivity 

to rewarding outcomes for other people. I also found that it was this same 

component of empathy, online-simulation - the ability to put oneself in another 

person’s  position  by  imagining  what  that  person  is  feeling  (Reniers  et  al.,  2011)  
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- that modulated response of the sgACC to prosocial PEs. Previous studies 

have suggested that empathy can modulate how we process rewards for other 

people   in   a   temporal   discounting   task   (O’Connell   et   al.,   2013).   I suggest that 

conceptualising empathy within a framework of reward sensitivity could be 

fruitful in further studies examining how individual differences in social cognition 

translate into individual differences in choice behaviour.  

 

I did not observe response of the ACCg in any of the conditions. This may seem 

surprising given that this region has previously been implicated in processing 

rewards for others and in social behaviour (Apps, Green, et al., 2013; Apps, 

Lockwood, et al., 2013; Apps & Ramnani, 2014; Behrens et al., 2008; Boorman 

et al., 2013; Chang et al., 2013; Rudebeck et al., 2006). Whilst it is notoriously 

difficult to interpret a null finding as there can be a number of factors for not 

observing a predicted neural response, one possible explanation is the role of 

‘reference  frames’  in  social  decision-making (e.g. Hunt & Behrens, 2011). In this 

task participants believed that their choices for the other participant were 

anonymous and they were not being observed when making decisions. Thus, 

these decisions were not made in the same reference frame as previous studies 

of ACCg that have examined social interaction or observing another’s  

responses. A key test of this hypothesis would be to compare a condition where 

the selecting of rewards for others was anonymous compared to known to see 

whether when the set up of this paradigm is posed as a social interaction ACCg 

response is observed.  

 

Successful social behaviour and empathic abilities are thought to be 

compromised in a number of disorders including psychopathy and autism (Bird 

& Viding, 2014). The paradigm developed here could be used in further studies 

examining how individuals with disorders of social behaviour learn about 

rewards for other people and neural regions that signal self and prosocial PEs. 

This could help to identify mechanisms that link disturbances in empathy to 

individual differences in social behaviour. Conceptualising prosocial learning 

within a RL framework also allows for the current paradigm to be extended to 

investigate prosocial learning across species. 
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6.5.1. Conclusions 

 

In summary, I identified key neural regions that signal prosocial prediction errors 

and how these overlap and are distinct from regions that signal prediction errors 

for ourselves. I also show that individual differences in the ability to take the 

perspective of another person, a component of empathy, can modulate both the 

rate at which individuals learn about rewards for others and neural responses in 

the sgACC. Taken together, these findings provide evidence to support both the 

common currency and socially specific accounts of social decision-making and 

provide a potential mechanism linking empathy to prosocial behaviour.  

 

In the final chapter, I summarise the findings of the preceding empirical 

chapters and discuss the implications and future directions of this work.  
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 General discussion CHAPTER 7:

 

7.1. Overview 

 

Empathy, the ability to vicariously experience and to understand the affect of 

other people (Bird & Viding, 2014; Decety & Jackson, 2004; Eisenberg, 2000; 

Hoffman, 2001; Singer & Lamm, 2009), is a key ability for successful social 

cognition and behaviour. Consequently, it is not only crucial to define the 

component processes of empathy carefully, but also to systematically identify 

the behavioural and neural mechanisms by which vicarious experience 

influences social cognition and behaviour.  

 

At present there is still much to find out about different processes involved in 

empathy. It is often suggested that empathy is a multidimensional phenomenon 

(Bird & Viding, 2014; Decety & Jackson, 2004; Eisenberg, 2000, Hoffman, 

2001; Singer & Lamm, 2009). However, few studies have examined different 

components of empathy within the same sample. Moreover, when investigating 

individual differences in disorders associated with reduced empathy, such as 

psychopathy and autism, many researchers have employed tasks that draw on 

multiple processes implicated in empathy. This can make it difficult to isolate 

specific difficulties related to one disorder or another. By using paradigms that 

separate different processes clearly, we can perhaps more precisely delineate 

the processing atypicalities associated with specific disorders.  

 

Vicarious experience has often been suggested to facilitate positive social 

behaviours, yet existing paradigms have often focused on examining 

associations between concern (e.g. sympathy) for others and prosocial 

tendencies (e.g. Batson, 1998). There is a lack of empirical data that has 

identified   whether   the   vicarious   perception   of   another’s   experience   is   a  

motivating factor for prosocial behaviour. It has been proposed that antisocial 

behaviours in children with conduct problems could stem from disrupted 
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empathic processing (Blair, 2005), yet we are still to identify whether individuals 

with antisocial behaviour display atypical neural responses to the suffering of 

others. Finding whether individuals with conduct problems have a reduced 

neural response   to   other   people’s   distress could help us understand one 

potential mechanism linking empathy to prosocial behaviour.  

 

Effectively cooperating or competing with another requires the ability to 

compute the value of stimuli that predict positive experiences, such as rewards, 

for others (Ruff & Fehr, 2014). However, very little is known about how vicarious 

reward predictions are processed in the brain or how individual differences in 

social  functioning  are  related  to  neural  response  to  others’  reward.  Many  of  the  

studies   to   date   have   instead   focused   on   the   perception   of   others’   negative  

experiences, but it is important to understand whether similar neural responses 

characterise positive experiences.  

 

Finally, research has begun to apply well-characterised computational models 

of reward learning to reward learning in social contexts (Behrens et al., 2008; 

Burke et al., 2010; Hampton, Bossaerts, & Doherty, 2008; Ruff & Fehr, 2014). 

Using these mathematical models can help us to examine the specific neural 

computations that link empathy to prosocial behaviour and neural responses in 

different learning contexts and across different species. 

 

The current thesis set out to advance knowledge in these key areas using a 

multimodal approach of questionnaires, behavioural paradigms, neuroimaging 

and computational modelling, in both typical samples with variability in empathy 

and in children with conduct problems and low levels of empathy.  

 

7.2. Research questions 

 

To summarise, four outstanding research questions regarding relationships 

between empathy, social cognition and behaviour were identified:  
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1) How separable are different aspects of empathic 
processing and do distinct aspects of empathic 
processing related to different aspects of social 

functioning? 

 

2)  How does empathy relate to trait prosocial behaviour 
and do additional trait constructs moderate the 

relationship between empathy and prosocial 
behaviour? (Chapter 3) 

 

3) Where in the brain is vicarious information (both 
negative and positive) processed, and does this vary in: 

(i) children with conduct problems and with (ii) 
individual differences in typical empathy? (Chapters 4 

and 5) 

 

4)  Which neural regions signal prosocial prediction 
errors? What are the mechanisms that link empathy to 

prosocial decision-making behaviour and neural 
response? (Chapter 6) 

  

Findings and implications pertaining to each of these questions are considered 

sequentially in the sections below. Overall, it is argued that empathy is one of 

the key processes that can aid in successful social functioning and explains 

important variability in social cognition and behaviour.  
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7.2.1. How separable are different aspects of empathic processing and do 

distinct aspects of empathic processing related to different aspects 

of social functioning? 

 

In Chapter 2 I presented a study that used two behavioural paradigms 

measuring key components of empathy - affective resonance and cognitive-

perspective taking - and collected trait measures of psychopathic, autistic and 

alexithymic traits in the general population. I found that performance on these 

two tasks was significantly positively associated, such that those who scored 

higher in affective resonance also scored higher in cognitive-perspective taking 

and vice versa. I also found that individuals with high levels of psychopathic and 

autistic traits were characterised by difficulties in different components of 

empathy. Individuals with high levels of psychopathic traits showed reduced 

resonance   with   others’   emotions,   but   not   with   cognitive   perspective   taking.  

Conversely, individuals with high levels of ASD traits showed problems with 

cognitive perspective-taking  but  not  with  resonating  with  others’  emotions. This 

suggests that although behaviourally individuals with psychopathy or ASD may 

appear to lack empathy, this could be for different reasons. A second aim of this 

study was to examine whether trait levels of alexithymia were able to explain 

empathy impairments associated with either psychopathy or ASD dimensions. 

Alexithymia was found to be associated with problems with affective resonance, 

but this association was independent of psychopathic traits, suggesting that 

different component processes (reduced tendency to feel what others feel and 

reduced ability to identify and describe feelings) could comprise performance on 

the affective resonance task. Alexithymia was not associated with the reduced 

cognitive perspective-taking and could not thus account for the association 

between reduced cognitive perspective-taking and higher levels of ASD traits.  

 

Overall, the findings of this study suggested that although affective resonance 

and cognitive perspective-taking measures share some variance (future studies 

could explore candidate processes that may influence performance on both 

measures, such as executive functioning), they can capture dissociable 

processes, and thus extends our knowledge regarding the structure of empathy. 
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Moreover, elevated psychopathic and ASD traits are characterised by difficulties 

in different social information processing domains. This finding supports and 

extends previous work in children with conduct problems and callous-

unemotional traits compared to children with ASD that has also showed 

different profiles of empathy impairments (Jones et al., 2011; Schwenck et al., 

2012). 

 

This work also extends our knowledge of the association of alexithymia with 

psychopathic and autistic traits (e.g. Lander et al., 2012; Louth et al., 1998). 

The alexithymia hypothesis states that, where observed, reduced empathy in 

individuals with ASD may be attributable to co-occurring alexithymia rather than 

autism per se (e.g. Bird & Cook, 2013). I show that reduced affective resonance 

in individuals with elevated psychopathic traits and reduced cognitive 

perspective taking in individuals with elevated ASD traits are not explained by 

co-occurring alexithymia. However, alexithymia is independently associated 

with reduced affective resonance over and above psychopathic and ASD traits. 

This suggests that reduced cognitive empathic processing in ASD does not 

appear attributable to alexithymia and that to the extent that individuals with 

ASD show difficulties in affective resonance, this is likely to be due to co-

occurring alexithymia (as outlined in Bird & Cook, 2013), but note that I did not 

find high levels of ASD traits in the typical population to be associated with 

difficulties in affective resonance.  

 

Limitations and future directions 
 

These findings will need to be assessed in a clinical sample to examine whether 

similar associations with alexithymia occur. Moreover, further studies could 

examine a wider battery of associated processes related to empathy such as 

mimicry, empathic concern and identification of emotions. It will also be of 

interest to determine whether the processing atypicalities associated with 

psychopathic, ASD and alexithymia traits explain real life observations of 

unempathic behavior, as rated by others or observed in an experimental setting. 
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7.2.2. How does empathy relate to trait prosocial behaviour and do 

additional trait constructs moderate the association between empathy 

and prosocial behaviour? 

 

In Chapter 3 I presented a study that examined associations between 

components of empathy and prosocial tendencies, and whether individual 

differences   in   the   ability   to   regulate   one’s   own   emotions   moderated  

associations between empathy and prosocial behaviour. I found that affective 

and cognitive empathy predicted self-reported prosocial tendencies. 

Specifically, these components were able to explain both joint and unique 

variance in prosocial tendencies. In addition, cognitive reappraisal moderated 

the association between affective empathy and prosocial tendencies. Whilst 

there was a significant positive association between empathy and prosocial 

tendencies for individuals with a low or average tendency to reappraise there 

was not a significant association for those with a high tendency to reappraise.  

 

These findings suggest that, in general, empathy is positively associated with 

prosocial behaviour and that both affective and cognitive dimensions of 

empathy could be important for either motivating prosocial tendencies or 

prosocial behaviours that are seen as socially appropriate in certain situations. 

However, for individuals who have a high tendency for cognitive reappraisal the 

association between empathy and prosocial behaviour may not be as strong. I 

suggest that this could be because those individuals with a high tendency to 

reappraise a situation may be more readily able to deduce the desirability of 

prosocial behaviours without a vicarious emotional experience. This work 

extends that of existing studies that have linked empathic concern to prosocial 

motivation (e.g. Batson, 1998; Davis, 1983) and highlights that vicarious 

experience can also facilitate prosocial tendencies.  

 

Limitations and future directions 
 

One limitation of this study is the reliance on self-report. Future studies with 

behavioural paradigms, such as the paradigm developed in Chapter 6 or 



 

155 
 

economic games such as the dictator game or ultimatum game, will need to be 

used to examine whether such self-reported tendencies translate into 

differences in behaviour.   
 

7.2.3. Where in the brain is vicarious information processed, and does 

this vary in: 

 

7.2.3.1. Children with conduct problems 

 

In Chapter 4 I examined how individual differences in empathy impact upon 

negative social behaviour, that is, antisocial behaviour. I used functional 

magnetic resonance imaging (fMRI) to examine neural responses to   others’  

pain in a sample of children with conduct problems, who show high levels of 

antisocial behaviour, and varying levels of callous and unemotional traits. 

Neural responses were compared to a control group matched for IQ, age, 

socioeconomic status and ethnicity. I also collected parent and teacher ratings 

of conduct problem symptoms and callous and unemotional traits to examine 

individual differences in neural response. I found that, relative to controls, 

children with conduct problems showed reduced blood oxygen level-dependent 

responses   to   others’   pain   in   bilateral   anterior   insula   (AI),   anterior   cingulate  

cortex (ACC), and inferior frontal gyrus, regions associated with the vicarious 

perception of others pain in previous studies (Fan et al., 2011; Lamm et al., 

2011). I also observed that in the conduct problem group, callous traits were 

negatively  associated  with  responses  to  others’  pain   in  AI  and  ACC,  such  that  

those highest in callous traits showed the greatest reduction in neural response 

of these regions. Additional analyses showed that the gyral portion of the ACC, 

ACCg, was one of the subregions of the ACC where these differences between 

children with CP and typical children were observed. These findings suggest 

that children with CP have atypical   neural   responses   to   others’   pain.   The  

negative association between callous traits and AI/ACC response could reflect 

an early neurobiological marker indexing risk for empathic deficits seen in adult 

psychopathy.  



 

156 
 

 

Limitations and future directions 
 

An outstanding question is whether individuals with CP have an atypical 

experience of pain themselves. Given that I did not have a self pain condition I 

was unable to assess the profile of self pain processing in children with CP. 

Preliminary evidence suggests that children with CP may indeed have disrupted 

self pain processing (Cheng et al., 2012). Future studies could examine the 

processing of pain in children with conduct problems, if this could be done in an 

ethically feasible manner, to test whether the reduced neural response to 

others’  pain  is  also  reflected  by  a  reduced  general  response  to  pain.  One  option  

would be to apply painful stimuli that were painful enough to be aversive but not 

to cause harm.  

 

7.2.3.2. Individual differences in typical empathy 

 

In Chapter 5 I described a study, which focuses on the vicarious perception of 

positive  experience,  in  particular  other  peoples’  reward.  I  used  fMRI  to  examine  

neural  responses  to  cues  that  signalled  the  likelihood  of  other’s  reward  in  a  key  

neural region thought to encode vicarious experience, the ACCg. Importantly, 

this paradigm used a social confederate rather than pictures of other people, 

which may help to uncover neural mechanisms that support social interactions. I 

also measured individual differences in empathy to examine how these 

differences modulated neural response. I found that the ACCg robustly 

signalled the likelihood of a reward being delivered to another. In addition, this 

ACCg response significantly co-varied with trait emotion contagion, a necessary 

foundation for empathising with other individuals. In individuals high in 

emotional  contagion   the  ACCg  was  specialised  for  processing  others’   rewards  

exclusively, but for those low in emotion contagion this region also responded to 

information about the  subject’s  own  rewards.   

 

These results are the first to show that the ACCg signals probabilistic 

predictions about rewards for other people, and that the substantial individual 
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variability in the degree to which the ACCg is specialised for processing others’  

rewards   is   related   to   trait  empathy.  The   response  of  ACCg   to  others’   rewards  

fits with a large body of evidence showing involvement of the ACCg in social 

cognition and behaviour across species (Rudebeck et al., 2006; Behrens et al., 

2008; Apps, Lockwood et al., 2013, 2015; Boorman et al., 2013; Chang et al., 

2013; Apps & Ramnani, 2014; Jones et al., 2011). The association between 

ACCg response and emotion contagion suggests that variability in empathy 

may not only be associated with the extent to which social information is 

processed in ACCg, as suggested in previous studies and theoretical accounts 

of the neural mechanisms of empathy (e.g. Lamm et al., 2011; Engen and 

Singer, 2013), but also the extent to which self as well as other reward 

information is computed. These findings may help reconcile previous 

discrepancies in the functions that have been imputed to the dACC in terms of 

competitive social behaviours (Hillman & Bilkey, 2012; Haroush & Williams, 

2015) but also empathy (Lamm et al., 2011; Engen and Singer, 2013).  

 

Limitations and future directions 
 

One limitation of this study was that the behavioural component of the task was 

limited. Although participants were required to judge whether the outcomes for 

themselves and the other person were expected or unexpected, and this effect 

was associated with emotion contagion (those highest in emotion contagion 

showed the greatest speeding of response when judging outcome for the other 

person) this behavioural component was not at the point of interest for neural 

response (the judgment at the outcome rather than at the cue). Consequently I 

cannot assess how ACCg response in this study translated into behaviour.  

 

7.2.3.3. Which regions of the brain are involved in signaling prosocial 

prediction errors? Do individual differences in empathy predict 

variability in prosocial learning and its neural basis? 
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In Chapter 6 I present a study that adopted a multimodal approach of 

combining questionnaire measures of trait empathy, computational modelling of 

behaviour and brain imaging to uncover neural regions that signal prosocial 

prediction errors and variation with trait empathy. Behaviourally, I found that 

participants showed a self bias, that is they had a higher learning rate when 

learning about rewards delivered to themselves compared to other people or 

neither person. Trait empathy modulated the prosocial-self learning rate 

difference such that those higher in empathy had a more similar learning rate 

between self and other. Neurally, I found that key neural regions involved in 

decision-making  about  other’s   rewards,  namely   ventral   striatum,   sgACC,  OFC  

and DLPFC signalled prosocial PEs. The ventral striatum signalled PEs 

regardless of the agent they were to be received by. The sgACC was the only 

region to code prosocial PEs exclusively and the left DLPFC and right OFC 

showed opposing coding of self and prosocial PEs, increasing response to 

unexpectedly positive outcome for self and decreasing response to 

unexpectedly positive outcomes for the other participant.  

