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Dendritic cell (DC) 21 

 22 

Summary 23 

Human cytomegalovirus (HCMV) infection remains a major cause of morbidity in patient 24 

populations. In certain clinical settings it is the reactivation of the pre-existing latent infection in the 25 

host that poses the health risk. The prevailing view of HCMV latency was that the virus was 26 

essentially quiescent in myeloid progenitor cells and that terminal differentiation resulted in the 27 

initiation of the lytic lifecycle and reactivation of infectious virus. However, our understanding of 28 

HCMV latency and reactivation at the molecular level has been greatly enhanced through recent 29 

advancements in systems biology approaches to perform global analyses of both experimental and 30 

natural latency. These approaches, in concert with more classical reductionist experimentation, are 31 

furnishing researchers with new concepts in cytomegalovirus latency and suggest that latent 32 

infection is far more active than first thought. In this review we will focus on new studies that 33 

suggest that distinct sites of cellular latency could exist in the human host which, when coupled with 34 

recent observations that report different transcriptional programmes within cells of the myeloid 35 

lineage,  argues for multiple latent phenotypes that could impact differently on the biology of this 36 

virus in vivo. Finally, we will also consider how the biology of the host cell where the latent infection 37 

persists further contributes to the concept of a spectrum of latent phenotypes in multiple cell types 38 

which can be exploited by the virus.  39 

 40 

 41 

 42 

 43 
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 Introduction: the opportunistic pathogen 44 

The herpesvirus human cytomegalovirus (HCMV) represents a very common infection exhibiting a 45 

seroprevalence of 0-100% depending on socioeconomic status. Primary infection of healthy 46 

individuals with HCMV is usually asymptomatic but results in the establishment of a lifelong infection 47 

of the host [1]. HCMV is also highly immunogenic with infection and persistence leaving a large 48 

indelible mark on both CD4+ and CD8+ T cell compartments of seropositive individuals [2]. In stark 49 

contrast with the asymptomatic infection of healthy individuals, congenital infection or infection of 50 

immunocompromised patients can result in significant morbidity and mortality [1, 3, 4]. As well as 51 

primary infection, a profound disease burden is also associated with the reactivation of infectious 52 

virus within latently infected individuals - particularly in allograft bone marrow transplant patients 53 

[5]. Similarly, a 2011 meta-analysis of congenital HCMV infections in the US (between 1988-1994) 54 

estimated that only 25 % of HCMV cases found at birth resulted from maternal primary infection 55 

during pregnancy which highlights the importance of understanding the impact of non-primary 56 

infections: i.e. re-infection and reactivation from latency in seropositive mothers [6]. 57 

 58 

HCMV latency and reactivation represents both clinical problem and challenging academic riddle. 59 

Significant research efforts have been directed towards developing an understanding of the 60 

mechanisms that are involved in the establishment and maintenance of viral latency as well as the 61 

fundamental principles that govern the reactivation of latent virus. These strategies have involved 62 

studies in primary human tissue and cell culture models, as well as using animal model systems of 63 

CMV which, all told, have generated a fascinating insight into the enigmatic problem of latency. 64 

From the beginnings of understanding the cellular basis of latency onto more recent studies that 65 

have utilised powerful systems biology approaches to probe the molecular details the story of HCMV 66 

latency and reactivation is unravelling. In this review we will focus on the recent identification of a 67 

number of viral and cellular gene products that are active in latently infected cells - including the 68 
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detection of both viral and cellular non-coding RNAs – and how they contribute to the latent 69 

phenotype.  Furthermore, we will consider how the identification of these functions impacts on our 70 

understanding of HCMV latency with particular emphasis on the concept that multiple latent 71 

phenotypes may exist within the host. Finally, we will illustrate how these new insights resonate 72 

with studies in the alpha and gamma herpes virus families through shared viral and cellular functions 73 

or mechanisms that help govern the latent state.    74 

 75 

 Keep your friends close... 76 

A key characteristic of human herpesvirus infection is the ability to establish a lifelong latent 77 

infection in the host. The establishment of herpes virus latency can occur in multiple cell types with 78 

the alpha herpesviruses exhibiting a neuronal tropism whereas the cells of the haematopoietic 79 

system represent important reservoirs for the beta and gamma herpesviruses. Although the cellular 80 

identity of the latently infected cell can vary,  latency at a molecular level is characterised by overall 81 

suppression of viral lytic gene expression attributable to epigenetic regulation via histone 82 

modification machinery, a very limited but specific transcriptional profile during latency, and a 83 

responsiveness to host derived cues to exit latency and re-enter the lytic lifecycle [7-9].  84 

 85 

Similarly, at a molecular level, the mechanisms governing latency/persistence during murine CMV 86 

