
Practical Combinatorial Interaction Testing:
Empirical Findings on Efficiency and Early

Fault Detection
Justyna Petke, Myra B. Cohen, Mark Harman, and Shin Yoo

Abstract—Combinatorial interaction testing (CIT) is important because it tests the interactions between the many features and

parameters that make up the configuration space of software systems. Simulated Annealing (SA) and Greedy Algorithms have been

widely used to find CIT test suites. From the literature, there is a widely-held belief that SA is slower, but produces more effective tests

suites than Greedy and that SA cannot scale to higher strength coverage. We evaluated both algorithms on seven real-world subjects

for the well-studied two-way up to the rarely-studied six-way interaction strengths. Our findings present evidence to challenge this

current orthodoxy: real-world constraints allow SA to achieve higher strengths. Furthermore, there was no evidence that Greedy was

less effective (in terms of time to fault revelation) compared to SA; the results for the greedy algorithm are actually slightly superior.

However, the results are critically dependent on the approach adopted to constraint handling. Moreover, we have also evaluated a

genetic algorithm for constrained CIT test suite generation. This is the first time strengths higher than 3 and constraint handling have

been used to evaluate GA. Our results show that GA is competitive only for pairwise testing for subjects with a small number of

constraints.

Index Terms—Combinatorial interaction testing, prioritisation, empirical studies, software testing

Ç

1 INTRODUCTION

IN this paper we present the results of an empirical study
of practical combinatorial interaction testing (CIT). CIT

is increasingly important because of the increasing use of
configurations as a basis for the deployment of systems [1].
For example, software product lines, operating systems and
development environments are all governed by large con-
figuration parameter and feature spaces, for which combi-
natorial interaction testing has proved a useful technique
for uncovering faults.

Two widely used algorithms for CIT are Simulated
Annealing (SA) andGreedy. The previous literature assumes
a trade-off between computational cost of finding CIT test
suites and the fault revealing power of the test suites so-
found when time to run the test suites is considered [2], [3],
[4]. The ‘conventional wisdom’ is that Greedy is fast (but its
test suites are large and therefore less effective at finding
faults quickly). SA, being a meta-heuristic, is generally
believed to be slower to compute the test suite, yet it can pro-
duce smaller test suites that can find faults faster [4].

The strength of a CIT test suite refers to the level of inter-
actions it tests. In pairwise (or two-way) CIT, only inte-
ractions between pairs of configuration choices are tested.

As might be expected, there is evidence that testing at
higher strengths of interaction can reveal faults left uncov-
ered by lower strengths [5]. We investigate interaction
strengths up to six-way, because previous work has shown
that there is little value to be gained from higher strengths
than this [5].

It is widely believed that SA can only cover the lowest
strength (pairwise interaction) in reasonable time; higher
strengths, such as those up to five- and six-way feature
interactions, have been considered infeasibly expensive,
even though they may lead to improved fault revelation [1],
[5]. By contrast, though greedy algorithms can scale to such
higher strengths [2], it is believed that their results are infe-
rior with respect to test suite size (in general the simulated
annealing will produce smaller test suites). This raises two
important and related questions that we wish to investigate
in this paper:

Can we find situations in which meta-heuristic search
algorithms such as Simulated Annealing can scale to
higher interaction strengths?

and, if we can find such cases,

How well does the Greedy approach compare to Simulated
Annealing at higher strengths?

Until recently, much of the CIT literature has assumed an
unconstrained configuration space [1]. This is a question-
able assumption because most real-world CIT applications
reside in constrained problem domains: some interactions
are simply infeasible due to these constraints [6], [7], [8], [9].
Any CIT approach that fails to take account of such con-
straints may produce many test cases that are either
unachievable in practice or which yield expensively mis-
leading results (such as false positives).

� J. Petke, M. Harman, and S. Yoo are with the Computer Science
Department, University College London, London, United Kingdom.
E-mail: {j.petke, mark.harman, shin.yoo}@ucl.ac.uk.

� M.B. Cohen is with the Computer Science & Engineering Department,
University of Nebraska-Lincoln, Lincoln, Nebraska, United States.
E-mail: myra@cse.unl.edu.

Manuscript received 27 May 2014; revised 23 Jan. 2015; accepted 16 Mar.
2015. Date of publication 7 Apr. 2015; date of current version 18 Sept. 2015.
Recommended for acceptance by A. Roychoudhury.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2015.2421279

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 9, SEPTEMBER 2015 901

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

Another type of constraint, often referred to as a soft con-
straint [6] may also have a role to play. Soft constraints are
combinations of options that a tester believes do not need to
be tested together (based either on their knowledge of the
test subject and/or by a static analysis). Catering for such
constraints will not improve test effectiveness, but it may
improve efficiency. Unlike other work, we leverage this
type of constraint as well in this paper.

Furthermore, practical testers are not so much concerned
with finding test suites as with finding an effective prioriti-
sation of a test suite. That is, the order in which the test cases
are applied to the system under test is increasingly impor-
tant, both in general [10] and for CIT [11], [12], [13]. Expect-
ing the tester to simply execute all test cases available is
often impractical because it takes too long. It is therefore
important that CIT should not merely find a set of test cases,
but that it should prioritise them so that faults are revealed
earlier in the testing process.

Many different meta-heuristic techniques have been
developed for CIT, such as simulated annealing [4], genetic
algorithms [14], great deluge [15], tabu search [16] and
hill climbing [17]. Greedy variants include the Automatic
Efficient Test case Generator (AETG) [3], the In Parameter
Order General (IPOG) algorithm [2], and the deterministic
density algorithm to name a few. Among the state-of-the-art
tools are Covering Arrays (CA) by Simulated Annealing
(CASA)1 and Advanced Combinatorial Testing System
(ACTS),2 which uses a greedy algorithm, based on IPOG.
Meta-heuristics usually find smaller test suites than a
greedy approach, however, the latter is considered to be
faster [4]. In this paper we study the Simulated Annealing
approach (as implemented in CASA [4]) and the Greedy
approach (as implemented in ACTS [18]), because these are
two widely used approaches, believed to offer a speed-qual-
ity tradeoff and their associated tools are relatively mature.
In order to conduct a more thorough investigation we have
chosen an additional algorithm for CIT test suite generation
in the presence of constraints. We selected one that uses a
genetic algorithm. For pairwise testing GA has been shown
to be comparable in terms of efficacy and efficiency as SA
approaches [14]. However, there have been only a few
empirical studies that take into account higher-strength CIT
[19] (only three-way, in particular) and none that take con-
straints into account. We reviewed the available tools [19]
and chose the one that provides a method for constraint
handling and is able to generate test suites of up to 3.