 

The observation that individual differences in empathy can modulate the rate at 

which we learn about rewarding outcomes for others suggests a potential 

mechanism by which empathy could facilitate prosocial decisions, namely by 

increasing the sensitivity to rewarding outcomes for other people. The response 

of the ventral striatum in all three learning conditions suggests that this region 

may code a general learning mechanism, regardless of agent, rather than 

response only to self and other reward. This supports previous studies showing 

ventral striatum response to both self and social prediction errors (Harbaugh et 

al., 2007; Morelli et al., 2015; Sul et al., 2015; Moll et al., 2006) but shows that 

the ventral striatum signal may related to a general learning mechanism rather 

than a response that codes specifically for self and other rewards. The 

modulation of prosocial prediction errors in the sgACC exclusively points to an 

important role of this region in signalling unexpected outcomes for others 

following our actions, suggesting a potential mechanism for why sgACC 

response has been linked to prosocial decisions in previous studies (e.g. 

Behrens et al., 2008; Wiech et al 2013; Zahn et al., 2009) and in vicarious 

reward (Mobbs et al., 2009). This region also correlated with online simulation 



 

159 
 

(a component of empathy), with those highest in online simulation showing the 

greatest response to prosocial PEs relative to self PEs. Taken together, these 

findings show that empathy can modulate both behavioural and neural 

responses to prosocial decisions, and identifies key neural regions that may be 

involved in signalling prosocial PEs. These findings also suggest that both 

‘socially-specific’   and   ‘common   currency’   (c.f.   Ruff   and   Fehr,   2014)   neural  

regions are important for signalling social decisions. 

 

7.3. Implications and future directions 

 

The findings from this thesis have generally supported the claim that that 

empathy is important for successful social functioning and meaningfully relates 

to individual differences in social cognition and behaviour. Chapters 2 and 3 
showed that empathy was differentially related to trait variability in disorders of 

social functioning and prosocial tendencies, respectively. Chapters 4, 5 and 6 
showed that individual differences in empathy explained variance in neural 

responses during vicarious perception and decision-making. In the next section 

I discuss the implications and future directions of these findings. 

 

7.3.1. Implications for understanding individual differences in social 

behaviour 

 

7.3.1.1. Psychopathy and autism spectrum disorders (ASD) 

 

Psychopathy and ASD have both been suggested to be characterised by 

reduced empathy, although it has been argued that this is likely for different 

reasons (Bird & Viding, 2014). Chapter 2 adds growing support to the claim that 

traits associated with these disorders are indeed related to different aspects of 

empathy (e.g. Blair et al., 2005; Bird & Viding, 2014). I found that alexithymia 

explained reduced affective resonance over and above psychopathic traits, 
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suggesting that different component processes, the tendency to feel what 

others feel and the tendency to identify and describe feelings, comprise the 

construct of affective resonance.  Moreover, these findings suggested that the 

affective impairments in individuals high in psychopathic traits are not related to 

alexithymia. Interestingly, alexithymia did not explain variance in reduced 

cognitive perspective-taking in individuals high ASD traits. Further studies in 

clinical samples with psychopathy will be needed to examine whether this same 

pattern occurs at clinical levels, and to further examine whether alexithymia can 

explain reduced cognitive perspective-taking in individuals with autism, given 

that alexithymia is argued to account for reduced affective resonance in these 

individuals (e.g. Bird & Cook, 2013). 

 

However, given that both psychopathy and ASD are associated with atypical 

social cognition, there may be neural regions that are similarly disrupted in the 

two disorders. For example, the ACCg is a key candidate for common 

atypicalities in the two disorders. Previous studies have suggested that a similar 

portion of the dACC that was activated in Chapters 4 and 5 is anatomically and 

functionally atypical in individuals with psychopathy and in individuals with 

autism (e.g. Simms et al., 2009; Brazil et al., 2011; Anderson & Kiehl, 2012; 

Delmonte et al., 2013; Zikopoulos & Barbas, 2013; Chapter 4). One potential 

computation that is associated with ACCg function, and could be atypical in the 

two disorders, is reward processing. 

 

Social Motivation Theory (Chevallier, Kohls, Troiani, Brodkin, & Schultz, 2012; 

Dawson et al., 2004; Dawson, Webb, & McPartland, 2005) proposes that 

individuals with ASD are unable to form stimulus-reward contingencies for 

social stimuli, resulting in reduced social attention and engagement. Chevallier 

et al. (2012) suggested that these computations are underlied by an 

orbitofrontal-striatal-amygdala circuit. However, other evidence suggests that 

the ACCg may play a key role in the social impairments seen in ASD (Delmonte 

et al., 2013). Previous studies have shown disturbed cytoarchitecture 

specifically in the ACCg in individuals with ASD (Simms et al., 2009). Similarly, 

Delmonte et al. (2013) showed hyperconnectivity between the caudate and 

ACCg in children with ASD, the strength of which was negatively correlated with 
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neural responses to social rewards (Delmonte et al., 2012). Balsters et al. 

(2015) recently found that individuals with ASD showed reduced responding in 

ACCg to social reward prediction errors (Balsters et al., 2015). In their task, 

based on Apps et al., (2013), participants with autism and matched healthy 

controls were asked to choose to open doors that were probabilistically 

associated with a rewarding outcome either for themselves, for another person 

or a computer. At the time of the outcome participants were asked to judge 

whether the reward was expected or not. The authors suggest that this type of 

set up can be seen as similar to a false belief task, and prediction errors can be 

conceptualised   as   false   beliefs,   i.e.   a   person’s   recognition   of   unexpected  

outcomes for another person. Balsters and colleagues found that, 

behaviourally, individuals with autism were less able to judge unexpected 

rewards for another person or for a computer, but were not impaired when 

judging these outcomes for themselves. Neurally, they found a reduced 

response in the ACCg when individuals with autism saw unexpected outcomes 

for another person or a computer but not for themselves (Balsters et al., 2015). 

These preliminary studies suggest that the ACCg could play a role in coding 

social rewards and that this process is atypical in individuals with autism. 

 

Similarly, atypical social reward processing has also been suggested 

characterise individuals with psychopathy, who are suggested to be insensitive 

to rewards that others will receive, leading to increased competitive behaviours 

(Curry, Chesters, & Viding, 2011; Koenigs, Kruepke, & Newman, 2010; Mokros 

et al., 2008) and decreased prosocial behaviours (Foulkes et al., 2014; White, 

2014). Individuals with psychopathy have been shown to display reduced error 

related negativity, measured using Electroencephalography, when observing 

other’s  outcomes  during  a  social   interaction  (Brazil  et  al.,  2011).  This  signal is 

putatively sourced in the ACC. Recent studies also indicate that grey matter 

volume and activity in the ACCg correlate with psychopathic and callous traits 

(De Brito et al., 2009; Anderson & Kiehl, 2012; Cope et al., 2012; Chapter 4).  

 

Taken together these studies suggest that the ACCg may be atypical in both 

psychopathy and autism. However, as shown in Chapter 2 and many other 

studies these disorders are thought to be associated with different empathy 
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impairments (Bird & Viding, 2014; Blair, 2005; Jones et al., 2010; Schwenck et 

al., 2012). Consequently, whilst ACCg response may be atypical in the two 

disorders this could happen for different reasons. One potential explanation is 

the differences in the structure, function and connectivity of ACCg constrain the 

extent to which this region processes rewards for others compared to self, 

which may lead to atypical empathic processing, as suggested in Chapter 4. In 

Chapter 4 I found that across participants the ACCg signalled reward prediction 

for other people but that in individuals low in emotional contagion this region 

also signalled information about rewards for self. The study by Chang and 

colleagues that recorded from neurons in the ACCg in non-human primates 

found that this region contained a higher proportion  of  ‘other’  selective  neurons  

compared  to  ‘self’  selective  and  ‘both’  selective  neurons  (Chang et al., 2013). It 

is plausible that individuals with psychopathy and autism may have a different 

proportion of self, other and both reward responsive neurons in ACCg both 

compared to typical individuals, but compared to one another. This hypothesis 

would not be viable to test in a human population but it is conceivable that 

animal models could be used.  

 

Another related possibility is that the connections between ACCg and other 

regions relate to distinct behavioural impairments seen in the two disorders. 

Further studies with individuals with psychopathy and ASD could use the 

paradigm developed in Chapter 5 to examine vicarious reward perception, 

which was suggested to activate ACCg, and examine the connections between 

this region and others thought to be involved in social cognition and reward 

processing, such as dorsal regions of the medial prefrontal cortex, temporal 

poles, temporo-parietal junction and striatum (Barbas et al., 1999; Haber et al., 

1995; Lynd-Balta & Haber, 1994; Markowitsch et al., 1985; Seltzer & Pandya, 

1989; Yeterian & Pandya, 1991). This would allow the claim that these 

disorders are associated with atypical ACCg response to social information, but 

also more importantly to determine how an atypical response of ACCg could be 

associated with psychopathy and autism when these disorders are suggested 

to be characterised by separable empathy impairments.  
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It would also be of interest to test individuals with social disorders on these 

paradigms to help to resolve how empathy relates to reward sensitivity for 

others and prosocial learning, using the paradigm in Chapter 6. In Chapter 6 

trait empathy modulated the amount that people learnt about rewarding 

outcomes for themselves and another person, with this parameter being more 

similar in those higher in empathy. An insensitivity to other peoples rewards 

may lead to reduced prosocial behaviour, which is thought to characterise 

individuals with psychopathy (White et al., 2014; Foulkes et al., 2014). A recent 

study also showed that autistic traits modulated the association between social 

rewards and prosocial behaviour, but did not affect reward learning for oneself 

(Panasiti, Puzzo, & Chakrabarti, 2015). Together these findings suggest that 

both autism and psychopathy are related to insensitivity to rewards for other 

people. Consequently, determining the extent to which these individuals also 

have insensitivity to rewards themselves is an important avenue for future 

research. Measures of alexithymia could help to determine whether alexithymia 

can explain variance in reward learning for other people in both autism and 

psychopathy or whether comorbid alexithymia in autism is accounting for a 

reduced sensitivity   to   others’   rewards.   There   is   a   preliminary   suggestion   that  

some associations between autistic traits and atypical social reward processing 

may indeed be accounted for by alexithymia (e.g. Foulkes, Bird, Gökçen, 

McCrory, & Viding, 2015) 

 

Intriguingly, recent evidence from neuroimaging suggests that reduced neural 

responses   to   others’   pain   in   individuals   with   psychopathy   can   be   changed  

dependent on the instructions given to participants, and in particular if 

participants are explicitly instructed to empathise (Meffert et al., 2013). 

However, it remains to be seen whether effortfully activating the neural 

response   to   others’   pain   can   foster   empathy   and   empathic   behaviour   in  

individuals with high psychopathic traits. Nevertheless, factors that motivate 

effortful empathy in these individuals could be a key target for future research. 

Perhaps an explicit instruction to empathise during prosocial learning could 

facilitate performance in individuals with psychopathy and allow action-reward 

associations for other people to be formed. Another option could be to pair 
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outcomes for other people with outcomes for self to make outcomes for other 

people more motivating for individuals with psychopathy. 

 

 

7.3.1.2. Healthy ageing 

 

Another implication and avenue for further research is the extension of research 

investigating empathy and social behaviour to healthy ageing. There is 

suggestion that our level of social engagement can impact on our health and 

well-being across the lifespan, particularly in old age. By 2050 there will be an 

estimated 19 million people aged 65+ in the UK (Cracknell, 2010). In older 

adults, individuals who are less socially active are at higher risk of developing 

dementia (Fratiglioni, Paillard-Borg, & Winblad, 2004), general cognitive decline 

(James, Wilson, Barnes, & Bennett, 2011), memory loss (Ertel, Glymour, & 

Berkman, 2008) and motor function problems (Buchman et al., 2009). Therefore 

it appears that maintaining our social functioning is important for many aspects 

of healthy ageing.  

 

However, there is also evidence that as we get older our social abilities can 

change (Moran, 2013). Cognitive aspects of empathy - as measured by tasks 

where   participants   infer   others’   mental   states   by   viewing   faces,   cartoons,   or  

stories - are typically associated with reduced task performance in older adults 

(reviewed in Moran, 2013). Importantly, such reductions are at least partly 

independent of any general cognitive decline (Kemp, Després, Sellal, & Dufour, 

2012). In contrast, affective aspects of empathy and our willingness to engage 

in prosocial behaviours might even increase, or at least not be affected, by age 

(Beadle, Sheehan, Dahlben, & Gutchess, 2013). Very few studies have been 

conducted but the data suggest that older adults, compared to younger adults, 

report similar levels of trait affective empathy (Bailey, Ruffman, & Rendell, 2013; 

Beadle et al., 2013; Sullivan & Ruffman, 2004), divide money more generously 

in economic games (Bailey et al., 2013) and offer to donate more money to 

charities (Sze, Gyurak, Goodkind, & Levenson, 2012). The paradigms 

developed in this thesis could be used to examine the profile of social cognition 
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in healthy ageing to provide insight into strategies to scaffold healthy social 

ageing as well as the construct of empathy itself and associations with social 

behaviour. 

 

7.3.1.3. Relationship of empathy to social behavior 

 

Empathy is often assumed to be an important facilitator of prosocial behaviour, 

and the two processes are frequently linked. However, most of the current 

research investigating associations between these constructs has 

conceptualised prosocial behaviour as part of empathy (Zaki & Ochsner, 2012) 

or investigated associations between empathic concern and compassion or 

prosocial behaviour (Batson, 1998; Singer & Klimecki, 2014), rather than the 

association between vicarious experience and prosocial behaviour. This has 

made it hard to establish whether vicarious experience is indeed a motivating 

factor for individuals to behave prosocially. The findings of Chapter 3 supported 

a link between vicarious experience and trait prosocial behaviour, with 

individuals reporting higher levels of both affective and cognitive empathy 

reporting higher prosocial tendencies. The findings of Chapter 6 also supported 

a close association between the two constructs, with individuals higher in trait 

empathy showing a more similar learning rate between self and other. 

 

7.3.2. Implications for theory-theory and simulation theory 

 

In the introduction, I outlined that historically there were two prominent accounts 

of social cognition, theory-theory and simulation-theory. Theory-theory posited 

that  we  understand  others’  minds  by  forming  a  folk  psychological  theory,  that  is,  

a set of concepts about others (beliefs and desires) and governing principles as 

to how these concepts interact (e.g., people act to satisfy their desires 

according to their beliefs). Simulation-theory argued that we understand the 

minds of others via a process simulation, where the cognitive mechanisms that 

underpin   the   processing   of   one’s   own   actions and intentions are simulated 

when processing the same information about another (Gallese and Goldman, 
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1998; Gallese, 2007).  The  discovery  of   ‘mirror-neurons’,  neurons  that   increase  

their spike frequency during both action observation and action execution, has 

been   invoked   as   evidence   of   ‘mirror’   like   neural   properties   (Gallese and 

Goldman, 1998; Rizzolatti and Craighero, 2004; Gallese, 2007). In addition, the 

discovery   of   a   core   neural   circuit   that   is   engaged   when   processing   others’  

mental states (Frith and Frith, 1999, 2006), is supportive of the theory-theory 

account. However, it is now generally accepted that these two accounts do not 

need to be mutually exclusive, and neither can sufficiently explain all aspects of 

social cognition on their own. Moreover, the account of mirror-neurons 

‘mirroring’   has   been   convincingly   challenged   by   accounts   of   associative-

learning (e.g. Cook et al., 2014).   

 

Nevertheless, it is important to understand the influence that these two 

accounts have had on the field of social cognitive neuroscience. In studies on 

vicarious perception and decision-making there are debates as to whether a 

neural region is processing social information if this same region also processes 

first-person information or whether a neural region is processing social 

information if it responds to third-person information exclusively (Engen & 

Singer, 2013; Ruff & Fehr, 2014). In this thesis evidence has been found 

supporting both types of neural responses in processing social information. In 

Chapter 5 I showed that the ACCg, which has previously been shown to 

process social information, showed a response mainly to other reward and not 

self reward prediction. This fits with a large body of evidence suggesting relative 

specificity  of  ACCg  for  processing  others’  reward  (reviewed  in  Apps, Lockwood, 

et al., 2013), which fits with theory-theory accounts of social cognition, i.e. that 

there are specific neural regions that process information about others. In 

Chapter 6 neural regions were identified that both showed an overlap between 

social and non-social information (ventral striatum) as well as in regions that 

responded exclusively to social information (sgACC) or showed opposing 

coding between self and other (left dlPFC, right OFC). These findings support 

the claim that both socially specific and shared neural systems can process 

social information.  
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One advantage of having these theoretical frameworks, however, is in 

stimulating ideas for experimental paradigms and providing testable 

hypotheses. In an attempt to test the shared-representation hypotheses, i.e. a 

hypothesis inspired by the theoretical foundations of simulation theory, novel 

designs have been used borrowed from research in fields outside social 

neuroscience. For example, evidence from literature on pain has identified a 

placebo analgesia effect whereby individuals report pain reduction after being 

instructed they are being administered a potent painkiller, which is actually an 

inactive compound (e.g. Benedetti, Mayberg, Wager, Stohler, & Zubieta, 2005). 

