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Abstract

One of the most fundamental problems in causal inference is the estimation of a causal
effect when treatment and outcome are confounded. This is difficult in an observational
study, because one has no direct evidence that all confounders have been adjusted for.
We introduce a novel approach for estimating causal effects that exploits observational
conditional independencies to suggest “weak” paths in an unknown causal graph. The
widely used faithfulness condition of Spirtes et al. is relaxed to allow for varying degrees
of “path cancellations” that imply conditional independencies but do not rule out the
existence of confounding causal paths. The output is a posterior distribution over bounds
on the average causal effect via a linear programming approach and Bayesian inference.
We claim this approach should be used in regular practice as a complement to other tools
in observational studies.

Keywords: Causal inference, instrumental variables, Bayesian inference, linear program-
ming

1. Contribution

We provide a new methodology for obtaining bounds on the average causal effect (ACE)
of a treatment variable X on an outcome variable Y . We introduce methods for binary
models and for linear continuous models. For binary variables, the ACE is defined as

E[Y | do(X = 1)]− E[Y | do(X = 0)] = P (Y = 1 | do(X = 1))− P (Y = 1 | do(X = 0)), (1)

where do(·) is the operator of Pearl (2000), denoting distributions where a set of variables
has been intervened on by an external agent.

In this paper, we assume the reader is familiar with the concept of causal graphs, the
basics of the do operator, and the basics of causal discovery algorithms such as the PC
algorithm of Spirtes et al. (2000). We provide a short summary for context in Section 2.

The ACE is in general not identifiable from observational data. We obtain upper and
lower bounds on the ACE by exploiting a set of covariates, which we assume are not af-
fected by X or Y as justified by temporal ordering or other background assumptions. Such
covariate sets are often found in real-world problems, and form the basis of many of the
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Figure 1: (a) A generic causal graph where X and Y are confounded by some U . (b) The
same system in (a) where X is intervened upon by an external agent. (c) A system
where W and Y are independent given X. (d) A system where it is possible to use
faithfulness to discover that U is sufficient to block all back-door paths between
X and Y . (e) Here, U itself is not sufficient.

observational studies done in practice (Rosenbaum, 2002a). However, it is not obvious how
to obtain the ACE as a function of the covariates. Our contribution modifies the results
of Entner et al. (2013), who exploit conditional independence constraints to obtain point
estimates of the ACE but rely on assumptions that might be unstable with finite sample
sizes. Our modification provides a different interpretation of their search procedure, which
we use to generate candidate instrumental variables (Manski, 2007). The linear program-
ming approach of Dawid (2003), inspired by Balke and Pearl (1997) and further refined
by Ramsahai (2012), is then modified to generate bounds on the ACE by introducing con-
straints on some causal paths, motivated as relaxations of Entner et al. (2013). The new
setup can be computationally expensive, so we introduce further relaxations to the linear
program to generate novel symbolic bounds, and a fast algorithm that sidesteps the full
linear programming optimization.

In Section 2, we discuss the background of the problem. In Section 3 we provide an
overview of the methodology, which is divided into several subcomponents and described
through Sections 4–8. Section 9 contains experiments with synthetic and real data.

2. Background: Instrumental Variables, Witnesses and Admissible Sets

Assuming X is a potential cause of Y , but not the opposite, a cartoon of the possibly
complex real-world causal system containing X and Y is shown in Figure 1(a). U represents
the universe of common causes of X and Y . In control and policy-making problems, we

2



Causal Inference through a Witness Protection Program

would like to know what will happen to the system when the distribution of X is overridden
by some external agent (e.g., a doctor, a robot or an economist). The resulting modified
system is depicted in Figure 1(b), and represents the family of distributions indexed by
do(X = x): the graph in (a) has undergone a “surgery” that removes incoming edges to
X. Spirtes et al. (2000) provide an account of the first graphical methods exploiting this
idea, which are related to the overriding of structural equations proposed by Haavelmo
(1943). Notice that if U is observed in the data set, then we can obtain the distribution
P (Y = y | do(X = x)) by simply calculating

∑
u P (Y = y |X = x, U = u)P (U = u) (Spirtes

et al., 2000). This was popularized by Pearl (2000) as the back-door adjustment. In general
P (Y = y | do(X = x)) can be substantially different from P (Y = y |X = x).

The ACE can usually be estimated via a trial in which X is randomized: this is equiv-
alent to estimating the conditional distribution of Y given X under data generated as in
Figure 1(b). In contrast, in an observational study (Rosenbaum, 2002a) we obtain data gen-
erated by the system in Figure 1(a). If one believes all relevant confounders U have been
recorded in the data then the back-door adjustment can be used, though such completeness
is uncommon. By postulating knowledge of the causal graph relating components of U ,
one can infer whether a measured subset of the causes of X and Y is enough (Pearl, 2000;
VanderWeele and Shpitser, 2011; Pearl, 2009). Without knowledge of the causal graph,
assumptions such as faithfulness (Spirtes et al., 2000) are used to infer it.

The faithfulness assumption states that a conditional independence constraint in the
observed distribution exists if and only if a corresponding structural independence exists
in the underlying causal graph. For instance, observing the independence W ⊥⊥ Y |X,
and assuming faithfulness and the causal order, we can infer the causal graph Figure 1(c);
in all the other graphs this conditional independence in not implied. We deduce that no
unmeasured confounders between X and Y exist. This simple procedure for identifying
chains W → X → Y is useful in exploratory data analysis (Chen et al., 2007; Cooper,
1997), where a large number of possible causal relations X → Y are unquantified but can
be screened off using observational data before experiments are performed. The purpose of
using faithfulness is to be able to sometimes identify such quantities.

Entner et al. (2013) generalize the discovery of chain models to situations where a non-
empty set of covariates is necessary to block all back-doors. Suppose W is a set of covariates
which are known not to be effects of either X or Y , and we want to find an admissible set
contained in W: a set of observed variables which we can use for back-door adjustment to
obtain P (Y = y | do(X = x)). Entner et al.’s “Rule 1” states the following:

Rule 1: If there exists a variable W ∈W and a set Z ⊆W\{W} such that

(i) W 6⊥⊥ Y |Z (ii) W ⊥⊥ Y |Z ∪ {X},

then infer that Z is an admissible set.

Entner et al. (2013) also provide ways of identifying zero effects with a “Rule 2.” For
simplicity of presentation, for now we assume that the effect of interest was already identified
as non-zero. Section 7 discusses the case of zero effects.

A point estimate of the ACE can then be found using Z. Given that (W,Z) satisfies
Rule 1, we call W a witness for the admissible set Z. The model in Figure 1(c) can be
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identified with Rule 1, where W is the witness and Z = ∅. In this case, for binary models a
so-called “näıve” functional P (Y = 1 |X = 1) − P (Y = 1 |X = 0) will provide the correct
ACE. If U is observable in Figure 1(d), then it can be identified as an admissible set for
witness W . Notice that in Figure 1(a), taking U as a scalar, it is not possible to find a
witness since there are no remaining variables. Also, if in Figure 1(e) our covariate set W is
{W,U}, then no witness can be found since U ′ cannot be blocked. Hence, it is possible for
a procedure based on Rule 1 to answer “I don’t know,” even when a back-door adjustment
would be possible if one knew the causal graph. However, using the faithfulness assumption
alone one cannot do better: Rule 1 is complete for non-zero effects if no further information
is available (Entner et al., 2013).

Despite its appeal, the faithfulness assumption is not without difficulties. Even if un-
faithful distributions can be ruled out as pathological under seemingly reasonable conditions
(Meek, 1995), distributions which lie close to (but not on) an unfaithful model may in prac-
tice be indistinguishable from distributions within that unfaithful model at finite sample
sizes.

To appreciate these complications, consider the structure in Figure 1(d) with U unob-
servable and the remaining (observable) variables binary. Here W is randomized but X
is not, and we would like to know the ACE of X on Y 1. W is sometimes known as an
instrumental variable (IV), and we call Figure 1(d) the standard IV structure (SIV); the
distinctive features here being the constraints W ⊥⊥ U and W ⊥⊥ Y | {X,U}, statements
which include latent variables. If this structure is known, optimal bounds

LSIV ≤ E[Y | do(X = 1)]− E[Y | do(X = 0)] ≤ USIV

can be obtained without further assumptions, and estimated using only observational data
over the binary variables W , X and Y (Balke and Pearl, 1997). This structure cannot
be found using faithfulness, as the only independence constraints involve a latent variable.
However, there exist distributions faithful to the IV structure but which at finite sample
sizes may appear to satisfy the Markov property for the structure W → X → Y ; in practice
this can occur at any finite sample size (Robins et al., 2003). The true average causal
effect may lie anywhere in the interval [LSIV ,USIV ], which can be rather wide even when
W ⊥⊥ Y |X, as shown by the following result:

Proposition 1 If W ⊥⊥ Y |X and the model follows the causal structure of the standard
IV graph, then USIV − LSIV = 1− |P (X = 1 |W = 1)− P (X = 1 |W = 0)|.

All proofs in this manuscript are given in Appendix A. For a fixed joint distribution
P (W,X, Y ), the length of such an interval cannot be further minimized (Balke and Pearl,
1997). Notice that the length of the interval will depend on how strongly associated W and
X are: W = X implies UIV − LIV = 0 as expected, since this is the scenario of a perfect
intervention. The scenario where W ⊥⊥ X is analogous to not having any instrumental
variable, and the length of the corresponding interval is 1.

1. A classical example is in non-compliance: suppose W is the assignment of a patient to either drug or
placebo, X is whether the patient actually took the medicine or not, and Y is a measure of health status.
The doctor controls W but not X. This problem is discussed by Pearl (2000) and Dawid (2003).
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Thus, the true ACE may differ considerably from the “näıve” functional supported by
Enter et al.’s Rule 1, appropriate for the simpler structure W → X → Y but not for the
standard IV structure. While we emphasize that this is a worst-case scenario analysis and
by itself should not rule out faithfulness as a useful assumption, it is desirable to provide a
method that gives greater control over violations of faithfulness.

3. Outline

In Section 4, we introduce the main algorithm, the Witness Protection Program. The core
idea is (i) to invert the usage of Entner et al.’s Rule 1, so that pairs (W,Z) should provide
an instrumental variable bounding method instead of a back-door adjustment; (ii) express
violations of faithfulness as bounded violations of local independence; (iii) find bounds on
the ACE using a linear programming formulation. Unless stated otherwise, it is assumed
that all observed variables are binary.

A simplified version of the algorithm is shown in Algorithm 1. This version assumes we
know the distribution of the observed variables, P (W, X, Y ), which simplifies the exposition
of the method. The loops in Steps 2 and 3 are a search for pairs (W,Z) of witness-admissible
sets that satisfy Enter et al.’s Rule 1, done by verifying independence constraints in the
given joint distribution. If we assumed faithfulness, the job would be complete: we either
obtain an empty set or the true ACE. This is essentially the contribution of Entner et al.
(2013).

However, we assume that faithfulness need not hold, and that all variables can be
connected to each other in the causal graph, including a set U of hidden common causes of
X and Y . At the same time, we cannot allow for arbitrary violations of faithfulness, as the
presence of hidden common causes leads to only very weak constraints on the ACE. Instead,
we allow for the expression of a subset of possible violations, expressed as “weak edges” on
the fully connected causal graph of W,Z, X, Y and U . The meaning of a “weak edge” is
given in detail in Section 4, and it is fully defined by a set of hyperparameters ℵ that needs
to be provided to the algorithm, also explained in Section 4. Given ℵ, a generalization of
the linear programming problem for instrumental variables described by Ramsahai (2012)
can be used to find tight lower and upper bounds on the ACE. As the approach provides
each witness a degree of protection against faithfulness violations, using a linear program,
we call this framework the Witness Protection Program (WPP).

Thus, this procedure unifies back-door adjustments and (a generalization of) instrumen-
tal variable approaches in a single framework, while not requiring knowing the true causal
graph and relying on assumptions weaker than faithfulness. This is the main message of the
paper.

The output of the algorithm provides a set of lower/upper bounds on the ACE. If one
could assume that ℵ is conservative (that is, the actual edges are “weaker” than the ones
implied by the set of causal models (W,X, Y,Z, U) compatible with ℵ), then a tight interval
containing the ACE will be given by the largest lower bound and the smallest upper bound.
However, there are several practical issues that need to be solved, the main ones being: (i)
we do not know P (W, X, Y ) and hence it needs to estimated from data; (ii) once statistical
errors are introduced, it is not clear how to combine the different constraints implied by
the algorithm; (iii) the computational cost of the procedure can be high, particularly if
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input : A distribution P (W, X, Y );
A set of relaxation parameters ℵ;
Covariate index set W and cause-effect indices X and Y ;

output: A set of quadruplets (W,Z,LWZ,UWZ), where (W,Z) is a
witness-admissible set pair and (LWZ,UWZ) are a lower and upper bound
on the ACE, respectively;

1 R ← ∅;
2 for each W ∈W do
3 for every admissible set Z ⊆W\{W} identified by W do
4 (LWZ,UWZ)← bounds on the ACE as given by P (W,X, Y,Z) and ℵ;
5 R ← R∪ {(W,Z,LWZ,UWZ)};
6 end

7 end
8 return R
Algorithm 1: A simplified Witness Protection Program algorithm, assuming the observ-
able distribution P (W, X, Y ) is known.

uncertainty estimates are required; (iv) we would like to have some results for continuous
data; (v) the set of hyperparameters ℵ needs to be chosen somehow, and some objective
criterion to choose them is important in practice.

Section 4.2 addresses points (i) and (ii) using a Bayesian approach. This requires a
likelihood function. Since the latent variable model that includes U is not identifiable, we
work directly on the marginal observable distribution under the constraints implied by the
linear program. Independence constraints can be tested using Bayesian model selection, but
optionally can be ignored in the linear programming step to provide a more stringent test of
feasibility of ℵ, as the feasible region for the ACE might be empty if the tested independence
does not fit the data well enough even if it passes the test. An interpretation of this usage
of independence tests is given in Section 4.3. We criticize näıve uses of Bayesian inference
for latent variable models in Section 4.4.

A convenient implication of using Bayesian inference is that credible intervals for the
ACE bounds can be computed in a conceptually simple way, using Monte Carlo methods.
However, numerically running a linear program for each sample is expensive. A fully ana-
lytical solution to the linear program is not known, but a solution to a relaxed version of it
can be found in a much cheaper and more numerically stable iterative algorithm (compared
to a black-box solver) given in Section 5. This addresses point (iii), but bounds are looser
than those obtained with a numerical solver as a consequence.

Point (iv) is partially addressed by Section 6, where we derive bounding methods for
linear models. This complements Entner et al. (2012), which relies on non-Gaussianity and
faithfulness using conditions weaker than Rule 1. Conceptually the method can be adapted
to discrete non-binary data without major modifications, although presentation gets con-
siderably more complicated. Treating continuous W is not a theoretical problem (at least
by discretizing each W on demand while keeping Z continuous), although different estima-
tion techniques and parametric assumptions would be required. Likewise, it is theoretically
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possible to get bounds on the cumulative distribution function of Y by dichotomizing it at
different levels Y ≤ y, but we will not further discuss these generalizations in this paper.

Section 7 is a final note concerning the main procedure, where we discuss the possibility
of exploiting Enter et al.’s Rule 2 for detecting zero effects. Although we do not further
analyze this modification in our experiments, this section provides further insights on how
WPP is related to sensitivity analysis methods for observational studies previously found
in the literature.

Finally, Section 8 is an extensive discussion on point (v), the choice of ℵ and the need
to deal with possibly incoherent bounds, which also relates back to point (ii). While this
discussion is orthogonal to the main algorithm, which takes ℵ as a given and it is guaranteed
to be at least as conservative as Entner et al. (2013), it is a important practical issue. This
section also complements the discussion started in Section 7 on the relation between WPP
and sensitivity analysis methods.

4. The Witness Protection Program

Let (W,Z) be any pair found by a search procedure that decides when Rule 1 holds. W
will play the role of an instrumental variable, instead of being discarded. Conditional on Z,
the lack of an edge W → Y can be justified by faithfulness (as W ⊥⊥ Y | {X,Z}). For the
same reason, there should not be any (conditional) dependence between W and a possible
unmeasured common parent2 U of X and Y . Hence, W ⊥⊥ U and W ⊥⊥ Y | {U,X} hold
given Z. A standard IV bounding procedure such as (Balke and Pearl, 1997) can then be
used conditional on each individual value z of Z, then averaged over P (Z). That is, we can
independently obtain lower and upper bounds {L(z),U(z)} for each value z, and bound the
ACE by∑

z

L(z)P (Z = z) ≤ E[Y | do(X = 1)]− E[Y | do(X = 0)] ≤
∑
z

U(z)P (Z = z), (2)

since E[Y | do(X = 1)]−E[Y | do(X = 0)] =
∑

z(E[Y | do(X = 1),Z = z]−E[Y | do(X =
0),Z = z])P (Z = z).

Under the assumption of faithfulness and the satisfiability of Rule 1, the calculation of
the above interval is redundant, as Rule 1 allows the direct use of the back-door adjustment
using Z. Our goal is to not enforce faithfulness, but use Rule 1 as a motivation to allow for
a subset of violations of faithfulness, but not arbitrary violations.