(MCMV) infection appear to have resonance with studies of HCMV also – if not least when 87 

considering the molecular mechanisms that dictate the regulation of major immediate early (MIE) 88 

gene expression required for full lytic infection [10]. In contrast, a compelling comparative narrative 89 

at the cellular level is less clear [10]. Whereas HCMV latency in the haematopoietic cell lineage well 90 

established the same is not true of MCMV where studies of latency have focused on the role of 91 

endothelial cells of a number of organs. Of course, it is entirely possible that the nature of studying 92 
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HCMV in the human host directly renders it difficult to address whether other cell types, alongside 93 

cells of the haematopoietic system, are also sites of viral latency (Figure 1). For instance, attempts to 94 

study human endothelial cells have proven somewhat inconclusive. Although HCMV genomes could 95 

not be detected in endothelial cells isolated from saphenous vein tissue [11], in vitro studies suggest 96 

that subsets of endothelial cells – for instance aortic – could support a latent or at least a persistent, 97 

non-lytic, infection [12]. Thus, the vascular origin of the endothelial cells could be important and 98 

suggests that an analysis of circulating endothelial cell progenitors in the peripheral blood may 99 

reveal a further site of HCMV latency and represents a tractable question to address.  100 

 101 

Finally, it is important to recognise that multiple sites of viral latency could exist in the host. 102 

Although many studies of MCMV latency focus on endothelial cells this does not preclude myeloid 103 

cells as also being important. The detection of MCMV genomes in bone marrow and macrophages 104 

has been observed and, importantly, these genomes can be reactivated [13] . Recent work analysing 105 

MCMV infection suggested that MCMV hijacked the function of a subset of monocytic cells 106 

(‘patrolling monocytes’) to promote viral dissemination [14]. The inference from this study is that 107 

the immuno-privileged phenotype of the patrolling monocytes exploited for dissemination could 108 

also be important for the establishment of long term persistence in the host. Although a preceding 109 

study reported that patrolling monocytes were not important sites of MCMV reactivation, this study 110 

focused on liver tissue and thus it is plausible that specific cell types contribute to reactivation in 111 

discrete organs within the host and, secondly, may point towards a specific role for monocytes in the 112 

seeding of MCMV latency in endothelial cells rather than as a site of long term latency themselves.  113 
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114 
Figure 1 Human cytomegalovirus natural latency in cell lineages. Viral latency is established in the 115 

haematopoietic progenitors resident in the bone marrow and the carriage of viral genomes has been defined 116 

in the monocyte/myeloid lineage with reactivation occurring in the terminally differentiated myeloid 117 

macrophages and DCs (Orange cells). In contrast, the viral genome is not carried in the lymphocyte population 118 

nor is there any evidence for viral latency in venous endothelial cells (grey cells). Experimental infection data 119 

suggest that endothelial and neuronal progenitor cells may also be sites of latency although no data from 120 

natural latency currently exists (blue cells). 121 

 122 

Finally, interesting recent experimental studies also suggest that specific neuronal progenitors may 123 

be another potential site of latency. A key aspect is that the origin (fetal versus embryonic stem 124 

cells) of the neural progenitors allied with the nature of the differentiation stimuli applied appears to 125 

influence the outcome of infection [15-18]. Importantly, the nature of the infection of neuronal cells 126 
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may have implications for understanding the pathogenesis of HCMV congenital infections. 127 

Furthermore, resolving the differences between the distinct types of neuronal cells and how they 128 

respond to reactivation stimuli could have wider impact on our understanding of HCMV reactivation 129 

in multiple cell types – particularly given that the recent study [17] identified multiple blocks to 130 

reactivation of infectious virus which resonates with studies of latency in myeloid cells [19, 20]. 131 

However, interrogating these sites ex vivo is somewhat more challenging than the haematopoietic 132 

system due to almost prohibitive access to the material required to perform the same analyses that 133 

have defined the cells of the haematopoietic lineage as sites of HCMV latency. 134 

 135 

 The silent virus? 136 

Perhaps the most significant advance in our recent understanding of HCMV latency is the 137 

contribution of viral functions to this process – an area of study which, until recently, was in contrast 138 

to the arguably much better defined patterns of gene expression observed with the alpha and 139 

gamma herpesvirus subfamilies. The most intensively studied of all latent transcripts is the latency 140 

associated transcript (LAT) of herpes simplex virus – acting as a non-coding RNA that, once subjected 141 

to RNA processing, exerts an impressive number of reported functions including anti-apoptotic 142 

effects, heterochromatic modification of histones as well as the generation of virally encoded miRNA 143 

species with the potential to regulate viral and cellular gene expression [8, 21-23]. Similarly, for the 144 

gammaherpes subfamily, untranslated RNAs have been identified during viral latency [24, 25]. It is of 145 

note that a number of alternate transcriptional programmes have been described for EBV based 146 

upon the analysis of transformed cell lines but, at least in long-term healthy carriers, the detection 147 

of lymphocytes expressing EBV proteins is quite sporadic and is usually restricted to EBNA-1 and 148 