Rutgen and colleagues recently applied this to examine overlap between self 

and other pain, the hypothesis being that if the shared representation account 

holds   then   the   placebo   analgesia   effect   should   extend   to   other   people’s   pain  

(Rütgen,  Seidel,  Riečanský,  &  Lamm,  2015). Rutgen and colleagues found that 

both self report measures of empathy and neural responses to others pain were 

affected by placebo analgesia (Rütgen et al., 2015), which they interpreted as 

supporting a shared functional overlap between self and simulating other pain. 

Other studies have tried to use advanced fMRI methods such as multivariate 

pattern analysis to identify if a region shows response in two separate domains, 

such as social and physical pain, whether the putative pattern of neuronal 

activity is in fact the same (e.g. Woo et al., 2014). Such a method can be 

applied to examine shared-representation interpretations of neural response 

where they are apparent. This method could also be applied to examine neural 

response to self and other pain and reward to test whether similar neural 

patterns response to both conditions and to examine whether overlapping 

neural response in the striatum to self, prosocial and no one PEs (identified in 

Chapter 6) show similar patterns of neuronal activity. We already know from the 

computational model that these regions are covarying with a PE signal, yet it is 

feasible that this could be differentially encoded in the different brain regions.  

 

7.3.3. Comparative studies and mathematical models 

 

The importance of comparative studies and borrowing well characterised 

theories and models of reward-guided behaviour, perception and decision-
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making, which can be studied across species, will be important when moving 

forward with future research. The use of computational modelling techniques 

could help us link behavioural and brain processes that might be disrupted in 

psychopathy and autism but also help us understand how typical social 

decision-making operates. Youths with psychopathic traits have been found to 

show reinforcement reward learning impairments in the caudate and 

ventromedial prefrontal cortex (White et al., 2013). Specifically, White and 

colleagues found that children with conduct problems showed reduced 

response to positive prediction errors in the insula and decreased responses to 

negative PEs in the caudate. The study by White and colleagues was the first to 

use model-based fMRI in a sample of children with conduct problems. The 

advantage of this approach is that it can tell us not just where in the brain there 

might be differences between those with and without psychopathy but also how 

different cognitive process are implemented  (O’Doherty,  Hampton  &  Kim,  2007). 

The key question would be to examine how differences in reward learning for 

self and other translate into differences in empathic/prosocial behaviour by 

including a condition that examines reward outcomes for other people, such as 

in Chapter 6.  

 

7.3.4. Lesion studies 

 

In Chapter 6 the sgACC was identified as the only region to signal prosocial 

PEs exclusively. Whilst many studies have investigated the function of the 

ACCg and ACCs, comparatively little is known about the function of the 

subgenual cingulate cortex region (sgACC, area 24b and area 25) for social 

behaviour. This is in part because it is very difficult to record from this region in 

non-human primates or to cause focal lesions, as lesions to the vmPFC also 

often cause damage to the subgenual ACC and adjacent portions of 

orbitofrontal cortex and the dACC (Hadland et al., 2003). However, the sgACC 

has been a target of deep brain stimulation for depression in patients (Mayberg 

et al., 2005) and it would be of interest to collect data on changes in social 

behaviour after stimulation of this region. Future studies could also examine 

how focal lesions in different neural regions, in both humans and animals, 
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specifically map on to disorders of social behaviour to complement imaging 

studies. Although lesion studies also have limitations such as smaller sample 

sizes and comorbid disorders they are important in advancing our knowledge of 

the function of neural regions.  

 

7.4. Conclusions 

 

The findings of this thesis suggest that: 1) specific components of empathy 

have distinct associations with different kinds of disrupted trait social-cognitive 

ability 2) specific components of empathy are positively associated with trait 

prosocial behaviour and individual differences in the capacity  to  regulate  one’s  

own emotions moderates the strength with which empathy relates to trait 

prosocial behaviour 3) anterior cingulate cortex function may be critical in the 

perception of vicarious information, including pain and reward processing; and 

individual differences in anterior cingulate cortex function during pain and 

reward processing relates to individual differences in empathy 4) empathy is 

critical for prosocial decision making and underpins the neural computations 

that signal outcomes for others that are different from our expectations. 

Together, these findings contribute to a more complete and coherent 

understanding of the structure, function and neural basis of empathic/vicarious 

processing.
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Appendix 1: QCAE - Questionnaire of Cognitive and Affective 
Empathy 

 

Reniers, R. L. E. P., Corcoran, R., Drake, R., Shryane, N. M., & Völlm, B. A. 

(2011). The QCAE: a Questionnaire of Cognitive and Affective 

Empathy. Journal of Personality Assessment, 93(1), 84–95.  

1. I sometimes find it difficult to see things from  the  “other  guy’s”  point  of  view 

(OS r) 

2. I am usually objective when I watch a film or play,   and   I   don’t   often   get  

completely caught up in it (PeR r) 

3. I  try  to  look  at  everybody’s  side  of  a disagreement before I make a decision 

(OS) 

4. I sometimes try to understand my friends better by imagining how things 

look from their perspective (OS) 

5. When I am upset at someone, I usually try to “put  myself  in  his  shoes”  for  a  

while. (OS) 

6. Before criticizing somebody, I try to imagine how I would feel if I was in their 

place. (OS) 

7. I often get emotionally involved with my friends’  problems. (PrR) 

8. I am inclined to get nervous when others around me seem to be nervous. 

(EC) 

9. People I am with have a strong influence on my mood. (EC) 

10. It affects me very much when one of my friends seems upset. (PrR) 

11. I often get deeply involved with the feelings of a character in a film, play, or 

novel. (PeR) 



 

202 
 

12. I get very upset when I see someone cry.  (PrR) 

13. I am happy when I am with a cheerful group and sad when the others are 

glum. (EC) 

14. It worries me when others are worrying and panicky. (EC) 

15. I can easily tell if someone else wants to enter a conversation. (PT) 

16. I can pick up quickly if someone says one thing but means another. (PT) 

17. It is hard for me to see why some things upset people so much. (PeR r) 

18. I find it easy to put myself in somebody else’s  shoes. (OS) 

19. I am good at predicting how someone will feel. (PT) 

20. I am quick to spot when someone in a group is feeling awkward or 

uncomfortable. (PT) 

21. Other people tell me I am good at understanding how they are feeling and 

what they are (PT) thinking. 

22. I can easily tell if someone else is interested or bored with what I am 

saying. (PT) 

23. Friends talk to me about their problems as they say that I am very 

understanding.  (PrR) 

24. I can sense if I am intruding, even if the other person does not tell me. 

(PT) 

25. I can easily work out what another person might want to talk about. (PT) 

26. I can tell if someone is masking their true emotion. (PT) 

27. I am good at predicting what someone will do. (PT) 

28. I   can   usually   appreciate   the   other   person’s viewpoint, even if I do not 

agree with it. (OS) 
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29. I usually stay emotionally detached when watching a film. (PeR r) 

30. I always try to consider the other   fellow’s feelings before I do something. 

(OS) 

31. Before I do something I try to consider how my friends will react to it. (OS) 

 

Cognitive Empathy 

Perspective Taking (PT) 

Online Simulation (OS) 

Affective Empathy 

 Emotion Contagion (EC) 

 Proximal Responsivity (PrR) 

 Peripheral Responsivity (PeR) 

 

(r – indicates that the item is reverse scored 
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Appendix 2: Main effects and group x condition interaction 
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Appendix 3: Uncorrected table of neural response at the time of 
the cue 
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Appendix 4: Uncorrected table of neural response at the time of 
the outcome 
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Individuals with psychopathy or autism spectrum disorder (ASD) can behave in ways
that suggest lack of empathy towards others. However, many different cognitive and
affective processes may lead to unempathic behavior and the social processing profiles
of individuals with high psychopathic vs. ASD traits are likely different. Whilst psychopathy
appears characterized by problems with resonating with others’ emotions, ASD appears
characterized by problems with cognitive perspective-taking. In addition, alexithymia
has previously been associated with both disorders, but the contribution of alexithymia
needs further exploration. In a community sample (N = 110) we show for the first
time that although affective resonance and cognitive perspective-taking are related, high
psychopathic traits relate to problems with resonating with others’ emotions, but not
cognitive perspective taking. Conversely, high ASD traits relate to problems with cognitive
perspective-taking but not resonating with others’ emotions. Alexithymia was associated
with problems with affective resonance independently of psychopathic traits, suggesting
that different component processes (reduced tendency to feel what others feel and reduced
ability to identify and describe feelings) comprise affective resonance. Alexithymia was
not associated with the reduced cognitive perspective-taking in high ASD traits. Our data
suggest that (1) elevated psychopathic and ASD traits are characterized by difficulties in
different social information processing domains and (2) reduced affective resonance in
individuals with elevated psychopathic traits and the reduced cognitive perspective taking
in individuals with elevated ASD traits are not explained by co-occurring alexithymia. (3)
Alexithymia is independently associated with reduced affective resonance. Consequently,
our data point to different component processes within the construct of empathy that are
suggestive of partially separable cognitive and neural systems.

Keywords: psychopathy, autism spectrum disorder, alexithymia, empathy, affective resonance, cognitive
perspective-taking

INTRODUCTION
Empathy is the capacity to understand or resonate with the
affective experiences of others (Singer and Lamm, 2009). Two
important processes that contribute to empathy are (i) being
aware of, and resonating with, the feelings of another individ-
ual such that the awareness of their emotion drives the same state
in oneself (henceforth affective resonance) and (ii) identifying and
understanding what another individual is thinking/feeling without
a necessary affective response (henceforth cognitive perspective-
taking). These processes may differentially characterize psychopa-
thy and autism spectrum disorders (ASDs). Although individuals
with either disorder can behave in ways that suggest lack of empa-
thy towards others’ (Blair, 2005; Jones et al., 2010) this may be
the result of problems in different social information processing
domains.

Psychopathy is a disorder characterized by a lack of empathy,
shallow affect, and manipulation of others for own gain (Hare,

2003). Difficulties with affective resonance are often apparent.
For example, individuals with psychopathy show reduced phys-
iological response to others’ distress (Blair et al., 1997). Adults
with psychopathy and children with psychopathic traits display
atypical neural responses to others’ pain (Decety et al., 2013;
Lockwood et al., 2013; Marsh et al., 2013). In community samples,
high levels of psychopathic traits are related to weaker affec-
tive responses to fearful faces and happy stories (Seara-Cardoso
et al., 2012, 2013). Taken together, these findings indicate clear
difficulties in resonating with others’ emotions in both clinical
samples with psychopathy and in community individuals with
high levels of psychopathic traits. In contrast, one of the defining
features of psychopathy is the ability to successfully manipulate
others (Hare, 2003). Thus it might be expected that psychopa-
thy would be associated with typical cognitive perspective-taking.
Several studies report no cognitive perspective-taking impair-
ments (Blair et al., 1996; Richell et al., 2003; Dolan and Fullam,
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2004; Anastassiou-Hadjicharalambous and Warden, 2008) and
even superior ability (Hansen et al., 2008) in individuals with
psychopathy or high psychopathic traits. However, others have
reported problems with tasks related to cognitive perspective-
taking in both incarcerated psychopaths (Brook and Kosson,
2013) and healthy samples with high psychopathic traits (Ali
and Chamorro-Premuzic, 2010). One possibility for these mixed
findings is that different paradigms vary in their level of affec-
tive content, with some purported cognitive perspective-taking
measures requiring identification of other people’s feelings, rather
than just their thoughts. It could be that negative associations
between psychopathic traits and cognitive perspective-taking are
driven by problems related to basic affective processing, rather
than difficulties in cognitive perspective-taking per se. In fact, all
studies that have reported that psychopathy/psychopathic traits are
associated with poorer cognitive perspective-taking have utilized
measures with affective content (e.g., Ali and Chamorro-Premuzic,
2010; Brook and Kosson, 2013) and therefore do not necessarily
provide evidence for cognitive perspective-taking impairments in
psychopathy.

Autism spectrum disorders are characterized by problems
with social interaction, communication, and repetitive behav-
iors. ASD are also associated with atypical empathic processing
(e.g., Baron-Cohen and Wheelwright, 2004). Several decades of
research indicates that individuals with ASD have difficulties with
cognitive perspective-taking (see Hill and Frith, 2003). The find-
ings from studies assessing processes related to affective resonance
in ASD are less consistent. There is evidence of absent sensori-
motor resonance when viewing others’ pain in individuals with
ASD (Minio-Paluello et al., 2009). However, other studies have
shown typical sensori-motor resonance when viewing others in
pain (Fan et al., 2013) and appropriate physiological responses to
others distress (Blair, 1999) in individuals with ASD. When cogni-
tive perspective-taking and empathic concern, a process related to
affective resonance, have been compared in individuals with ASD,
impairments in cognitive perspective-taking but not empathic
concern were found (Dziobek et al., 2008). Some theorists have
argued that affective resonance is actually heightened in individu-
als with ASD (Smith, 2009) and reports of greater empathic facial
affect in children with ASD compared to controls supports this
(Capps et al., 1993).

A further consideration is the high comorbidity of ASD with
alexithymia. Alexithymia is a sub-clinical condition defined by
an inability to identify and describe feelings in the self. Prelimi-
nary behavioral and neuroimaging research suggests that affective
and empathy impairments in ASD may be a function of intero-
ceptive difficulties related to alexithymia rather than ASD per se
(Silani et al., 2008; Bird et al., 2010) and that after accounting for
alexithymia there is no difference in empathy between individu-
als with ASD and controls (Bird and Cook, 2013). However, one
recent fMRI study found no significant moderating effects of alex-
ithymia in an empathy for pain task in individuals with ASD (Fan
et al., 2013). Nevertheless, the variance in alexithymia scores was
very limited (SD 3.8 in Fan et al., 2013 vs. 11.8 in Bird et al., 2010),
which may explain why no effect of alexithymia was observed. Less
is known about the possible contribution of alexithymia to empa-
thy impairments seen in individuals with psychopathy. Although

the co-occurrence rates of alexithymia and psychopathy are lower
than for ASD (Louth et al., 1998), the two disorders do share some
common attributes (Lander et al., 2012).

To date, only two studies have directly compared the profile
of affective and cognitive processing related to psychopathy and
ASD, and these have both been in children. Children with conduct
disorder and psychopathic traits showed less affective resonance
with others’ emotions but did not have problems with cogni-
tive perspective-taking; conversely, children with ASD showed
reduced cognitive perspective-taking but did not have problems
with affective resonance (Jones et al., 2010; Schwenck et al., 2012).
However, no studies have directly contrasted psychopathic and
ASD traits and processes related to affective resonance and cog-
nitive perspective-taking in adults. Moreover, no studies have
investigated the contribution of alexithymia to ASD and psycho-
pathic traits in tandem. Psychopathic, ASD and alexithymic traits
are present in varying degrees in the general population (Bagby
et al., 1994; Baron-Cohen et al., 2001; Hare and Neumann, 2008).
Indeed, taxometric studies indicate that psychopathy should be
viewed as a dimensional construct that is an extreme variant of
normal personality and not a distinct category of behavior (see
Hare and Neumann, 2008 for review). Similarly, behavioral genetic
studies indicate a similar etiology of autistic traits in the general
population as well as in clinical groups (Robinson et al., 2011),
thus providing an empirical basis for studying variants in
traits associated with these disorders in the general popula-
tion. Finally, investigating associations between these traits and
potential differences in social information processing is one
way to dissect the component processes that may contribute to
empathy.

Consequently, the present study investigated (i) whether psy-
chopathic and ASD traits were differentially related to perfor-
mance on affective resonance and cognitive perspective-taking
tasks and (ii) whether alexithymia contributes to task perfor-
mance. We predicted that psychopathic traits would be negatively
associated with performance on the affective resonance task but
not the cognitive perspective-taking task and that ASD traits
would be negatively associated with performance on the cogni-
tive perspective-taking task but not the affective resonance task.
Alexithymia has previously been demonstrated to predict empa-
thy deficits while recent neuroimaging results suggest cognitive
perspective-taking is unlikely to be affected (Bernhardt et al.,
2013). Therefore, we predicted that alexithymia would make a
contribution to performance on the affective resonance task, but
be unrelated to performance on the cognitive perspective-taking
task. We also explored whether the proposed association with
alexithymia would reflect variance common to alexithymia and
psychopathic traits, or variance unique to alexithymia.

MATERIALS AND METHODS
PARTICIPANTS
One hundred and ten healthy adults (50% M; 50% F) aged 18–
33 (M = 21.9, SD = 3.7) with estimated IQ between 87 and 129
(M = 116.8, SD = 8.4) took part. Participants were recruited
through university participant databases and the community. All
participants provided written informed consent and the study had
institutional ethics approval.
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PROCEDURE
Participants completed two tasks to assess affective resonance and
cognitive perspective-taking as part of a larger battery of tasks.
All tasks were presented in a randomized order followed by the
questionnaires.

EXPERIMENTAL TASKS
Theory of mind animations task (cognitive perspective-taking
task)
This task assessed participants’ ability to understand others’ com-
plex mental states (e.g., tricking, coaxing) and has been previously
used to examine ToM abilities in children with autism (Abell
et al., 2000) and healthy participants (Castelli et al., 2002). We
selected four “ToM” and four “random” animations from Abell
et al. (2000). Each animation featured two characters; a big red
and small blue triangle either interacting with one another (ToM
animations) or moving randomly (random animations). Partici-
pants were asked to watch each animation carefully and to describe
what was happening whilst their verbal responses were recorded.
Two people transcribed the verbal descriptions that were coded
in terms of intentionality and appropriateness. The intentional-
ity scale ranged from 0 (no appreciation of another agent, nor
actions or mental states) to 5 (the agent acts with the goal of
affecting or manipulating the other agent’s mental states). The
appropriateness scale ranged from 0 to 3. One researcher rated all
transcriptions and a second researcher rated a random sample of
56. Intra-class correlations (ICC) between raters for intentionality
(ICC, single measures = 0.682) and appropriateness (ICC single
measures = 0.760) were good. The ratings of intentionality and
appropriateness were converted to z-scores and a composite score
was created.