We present results from empirical studies of these three
approaches, reporting on the relationship between their
achievement of lower and higher interaction strengths, and
their ability to find faults for the constrained prioritised
interaction problem, both important practical considera-
tions when applying this technique. There has been little
previous work on the relationship between constrained
interaction problems and fault revelation, and on the prob-
lem of ordering test cases for early fault revelation with
respect to constrained higher strength interactions.

This paper addresses this important gap in the literature.
We report on constrained, prioritised, CIT using Simulated
Annealing, Greedy and Genetic Algorithms approaches for
two-way to six-way interaction strengths applied to multi-
ple versions of seven programs from the Software-artifact
Infrastructure Repository (SIR) [20]. Our results extend the
findings of the previous conference version of paper [21],
which considered Simulated Annealing, but neither Greedy
nor Genetic Algorithm, for two-way to five-way interaction
strengths applied to five of the seven subjects studied here.

The findings of our study provide evidence that chal-
lenges some of the assumptions currently prevalent in the
CIT literature. Specifically, our primary findings are:

1) We show that higher-strength CIT (even up to six-
way interaction strength) is achievable for Simulated
Annealing for our real-world subjects, confounding
the ‘conventional wisdom’ that this is infeasible.
This apparently surprising result arises because of
the role played by constraints in reducing computa-
tional effort for simulated annealing.

2) We find that the rate of early fault detection for the
greedy algorithm (using ‘forbidden tuples’ con-
straint handling where needed for scalability) did
not appear to be inferior to that observed for simu-
lated annealing, confounding the belief that there is
a tradeoff between the two approaches.

We also establish the following that will aid CIT testers:

1) We show that separate consideration of single- and
multi-valued parameters leads to significant runtime
improvements for prioritisation and interaction cov-
erage for all three approaches.

2) We show the higher strength CIT is necessary to
achieve better fault revelation in prioritised CIT; our
empirical study reveals that higher strength CIT
reveals more faults than lower strengths. This means
that for comprehensive testing, higher strength inter-
action suites are both desirable (and also feasible,
even for Simulated Annealing).

3) We find that lower strength CIT naturally achieves
some degree of ‘collateral’ higher strength coverage,
and that it also performs no worse in terms of early
fault revelation. This means that we can use lower
strength prioritisation as a cheap way to find the
first fault.

4) We find that the approach to constraint handling has a
pivotal effect on the scalability of the greedy algo-
rithm. Performance can be dramatically improved by
using the enumeration of all tuples forbidden by the
constraints in place of the default constraint handler.
For two subjects studied (GREP and SED), this substitu-
tion for the default constraint handler, reduced the
execution time from over 8 hours to amere 8 seconds.

5) We find that the Genetic Algorithm does not scale to
higher-strength constrained CIT in terms of execu-
tion time, unlike SA and Greedy approaches. Per-
haps further development of such global search
techniques may further address this issue.

The rest of this paper is organised as follows. We first
present Background on combinatorial interaction testing.

1. CASA is available at: cse.unl.edu/~citportal/.
2. ACTS is available by request from: http://csrc.nist.gov/groups/

SNS/acts/documents/comparison-report.html#acts.

902 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 9, SEPTEMBER 2015

Next, we describe our Research Questions and Experimen-
tal Setup. Section 5 presents the Results. Future Work and
Threats to Validity are described in Sections 6 and 7 respec-
tively. We end with Conclusions containing practical advice
for CIT users.

2 BACKGROUND

In this section we present literature on combinatorial testing
as well as notation used throughout the paper.

2.1 Related Work

Combinatorial interaction testing has been used success-
fully as a system level test method [3], [5], [13], [17], [22],
[23], [24], [25], [26]. CIT combines all t-combinations of
parameter inputs or configuration options in a systematic
way so that we know we have tested a measured subset of
input (or configuration) space. Research has shown that we
can achieve high fault detection rates given a small set of
test cases [3], [5], [13], [25].

Integration of constraint handling into a CIT tool is a
non-trivial task. Each constraint can potentially introduce
a large number of invalid configurations. Consider, for
example, a constraint that disallows two parameters to
take particular values. Any extension of such a disallowed
tuple to other parameters will yield an invalid configura-
tion. Furthermore, combinations of constraints may pro-
duce other ones which are not explicitly specified. Grindal
et al. [27] evaluated seven constraint handling methods for
test case selection. Bryce and Colbourn proposed [6] to
avoid disallowed tuples, however, implicit constraints can
cause invalid test cases to still be generated. Kuhn et al.
[18] implemented a forbidden tuples method in their greedy-
based ACTS tool [18], where they derive disallowed inter-
actions from the constraints and use these as a validity
check for each test case generated. The tool also allows the
user to choose a Constraint Satisfaction Problem (CSP)
solver to handle constraints. This type of solver has first
been used for covering array generation by Hnich et al. [9].
In 2007 a Boolean satisfiability (SAT) solver has been intro-
duced to handle constraints in a greedy [18] as well as an
SA-based algorithm [7]. However, only in 2011 improve-
ments introduced by Garvin et al. [4] allowed for efficient
constraint handling in an SA-based algorithm for covering
array generation.

Many of the current research directions into this technique
examine specialised problems such as the addition of con-
straints between parameter values [6], [7], [24], [27], [28], or
re-ordering (prioritising) test suites to improve early coverage
[12], [13], [23], [24], [29]. Other work has studied the impact of
testing at increasing higher strengths (t > 2) [18], [30].

In a recent survey byNie and Leung [1] CIT research is cat-
egorised by a taxonomy to show the areas of study. We have
extracted data from this table for three columns, fault detec-
tion, constraints and prioritisation. We show this in Table 1
and add a reference to one of the papers from that survey (the
surveymay includemore than one paper per name).

At first glance it might appear from Table 1 that there
has been broad coverage of these topics in previous work.
However, this is deceptive since most of these CIT aspects
are studied in isolation. There are no previous studies

that cross the boundaries of prioritisation, constraints and
fault detection.

2.2 Preliminaries

In this section we will give a quick overview of the notation
used throughout the paper. In particular, a Covering Array
is usually represented as follows [33]:

CA
�
N; t; v

k1
1 v

k2
2 . . . vkmm

�
;

where N is the size of the array, t is its strength, sum of
k1; . . . ; km is the number of parameters and each vi stands for
the number of values for each of the ki parameters in turn.

Suppose we want to generate a pairwise interaction test
suite for an instance with three parameters, where the first
and third parameter can take four values and the second
one can only take three values. The problem can then be for-
mulated as: CAðN ; 2; 413141Þ, which is called a model for the
CIT problem.