In what follows, assume Z is set to a particular value z and all references to distributions
are implicitly assumed to be defined conditioned on the event Z = z. That is, for simplicity
of notation, we will neither represent nor condition on Z explicitly. The causal ordering
where X and Y cannot precede any other variable is also assumed, as well as the causal
ordering between X and Y .

Consider a standard parameterization of a directed acyclic graph (DAG) model, not
necessarily causal, in terms of conditional probability tables (CPTs): let θVv.p represent
P (V = v | Par(V ) = p) where V ∈ {W,X, Y, U} denotes both a random variable and
a vertex in the corresponding DAG; Par(V ) is the corresponding set of parents of V .

2. In this manuscript, we will sometimes refer to U as a set of common parents, although we do not change
our notation to bold face to reflect that.
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Faithfulness violations occur when independence constraints among observables are not
structural, but due to “path cancellations.” This means that parameter values are arranged
so that W ⊥⊥ Y | X holds, but paths connecting W and U , or W and Y , may exist so that
either W 6⊥⊥ U or W 6⊥⊥ Y | {U,X}. In this situation, some combination of the following
should hold true:

P (Y = y | X = x,W = w,U = u) 6= P (Y = y | X = x, U = u)
P (Y = y | X = x,W = w,U = u) 6= P (Y = y | X = x,W = w)

P (X = x | W = w,U = u) 6= P (X = x | W = w)
P (U = u | W = w) 6= P (U = u),

(3)

for some {w, x, y, u} in the sample space of P (W,X, Y, U).
For instance, if the second and third statements above are true, this implies the existence

of an active path into X and Y via U , conditional on W 3, such as X ← U → Y . If the
first statement is true, this corresponds to an active path between W and Y that is not
blocked by {X,U}. If the fourth statement is true, U and W are marginally dependent,
with a corresponding active path. Notice that some combinations are still compatible with
a model where W ⊥⊥ U and W ⊥⊥ Y | {U,X} hold: if the second statement in (3) is false,
this does not mean that U is necessarily a common parent of X and Y . Such a family of
models is observationally equivalent4 to one where U is independent of all variables.

When translating the conditions (3) into parameters {θVv.p}, we need to define parent
sets for each vertex, which only need to respect the partial causal ordering being assumed;
similarly to the Prediction Algorithm of Spirtes et al. (2000), we do not need to fully
specify a causal model in order to identify some of its interventional distributions. In
our conditional probability table (CPT) factorization, we define Par(X) = {W,U} and
Par(Y ) = {W,X,U}. The joint distribution of {W,U} can be factorized arbitrarily: the
causal directionality among W , U (and Z) is not relevant to the only interventional distribu-
tion of interest, do(X). In the next subsection, we refine the parameterization of our model
by introducing redundancies: we provide a parameterization for the latent variable model
P (W,X, Y, U), the interventional distribution P (W,Y,U | do(X)) and the corresponding
(latent-free) marginals P (W,X, Y ), P (W,Y | do(X)). These parameters cannot vary fully
independently of each other. It is this fact that will allow us to bound the ACE using only
P (W,X, Y ).

4.1 Encoding Faithfulness Relaxations with Linear Constraints

We define a relaxation of faithfulness as any set of assumptions that allows the relations in
(3) to be true, but not necessarily in an arbitrary way: this means that while the left-hand
and right-hand sides of each entry of (3) are indeed different, their difference is bounded by
either the absolute difference or by ratios. Without such restrictions, (3) will only imply
uninteresting bounds, as discussed in our presentation of Proposition 1.

Consider the following parameterization of the distribution of {W,X, Y, U} under the
observational and interventional regimes, and their respective marginals obtained by in-

3. That is, a path that d-connects X and Y and includes U , conditional on W ; it is “into” X (and Y )
because the edge linking X to the path points to X. See Spirtes et al. (2000) and Pearl (2000) for formal
definitions and more examples.

4. Meaning a family of models where P (W,X, Y ) satisfies the same constraints.
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{β, β}

εx εy

Figure 2: A visual depiction of the family of assumptions introduced in our framework.
Dashed edges correspond to conditional dependencies that are constrained ac-
cording to free parameters, displayed along each corresponding edge. This is
motivated by observing W ⊥⊥ Y | X.

tegrating U away5. Again we condition everywhere on a particular value z of Z but, for
simplicity of presentation, we suppress this from our notation, since it is not crucial to the
developments in this section:

ζ?yx.w ≡ P (Y = y,X = x |W = w,U)

ζyx.w ≡
∑

U P (Y = y,X = x |W = w,U)P (U |W = w)
= P (Y = y,X = x |W = w)

η?xw ≡ P (Y = 1 |X = x,W = w,U)
ηxw ≡

∑
U P (Y = 1 |X = x,W = w,U)P (U |W = w)

= P (Y = 1 | do(X = x),W = w)

δ?w ≡ P (X = 1 |W = w,U)
δw ≡

∑
U P (X = x |W = w,U)P (U |W = w)

= P (X = 1 |W = w).

Under this encoding, the ACE is given by

η11P (W = 1) + η10P (W = 0)− η01P (W = 1)− η00P (W = 0). (4)

Notice that we do not explicitly parameterize the marginal of U , for reasons that will become
clear later.

We introduce the following assumptions, as illustrated by Figure 2:

|η?x1 − η?x0| ≤ εw (5)

|η?xw − P (Y = 1 |X = x,W = w)| ≤ εy (6)

|δ?w − P (X = 1 |W = w)| ≤ εx (7)

βP (U) ≤ P (U |W = w) ≤ βP (U). (8)

5. Notice from the development in this section that U is not necessarily a scalar, nor discrete.
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Setting εw = 0, β = β = 1 recovers the standard IV structure. Further assuming εy = εx = 0
recovers the chain structure W → X → Y . Under this parameterization in the case εy =
εx = 1, β = β = 1, Ramsahai (2012), extending Dawid (2003), used linear programming to
obtain bounds on the ACE. We will briefly describe the four main steps of the framework
of Dawid (2003), and refer to the cited papers for more details of their implementation.

For now, assume that ζyx.w and P (W = w) are known constants—that is, treat P (W,X, Y )
as known. This assumption will be dropped later. Dawid’s formulation of a bounding pro-
cedure for the ACE is as follows.

Step 1 Notice that parameters {η?xw} take values in a 4-dimensional polytope. Find the
extreme points of this polytope. Do the same for {δ?w}.

In particular, for εw = εy = 1, the polytope of feasible values for the four dimensional
vector (η?00, η

?
01, η

?
10, η

?
11) is the unit hypercube [0, 1]4, a polytope with a total of 16 vertices

(0, 0, 0, 0), (0, 0, 0, 1), . . . (1, 1, 1, 1). Dawid (2003) covered the case εw = 0, where a two-
dimensional vector {η?x} replaces {η?xw}. In Ramsahai (2012), the case 0 ≤ εw < 1 is also
covered: some of the corners in [0, 1]4 disappear and are replaced by others. The case where
εw = εx = εy = 1 is vacuous, in the sense that the consecutive steps cannot infer non-trivial
constraints on the ACE.

Step 2 Find the extreme points of the joint space {ζ?yx.w} × {η?xw} by mapping them from

the extreme points of {δ?w} × {η?xw}, since ζ?yx.w = (δ?w)x(1− δ?w)(1−x)η?xw.

The extreme points of the joint space {δ?w} × {η?xw} are just the combination of the
extreme points of each space. Some combinations δ?w × η?xw map to the same ζ?yx.w, while
the mapping from a given δ?w × η?xw to η?xw is just the trivial projection. At this stage,
we obtain all the extreme points of the polytope {ζ?yx.w} × {η?xw} that are entailed by the
factorization of P (W,X, Y, U) and our constraints.

Step 3 Using the extreme points of the joint space {ζ?yx.w} × {η?xw}, find the dual polytope
of this space in terms of linear inequalities. Points in this polytope are convex combinations
of {ζ?yx.w}×{η?xw}, shown by Dawid (2003) to correspond to the marginalizations over some
P (U), and each P (U) corresponds to some point in the polytope. This results in constraints
over {ζyx.w} × {ηxw}.

This is the core step in Dawid (2003): points in the polytope {ζyx.w}×{ηxw} correspond
to different marginalizations of U according to different P (U). Describing the polytope in
terms of inequalities provides all feasible distributions that result from marginalizing U
according to some P (U). Because we included both ζ?yx.w and η?xw in the same space, this
will tie together P (Y,X | W ) and P (Y | do(X),W ).

Step 4 Finally, maximize/minimize (4) with respect to {ηxw} subject to the constraints
found in Step 3 to obtain upper/lower bounds on the ACE.
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Allowing for the case where εx < 1 or εy < 1 is just a matter of changing the first
step, where box constraints are set on each individual parameter as a function of the known
P (Y = y,X = x |W = w), prior to the mapping in Step 2. The resulting constraints
are now implicitly non-linear in P (Y = y,X = x |W = w), but at this stage this does
not matter as the distribution of the observables is treated as a constant. That is, each
resulting constraint in Step 3 is a linear function of {ηxw} and a multilinear function on
{{ζyx.w}, εx, εy, εw, β, β, P (W )}, as discussed in Section 5. Within the objective function (4),
the only decision variables are {ηxw}, and hence Step 4 still sets up a linear programming
problem even if there are multiplicative interactions between {ζyx.w} and other parameters.

To allow for the case β < 1 < β, we substitute every occurrence of ζyx.w due to the
dualization in Step 3 above6 by κyx.w ≡

∑
U ζ

?
yx.wP (U); notice the difference between

κyx.w and ζyx.w. Likewise, we substitute every occurrence of ηxw in the constraints by
ωxw ≡

∑
U η

?
xwP (U). Instead of plugging in constants for the values of κyx.w and turning

the crank of a linear programming solver, we treat {κyx.w} (and {ωxw}) as unknowns, linking
them to observables and ηxw by the constraints

ηxw/β ≤ ωxw ≤ min(1, ηxw/β),

ζyx.w/β ≤ κyx.w ≤ ζyx.w/β,
(9)

∑
yx

κyx.w = 1. (10)

Finally, the steps requiring finding extreme points and converting between representa-
tions of a polytope can be easily implemented using a package such as Polymake7 or the
scdd package8 for R. Once bounds are obtained for each particular value of Z, Equation
(2) is used to obtain the unconditional bounds assuming P (Z) is known.

In Section 8, we provide some guidance on how to choose the free parameters of the
relaxation. However, it is relevant to point out that any choice of εw ≥ 0, εy ≥ 0, εx ≥ 0, 0 ≤
β ≤ 1 ≤ β is guaranteed to provide bounds that are at least as conservative as the back-door
adjusted point estimator of Entner et al. (2013), which is always covered by the bounds.
Background knowledge, after a user is suggested a witness and admissible set, can also be
used to set relaxation parameters.

So far, the linear programming formulated through Steps 1–4 assumes one has already
identified an appropriate witness W and admissible set Z, and that the joint distribution
P (W,X, Y,Z) is known. In the next section, we discuss how this procedure is integrated
with statistical inference for P (W,X, Y,Z) and the search procedure of Entner et al. (2013).

6. Notice the subtlety: the values of P (y, x | w) appear within the extreme points of {ζ?yx.w} × {η?xw}, but
here we are only concerned about the symbols ζyx.w emerging from convex combinations of ζ?yx.w. In
the original formulation of Dawid (2003), κyx.w = P (y, x | w) is satisfied, because P (U) = P (U | W )
is assumed, but in our case in general this will not be true. Hence, the need for a different symbol.
Ramsahai (2012) deals with the P (U) 6= P (U | W ) relaxation in a different way by conditioning on each
value of W , but his ACE intervals always include zero.

7. http://www.poymake.org

8. http://cran.r-project.org/
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input : A binary data matrix D;
A set of relaxation parameters ℵ;
A covariate index set W and cause-effect indices X and Y ;

output: A set of triplets (W,Z,B), where (W,Z) is a witness-admissible set pair
contained in W and B is a distribution over lower/upper bounds on the
ACE implied by the pair

1 R ← ∅;
2 for each W ∈W do
3 for every admissible set Z ⊆W\{W} identified by W given D do
4 B ← posterior over lower/upper bounds on the ACE as given by

(W,Z, X, Y,D,ℵ);
5 if there is no evidence in B to falsify the (W,Z,ℵ) model then
6 R ← R∪ {(W,Z,B)};
7 end

8 end

9 end
10 return R

Algorithm 2: The outline of the Witness Protection Program algorithm.

4.2 Bayesian Learning and Result Summarization

In the previous section, we treated (the conditional) ζyx.w and P (W = w) as known. A
common practice is to replace them by plug-in estimators (and in the case of a non-empty
admissible set Z, an estimate of P (Z) is also necessary). Such models can also be falsified, as
the constraints generated are typically only supported by a strict subset of the probability
simplex. In principle, one could fit parameters without constraints, and test the model by
a direct check of satisfiability of the inequalities using the plug-in values. However, this
does not take into account the uncertainty in the estimation. For the standard IV model,
Ramsahai and Lauritzen (2011) discuss a proper way of testing such models in a frequentist
sense.

Our models can be considerably more complicated. Recall that constraints will depend
on the extreme points of the {ζ?yx.w} parameters. As implied by (6) and (7), extreme points
will be functions of ζyx.w. Writing the constraints fully in terms of the observed distribution
will reveal non-linear relationships. We approach the problem in a Bayesian way. We will
assume first the dimensionality of Z is modest (say, 10 or less), as this is the case in most
applications of faithfulness to causal discovery. We parameterize ζzyxw ≡ P (Y = y,X =
x,W = w | Z = z) as a full 2 × 2 × 2 contingency table9. In the context of the linear
programming problem of the previous section, for a given z, we have ζyx.w = ζyxw/P (W =
w), P (W = w) =

∑
yx ζyxw.

Given that the dimensionality of the problem is modest, we assign to each three-variate
distribution P (Y,X,W |Z = z) an independent Dirichlet prior for every possible assignment
of Z, constrained by the inequalities implied by the model (and renormalized accordingly).

9. That is, we allow for dependence between W and Y given {X,Z}, interpreting the decision of indepen-
dence used in Rule 1 as being only an indicator of approximate independence.
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The posterior is also a 8-dimensional constrained Dirichlet distribution, where we use rejec-
tion sampling to obtain a posterior sample by proposing from the unconstrained Dirichlet.
A Dirichlet prior is assigned to P (Z). Using a sample from the posterior of P (Z) and a
sample (for each possible value z) from the posterior of P (Y,X,W |Z = z), we obtain a
sample upper and lower bound for the ACE by just running the linear program for each
sample of {ηzyxw} and {P (Z = z)}.

The full algorithm is shown in Algorithm 2, where ℵ ≡ {εw, εx, εy, β, β}. The search
procedure is left unspecified, as different existing approaches can be plugged into this step.
See Entner et al. (2013) for a discussion. In Section 9 we deal with small dimensional
problems only, using the brute-force approach of performing an exhaustive search for Z. In
practice, brute-force can be still valuable by using a method such as discrete PCA (Buntine
and Jakulin, 2004) to reduce W\{W} to a small set of binary variables. To decide whether
the premises in Rule 1 hold, we merely perform Bayesian model selection with the BDeu
score (Buntine, 1991) between the full graph {W → X,W → Y,X → Y } (conditional on
Z) and the graph with the edge W → Y removed.

Step 5 in Algorithm 2 is a “falsification test.” Since the data might provide a bad fit
to the constraints entailed by the model10, we opt not to accept every pair (W,Z) that
passes Rule 1. One possibility is to calculate the posterior distribution of the model where
constraints are enforced, and compare it against the posteriors of the saturated model given
by the unconstrained contingency table. This requires another prior over the constraint
hypothesis and the calculation of the corresponding marginal likelihoods. As an alternative
approach, we adopt the pragmatic rule of thumb suggested by Richardson et al. (2011):
sample M samples from the {ζzyxw} posterior given the unconstrained model, and check the
proportion of values that are rejected. If more than 95% of them are rejected, we take this
as an indication that the proposed model provides a bad fit and reject the given choice of
(W,Z).

The final result provides a set of posterior distributions over bounds, possibly contradic-
tory, which should be summarized as appropriate. One possibility is to check for the union
of all intervals or, as a simpler alternative, report the lowest of the lower bound estimates
and the highest of the upper bound estimates using a point estimate for each bound:

1. for each (W,Z) in R, calculate the posterior expected value of the lower and upper
bounds11;

2. report the interval L ≤ ACE ≤ U where L is the minimum of the lower bounds and
U the maximum of the upper bounds.

In our experiments, we use a different summary. As we calculate the log-marginal
posterior M1,M2,M3,M4 for the hypotheses W 6⊥⊥ Y | Z, W ⊥⊥ Y | Z, W ⊥⊥ Y | Z ∪ {X},
W 6⊥⊥ Y | Z ∪ {X}, respectively, we use the score

(M1 −M2) + (M3 −M4) (11)

10. This is a result of not enforcing W ⊥⊥ Y | Z ∪ {X} in ηzyxw.
11. Alternatively to using the expected posterior estimator for the lower/upper bounds, one can, for instance,

report the 0.025 quantile of the marginal lower bound distribution and the 0.975 quantile of the marginal
upper bound distribution. Notice, however, this does not give a 0.95 credible interval over ACE intervals
as the lower bound and the upper bound are dependent in the posterior.

