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X–ray absorption, phase and dark–
field tomography through a beam 
tracking approach
Fabio A. Vittoria1,2, Marco Endrizzi1, Paul C. Diemoz1,2, Anna Zamir1, Ulrich H. Wagner3, 
Christoph Rau3, Ian K. Robinson2,4 & Alessandro Olivo1

We present a development of the beam–tracking approach that allows its implementation in 
computed tomography. One absorbing mask placed before the sample and a high resolution detector 
are used to track variations in the beam intensity distribution caused by the sample. Absorption, 
refraction, and dark–field are retrieved through a multi–Gaussian interpolation of the beam. Standard 
filtered back projection is used to reconstruct three dimensional maps of the real and imaginary 
part of the refractive index, and of the dark–field signal. While the method is here demonstrated 
using synchrotron radiation, its low coherence requirements suggest a possible implementation with 
laboratory sources.

X–ray phase contrast imaging (XPCi) is an established technique for the non–destructive analysis and 
visualization of specimens in a wide range of fields1, such as biomedical imaging, materials science, and 
others. In standard radiography, the contrast that enables the visualization of the specimens’ internal 
structures originates from the different x–ray absorption between features of interest and background. In 
XPCi, in addition to absorption, the phase shift experienced by x–ray wave fronts when travelling through 
matter is exploited, which leads to an increase in the final image contrast. This can be particularly impor-
tant when low absorption materials are imaged, such as soft tissues in biomedical imaging. Different 
XPCi techniques have been developed over the years: Bonse-Hart interferometry2, propagation-based 
XPCi3, analyzer-based methods4, grating interferometry5, edge illumination6, and a series of alternative 
“single shot” methods7–10. Among these, some have demonstrated the capability to extract, alongside 
absorption and phase shift, the dark–field or ultra–small–angle x–ray scattering (USAXS) signal of the 
sample10,11–13. This latter signal is related to inhomogeneities in the sample refractive index on a scale 
smaller than the resolution of the imaging system, and can be used to discriminate materials with sim-
ilar absorption/phase shift properties, but different microscopic internal structure (e.g. materials with a 
defined shape at a scale which is larger than the system resolution, but a different degree of homogeneity 
on a smaller, sub–resolution, scale). An additional advance in XPCi and USAXS is their implementation 
in tomography. Absorption, phase shift and scattering, in fact, can all be related to line integrals along 
the photon path of fundamental properties of the sample, and computed tomography (CT) can be used 
to reconstruct their three dimensional maps11,14.

We have recently shown how the edge illumination principle6,15 can be used in a beam tracking 
approach16,17 to reconstruct absorption, refraction and scattering. The main advantages of beam track-
ing over alternative XPCi approaches are that it does not require spatial or temporal coherence, can be 
adapted to work with laboratory sources, requires only one optical element placed before the sample, and 
can be used in a single–shot manner, reducing acquisition time and delivered dose, but at the cost of a 
reduced final resolution. Here we demonstrate its compatibility with implementation in a CT geometry, 
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thus allowing the quantitative three–dimensional reconstruction of absorption, phase shift and scattering 
signals.

A scheme of the experimental setup is shown in Fig. 1. An incoming x–ray beam is shaped, through 
an absorbing mask, into a series of secondary, physically separated beamlets. While here a 1D–sensitive 
implementation (long, slit-shaped apertures) is used, extension to 2D mask structures is trivial, although 
potentially at the cost of a lower transmitted flux due to reduced mask open fractions. Each beamlet 
passes through the sample and, after a propagation distance zp, its intensity profile is recorded by a 
high resolution detector. The effect of the sample on a beamlet is to reduce its total intensity (due to 
absorption), change its direction (refraction), and increase its divergence (scattering). A multi–Gaussian 
interpolation16 of the intensity profile is used to extract the following parameters:
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where μ is the attenuation coefficient, α the mean refraction angle, β the imaginary part of the sample 
complex refractive index, δ the difference from unity of the real part of the sample complex refractive 
index, f the scattering distribution, and θ the scattering angle. These three parameters are calculated from 
the variations, with respect to reference values obtained from an image without the sample, of the zero-th, 
first and second momentum of the beam intensity profile, which correspond to the total area, mean 
value, and variance of a Gaussian function, respectively. As described in18, θ θ( , , )f x y d  is the probability 
that a photon is scattered at an angle between θ and θ θ+ d  from the mean refraction angle α after 
passing through the sample. If we introduce the local scattering distribution φ θ θ( , , , )x y z dzd  as the 
probability for a photon to be scattered at an angle between θ and θ +  dθ from the local mean refraction 
angle after passing through the region of the sample between z and +z dz, it is possible to write:

∫ ∫ ∫σ θ φ θ θ σ= ( , , , ) = ( , , ) ( )φx y z dzd x y z dz 4f
2 2 2

where ∫σ θ φ θ θ( , , ) = ( , , , )φ x y z x y z d2 2 . Equations 1, 2 and 4 express the retrieved signals as line inte-
grals along the photon path of three physical properties of the sample. β ( , , )x y z  and σ ( , , )φ x y z2  can be 
reconstructed using standard filtered back projection. δ ( , , )x y z , instead, can be reconstructed from α 
with a modified version of the filtered back projection, which adopts the Hilbert filter, instead of the 
ramp filter, to invert the derivative along x in the Fourier space.

Results
We first tested the quantitativeness of the method on a sample made of three cylindrical test objects of 
different, but known, materials: polyetheretherketone (PEEK), aluminium and sapphire. Results of the 
retrieval procedure and CT reconstruction are shown in Fig. 2. Figure 2(a,b) show a reconstructed slice 
of β and δ, respectively. Figure  2(c) shows a quantitative comparison between the retrieved values in 

Figure 1. Schematic diagram of the experimental setup. 
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the central region of each wire, and the theoretical ones. A good agreement is found for all the different 
materials, proving that the parameters extracted from the 3D images are quantitatively reliable.

The second sample we imaged was a piece of wood, which contains a complex internal structure 
arranged on different length scales. This sample was chosen because its sub–micrometric structures are 
expected to show a strong scattering signal, which might significantly distort the incoming beamlets. In 
this situation other methods7,10, based on the tracking of a speckle pattern, might present problems. The 
distortions induced by the sample on the reference pattern might, in fact, be so severe as to make it 
impossible to track the original speckle effectively. The advantage of our method, in this case, is to create 
a known, periodic reference pattern through a non-interferometric technique, whose variations can be 
tracked even for high values of the refraction and scattering signals. Figure 3(a–c) show reconstructed 
slices of β, δ and σφ

2, respectively, displayed with different colors. As expected, absorption and phase 
present similar features, in fact both these signals are ultimately related to the electron density of the 
sample. However, the contrast between different parts of the sample is locally different, and can be used 
to better identify regions of different composition within the sample. The scattering signal is not uni-
formly distributed within the sample. This signal, in fact, only comes from regions of the sample in which 
the refractive index is inhomogeneous on a scale smaller than the mask aperture. To better display the 
fact that these three channels provide complementary information about the sample, three volume ren-
derings are shown in Fig. 3(d–f), where absorption, phase and scattering are superimposed in pairs.

Discussion
We presented a method that enables performing quantitative x-ray phase–contrast and ultra–small–angle 
scattering computed tomography through a beam tracking approach. The method presents the advan-
tages of a simple experimental setup, with only one optical element placed before the sample; absorption, 
refraction and scattering can be extracted from a single exposure of the sample, without the need to scan 
the optical element. A scan of the sample, instead, is needed to increase the final resolution and avoid 
possible aliasing artefacts, as will be explained in the next section. Additionally, the presented method 
does not rely on spatial and/or temporal coherence to generate contrast, suggesting the possibility of a 
future CT implementation with laboratory sources17. Indeed, the main requirement for this method, and 
for others based on edge illumination, is that the beamlets created by the absorbing mask remain phys-
ically separated to avoid ambiguity in the reconstruction; for a laboratory implementation this implies 
that the source size projected onto the detector plane needs to be smaller than the projected period of 
the mask. This effectively summarizes the spatial coherence requirements of the method19,20, while the 
even less restrictive ones on temporal coherence are discussed in21.