Furthermore, in order to test all combinations one would
need 4 � 3 � 4 ¼ 48 test cases, pairwise coverage reduces this
number to 16. Additionally, suppose that we have the fol-
lowing constraints: first, only the first value for the first
parameter can be ever combined with values for the other
parameters, and second, the last value for the second param-
eter can never be combined with values for all the other
parameters. Introducing such constraints reduces the size of
the test suite even further to eight test cases. The importance
of constraints is evident even in this small example.3

We differentiate between two types of constraints in
this work: hard and soft, terms first proposed by Bryce and
Colbourn [6]. Hard constraints exclude dependencies that
happen between parameter values. For instance, if turning
on 8-bit arithmetic means that we cannot use a division
function, then these cannot be tested together. Much of the
work on constraints has focused on this type of constraints.
Since the challenge is to construct test suites that are
guaranteed to avoid these combinations, we cannot have
them in our test suites.

Soft constraints, on the other hand, have not, hitherto,
received as much attention [6], [7], [8]. These constraints are
combinations of parameters that we do not need to test

TABLE 1
Overview of Literature on Fault Detection, Prioritisation

and Constraints: Extracted from [1]

Authors Fault detect. Prioritisation Constraints

Bryce and Memon [31] @@ @@ @@
Cohen et al. [3] @@
Cohen et al. [8] @@ @@ @@
Grindal et al. [27] @@
Kuhn et al. [5] @@
Nie et el. [32] @@
Schroeder et al. [26] @@

3. There are, however, cases where a constraint might increase test
suite size. Consider three parameters p1, p2 and p3, taking values 0, 1 or
2 each. One-way interaction test suite will contain three test cases. If we
add a constraint ðp1 6¼ 2 ^ p2 6¼ 2Þ ! p3 ¼ 2, we increase one-way inter-
action test suite size to 4.

PETKE ET AL.: PRACTICAL COMBINATORIAL INTERACTION TESTING: EMPIRICAL FINDINGS ON EFFICIENCY AND EARLY FAULT... 903

together (a tester has decided that combining these parame-
ter values is not needed, but the test will still run if this com-
bination exists).

An example of such a parameter might be combining the
string match function in an empty file. While this might be
excluded because the tester believes it is unlikely to find a
fault, the test case containing this pair still runs.

3 RESEARCH QUESTIONS

In real-world situations, it is often not feasible to test combi-
nations of the input parameters exhaustively. In these situa-
tions, combinatorial interaction testing can help reduce the
size of the test suite. Constraints may rule out certain combi-
nations of value-parameters, thereby reducing the size of
the test suite even further. The extent of this reduction by
constraints motivates our first research question:

RQ1: What is the impact of constraints on the sizes of the
models of covering arrays used for CIT?

Most of the literature and practical applications focus on
pairwise, and sometimes three-way, interaction coverage.
Partially this is due to time inefficiency of the tools avail-
able. Kuhn et al. stated in 2008 that “only a handful of tools
can generate more complex combinations, such as three-
way, four-way, or more (..). The few tools that do generate
tests with interaction strengths higher than two-way may
require several days to generate tests (..) because the gener-
ation process is mathematically complex” [18]. However,
recent work in this area shows a promising progress
towards higher strength interaction coverage [2], [4], [18].
We want to know how difficult it is to generate test suites
that achieve higher-strength interaction coverage when
using a state-of-the-art CA generation tool, and the role
played by constraints. Thus we ask:

RQ2: How efficient is the generation of higher-strength
constrained and unconstrained covering arrays
using state-of-the-art tools?

Though the majority of our study is concerned with
constrained CIT problems, for which we study the character-
istics of both algorithms, we know that the greedy algorithm
can potentially scale to handle unconstrained problems,
unlike the simulated annealing or genetic algorithm app-
roach. Therefore, we compare the greedy algorithm’s execu-
tion times on constrained and unconstrained problems (by
simply dropping the constraints from our subjects to yield
unconstrained versions). This allows us to partially assess the
impact of constraints on scalability.

Greedy [2], [3], [18] and meta-heuristic search [4] are the
two most frequently used approaches for covering array
generation [4]. Both involve a certain degree of randomness.
For instance, simulated annealing and genetic algorithm,
meta-heuristic search techniques, randomly select a trans-
formation, apply it, and compare the new solution to the
previous one to determine which should be retained.
Greedy algorithms are less random, yet they nevertheless
make random choices to break ties. This motivates our next
research question:

RQ3: What is the variance of the sizes of CAs across multi-
ple runs of a CA generation algorithm?

Prioritising test cases according to how many pairs of
parameter-value combinations are already covered (i.e.,
pairwise coverage) has been found to be successful at find-
ing faults quickly [29]. A question arises: “what happens
when we prioritise according to a higher-strength coverage
criterion?”. Note that any t-way interaction also covers
some ðt� iÞ-way interactions. Thus we want to investigate
the relationships between the different types of interaction
coverage:

RQ4: What is the coverage rate of k interactions when pri-
oritising by t-way coverage?
– What is the coverage rate of pairwise interactions

when prioritising by higher-strength coverage?
– What is the coverage rate of t-way interactions

when prioritising by lower-strength coverage?

In other words, we want to know what is the collateral cover-
age of k interactions when prioritising by t-way coverage?

Testers often do not have enough time or resources to
execute all test cases from the given test suite, which is why
test case prioritisation (TCP) techniques are important [10].
The objective of TCP is to order tests in such a way that
maximises the early detection of faults. This motivates our
next research question:

RQ5: How effective are the prioritised test suites at detect-
ing faults early?
– Which strength finds all known faults first?
– Which strength provides the fastest rate of fault

detection?
– Does prioritising by pairwise interactions lead to

faster fault detection rates than when prioritising
by higher-strength interactions?

– Is there a ‘best’ combination when time con-
straints are considered, for example, creating
four-way constrained covering arrays and priori-
tising by pairwise coverage?

Finally, we would like to know, given the range of
approaches available for CIT test suites generation, which is
the best one. Our main aim, thus, is to answer the following
question:

Which approach should be chosen when generating
CIT test suites under constraints?

By answering these research questions, we aim to help
the developers and users of CIT tools in their decisions
about whether to adopt higher strength CIT.

4 EXPERIMENTAL SETUP

In order to answer the questions posed above, we con-
ducted the experiments presented in this section.