13



Silva and Evans

to assess the quality of the bounds obtained with the corresponding witness-admissible set
pair. M1 −M2 and M3 −M4 are the log-posterior odds for the models required by the
premises of Rule 1 against the respective alternatives. Just reporting the posterior of each
(W,Z) model to rank witness-admissible set pairs would not be entirely appropriate, as we
are comparing models for different random variables. Adding the log-posteriors instead of a
different combination is done for the sake of simplicity, contrasted to the idea of comparing
the posterior of W → X → Y against the other seven combinations of edges involving
{W,X, Y }.

Given the score, we then report the corresponding top-scoring interval and evaluation
metric based on this criterion. The reason for reporting a single representative interval
is our belief that it is more productive to accommodate most of the (possibly large) dis-
crepancies among estimated ACE intervals in the selection of ℵ, as done in Section 8. By
selecting a single baseline with a unique lower/upper bound pair, it is simpler to commu-
nicate uncertainty, as we can then provide credible intervals or full distributions for the
selected lower/upper bounds12.

4.3 A Note on Weak Dependencies

As we briefly mentioned in the previous section, our parameterization {ζzyxw} does not
enforce the independence condition W ⊥⊥ Y | Z ∪ {X} required by Rule 1. Our general
goal is to let WPP accept “near independencies,” in which the meaning of the symbol ⊥⊥
in practice means weak dependence13. We do not define what a weak dependence should
mean, except for the general guideline that some agreed measure of conditional association
should be “small.” Our pragmatic view on WPP is that Rule 1, when supported by weak
dependencies, should be used as a motivation for the constraints in Section 4.1. That is, one
makes the assumption that “weak dependencies are not generated by arbitrary near-path
cancellations,” reflecting the belief that very weak associations should correspond to weak
direct causal effects (and, where this is unacceptable, WPP should either be adapted to
exclude relevant cases, or not be used). At the same time, users of WPP do not need to
accept this view, as the method does not change under the usual interpretation of ⊥⊥.

However, it is worthwhile to point out that computational gains can be obtained by
using a parameterization that encodes the independence: that is, if we change our param-
eterization to enforce the independence constraint W ⊥⊥ Y | Z ∪ {X}, then there is no
need to perform the check in line 5 of Algorithm 2, as the model is compatible with the
(conditional on Z) chain W → X → Y regardless of ℵ. One can then generate full posterior
distribution bounds only for those witness-admissible sets for which uncertainty estimates
are required. The validity of point estimates of a bound is guaranteed by running a single
linear programming on a point estimate of the distribution implied by the Bayesian net-

12. One should not confuse credible intervals with ACE intervals, as these are two separate concepts: each
lower or upper bound is a function of the unknown P (W,X, Y,Z) and needs to be estimated. There is
posterior uncertainty over each lower/upper bound as in any problem where a functional of a distribution
needs to be estimated. So the posterior distribution and the corresponding credible intervals over the
ACE intervals are perfectly well-defined as in any standard Bayesian inference problem.

13. The procedure that decides conditional independencies in Section 4.2 is a method for testing exact
independencies, although the prior on the independence assumption regulates how strong the evidence
in the data should be for independence to be accepted.
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Figure 3: Posterior over the ACE obtained by three different priors conditioned on a syn-
thetic data set of size 1,000,000. Posterior computed by running 1,000,000 iter-
ations of Gibbs sampling. The (independent) priors for θY1.xu and θXx.wu are Beta
(α, α), while θUu is given a Dirichlet (α, α, α, α). We set α = 0.1, 1, 10 for the
cases shown in (a), (b) and (c), respectively. Vertical red line shows the true
ACE, while the population IV bounds are shown with gray lines. As the prior
gets less informative (moving from (c) to (a)), the erratic shape of the posterior
distribution also shows the effect of bad Gibbs sampling mixing. Even with a
very large data set, the concentration of the posterior is highly dependent on the
concentration of the prior.

work W → X → Y (for every instance of Z), as no further constraints in the observable
distribution will exist. That is, if one wants to enforce the independence constraints, Line
4 of Algorithm 2 can be modified to directly generate just point estimates of the bounds
for any witness-admissible set pair where a full posterior distribution is not required, and
the falsification test in Step 5 (with the costly polytope construction) can also be skipped.

4.4 A Note on Unidentifiability

An alternative to bounding the ACE or using back-door adjustments is to put priors directly
on the latent variable model for {W,X, Y, U}. Using the standard IV model as an example,
we can define parameters θYy.xu ≡ P (Y = y | X = x, U = u), θXx.wu ≡ P (X = x | W =

w,U = u) and θUu ≡ P (U = u), on which priors are imposed14. No complicated procedure
for generating constraints in the observable marginal is necessary, and the approach provides
point estimates of the ACE instead of bounds.

This sounds too good to be true, and indeed it is: results strongly depend on the
prior, regardless of sample size. To illustrate this, consider a simulation from a standard
IV model (Figure 1(c)), with Z = ∅ and U an unobservable discrete variable of 4 levels.
We generated a model by setting P (W = w) = 0.5 and sampling parameters θY1.xu and
θX1.wu from the uniform [0, 1] distribution, while the 4-dimensional vector θUu comes from a

14. P (W = w) is not necessary, as the standard IV bounds (Balke and Pearl, 1997) do not depend on it.
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Dirichlet (1, 1, 1, 1). The resulting model had an ACE of −0.20, with a wide IV interval
[−0.50, 0.38] as given by the method of Balke and Pearl (1997). Narrower intervals can only
be obtained by making more assumptions: there is no free lunch. However, as in this case
where WPP cannot identify any witness, one might put priors on the latent variable model
to get a point estimate, such as the posterior expected value of the ACE.

To illustrate the pitfalls of this approach, we perform Bayesian inference by putting
priors directly on the CPT parameters of the latent variable model, assuming we know the
correct number of levels for U . Figure 3 shows some results with a few different choices of
priors. The sample size is large enough so that the posterior is essentially entirely within the
population bounds and the estimation of P (W,X, Y, Z) is itself nearly exact. The posterior
over the ACE covers a much narrower area than the IV interval, and its behavior is erratic.

This is not to say that informative priors on a latent variable model cannot produce im-
portant results. For instance, Steenland and Greenland (2004) discuss how empirical priors
on smoking habits among blue-collar workers were used in their epidemiological question:
the causal effect of the occupational hazard of silica exposure on lung cancer incidence
among industrial sand workers. Smoking is a confounding factor given the evidence that
smoking and occupation are associated. The issue was that smoking was unrecorded among
the workers, and so priors on the latent variable relationship to the observables were nec-
essary. Notice, however, that this informative prior is essentially a way of performing a
back-door adjustment when the adjustment set Z and treatment-outcome pair {X,Y } are
not simultaneously measured within the same subjects. When latent variables are “un-
known unknowns,” a prior on P (Y | X,U) may be hard to justify. Richardson et al. (2011)
discuss more issues on priors over latent variable models as a way of obtaining ACE point
estimates, one alternative being the separation of identifiable and unidentifiable parameters
to make transparent the effect of prior (mis)specification.

5. Algebraic Bounds and the Back-substitution Algorithm

Posterior sampling is expensive within the context of Bayesian WPP: constructing the dual
polytope for possibly millions of instantiations of the problem is time consuming, even if
each problem is small. Moreover, the numerical procedure described in Section 4 does not
provide any insight on how the different free parameters {εw, εx, εy, β, β} interact to produce
bounds, unlike the analytical bounds available in the standard IV case. Ramsahai (2012)
derives analytical bounds under (5) given a fixed, numerical value of εw. We know of no
previous analytical bounds as an algebraic function of εw.

5.1 Algebraic Bounds

We derive a set of bounds, whose validity are proved by three theorems. The first theorem
derives separate upper and lower bounds on ωxw using all the assumptions except Equation
(5); this means constraints which do not link distributions under different values of W = w.
The second theorem derives linear constraints on {ωxw} using (5) and more elementary
constraints. Our final result will construct less straightforward bounds, again using Equa-
tion (5) as the main assumption. As before, assume we are implicitly conditioning on some
Z = z everywhere.
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We introduce the notation

LY Uxw ≡ max(P (Y = 1|X = x,W = w)− εy, 0)
UY Uxw ≡ min(P (Y = 1|X = x,W = w) + εy, 1)
LXUw ≡ max(P (X = 1|W = w)− εx, 0)
UXUw ≡ min(P (X = 1|W = w) + εx, 1)

and define L ≡ min{LY Uxw }, U ≡ max{UY Uxw }. Moreover, some further redundant notation is
used to simplify the description of the constraints:

δ?1.w ≡ δ?w
δ?0.w ≡ 1− δ?w
LXU11 ≡ LXU1

LXU01 ≡ 1− UXU1

UXU11 ≡ UXU1

UXU01 ≡ 1− LXU1

and, following Ramsahai (2012), for any x ∈ {0, 1}, we define x′ as the complementary
binary value (i.e. x′ = 1− x). The same convention applies to pairs {w,w′}. Finally, define
χx.w ≡

∑
U P (X = x | W = w,U)P (U) = κ1x.w + κ0x.w.

Theorem 2 The following constraints are entailed by the assumptions expressed in Equa-
tions (6), (7) and (8):

ωxw ≤ min


κ1x.w + UY Uxw (κ0x′.w + κ1x′.w)

κ1x.w/L
XU
xw

1− κ0x.w/UXUxw

(12)

ωxw ≥ max


κ1x.w + LY Uxw (κ0x′.w + κ1x′.w)

κ1x.w/U
XU
xw

1− κ0x.w/LXUxw

(13)

Theorem 3 The following constraints are entailed by the assumptions expressed in Equa-
tions (5), (6), (7) and (8):

ωxw ≤ min

{
(κ1x.w′ + εw(κ0x.w′ + κ1x.w′))/LXUxw′

1− (κ0x.w′ − εw(κ0x.w′ + κ1x.w′))/UXUxw′
(14)

ωxw ≥ max

{
(κ1x.w′ − εw(κ0x.w′ + κ1x.w′))/UXUxw′

1− (κ0x.w′ + εw(κ0x.w′ + κ1x.w′))/LXUxw′
(15)

ωxw − ωxw′UXUx′w ≤ κ1x.w + εw(κ0x′.w + κ1x′.w)
ωxw − ωxw′LXUx′w ≥ κ1x.w − εw(κ0x′.w + κ1x′.w)
ωxw − ωxw′UXUx′w ≥ 1− κ0x.w − UXUx′w − εw(κ0x′.w + κ1x′.w)
ωxw − ωxw′LXUx′w ≤ 1− κ0x.w − LXUx′w + εw(κ0x′.w + κ1x′.w)

ωxw − ωxw′ ≤ εw
ωxw − ωxw′ ≥ −εw

(16)
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Theorem 4 The following constraints are entailed by the assumptions expressed in Equa-
tions (5), (6), (7) and (8):

ωxw ≤ min

{
κ1x′.w′ + κ1x.w′ + κ1x.w − κ1x′.w + χx′w(U + L+ 2εw)− L
κ1x′.w + κ1x.w + κ1x.w′ − κ1x′.w′ + 2χx′wεw + χx′w′(U + L)− L

(17)

ωxw ≥ max

{
−κ1x′.w′ + κ1x.w′ + κ1x′.w + κ1x.w + χx′w′(U + L)− 2εwχx′w − U
−κ1x′.w + κ1x.w + κ1x′.w′ + κ1x.w′ − χx′w(2εw − U − L)− U

(18)

ωxw + ωx′w − ωx′w′ ≥ κ1x′.w + κ1x.w − κ1x′.w′ + κ1x.w′ − χxw′(U + L+ 2εw) + L

ωxw + ωx′w′ − ωx′w ≥ κ1x′.w′ + κ1x.w′ − κ1x′.w + κ1x.w − 2χxw′εw − χxw(U + L) + L

ωxw + ωx′w′ − ωx′w ≤ −κ1x′.w + κ1x.w + κ1x′.w′ + κ1x.w′ − χxw(U + L) + 2εwχxw′ + U

ωxw + ωx′w − ωx′w′ ≤ −κ1x′.w′ + κ1x.w′ + κ1x′.w + κ1x.w + χxw′(2εw − U − L) + U
(19)

Although at first such relations seem considerably more complex than those given by
Ramsahai (2012), on closer inspection they illustrate qualitative aspects of our free param-
eters. For instance, consider

ωxw ≥ κ1x.w + LY Uxw (κ0x′.w + κ1x′.w),

one of the instances of (13). If εy = 1 and β = β = 1, then LY Uxw = 0 and this relation
collapses to ηxw ≥ ζ1x.w, one of the original relations found by Balke and Pearl (1997) for
the standard IV model. Decreasing εy will linearly increase LY Uxw only after εy ≤ P (Y =
1 | X = x,W = w), tightening the corresponding lower bound given by this equation.

Consider now

ωxw ≤ 1− (κ0x.w′ − εw(κ0x.w′ + κ1x.w′))/UXUxw′ .

If also εw = 0 and εx = 1, from this inequality it follows that ηxw ≤ 1 − ζ0x.w′ . This is
another of the standard IV inequalities (Balke and Pearl, 1997).

Equation (5) implies |ωx′w − ωx′w′ | ≤ εw, and as such by setting εw = 0 we have that

ωxw + ωx′w − ωx′w′ ≥ κ1x′.w + κ1x.w − κ1x′.w′ + κ1x.w′ − χxw′(U + L+ 2εw) + L (20)

implies ηxw ≥ η1x.w+η1x.w′−η1x′.w′−η0x.w′ , one of the most complex relationships in (Balke
and Pearl, 1997). Further geometric intuition about the structure of the binary standard
IV model is given by Richardson and Robins (2010).

These bounds are not tight, in the sense that we opt not to fully exploit all possible
algebraic combinations for some results, such as (20): there we use L ≤ η?xw ≤ U and
0 ≤ δ?w ≤ 1 instead of all possible combinations resulting from (6) and (7). The proof idea
in Appendix A can be further refined, at the expense of clarity. Because our derivation is
a further relaxation, our final bounds are more conservative (that is, looser).
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5.2 Efficient Optimization and Falsification Tests

Besides providing insight into the structure of the problem, the algebraic bounds give an
efficient way of checking whether a proposed parameter vector {ζyxw} is valid in Step 5
of Algorithm 2, as well as finding the ACE bounds: we can now use back-substitution on
the symbolic set of constraints to find box constraints Lxw ≤ ωxw ≤ Uxw. The proposed
parameter will be rejected whenever an upper bound is smaller than a lower bound, and
(4) can be trivially optimized conditioning only on the box constraints—this is yet another
relaxation, added on top of the ones used to generate the algebraic inequalities. We initialize
by intersecting all algebraic box constraints (of which (12) and (14) are examples); next
we refine these by scanning relations ±ωxw − aωxw′ ≤ c (the family given by (16)) in
lexicographical order, and tightening the bounds of ωxw using the current upper and lower
bounds on ωxw′ where possible. We then identify constraints Lxww′ ≤ ωxw − ωxw′ ≤ Uxww′

starting from −εw ≤ ωxw−ωxw′ ≤ εw and the existing bounds, and plug them into relations
±ωxw+ωx′w−ωx′w′ ≤ c (as exemplified by (20)) to get refined bounds on ωxw as functions of
(Lx′ww′ ,Ux′ww′). We iterate this until convergence, which is guaranteed since lower/upper
bounds never decrease/increase at any iteration. This back-substitution of inequalities
follows the spirit of message-passing, in the sense that we iteratively update quantities
of interest (intervals bounding the decision variables of the linear program) based on a
small subset of other quantities, and it can be orders of magnitude more efficient than the
fully numerical solution, while not increasing the width of the intervals by too much. In
Section 9, we provide evidence for this claim. The back-substitution method is used in our
experiments, combined with the fully numerical linear programming approach as explained
in Section 9. The full method is given in Algorithm 3.

6. Linear Models

Entner et al. (2012) present a variant of their methodology for linear non-Gaussian models.
The main difference is that in this case no witness variable W is necessary: it is possible
to validate Z as an admissible set from a regression of X on Z and Y on {X,Z}. Faith-
fulness is not necessary under some non-Gaussianity assumptions, although not all of these
assumptions are testable without faithfulness and assumptions of parameter stability are
still necessary for constraints other than independence constraints.

In this section, we adapt WPP to linear models. Vanishing partial correlations are
used in the premise of Rule 1 instead of independence constraints, even if variables are non-
Gaussian. The computation of the ACE bounds is vastly simplified. It complements Entner
et al. (2012) in the sense that, although the method does not provide point estimates of the
ACE and it might fail to identify some admissible sets, it does not require either faithfulness
or non-Gaussianity15. Only second-order moments are necessary in the construction of the
bound, although nonparametric linear models for testing partial correlations or sampling
from the posterior distribution of covariance matrices might be necessary.