LMP-2A positive cells [26, 27]. Evidently, the expression of non-coding RNAs during latency provides 149 

a sophisticated mechanism for modulating the host cell environment without attracting an immune 150 

response against the latently infected cell.  151 
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 152 

 Does HCMV express functional untranslated RNAs during latency? 153 

There are now a number of studies that have reported latent gene expression in various 154 

experimental latent systems [28-33] a number of which have also been detected in natural latency 155 

[29, 32, 34-37]. However, the most recent addition to this increasing repertoire of genes expressed 156 

during latency was provided by a provocative study utilising an RNAseq analysis of HCMV 157 

transcription during both experimental and natural latency [33]. Amongst these were non-coding 158 

RNAs including beta 2.7 which was a predominant transcript in naturally latent CD14+ cells 159 

(interestingly, a transcript that was not identified in the first studies that showed monocytes as a site 160 

of persistence in vivo [19])  and experimentally latent CD34+ cells (exhibiting between 20-30x the 161 

number of ‘reads’ detected for UL138 – an accepted latent gene product [35]). Similarly, beta 2.7 162 

was detected in CD34+ cells isolated from the peripheral blood of healthy volunteers although at 163 

relatively lower levels than observed for UL138. Indeed it is interesting to note whilst overlap was 164 

observed with the experimental and natural latency transcriptional profiles they are not equivalent. 165 

One possible explanation is the analysis of different cell types (cord (experimental) versus mobilised 166 

(natural) CD34+ cells) which could be impacting on the expression profiles of the viral genes. That 167 

aside, does HCMV infection render latently infected myeloid cells resistant to the action of rotenone 168 

(and other mitochondrial complex I inhibitors) through extrapolation of the function of beta 2.7 in 169 

infected neuronal cells [38]? One could speculate that if beta 2.7 is expressed during latency it may 170 

be particularly important for the protection of neuronal progenitor cells from cell stress if these are 171 

indeed sites of persistence in vivo and – thus displaying some functional similarities with the LAT of 172 

HSV [23].  173 

 174 
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A second non-coding transcript identified was lnc4.9 [33]. Intriguingly, the authors hypothesise that 175 

(in concert with the novel latent expression of UL84) lnc4.9 interacts with members of the polycomb 176 

repressor complex 2 (PRC2). PRC2 is one of two complexes (the other being PRC1) that control gene 177 

expression. The PRC2 comprises 4 subunits with histone binding and histone methyltransferase 178 

activity [39]. Thus the interaction of lnc4.9 with PRC2 is hypothesised to promote extensive histone 179 

methylation (H3-K27) at the major IE promoter (MIEP) [33] which would contribute to the known 180 

epigenetic silencing of IE gene expression during the establishment of latency [40, 41]. Again, there 181 

are similarities with the role of LAT and the establishment of facultative chromatin on HSV 182 

promoters during latency [42] although the HSV studies show that the initial recruitment and 183 

silencing by PRC2 was independent of a physical interaction with the LAT RNA in HSV latency [42]. 184 

Additionally, the Pan RNA encoded by KSHV promotes the formation of facultative chromatin on the 185 

Rta promoter to induce silencing [43] thus highly similar mechanisms appear to be active across the 186 

herpesvirus family.  187 

 188 

As well as the expression of long non-coding RNAs during latency there is emerging evidence that 189 

HCMV also expresses a repertoire of miRNAs during all phases of infection [44, 45]. These have both 190 

viral and cellular targets and thus provide the ability to ‘fine tune’ the cellular environment to 191 

optimise viral replication or persistence. Pertinently, the virally encoded mir112.1 targets the UL123 192 

mRNA preventing translation of the IE72 protein [46] with major implications for the control of MIE 193 

gene expression (i.e. UL122 and UL123) during latency [47].  194 

 195 

One prevailing view of the regulation of viral gene expression during latency is that higher order 196 

chromatin structure and associated functions are important for maintaining MIEP quiescence and is 197 

supported by a number of observations that link chromatin with the latent phenotype [33, 40, 41, 198 
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48]. Therefore it is intriguing that HCMV exploits additional strategies that contribute to the 199 

regulation of the IE gene products during latent infection in vitro. There is the inhibitory effect of 200 

mir112.1 on IE72 expression [46, 47]. Furthermore, more recent work from the Murphy laboratory 201 

using the Kasumi-3 cell line model they have established to interrogate HCMV latency [49], has 202 

postulated that an abundance of a cellular miRNA – mir200 – targets the UL122 transcript for 203 

degradation thereby preventing IE86 protein expression also [50]. Thus, the expression of both MIE 204 