4.1 Constrained Testing Models

We have used five C subject programs: FLEX, MAKE, GREP, SED
and GZIP, as well as two Java programs: NANOXML and SIENA.
Their sizes in Uncommented Lines of Code, measured with
cloc

4 are presented in Table 2. These are obtained from the
Software-artifact Infrastructure Repository [20].

4. http://cloc.sourceforge.net

904 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 9, SEPTEMBER 2015

We chose these C subjects in order to compare our results
against the ones obtained previously in the literature (for
example, in the work of Qu et al. and Qu and Cohen [13],
[30]). Moreover, these five C subjects come with test plans
described in the Test Suite Specification Language (TSL)
[34]. In this previous work, the modified versions of the sub-
jects were used that did not contain constraints in the input
models. NANOXML and SIENA were also chosen to include a
subject that was written in another programming language.5

This set of seven subjects includes all those presently avail-
able in the SIR repository for which fault matrices and TSL
specifications are available.

We use the TSL description to extract the relevant param-
eters and values and constraints. In the case of NANOXML the
code was divided into several TSL files. We chose the larg-
est one for our experiments.6 Since TSL is created by a tester,
it includes knowledge of the system that combines both
hard and soft constraints. TSL contains some single-valued
parameters labeled as either error or single. These are param-
eters that should be tested alone. We utilize the existence
of these single-valued parameters in our experiments. An
example is turning on the “help” feature. While this is a
hard constraint, turning “statistics” on and off in FLEX would
be considered a soft constraint. The test developer has
decided that this feature is unlikely to interact with others.
We use the constraints from these TSL files without modifi-
cation for our experiments to mimic what a real user would
do (SIR was developed with this goal in mind).

This approach to evaluation also removes bias that from
our decision making about which constraints to retain or
remove. For the generation of Covering Arrays, we have
only considered parameters having at least two possible
values.7 This was to decrease the computation effort of the
CA generation tool we used.

We encoded all of the constraints as hard constraints
so that they do not appear in our test suite with the aim
of reducing the combinatorial space. In the resultant test
suite, all single-valued parameters (i.e., parameters that
contained only one value that could be combined with

other parameters) were simply added to each of the test
cases for completion.

4.2 CA Generation

We use CASA, ACTS and a genetic algorithm provided by
Shiba et al. [14], which we call GAcit, for the generation of
Covering Arrays. CASA is one of the few freely available
CA generation tools that can handle logical constraints
explicitly specified by the user. It is based on simulated
annealing and is known to generate smaller covering arrays
than the greedy algorithms for constrained CIT models [4].

Another reason to use CASA is to avoid one potential
source of experimental bias. Most of the tools that are based
on a greedy algorithm also perform prioritisation during
the process of generating the covering array. This occurs
because the greedy algorithm always chooses the test case
that contains the largest number of uncovered t-tuples.
However, since our research questions include investigation
of the impact of reduced test suites on the fault detection
rate as well as the impact of various prioritisation criteria,
we use simulated-annealing, an algorithm that does not
implicitly perform prioritisation during its selection phase.

Since greedy approaches are also popular and are consid-
ered to be faster than SA-based methods for CA generation,
we use the ACTS tool as well for comparison. We also use
GAcit to show an alternative method, that has only been
proposed for CIT in the last few years.

4.3 CA Prioritisation

After generating t-way covering arrays, we prioritise each
of these according to multiple t-way prioritisation criteria
(for 2 � t � 6). There are standard prioritisation algorithms
in the literature: Bryce and Memon [31], and Manchester
et al. [35], for example.8

For our experiments, we use a variation of the algorithm
by Bryce and Memon [31]. We note that this differs from the
code-coverage weighted prioritization of Qu et al. [13]. The
original algorithm iterates through test cases and retains the
one test case that covers the largest number of currently
uncovered t-tuples. We also differentiate this from prioriti-
sation during construction (or regeneration) which was
used by Qu et al. [24]. In that work new test suites are gener-
ated each time.

Note that, in the original algorithm, despite ties being
broken at random, the test cases later in the suite have a
higher chance of getting picked. Consider the case when all

TABLE 2
Uncommented Lines of Code of Subjects/Versions

Subjects Ver. 1 Ver. 2 Ver. 3 Ver. 4 Ver. 5 Ver. 6 Ver. 7

FLEX 9,581 10,297 10,319 11,470 10,366 - -
MAKE 14,459 29,011 30,335 35,583 - - -
GREP 9,493 10,017 10,154 10,173 10,102 - -
SED 5,503 9,884 7,161 7,101 13,419 13,434 14,477
GZIP 4,604 5,092 5,102 5,240 5,754 - -
NANOXML 1,894 2,532 3,106 - 3,279 - -
SIENA 2,958 2,959 - - 3,007 - -

5. At the time of subject selection, NANOXML was the only Java pro-
gram that contained TSL specifications as well as respective fault matri-
ces in SIR. SIENA was missing fault matrices which were generated for
the purposes of this paper.

6. Exhaustive test suites for all other TSL files contained up to 14
tests each. Thus we only concentrated on generating CIT test suites for
the largest TSL file.

7. We note here that some values were immediately prohibited by the
constraints. For example, if an ‘error’ constraint is found, there is no need
for checking it’s interactionwith values for all the other parameters.

8. Note that the two algorithms differ only at the pre-processing
stage.

PETKE ET AL.: PRACTICAL COMBINATORIAL INTERACTION TESTING: EMPIRICAL FINDINGS ON EFFICIENCY AND EARLY FAULT... 905

n tests cover the same amount of uncovered t-tuples. The
first test will be picked for the current maximum first. How-
ever, the probability of it being actually picked as the next
test case in our prioritised test suite is 0:5n, since at each tie
breaking point it has to win over the next test case. Hence,
we gather all test cases whose count of currently uncovered
t-tuples is maximal (lines 18-19 in Algorithm 1), and then
pick one at random (line 22). Thus each will be picked with
probability 1=n. In order to implement these modifications
we add an array, holding all the test suites which cover the
same amount of uncovered t-way interactions (line 9). Fur-
thermore, we keep a Boolean mapping from test cases to
t-tuples to mark those currently uncovered t-tuples con-
tained by a given test case. We also record the total number
of currently uncovered t-tuples contained by a given test
case (lines 7, 13). These mappings were updated whenever
a new test case was marked as used in order to avoid con-
stantly re-calculating the number of uncovered t-tuples for
each test case. The pseudocode for the algorithm used is
presented in Algorithm 1.

Algorithm 1. Pseudocode for test suite prioritisation.