15. Even if variables are clearly non-Gaussian, the residuals of their regression on the admissible set might
be close to Gaussian—this is after all the motivation for Gaussian likelihoods in most regression models,
parametric or not.
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input : Distributions {ζyx.w} and {P (W = w)};
output: Lower and upper bounds (Lxw,Uxw) for every ωxw

1 Find tightest lower and upper bounds (Lxw,Uxw) for each ωxw using inequalities
(12), (13) (14), (15), (17) and (18);

2 Let Lεwxw and U εwxw be lower/upper bounds of ωxw − ωxw′ ;
3 for each pair (x,w) ∈ {0, 1}2 do
4 Lεwxw ← −εw;
5 U εwxw ← εw;

6 end
7 while TRUE do
8 for each relation ωxw − b× ωxw′ ≤ c in (16) do
9 U εwxw ← min{U εwxw, (b− 1)Lxw + c}

10 end
11 for each relation ωxw − b× ωxw′ ≥ c in (16) do
12 Lεwxw ← max{Lεwxw, (b− 1)Uxw + c}
13 end
14 for each relation ωxw + ωx′w − ωx′w′ ≤ c in (19) do
15 Uxw ← min{Uxw, c− Lεwxw′}
16 end
17 for each relation ωxw − (ωx′w − ωx′w′) ≤ c in (19) do
18 Uxw ← min{Uxw, c+ U εwxw′}
19 end
20 for each relation ωxw + ωx′w − ωx′w′ ≥ c in (19) do
21 Uxw ← max{Uxw, c− U εwxw′}
22 end
23 for each relation ωxw − (ωx′w − ωx′w′) ≥ c in (19) do
24 Uxw ← max{Uxw, c+ Lεwxw′}
25 end
26 if no changes in {(Lxw,Uxw)} then
27 break
28 end

29 end
30 return (Lxw,Uxw) for each (x,w) ∈ {0, 1}2

Algorithm 3: The iterative back-substitution procedure for bounding Lxw ≤ ωxw ≤ Uxw
for all combinations of x and w in {0, 1}2.

6.1 A Bounding Procedure for Linear Models

Consider for now the linear model case with an empty admissible set Z:

X = aW + Ux
Y = bX + cW + Uy,

(21)

where {W,Ux, Uy} are assumed to be zero mean variables, and {Ux, Uy} are unobservable.
The case with non-empty Z is analogous and discussed in the next section. The ACE is
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given by b. We denote as sww, swx, swy, . . . the corresponding variances/covariances of
{W,Ux, Uy}. Moreover, let the variances of {W,Ux, Uy} be set such that each element of
{W,X, Y } has unit variance, and denote as ρwx, ρwy, ρxy the corresponding correlations of
{W,X, Y }. Notice that sww = 1, and no assumptions about Gaussianity are being made.
As before, we assume for now that ρwx, ρwy, ρxy are known constants, and we would like to
bound b as a function of this observable correlation matrix. The implied correlation matrix
of model (21) needs to match the observable correlation matrix:

ρwx = a+ swx (22)

ρwy = bρwx + c+ swy (23)

ρxx = 1 = a2 + 2aswx + sxx (24)

ρxy = b+ cρwx + aswy + sxy (25)

ρyy = 1 = b2 + 2bcρwx + c2 + syy + 2[b(aswy + sxy) + cswy], (26)

where the above identities follow directly from (21). The feasible values of the parameters
are given by the intersection of the above and

−εc ≤ c ≤ εc (27)

−εwx ≤ swx ≤ εwx, −εwy ≤ swy ≤ εwy, −εxy ≤ sxy ≤ εxy (28)

0 ≤ sxx ≤ 1, 0 ≤ syy ≤ 1. (29)

We ignore the positive semidefiniteness requirement of the covariance matrix of {W,UX , UY }
for simplicity.

The set of constraints can be simplified as follows:

Theorem 5 Assume16 ρwy = ρwxρxy. If an assignment of values to {a, b, c, swx, sxx, sxy, sxx}
satisfies (27)-(29), then it satisfies (22)-(26) if and only it satisfies the following:

ρwy = bρwx + c+ swy (30){
ρxy − εxy − Uaswy ≤ b+ cρwx ≤ ρxy + εxy − Laswy, if swy ≥ 0

ρxy − εxy − Laswy ≤ b+ cρwx ≤ ρxy + εxy − Uaswy, if swy < 0
(31)

b2 + 2bcρwx + c2 − 2(bρxy + cρwy) ≤ 0 (32)

where La ≡ max(min(0, 2ρwx), ρwx − εwx) and Ua ≡ min(max(0, 2ρwx), ρwx + εwx).

This means that optimizing b subject to constraints (27)−(32) is a convex program
on {b, c, swy} (conditioned on the sign of swy). Notice that, because of the assumption
ρwy = ρwxρxy, the system is always satisfiable. It can nevertheless rule out some the
possible values of b (e.g. b = ρxy = ρwy/ρwx if εxy = εwy or εc = εwy = 0). Given {ρwx, ρxy}
(and setting ρwy = ρwxρxy), we can find an upper bound for the ACE by maximizing b under
the constraints (27)−(32) and 0 ≤ swy ≤ εwy, followed by maximization under the condition
−εwy ≤ swy ≤ 0. The upper bound is the maximum of the two conditional maxima. The
lower bound is derived in an analogous way.

16. This assumption can be dropped, but the proof of Theorem 5 gets more complicated.
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6.2 Algorithm for Gaussian Copula Models

One general model family in which vanishing partial correlations are closely connected to
independence is the Gaussian copula (Elidan, 2013; Nelsen, 2007). Consider the following
generative model:

V? ∼ N (0, R)

Vi = F−1i (φ(V ?
i )), i = 1, 2, . . . , p,

(33)

where V? is a p-dimensional random vector generated according to the Gaussian with p× p
correlation matrix R, Fi(·) is some arbitrary cumulative distribution function (CDF), and
φ(·) is standard Gaussian CDF. In continuous distributions, Fi(·) is invertible, and Markov
properties of V? are preserved in the distribution of V. See Harris and Drton (2013) for
a discussion of Gaussian copula models in the context of causal inference, in particular
for structure learning using the PC algorithm (Spirtes et al., 2000). Causal structure and
effects are defined for V∗ as in a typical linear causal system. Conditional independencies
can be tested by copula-based measures, such as Spearman’s rank correlation, by testing
for the corresponding vanishing partial correlations. Given a target treatment X ∈ V and
outcome Y ∈ V, we are interested in bounding the ACE of X? in Y ?, the Gaussian variables
underlying the possibly non-Gaussian X and Y .

For simplicity, we search for admissible sets Z with corresponding witness W using a
Gaussian copula correlation matrix estimate R̂. The unobserved data for V? is then for
simplicity assumed to have zero empirical mean and empirical covariance matrix R̂. We
score models entailing independence of some Vi and Vj given VZ by scoring two Gaussian
networks, G1 ≡ {V?

Z → V ?
i ,V

?
Z → V ?

j } against G2 ≡ {V?
Z → V ?

i ,V
?
Z → V ?

j , V
?
i → V ?

j }.
This is analogous to the binary case, where here we use the corrected BGe score (Kuipers
et al., 2014). Notice this test is approximate, as R̂ is used as a surrogate for the empirical
covariance matrix of the unobserved data V?, which is required by BGe17.

For a given (W,Z) accepted by Rule 1, we calculate the empirical residual (rank) corre-
lation matrix obtained by regressing W ? on Z?, X? on W ? and Z?, and Y ? on X? and Z?, so
that the partial (residual) correlation of W and Y given X and Z is zero. Regression of sub-
sets of V? on other subsets is done by standard regression using R̂: let {σ̂ww.z, σ̂xx.z, σ̂yy.z}
be the residual variances of the regression of {W ?, X?, Y ?} on Z? as defined by R̂. The
resulting residual covariance matrix is scaled to unit variance, and the method in Section
6.1 is used to generate scaled bounds Lbs ≤ bstandardized ≤ Ubs , which are converted in
bounds on the ACE in the original scale as [

√
σ̂xxσ̂yyLbs ,

√
σ̂xxσ̂yyUbs ].

The algorithm is basically the same as Algorithm 2, except we report only point esti-
mates for the bounds instead of posteriors, and no falsification step is necessary (Step 5 of
Algorithm 2) as the model cannot be falsified given the accepted conditional independence.

17. Alternatively, one could test for the corresponding vanishing partial correlations in the empirical Spear-
man rank correlation matrix, as suggested by Harris and Drton (2013), at a particular significance level
α. However, this only provides p-values, which are not ideal to sort witness/admissible sets by a score, as
p-values measure only the surprise of seeing the observed data under a constraint. This does not measure
strength of dependence nor a posterior over models. A fully Bayesian version of this approach is concep-
tually simple, although nonparametric modeling of {Fi(·)} (the so-called nonparanormal model) might
require Markov chain Monte Carlo methods and computing marginal likelihoods is computationally very
intensive.
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7. Zero Effects

Under faithfulness, the premise of Rule 1 will not be true in a system where X is not a
cause of Y . The result is that no conclusion about the ACE can be made, but identifiability
can still be achieved by other means. Rule 2 (Entner et al., 2013) covers all identifiable
cases where X is not a cause of Y :

Rule 2a: If there exists a set Z ⊆W such that X ⊥⊥ Y |Z, then infer an ACE of zero.

Rule 2b: If there exists a variable W ∈W and a set Z ⊆W\{W} such that:

(i) W 6⊥⊥ X |Z (ii) W ⊥⊥ Y |Z,

then infer an ACE of zero.

Rule 2a is a direct application of faithfulness, while Rule 2b essentially corresponds
to the “unshielded collider” check in the FCI algorithm of Spirtes et al. (2000). Figure 4
illustrates the paths that can be weakened under Rules 2a and 2b, excluding any a priori
restrictions on X → Y , since this is the relation that we want to bound given conditions
on other paths. It is clear that for 2a not much of interest can be said beyond this: any
association that cancels the causal effect of X and Y should be due to a corresponding
association generated by unmeasured confounders. If such a strong contribution due to
confounders does not exist, then we should not expect the ACE to be strong18.

Rule 2b seems more interesting. However, as suggested by Figure 4(b), we are forcing
fewer structural constraints in the linear program compared to Rule 1, as there is nothing
from Rule 2b that motivates weak confounding effects. The reason for that is that Rule
2b concerns the removal of X → Y , which corresponds to the effect we want to bound as
a consequence of assumptions elsewhere (instead of assuming a priori, say, |ACE| ≤ ε∅ for
some new hyperparameter ε∅). One possibility is that for a pair (W,Z) that satisfies Rule
2b, we perform the standard WPP bounding with εx = εy = 1 and, if desired, the added
constraint |ACE| ≤ ε∅ to be assumed given the firing of Rule 2b.

Another possibility is to exploit Rule 2 to learn something about the possible effects
of W on Y : in this case, we condition on constraints |η?0w − η?1w| ≤ ε∅ to derive bounds
on the direct effect of W on Y (Cai et al., 2008). In the context of our ACE problem, it
might suggest information about εw that can be reused in another suggested pair (W,Z′),
but this will require further assumptions or tests, as the differences between Z and Z′ will
make this transfer of information not trivial. For the rest of the paper, we will ignore the
use of Rule 2 for simplicity. In the next section, however, we will consider the implications
of having different pairs of witness/admissible set as a way of learning information about
our hyperparameters.

18. This is not to say that such an observation has little scientific value. A similar statement is that a
strong association between X and Y should be indicative of some causal effect, in the absence of a
set of confounders that could fully explain this association. Simple as this is, this type of reasoning
has long been explored in observational studies (Cornfield et al., 1959), and it is essentially what is
behind Rosenbaum’s sensitivity analysis methods (Rosenbaum, 2002a). Our point is that the linear
programming approach for this setup is trivial.
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Figure 4: An illustration of conditional dependencies to be weakened under the acceptance
of Rule 2. (a) Unmeasured confounding between X and Y is considered when
these two variables are (conditionally) independent (given a possibly non-empty
set Z). (b) (Conditional) observable independence of W and Y is used to suggest
that W and Y have bounded dependence conditioned on U , as well as weak
dependence between W and U . Notice no weakening of effects {U → X,U → Y }.

8. Choosing Relaxation Parameters

The free parameters ℵ ≡ {εw, εx, εy, β, β} do not have a unique, clear-cut, domain-free
procedure by which they can be calibrated. However, as we briefly discussed in Section 4,
it is useful to state explicitly the following simple guarantee of WPP:

Corollary 6 Given W 6⊥⊥ Y | Z and W ⊥⊥ Y | {X,Z}, the WPP population bounds on the
ACE will always include the back-door adjusted population ACE based on Z.

Proof The proof follows directly by plugging in the quantities εw = εy = εx = 0, β = β = 1,
into the analytical bounds of Section 5.1, which will give the tightest bounds on the ACE
(generalized to accommodate a background set Z): a single point, which is also the func-
tional obtained by the back-door adjustment.

The implication is that, regardless of the choice of free parameters, the result is guar-
anteed to be more conservative than the one obtained using the faithfulness assumption.
This does not mean that a judicious choice of relaxation parameters is of secondary impor-
tance. Ideally, domain knowledge should be used: given a witness and admissible set, an
expert decides which relaxations are reasonable. This is domain dependent, and might not
be easier than choosing an admissible set from background knowledge. As an alternative,
this section covers more generic methods for choosing relaxation parameters. Two main
approaches are discussed:

• ℵ is deduced by the outcome of a sensitivity analysis procedure; given a particular
interval length L, we derive a quantification of faithfulness violations (represented by
ℵ) required to generate causal models compatible with the observational data and an
interval of length L containing the ACE. This is covered in Section 8.1;
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• exploit the multiplicity of solutions (pairs of candidate witness/admissible sets) usu-
ally provided by Rule 1 to learn about the extent of possible faithfulness violations.
Combine the multiple solutions with constraints or prior distributions for ℵ to obtain
estimates of the relaxation parameters. This is covered in Section 8.2.

8.1 Choice by Grid Search Conditioned on Acceptable Information Loss

One pragmatic default method is to first ask how wide an ACE interval can be so that the
result is still useful for the goals of the analysis (e.g., sorting possible control variables X as
candidates for a lab experiment based on lower bounds on the ACE). Let L be the interval
width the analyst is willing to accept. Set εw = εx = εy = kε and β = c, β = 1/c, for some
pair (kε, c) such that 0 ≤ kε < 1, 0 < c ≤ 1, and let (kε, c) vary over a grid of values. For
each witness/admissible set candidate pair, pick the (kε, c) choice(s) entailing interval(s) of
length closest to L. In case of more than one solution, summarize them by a criterion such
the union of the intervals.

This methodology provides an explicit trade-off between length of the interval and tight-
ness of assumptions. Notice that, starting from the back-door adjusted point estimator of
Entner et al. (2013), it is not obvious how the trade-off could be obtained: that is, how to
build an interval around the back-door point estimate that can be interpreted as bounds
under an acceptable amount of information loss. WPP provides a principled way of build-
ing such an interval, with the resulting assumptions on ℵ being explicitly revealed as a
by-product. If the analyst believes that the resulting values of ℵ are not strict enough,
and no substantive knowledge exists that allows particular parameters to be tightened up,
then one either has to concede that wider intervals are necessary or to find other means of
identifying the ACE without the faithfulness assumption19.

In the experiments in Section 9.2, we define a parameter space of kε ∈ {0.05, 0.10, . . . , 0.30}
and c ∈ {0.9, 1}. More than one interval of approximately the same width is identified. For
instance, the configurations (kε = 0.25, c = 1) and (kε = 0.05, c = 0.9) both produced
intervals of approximately length 0.30.

8.2 Linking Selection on the Observables to Selection on the Unobservables

Observational studies cannot be carried out without making assumptions that are untestable
given the data at hand. There will always be degrees of freedom that must be chosen,
even if such choices are open to criticism. The game is to provide a language to express
assumptions in as transparent a manner as possible. Our view on priors for the latent
variable model (Section 4.4) is that such prior knowledge is far too difficult to justify when
the interpretation of U is unclear. Moreover, putting a prior on a parameter such as
P (Y = 1 |X = x,W = w,U = u) so that this prior is bounded by the constraint |P (Y =
1 |X = x,W = w,U = u)− P (Y = 1 | X = w,W = w)| ≤ εw has no clear advantage over

19. That is, expert knowledge should of course still be invoked to decide whether the resulting relaxation
is plausible or not (and hence, whether the resulting interval is believable), although communication by
sensitivity analysis might facilitate discussion and criticism of the study. In his rejoinder to the discussion
of (Rosenbaum, 2002b), Rosenbaum points out that the sensitivity analysis procedure just states the
logical outcome of the structural assumptions: the deviation of (say) P (Y = 1 | X = x,W = w) from
P (Y = 1 | X = x,W = w,U = u), required to explain the given magnitude of variation of plausible
ACEs, is not imposed a priori by expert knowledge, but deduced.
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WPP: a specification of the shape of this prior is still necessary and may have undesirable
side effects; it has no computational advantages, as constraints will have to be dealt with
now within a Markov chain Monte Carlo procedure; it provides no insight on how constraints
are related to one another (Section 5); it still suggests a point estimate that should not be
trusted lightly, and posterior bounds which cannot be interpreted as data-driven bounds;
and it still requires a choice of εw.