products IE72 and IE86 is targeted during latency by miRNAs. Although previous work has suggested 205 

that the cellular miRNAome is modulated by latent infection in vitro [51] no changes in mir200 were 206 

observed suggesting that this miRNA represents a naturally abundant species in progenitor myeloid 207 

cells that contributes to the latent phenotype of HCMV. Again, the presence of a cellular miRNA at 208 

high levels contributing to viral latency resonates with studies in HSV where the neuronal specific 209 

mir-138 species targets the ICP0 gene product to support latency [52]. It remains important that 210 

when identifying functions using cell lines in experimental latency further insight into an 211 

understanding of their precise contribution to latency in the host is highly dependent on the use of 212 

physiologically acceptable and predictive cellular models as well as verification in studies of cells 213 

from natural human infections to begin to appreciate their contribution to CMV latency in vivo.     214 

 215 

 Expression of viral proteins during latency modulates the cellular environment 216 

The regulation of the MIEP during latency involves multi-faceted integration of viral and cellular 217 

functions that act concomitantly to generate a phenotype that promotes latent infection. However, 218 

it is now clear that a discrete set of protein coding transcripts is expressed during latency [29, 32, 34-219 

37]. A number of these gene products are involved in the manipulation of the cellular environment 220 

to re-direct the immune response (e.g. US28 [53] and ORF94 [54]) or hijack cellular signalling 221 

pathways involved in immune recognition (e.g. UL144 and Nf-kB [55]; UL138 and TNFRI [56, 57]) 222 

during lytic infection. In contrast, only the viral interleukin-10 homologue LAvIL10 (UL111.5A) has 223 
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been shown to have a defined role during latent infection (see [58] for review). Many of the 224 

functions of LAvIL10 are analogous to the roles defined for its cellular counterpart and likely 225 

contribute to the immune-suppressive phenotype generated in, and around the microenvironment 226 

of, a latently infected cell in vitro [59-61]. Furthermore, it is hypothesised that LAvIL10 and cIL10 227 

may act in unison to drive a more expansive range of outcomes from providing protection from cell 228 

death stimuli, driving latent gene expression to propagating the unique cellular miRNA landscape 229 

observed in latently infected CD34+ cells [51, 62, 63].    230 

 231 

The repertoire of latent functions was expanded by, perhaps, the most provocative observation in 232 

the recent RNAseq study regarding the detection of IE1 sequences in the naturally latent CD34+ cells 233 

analysed – initially suggesting that the MIE region is active in the cells analysed in this study [33]. The 234 

reported detection of UL123 RNA was discrepant with a number of previous studies that show major 235 

IE gene expression is undetectable in the cells of naturally latent individuals [19, 29, 40, 64]. 236 

Importantly, more recent evidence at least addresses these concerns in part. A protein product 237 

arising from exon 4 of the MIE (IE1ex4) is detectable in CD34+ cells and that the expression of the 238 

coding transcript is under the control of a promoter distinct from the MIEP [65]. It was speculated 239 

that this region was important for maintenance of the viral genome during latency with the IE1ex4 240 

gene product having important tethering functions analogous to those observed with KSHV gene 241 

product LANA [66]. Importantly, these studies also suggested evidence for latent replication (hence 242 

the need for genome maintenance) in their system [65]. The posit of latent replication is at odds 243 

with a number of studies in primary cells and cell lines in vitro that show a reduction in the 244 

frequency of genome positive cells following long term culture and expansion of the cells [49, 67, 245 

68]. Similarly, the low frequency of genome-positive cells in vivo would also suggest that replication 246 

during latency is limited [69]. Possibly, there may be genome replication during latency which, whilst 247 

inefficient, is sufficient to contribute to the maintenance of the latent pool and the maintenance of 248 
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genome positive cells as they transit into the periphery. By analogy with EBV this argument has 249 

merit. EBNA1-dependent replication is clearly recognised as an important contributor to the 250 

maintenance of the EBV latent pool [70] yet the frequency of EBV genome positive B cells of 1:10000 251 

or lower [71]  is consistent with those reported for HCMV [69]. Furthermore, the retention of a 252 

chromatin tethering domain in the IE72 protein that is dispensable for lytic infection may suggest an 253 

important function during latent infection [72]. 254 

 255 

What is not clear how the amino acid sequence of the latent IE1 sequence compares with classical 256 

IE72 although its detection with an exon-4 specific antibody suggests high similarity [65]. This 257 

becomes important when considering the prodigious immune response directed against IE72 [73-75] 258 

which, if also present in the latent IE1, would presumably flag the latent cell to the immune system. 259 