1: CA ¼ test suite to prioritize
2: gather all valid t-tuples based on CA
3: mapping ¼ []
4: sums ¼ []
5: for all tests in CA do
6: mapping½test� ¼ [True if t-tuplei in test, else False]
7: sums½test� ¼ sum(mapping½test�)
8: end for
9: bestTest ¼ a test that covers the most unique t-tuples
10: add bestTest to TestSuite
11: selectedTestCount ¼ 1
12: while selectedTestCount < size(CA) do
13: update sums,mapping
14: remove sums½bestTest�,mapping½bestTest�
15: tCountMax ¼max(sums)
16: bestTests ¼ []
17: for all tests in sums do
18: if sums½test� == tCountMax then
19: add test to bestTests
20: end if
21: end for
22: bestTest ¼ random test from bestTests
23: add bestTest to TestSuite
24: selectedTestCount++
25: end while

4.4 Interaction Coverage Metric

To calculate the t-way interaction coverage of a given test
suite we use Algorithm 2. We noticed that all of our subjects
contain single-valued parameters. Sometimes there are
many such single-valued parameters, for example, 69 per-
cent of all the parameters in the case of FLEX. Therefore, we
consider these separately. To generate covering arrays, we
first exclude single-valued parameters from the models.
Once an array is generated, we extend each test case with
single-valued parameters for completeness. In order to cal-
culate interaction coverage rates efficiently we use CAs out-
put by our tools (i.e., without single-valued parameters).

Each test case is evaluated in turn (line 7 in Algorithm 2).
For each t-way tuple in the test case, if it’s not already cov-
ered (line 9), we update the tuple count of covered tuples of
length t (line 11). Next, we extend the tuple count of tuples
of length tþ 1 and above by considering single-valued
parameters (line 13). Finally, to calculate the total number of
valid t-way interactions that should occur in the final test
suite we use the following combinatorial identity (called
Vandermonde’s identity):

mþ n

t

� �
¼

Xt

i¼0

m

i

� � n

t� i

� �
;

where m and n are the numbers of single- and multi-valued
parameters respectively and t is the interaction strength
(line 22).

Algorithm 2. Pseudocode for the rate of t-way coverage.

1: CA ¼ a given test suite (without single-valued parameters)
2: singleparams ¼ number of single-valued parameters
3: multipliers ¼ ½ singleparams

t

� �
; � number of t-way interactions

covered by single-valued parameters
4: counttuples ¼ copyðmultipliersÞ number of t-way interac-

tions covered by the test suite so far
5: coverage ¼ [] number of t-way interactions covered by each

test case
6: tuples ¼ [] covered t-tuples
7: for j ¼ 1 to size(CA) do
8: for all t-tuples in testj do
9: if t-tuple not in tuples then
10: add t-tuple to tuples
11: counttuples½t�+=1
12: for all higherstrength do
13: counttuples½higherstrength� + =

multipliers½higherstrength � t�
14: end for
15: end if
16: end for
17: coverage½testj� = counttuples
18: end for
19: multituples ¼ all valid t-way tuples for a given model

(without single-valued parameters)
20: singletuples ¼ copyðmultipliersÞ all valid t-tuples for single-

valued parameters
21: alltuples ¼ [] all t-tuples to be covered

22: alltuples½t� ¼Pt
i¼0

multituples½t�
i

� �
singletuples½t�

t�i

� �
23: rate ¼ coverage/number of all valid t-tuples * 100%

To compare how quickly each prioritised test suite
achieves the interaction coverage of a specific strength, we
define an Average Percentage of Covering-array Coverage
(APCC) metric following the Average Percentage of Fault
Detection (APFD) metric [36]. Given m interactions to cover
and n test cases, let Ii be the index of the first test case that
covers the interaction I. APCC is defined as follows:

APCC ¼ 1�
Pm

i Ii
nm

þ 1

2n

� �
� 100:

APCC measures the area under curve for the plot of
increasing interaction coverage for a prioritised test suite.
Fig. 1 illustrates the metric using the test suite generated for

906 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 9, SEPTEMBER 2015

MAKE. It takes 14 test cases (i.e., 100 percent of test cases of
the three-way test suite presented) to achieve 100 percent
coverage for three-way interaction coverage. The test suite
achieves 100 percent coverage for both three-way and pair-
wise interaction coverage.

4.5 Fault Detection

Wemeasure the fault detection capability of each prioritised
test suite. We gather all available software versions of the
seven subjects from SIR with seeded faults provided as part
of SIR. In order to avoid experimenter bias and ensure
repeatability we only used the faults provided with each of
the subject tested in SIR. In our study we concentrate on
faults, which are detected by full TSL suites and are not trig-
gered by single or error value assignments (marked as such
in TSL suites; these need not be tested with any other param-
eters). Numbers of faults studied for each subject are pre-
sented in Table 3. For each of the test suites we gathered the
number of faults detected by every i tests. We note that these
faults were hand-seeded and do not necessarily represent
interaction faults. However, in prior research, these have
been shown to be sensitive to the strength of CIT [13], [30].

5 RESULTS

This section presents the results of all the experiments con-
ducted and answers the research questions. We address the
first three questions in the next section.

5.1 CA Generation Under Constraints

For FLEX, MAKE and GREP modified TSL descriptions were
used by Qu et al. and Qu and Cohen [13], [30] in order to
create unconstrained models. We note here that some
parameter values were omitted, while some others were
combined. The reason for these modifications was to
“obtain exhaustive suites that retain close to the original
fault detection ability” [13]. Qu et al. also note that “in a real
test environment an unconstrained TSL would most likely
be prohibitive in size and would not be used” [13]. The sizes
of the covering arrays generated for these modified files are
presented in Table 4. For FLEX and GREP, the numbers for

t ¼ 4 and t ¼ 5 were not provided, most probably due to
time restrictions of the CA generator used.

5.1.1 Efficiency

The constrained CIT models we use are generated directly
from TSL descriptions from SIR and exclude the single-val-
ued parameters. We ran the CASA, ACTS and GAcit tools
20 times on each model on a MacBook Air laptop with an
Intel Core i7 processor, running at 1.7 GHz with 8 GB
of RAM. Figs. 2 and 3 present the runtime information of
generated Covering Arrays. Time limit of 3 hours was set.
Note that the runtime variations are much smaller in the
case of the ACTS tool. Similarly, almost no variation was
recorded for GAcit.

In the case of the genetic algorithm used, with exception
of GREP, all pairwise runs where achieved within 3 seconds
each. Three-way and higher-strength suites were not gener-
ated within 3 hours. Moreover, for SED GAcit was not able to
provide a pairwise test suite within 3 hours, while each
pairwise test suite generation run for GREP took just under
8,000 seconds.