Self-assessment manikin faces task (Affective resonance task)
This task assessed participants’ affective empathic response to
emotional faces using the SAM rating scale (Seara-Cardoso et al.,
2012). Participants were required to rate their own emotional
response to the affective state of another on a nine-point manikin
(changing from smiling to a sad face with a neutral expression
in the middle) whilst viewing images depicting a person show-
ing either a sad, fearful, angry, happy, or neutral expression. The
order of images was randomized for each participant. Ratings for
sad, fear, and anger were reverse scored so that the higher scores
reflected ratings of greater distress, and thus greater affective res-
onance, when viewing others’ negative emotions. These variables
were then converted to z-scores and a composite score was created
along with happy ratings.

QUESTIONNAIRES
Self-Report Psychopathy Scale–Short Form (SRP-4-SF, Paulhus
et al., in press)
Psychopathic traits were assessed with the SRP-4-SF, a 29-
item scale designed to measure psychopathic attributes in non-
institutionalized samples. The SRP has been shown to have good
construct validity and internal consistency (Cronbach’s alpha 0.89
in the present study) and is strongly correlated with the PCL-R;
the clinical measure of psychopathy (Lilienfeld and Fowler, 2006;
Paulhus et al., in press). Questions were rated on a five-point scale

from “Disagree Strongly” to “Agree Strongly” and included items
such as “Most people are wimps” and “I love violent sports and
movies.”

The Autism Spectrum Quotient (AQ, Baron-Cohen et al., 2001)
Autism spectrum disorder traits were assessed with the AQ, a
50-item scale designed to assess ASD traits in both clinical and
community samples. The AQ has good construct validity and
internal consistency (Cronbach’s alpha 0.83 in the present study).
Questions were rated on a four-point scale from “Definitely Dis-
agree” to “Definitely Agree” and included items such as “I enjoy
meeting new people” and “I would rather go to a library than a
party.”

Toronto Alexithymia scale (TAS, Bagby et al., 1994)
Alexithymic traits were assessed with the TAS, a 20-item scale
designed to measure subclinical alexithymic traits. Questions were
rated on a five-point scale from“I Strongly Disagree” to“I Strongly
Agree” and included items such as “I am often confused about
what emotion I am feeling” and “I am often puzzled by sensations
in my body.” The TAS has good construct validity and internal
consistency (Cronbach’s alpha 0.82 in the present study).

RESULTS
Performance on the affective resonance and cognitive perspective-
taking tasks was positively correlated (r = 0.40, p < 0.001). All
questionnaire measures were also positively correlated with one
another (see Table 1). First, bivariate correlations were examined
to assess whether psychopathic and ASD traits were differentially
related to affective resonance and cognitive perspective-taking.
As predicted psychopathic traits showed a statistically significant
negative correlation with performance on the affective reso-
nance task (r = −0.258, p = 0.007) whilst ASD traits did not
(r = −0.102, p = 0.291). Conversely, ASD traits showed a sta-
tistically significant negative correlation with performance on the
cognitive perspective-taking task (r = −0.209, p = 0.028) whilst
psychopathic traits did not (r = −0.046, p = 0.634).

We conducted hierarchical multiple regression analyses to
investigate whether psychopathic and ASD traits were uniquely
and differentially related to affective resonance and cognitive
perspective-taking, and to examine whether individual differ-
ences in alexithymia and/or IQ might explain any associations

Table 1 | Correlations between questionnaire measures of
psychopathic, autism spectrum disorder, and alexithymic traits and
task performance.

SRP AQ TAS AR

AQ 0.244*

TAS 0.252* 0.370**

AR −0.258** −0.102 −0.245*

CPT −0.046 −0.209* −0.120 0.399**

SRP, Self-Report Psychopathy Scale; TAS, Toronto Alexithymia Scale; AQ, Autism
Spectrum Quotient; AE, affective resonance task; CPT, cognitive perspective-
taking task. *p < 0.05, **p < 0.01.
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Table 2 | Hierarchical multiple regression between questionnaire measures of psychopathic, autism spectrum disorder, and alexithymic traits
and task performance.

Affective resonance task Cognitive perspective-taking task

Beta t P Beta t P

STEP 1

SRP −0.258 −2.772 0.007* AQ −0.209 −2.224 0.028*

STEP 2

SRP −0.248 −2.574 0.011* AQ −.211 −2.16 0.033*

AQ −0.041 −0.428 0.669 SRP 0.005 0.056 0.956

STEP 3

SRP −0.213 −2.209 0.029* AQ −0.193 −1.868 0.065∧

AQ 0.025 0.245 0.807 SRP 0.014 0.144 0.885

TAS −0.201 −1.991 0.049* TAS −0.052 −0.501 0.618

STEP 4

SRP −0.218 −2.227 0.028* AQ −0.196 −1.895 0.061∧

AQ 0.024 0.236 0.814 SRP −0.000 0.000 1.000

TAS −0.200 −1.977 0.051∧ TAS −0.050 −0.483 0.630

IQ 0.033 0.353 0.725 IQ 0.106 1.113 0.268

∧p < 0.10, *p < 0.05.
SRP, Self-Report Psychopathy Scale; TAS, Toronto Alexithymia Scale; AQ, Autism Spectrum Quotient; Full IQ calculated from Weschler Intelligence Test of Adult
Reading.

(see Table 2). Two models were run. For the model predicting per-
formance on the affective resonance task, psychopathic traits were
entered at the first stage. Psychopathic traits significantly predicted
reduced affective resonance (p = 0.007). At the second stage ASD
traits were entered. Psychopathic traits were uniquely negatively
associated with affective resonance (t = −2.57, p = 0.011) whilst
ASD traits were not (t = −0.43, p = 0.669). The R2 change was
not significant (F change = 0.18, p = 0.669) indicating that ASD
traits did not significantly explain more variance in the model. At
the third stage, alexithymia scores were entered. Controlling for
alexithymia did not change the pattern of results, but there was a
unique negative association between alexithymia and affective res-
onance (t = −1.99, p = 0.049), and the R2 change was significant
(F = 3.96, p = 0.049). At the fourth stage IQ scores were entered.
Controlling for IQ did not change the pattern of results, nor was
IQ a significant predictor of affective resonance (p = 0.73). The
same regression sequence was then used for cognitive perspective-
taking, but with ASD traits at the first stage and psychopathic
traits at the second. ASD traits were significantly negatively asso-
ciated with cognitive perspective-taking (t = −2.22, p = 0.028).
At the second stage psychopathic traits were entered. ASD traits
were uniquely negatively associated with reduced cognitive per-
spective taking (t = −2.16, p = 0.033) whilst psychopathic traits
were not (t = 0.06, p = 0.956). The R2 change was not signifi-
cant (F change = 0.00, p = 0.956) indicating that psychopathic
traits did not explain significantly more variance in the model.
Taking into account alexithymia and IQ did not change the pat-
tern of results, nor did either of these variables predict cognitive
perspective-taking. No further R2 changes were significant (all
F’s < 1.24, all ps > 0.26).

DISCUSSION
The current study compared associations between psychopathic
or ASD traits and tasks assessing affective resonance or cognitive
perspective-taking. We demonstrated unique associations between
psychopathic traits and reduced affective resonance but not cog-
nitive perspective-taking, and unique associations between ASD
traits and reduced cognitive perspective-taking but not affective
resonance. Alexithymic traits did not explain observed asso-
ciations between task performance and psychopathic or ASD
traits but rather contributed to performance on the affective
resonance task independently of psychopathic traits. This is
the first study in healthy adults to show a differential relation-
ship between these variables. Thus, it extends previous findings
that have reported contrasting profiles of empathy impairments
between children with psychopathic tendencies or ASD (Jones
et al., 2010; Schwenck et al., 2012). Our results also suggest that
although affective resonance and cognitive perspective-taking
measures share some variance, they can capture dissociable
processes.

Psychopathy is thought to be characterized by problems with
affective resonance but not cognitive perspective-taking. We used
measures that were designed to specifically probe affective res-
onance and cognitive perspective-taking, without there being
cognitive perspective-taking demands on the affective resonance
task or vice versa. Our results therefore extend and clarify the
findings of previous studies reporting reduced affective reso-
nance in individuals high in psychopathic traits (Seara-Cardoso
et al., 2012, 2013) by indicating a reduction in affective reso-
nance in the absence of a reduction in cognitive perspective-
taking. These data also highlight how high psychopathic

Frontiers in Human Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 760 | 4

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


“fnhum-07-00760” — 2013/11/12 — 17:36 — page 5 — #5

Lockwood et al. Dissecting empathy

traits are not related to atypical cognitive perspective-taking
processing when a task without an affective component is
used.

Autism spectrum disorders have been consistently linked to
problems with cognitive perspective-taking (Hill and Frith, 2003).
Interestingly, we found that elevated ASD traits in the general pop-
ulation were also associated with atypical cognitive perspective-
taking. In contrast, findings of tasks related to affective resonance
processing in autism are mixed, with reduced (Minio-Paluello
et al., 2009), intact (Blair, 1999; Dziobek et al., 2008; Bird et al.,
2010; Fan et al., 2013), and elevated (Capps et al., 1993) lev-
els of affective processing being reported. Our findings suggest
that ASD traits are not associated with either a reduced or an
enhanced ability to resonate with the emotions of another, despite
the fact that high levels of ASD traits are related to difficul-
ties with understanding others’ minds. It would be useful for
future studies to assess multiple forms of processing related to
affective resonance, as the paradigms used in some studies that
reported intact affective resonance investigated empathic con-
cern, rather than affective resonance. Examining both of these
processes in tandem may help to shed further light on the pro-
file of empathic processing in ASD. Moreover, it would also be
interesting to further examine the exact cognitive perspective-
taking mechanisms that may be disrupted in relation to ASD/high
ASD traits. It could be that some disrupted components of
cognitive perspective-taking relate to bottom–up processes such
as detection of biological movement, whereas others might
relate to top–down processes such as the influence of situational
cues.

Both psychopathy and ASD have previously been associated
with elevated levels of alexithymia (Louth et al., 1998; Lander et al.,
2012; Bird and Cook, 2013), and we also observed modest corre-
lations between psychopathic and ASD traits with alexithymia in
the present study. Nevertheless, controlling for alexithymic traits
did not change the reported associations between psychopathic
traits and reduced affective resonance or ASD traits and reduced
cognitive perspective-taking. In other words, the reduced abil-
ity to identify and describe feelings in the self did not account
for the relationship between psychopathic traits and affective
resonance or ASD traits and cognitive perspective-taking. The
finding that alexithymia did not explain the reduced cognitive
perspective-taking abilities characteristic of ASD traits is of par-
ticular interest given recent evidence and theory suggesting that
alexithymia does account for affective processing deficits related
to autism, when they are observed (Bird and Cook, 2013). Our data
extend this account by showing that alexithymia does not appear
to explain reduced cognitive perspective-taking related to high
ASD traits.

We also found that alexithymic traits were negatively asso-
ciated with a reduction in affective resonance independently of
psychopathic traits. This suggests that reductions in affective res-
onance can be affected both by reduced ability to identify and
describe feelings (a characteristic of alexithymia) and a reduced
tendency to feel what others feel (a characteristic of psychopathy).
The result of independence between psychopathic and alexithymic
traits in predicting performance on affective resonance also points
to potential component processes within the construct of affective

resonance. Future studies could help to determine the mechanisms
underlying reduced affective resonance in psychopathy and
alexithymia.

A few limitations to the present study should be highlighted. In
everyday life empathic responses to others occur in the context of
reciprocal social interactions, the present tasks did not present such
scenarios in the interest of isolating affective resonance and cogni-
tive perspective-taking demands. Although we chose paradigms to
specifically examine two process that contribute to the experience
of empathy, these are not exhaustive and further research would
benefit from examining a larger collection of tasks that tap a mul-
titude of processes related to empathy. It will also be of interest
to determine whether the processing atypicalities associated with
psychopathic, ASD, and alexithymia traits explain real life obser-
vations of unempathic behavior, as rated by others or observed in
an experimental setting. Finally, replication of these results with
clinical populations would be informative.

Overall, our findings clarify and extend previous studies exam-
ining the profiles of empathy deficits related to psychopathy, ASD,
and alexithymia. We show for the first time that in subclinical
samples elevated psychopathic traits are related to reduced affec-
tive resonance but not cognitive perspective-taking whilst elevated
levels of ASD traits are related to reduced cognitive perspective-
taking but not affective resonance. Consequently, our data point
to different social information processes within the construct of
empathy that are suggestive of partially separable cognitive and
neural systems.
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Emotion Regulation Moderates the Association between
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Abstract

Theory and evidence suggest that empathy is an important motivating factor for prosocial behaviour and that emotion
regulation, i.e. the capacity to exert control over an emotional response, may moderate the degree to which empathy is
associated with prosocial behaviour. However, studies to date have not simultaneously explored the associations between
different empathic processes and prosocial behaviour, nor whether different types of emotion regulation strategies (e.g.
cognitive reappraisal and expressive suppression) moderate associations between empathy and prosocial behaviour. One
hundred–and-ten healthy adults completed questionnaire measures of empathy, emotion regulation and prosocial
tendencies. In this sample, both affective and cognitive empathy predicted self-reported prosocial tendencies. In addition,
cognitive reappraisal moderated the association between affective empathy and prosocial tendencies. Specifically, there
was a significant positive association between empathy and prosocial tendencies for individuals with a low or average
tendency to reappraise but not for those with a high tendency to reappraise. Our findings suggest that, in general, empathy
is positively associated with prosocial behaviour. However, this association is not significant for individuals with a high
tendency for cognitive reappraisal.
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Introduction

Humans have a remarkable capacity to engage in prosocial
behaviours, i.e. social behaviour intended to benefit another, with
genetically unrelated individuals [1]. However, the processes that
influence how and when prosocial behaviours occur remain poorly
understood. Theory and evidence suggest that empathy, i.e. the
capacity to understand and/or resonate with the affective
experiences of others [2], is one of the key motivating factors for
prosocial behaviour [3–5].
A number of processes are thought to contribute to the

experience of empathy. These include ‘affective’ empathic
processes, such as being aware of and resonating with the feelings
of another individual, as well as ‘cognitive’ empathic processes,
such as identifying and understanding what another individual is
thinking or feeling without a necessary affective response [1].
There is evidence that processes related to affective and cognitive
empathy are positively associated with prosocial behaviour (for a
review see [3]). The majority of these studies have used the
interpersonal reactivity index (IRI, [6]), which measures disposi-
tional empathic concern/sympathy, or cardiovascular and elec-
trodermal indices, such as heart rate deceleration and facial
electromyographic (EMG), as proxy measures of affective empa-
thy. For example, heart rate deceleration (which is thought to
index vicariously induced sadness or sympathy, e.g [7]) and
increased indicators of facial sadness when watching needy others
are associated with increased willingness to help [8]. Dispositional
empathic concern, as measured by the IRI, has also been linked to

higher levels of self-reported charitable giving [9] and greater self-
reported concern for the welfare of others [10]. In terms of
associations between cognitive components of empathy and
prosocial behaviour, studies have focused on correlating the
perspective-taking subscale of the IRI to self-reported prosocial
behaviour and have found that trait perspective taking is positively
associated with frequency of volunteering [11] and self-reported
prosocial tendencies [12]. It should be noted, however, that the
empathic concern and perspective taking scales of the IRI tap
constructs that, although related, are different from the current
conceptualisation of ‘affective’ and ‘cognitive empathy’ [2].
Nonetheless, together, these studies broadly suggest that affective
and cognitive empathic processes may motivate prosocial behav-
iour.
Whilst it is often assumed that an empathic response to

another’s distress will motivate prosocial behaviour, Eisenberg
[13] points out that association between the two constructs are
often modest and sometimes weak. A possible reason for these
modest associations is the influence of moderating variables [13].
It has been suggested that emotion regulation, i.e. the capacity to
modulate or exert control over an emotional response, might be
one such moderator variable [14], [15]. Eisenberg and Fabes [14]
propose a model whereby individual differences in both the
emotional intensity and regulation capacities are related to an
individual’s level of prosocial responding. Specifically, they suggest
that the perception of distress in another leads to emotional
arousal, but emotion regulation i.e. and how this arousal is
evaluated by the observer, will influence the subsequent goal
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directed behaviour, either to improve their own situation or help
the others’ situation [14]. The degree of emotion regulation during
a state of emotional arousal (over-, optimal-, or under-regulation)
is also proposed to relate to the likelihood of prosocial behaviour.
For example, individuals who are able to optimally regulate their
arousal, so that they do not experience undue distress in the face of
another person’s emotions and thus do not become self-focused,
are proposed to behave prosocially [14]. In contrast, individuals
who are over- regulated are proposed to exhibit proactive
withdrawal, which inhibits prosocial behaviour. Finally, those
who are under-regulated are proposed to be prone to aggression
and thus more likely to exhibit antisocial rather than prosocial
behaviour in an emotionally arousing situation [14].
The model outlined by Eisenberg and Fabes [14] discusses the

degree of emotion regulation (over-, optimal-, or under-regulation)
as important for linking empathy to prosocial behaviour.
However, it is also likely that the type of emotion regulation
strategy used will be important. Both cognitive reappraisal and
expressive suppression represent emotion regulation strategies
[16–18]. Cognitive reappraisal involves reinterpreting an emo-
tional response so that the intensity of its emotional impact is
modified [19]. For example, re-framing a distressing situation as a
situation where someone will benefit from support, as opposed to a
situation where someone is emotionally labile and potentially
unpleasant. Consequently, cognitive reappraisal will enable a
person to focus on strategies to provide constructive helping
behaviours, rather than the aversive qualities of the situation.
Cognitive reappraisal is thought to be a successful emotion
regulation strategy, decreasing negative affect and resulting in an
attenuation of blood pressure [20], [21]. In contrast, expressive
suppression involves actively inhibiting on-going emotion-expres-
sive behaviour [17], [18], [22]. For example, managing an
emotional response to an aversive situation in an effortful manner
such that cognitive resources are consumed. Expressive suppres-
sion is thought to be a suboptimal strategy because it creates a
conflict between heightened emotional arousal and overt expres-
sion of the arousal [17], [18], [23]. These two types of emotion
regulation strategies also appear to lead to different outcomes and
consequences for interpersonal functioning [16], [24–26]. Whilst
cognitive reappraisal is positively related to having closer
relationships with friends, fewer depressive symptoms and greater
life satisfaction, expressive suppression is associated with greater
experience of negative emotions, disturbed interpersonal interac-
tions, avoidance of close relationships and reports of less life
satisfaction and optimism [16], [24–26].
Despite evidence linking empathy to prosocial behaviour (e.g.