Possibly, the multi-faceted antagonism of the immune response in the micro-environment of the 260 

latent cell [59, 76] would afford some protection from recognition if the VLE epitope [73] was 261 

generated from latent IE1. 262 

 263 

 Viral reactivation – has HCMV perfected an exit strategy? 264 

It is becoming increasingly clear that the virus is directing significant activity towards the 265 

maintenance of viral latency in myeloid progenitor cells. However, the other arm of the conundrum 266 

is the exit from latency and reactivation of the lytic lifecycle. A key trigger of this event is the cellular 267 

differentiation to a differentiated macrophage or dendritic cell [19, 40, 64, 77-80] suggesting that 268 

changes in the cellular environment are promoting the reactivation event (figure 1). At the most 269 

simplistic level, the first event that must likely occur is that the MIEP must transition from a 270 

repressed to an active promoter state for robust lytic IE gene expression to occur. Here it is 271 

important to de-lineate between the control of the MIE products IE72 and IE86 and the identified 272 



 13 

IE1ex4 tethering function identified recently [65] where it is hypothesised that the regulation of the 273 

IE1ex4 is via a cryptic promoter in the coding region of the MIE rather than the MIEP. 274 

 275 

However, we must also consider whether the MIEP is completely silent in latently infected cells – or 276 

rather that transcription is substantially reduced to undetectable levels in our assay systems. This 277 

concept of RNA Polymerase II activity occurring from a ‘repressed’ promoter has been postulated for 278 

cellular promoters repressed in ES cells [81] and RNA Polymerase II binding to the MIE region has 279 

been reported in latently infected cells [65]. In the analysis of ES cells, evidence of transcription did 280 

not result in functional outputs and, similarly, there is no evidence of IE72 and IE86 protein 281 

expression during latency although several transcripts have been identified to arise from this region 282 

in latently infected cells [28, 33, 36] – the expression of which is thought to be independent of 283 

regulation by the MIEP. Whether the MIEP is completely repressed or is exhibiting low level activity 284 

during latency is not definitively known however it is clear  that the activity of the MIEP substantially 285 

higher in terminally differentiated myeloid cells but not their progenitors and this change in activity 286 

is considered a pivotal event for viral reactivation.  287 

 288 

The MIEP is a complex promoter which contains multiple binding sites for both cellular 289 

transcriptional repressors and activators [82]. Evidently, based on studies of the chromatin structure 290 

around the MIEP, the predominant cellular (e.g. YY1/ERF and histone methyltransferases) and viral 291 

(e.g. lnc4.9 and PRC2) activities during latency drive a chromatin signature that is highly repressive 292 

[40, 83, 84] supporting the latent phenotype (figure 2). So the question remains: how does the MIEP 293 

become activated? Although it has been demonstrated that reactivation of HCMV is concomitant 294 

with extensive histone de-methylation and acetylation at the MIEP [40] it does not illuminate the 295 

mechanism that drives the switch in the chromatin phenotype. However, if we reason that the MIEP 296 
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behaves akin to a cellular inflammatory promoter – and, in essence, consider the MIEP as another 297 

genetic element influenced by the same mechanisms that control eukaryotic gene expression – we 298 

can begin to unravel its regulation. Firstly, the MIEP is responsive to a number of inflammatory 299 

stimuli [85-87] and, furthermore, HCMV reactivation and disease is associated with highly 300 

inflammatory environments [78, 88, 89]. Secondly, the reactivation of HCMV IE gene expression is 301 

seen efficiently in dendritic cell types in vitro [40, 77, 87, 90] – a cell type that is a prodigious 302 

producer of inflammatory cytokines following stimulation. In itself this seems a minor link except 303 

when we consider the activation of inflammation requires the de-methylation and subsequent 304 

acetylation of histones bound to these cellular promoters and that this can occur in a mitogen 305 

activated kinase, NF-kB and CREB dependent manner [91]. Our own recent work has illustrated that 306 

the activation of ERK-MAPK signalling in DCs plays an important role in HCMV reactivation [48, 87] 307 

and built on previous studies suggesting that the CREB transcription factor was an important 308 

mediator of viral reactivation [92, 93]. Furthermore, studies using experimentally latent cell lines as 309 

well as clinical data suggest enhanced NF-kB signalling correlates with HCMV reactivation [85, 89, 310 

94]. All these data would be consistent with the hypothesis that the HCMV MIEP is mimicking the 311 

promoters of cell-encoded inflammatory genes.   312 

Figure 2 Chromatin mediated regulation of viral immediate early gene expression during latency.  The MIEP is 313 

bound by methylated histones and additional repressor complexes including HP1 and PRC2. The mechanism of 314 

HP1 recruitment is unknown but likely occurs through a high affinity interaction with histone H3 methylated at 315 

residue lysine 9. The recruitment of PRC2 is directed by the viral lnc4.9 transcript which promotes extensive 316 

histone methylation of lysine residue 27 of histone H3.  Multiple chromatin states could exist where individual 317 