The quantitative accuracy of the method was experimentally tested on a sample consisting of three 
different materials of known composition and size, and a good agreement between the retrieved and the 
theoretical value of the sample refractive index was found. Finally, a CT reconstruction from a complex 

Figure 2. Reconstructed slices of (a) β and (b) δ from a test object made of three wires of different 
materials. In (c) the mean values calculated in the central region of each wire are compared with the 
theoretical ones (black). The error bars for the experimental data are equal to ± 1 standard deviation, 
while an error of ± 5% is assumed on the theoretical values to account for potential impurities and density 
variation. Resolution is reduced by approximately a factor of 2 compared to the intrinsic resolution of the 
system (≈ 10 μm, equal to a mask aperture), due to the Gaussian filter applied to each projection to reduce 
noise in the final reconstruction (see text).
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sample was presented, showing the robustness of the method against highly scattering materials, and that 
the three different signals can highlight different properties of the sample.

For this proof-of-concept experiment, each beam was tracked with a relatively large number of pix-
els, through a Gaussian fit. Future development will involve using masks with smaller aperture and 
period; this will result in a higher final resolution of the reconstructed images, and higher sensitivity to 
refraction and scattering signals. The assumption of a Gaussian profile was sufficiently accurate for the 
present experimental conditions, as the quantitative agreement in Fig. 2(c) demonstrates, however this 
might not always be true in the general case. The use of more refined fitting functions and of alternative 
retrieval method (e.g. through direct deconvolution of the beam profiles) will be investigated in future 
developments.

Finally, it should be noted that a simple free–space propagation setup, obtained by removing the 
absorbing mask, would allow a reduction in the total exposure time of about 1 order of magnitude. This, 
however, would result in a “mixed” image with absorption and phase effects superimposed, and in the 
loss of the dark-field signal. Optimizing the mask design to minimize exposure time, thus mitigating at 
least in part the required increase in exposure time, will be the subject of future research.

Methods
The experiment was performed at the I13 (Coherence branch) beamline of the Diamond Synchrotron 
Radiation facility (Didcot, UK)22. A Si(111) crystal monochromator was used to select an x-ray energy 
of 9.7 keV. The mask is made of a gold layer electroplated on a graphite substrate, with aperture size and 
period of 10 μm and 85 μm, respectively. The detector consisted of a scintillator, a magnifying visible light 
optics and a CCD sensor, with effective pixel size of 1.1 μm. Projections were acquired in the angular 
range [0° 180°], with 3 s exposure time per projection. For the test sample shown in Fig. 2, 181 projec-
tions were acquired with 1° step, and the detector was placed at a distance of 18.5 cm from the sample. 
For the wood sample in Fig.  3, 361 projections were acquired with 0.5° step, with sample-to-detector 
distance of 17.5 cm. For each angular position, a 10–step scan of the sample over one period of the x-ray 
mask was performed. In a single projection, in fact, parts of the sample covered by the absorbing septa 
of the mask are not illuminated and do not contribute to the signal. This results in a loss of resolution 
and in possible aliasing artefacts. The intrinsic resolution of our system, in fact, is determined by the 
mask aperture23. If, however, features in the sample vary slowly compared to the mask period, and a 
resolution equal to the mask period is acceptable, this scan can be avoided. Data were re–binned in the 
y direction in order to obtain a final voxel of similar size in the three directions (8.5 ×  8.8 ×  8.5 μm3 

Figure 3. Reconstructed slices of β (a), δ (b), and σφ
2 (c) from a wood sample. Volume rendering of β and δ 

(d), β and σφ
2 (e), δ and σφ

2 (f). The volume rendering has been sectioned to show three inner planes of the 
sample. Resolution is reduced by approximately a factor of 3, for (a,b), and 4, for (c), compared to the 
intrinsic resolution of the system (≈ 10 μm, equal to a mask aperture), due to the Gaussian filter applied to 
each projection to reduce noise in the final reconstruction (see text).
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in x, y and z, respectively). For the CT reconstruction, ramp and Hilbert filters were combined with a 
Gaussian filter, to reduce high–frequency noise in the reconstructed slices. The standard deviation of the 
Gaussian filter was chosen in relation to the noise level in the retrieved projections, and is equivalent to 
8.5 μm for the reconstructions in Fig. 2, 12.75 μm for the reconstructions in Fig. 3(a,b), and 17 μm for 
the reconstruction in Fig. 3(c).
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