[8], [11]) and the proposal that individual differences in emotion
regulation may moderate associations between empathy and
prosocial behaviour [14], [15], this has not, to our knowledge,
been directly examined. Moreover, how distinct emotion regula-
tion strategies might moderate associations between empathy and
prosocial behaviour has not been explored. The majority of studies
suggesting empathy as a motivating factor for prosocial behaviour
have investigated self-reported empathic concern (feeling ‘for’
another person, including compassion and sympathy, e.g. [9],
[10]), rather than self-reported affective empathic responses (the
ability to vicariously experience the emotional experience of
others; or feeling ‘as’ another individual). While these two
processes are no doubt closely related, there is a lack of empirical
data regarding how feeling in a similar emotional state to another
may motivate prosocial behaviour. In addition, self-reported
cognitive empathic ability (i.e. the ability to position oneself ‘in
another person’s shoes’) might also relate to prosocial behaviour,
but compared to the role of affective empathic processes

motivating empathy this has received relatively little attention to
date (c.f. [11], [12]).
On the basis of previous research and theory (e.g. [3], [10],

[12]), we predicted that both dispositional cognitive and affective
components of empathy would be associated with increased
prosocial tendencies, but the amount of variance in prosocial
behaviour explained by the two types of empathy may be unequal.
We also tested interactions between the components of empathy
(affective and cognitive) and types of emotion regulation strategy
(cognitive reappraisal and expressive suppression) to examine
whether individual differences in emotion regulation strategy
moderate associations between empathy and prosocial behaviour.

Methods

Participants
One-hundred-and-ten healthy adults (50% males; 50% females)

aged 18–33 (M=21.9, SD=3.7) were recruited through university
participant databases (comprised of undergraduate and postgrad-
uate students as well as non-student community members) and
through online advertisement. Exclusion criteria included previous
or current neurological or psychiatric disorder (as reported by the
participants) and non-normal or non-corrected to normal vision.
Participants were compensated at a rate of £8 per hour.

Ethics Statement
All participants provided written informed consent and the

study was approved by the University College London Clinical,
Educational and Health Psychology Research Ethics committee.

Procedure
Participants completed questionnaires to assess empathy,

emotion regulation and prosocial tendencies as part of a larger
battery of tasks and questionnaires.

Questionnaires
Questionnaire of Cognitive and Affective Empathy

(QCAE; [27]). The QCAE, is a multidimensional empathy
questionnaire devised to measure the ability to comprehend the
emotions of another (cognitive empathy) as well as the ability to
vicariously experience the emotional experience of others (affective
empathy). In the development of the QCAE, two raters selected
items from other well-validated and commonly used empathy
measures (e.g. Empathy Quotient; [28], Hogan Empathy Scale;
[29], the Empathy subscale of the Impulsiveness-Venturesome-
ness-Empathy Inventory; [30], and the IRI; [9]) if they were
deemed to measure affective or cognitive empathy. Items from
these scales deemed to measure other processes (e.g. sympathy)
were not included. A Principal Component Analysis of the selected
items revealed five components (or sub-scales), further organized
in two dimensions assessing cognitive and affective empathy. The
cognitive empathy dimension comprises subscales measuring
perspective-taking (e.g. ‘‘I am good at predicting how someone
will feel’’) and Online simulation (e.g. ‘‘Before criticizing
somebody, I try to imagine how I would feel if I was in their
place.’’). The affective subscales assess emotion contagion (e.g.
‘‘People I am with have a strong influence on my mood’’);
peripheral responsivity (e.g. ‘‘I usually stay emotionally detached
when watching a film’’); and proximal responsivity (e.g. ‘‘I often
get emotionally involved with my friends’ problems’’). Items are
rated on a 4-point scale from ‘‘strongly disagree’’ to ‘‘strongly
agree’’. The QCAE has good validity and internal consistency
[27]. In the present study Cronbach’s alpha for cognitive empathy
subscale .87; affective empathy subscale .88).

Empathy, Emotion Regulation and Prosocial Behaviour

PLOS ONE | www.plosone.org 2 May 2014 | Volume 9 | Issue 5 | e96555



Emotion Regulation Questionnaire (ERQ; [19]). The
ERQ is comprised of two dimensions that assess either reappraisal
or suppression regulation strategies. The reappraisal dimension
contains items such as ‘‘I control my emotions by changing the
way I think about the situation I’m in’’ and the suppression
dimension has items such as ‘‘I control my emotions by not
expressing them’’. Items are rated on a 7-point scale from
‘‘Strongly disagree’’ to ‘‘Strongly agree’’. The ERQ has good
construct validity and internal consistency ([19]; in the present
study Cronbach’s alpha for reappraisal subscale. 73; suppression
subscale. 87).

Prosocial Tendencies Measure (PTM; [31]). The PTM is
a 23-item self-report measure that assesses various prosocial
tendencies such as compliant prosocial tendencies (e.g. ‘‘When
people ask me to help them, I don’t hesitate’’), dire prosocial
tendencies (e.g. ‘‘I tend to help people who hurt themselves badly’’)
and emotional prosocial tendencies (e.g. ‘‘I tend to help others
particularly when they are emotionally distressed’’). Items are
rated on a 5-point scale from ‘‘Does not describe me at all’’ to
‘‘Describes me greatly’’. The PTM has good construct validity and
internal consistency ([31]; in the present study Cronbach’s alpha
.86).

Data Analyses
Bivariate correlations were corrected for multiple comparisons

using Benjamini & Hochberg False Discovery Rate [32].
Corrected p-values are reported. Steiger’s Z tests (two-tailed) were
conducted to test if the different types of empathy (i.e. affective and
cognitive empathy) and the different types of emotion regulation
strategies (i.e. cognitive reappraisal and expressive suppression)
presented differential correlation coefficients with prosocial
tendencies.
Moderation analyses were then conducted to investigate

whether the affective or cognitive empathy subscales interacted
with either types of emotion regulation (reappraisal or suppression)
to predict prosocial tendencies. All predictor variables were mean
centred prior to analyses. Separate regression models using either
the affective empathy subscale of the QCAE (QCAE-affective
empathy) or the cognitive empathy subscale of the QCAE (QCAE-
cognitive empathy) at the first stage; the reappraisal subscale of the
ERQ (ERQ-reappraisal) or the suppression subscale of the ERQ
(ERQ-suppression) at the second stage; the interaction term
between these variables at the third stage were run. Consequently,
four regression models were examined. Interaction effects were
tested in SPSS using PROCESS [33]. Significant interactions were
followed up by examining the conditional effect of empathy on
prosocial tendencies at 1 standard deviation (SD) below the mean,
at the mean, and 1 SD above the mean of emotion regulation.

Results

Bivariate correlations between questionnaire measures of
empathy, emotion regulation and prosocial behaviour were
examined (see Table 1 for a full list of correlations). QCAE-
affective empathy and QCAE-cognitive empathy were both
positively associated with prosocial tendencies (r = .36, p,.001 &
r= .43, p,.001 respectively) and these correlations were not
significantly different (z =2.80, p..05). ERQ-reappraisal was not
significantly correlated with prosocial tendencies (r = .11, p = .30).
ERQ-suppression was significantly negatively correlated with
prosocial tendencies (r =2.27, p = .006). These two correlations
were significantly different (Z= 2.69, p,.05).
To examine whether the associations between affective and

cognitive empathy and prosocial behaviour were explained by

joint variance between the two components or whether they
uniquely predicted prosocial tendencies we ran an additional
multiple regression analysis. There were unique associations
between each empathy component and prosocial tendencies
(affective empathy, t = 2.29, p= .024; cognitive empathy,
t = 3.67, p,.001).
For the first regression model we entered QCAE-affective

empathy (first stage), ERQ-reappraisal (second stage), and their
interaction term [QCAE-affective empathy6ERQ-reappraisal]
(third stage) as predictors of prosocial tendencies. This analysis
revealed a significant positive association between QCAE-affective
empathy and prosocial tendencies (t = 3.98, p,.001) but not
between reappraisal and prosocial tendencies (t = .57, p = .570).
Interestingly, the interaction between QCAE-affective empathy
and ERQ-reappraisal was significant (t =22.39, p= .019). At
1 SD below the mean on ERQ-reappraisal there was a significant
positive association between QCAE-affective empathy and
prosocial tendencies (t = 4.56, p,.001). There was also a
significant association at the mean (t = 3.27, p = .002). However
at 1 SD above the mean on ERQ-reappraisal the association
between QCAE-affective empathy and prosocial tendencies was
non-significant (t = 1.08, p = .282) (see Figure 1). In other words,
affective empathy was associated with prosocial behaviour for
those with low and average levels of cognitive reappraisal (with the
steepest slope for individuals with lowest level of cognitive
appraisal), but those with high levels of cognitive reappraisal
presented similar levels of prosocial behaviour regardless of level of
affective empathy.
For the second regression model, QCAE-cognitive empathy,

ERQ-reappraisal and their interaction term were entered as
predictors of prosocial tendencies. This analysis showed a
significant positive association between QCAE-cognitive empathy
and prosocial tendencies (t = 5.00, p,.001) but not between
reappraisal and prosocial tendencies (t =2.39, p = .699). The
interaction between QCAE-cognitive empathy and ERQ-reap-
praisal was not significant (t =21.18, p = .243). This pattern of
findings suggests that QCAE-cognitive empathy was positively
associated with prosocial tendencies regardless of level of
reappraisal emotional regulation strategies.
We also examined the interaction between the two QCAE

subscales and ERQ-suppression and their association with
prosocial tendencies. These two regression models showed that
both QCAE-AE and QCAE-CE were positively associated with
prosocial tendencies (t = 3.98, p,.001 and t = 5.00, p,.001) but
ERQ-suppression was not significantly associated with prosocial
tendencies in either model (t =21.00, p= .32 and t =21.36,
p = .18). Neither of the interactions between QCAE-affective
empathy or QCAE-cognitive empathy and ERQ-suppression were
significant (both ps..05).

Discussion

The present study investigated associations between empathy
and prosocial behaviour, and whether different types of emotion
regulation strategy moderate associations between empathy and
prosocial behaviour. We found that both affective and cognitive
components of empathy were positively and uniquely associated
with self-reported prosocial behaviour. Cognitive reappraisal, but
not expressive suppression, played a role in moderating the
association between empathy and prosocial behaviour. Specifical-
ly, level of cognitive reappraisal moderated the relationship
between affective empathy and prosocial behaviour.
The finding that both affective and cognitive empathy are

associated with prosocial behaviour supports previous studies
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suggesting that empathy is a key motivating factor for prosocial
behaviour (e.g. [3], [8] [10], [12], [15]). Interestingly, associations
between affective and cognitive empathy and prosocial behaviour
were not significantly different. Additional analyses showed that
cognitive and affective empathy uniquely predicted prosocial

behaviour, suggesting that both empathy components play a role
in motivating prosocial behaviour. Consequently, whilst it is likely
that these two components will often work together in everyday life
as they are moderately correlated (e.g. [27], [34]), our finding
raises the possibility that having high levels of just one component

Table 1. Correlations between questionnaire measures.

QCAE: CE QCAE: AE PTM total ERQ: reappraisal

QCAE: AE .417**

PTM total .433** .358**

ERQ: reappraisal .333** .173 .113

ERQ: suppression 2.360** 2.529** 2.266** 2.089

Abbreviations: QCAE-AE, Questionnaire of Cognitive and Affective Empathy Affective Empathy subscale; QCAE-CE, Questionnaire of Cognitive and Affective Empathy
Cognitive Empathy subscale; ERQ, Emotion Regulation Questionnaire; PTM, Prosocial Tendencies Measure.
*p,.05.
**p,.01.
doi:10.1371/journal.pone.0096555.t001

Figure 1. Moderation of the association between affective empathy and prosocial tendencies by cognitive reappraisal.
doi:10.1371/journal.pone.0096555.g001
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could motivate prosocial behaviour, but this needs to be
investigated further.
We also observed that expressive suppression was negatively

associated with prosocial tendencies. This pattern fits with
previous studies suggesting that expressive suppression is a
maladaptive emotion regulation strategy [16], [24–26]. Our
results extend these findings by suggesting that in, addition to
being related to greater experience of negative emotions,
avoidance of close relationships and reports of less life satisfaction
[16], [24–26], expressive suppression is also associated with less
self-reported prosocial tendencies.
The type of emotion regulation strategy was important for

moderating associations between empathy and prosocial tenden-
cies; cognitive reappraisal moderated associations between affec-
tive empathy and prosocial behaviour whilst expression suppres-
sion did not. In addition, the degree of emotion regulation
interacted with the degree of empathy to predict prosocial
behaviour. Affective empathy was positively associated with
prosocial behaviour for participants at low and average levels of
cognitive reappraisal. This positive association was not evident in
participants who reported a high tendency to reappraise. Instead,
these individuals had similar levels of prosocial tendencies
regardless of level of affective empathy.
Consequently, although empathy is generally assumed to have a

significant positive association with prosocial behaviour [3], [4]
this may not be the case for all aspects of empathic processing. Our
finding suggests that affective empathy is an important motivating
factor for prosocial behaviour only for particular individuals,
which fits with accounts considering a multitude of factors
involved in motivating prosocial behaviour [5]. One explanation
is that those with high tendency to reappraise are (at least
according to their self-report) more able to change their strategy
and viewpoint when evaluating the situation at hand. This
capacity may allow one to more readily deduce the desirability
of prosocial behaviour even without the experience of the affective
components empathy. Whilst we observed a significant modera-
tion of cognitive reappraisal on the association between affective
empathy and prosocial behaviour, moderation effects were not
evident for associations between cognitive empathy and prosocial
behaviour. This lack of association could be because of the overlap
in processes involved in cognitive empathy and those involved in
cognitive reappraisal. Indeed self-reports of cognitive empathy and
cognitive reappraisal were positively correlated in this sample.
Processes such as shifting perspective or attention are common to
both cognitive empathy and reappraisal. In terms of increasing
prosocial behaviour in those individuals high in reappraisal, it is
possible that promoting cognitive empathy might elevate the
motivation of these individuals to behave prosocially.
Interestingly, we also found that those with the highest levels of

self-reported prosocial behaviour were individuals low in reap-
praisal but high in affective empathy. Given that cognitive
reappraisal is positively related to interpersonal functioning [16],
[24–26] and prosocial behaviour is generally seen as a positive
aspect of interpersonal functioning this result may seem somewhat
surprising. In addition, the model proposed by Eisenberg & Fabes
[14] suggests that those high in experiences of emotional intensity
and low in emotion regulation would not manage appropriate
prosocial responding and might even display antisocial/aggressive

behaviour in response to emotional arousal. However, it has been
suggested that high levels of prosocial and altruistic behaviour are
not always beneficial and there are cases when acts that are
subjectively prosocial can be, to the observer, objectively unhelpful
[35]. Future research needs to determine whether the self-reported
prosocial behaviours by individuals with high affective empathy
and low cognitive appraisal capacities are perceived as objectively
helpful/prosocial by the observer. Items on the prosocial
tendencies questionnaire assess the self-reported tendency to
engage in prosocial behaviours, rather than the quality of them.
Future studies could include experimental and/or observational
measures to examine this. The types of prosocial responses of
individuals high in affective empathy and low in cognitive
reappraisal could be compared to those high in cognitive
reappraisal and high in affective empathy. Another promising
avenue for future research is to investigate empathy components
and emotion regulation strategies in tandem in clinical populations
thought to be characterised by atypical empathy and emotion
regulation. For example, autism spectrum disorders, psychopathy
and alexithymia have all been associated with both atypical
empathy and emotion regulation [36], [37]. Finally, the role of
empathic concern, i.e. sympathy, in motivating prosocial behav-
iour has recently been studied theoretically by mathematical
models [38], [39]. These models suggest that the development of
empathic concern can lead to development of cooperation in
economic games (termed evolutionary games by the authors).
Consequently, such models suggest potential mathematical prin-
ciples that could be applied in future studies to model how
empathy might lead to prosocial behaviour. In parallel, our
findings also suggest the potential inclusion of parameters indexing
emotion regulation strategies in future models as an avenue of
further research.