For both CASA and ACTS most runs took fewer than
20 minutes, as shown in Figs. 2 and 3.9 If a different setting
than the default one was used to generate a CA, then these
runs are marked with * or ** in the boxplots. For the three-
way criterion of GREP and SED, CASA was terminated after 3
hours: subsequently, we ran CASA again, with the ‘known
size’ parameter set to the best result obtained within 3 hours
in these two cases. In case of SED and six-way criterion,
CASA run into out-of-memory error without producing an
initial array. ACTS has not produced a result for SED and
GREP and six-way criterion within the 3 hour time limit, thus
we changed the default settings to get the covering arrays.

We changed the constraint handling method to
‘forbidden tuples’ and obtained the arrays within 8 seconds
each. Such fast runtimes are quite surprising, since this
constraint handling method enumerates all forbidden com-
binations. (Similar method is used in GAcit). The number of

Fig. 1. Interaction coverage of three-way covering array for MAKE priori-
tised by pairwise coverage (obtained with CASA).

TABLE 3
Number of Faults Studied for Each Subject

FLEX MAKE GREP SED GZIP NANOXML SIENA

50 2 12 21 5 16 4

TABLE 4
Covering Array Sizes for Modified Unconstrained CIT

Models [13], [30]

CIT Specification Size
t ¼ 2

Size
t ¼ 3

Size
t ¼ 4

Size
t ¼ 5

FLEX

CAðN ; t; 243116161Þ 96 288 NA NA
GREP

CAðN ; t; 413121312112141Þ 48 192 NA NA
MAKE

CAðN ; t; 312251322141Þ 20 60 180 540

9. In case of FLEX and six-way criterion one run exceeded the 3 hour
limit, thus we excluded it from the boxplot.

PETKE ET AL.: PRACTICAL COMBINATORIAL INTERACTION TESTING: EMPIRICAL FINDINGS ON EFFICIENCY AND EARLY FAULT... 907

disallowed interactions increases with the number of con-
straints, making enumeration effort more time consuming
and more difficult due to interactions between the con-
straints. ACTS uses a solver for Constraint Satisfaction Prob-
lems as its default for constraint handling. However, the
experiments presented in this paper show that this might
not be the most efficient method.

5.1.2 Efficacy

The sizes of the smallest constrained CAswe generated using
CASA, ACTS and GAcit are presented in Tables 5 and 6. In
the case of GREP and SED for t � 4, only the numbers of unique
rows are reported in Table 5. Sizes denotedwith * and **were
not obtained using default tool settings. The tables also
include the number of tests in the original exhaustive TSL
test suite from SIR. Tables 4 and 5 provide an answer to RQ1:
constraints can reduce the size of CITmodels significantly.

Each test suite among the 20 runs of ACTS had the same
size with no variation in test cases. Thus, in contrast to
CASA and GAcit (for which maximum size variation was
4), ACTS produces deterministic results. However, ACTS
test suite sizes are in almost all cases bigger than in the case
of CASA and GAcit, as shown in Table 5. Minimal results
from CASA are shown in Table 5, while size variations in

Fig. 4. Note that the ACTS tool produced a smaller test suite
for GREP and four-way coverage. Since in that case CASA
actually produced duplicate test cases (which were later
removed), we suspect that an SA algorithm that prevents
duplicates would have produced a test suite at least as small
as the one generated by ACTS.

Furthermore, minimal test suites in Table 5 differ from
the ones presented in our earlier work [21], which poses the
question: how many times should CASA be run to obtain
the smallest test suite or one whose size is small enough?

We present the CIT models for the original TSL files from
SIR with all the constraints and parameter order ignored in
Table 7.

Results presented in this section provide strong evi-
dence that constraints play an important part in the effi-
ciency of covering array generation. At the modelling
stage, constraints allow for certain values to be excluded
from CIT because, for instance, these correspond to error
states or cases that do not require further interaction (e.g.
printing the ‘help’ message).

5.1.3 Test Suite Reduction

Excluding single-valued parameters allows further model
reduction without compromising the test suite. These can

Fig. 2. All CA Generation Runtimes (CASA) with 20 min zoom.

908 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 9, SEPTEMBER 2015

be added to each row of the CA generated in the post-proc-
essing stage, relieving the tool of the need to consider tuples
involving such single-valued parameters. This in turn
improves CIT test suite generation efficiency. In case of the
constrainedmodel for FLEX, for instance, 20 out of 29 parame-
ters are single-valued. There are almost 39 thousand six-way
combinations between just the 20 parameters, not to mention
six-way tuples that involve also the other nine parameters.
Even though these are already covered by the first test case
generated, a CIT tool would still count these tuples to estab-
lish coverage. We used the ACTS tool to generate a six-way
interaction test suite for two FLEX models: one that contained
the single-valued parameters and one that didn’t. Exclusion
of single-valued parameters led to five times speedup.More-
over, the number of tuples covered in the resultant test suites
dropped from over 2.5 million to just under eight thousand.
Therefore, it is important for CIT testers to consider single-
andmulti-valued parameters separately in the inputmodel.

The significance of these reductions can be seen in
Table 5. The number of test cases generated decreases sig-
nificantly when compared to the full TSL suite. In the case
of MAKE, for instance, five-way coverage is achieved with
only 64 tests (using CASA), while the exhaustive test suite
contains 793 test cases.

5.1.4 Other Considerations

With regards to the generation effort of CASA, in some
cases the variation between runtimes has been significant.
This may stem from the different seeds used for the stochas-
tic simulated annealing. At each run, the algorithm starts
with a randomly generated solution, which might be either
very close to or very far from the actual solution. CASA
determines the size of CAs in a stochastic way: it is possible
that it gets ‘stuck’ and works harder on some problems
because of a bad starting point. We also note that the biggest
runtime variation occurred in the case of MAKE and FLEX (see
Fig. 2), which have one of the least constrained CIT models.
In fact, there is only one constraint between two (or more)
parameters in the TSL model for MAKE. CASA was engi-
neered to work well on constrained CIT models, which
might explain this behaviour.

It is also worth noting that in cases where CASA
times out it is possible to restart the solver with fixed
test suite size. This is not possible for ACTS. Thus even
though the latter might generally be faster, when given
restrictive time constraints an SA-algorithm might still
be a better choice. However, ACTS did not generate
a test suite for GREP and SED for interaction strength 6

Fig. 3. All CA Generation Runtimes (ACTS) with 20 min zoom.