That is not to say that subjective priors on the relationship between U and the observ-
ables cannot be exploited, but the level of abstraction at which they need to be specified
should have advantages when compared to the latent variable model approach. For instance,
Altonji et al. (2005) introduced a framework to deal with violations of the IV assumptions (in
the context of linear models). Their main idea is to linearly decompose the (observational)
dependence of W and Z, and the (causal) dependence of Y and Z, as two signal-plus-noise
decompositions, and assume that dependence among the signals allows one to infer the
dependence among the noise terms. In this linear case, the dependence among noise terms
gives the association between W and Y through unmeasured confounders. The constraint
given by the assumption can then be used to infer bounds on the (differential) ACE. The
details are not straightforward, but the justification for the assumption is indirectly derived
by assuming Z is chosen by a sampling mechanism that picks covariates from the space of
confounders U , so that |Z| and |U | are large. The core idea is that the dependence between
the covariates which are observed (i.e. Z) and the other variables (W,X, Y ) should tell us
something about the impact of the unmeasured confounders. Their method is presented for
linear models only, and the justification requires a very large |Z|.

We introduce a very different method inspired by the same general principle, but ex-
ploiting the special structure of our procedure. Instead of relying on linearity and a fixed
set of covariates, consider the following postulate: the variability of back-door adjusted
ACE estimators based on different admissible sets, as implied by Rule 1, should provide
some information about the extent of faithfulness violations in the given domain. In what
follows, let ℵ be simplified so that ℵ ≡ {εw, εxy, β}, where εxy ≡ εx = εy and β ≡ β = 1/β.
The task then is to choose the three parameters in this set.

8.2.1 Method 1: Tightest ACE Coverage

Let {(W1,Z1), . . . , (Wk,Zk)} be the set of all pairs found by WPP. Let Ai be the ACE
calculated by the back-door adjustment on Zi, which will be the true ACE if faithfulness
holds (we assume for now the joint distribution of the observables is known, so no statistical
uncertainty plays a role yet). Let (Li(ℵ),Ui(ℵ)) be the corresponding lower bound and
upper bound implied by (Wi,Zi) and ℵ. Finally, let i? ∈ {1, 2, . . . , k} be the index of a
witness/admissible set that will be our reference pair20 to output the final bounds on the
ACE, once we choose ℵ.

The idea is simple: minimize (εw, εxy, β) subject to Aj ∈ [Li?(ℵ),Ui?(ℵ)] for 1 ≤ j ≤ k.
This is a multi-objective minimization problem, of which we can return the Pareto frontier.
Because this is a small dimensional problem in which high precision is not needed, a simple
grid search will suffice, as performed in Section 9. Given that the Pareto frontier is likely
to contain multiple points, we can report all intervals implied by each possible choice of ℵ.

20. The score in Equation (11) is used to pick i?.
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Alternatively, we can provide a summary of the resulting bounds, such as the union of the
intervals.

The rationale for this is as follows: if faithfulness is true, then all Ai will collapse to
the same value, which implies that all bounds will collapse to a single point. Differences
among Ai are the result of faithfulness violations, and we explain the contradictions via our
ℵ parameters. Contradictions in constraints entailed by faithfulness have been exploited
before to achieve robust causal inference, as in the Conservative PC algorithm of Ramsey
et al. (2006). To the best of our knowledge, we provide here the first algorithm for ac-
commodating faithfulness contradictions in a space of constraints other than conditional
independence constraints among observables.

For the real case where the observable joint distribution needs to be estimated from
data, one simple alternative is just to use empirical estimates of the unconstrained joint.
In one sense, this provides a conservative choice of ℵ, as one could modify the constraints
in the minimization of (εw, εxy, β) to require instead a less stringent criterion: that (say)
the 95% credible interval for each Aj overlaps with credible intervals for [Li?(ℵ),Ui?(ℵ)].
Credible intervals can be obtained as a function of the posterior distribution of the pa-
rameters of the joint of {X,Y,W1, . . . ,Wk} ∪

⋃k
i=1 Zi, where a prior over the multivariate

binary distributions is subject to the WPP constraints for (Wi,Zi) and the independence
constraints for all other pairs, at each candidate value of ℵ. This is very costly, and better
sampling procedures than the off-the-shelf rejection sampler will be necessary. We adopt
the simple conservative approach with plug-in estimators instead.

8.2.2 Method 2: Bayesian Learning of Relaxation Parameters

A criticism of the tightest ACE coverage method is that it does not take into account the
size of k: for k = 1, it will return εw = εxy = 0, for instance. Judgment is necessary
on whether k is large enough in order to trust the results of this analysis. Alternatively,
one may cast the problem of learning ℵ as yet another Bayesian learning problem, with
{(W1,Z1), . . . , (Wk,Zk)} providing evidence for ℵ according to some reasonable definition
of “likelihood function.” In what follows, again we assume the joint distribution of the
observables is given, so that the back-door ACE functionals A1, A2, . . . , Ak given by Rule
1 are observable. As in the previous section, in our implementation we just plug-in the
empirical distribution of the observables, but more sophisticated approaches accounting for
the uncertainty in this estimate can in principle be constructed.

The principle is: if we allow for many ways in which faithfulness violations might be
detected by contradictory results, but contradictions are not found, then this should be
evidence that faithfulness violations do not exist. If contradictions are “small” (i.e., ACEs
implied by different back-door adjustments are close), faithfulness violations should be
small. Our uncertainty should decrease as more opportunities for contradictions are allowed.
In particular, we want the posterior to converge to the single values εw = 0, εxy = 0 and
β = 1 as the number of witness/admissible set pairs increase and they agree on the same
value.

We start by defining

dw ≡ max
i,x,z
|P (Y = 1 | X = x,Wi = 1,Zi = z, U)− P (Y = 1 | X = x,Wi = 0,Zi = z, U)|,
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for i = 1, 2, . . . , k. An analogous definition is given for dxy and dβ. Next, we define the
“likelihood” function for dw under “data set” {A1, A2, . . . Ak} as follows;

P (A1, A2, . . . , Ak | dw, dxy, dβ) =
k∏
i=1

pU [L(dw,dxy ,dβ),U(dw,dxy ,dβ)](Ai), (34)

where pU [a,b](·) is the uniform distribution in [a, b]. Functions L(dw, dxy, dβ),U(dw, dxy, dβ)
are the respective lower bound and upper bound implied by the WPP constraints param-
eterized by {dw, dxy, dβ}, and the (given) joint distribution of the observables. A uniform
(discrete) prior for {dw, dxy, dβ} is given over a pre-defined grid of values for these param-
eters21. We then choose a set of {εw, εxy, β} as the high posterior density region defined
by sorting all {dw, dxy, dβ} in decreasing value of posterior mass, picking the minimum set
that adds up to at least 95% of posterior mass. We summarize the implied set of bounds
as necessary, see Section 9.

There is no reason why a uniform prior and the uniform likelihood (34) should be the
only choices. Our motivation is that the chosen likelihood function penalizes parameters
that imply wide intervals, while remaining agnostic about the position of each ACE within
bounds. More importantly, the penalization increases as k increases, making the posterior
more peaked. It however forces all intervals of equal length to be distinguished based on the
prior only. Priors matter in applied work, but in our experiments we choose the uniform
prior for its simplicity. We leave the discussion of other choices of likelihood and priors for
future work.

A criticism of Equation (34) is that the pairs in set {(W1,Z1), . . . , (Wk,Zk)} might have
much overlap (in the sense that a same witness may appear in many pairs, and the inter-
section among {Zi} may be large). As such, the multiplication in Equation (34) provides
overconfident posteriors, as pairs are considered to be independent pieces of information for
the relaxation parameters. More free parameters accounting for the dependence of {Ai}
given {dw, dxy, dβ} should be added. However, while we remove a class of irrelevant pairs
(any (Wj ,Zj) such that there is some i 6= j where Zi ⊂ Zj and Wi = Wj), in this work we
ignore more complex adjustments for simplicity.

9. Experiments

In this section, we start with a comparison of the back-substitution algorithm of Section
5.2 against the fully numerical procedure, which generates constraints using standard al-
gorithms for changing between polytope representations. We then perform studies with
synthetic data, comparing different back-door estimation algorithms against WPP. Finally,
we perform studies with real data sets.

21. See Section 9. Using a pre-defined discretization simplifies computation, as no MCMC is required and
we do not need high precision in estimating relaxation parameters. A continuous space would also imply
challenges to the MCMC approach, as the posterior can be flat in some regions where different parameter
settings imply intervals of same length U(dw, dxy, dβ)− L(dw, dxy, dβ).
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9.1 Empirical Investigation of the Back-substitution Algorithm

We compare the back-substitution algorithm introduced in Section 5.2 with the fully nu-
merical algorithm. Comparison is done in two ways: (i) computational cost, as measured
by the wallclock time taken to generate 100 samples by rejection sampling; (ii) width of the
generated intervals. As discussed in Section 5.2, bounds obtained by the back-substitution
algorithm are at least as wide as in the numerical algorithm, barring rounding problems22.

We ran two batches of 1000 trials each, varying the level of the relaxation parameters.
In the first batch, we set εx = εy = εw = 0.2, and β = 0.9, β = 1.1. In the second batch, we

change parameters so that β = β = 1. Experiments were run on a Intel Xeon E5-1650 at
3.20Ghz. Models were simulated according the the structure W → X → Y , sampling each
conditional distribution of a vertex being equal to 1 given its parent from the uniform (0, 1)
distribution. The numerical procedure of converting extreme points to linear inequalities
was done using the package rcdd, a R wrapper for the cddlib by Komei Fukuda. Inference is
done by rejection sampling, requiring 100 samples per trial. We fix the number of iterations
of the back-substitution method to 4, which is more than enough to achieve convergence.
All code was written in R.

For the first batch, the average time difference between the fully numerical method and
the back-substitution algorithm was 1 second, standard deviation (s.d.) 0.34. The ratio
between times had a mean of 203 (s.d. 82). Even with a more specialized implementation of
the polytope dualization step23, two orders of magnitude of difference seem hard to remove
by better coding. Concerning interval widths, the mean difference was 0.15 (s.d. 0.06),
meaning that the back-substitution on average has intervals where the upper bound minus
the lower bound difference is 0.15 units more than the numerical method, under this choice
of relaxation parameters and averaged over problems generated according to our simulation
scheme. There is a correlation between the width difference and the interval width given
by the numerical method the gap, implying that differences tend to be larger when bounds
are looser: the gap between methods was as small as 0.04 for a fully numerical interval of
width 0.19, and as large as 0.23 for a fully numerical interval of width 0.49. For the case
where β = β = 1, the average time difference was 0.92 (s.d. of 0.24), ratio of 152 (s.d.
54.3), interval width difference of 0.09 (s.d. 0.03); The gap was as small as 0.005 for a fully
numerical interval of width 0.09, and as large as 0.17 for a fully numerical interval of with
0.23.

9.2 Synthetic Studies

We describe a set of synthetic studies for binary data where, for procedures that estimate
ACE intervals, we assess the trade-off between its correctness (that is, how far from the
true ACEs the intervals are, for a suitable definition of distance) and its informativeness
(how wide the intervals are).

22. We did not use rational arithmetic in the polytope generator in order to speed it up; consequently, about
1% of the time we observed numerical problems. Those were excluded from the statistics reported in
this section.

23. One advantage of the analytical bounds, as used by the back substitution method, is that it is easy
to express them as matrix operations over all Monte Carlo samples, while the polytope construction
requires iterations over the samples.
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In the synthetic study setup, we compare our method against NE1 and NE2, two näıve
point estimators defined by back-door adjustment on the whole of set of available covariates
W and on the empty set, respectively. The former is widely used in practice, even when
there is no causal basis for doing so (Pearl, 2009). The point estimator of Entner et al.
(2013), based solely on the faithfulness assumption, is also assessed.

We generate problems where conditioning on the whole set W is guaranteed to give
incorrect estimates. In detail: we generate graphs where W ≡ {Z1, Z2, . . . , Z8}. Four
independent latent variables L1, . . . , L4 are added as parents of each {Z5, . . . , Z8}; L1 is
also a parent of X, and L2 a parent of Y . L3 and L4 are each randomly assigned to be a
parent of either X or Y , but not both. {Z5, . . . , Z8} have no other parents. The graph over
Z1, . . . , Z4 is chosen by adding edges uniformly at random according to a fixed topological
order. As a consequence, using the full set W for back-door adjustment is always incorrect,
as at least four paths X ← L1 → Zi ← L2 → Y are active for i = 5, 6, 7, 8. The conditional
probabilities of a vertex given its parents are generated by a logistic regression model with
pairwise interactions, where parameters are sampled according to a zero mean Gaussian with
standard deviation 20 / number of parents. Parameter values are also further bounded, so
that if the generated value if greater than 0.975 or less than 0.025, it is resampled uniformly
in [0.950, 0.975] or [0.025, 0.050], respectively.

We analyze two variations: in the first, it is guaranteed that at least one valid pair
witness-admissible set exists; in the second, all latent variables in the graph are set also as
common parents also of X and Y , so no valid witness exists. We divide each variation into
two subcases: in the first, “hard” subcase, parameters are chosen (by rejection sampling,
proposing from the model described in the previous paragraph) so that NE1 has a bias
of at least 0.1 in the population; in the second, no such a selection is enforced, and as
such our exchangeable parameter sampling scheme makes the problem relatively easy. We
summarize each WPP interval by the posterior expected value of the lower and upper
bounds. In general WPP returns more than one bound: we select the upper/lower bound
corresponding to the (W,Z) pair which maximizes the score described at the end of Section
4.2. A BDeu prior with an equivalent sample size of 10 was used.

Our main evaluation metric for an estimate is the Euclidean distance (henceforth, “er-
ror”) between the true ACE and the closed point in the given estimate, whether the estimate
is a point or an interval. For methods that provide point estimates (NE1, NE2, and faith-
fulness), this means just the absolute value of the difference between the true ACE and
the estimated ACE. For WPP, the error of the interval [L,U ] is zero if the true ACE lies
in this interval. We report error average and error tail mass at 0.1, the latter meaning
the proportion of cases where the error exceeds 0.1. Moreover, the faithfulness estimator is
defined by averaging over all estimated ACEs as given by the accepted admissible sets in
each problem.

As discussed in Section 8.1, WPP can be understood as providing a trade-off between
information loss and accuracy. For instance, while the trivial interval [−1, 1] will always have
zero error, it is not an interesting solution. We assess the trade-off by running simulations
at different levels of kε, where εw = εy = εx = kε. We also have two configurations for
{β, β}: we set them at either β = β = 1 or β = 0.9, β = 1.1.

For the cases where no witness exists, Entner’s Rule 1 should theoretically report no
solution. Entner et al. (2013) used stringent thresholds for deciding when the two conditions
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of Rule 1 held, we refer to that paper for an evaluation on how well Rule 1 can be correctly
activated under the more conservative setup. Instead we take a more relaxed approach,
using a uniform prior on the hypothesis of independence. As such, due to the nature of our
parameter randomization, more often than not it will propose at least one witness. That
is, for the problems where no exact solution exists, we assess how sensitive the methods are
given conclusions taken from “approximate independencies” instead of exact ones.

The analytical bounds are combined with the numerical procedure as follows. We use
the analytical bounds to test each proposed model using the rejection sampling criterion.
Under this scheme, we calculate the posterior expected value of the contingency table and,
using this single point, calculate the bounds using the fully numerical method. This is
not guaranteed to work: the point estimator using the analytical bounds might lie outside
the polytope given by the full set of constraints. If this situation is detected, we revert to
calculating the bounds using the analytical method. The gains in interval length reduction
using the full numerical method are relatively modest (e.g., at kε = 0.20, the average
interval width reduced from 0.30 to 0.24) but depending on the application they might
make a sizeable difference.

We simulate 100 data sets for each one of the four cases (hard case/easy case, with
theoretical solution/without theoretical solution), 5000 points per data set, 1000 Monte
Carlo samples per decision. Results for the point estimators (NE1, NE2, faithfulness)
are obtained using the population contingency tables. Results are summarized in Table
1. The first observation is that at very low levels of kε we increase the ability to reject
all witness candidates: this is due mostly not because Rule 1 never fires, but because
the falsification rule of WPP (which does not enforce independence constraints) rejects the
proposed witnesses found by Rule 1. The trade-off set by WPP is quite stable, where larger
intervals are indeed associated with smaller error. The point estimates vary in quality, being
particularly bad in the situation where no witness should theoretically exist. The set-up
where β = 0.9, β = 1.1 is especially uninformative compared to β = β = 1. At kε = 0.2,
we obtain interval widths around 0.50. As Manski (2007) emphasizes, this is the price for
making fewer assumptions. Even there, they typically cover only about 25% of the interval
[−1, 1] of a priori possibilities for the ACE.