Conclusion

Overall, our findings suggest that both affective and cognitive
empathy are motivating factors for prosocial behaviour. However,
empathy and emotion regulation can also interact to predict
different levels of self-reported prosocial behaviour such that there
is not always a significant positive association between affective
empathy and prosocial behaviour. Our results could help to
account for why associations between empathy and prosocial
behaviour can sometimes be modest or weak. Our results also
suggest that further investigations of the type of prosocial
behaviours exhibited by individuals with varying levels of empathy
and emotion regulation could be relevant as we try to understand
how empathy might motivate prosocial ways of interacting with
others.
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Summary

Children with conduct problems (CP) persistently violate
others’ rights and represent a considerable societal cost
[1]. These children also display atypical empathic responses
to others’ distress [2], which may partly account for their
violent and antisocial behavior. Callous traits index lack of
empathy in these children and confer risk for adult psychop-
athy [3]. Investigating neural responses to others’ pain is an
ecologically valid method to probe empathic processing [4],
but studies in children with CP have been inconclusive [5, 6].
Using functional magnetic resonance imaging (fMRI), we
measured neural responses to pictures of others in pain
(versus no pain) in a large sample of children with CP and
matched controls. Relative to controls, children with CP
showed reduced blood oxygen level-dependent responses
to others’ pain in bilateral anterior insula (AI), anterior cingu-
late cortex (ACC), and inferior frontal gyrus, regions associ-
ated with empathy for pain in previous studies [7, 8]. In the
CP group, callous traits were negatively associated with
responses to others’ pain in AI and ACC. We conclude that
children with CP have atypical neural responses to others’
pain. The negative association between callous traits and
AI/ACC response could reflect an early neurobiological
marker indexing risk for empathic deficits seen in adult
psychopathy.

Results

Conduct problems (CP) in children include aggression, theft,
and cruelty to others [9]. Children with CP are considerably
more likely to engage in antisocial behavior in adulthood
than typically developing children and are at risk for devel-
oping adult psychopathy [3]. Antisocial behaviors displayed
by children with CP may reflect atypical empathic responses
to others’ suffering [2]. Empathy is the capacity to understand
and resonate with the affective experience of another [10] and
plays a key role in inhibiting aggression and promoting proso-
cial behavior [11, 12]. Callous and unemotional (CU) traits
index low empathy in children with CP, as well as diminished
guilt, callous use of others, and shallow emotions [13, 14].

One method for investigating neural processing of empathy
is to measure responses to others’ pain [4]. Delineating these
responses in children with CP is of particular interest because
this group often inflicts pain on others [1]. fMRI studies in
healthy populations have identified a network of brain regions
activated by both the experience and observation of pain. This
network includes sensory regions such as somatosensory cor-
tex, affective-motivational regions (linked to processing
emotional responses to pain), such as anterior insula (AI) and
anterior cingulate cortex (ACC), and cognitive-regulatory
regions, such as inferior frontal gyrus (IFG) [7, 8, 10, 15, 16].
Atypical function and structure in several of these regions,

including AI, ACC, and prefrontal cortex, have been implicated
in the pathophysiology of childhood CP and adult psychopa-
thy [17, 18]. However, to date, only two studies have investi-
gated neural processing of empathic pain in children with CP
[5, 6], with inconclusive results. Decety et al. [6] found that,
compared with controls, children with CP showed increased
neural responses to others in pain in regions including the
insula, anterior midcingulate, striatum, and amygdala. Aggres-
sive CP symptoms were positively correlated with IFG, cingu-
late cortex, amygdala, and periaqueductal gray responses.
However, CU traits were not measured, and the CP sample
was small (n = 8), making replication and extension of this
work important. Another study measured event-related poten-
tials and found reduced responses to others’ pain in children
with CP and high levels of CU traits [5]. These findings provide
preliminary evidence that children with CP show atypical
responses to others’ pain, which may be partially driven by
CU traits.
To test the hypothesis that children with CP would show

atypical neural responses to others’ pain, we recorded fMRI
responses to pictures of others’ hands and feet either in pain
or in no pain (from [19]) in a large sample of children with CP
(n = 37) and controls (n = 18). Groups were matched for IQ,
age, socioeconomic status, and ethnicity. Participants per-
formed an incidental hand/foot judgment task to ensure they
were attending to the stimuli. We also acquired parent and
teacher ratings of CU traits using the Inventory of Callous-
Unemotional Traits (ICU) [20], a standard research measure
comprising callous, uncaring, and unemotional subscales.
On the basis of previous research suggesting reduced
empathy in children with CP [2, 13, 14], we predicted reduced
neural responses in three regions of interest (ROI): AI, ACC,
and IFG, all linked to empathy for pain in previous studies
[7, 8, 10]. We further predicted that callous traits would be
negatively associated with AI and ACC response, because
response in these regions has been related to affective
aspects of empathy and callous traits in particular index
poor empathy.
Results from whole-brain analyses for the main effect of

Pain > No Pain (and the reverse) and the group by condition
interaction are displayed in Table S1 available online (see
also Figure S1 and Supplemental Discussion). Main effects
were found in regions previously associated with empathy for
pain and largely replicated a previous study using the same
stimuli [19]. ROI analyses for Pain > No Pain revealed the pre-
dicted pattern of reduced response in theCP relative to control

5These authors contributed equally to this work
*Correspondence: e.viding@ucl.ac.uk

http://dx.doi.org/10.1016/j.cub.2013.04.018
http://dx.doi.org/10.1016/j.cub.2013.04.018
mailto:e.viding@ucl.ac.uk
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cub.2013.04.018&domain=pdf


group in bilateral AI (t[53] = 2.08, p = 0.02), ACC (t[53] = 1.66, p =
0.05), and IFG (t[53] = 2.45, p < 0.01) (see Experimental Proce-
dures and Supplementary Experimental Procedures for full
details of analyses, including ROI definition and statistical
thresholds). Levene’s test indicated that variance did not differ
between groups for any ROI (p values > 0.20).

We then examined our second hypothesis, that callous traits
would be associated with reduced ROI responses to Pain > No
Pain within the CP group. On the basis of previous findings
showing that CP symptoms and CU traits exert suppressor
effects on one another (see [21, 22]), we conducted multiple
regressions to investigate unique contributions of ICU sub-
scales (callous, uncaring, unemotional) and CP symptoms to
neural responses in our ROIs (see Table S2 for bivariate corre-
lations). One participant was excluded from these analyses
due to missing data.

In AI, a significant negative relationship was found between
unique variance associated with callous traits and neural
response (b = 20.625, p = 0.029) (Figure 1). Neither CP
symptoms nor uncaring or unemotional subscales were asso-
ciated with AI response (all p values > 0.10). In ACC, a signifi-
cant negative relationship was found between unique variance
associated with callous traits and neural response (b =20.729,
p = 0.010), whereas a positive relationship was found between
unique variance associated with CP symptom scores and
neural response (b = 0.485, p = 0.019) (Figure 2). No relation-
ships were found in relation to the uncaring or unemotional
subscale scores (p values > 0.24). In IFG, no associations
with unique variance were found. To investigate potential
effects of commonly comorbid attention-deficit hyperactivity,
generalized anxiety, and depression symptoms, we included
these variables in follow-up regression analyses. All significant
results remained at p < 0.05, and none of these variables pre-
dicted AI or ACC response (all p values > 0.25). In addition,
when age was included in follow-up regression analyses, all
results remained significant at p < 0.05.

Behavioral data from the incidental hand/foot judgment
task showed a main effect of condition for both reaction times
(F[1,53] = 71.85, p < 0.001) and errors (F[1,53] = 6.40, p = 0.014),
with significantly slower RTs and greater error rates in the pain

condition (mean RT = 910 ms, SD = 140 ms; mean % error =
6.82, SD = 5.05) compared with no pain (mean RT = 863 ms,
SD = 130 ms; mean % error = 5.63, SD = 4.55). We therefore
reran all regression models, controlling for RT and error-rate
difference scores (pain 2 no pain) to exclude the possibility
that differing cognitive conflict demands could account for
our findings. All results remained significant at p < 0.05. RT
and error data showed no main effects of group or interaction
between group and condition (see section ‘‘Behavioral Data’’
in Supplemental Results).

Discussion

We demonstrate reduced neural responses to others’ pain in
children with conduct problems compared with matched con-
trols in three regions (bilateral AI, ACC, and IFG) associated
with affective-motivational and cognitive-regulatory empathic
processing. This is the first fMRI study to investigate empathy
for pain processing in a large sample of children with CP, using
a well-controlled task matched for visual and social content.
We also show a negative association between callous traits
and responses in AI and ACC, regions related to unpleasant
emotions generated in response to others’ pain [7, 8].
Meta-analyses indicate that AI and ACC are consistently

activated during empathy for pain and have a close functional
relationship [7, 8, 16]. AI plays an important role in sensory
integration [23] and interoceptive awareness [24] and may be
involved in awareness of unpleasant feelings during empathy
for pain [16]. Interestingly, abnormal AI function and structure
have frequently been reported in both children with CP and in
adults with psychopathy [6, 21, 25, 26]. However, our observa-
tion of reducedAI response is at oddswith one study [6], which
found increased AI response in children with CP. This could be
because in that study [6], pain caused by accident was con-
trasted with pain caused by others, whereas our pain and
no-pain conditions were matched for agency. Increased AI
reactivity [6] may reflect differences in agency processing
rather than pain processing per se. Differences in the samples
between the two studies (e.g., levels of callous traits) may also
have contributed to the divergent findings. Our data provide
additional support for the view that atypical AI function repre-
sents a neural marker of disrupted empathic processing in CP
and that AI hypoactivity relates to differences in processing
others’ pain.
It has been suggested that ACC mediates responses to

unpleasant negative emotion generated in AI [16]. However,
the role of ACC in empathy may be more domain general
than that of AI, given its involvement in general information
processing [19, 27]. Like AI, atypical ACC function in CP has
been reported previously, again with mixed findings [6, 28].
One study reported reduced ACC response to negative pic-
tures in CP [28], whereas another found greater ACC response
in children with CP to videos of others in pain versus no pain
[6]. Our finding provides converging evidence that ACC func-
tion is atypical in CP and in particular that there is hypoactivity
of response during empathy for pain.
The pattern of reduced IFG response is of interest, given the

known involvement of this region in emotion regulation and
pain suppression [15, 29, 30] as well as in empathy tasks
[7, 8]. It is possible that fewer regulatory resources were
required, given that responses in other regions processing
empathy for pain were hypoactive. It could also be that the
result reflects known deficiencies in emotion regulation in chil-
dren with CP [31].

Figure 1. Partial Regression Plot for the CP Group Showing a Negative
Relationship between Bilateral AI Response to Pain > No Pain and Unique
Variance Associated with ICU-Callous Traits

Partial regression plot for the CP group (n = 36) shows a negative relation-
ship between bilateral AI response to Pain > No Pain and unique variance
associated with ICU-callous traits after controlling for CASI-CD, ICU-
unemotional, and ICU-uncaring scores. Inset shows horizontal section
(z = 0) of bilateral AI ROI overlaid on an average T1 structural image from
all participants. Bilateral AI response was calculated by averaging left and
right AI response. P and r reflect partial correlation coefficients.

Current Biology Vol 23 No 10
902



To address our second aim, we explored dimensional con-
tributions of CU traits and CP symptoms to ROI responses.
As predicted, unique variance associated with callous traits
was negatively related to AI and ACC response. Because
the callous subscale of the ICU contains items reflecting
poor empathy in everyday life, our findings provide evidence
of convergent validity between questionnaire and neural mea-
sures of empathy in CP. Moreover, callousness is an impor-
tant feature of adult psychopathy [32], and childhood CU
traits predict adult psychopathy [3]. Blunted neural responses
to pain in children with higher levels of callous traits may
characterize a developmental vulnerability to serious antiso-
cial behavior; for a minority, such a pattern may interact
with other vulnerability factors to increase risk of adult
psychopathy.

Interestingly, CP symptoms were positively correlated with
ACC response. These results complement recent findings
[21] showing opposing unique contributions of CU traits and
CP symptoms to neural response in the amygdala. Heteroge-
neity in CP may help to explain inconsistencies across previ-
ous studies reporting both increased and decreased ACC
responses in CP [6, 28]. Importantly, differences in cognitive
conflict (as indexed by RT and error differences between
pain and no-pain conditions) did not account for the ACC
findings. More generally, these data highlight that children
with CP are a heterogeneous group with varying neurocogni-
tive vulnerabilities, with callous traits of particular importance
in predicting empathic dysfunction.

Limitations of the current study include the use of a research
diagnosis of CP and a focus on males. Replication in a clini-
cally diagnosed sample will be important, as will investigation
of potential gender differences. Additionally, our task did not
allow us to explore the function of component processes
within the empathy for pain response in CP. Future studies
should address whether there is a specific aspect of this
response that is atypical in CP, e.g., basic arousal, intero-
ceptive processing, or higher-level emotional responses to
others’ suffering. Finally, replication and extension of the
current study is required. In particular, longitudinal studies
documenting the development and persistence of reduced
neural responses to others’ pain in children with CP would
be informative.

Despite these limitations, our data extend understanding of
the neural basis of CP and empathy in several important ways.

To our knowledge, this is the first study to investigate
empathic pain processing in a large sample of children with
CP compared with controls on a task matched for visual and
social content. First, we show reduced neural responses to
others’ pain in children with CP. Second, we show that callous
traits in particular may underlie atypical neural responses to
others’ pain in CP, which may represent an early neurobiolog-
ical marker for later psychopathy. Third, the finding that
callous traits and CP symptoms show opposing relationships
with ACC response suggests a potential explanation for mixed
reports of hyperactivation [6] and hypoactivation [28] of ACC
to negative affective stimuli in CP. Clinically, our data may
have consequences for empathy training implementation
(e.g., in relation to victim empathy [33]) in children with high
levels of callous traits. Systematic evaluation of training out-
comes should take callous traits into account. It remains an
empirical question whether empathic responding can be
normalized in children with CP (and varying levels of callous
traits) or whether behavioral equivalence is better achieved
through compensatory strategies that leverage spared cogni-
tive processes [13, 14].

Experimental Procedures

Participants
Right-handed boys aged 10–16 (mean [SD]: controls = 13.68 [1.68];
CPs = 14.05 [1.69]) were recruited from the community via advertisements
and local schools. Screening questionnaires were completed by 143 par-
ents and teachers. CP was assessed using the Child and Adolescent Symp-
tom Inventory (CASI-4R) [34] Conduct Disorder scale (CASI-CD). CASI-CD
cutoff scores for inclusion in the CP group were: parent report = 4+ (ages
10–12) and 3+ (ages 12–16) or teacher report = 3+ (ages 10–12), 4+ (ages
12–14), and 6+ (ages 15–16). These scores are associated with a clinical
diagnosis of CD [35]. CU traits were assessed using the Inventory of
Callous-Unemotional Traits (ICU) [20]. Total scores for the three ICU sub-
scales (callous, uncaring, and unemotional) were calculated [20]. Both
CASI-CD and ICU were scored by taking the highest ratings from either
the parent or teacher questionnaire for each item [36]. For two children
with CP, only parent ratings were available. The Strengths and Difficulties
Questionnaire (SDQ [37]) was used to screen for psychopathology (hyperac-
tivity, CP, emotional symptoms, peer problems) in the controls. All control
participants scored below the CP group median on the ICU and in the
normal range on the CASI-CD and SDQ. For both groups, exclusion criteria
included previous diagnosis of neurological or psychotic disorder, including
autism spectrum disorders, and current prescription for psychiatric medica-
tion (all children were unmedicated). Written informed consent from parents
and written assent from participants was obtained.

Figure 2. Partial Regression Plots Showing Associations with ACC Response to Pain > No Pain in the CP Group

Partial regression plots showing associations with ACC response to Pain > No Pain in the CP group (n = 36). Left: negative relationship between ACC
response and unique variance associated with ICU-callous traits, after controlling for CASI-CD, ICU-unemotional, and ICU-uncaring scores. Right: positive
relationship between ACC response and unique variance associated with CASI-CD scores, after controlling for ICU-callous, unemotional, and uncaring
subscale scores. Insets: sagittal section (x = 0) of ACC ROI overlaid on an average T1 structural image from all participants. Bilateral ACC response
was calculated by averaging left and right ACC response. P and r reflect partial correlation coefficients.
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Fifty-eight children were scanned (39 CPs, 19 controls), with usable data
from 37 CPs and 18 controls. Exclusions were due to scanner refusal (1 CP)
and teacher questionnaire data obtained after scanning indicating that the
child no longer met group criteria (1 CP, 1 control). Groups were matched
on IQ, age, ethnicity, and socioeconomic status (Table 1).

Experimental Task
Stimuli were 192 digital photographs showing another person’s hand or foot
in painful or nonpainful situations [19]. ‘‘Pain’’ and ‘‘No Pain’’ stimuli (96 pic-
tures per condition) were matched on physical properties and were
validated as eliciting empathy-related activations in a previous study [19].
Stimuli were presented in pain and no-pain blocks lasting 20 s and consist-
ing of eight images, each displayed for 2,000 mswith a 500 ms interstimulus
interval. Blocks were pseudorandomized, with the same block type never
presented more than twice in a row. A fixation cross was presented for
15 s every six blocks.
To ensure attention, participants performed a hand/foot key press judg-

ment on every trial. Participants practiced outside the scanner with painful
and nonpainful images not seen in the main experiment, until R80%
accuracy was reached.