MIEPs are either bound exclusively by HP1 (a) or PRC2 (b), or the MIEP could be regulated by both marks 318 

concomitantly (c). The differing functions of PRC2 in the establishment of repressive chromatin and HP1 in the 319 

long term maintenance of silenced chromatin may point towards specific roles at different times during latent 320 

infection. 321 

 322 
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 An epigenetic platform for signal integration – and induction of viral gene expression 324 

When considering the regulation of gene expression – whether it is eukaryotic or viral – the nature 325 

of the signalling response is a key determinant. There are multiple outcomes associated with any 326 

specific signalling event which, in turn, are dictated by the cellular and intra-cellular phenotype. By 327 

way of example, there are approximately 4,000 CREB responsive genes in the human genome yet 328 

addition of a potential cAMP agonist does not trigger the uniform expression of the said 4,000 genes 329 

[95]. Key to the differences are multiple signalling events acting co-operatively to generate a very 330 

specific output which will be determined by the cellular receptors expressed on specific cell types as 331 

well as the availability of downstream signalling molecules to elicit function [96-98]. Additionally, the 332 

abundance of post-translational modifications on histone proteins in contrast to the very few 333 

outputs available (i.e. gene expression versus no gene expression) hints at the chromatin structure 334 

playing a key role in signal integration and defining the nature of the output in specific 335 

circumstances [99]. Thus critical for the understanding of the impact of any signalling pathway on 336 

gene expression requires an appreciation of the cellular and molecular context in which that 337 

pathway is being activated. 338 

 339 
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 340 

Figure 3 Signal integration is required to trigger viral reactivation. HCMV reactivation has been reported to be 341 

ERK-MAPK dependent in DCs stimulated with IL-6. The targeting of ERK-MAPK activity to the MIEP in DCs likely 342 

involves the activation of multiple pathways to generate the specific output required. Multiple mechanisms 343 

could be responsible including the activation of additional IL-6 responsive pathways or the activation of 344 

additional pathways via concomitant binding of additional ligands. 345 

 346 

Our own work has focused on the role phosphorylation of two key proteins could play in the 347 

reactivation of HCMV by providing a platform for signal integration at the MIEP [48]. In essence, we 348 

proposed that histone phosphorylation was a key event to mediate the switch from a repressed to 349 

an active chromatin form. Importantly, IL-6 stimulation of the ERK-MAPK pathway in DCs does not 350 

promote global histone phosphorylation but, instead, is targeted to CREB-responsive promoters (i.e. 351 

the MIEP) through the activity of mitogen and stress activated kinases [48] (figure 3). The similarities 352 
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with the c-FOS cellular promoter (coincidentally, itself a cellular ‘immediate early’ response gene) 353 

suggest that this is an event associated with ‘rapid response’ promoters [100]. Although these 354 

studies begin to hint at the mechanism involved, the full extent of signal integration required to elicit 355 

this response of the MIEP in DCs remains to be understood. The high density of post-translational 356 

modifications on histones heavily influences the activity of ‘reader’ functions associated with the 357 

regulation of gene expression [99]. The specific recruitment of reader proteins, in turn, enlists the 358 

modifying enzymes necessary for generating the signal and cell type specific responses we observe. 359 

A prescient example is the role of histone H3 serine 10 phosphorylation. This phosphorylation event 360 

de-stabilises the binding of the repressor HP-1 [101, 102] and also promotes recruitment of 14-3-3-361 

triggering the subsequent recruitment of transcription elongation factors [103, 104]. However, the 362 

studies cited only address the reversal of HP-1 mediated silencing. As has recently been shown, the 363 

PRC2 complex also may play a role in the silencing of HCMV gene expression [33, 105]. Thus are 364 

similar mechanisms required to reverse PRC2 activity? This supposes that both modifications (HP-1 365 

and PRC2) are active within the same MIEP (figure 2) which could not be the case based on the 366 

proposed mutual exclusion of lysine 9 and lysine 27 methylation on the same histones at cellular 367 

promoters [106, 107]. If so, then the proposed mechanism for alleviation of HP-1 silencing [48] may 368 

only reactivate a subset of viral MIEPs, i.e. those bound predominantly by HP-1. Alternatively, PRC2 369 

may be regulated by the same mechanisms since, architecturally, histone H3 serine 10 and histone 370 

H3 serine 28 look highly similar [107] expressing the same ARKS domain (alanine; arginine; lysine; 371 

serine).  Indeed, MSKs also phosphorylate histones at serine 28 (which, like its serine 10 counterpart, 372 

is adjacent to a key lysine (27) residue that is tri-methylated) and thus may trigger similar effects as 373 

observed with serine 10 phosphorylation [108]. Contrastingly, recent data also suggests that PRC2 374 

may be an important co-factor for the binding of HP1 to trimethylated H3-K9 arguing for these 375 

marks at least acting co-operatively [109]. Indeed, this final scenario provides the most attractive 376 

explanation for the recruitment of PRC2 to the MIEP by lnc4.9 [33] in light of the known recruitment 377 

of HP1 to the MIEP during latency [40]. 378 
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 379 