9.2.1 Selection of Relaxation Parameters

We performed an automated choice of relaxation parameters applying the methods in Sec-
tion 8.2 to the same synthetic data sets. For each data set and each parameter choice
method, we obtain a set B of intervals defined by a lower/upper bound. We summarize B
in two ways: the tightest bound, meaning we choose the narrowest interval in B; the loosest
bound, defined as the interval where the lower (upper) bound is the smallest lower (largest
upper) bound in B. We then report results for each of the four synthetic case scenar-
ios and each of the two methods: the Tightest ACE Coverage (TAC) method from Section
8.2.1 and the high posterior density (HPD) method of Section 8.2.2. Each parameter εw and
εxy = εx = εy was allowed to assume values in the discretized grid {0.01, 0.05, 0.10, . . . , 0.50}.
Parameter β = β = 1/β was allowed to take values in {1, 1.05, . . . , 1.20}. Results are sum-
marized in Table 2.
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Hard, Solvable: NE1 = (0.12, 1.00), NE2 = (0.02, 0.03)

kε Found Faith.1 WPP1 Width1 WPP2 Width2

0.05 0.74 0.03 0.05 0.02 0.05 0.05 0.00 0.00 0.34
0.10 0.94 0.04 0.05 0.01 0.01 0.11 0.00 0.00 0.41
0.15 0.99 0.04 0.05 0.01 0.02 0.16 0.00 0.00 0.46
0.20 1.00 0.05 0.05 0.01 0.01 0.24 0.00 0.00 0.53
0.25 1.00 0.05 0.07 0.00 0.00 0.32 0.00 0.00 0.60
0.30 1.00 0.05 0.10 0.00 0.00 0.41 0.00 0.00 0.69

Easy, Solvable: NE1 = (0.01, 0.01), NE2 = (0.07, 0.24)

kε Found Faith.1 WPP1 Width1 WPP2 Width2

0.05 0.81 0.03 0.02 0.02 0.04 0.04 0.00 0.01 0.34
0.10 0.99 0.02 0.02 0.01 0.02 0.09 0.00 0.00 0.40
0.15 1.00 0.02 0.01 0.00 0.00 0.17 0.00 0.00 0.46
0.20 1.00 0.02 0.01 0.00 0.00 0.24 0.00 0.00 0.54
0.25 1.00 0.02 0.01 0.00 0.00 0.32 0.00 0.00 0.61
0.30 1.00 0.02 0.01 0.00 0.00 0.41 0.00 0.00 0.67

Hard, Not Solvable: NE1 = (0.16, 1.00), NE2 = (0.20, 0.88)

kε Found Faith.1 WPP1 Width1 WPP2 Width2

0.05 0.67 0.20 0.90 0.17 0.76 0.06 0.04 0.14 0.32
0.10 0.91 0.19 0.91 0.13 0.63 0.10 0.02 0.07 0.39
0.15 0.97 0.19 0.92 0.10 0.41 0.18 0.01 0.03 0.45
0.20 0.99 0.19 0.95 0.07 0.25 0.24 0.01 0.01 0.51
0.25 1.00 0.19 0.96 0.03 0.13 0.31 0.00 0.00 0.58
0.30 1.00 0.19 0.96 0.02 0.06 0.39 0.00 0.00 0.66

Easy, Not Solvable: NE1 = (0.09, 0.32), NE2 = (0.14, 0.56)

kε Found Faith.1 WPP1 Width1 WPP2 Width2

0.05 0.68 0.13 0.51 0.10 0.37 0.05 0.02 0.07 0.33
0.10 0.97 0.12 0.53 0.08 0.28 0.10 0.01 0.05 0.39
0.15 1.00 0.12 0.52 0.05 0.17 0.16 0.01 0.03 0.46
0.20 1.00 0.12 0.53 0.03 0.08 0.23 0.01 0.03 0.52
0.25 1.00 0.12 0.48 0.02 0.05 0.31 0.00 0.02 0.59
0.30 1.00 0.12 0.48 0.01 0.04 0.39 0.00 0.01 0.65

Table 1: Summary of the outcome of the synthetic studies. Columns labeled WPP1 refer
to results obtained for β = β = 1, while WPP2 refers to the case β = 0.9, β = 1.1.
The first column is the level in which we set the remaining parameters, εx = εy =
εw = kε. The second column is the frequency by which a WPP solution has been
found among 100 runs. For each particular method (NE1, NE2, Faithfulness and
WPP) we report the pair (error average, error tail mass at 0.1), as explained in the
main text. The Faithfulness estimator is the back-door adjustment obtained by
using as the admissible set the same set found by WPP1. Averages are taken only
over the cases where a witness-admissible set pair has been found. The columns
following each WPP results are the median width of the respective WPP interval
across the 100 runs.
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Tightest Loosest

Case TAC HPD TAC HPD

error width error width error width error width

Hard, Solvable 0.004 0.18 0.004 0.18 0.002 0.24 0.00009 0.40
Easy, Solvable 0.002 0.13 0.002 0.13 0.001 0.20 0.002 0.26

Hard, Not Solvable 0.12 0.14 0.12 0.14 0.10 0.20 0.07 0.33
Easy, Not Solvable 0.07 0.14 0.07 0.14 0.05 0.20 0.04 0.35

Table 2: Applying the criteria for choosing relaxation parameters from Section 8.2 to the
four synthetic case scenarios. “Error” is the average error, as formalized for Table
1. “Width” is the average width over all 100 subcases of the respective study.
“Tightest” and “Loosest” are the two criteria for summarizing a set of intervals,
as explained in the main text.

Comparing it against Table 1, results seem to be slightly worse than WPP1 at the same
interval width, but without making prior assumptions on β. Compared to WPP2, overall
widths are much smaller. The HPD method agrees with TAC on the tightest interval, as our
choice of prior will always imply a posterior mode on the TAC solution. The loosest interval
for HPD will always be larger or equal to the loosest in TAC, as the 95% posterior mass
that generates intervals will include the Pareto frontier and possibly many other candidates.
In our simulations, the reduction in error for HPD with the loosest bound came with a non-
trivial increase on the length of the corresponding intervals. While we do not explicitly
advocate one method over another, the HPD method can be used to classify problems as
harder than others by assessing how much of the posterior mass of hyperparameters is not
on the Pareto frontier. In Figure 5, we visualize the marginal posterior distribution of
{dxy, dw} for two synthetic problems in the easy/solvable case, where in one problem the
tightest interval failed to cover the true ACE, while in the other the ACE was correctly
accounted for.

9.3 Influenza Study

Our empirical study concerns the effect of influenza vaccination on a patient being later on
hospitalized with chest problems. X = 1 means the patient got a flu shot, Y = 1 indicates
the patient was hospitalized. A negative ACE therefore suggests a desirable vaccine. The
study was originally discussed by McDonald et al. (1992). Shots were not randomized, but
doctors were randomly assigned to receive a reminder letter to encourage their patients
to be inoculated, an event recorded as binary variable GRP. This suggests the standard
IV model in Figure 1(d), with W = GRP and U unobservable. That is, W and U are
independent because W is randomized, and there are reasonable justifications to believe
the lack of a direct effect of letter randomization on patient hospitalization. Richardson
et al. (2011) and Hirano et al. (2000) provide further discussion.
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Figure 5: Marginal posterior distribution for {dxy, dw} in two problems instances. Darker
values represent smaller probabilities. In instance (a), the length of the tightest
interval was 0.32 and did not contain the true ACE (but the error was still< 0.01).
In instance (b), the length of the tightest interval was 0.11 and did contain the
true ACE. Parameter dw does not seem to be as influential conditional on dxy,
and the uniform prior allows for little variability in the dw posterior away from
the mode.

From this randomization, it is possible to directly estimate the ACE24 of W on Y :
−0.01. This is called intention-to-treat (ITT) analysis (Rothman et al., 2008), as it is based
on the treatment assigned by randomization and not on the variable of interest (X), which
is not randomized. While the ITT can be used for policy making, the ACE of X on Y
would be a more relevant result, as it reveals features of the vaccine that are not dependent
on the encouragement design. X and Y can be confounded, as X is not controlled. For
instance, the patient choice of going to be vaccinated might be caused by her general health
status, which will be a factor for hospitalization in the future.

The data contains records of 2, 681 patients, with some demographic indicators (age, sex
and race) and some historical medical data (for instance, whether the patient is diabetic). A
total of 9 covariates is available. Using the bounds of Balke and Pearl (1997) and observed

24. Notice that while the ACE might be small, this does not mean that in another scale, such as odd-ratios,
the results do not reveal an important effect. This depends on the domain.
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frequencies produces an interval of [−0.23, 0.64] for the ACE. WPP could not validate GRP
as a witness for any admissible set.

Instead, when forbidding GRP to be included in an admissible set (since the theory
says GRP cannot be a common direct cause of vaccination and hospitalization), WPP
selected as the highest-scoring pair the witness DM (patient had history of diabetes prior to
vaccination) with admissible set composed of AGE (dichotomized as “60 or less years old,”
and “above 60”) and SEX. Choosing, as an illustration, εw = εy = εx = 0.2 and β = 0.9,

β = 1.1, we obtain the posterior expected interval [−0.10, 0.17]. This does not mean the
vaccine is more likely to be bad (positive ACE) than good: the posterior distribution is
over bounds, not over points, being completely agnostic about the distribution within the
bounds. Notice that even though we allow for full dependence between all of our variables,
the bounds are stricter than in the standard IV model due to the weakening of hidden
confounder effects postulated by observing conditional independencies. It is also interesting
that two demographic variables ended up being chosen by Rule 1, instead of other indicators
of past diseases.

When allowing GRP to be included in an admissible set, the pair (DM, {AGE, SEX})
is now ranked second among all pairs that satisfy Rule 1, with the first place being given
by RENAL as the witness (history of renal complications), with the admissible set being
GRP, COPD (history of pulmonary disease), and SEX. In this case, the expected posterior
interval was approximately the same, [−0.08, 0.16]. It is worthwhile to mention that, even
though this pair scored highest by our criterion that measures the posterior probability
distribution of each premise of Rule 1, it is clear that the fit of this model is not as good
as the one with DM as the witness, as measured by the much larger proportion of rejected
samples when generating the posterior distribution. This suggests future work on how to
rank such models.

In Figure 6 we show a scatter plot of the posterior distribution over lower and upper
bounds on the influenza vaccination, where DM is the witness. In Figure 7(a) and (b)
we show kernel density estimators based on the Monte Carlo samples for the cases where
DM and RENAL are the witnesses, respectively. While the witnesses were tested using
the analytical bounds, the final set of samples shown here were generated with the fully
numerical optimization procedure, which is quite expensive.

We also analyze how to select ℵ = {εw, εxy = εx = εy, β = β = 1/β} using the Tightest
ACE Coverage (TAC) method of Section 8.2.1. The motivation is that this is a domain
with overall weak dependencies among variables. From one point of view, this is bad as
instruments will be weak and generate wide intervals (as suggested by Proposition 1). From
another perspective, this suggests that the effect of hidden confounders may also be weak.

A total of 48 witness/admissible sets were proposed by WPP via Rule 1. The TAC
Pareto frontier, using the same parameter space as in Section 9.2.1, included only two
possibilities, εxy = 0.05, εw = 0.01, β = 1 and εxy = 0.01, εw = 0.01, β = 1.05. Using
the empirical distribution as an estimator of the joint of the observables, the respective
ACE intervals were [−0.01, 0.01] and [−0.02, 0.02]. Although the sign of the ACE is not
determined from the data, the WPP procedure suggests that the magnitude of the ACE is
no greater than 0.02, which by itself is of interest.
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Figure 6: Scatterplot of the joint posterior distribution of lower bounds and upper bounds,
Pearson correlation coefficient of 0.71.

9.4 Linear Models

In this section, we assess the usage of the method in the linear case. Independently, we also
introduce a complementary way of summarizing the outcome of a WPP analysis.

We first check the performance of the method with a small synthetic study. We generate
models following the same pattern of the “hard/solvable” case of Section 9.2, the ACE
being the coefficient of X? in the equation for Y ?. Each conditional model for a variable
V ?
i given its parents is generated by sampling its coefficients from independent standard

Gaussians, sampling the variance of the error term from a uniform [0, 0.5], then rescaling the
coefficients such that the marginal variance of V ?

i is 1. Observable data is then generated by
transforming each V ?

i to follow a gamma distribution with mean and variance equal to 2. We
generated 100 data sets with a sample size of 1000 each. We perform experiments25 setting
all hyperparameters εc = εwx = εwy = εxy = 0.2 and εc = εwx = εwy = εxy = 0.1. Estimates
of the Gaussian copula correlation matrices are obtained using function huge.npn from
the R package huge to transform the data, of which we compute the empirical correlation
matrix. We obtained average errors of 0.04 for the method with parameters set at 0.2, and
0.07 for parameters set at 0.1. The average length of the proposed intervals were 0.5 and
0.26, respectively. For comparison, the population error for the two näıve estimators was
0.23 and 0.18.

25. The test for conditional independencies is done with the corrected BGe score (Kuipers et al., 2014)
as discussed in Section 6.2. The hyperparameters are a prior of 0.5 for the independence constraint
hypothesis, and a inverse Wishart prior with υ ≡ p + 2 degrees of freedom and a scale matrix given by
the p× p identity matrix multiplied by υ, where p is the number of variables in the test.
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Figure 7: In (a), the marginal densities for the lower bound (red) and upper bound (blue) on
the ACE, smoothed kernel density estimates based on 5000 Monte Carlo samples.
Bounds were derived using DM as the witness. In (b), a similar plot using
RENAL as the witness.

We performed an empirical study with the 1976 Panel Study of Income Dynamics. The
study uses data from 1975, assessing incoming of couples in 1976. Our outcome variable
Y is the wife’s reported wage at the time of the 1976 interview, and the treatment X is
the number of years of the wife’s previous labor market experience. The data was dis-
cussed by Mroz (1987) and can be obtained from the R package AER (Kleiber and Zeileis,
2008). Covariate set W includes a combination of discrete and continuous variables, such
as husband’s wages, number of children, and whether the wife went to college. We infer
a Gaussian copula correlation matrix using the extended rank likelihood method of Hoff
(2007) with the R package sbgcop, which can deal with discrete and continuous variables
but requires expensive MCMC sampling. Notice that conditional independencies among
the discrete observable elements of V ≡ {X,Y } ∪W do not follow from conditional inde-
pendencies among the unobservable Gaussian variables V?. We nevertheless test Rule 1
among V? using the estimated copula correlation matrix and the relatively high prior of 0.5
for the hypothesis of independence, for any given independence assessment. Sample size is
753, with 17 covariates26. We then make the (strong) assumption that work experience in
1975 is not a cause of any other variable in the covariate set.

26. We removed two covariates from the original data set: the indicator of economical participation, which
is a deterministic function of other covariates; and the estimated wage of the wife in 1975, which for that
year was not available directly via self-report. In order to speed up the search algorithm, for each witness
candidate W , the space of variables to test for an admissible set is composed of the 10 covariates mostly
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Setting all relaxation parameters εc = εwx = εwy = εxy to 0.1, we obtain in Figure
8(a) all corresponding intervals, with black dots representing the corresponding estimated
ACE for the chosen admissible set. An explanation of all variables can be found in the
documentation of package AER (Kleiber and Zeileis, 2008). Recall that the units here are
given in the latent Gaussian space, where each V ?

i is a non-linear transformation of the
corresponding Vi, as explained in Section 6.2. This analysis reveals two clear clusters of
behavior, which internally show little variability but are very different from one another,
even accounting for a violation of 0.1. This illustrates possible ways of communicating the
output of a WPP analysis so that issues with assumptions and data can be raised.

In this case, the two clusters of intervals differ in one variable in the admissible set:
variable HOURS is present in cases where the intervals are closer to zero. This variable
measures the number of work hours of the wife in 1975, and is partially embedded in the
definition of the experience level measured at 1975. By removing all admissible sets that
include the HOURS variable, we obtain the summary given as Figure 8(b). This type of
visualization step can be used to flag major contradictions that cannot be easily explained by
allowing mild violations of faithfulness, but which might suggest problematic measurements
to be reconsidered in the analysis.

10. Conclusion

Our model provides a novel compromise between point estimators given by the faithfulness
assumption and bounds based on instrumental variables. We believe such an approach
should become a standard item in the toolbox of methodologies for observational studies,
as it provides means to draw conclusions from a complementary set of assumptions. On-
going updates of software for WPP is provided as part of the R package CausalFX,
available at the Comprehensive R Network27 and GitHub28. A snapshot of the code used
in this paper is available at http://www.homepages.ucl.ac.uk/~ucgtrbd/wpp.

In particular, unlike Bayesian approaches that put priors directly on the parameters of
the unidentifiable latent variable model P (Y,X,W,U |Z), the constrained Dirichlet prior on
the observed distribution does not suffer from massive sensitivity to the choice of hyperpa-
rameters. When a strongly informative prior is lacking, WPP keeps inference more honest
by focusing on bounds. While it is tempting to look for an alternative that will provide a
point estimate of the ACE, it is also important to have a method that trades-off information
for fewer assumptions. WPP provides a framework to express such assumptions.

The brute-force search used in the implementation of Rule 1 can be substituted by
other combinatorial search procedures and dimensionality reduction methods. Entner et al.
(2013) provide alternatives by borrowing ideas from the PC algorithm, for instance. Package
CausalFX implements the idea discussed briefly in Section 9.4, where for each witness
candidate W we pre-select a small set of candidates from W\{W} and perform a brute-
force search for admissible sets within this candidate set only. Pre-selection in CausalFX
1.0 is done by first sorting all Z ∈W\{W} according to the empirical mutual information

strongly associated with W , measured by the absolute value of the corresponding copula correlation
matrix entry.