Psychometric and Questionnaire Measures
Participants completed theWechsler Abbreviated Scale of Intelligence two-
subtest version [38] and the Alcohol and Drug Use Disorders Identification
Tests [39, 40]. A parent or guardian completed the CASI-4R scales for symp-
toms commonly comorbid with CP, including ADHD, generalized anxiety
disorder, and major depressive episode (Table 1).

fMRI Data Acquisition and Analysis
ASiemens Avanto 1.5 TMRI scannerwas used to acquire 189multislice T2*-
weighted echo planar volumes with blood oxygenation level-dependent

contrast (one run of 9 min). The sequence was based on Weiskopf et al.
[41] (see Supplemental Information for acquisition parameters, preprocess-
ing pipeline, and procedures for removing data corrupted by participant
motion). A 5.5 min T1-weighted MPRAGE scan was acquired for coregistra-
tion, normalization, andoverlay, andfieldmapswereacquired for unwarping.
Data were analyzed using Statistical Parametric Mapping (SPM8; http://
www.fil.ion.ucl.ac.uk/spm).
After standard preprocessing, a block analysis compared neural activity

associated with pain and no-pain conditions. Regressors included Pain
and No Pain (blocks of 20 s duration) and fixation (15 s), modeled as boxcar
functions convolved with a canonical hemodynamic response function. The
six realignment parameters were also modeled as effects of no interest.
At the first level, Pain > No Pain and No Pain > Pain contrasts were

created. Contrast images were entered into second-level analyses, where
group (CP versus control) served as a between-subjects variable in inde-
pendent sample t tests. Main effects are reported at p < 0.05, family-wise
error (FWE) corrected across the whole brain, whereas regions from a
whole-brain analysis showing a condition by group interaction are pre-
sented at p < 0.005, k R 10, uncorrected (no interaction results survived
FWE correction across the whole brain) (Table S1). We investigated the
condition by group interaction in three a priori regions of interest (bilateral
AI, ACC, and IFG). ROIs were anatomically defined using masks from the
automated anatomical labeling atlas [42]. The MarsBaR toolbox (http://
marsbar.sourceforge.net) was used to calculate mean contrast estimates
across bilateral ROIs. Group differenceswere assessed at a standard statis-
tical threshold of p < 0.05 [43, 44].

Supplemental Information

Supplemental Information includes one figure, two tables, Supplemental
Results, Supplemental Discussion, and Supplemental Experimental Proce-
dures and can be foundwith this article online at http://dx.doi.org/10.1016/j.
cub.2013.04.018.
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Encoding of Vicarious Reward Prediction in Anterior
Cingulate Cortex and Relationship with Trait Empathy

X Patricia. L. Lockwood,1 Matthew A.J. Apps,2,3 X Jonathan P. Roiser,4* and Essi Viding1*
1Division of Psychology and Language Sciences, University College London, London WC1H 0AP, United Kingdom, 2Nuffield Department of Clinical
Neuroscience, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom, 3Department of Experimental Psychology, University of
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Empathy—the capacity to understand and resonate with the experiences of others— can depend on the ability to predict when others are
likely to receive rewards. However, although a plethora of research has examined the neural basis of predictions about the likelihood of
receiving rewards ourselves, very little is known about the mechanisms that underpin variability in vicarious reward prediction. Human
neuroimaging and nonhuman primate studies suggest that a subregion of the anterior cingulate cortex in the gyrus (ACCg) is engaged
when others receive rewards. Does the ACCg show specialization for processing predictions about others’ rewards and not one’s own and
does this specialization vary with empathic abilities? We examined hemodynamic responses in the human brain time-locked to cues that
were predictive of a high or low probability of a reward either for the subject themselves or another person. We found that the ACCg
robustly signaled the likelihood of a reward being delivered to another. In addition, ACCg response significantly covaried with trait
emotion contagion, a necessary foundation for empathizing with other individuals. In individuals high in emotion contagion, the ACCg
was specialized for processing others’ rewards exclusively, but for those low in emotion contagion, this region also responded to infor-
mation about the subject’s own rewards. Our results are the first to show that the ACCg signals probabilistic predictions about rewards for
other people and that the substantial individual variability in the degree to which the ACCg is specialized for processing others’ rewards
is related to trait empathy.

Key words: anterior cingulate; emotion contagion; empathy; fMRI; reward prediction; social reward

Introduction
The successful prediction of future rewards is fundamental for
adaptive behavior. The neural mechanisms that underpin reward
prediction for oneself are becoming increasingly well understood
(Schultz, 2013). However, during social interactions, stimuli are

often predictors of rewards for others, not exclusively ourselves.
Effectively cooperating, competing, or empathizing with another
requires the ability to compute the value of stimuli that predict
rewards for others (Ruff and Fehr, 2014). However, very little is
known about how vicarious reward predictions are processed in
the brain. Moreover, there is a dearth of knowledge regarding
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Significance Statement

Successfully cooperating, competing, or empathizing with others can depend on our ability to predict when others are going to get
something rewarding. Although many studies have examined how the brain processes rewards we will get ourselves, very little is
known about vicarious reward processing. Here, we show that a subregion of the anterior cingulate cortex in the gyrus (ACCg)
shows a degree of specialization for processing others’ versus one’s own rewards. However, the degree to which the ACCg is
specialized varies with people’s ability to empathize with others. This new insight into how vicarious rewards are processed in the
brain and vary with empathy may be key for understanding disorders of social behavior, including psychopathy and autism.
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how individual differences in social functioning are related to
neural response to others’ reward.

The dorsal anterior cingulate cortex (dACC) signals predictive
information about reward value, including the probability and
magnitude of future rewards (Shidara and Richmond, 2002; Rog-
ers et al., 2004; Sallet et al., 2007). This region is also engaged
when processing social information (Behrens et al., 2008; Lamm
et al., 2011; Gabay et al., 2014). Recently, a model of the dACC
was proposed that unifies these different facets of its function
(Apps et al., 2013b). This model posits that a subregion of the
ACC in the gyrus (ACCg), lying in the anterior portions of the
midcingulate cortex (areas 24a!/24b!; Vogt et al., 1995), is sensi-
tive to processing information about rewards for other people,
including probabilistic predictions about rewards that others are
likely to receive (Apps et al., 2013b). Several lines of evidence
support this model. First, there are neurons in the ACCg that
respond when a monkey views cues indicating that another mon-
key will receive a reward (Chang et al., 2013) neurons and in the
dACC that respond when monkeys predict the decisions of a
conspecific in an economic game (Haroush and Williams, 2015).
Second, lesions to the ACCg reduce the value assigned to social
stimuli, leaving the processing of nonsocial stimuli intact (Rude-
beck et al., 2006). Third, hemodynamic responses in this region
vary with the net-value of rewards received by others, the volatil-
ity of social information, predictions about the value of others’
actions, and predictions of social approval from others (Behrens
et al., 2008; Jones et al., 2011; Boorman et al., 2013; Apps and
Ramnani, 2014). Together, these studies point to a central role for
the ACCg in processing information about others’ rewards.
However, a key untested hypothesis from this model is that the
ACCg is engaged when predictions are made about the probabil-
ity of another person receiving a reward. Therefore, the first aim
of our study was to test this hypothesis.

A second hypothesis derived from this model is that individ-
ual differences in social functioning, specifically empathy, vary
with the extent to which ACCg is specialized for processing oth-
ers’ rewards. Empathy can be broadly defined as the capacity to
understand and resonate with the experiences of others (Singer
and Lamm, 2009). Empirical and theoretical accounts have sug-
gested that the ACC is involved in empathizing (Lamm et al.,
2011; Engen and Singer, 2013), but prior work has largely focused
on response of this region to processing others’ pain and other
negative outcomes (for review, see Lamm et al., 2011) rather than
positive, rewarding outcomes. The propensity to feel empathy
varies substantially between individuals (Blair, 2005; Lockwood
et al., 2013a; Bird and Viding, 2014), but the mechanisms that
underpin individual differences in vicariously processing anoth-
er’s rewards are poorly understood. Therefore, the second aim of
our study was to test the hypothesis that the extent to which the
ACCg is specialized for processing others’ rewards is positively
associated with trait empathy.

Materials and Methods
Participants
Thirty-two right-handed healthy males (age 19 –32 years, M " 22.7,
SD " 3.0) were recruited through university participant databases. Ex-
clusion criteria included previous or current neurological or psychiatric
disorder, non-normal or noncorrected to normal vision, non-native
English language, and previous or current study of psychology. This
latter criterion was used due to concerns that prior experience of study-
ing psychology could compromise participants’ belief in the deception
used in the protocol. Two participants were excluded from the analysis
(one due to excessive motion (#10% of scans) and one due to neurolog-
ical abnormalities), leaving a final sample of 30. All participants gave

written informed consent and the study was approved by the local de-
partmental research ethics committee.

Experimental task
Design. We examined the processing of cues that signaled the probability
with which a first-person and a third-person would receive a reward. A
2 $ 2 factorial design, agency (self vs other) and probability (high 80% vs
low 20%), was used to examine activation time-locked to the cues (see
Fig. 1).

On each trial during the experiment, participants saw cues that indi-
cated the probability with which they (first-person or “self”) or the other
participant (third-person or “other”) were likely to win points. These
cues were represented as pie charts to depict the level of probability
explicitly and minimize any requirements for reward learning across the
task. The cues for self and other differed in color, but were luminance
matched. Self cues had the word “you” written above them, whereas
other cues had the name of the other participant (a confederate) written
above them. This ensured that participants were explicitly aware of
whether the cues predicted outcomes for themselves or for the other
participant.

After the cue, an outcome was presented. To ensure attention to the
cues, participants indicated (at the time of the outcome) whether the
outcome was expected or not with a button press. We specifically inves-
tigated passively delivered rather than instrumentally obtained rewards
so that any activation differences between self and other trials could not
be related to differences in motor preparation (e.g., an action on a self
trial but no action on another trial).

Before scanning, participants completed a practice version of the task
during which they received feedback as to whether their judgements
(expected or unexpected) were correct. During scanning, however, par-
ticipants were instructed that they would not receive feedback on their
judgements, but that they should respond as quickly and accurately as
possible to the judgment.

There were 100 trials in total, 50 self trials and 50 other trials presented
in a pseudorandom order, with no more than three trials in a row of self
or other cues. The 50 self trials consisted of 25 trials of high-probability
first-person cues and 25 trials of low-probability first-person cues. Sim-
ilarly, the 50 other trials consisted of 25 high-probability third-person
cues and 25 low-probability first-person cues. For both the self and other
conditions, 20 outcomes were an expected win, 20 outcomes were an
expected no win, five outcomes were an unexpected win, and five out-
comes were an unexpected no win (equivalent to 80%/20% probability).

Trial structure. Each trial began with a cue that signaled the probability
of reward (80%/20%) and agent (self/other) for 800 ms (see Fig. 1A).
After a jittered delay (2500 – 6000 ms), participants observed an outcome
(win 100 points/win 0 points; 800 ms), followed by a variable fixation
(2000 – 4000 ms). Participants were then presented with the options
“yes” or “no” and were required to press one of the two buttons to
indicate whether the outcome was expected or not. The side of the screen
on which these options were presented was counterbalanced so that par-
ticipants could not form a representation of a specific motor command at
any point during a trial. Participants had 1500 ms to indicate their option
or the word “missed” appeared in red on the screen. This was followed by
a fixation cross (1000 –2000 ms).

Procedure. Participants were paired with one of two age-matched con-
federates (who were also male), whom they believed were naive partici-
pants and had never met before the experiment. The participant and the
confederate were instructed together that they could earn extra payment,
based on the outcomes they received during the experimental task (see
below); but in fact all participants were paid the same amount (total £30,
representing an additional £7 to the standard participant payment for
the required time commitment). They also believed that the confederate
participant could earn an extra payment in the same manner during the
task. A set of standardized questions completed after the scan confir-
med that no participant had become suspicious about the deception
during the experiment.

Participants attended two sessions. The first session was attended only
by the experimental participant without a confederate and involved prac-
ticing the experimental task and completing questionnaires. In the first
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session, attended only by the experimental participant, the “other” par-
ticipant was described as “player 2” and the experimental participant was
instructed that, in the scanning session, this name would be replaced by
the name of the other participant. Participants were instructed that, dur-
ing the practice session, the points would not be converted into any
money either for themselves or the other person, but that when they
attended the scanning session, these points would be converted into
additional payment for themselves and the other participant. The second
session (!7 d later) was attended by both the experimental participant
and the confederate. During this session, the experimental participant
performed the task while inside the MRI scanner. The experimental par-
ticipant was under the impression that the confederate performed the
same task simultaneously. The confederate was seated in the adjacent
MRI control room to maintain this impression. The participants were
instructed that, regardless of whether the cues and outcomes were for
themselves or for the other person, they should perform the same judg-
ment task to indicate whether the outcome was expected or not. More-
over, participants were not instructed to the specific payoff matrix, which
was in fact equal. This was done to ensure that participants remained
motivated to attend to the cues and outcomes.

After the scanning session, participants rated how positive they felt
when observing themselves or the other person winning on a nine-point
scale ranging from “not at all” to “very positive.” One-sample t tests
showed that, for both self and other, participants felt significantly more
positive than neutral when seeing win outcomes compared with no win
outcomes (other win t(29) " 2.1, p ! 0.05, M " 5.4, SD " 1.04; self win
t(29) " 5.3 p ! 0.001, M " 6.4, SD " 1.43), and paired-sample t tests
showed that participants felt significantly more positive when they won
money for themselves compared with seeing the other participant
win (t(29) " 4.35, p ! 0.001). This suggests that participants found it
rewarding to view win outcomes for both themselves and for the other
participant, but felt more positive overall when they viewed themselves
winning.

Questionnaire measures. Participants completed a measure of empathy,
the Questionnaire of Cognitive and Affective Empathy (QCAE; Reniers et
al., 2011). The QCAE is a multidimensional instrument devised to measure
five key components of empathy. In the development of the QCAE, two
raters selected items from other well validated and commonly used empathy
measures (e.g., Empathy Quotient; Hogan Empathy Scale; the Empathy sub-
scale of the Impulsiveness-Venturesomeness-Empathy Inventory; and the
Interpersonal Reactivity Index) if they were deemed to measure empathy
(see items below). Items deemed to measure other processes (e.g., sympathy)
were not included. The five subscales comprising the QCAE are as follows:
perspective-taking (e.g., “I can easily tell if someone else wants to enter a
conversation.”); online simulation (e.g., “Before criticizing somebody, I try
to imagine how I would feel if I was in their place.”); emotion contagion (e.g.,
“I am happy when I am with a cheerful group and sad when the others are
glum.”); peripheral responsivity (e.g., “I often get deeply involved with the
feelings of a character in a film, play, or novel.”); and proximal responsivity
(e.g., “I often get emotionally involved with my friends’ problems”). Items
are rated on a four-point scale from “strongly disagree” to “strongly agree.”
The QCAE has good construct validity and internal consistency (Reniers et
al., 2011).

Statistical analysis of behavioral data. Behavioral analyses were per-
formed in SPSS 22 software (IBM). An agency (self vs other) by reward
(win vs no win) ANOVA was used to examine reaction time (RT) differ-
ences to outcome judgments. We did not examine the agency (self vs
other) by expectedness (expected vs unexpected) interaction due to the
low number of unexpected outcomes in our design (!10 valid trials per
subject). Relationships between behavioral performance and empathy
were assessed using bivariate correlations. We adopted an ! level of 0.05
and a power analysis indicated that we had #80% power to detect an
effect size of Cohen’s d " 0.50.

Functional neuroimaging data collection and analysis
fMRI data acquisition. A Siemens Avanto 1.5-T MRI scanner was used to
acquire a 5.5 min 3D T1-weighted structural scan and 424 multislice
T2!-weighted echoplanar volumes with BOLD contrast. The structural
scan was acquired using a magnetization prepared rapid gradient echo

sequence. Imaging parameters were as follows: 176 slices; slice thick-
ness " 1 mm; gap between slices " 0.5 mm; TR " 2730 ms; TE " 3.57
ms; field of view " 256 mm $ 256 mm2; matrix size " 256 $ 256; voxel
size " 1 $ 1 $ 1 mm resolution. The echoplanar image (EPI) sequence
was acquired in an ascending manner, at an oblique angle (%30°) to the
AC–PC line to decrease the impact of susceptibility artifact in the orbito-
frontal cortex (Deichmann et al., 2003) with the following acquisition
parameters: 424 T2*-weighted echoplanar volumes, 35 2 mm slices, 1
mm slice gap; echo time " 50 ms; repetition time " 2975 ms; flip angle "
90°; field of view " 192 mm; matrix size " 64 $ 64.

fMRI data analysis. Imaging data were analyzed using SPM8 (www.fil.
ion.ucl.ac.uk/spm). Data preprocessing followed a standard sequence.
The first four volumes were discarded to allow for T1 equilibration effects
and the last volume was discarded because the experimental task ended
one volume before the end of the scanning sequence. The removal of the
last volume ensured that no hemodynamic response (which typically
occurs 4 – 6 s after event onset) to the desktop screen was sampled. Im-
ages were then realigned and coregistered to the participant’s own ana-
tomical image. The anatomical image was processed using a unified
segmentation procedure combining segmentation, bias correction, and
spatial normalization to the Montreal Neurological Institute (MNI) tem-
plate using SPM’s New Segment procedure (Ashburner and Friston,
2005); the same normalization parameters were then used to normalize
the EPI images. The images were resampled to a voxel size of 1.5 $ 1.5 $
1.5 mm. Finally, a Gaussian kernel of 8 mm full-width at half-maximum
was applied to spatially smooth the images. Before the study, first-level
design matrices were examined to ensure that estimable GLMs could be
performed with independence between all regressors with correlation
coefficients of r !0.25.

First-level analysis. Nine (in some subjects, 10) event types were used to
construct regressors in which event onsets were convolved with the syn-
thetic canonical hemodynamic response function in SPM and associated
responses were estimated in the context of the general linear model. Each
of the four conditions (self high probability, self low probability, other
high probability, other low probability) at the time of the cue and at the
time of the outcome was modeled as a separate regressor for correct
responses. The onset of the judgment was also modeled in a single regres-
sor across all event types. An additional regressor modeled trials in which
the judgment was missed or participants made an error. For those par-
ticipants whose head motion caused visible image corruption in partic-
ular scans, an extra regressor was included. These images were removed
and replaced with an image created by interpolating the two adjacent
images to prevent distortion of the between-subjects mask (four partic-
ipants, each accounting for !1% of the total fMRI data). The residual
effects of head motion were also modeled as covariates of no interest in
the analysis by including the six head motion parameters estimated
during realignment. Data were high-pass filtered at 128 s to remove
low-frequency drifts and the statistical model included an AR(1) autore-
gressive function to account for autocorrelations intrinsic to the fMRI
time series. Contrast images were computed to examine the interaction
(agency $ probability) and main effects of agency (self & other and
other & self) and probability (high & low and low & high) at the time of
the cue.