An interesting aspect of all such signalling mechanisms is the feedback loops encoded within them. 380 

For instance, following mitogenic stimulation, histone phosphorylation on target promoters is a 381 

transient event declining one hour post stimulation through the concomitant activation of 382 

phosphatases [110]. We note that in our studies of the MIEP during reactivation histone 383 

phosphorylation was more prolonged in comparison [48]. It would be interesting to determine 384 

whether this is just a result of asynchronous induction in a total analysed population or whether 385 

HCMV actively manages the cellular environment to favour sustained activation by a concomitant 386 

down-regulation of the negative feedback loop. During lytic infection, HCMV actively manages the 387 

chromatin landscape on the viral genome [84, 111-114] – largely via the activity of IE72 and IE86 – 388 

and thus it is possible latent functions contribute to a phenotype more conducive for pro-389 

reactivation stimuli. This in itself would be consistent with the common theme that pathogens hijack 390 

signalling pathways by isolating and re-directing the facets that are beneficial away from the non-391 

beneficial aspects. 392 

 393 

However, as it currently stands, the study of higher order chromatin structure and the control of 394 

either viral or cellular gene expression are potentially approaching an impasse. Current techniques 395 

rely on global analyses of cell populations that are fixed in time which, due to the low throughput 396 

nature, can only analyse relatively large time frames. As such, it cannot be determined whether a 397 

number of observations play a functional role or are bystander effects that are essentially passive in 398 

the process. The ability to image this on a single cell scale and watch changes in real time will 399 

massively impact on this. A recent study elegantly demonstrated that RNA Pol II activation is indeed 400 

regulated by histone acetylation [115] suggesting that the study of chromatin dynamics at the single 401 

cell scale is possible. Applying this to study the regulation of the MIEP in real time will substantially 402 

illuminate our understanding of the factors directly regulating viral – and, more broadly, eukaryotic – 403 
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gene expression. However, the application of this approach for studying HCMV will additionally rely 404 

heavily on the future development of new techniques that facilitate the isolation and enrichment of 405 

HCMV genome positive cells – a technical hurdle that has not yet been overcome.  406 

 407 

 Fighting on multiple fronts 408 

An incorrect assumption would be that there is one de facto mechanism required for HCMV 409 

reactivation. This seems unlikely to be the case especially if the concept of a single latency 410 

phenotype is becoming less applicable. The reactivation of HCMV in differentiated myeloid cells has 411 

been reported following the stimulation of multiple progenitor cell types under a variety of 412 

inflammatory conditions [31, 40, 64, 78, 79, 87]. Furthermore, the induction of IE gene expression, 413 

whilst essential for initiating reactivation, does not, by itself, dictate that infectious virus will be 414 

produced. It is highly likely that a number of viral gene products and cellular interactions are 415 

important for driving HCMV reactivation through early and late gene expression and ultimately to 416 

the production of infectious virus. Consistent with this are studies performed on both experimental 417 

and natural latency. In the very first reports studying HCMV latency ex vivo from in vitro 418 

differentiated monocytes both IE and early gene expression was detectable [19]. Similarly, the 419 

transfection of IE proteins into latently infected THP1 cells again resulted in the induction of early 420 

gene expression [20]. However, the recovery of infectious virus was not observed in either system. 421 

Indeed, the first description of the reactivation of infectious virus ex vivo from CD14+ monocytes 422 

was reported using a cytokine cocktail derived from allogeneically stimulated T cells [78]. This 423 

suggested that signalling events associated with both differentiation and inflammation are key to 424 

efficient HCMV reactivation. Arguably, cell differentiation (at least within the myeloid lineage) 425 

remains the major determinant of HCMV reactivation and that inflammation increases the efficacy 426 

of the reactivation phenotype. Indeed, more recent studies suggest that the key inflammatory 427 

mediator IL-6 has multiple effects on HCMV reactivation ranging from increased IE gene expression, 428 
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less abortive reactivation events and, ultimately, more efficient reactivation of infectious progeny  – 429 

in part, by altering the particle to plaque forming unit ratio of the progeny virus [68] as well as 430 

increasing the frequency of IE positive cells that transition into late stage gene expression [87] 431 

during the reactivation process. 432 

 433 

Studies in MCMV raise interesting questions also. The systemic addition of interferon-beta to 434 

chronically infected mice had a dramatic impact on the level of reactivation in the murine model 435 

[116]. Elucidating the precise mechanism of action of systemic interferon is clearly hard to dissect. 436 