PETKE ET AL.: PRACTICAL COMBINATORIAL INTERACTION TESTING: EMPIRICAL FINDINGS ON EFFICIENCY AND EARLY FAULT... 909

within 3 hours. On the other hand, CASA failed to pro-
duce an initial six-way interaction test suite for SED due
to an out-of-memory error.

With regards to the generation effort of GAcit, even
though it produces comparable sizes to CASA, its the least
efficient of the tools used. Given that GREP and SED CIT

Fig. 4. All CA size variations (CASA) with zoom < 210.

TABLE 5
Constrained Covering Array Sizes for the CASA, ACTS and GAcit Tools (Minimal Out of 20 Runs)

CIT specification Size

t ¼ 2

Size

t ¼ 3

Size

t ¼ 4

Size

t ¼ 5

Size

t ¼ 6

TSL

full

CASA ACTS GAcit CASA ACTS GAcit CASA ACTS GAcit CASA ACTS GAcit CASA ACTS GAcit

FLEX

CAðN ; t; 22322451Þ 26 27 26 56 66 - 111 130 - 180 238 - 310 366 - 525

MAKE

CAðN ; t; 210Þ 7 9 7 14 19 - 30 43 - 64 91 - 137 185 - 793

GREP

CAðN ; t; 3241618141312151Þ 43 46 44 148* 153 - 347’ 298 - 436’ 436 - 438’ 438** - 470

SED

CAðN ; t; 246110121412231Þ 58 58 - 170* 170 - 324’ 324 - 324’ 324 - Err 324** - 360

GZIP

CAðN ; t; 21331Þ 18 21 18 45 68 - 72 108 - 144 144 - 144 144 - 214

NANOXML

CAðN ; t; 254121Þ 8 8 8 20 24 - 32 32 - 64 64 - 64 64 - 85

SIENA

CAðN ; t; 314131514233Þ 20 22 20 70 83 - 205 216 - 436 428 - 518 516 - 567

Best results are marked in bold. ’Denotes sizes after duplicates were removed. *Denotes CAs obtained by first running CASA for 3 hours and then taking the best
result as input for the next run. Err denotes out-of-memory error. CAs marked with** were obtained by using the ‘forbidden tuples’ setting of ACTS for constraint
handing. -denotes runs of GAcit which did not produce a valid CA within 3 hours.

910 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 9, SEPTEMBER 2015

models contain the largest number of constraints, we might
conclude that current GA-based tools have an inefficient
way of dealing with constrained CIT. Moreover, generalis-
ing to higher-strength also leaves room for improvement.

In conclusion, the state-of-the-art CA generation tools
can cope with higher strength CA generation under con-
straints (RQ2). The sizes of generated test suites by ACTS
are comparable with CASA producing the best results for
strengths five and six for five out of seven subjects studied.
Unlike execution time, we observe little variance in CA sizes
between the different runs of CASA (Fig. 4), providing an
answer to RQ3. Furthermore, genetic algorithm’s perfor-
mance is far worse than the two more popular techniques,
though competitive for pairwise in five cases. These observa-
tions provide supporting evidence for the best practice, which is to

perform a few runs of an SA-based tool with predetermined time-
out and then to select the smallest CA generated. If one is using
Greedy approach, then one run is enough, however suite size is
often bigger than that produced with SA.

5.2 Prioritisation and Interaction Coverage

This section addresses RQ4. Following the best practice out-
lined in Section 5.1, we chose 34 smallest Covering Arrays,
out of the CAs we generated using CASA,10 and 35 Cover-
ing Arrays, generated using ACTS, and six Covering
Arrays, generated using GAcit11 for the seven subjects (FLEX,
MAKE, GREP, SED, GZIP, NANOXML and SIENA) and for t-way inter-
action coverage criteria (2 � t � 6). Note that these only
contain multi-value parameters (single-valued parameters
having been removed). Subsequently, we ordered each of
these according to pairwise, three-way, four-way, five-way
and six-way coverage using the greedy algorithm presented
in Algorithm 1. This produces 375 CAs.

Excluding single-valued parameters also allows signifi-
cant speed-up for prioritisation. For example, 20 out of 29
parameters for FLEX are single-valued. We report, in Table 8,
the runtimes of Algorithm 1 for CIT models of FLEX with and
without the single-valued parameters.

Prioritising the same CA according to interaction cover-
age for different strengths produces significantly different
permutations of test cases. Table 9 shows the permutations
of the pairwise CA (generated using CASA) of MAKE accord-
ing to different strength criteria.

Tables 10, 11 and 12 report the interaction coverage
achieved by each of the 75 unprioritised CAs. For each CA
generated for t-way strength, we measure the interaction
coverage for t0-way strength (2 � t0 � 6). A t-way strength
CA, by definition, achieves 100 percent interaction coverage
for strengths lower than t (therefore we omit these criteria
from Tables 10, 11 and 12).

TABLE 7
Constrained and Unconstrained CIT Models

Constrained Unconstrained

FLEX (32 TSL constraints)

CAðN; t; 263251Þ CAðN; t; 2233452Þ
9 parameters (30%) 29 parameters (100%)

MAKE (28 TSL constraints)

CAðN; t; 210Þ CAðN; t; 21434425161Þ
10 parameters (45‘%) 22 parameters (100%)

GREP (58 TSL constraints)

CAðN; t; 213342516181Þ CAðN; t; 142133415171101131211Þ
9 parameters (64%) 14 parameters (100%)

SED (58 TSL constraints)
CAðN; t; 27314161101Þ CAðN; t; 11273143536182101Þ
11 parameters (58%) 19 parameters (100%)

GZIP (69 TSL constraints)

CAðN; t; 21331Þ CAðN; t; 142838425161341Þ
14 parameters (56%) 25 parameters (100%)

NANOXML (26 TSL constraints)

CAðN; t; 2641Þ CAðN; t; 12211364161Þ
7 parameters (33%) 21 parameters (100%)

SIENA (62 TSL constraints)

CAðN; t; 314131514233Þ CAðN; t; 41812181715181131819131Þ
9 parameters (82%) 11 parameters (100%)

TABLE 6
Ratios of Full Test Suite Sizes for Covering Arrays Generated Using the CASA, ACTS and GAcit Tools (Minimal Out of 20 Runs)

CIT specification Size

t ¼ 2

Size

t ¼ 3

Size

t ¼ 4

Size

t ¼ 5

Size

t ¼ 6

TSL

full

CASA ACTS GAcit CASA ACTS GAcit CASA ACTS GAcit CASA ACTS GAcit CASA ACTS GAcit

FLEX

CAðN ; t; 22322451Þ 0.05 0.05 0.05 0.11 0.13 - 0.21 0.25 - 0.34 0.45 - 0.59 0.70 - 1