Many studies have suggested that situations that involve mixed payoffs
between study participants and other people can result in neural re-
sponses that reflect payoff differences between self and other; that is, they
relate to coding of rewards for self relative for other, often called “ineq-
uity aversion” rather than “vicarious” reward responses (for reviews, see
Ruff and Fehr, 2014; Rilling and Sanfey, 2011). To determine whether
identified neural responses to reward predicting cues in the current study
were reflective of coding of rewards for self relative to other, and thus
inequity aversion, we constructed a second model that was the same as
the main model but contained all cues collapsed into a single regressor.
This regressor had two associated parametric modulators. The first
coded the “inequity,” the difference in accumulated reward between self
and other on each trial, and the second coded the agent $ probability
interaction. This allowed us to determine neural responses to inequity
and whether any neural responses occurred over and above the variance
explained by inequity.
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Second-level analysis. Second-level analysis was performed using the
standard summary statistics approach to random-effects analysis in
SPM. Contrast images were input into second-level one-sample t test
design matrices. Interactions and main effects are reported at p ! 0.05,
familywise error (FWE) corrected at the voxel level across the whole
brain. Where significant interactions were identified, we conducted illus-
trative post hoc analyses with simple main effects contrasts using a less
conservative statistical threshold of p ! 0.001 (uncorrected).

Results
Behavioral data
Participants were highly accurate in their judgments of whether
the outcome was expected or not (mean accuracy "91% for all
participants for both trial types) and missed very few trials (mean
!1% for all participants). For mean RTs, a 2 (self vs other) by 2
(win vs no win) ANOVA showed significantly slower judgments
on third-person (M # 664 ms, SD # 18) than on first-person
(M # 649 ms, SD # 16) trials (main effect of agency: F(1,29) #
5.32, p # 0.03). Judgments were also significantly faster after
reward (641 ms, SD # 16) compared with a no reward (672 ms,
SD # 19) outcomes (main effect of outcome F(1,29) # 14.34, p #
0.001). The agency $ reward interaction was nonsignificant
(F(1,29) # .05, p # 0.83).

Given the significant main effect of agency, we calculated the
difference score between self and other RTs to examine associa-
tions between this behavioral measure and empathy. The emo-
tion contagion subscale of the QCAE was positively associated
with the self– other difference score (r # 0.49, p ! 0.01); that is,
participants higher in emotion contagion showed a relative facil-
itation (speeding) when making decisions about the expected-
ness of outcomes for other people (Fig. 1B). No other subscale of
the QCAE correlated with the self-other difference score (all p "
0.49). Multiple regression, including all QCAE subscales, showed
that the association between the self– other difference score and
self-reported empathy was specific to the emotion contagion
subscale (! # 0.55, SEM # 2.43, p ! 0.01).

fMRI data
Agency $ probability interaction at time of the cue
To test our first hypothesis, that activity in the ACCg would signal
information about reward probability for others, we examined
the agency $ probability interaction at the time of the cue. Con-

sistent with our hypothesis, this analysis revealed a significant
effect in the ACCg (MNI coordinates [x # 8, y # 32, z # 12], Z #
5.05, k # 10, p ! 0.05 FWE, whole brain corrected), putatively in
area 24a%/24b% at the border of the midcingulate and anterior
cingulate subregions (Fig. 2). We examined the nature of this
interaction by testing the simple main effects, specifically the con-
trasts of other high versus low probability and self low versus high
probability. Inspection of the other high versus low probability
simple main effect revealed a large cluster in the ACCg overlap-
ping with the region identified in the interaction (MNI coordi-
nates [x # 6, y # 33, z # 12], Z # 4.14, k # 184, p ! 0.001,
uncorrected). Inspection of the self low versus high probability
contrast revealed a small cluster of overlapping voxels (MNI co-
ordinates [x # 9, y # 32, z # 13], Z # 3.28, k # 5, p ! 0.001,
uncorrected). This suggests that the ACCg activation identified in
the interaction mainly signals the probability of rewards that
would be received by another person.

Associations with trait empathy
To test our second hypothesis, that the extent to which ACCg
responds to the probability of rewards specifically for others
would be positively associated with trait empathy, we used Mars-
BaR (Brett et al., 2002) to extract individual interaction contrast
estimates (other high vs low probability minus self high vs low
probability) from the ACCg cluster identified above and corre-
lated these with participants’ self-reported empathy on the five
QCAE subscales. Emotion contagion was significantly negati-
vely associated with the ACCg interaction contrast estimate
(r # &0.45, p # 0.01, all other subscales p " 0.58) and multiple
regression, including all QCAE subscales, showed that this effect
was specific to emotion contagion (! # &.60, SEM # 0.062, p #
0.003, all other subscales p " 0.15; Fig. 3). In other words, the inter-
action was weakest in individuals high in emotion contagion.

To better understand the nature of this association, we exam-
ined the correlations for other high versus low probability and
self low versus high probability in ACCg with empathy subscales
(Fig. 3). There was no significant correlation between ACCg re-
sponse to other high versus low probability (r # &0.05, p # 0.81)
and empathy. However, there was a significant negative associa-
tion between ACCg response to self low versus high probability
and emotion contagion (r # &0.58, p ! 0.001); again, multiple

Figure 1. A, Trial structure. Participants performed trials that began with a cue signaling the probability of reward (high [80%] or low [20%]) and the agent to whom reward would be delivered
(self # “you” and other # “Lewis” in this example). Participants judged whether the outcome (win 100 points or win 0 points) was expected or unexpected after outcome delivery. Participants
believed that the other participant outside of the scanner was simultaneously performing the same task and that the points they observed would be converted into additional payment at the end
of the experiment for themselves and for the other participant. B, Scatterplot showing association between self– other RT difference at the time of the judgment and trait emotion contagion
(n # 30). Overall, participants were slower when making judgments about the expectedness of outcomes for other compared with self. However, this effect was associated with emotion contagion
such that those highest in emotion contagion showed a relative speeding of response for other.
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regression demonstrated that this effect was unique to emotion
contagion (! ! "0.66 SEM ! 0.082, p # 0.001, all other sub-
scales p $ 0.19). In other words, the extent to which ACCg dis-
tinguished between low and high reward probability for self was
attenuated in individuals with high emotion contagion.

In summary, in individuals with high emotion contagion, the
ACCg signaled information about the relative difference between
high and low probability rewards only for others, whereas in
individuals with low emotion contagion, the ACCg additionally
signaled (negatively) reward probability for self.

Main effects at the time of the cue
The temporal pole showed a significant main effect of other $ self
(MNI coordinates [33, 22, "26]; Z ! 4.85; k ! 2, p # 0.05, FWE
whole brain corrected). No other main effects or interactions
survived whole-brain correction for multiple comparisons.

Agency % outcome interaction and main effects at the time of
the outcome
No interactions or main effects survived whole-brain correction
for multiple comparisons.

Analysis of inequity aversion
Analysis of the inequity parametric modulator showed no whole-
brain-corrected results and no uncorrected results in ACCg. We
then tested whether our observed effects in the ACCg occurred
over and above any effects of inequity. This analysis showed that
there was still a significant effect in the ACCg after accounting for
the variance explained by inequity (MNI coordinates [x ! 6, y !
32, z ! 13], Z ! 4.97, k ! 8, p # 0.05 FWE, whole brain cor-
rected). Therefore, the ACCg response was unlikely to reflect
differences in accumulated reward between self and other.

Discussion
We examined hemodynamic responses in the human brain to
cues that predicted a high or low probability of a reward for
oneself or another person. We show that the ACCg robustly sig-
nals the probability of rewards for another person. This supports
our hypothesis that the ACCg is engaged when processing pre-
dictions about rewards for other people. Our second hypothesis,
that that the extent to which the ACCg is specialized for process-
ing others’ rewards is positively associated with trait empathy,

Figure 2. A, Activation in the ACCg signaled the agency (self vs other) by probability (high [80%] or low [20%]) interaction at the time of the cue [x ! 8, y ! 32, z ! 12], displayed at p # 0.001
(uncorrected). B, Parameter estimates for the peak voxel in the ACCg. C, Left, Overlay of the agency % probability interaction in ACCg (yellow, as in A). Middle, Only a small number of voxels
overlapped between the interaction contrast (yellow) and the simple main effect of self low versus high probability (blue, k ! 5 at p # 0.001 uncorrected). Right, A large number of voxels
overlapped between the interaction contrast (yellow) and the simple main effect of other high $ low probability (green, k ! 184 at p # 0.001 uncorrected). Error bars indicate SEM.
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was partially supported. As predicted, the interaction effect in the
ACCg significantly covaried with emotion contagion. However,
this effect was driven by the extent to which ACCg signaled re-
ward predictions for self, not other. Specifically, for those high in
emotion contagion, the ACCg signaled reward prediction exclu-
sively for others, whereas for those low in emotion contagion, this
same region signaled reward prediction for self (in the opposite
direction).

The model of the contributions of ACCg to social cognition
(Apps et al., 2013b) highlights that this region plays an important
role in understanding the value of others’ rewards, and conse-
quently in social behavior (Rudebeck et al., 2006; Behrens et al.,
2008; Jones et al., 2011; Apps et al., 2013a, 2015; Boorman et al.,
2013; Chang et al., 2013; Apps and Ramnani, 2014). This claim is
built upon several lines of evidence. Lesions to this region have
been shown to impair the processing of social stimuli and cause a
reduction in the execution of social behaviors (Rudebeck et al.,

2006). The ACCg is connected to regions that process social in-
formation, but also to regions that process reward-related infor-
mation (Yeterian and Pandya, 1991; Lynd-Balta and Haber, 1994;
Haber et al., 1995). Single-unit recording evidence suggests that a
relatively large proportion of ACCg neurons, compared with
those in other prefrontal regions, respond when a monkey antic-
ipates the delivery of reward to another monkey (Chang et al.,
2013), and human imaging studies have shown that the ACCg
responds when tracking the value of cues predicting approval
from peers (Jones et al., 2011). Together, these studies support
the claim that the ACCg is important for processing others’ re-
wards and also in social behavior. However, a key untested com-
ponent of this model was that the ACCg would be engaged when
processing the likelihood of rewards being delivered to others.
We show for the first time that the ACCg signals the likelihood of
others’ rewards regardless of trait levels of empathy. We also note
that we did not observe responses to reward prediction in other

Figure 3. A, Significant association between the cluster in the ACCg showing the interaction effect and participants’ emotion contagion scores. B, Response to self low ! high probability
decreases as a function of emotion contagion, with those lowest in emotion contagion showing the greatest response to low ! high probability of reward for self. C, Response to other high ! low
probability shows no significant modulation as a function of emotion contagion.
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candidate regions for reward signals, even at uncorrected levels
(e.g., ventral striatum, ventromedial prefrontal cortex, and
amygdala; for a meta-analysis, see Morelli et al., 2015), support-
ing some degree of specificity of ACCg response to vicarious
reward in our study.

Our experimental paradigm was designed to ensure that par-
ticipants attended to reward cues. By asking participants to make
a decision at the time of the outcome, we cannot purely assess
whether outcome-related responses are also coded in ACCg be-
cause participants were both processing the outcome and prepar-
ing a motor response during this time. However, there is evidence
that vicarious prediction error signals may well be coded in ACCg
(Apps et al., 2013a, 2015). We provide the first evidence that this
same region also encodes the likelihood of others receiving
rewards.

Although previous studies have suggested the ACCg plays an
important role in empathy (Lamm et al., 2011; Engen and Singer,
2013), these studies have largely focused on neural responses to
others’ pain. Our data suggest that the degree of specialization in
this region’s response to others’ predicted rewards may partly
underlie individual differences in emotion contagion. Emotion
contagion is hypothesized to be a necessary foundation for em-
pathizing with other individuals (Bird and Viding, 2014) and is a
process that is shared with nonhuman animals (for review, see de
Waal, 2008). Importantly, emotion contagion also covaried with
RTs to decisions about rewards delivered to others, with those
highest in trait emotion contagion showing the greatest speeding
of response. A distinction is often made between “affective em-
pathy,” which is commonly understood as an affective state
caused by vicariously processing the experiences of another per-
son, and “cognitive empathy,” which is thought to include pro-
cesses such as perspective taking and theory of mind (Singer and
Lamm, 2009). Regression analyses suggested that only emotion
contagion, part of the “affective” component, was associated with
vicarious reward prediction. In tasks investigating cognitive as-
pects of empathy, an anatomically separate region of the
mPFC, the dorsal mPFC, is often responsive (Amodio and
Frith, 2006), suggesting partially separate functions of the
ACCg and mPFC.

Although we did not predict an association between emotion
contagion and ACCg response to self reward prediction, a possi-
ble explanation relates to the findings of Chang et al. (2013) and
Haroush and Williams (2015). These investigators observed
some self-reward- selective neurons in the same region of the
ACCg/dACC that also contained other-reward-selective neu-
rons, suggesting that some processing of information about re-
wards for self occurs in ACCg. However, given the limited sample
sizes in nonhuman primate studies, the investigators were unable
to examine variability in the proportion of neurons that signaled
self versus other reward. We speculate that, even if at the pop-
ulation level, the ACCg shows a relative specialization in pro-
cessing rewards for others, individual variability in the degree
to which self rewards are also processed in this region could be
important for explaining heterogeneity in ACCg function and
empathy. That is, for those individuals who display the lowest
levels of emotion contagion, there appears to be reduced spe-
cialization and a potentially opposing coding scheme of self
and other reward probability in ACCg. Such opposing coding
within the same anatomical region could have consequences
for understanding social cognition and behavior, such as in-
creased weighting of rewards to self and higher likelihood of
engaging in competitive social interactions.

This interpretation is supported by a recent study finding that
stimulation of dACC neurons made monkeys more competitive
(Haroush and Williams, 2015). Similarly, another study showed
that single neurons in a region of the rat cingulate cortex thought
to be homologous with human dACC coded the value of com-
peting with another rat for rewards (Hillman and Bilkey, 2012).
These findings may help to reconcile previous discrepancies in
the functions that have been imputed to dACC in terms of com-
petitive social behaviors (Hillman and Bilkey, 2012; Haroush and
Williams, 2015), but also empathy (Lamm et al., 2011; Engen and
Singer, 2013). We propose that variability in empathy may mod-
ulate, not only the extent to which social information is processed
in ACCg, as suggested in previous studies and theoretical ac-
counts of empathy (Lamm et al., 2011; Engen and Singer, 2013),
but also the extent to which self and other reward information is
computed. However, this hypothesis requires further testing in
future experiments.

Empathic abilities are a fundamental building block for suc-
cessful social behavior and are at the core of many disorders of
social cognition, including autism and psychopathy (Blair, 2005;
Lockwood et al., 2013a; Bird and Viding, 2014). Previous studies
have suggested that a similar portion of the dACC that was acti-
vated in our study is anatomically and functionally atypical in
individuals with psychopathy and in individuals with autism
(Simms et al., 2009; Brazil et al., 2011; Anderson and Kiehl, 2012;
Delmonte et al., 2013; Lockwood et al., 2013b). Integrating these
previous findings with the present results suggests the hypothesis
that individual differences in the structure, function, and connec-
tivity of the ACCg constrain the extent to which this region pro-
cesses reward-predicting cues for others compared with self,
which may lead to atypical empathic processing. However, we
also know that psychopathy and autism have different profiles of
empathic processing and behavior from one another (Blair, 2005;
Lockwood et al., 2013a; Bird and Viding, 2014). The ACCg has
strong connections to other regions involved in social and reward
processing, including the nucleus accumbens (Yeterian and Pan-
dya, 1991; Lynd-Balta and Haber, 1994; Haber et al., 1995), a
region also suggested to participate in vicarious reward process-
ing (Mobbs et al., 2009; Fareri et al., 2012; Braams et al., 2014), the
temporal poles (which showed greater response to other vs self
reward prediction in our study),and the temporoparietal junc-
tion and paracingulate cortex (Markowitsch et al., 1985; Seltzer
and Pandya, 1989; Barbas et al., 1999). Future research into the
neurocognitive correlates of psychopathy and autism should in-
vestigate whether distinct social behavioral abnormalities can be
characterized by differences in the functional and connectional
fingerprint of the ACCg during vicarious reward processing.

In summary, we demonstrate a central role for the ACCg in
processing predictions about the likelihood of others’ rewards.
We also found substantial individual variation in the degree to
which the ACCg responds to self and other reward, with only
those highest in trait emotion contagion showing specialization
of ACCg for others predicted reward. Together, our findings
highlight the importance of understanding the contributions of
the ACCg to social cognition and how variability in its function
may underlie variability in social behavior.

Notes
Supplemental material for this article is available at http://www.
patricialockwood.co.uk/Publications. In Table 1, we provide uncor-
rected results at the time of the cue ( p ! 0.001, k " 10) for completeness.
We note that these results should be interpreted with caution given that
they do not survive correction for multiple comparisons. In Table 2, we

13726 • J. Neurosci., October 7, 2015 • 35(40):13720 –13727 Lockwood et al. • ACC: Vicarious Reward Predictions and Trait Empathy



provide uncorrected results at the time of the outcome ( p ! 0.001, k "
10) for completeness. We note that these results should be interpreted
with caution given that they do not survive correction for multiple com-
parisons. This material has not been peer reviewed.
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