Interferon-beta has a direct impact on the replication of both MCMV and HCMV in vitro (for review 437 

see [117, 118]) – as well as many other viruses – and thus the effects observed could be due to a 438 

whole multitude of interferon-induced effects. The authors hypothesised that the well known 439 

interferon induced accumulation of nuclear domain 10 bodies could be a key factor in the observed 440 

phenotype [116]. However, failing a PML KO mouse there was no direct evidence for this phenotype, 441 

which could potentially be a combination of anti-viral effects associated with interferon activity. 442 

Furthermore, we note a recent study of the experimental infection of CD14+ monocytes which 443 

suggested that latent HCMV disabled aspects of the JAK/STAT pathway which would render them 444 

less sensitive to direct effects of interferons if the observations were to be extrapolated to HCMV 445 

[119]. Nevertheless, what the mouse model does inform is that the complex interplay between the 446 

latent cell and the extracellular environment driven by the host will be a key regulator of the latent 447 

phenotype.  448 

 449 

If we consider the transition from viral latency to reactivation analogous to pushing a rock up a hill 450 

then the more factors that favour reactivation will push the rock towards the precipice of infectious 451 

virus production. Countering these effects will be cellular (and viral) responses that are providing 452 
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resistance to progress and, ultimately, it is the dynamic changes in the activity of these processes 453 

which decide the final outcome.  454 

 455 

Concluding remarks 456 

The control of HCMV latency and reactivation remains a complex problem. At a molecular level the 457 

virus establishes a non-lytic infection that provides a cellular reservoir for HCMV. Key to the 458 

establishment of latency is the inhibition of the lytic lifecycle – requiring the repression of viral lytic 459 

gene expression, some form of maintenance of the viral genome – or at least maintenance of the 460 

viral reservoir through constant re-seeding. Although the themes regarding the molecular control 461 

are becoming increasingly understood: e.g. cellular factors are required to repress the MIEP; an 462 

important virion transactivator is sequestered in the cytoplasm; viral functions target the repression 463 

of the MIEP; the virus responds to signalling cues triggered by inflammation and differentiation; the 464 

integration of these themes is not so well understood For instance, what is the cellular factor that 465 

sequesters pp71 in the cytoplasm of CD34+ cells [41]? Furthermore studies of HCMV latency are 466 

often centred on the mechanisms that regulate the MIEP and less emphasis is placed onan 467 

understanding of the precise contribution of latent functions towards the maintenance of the latent 468 

state. For instance, the activity of the UL133-138 locus has been shown to contribute to the 469 

reactivation/dissemination phenotype in the humanised mouse model although the precise 470 

mechanism has yet to be elucidated [120] but is likely to contribute to the lifelong persistence of 471 

HCMV. Also, why is reactivation more efficient in differentiating cell types? – after all the pathways 472 

identified to be important for driving reactivation are also active in undifferentiated cells so what is 473 

it about DCs and macrophages specifically that makes them sites of HCMV reactivation? Finally,  we 474 

are not really any closer to understanding the role of viral or cellular factors important for the 475 

transition from induction of IE gene expression in latency to the reactivation of infectious virus 476 
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except from studies of the late stages of lytic infection which will have at least some overlap with the 477 

mechanisms governing HCMV reactivation.  478 

 479 

It is becoming increasingly important to consider whether a spectrum of latent infections exists. For 480 

instance, different profiles of latent gene expression have been reported depending on the 481 

experimental system employed to identify them [28, 29, 31, 33]. More importantly, the expression 482 

of viral transcripts in natural latency also displays a level of heterogeneity which, again, appears to 483 

be dependent on the haematopoietic cell type analysed [19, 33, 36, 40]. Furthermore, these 484 

analyses always represent population analyses yet it is possible that, as described for the gamma 485 

herpes viruses, that different patterns of latent viral gene expression occur even within these 486 

populations. We noted that in a recent study defining a strategy to remove latently infected cells 487 

through the targeting of a UL138 associated function the data suggest that the elimination of the 488 

HCMV infected cells was never complete [121]. This could of course be due to the efficacy of 489 

vincristine but alternatively, could suggest a latent population with a different transcriptional profile. 490 

Additonally, latent gene expression is predicted to be dictated by the cellular transcriptional milieu 491 

thus if multiple sites of cellular latency exist (i.e. neuronal versus endothelial versus haematopoietic) 492 

then the latent transcriptional profile could be markedly different. This seems highly plausible given 493 

that transcriptional differences are observed within the different cell populations of the 494 

haematopoietic lineage alone.  495 

 496 

As we begin to unravel the complexity of HCMV latency and reactivation, the use of the phrase 497 

‘quiescent infection’ interchangeably with ‘latency’ is increasingly becoming a misnomer that fails to 498 

do justice to the increasingly complex and active regulation of the latent lifecycle of, and by, HCMV. 499 

 500 
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