27. https://cran.r-project.org/web/packages/CausalFX/index.html

28. https://github.com/rbas2015/CausalFX
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Figure 8: The diagrams depict some ACE intervals obtained for the linear model of the
impact of work experience up to 1975 of a married woman into her salary in
1976. On the y-axis, we show the witness in brackets, followed by all variables
in the admissible set; the x-axis shows the point estimates of the interval for
the ACE using εc = εwx = εwy = εxy = 0.1. Black dots are the corresponding
point estimates of the ACE using the back-door method. All variable names are
explained in the documentation of package AER (Kleiber and Zeileis, 2008). In
(a), we allow all other recorded variables into the covariate set W from which
witnesses and admissible sets are generated. In (b), we remove HOURS from
the pool of possible covariates.

of Z and W given X and then picking the top K candidates, in descending value of mutual
information (the heuristic being that we should look first at paths W → X ← Z that
are “strong”). K is chosen such that enumerating 2K candidate admissible sets is possible
within the available computer resources. Although this restricted search procedure might
miss some admissible sets, it has the advantage of avoiding sensitivity to propagation of
statistical mistakes that creates difficulties for the PC algorithm and similar methods.

We emphasize that the credible intervals obtained by the procedure are conditioned on
the search results, discarding uncertainty coming from the choices of witnesses, admissible
sets and relaxation parameters. Ideally, uncertainty concerning the outcome of the Rule 1
search should also be taken into account. An approach analogous to (Friedman and Koller,
2003) is necessary, which we leave as future work.
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As further future work, we will look at a generalization of the procedure beyond relax-
ations of chain structures W → X → Y . Much of the machinery here developed, including
Entner et al.’s Rules, can be adapted to the case where causal ordering is unknown: starting
from the algorithm of Mani et al. (2006) to search for “Y-structures,” it is possible to gen-
eralize Rule 1 to setups where we have an outcome variable Y that needs to be controlled,
but where there is no covariate X known not to be a cause of other covariates. Mooij
and Cremers (2015) investigate the robustness of the faithfulness condition in this setup.
Finally, the techniques used to derive the symbolic bounds in Section 5 may prove useful in
a more general context, and complement other methods to find subsets of useful constraints
such as the graphical approach of Evans (2012).
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Appendix A. Proofs

In this Appendix, we prove the results mentioned in the main text.

A.1 Basic Results

We divide the proofs in four main sections. The first section provides the basic methods,
including how classical results in instrumental variable bounding can be rederived. The
second and third sections are proofs for the most complex types of bounds. Finally, the
fourth section covers the linear continuous case.

Proof of Proposition 1 In the standard IV case, simple analytical bounds are known for
P (Y = y | do(X = x)) (Balke and Pearl, 1997; Dawid, 2003):

η0 ≤ min


1− ζ00.0
1− ζ00.1
ζ01.0 + ζ10.0 + ζ10.1 + ζ11.1

ζ10.0 + ζ11.0 + ζ01.1 + ζ10.1

η0 ≥ max


ζ10.1

ζ10.0

ζ10.0 + ζ11.0 − ζ00.1 − ζ11.1
−ζ00.0 − ζ11.0 + ζ10.1 + ζ11.1

η1 ≤ min


1− ζ01.1
1− ζ01.0
ζ10.0 + ζ11.0 + ζ00.1 + ζ11.1

ζ00.0 + ζ11.0 + ζ10.1 + ζ11.1

η1 ≥ max


ζ11.1

ζ11.0

−ζ01.0 − ζ10.0 + ζ10.1 + ζ11.1

ζ10.0 + ζ11.0 − ζ01.1 − ζ10.1
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where ηx ≡ P (Y = 1 | do(X = x)) and ζyx.w ≡ P (Y = y,X = x | W = w). Define also
αx ≡ P (Y = 1 | X = x) and βw ≡ P (X = 1 | W = w) so that

ζyx.w = αI(y=1)
x (1− αx)I(y=0)βI(x=1)

w (1− βw)I(x=0), (35)

where I(·) is the indicator function returning 1 or 0 depending on whether its argument is
true or false, respectively.

Assume for now that β1 ≥ β0, that is, P (X = 1 | W = 1) ≥ P (X = 1 |W = 0). We will
first show that 1−ζ00.0 ≤ min{1−ζ00.1, ζ01.0 +ζ10.0 +ζ10.1 +ζ11.1, ζ10.0 +ζ11.0 +ζ01.1 +ζ10.1}.

That 1−ζ00.0 ≤ 1−ζ00.1 follows directly from the relationship (35) and the assumptions
W ⊥⊥ Y |X and β1 ≥ β0: (1− ζ00.0)− (1− ζ00.1) = −(1− α0)(1− β0) + (1− α0)(1− β1) =
(1− α0)(β0 − β1) ≤ 0.

Now consider (1− ζ00.0)− (ζ01.0 + ζ10.0 + ζ10.1 + ζ11.1). This is equal to

= (1− (1− α0)(1− β0))− ((1− α1)β0 + α0(1− β0) + α0(1− β1) + α1β1)
= (β0 + α0(1− β0))− (β0 − α1β0 + α0(1− β0) + α0 − α0β1 + α1β1)
= α1(β0 − β1)− α0(1− β1) ≤ 0

Analogously, we can show that 1 − ζ00.0 ≤ ζ10.0 + ζ11.0 − ζ01.1 − ζ10.1. Tedious but
analogous manipulations lead to the overall conclusion

1− ζ00.0 = min


1− ζ00.0
1− ζ00.1
ζ01.0 + ζ10.0 + ζ10.1 + ζ11.1

ζ10.0 + ζ11.0 + ζ01.1 + ζ10.1

ζ10.0 = max


ζ10.1

ζ10.0

ζ10.0 + ζ11.0 − ζ00.1 − ζ11.1
−ζ00.0 − ζ11.0 + ζ10.1 + ζ11.1

1− ζ01.1 = min


1− ζ01.1
1− ζ01.0
ζ10.0 + ζ11.0 + ζ00.1 + ζ11.1

ζ00.0 + ζ11.0 + ζ10.1 + ζ11.1

ζ11.1 = max


ζ11.1

ζ11.0

−ζ01.0 − ζ10.0 + ζ10.1 + ζ11.1

ζ10.0 + ζ11.0 − ζ01.1 − ζ10.1

The upper bound on the ACE η1 − η0 is obtained by subtracting the lower bound on
η0 from the upper bound on η1. That is, η1 − η0 ≤ (1 − ζ01.1) − ζ10.0 = USIV . Similarly,
η1 − η0 ≥ ζ11.1 − (1 − ζ00.0) = LSIV . It follows that USIV − LSIV = 1 − (P (X = 1 | W =
1)− P (X = 1 | W = 0)).

Finally, assuming β1 ≤ β0 gives by symmetry the interval width 1 − (P (X = 1 | W =
0) − P (X = 1 | W = 1)), implying the width in the general case is given by 1 − |P (X =
1 | W = 1)− P (X = 1 | W = 0)|.

Now we will prove the main theorems stated in Section 5. To facilitate reading, we
repeat here the notation used in the description of the constraints with a few additions, as
well as the identities mapping different parameter spaces and the corresponding assumptions
exploited in the derivation.

We start with the basic notation,
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ζ?yx.w ≡ P (Y = y,X = x | W = w,U)

ζyx.w ≡
∑

U P (Y = y,X = x | W = w,U)P (U | W = w)
= P (Y = y,X = x | W = w)

κyx.w ≡
∑

U P (Y = y,X = x | W = w,U)P (U)

η?xw ≡ P (Y = 1 | X = x,W = w,U)
ηxw ≡

∑
U P (Y = 1 | X = x,W = w,U)P (U | W = w)

= P (Y = 1 | do(X = x),W = w)
ωxw ≡

∑
U P (Y = 1 | X = x,W = w,U)P (U)

δ?w ≡ P (X = 1 | W = w,U)
δw ≡

∑
U P (X = 1 | W = w,U)P (U | W ) = P (X = 1 | W = w)

= ζ11.w + ζ01.w
χx.w ≡

∑
U P (X = x | W = w,U)P (U)

= κ1x.w + κ0x.w

The explicit relationship between parameters describing the latent variable model is:

ζ?00.0 = (1− η?00)(1− δ?0)
ζ?01.0 = (1− η?10)δ?0
ζ?10.0 = η?00(1− δ?0)
ζ?11.0 = η?10δ

?
0

ζ?00.1 = (1− η?01)(1− δ?1)
ζ?01.1 = (1− η?11)δ?1
ζ?10.1 = η?01(1− δ?1)
ζ?11.1 = η?11δ

?
1

All upper bound constants U ·U·· are assumed to be positive. For L·U·· = 0, c ≥ 0, all
ratios c/L·U·· are defined to be positive infinite.

In what follows, we define “the standard IV model” as the one which obeys exogene-
ity of W and exclusion restriction—that is, the model following the directed acyclic graph
{W → X → Y,X ← U → Y }. All variables are binary, and the goal is to bound the
average causal effect (ACE) of X on Y given a non-descendant W and a possible (set of)
confounder(s) U of X and Y .

Proof of Theorem 2 Start with the relationship between ηxw and its upper bound:

η?xw ≤ UY Uxw (Multiply both sides by δ?x′.w)
η?xw(1− (1− δ?x′.w)) ≤ UY Uxw δ?x′.w (Marginalize over P (U))

ωxw − κ1x.w ≤ UY Uxw χx′.w
ωxw ≤ κ1x.w + UY Uxw (κ0x′.w + κ1x′.w)

and an analogous series of steps gives ωxw ≥ κ1x.w + LY Uxw (κ0x′.w + κ1x′.w). Notice such
bounds above will depend on how tight εy is. As an illustration of its implications, consider
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the derived identity ζ?0x.w = (1 − η?xw)δ?x.w ⇒ 1 − η?xw = ζ?0x.w/δ
?
x.w ⇒ 1 − η?xw ≥ ζ?0x.w ⇒

η?xw ≤ 1− ζ?0x.w = ζ?0x.w + ζ?0x′.w + ζ?1x′.w ⇒ ωxw ≤ κ0x.w + κ0x′.w + κ1x′.w.
It follows from UY Uxw ≤ 1 that that the derived bound ωxw ≤ κ1x.w+UY Uxw (κ0x′.w+κ1x′.w)

is at least as tight as the one obtained via η?xw ≤ 1 − ζ?0x.w. Notice also that the standard
IV bound ηxw ≤ 1− ζ0x.w (Balke and Pearl, 1997; Dawid, 2003) is a special case for εy = 0,
β = β = 1.

For the next bounds, consider

δ?x.w ≤ UXUxw

η?xwδ
?
x.w ≤ UXUxw η?xw (Marginalize over P (U))

κ1x.w ≤ UXUxw ωxw
ωxw ≥ κ1x.w/U

XU
xw

where the bound ωxw ≤ κ1x.w/LXUxw can be obtained analogously. The corresponding bound
for the standard IV model (with possible direct effect W → Y ) is ηxw ≥ ζ1x.w, obtained
again by choosing εx = 1, β = β = 1. The corresponding bound ωxw ≥ κ1x.w is a looser

bound for UXUxw < 1. Notice that if LXUxw = 0, the upper bound is defined as infinite.
Finally, the last bounds are similar to the initial ones, but as a function of εx instead of

εy:

δ?x.w ≤ UXUxw

(1− η?xw)δ?x.w ≤ UXUxw (1− η?xw) (Marginalize over P (U))
κ0x.w ≤ UXUxw (1− ωxw)
ωxw ≤ 1− κ0x.w/UXUxw

The lower bound ωxw ≥ 1 − κ0x.w/LXUxw is obtained analogously, and implied to be minus
infinite if LXUxw = 0.

Proof of Theorem 3 We start with the following derivation,

η?xw′ − η?xw ≤ εw
η?xw′δ?x.w′ − η?xwδ?x.w′ ≤ εwδ

?
x.w′ (Use −UXUxw′ ≤ −δ?x.w′)

η?xw′δ?x.w′ − η?xwUXUxw′ ≤ εwδ
?
x.w′ (Marginalize over P (U))

κ1x.w′ − ωxwUXIxw ≤ εwχx.w′

ωxw ≥ (κ1x.w′ − εwχx.w′)/UXUxw′

ωxw ≥ (κ1x.w′ − εw(κ0x.w′ + κ1x.w′))/UXUxw′

Analogously, starting from η?xw′−η?xw ≥ εw, we obtain ωxw ≤ (κ1x.w′+εw(κ0x.w′+κ1x.w′))/LXUxw′ .
Notice that for the special case εw and UXUxw′ = 1, we obtain the corresponding lower bound
ωxw ≥ κ1x.w′ that relates ω and κ across different values of W .

The result corresponding to the upper bound ηxw ≤ 1−ζ0x.w′ can be obtained as follows:

η?xw′ − η?xw ≥ −εw
1 + η?xw′ − 1− η?xw ≥ −εw

(1− η?xw)− (1− η?xw′) ≥ −εw
(1− η?xw)δ?x.w′ − (1− η?xw′)δ?x.w′ ≥ −εwδ?x.w′

(1− η?xw)UXUxw′ − (1− η?xw′)δ?x.w′ ≥ −εwδ?x.w′ (Marginalize over P (U))
(1− ωxw)UXUxw′ − κ0x.w′ ≥ −εwχx.w′

ωxw ≤ 1− (κ0x.w′ − εw(κ0x.w′ + κ1x.w′))/UXUxw′
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with the corresponding lower bound (non-trivial for LXUxw′ > 0) given by ω?xw ≥ 1− (κ0x.w′ +
εw(κ0x.w′ + κ1x.w′))/LXUxw′ .

The final block of relationships can be derived as follows:

η?xw − η?xw′ ≤ εw
η?xwδ

?
x′.w − η?xw′δ?x′.w ≤ εwδ

?
x′.w

η?xw(1− (1− δ?x′.w))− η?xw′δ?x′.w ≤ εwδ
?
x′.w (Use −UXUx′w ≤ −δ?x′.w)

η?xw − η?xw(1− δ?x′.w)− η?xw′UXUx′.w ≤ εwδ
?
x′.w (Marginalize over P (U))

ωxw − κ1x.w − ωxw′UXUx′w ≤ εwχx′.w
ωxw − ωxw′UXUx′w ≤ κ1x.w + εw(κ0x′.w + κ1x′.w)

with the lower bound ωxw − ωxw′LXUx′w ≥ κ1x.w − εw(κ0x′.w + κ1x′.w) derived analogously.
Moreover,

η?xw′ − η?xw ≤ εw
(1− η?xw)δ?x′.w − (1− η?xw′)δ?x′.w ≤ εwδ

?
x′.w

(1− η?xw)(1− (1− δ?x′.w))− (1− η?xw′)UXUx′w ≤ εwδ
?
x′.w

1− ωxw − κ0x.w − (1− ωxw′)UXUx′w ≤ εwχx′.w
ωxw − ωxw′UXUx′w ≥ 1− κ0x.w − UXUx′w − εw(κ0x′.w + κ1x′.w)

and the corresponding ωxw − ωxw′LXUx′w ≤ 1 − κ0x.w − LXUx′w + εw(κ0x′.w + κ1x′.w). The last
two relationships follow immediately from the definition of εw.

Our constraints found so far collapse to some of the constraints found in the standard
IV models (Balke and Pearl, 1997; Dawid, 2003) given εw = 0, β = β = 1. Namely,

ηxw ≤ 1− ζ0x.w
ηxw ≤ 1− ζ0x.w′

ηxw ≥ ζ1x.w
ηxw ≥ ζ1x.w′

However, none of the constraints so far found counterparts in the following:

ηxw ≤ ζ0x.w + ζ1x.w + ζ1x.w′ + ζ1x′.w′

ηxw ≤ ζ0x.w′ + ζ1x.w′ + ζ1x.w + ζ1x′.w
ηxw ≥ ζ1x.w + ζ1x′.w − ζ0x.w′ − ζ1x′.w′

ηxw ≥ ζ1x.w′ + ζ1x′.w′ − ζ0x.w − ζ1x′.w

These constraints have the distinctive property of being functions of both P (Y = x,X =
x | W = w) and P (Y = x,X = x | W = w′), simultaneously. So far, we have only used the
basic identities and constraints, without attempting at deriving constraints that are not a
direct application of such identities. In the framework of (Dawid, 2003; Ramsahai, 2012), it
is clear that general linear combinations of functions of {δ?x.wη?1x.w, δ?x.w, η?1x.w} can generate
constraints on observable quantities ζyx.w and causal quantities of interest, ηxw. We need to
encompass these possibilities in such a way that we get a framework for generating symbolic
constraints as a function of {εw, εy, εx, β, β}.
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One of the difficulties on exploiting a black-box polytope package for that is due to
the structure of the process, which exploits the constraints in Section 4 by first finding the
extreme points of the feasible region of {δ?w}, {η?xw}. If we use the constraints

|η?x1 − η?x0′ | ≤ εw
0 ≤ η?xw ≤ 1

then assuming 0 < εw < 1, we always obtain the following six extreme points,

(0, 0)
(0, εw)
(εw, 0)

(1− εw, 1)
(1, 1− εw)

(1, 1)

In general, however, once we introduce constraints LY Uxw ≤ η?xw ≤ UXUxw , the number of
extreme points will vary. Moreover, when multiplied with the extreme points of the space
δ?1 × δ?0 , the resulting extreme points of ζ?yx.w might be included or excluded of the polytope
depending on the relationship among {εw, εx, εy} and the observable P (Y,X | W ). Numeri-
cally, this is not a problem (barring numerical instabilities, which do occur with a nontrivial
frequency). Algebraically, this makes the problem considerably complicated29. Instead, in
what follows we will define a simpler framework that will not give tight constraints, but
will shed light on the relationship between constraints, observable probabilities and the ε
parameters. This will also be useful to scale up the full Witness Protection Program, as
discussed in the main paper.

A.2 Methodology for Cross-W Constraints

Consider the standard IV model again, i.e., where W is exogenous with no direct effect on Y .
So far, we have not replicated anything such as e.g. η1 ≤ ζ00.0 + ζ11.0 + ζ10.1 + ζ11.1. We call
this a “cross-W” constraint, as it relates observables under different values of W ∈ {0, 1}.
These are important when considering weakening the effect W → Y . The recipe for deriving
them will be as follows. Consider the template

δ?0f1(η
?
0, η

?
1) + δ?1f2(η

?
0, η

?
1) + f3(η

?
0, η

?
1) ≥ 0 (36)

such that fi(·, ·) are linear. Linearity is imposed so that this function will correspond to
a linear function of {ζ?, η?, δ?}, of which expectations will give observed probabilities or
interventional probabilities.

We will require that evaluating this expression at each of the four extreme points of the
joint space (δ?0 , δ

?
1) ∈ {0, 1}2 will translate into one of the basic constraints 1 − η?i ≥ 0 or

η?i ≥ 0, i ∈ {0, 1}. This implies any combination of {δ?0 , δ?1 , η?0, η?1} will satisfy (36) (more
on that later).

29. As a counterpart, imagine we defined a polytope through the matrix inequality Ax ≤ b. If we want to
obtain its extreme point representation as an algebraic function of the entries of matrix A and vector
b, this will be a complicated problem since we cannot assume we know the magnitudes and signs of the
entries.
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Given a choice of basic constraint (say, η?1 ≥ 0), and setting δ?0 = δ?1 = 0, this im-
mediately identifies f3(·, ·). We assign the constraint corresponding to δ?0 = δ?1 = 1 with
the “complementary constraint” for η1 (in this case, η?1 ≤ 1). This leaves two choices for
assigning the remaining constraints.

Why do we associate the δ?0 = δ?1 = 1 case with the complementary constraint? Let
us parameterize each function as fi(η

?
0, η

?
1) ≡ aiη

?
0 + biη

?
1 + ci. Let a3 = q, where either

q = 1 (case η?0 ≥ 0) or q = −1 (case 1 − η?0 ≥ 0). Without loss of generality, assume case
(δ?0 = 1, δ?1 = 0) is associated with the complementary constraint where the coefficient of
η?0 should be −q. For the other two cases, the coefficient of η?0 should be 0 by construction.
We get the system

a3 = q
a1 + a3 = −q
a2 + a3 = 0

a1 + a2 + a3 = 0

This system has no solution. Assume instead δ?0 = δ?1 = 1 is associated with the comple-
mentary constraint where the coefficient of η?0 should be −q. The system now is:

a3 = q
a1 + a3 = 0
a2 + a3 = 0

a1 + a2 + a3 = −q

This system always have the solution a1 = a2 = −q. We do have freedom with b1, b2, b3,
which means we can choose to allocate the remaining two cases in two different ways.

Lemma 7 Consider the constraints derived by the above procedure. Then any choice of
(δ?0 , δ

?
1 , η

?
0, η

?
1) ∈ [0, 1]4 will satisfy these constraints.

Proof Without loss of generality, let f3(η
?
0, η

?
1) = qη?0 + (1 − q)/2, q ∈ {−1, 1}. That

is, a3 = q, b3 = 0, c3 = (1 − q)/2. This implies a1 = a2 = −q (as above). Associating
(δ?0 = 1, δ?1 = 0) with η?1 ≥ 0 gives {b1 = 1, c1 = (q − 1)/2} and consequently associating
(δ?0 = 0, δ?0 = 1) with 1 − η?1 ≥ 0 implies {b2 = −1, c2 = (1 + q)/2}. Plugging this into the
expression δ?0f1(η

?
0, η

?
1) + δ?1f2(η

?
0, η

?
1) + f3(η

?
0, η

?
1) we get

= δ?0(−qη?0 + η?1 + (q − 1)/2) + δ?1(−qη?0 − η?1 + (1 + q)/2) + qη?0 + (1− q)/2
= η?0(q − (δ?0 + δ?1)q) + η?1(δ?0 − δ?1) + δ?0(q − 1)/2 + δ?1(1 + q)/2 + (1− q)/2
= η?0(q − (δ?0 + δ?1)q) + η?1(δ?0 − δ?1) + (−q + (δ?0 + δ?1)q)/2 + (δ?1 − δ?0 + 1)/2

= q((δ?1 + δ?0)− 1)(1− 2η?0)/2 + ((δ?1 − δ?0)(1− 2η?1) + 1)/2
= (δ?1 + δ?0 − 1)s/2 + (δ?1 − δ?0)t/2 + 1/2

where s = q(1 − 2η?0) ∈ [−1, 1] and t = (1 − 2η?1) ∈ [−1, 1]. Then evaluating at the four
extreme points s, t ∈ {−1,+1} we get δ0, δ1, 1− δ0, 1− δ1, all of which are non-negative.

The procedure derives 8 bounds (4 cases that we get by associating f3 with either ηx ≥ 0
or 1− ηx ≥ 0. For each of these cases, 2 subcases what we get by assigning (δ?0 = 1, δ?1 = 0)
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with either ηx′ ≥ 0 or 1− ηx′ ≥ 0). Now, for an illustration of one case:

Deriving a constraint for the standard IV model, example: f3(η
?
0, η

?
1) ≡ η?0 ≥ 0

Associate η?1 ≥ 0 with assignment (δ?0 = 1, δ?1 = 0) (implying we associate η?1 ≤ 1 with
assignment (δ?0 = 0, δ?1 = 1) and η?0 ≤ 1 with (δ?0 = 1, δ?1 = 1)). This uniquely gives
f1(η

?
0, η

?
1) = η?1 − η?0, f2(η

?
0, η

?
1) = −η?1 − η?0 + 1. The resulting expression is

δ?0(η?1 − η?0) + δ?1(−η?1 − η?0 + 1) + η?0 ≥ 0

from which we can verify that the assignment (δ?0 = 1, δ?1 = 1) gives η?0 ≤ 1. Now, we
need to take the expectation of the above with respect to U to obtain observables ζ and
causal distributions η. However, first we need some rearrangement so that we match η?0
with corresponding (1− δ?w) and so on.

η?1(δ?0 − δ?1) + η?0(1− δ?0 − δ?1) + δ?1 ≥ 0
η?1(δ?0 − δ?1) + η?0((1− δ?0) + (1− δ?1)− 1) + δ?1 ≥ 0
ζ?11.0 − ζ?11.1 + ζ?10.0 + ζ?10.1 − η?0 + ζ?01.1 + ζ?11.1 ≥ 0

Taking expectations and rearranging it, we have

η0 ≤ ζ11.0 + ζ10.0 + ζ10.1 + ζ01.1

rediscovering one of the IV bounds for η0. Choosing to associate η?1 ≥ 0 with assignment
(δ?0 = 0, δ?1 = 1) will give instead

η0 ≤ ζ11.1 + ζ10.1 + ζ10.0 + ζ01.0

Basically the effect of one of the two choices within any case is to switch ζyx.w with ζyx.w′ .

A.3 Deriving Cross-W Constraints

What is left is a generalization of that under the condition |ηxw − ηxw′ | ≤ εw, w 6= w′,
instead of ηxw = ηxw′ . In this situation, we exploit the constraint L ≤ η?xw ≤ U instead
of 0 ≤ η?xw ≤ 1 or LY Uxw ≤ η?xw ≤ UY Uxw , where L ≡ min{LY Uxw }, U ≡ max{UY Uxw }. Using
LY Uxw ≤ η?xw ≤ UY Uxw complicates things considerably. Also, we will not derive here the ana-
logue proof of Lemma 1 for the case where (η?0, η

?
1) ∈ [L,U ]2, as it is analogous but with a

more complicated notation.

Proof of Theorem 4 We demonstrate this through two special cases.
General Model, Special Case 1: f3(η

?
0w, η

?
1w) ≡ η?xw − L ≥ 0

There are two modifications. First, we perform the same associations as before, but with
respect to L ≤ η?xw ≤ U instead of 0 ≤ η?x ≤ 1. Second, before we take expectations, we
swap some of the η?xw with η?xw′ up to some error εw.

Following the same sequence as in the example for the IV model, we get the resulting
expression (where x′ ≡ {0, 1}\x):

δ?w(η?x′w − η?xw) + δ?w′(−η?x′w − η?xw + U + L) + η?xw − L ≥ 0

47



Silva and Evans

from which we can verify that the assignment (δ?w = 1, δ?w′ = 1) gives U − η?xw ≥ 0. Now,
we need to take the expectation of the above with respect to U to obtain “observables”
κ and causal effects ω. However, the difficulty now is that terms η?xwδ

?
w′ and η?xw′δ?w have

no observable counterpart under expectation. We get around this transforming η?xw′δ?w into
η?xwδ

?
w (and η?xwδ

?
w′ into η?xw′δ?w′) by adding the corresponding correction −η?xw ≤ −η?xw′ +εw:

δ?w(η?x′w − η?xw) + δ?w′(−η?x′w − η?xw + U + L) + η?xw − L ≥ 0

δ?w(η?x′w − η?xw) + δ?w′(−η?x′w′ + εw − η?xw′ + εw + U + L) + η?xw − L ≥ 0

η?x′wδ
?
w + η?xw(1− δ?w)− ηx′w′δ?w′ − ηxw′δ?w′ + δ?w′(U + L+ 2εw)− L ≥ 0

Now, the case for x = 1 gives

η?0wδ
?
w + η?1w(1− δ?w)− η0w′δ?w′ − η1w′δ?w′ + . . . ≥ 0

η?0w(1− (1− δ?w)) + η?1w(1− δ?w)− η?0w′(1− (1− δ?w′))− η?1w′δ?w′ + . . . ≥ 0

Taking the expectations:

ω0w − κ10.w + ω1w − κ11.w − ω0w′ + κ10.w′ − κ11.w′ + χw′(U + L+ 2εw)− L ≥ 0 (37)

Notice that for β = β = 1, L = 0, U = 1, εw = 0, this implies ηxw = ηxw′ and this collapses
to

η0w − ζ10.w + η1w − ζ11.w − η0w′ + ζ10.w′ − ζ11.w′ + δw′ ≥ 0

η1w ≥ ζ10.w + ζ11.w − ζ10.w′ − ζ01.w′

which is one of the lower bounds one obtains under the standard IV model.
The case for x = 0 is analogous and gives

ω0w′ ≤ κ11.w + κ10.w + κ10.w′ − κ11.w′ + χw′(U + L+ 2εw)− L (38)

The next subcase is when we exchange the assignment of (δ?w, δ
?
w′) to other constraints. We

obtain the following inequality:

δ?w′(η?x′w − η?xw) + δ?w(−η?x′w − η?xw + U + L) + η?xw − L ≥ 0

which from an analogous sequence of steps leads to

δ?w′(η?x′w − η?xw) + δ?w(−η?x′w − η?xw + U + L) + η?xw − L ≥ 0

δ?w′(η?x′w′ + εw − η?xw′ + εw) + δ?w(−η?x′w − η?xw + U + L) + η?xw − L ≥ 0

η?x′w′δ?w′ − η?xw′δ?w′ + 2δ?w′εw − η?x′wδ?w + η?xw(1− δ?w) + δ?w(U + L)− L ≥ 0

For x = 1,

η?0w′δ?w′ − η?1w′δ?w′ + η?0wδ
?
w + η?1w(1− δ?w) + . . . ≥ 0

η?0w′(1− (1− δ?w′))− η?1w′δ?w′ − η?0w(1− (1− δ?w)) + η?1w(1− δ?w) + . . . ≥ 0

Taking expectations,

ω0w′ − κ10.w′ − κ11.w′ − ω0w + κ10.w + ω1w − κ11.w + 2χw′εw + χw(U + L)− L ≥ 0 (39)
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For x = 0,

η?1w′δ?w′ − η?0w′δ?w′ + η?1wδ
?
w + η?0w(1− δ?w) + . . . ≥ 0

η?1w′δ?w′ − η?0w′(1− (1− δ?w′))− η?1wδ?w + η?0w(1− δ?w) + . . . ≥ 0

κ11.w′ − ω0w′ + κ10.w′ − κ11.w + κ10.w + 2χw′εw + χw(U + L)− L ≥ 0

ω0w′ ≤ κ11.w′ + κ10.w′ − κ11.w + κ10.w + 2χw′εw + χw(U + L)− L (40)

General Model, Special Case 2: f3(η
?
0w, η

?
1w) ≡ U − η?xw ≥ 0

Associate η?x′w ≥ L with assignment (δ?w = 1, δ?w′ = 0) (implying we associate η?x′w ≤ U with
assignment (δ?w = 0, δ?w′ = 1) and η?xw ≥ L with (δ?w = 1, δ?w′ = 1)). The resulting expression
is

δ?w(η?x′w + η?xw − U − L) + δ?w′(−η?x′w + η?xw) + U − η?xw ≥ 0

Following the same line of reasoning as before, we get this for x = 1:

ω0w − ω0w′ − ω1w − κ10.w + κ11.w + κ10.w′ + κ11.w′ − χw(U + L) + 2εwχw′ + U ≥ 0 (41)

We get this for x = 0:

ω0w′ ≥ −κ11.w + κ10.w + κ11.w′ + κ10.w′ + χw(U + L)− 2εwχw′ − U (42)

With the complementary assignment, we start with the relationship

δ?w′(η?x′w + η?xw − U − L) + δ?w(−η?x′w + η?xw) + U − η?xw ≥ 0

For x = 1,

ω0w′ − ω0w − ω1w − κ10.w′ + κ11.w′ + κ10.w + κ11.w + χw′(2εw − U − L) + U ≥ 0 (43)

For x = 0,

ω0w′ ≥ −κ11.w′ + κ10.w′ + κ11.w + κ10.w − χw′(2εw − U − L)− U (44)

Notice that the bounds obtained are asymmetric in x, i.e., we derive different bounds for
ω0w and ω1w. Symmetry is readily obtained by the same derivation where δ?w is interpreted
as P (X = 0 | W = w,U) and x is swapped with x′.

A.4 Linear Case

Our final proof refers to results introduced in Section 6.

Proof of Theorem 5 Variable sxx appears only in Equation (24) and the inequalities 0 ≤
sxx ≤ 1. The intersection of these relationships is satisfiable if and only if 0 ≤ a2+2aswx ≤ 1
is satisfiable. Moreover, swx appears only in Equation (22). Solving this equation for swx
and plugging it in 0 ≤ a2 + 2aswx ≤ 1, we obtain 0 ≤ −a2 + 2aρwx ≤ 1. The quadratic
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expression for a achieves a unique maximum at a? = ρwx, implying−a?2+2a?ρwx = ρ2wx ≤ 1.
We can then drop the inequality −a2 + 2aρwx ≤ 1 as this is always satisfied. The resulting
interval is a2 − 2aρwx ≤ 0, and the set of values of a satisfying it is either the interval
[2ρwx, 0] or [0, 2ρwx] depending on the sign of ρwx. This can be written as

min(0, 2ρwx) ≤ a ≤ max(0, 2ρwx) (45)

The intersection of Equation (22) and −εwx ≤ swx ≤ εwx is satisfiable only if ρwx−εwx ≤
a ≤ ρwx + εwx. Combining this interval with (45), we obtain the inequality

max(min(0, 2ρwx), ρwx − εwx) ≤ a ≤ min(max(0, 2ρwx), ρwx + εwx) (46)

which La and Ua being defined as the lower and upper bounds, respectively, in the interval
above.

Since a now only appears in (46) and Equation (25), and assuming swy ≥ 0, the inter-
section of the two equations is satisfiable if and only if

ρxy − Uaswy ≤ b+ cρwx + sxy ≤ ρxy − Laswy (47)

Equation (31) follows from sxy not appearing anywhere else but in the relationship
−εxy ≤ sxy ≤ εxy, and also considering the case swy < 0.

Equation (26) and the relationship 0 ≤ syy ≤ 1 is satisfiable if and only if

0 ≤ b2 + 2bcρwx + c2 + 2[b(aswy + sxy) + cswy] ≤ 1 (48)

is satisfiable. From Equation (25) we have aswy + sxy = ρxy − b− cρwx and from Equation
(23) we have swy = ρwy − bρwx − c. Making these substitutions into (48), we get

0 ≤ −b2 − 2bcρwx − c2 + 2(bρxy + cρwy) ≤ 1.

The quadratic function in (b, c) has a unique maximum. Assuming for now c is uncon-
strained, taking the derivatives of −b2− 2bcρwx− c2 + 2(bρxy + cρwy) with respect to b and
c, and setting them to zero, we obtain the stationary point

b? =
ρxy − ρwxρwy

1− ρ2wx
, c? =

ρwy − ρwxρxy
1− ρ2wx

, (49)

and by assumption it follows that c? = 0. Plugging c? in −b2−2bcρwx− c2 +2(bρxy + cρwy),
we get b(2ρxy − b) ≤ ρ2xy ≤ 1. So, it is sufficient to satisfy

b2 + 2bcρwx + c2 − 2(bρxy + cρwy) ≤ 0. (50)
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