MAKE

CAðN ; t; 210Þ 0.01 0.01 0.01 0.02 0.02 - 0.04 0.05 - 0.08 0.11 - 0.17 0.23 - 1

GREP

CAðN ; t; 3241618141312151Þ 0.09 0.10 0.09 0.31* 0.33 - 0.74’ 0.63 - 0.93’ 0.93 - 0.93’ 0.93** - 1

SED

CAðN ; t; 246110121412231Þ 0.16 0.16 - 0.47* 0.47 - 0.90’ 0.90 - 0.90’ 0.90 - Err 0.90** - 1

GZIP

CAðN ; t; 21331Þ 0.08 0.10 0.08 0.21 0.32 - 0.34 0.50 - 0.67 0.67 - 0.67 0.67 - 1

NANOXML

CAðN ; t; 254121Þ 0.09 0.09 0.09 0.24 0.28 - 0.38 0.38 - 0.75 0.75 - 0.75 0.75 - 1

SIENA

CAðN ; t; 314131514233Þ 0.04 0.04 0.04 0.12 0.15 - 0.36 0.38 - 0.77 0.75 - 0.91 0.91 - 1

Best results are marked in bold. ’denotes sizes after duplicates were removed. *Denotes CAs obtained by first running CASA for 3 hours and then taking the best
result as input for the next run. Err denotes out-of-memory error. CAs marked with** were obtained by using the ‘forbidden tuples’ setting of ACTS for constraint
handing. -Denotes runs of GAcit which did not produce a valid CA within 3 hours.

10. Since CASA did not produce a result when applied to SED and
six-way criterion due to an out-of-memory error.

11. For SED GAcit was not able to provide a pairwise test suite within
the 3 hour time limit.

PETKE ET AL.: PRACTICAL COMBINATORIAL INTERACTION TESTING: EMPIRICAL FINDINGS ON EFFICIENCY AND EARLY FAULT... 911

For all subject programs but SIENA, pairwise CAs achieve
at least 59 percent collateral five-way interaction coverage
and at least 47 percent collateral six-way interaction cover-
age. This provides an answer to the top level RQ4. Note
that, for our coverage calculation, single-valued parameters

TABLE 8
Runtimes of the Prioritisation Algorithm on Two CIT

Models of FLEX

Pairwise CA for FLEX

(26 Test Cases)
Prior.

Strength
Prior.

Time (sec.)

Without single-valued params. t ¼ 2 0.036

With single-valued params. t ¼ 2 0.213

Without single-valued params. t ¼ 3 0.081

With single-valued params. t ¼ 3 17.926

Without single-valued params. t ¼ 4 0.198

With single-valued params. t ¼ 4 986.430

Without single-valued params. t ¼ 5 0.248

With single-valued params. t ¼ 5 >20 min

Without single-valued params. t ¼ 6 0.149

With single-valued params. t ¼ 6 >20 min

TABLE 9
Permutations of the Test Suite for MAKE Which

Achieves Pairwise Interaction Coverage

MAKE 2-way CA

t-way Prioritisation Permutation

t ¼ 2 T3; T6; T0; T1; T4; T5; T2

t ¼ 3 T5; T3; T2; T0; T1; T4; T6

t ¼ 4 T3; T5; T2; T0; T1; T4; T6

t ¼ 5 T6; T3; T0; T1; T4; T5; T2

t ¼ 6 T0; T6; T3; T1; T5; T4; T2

TABLE 10
Interaction Coverage Results for CAs Generated by CASA

Subjects Gen. Size Cov. for Strength Subjects Gen. Size Cov. for Strength

Crit. 2 3 4 5 6 Crit. 2 3 4 5 6

flex 2 26 - 98.59 95.55 91.13 85.68 sed 2 58 - 92.24 82.01 71.75 62.34

3 56 - - 99.58 98.42 96.37 3 170 - - 98.88 96.56 93.26

4 111 - - - 99.94 99.71 4 324 - - - 100.00 100.00

5 180 - - - - 99.99 5 324 - - - - 100.00

6 310 - - - - - 6 - - - - - -

make 2 7 - 94.37 83.98 71.27 58.33 gzip 2 18 - 97.56 93.00 87.09 80.51

3 14 - - 97.25 90.76 81.22 3 45 - - 99.61 98.59 96.86

4 30 - - - 98.90 95.65 4 72 - - - 99.95 99.76

5 64 - - - - 99.65 5 144 - - - - 100.00

6 137 - - - - - 6 144 - - - - -

grep 2 43 - 88.74 74.13 60.03 47.79 nanoxml 2 8 - 97.60 92.90 86.62 79.46

3 148 - - 97.45 92.38 85.52 3 20 - - 99.64 98.63 96.86

4 347 - - - 99.67 98.79 4 32 - - - 99.95 99.75

5 436 - - - - 100.00 5 64 - - - - 100.00

6 438 - - - - - 6 64 - - - - -

siena 2 20 - 76.99 53.41 35.57 23.46 5 436 - - - - 99.59

3 70 - - 90.40 75.13 58.90 6 518 - - - - -

4 205 - - - 97.15 90.54

TABLE 11
Interaction Coverage Results for CAs Generated by ACTS

Subjects Gen. Size Cov. for Strength Subjects Gen. Size Cov. for Strength

Crit. 2 3 4 5 6 Crit. 2 3 4 5 6

flex 2 27 - 98.46 95.23 90.61 85.01 sed 2 58 - 92.59 82.61 72.41 62.92

3 66 - - 99.70 98.84 97.26 3 170 - - 98.94 96.73 93.59

4 130 - - - 99.94 99.74 4 324 - - - 100.00 100.00

5 238 - - - - 99.99 5 324 - - - - 100.00

6 366 - - - - - 6 324 - - - - -

make 2 9 - 95.36 86.47 75.14 63.12 gzip 2 21 - 97.62 93.12 87.25 80.66

3 19 - - 98.32 93.83 86.52 3 68 - - 99.76 99.11 97.98

4 43 - - - 99.42 97.46 4 108 - - - 99.97 99.88

5 91 - - - - 99.81 5 144 - - - - 100.00

6 185 - - - - - 6 144 - - - - -

grep 2 46 - 89.09 74.86 61.04 48.97 nanoxml 2 8 - 97.71 93.21 87.15 80.20

3 153 - - 97.40 92.31 85.48 3 24 - - 99.69 98.85 97.34

4 298 - - - 99.55 98.32 4 32 - - - 99.95 99.75

5 436 - - - - 100.00 5 64 - - - - 100.00

6 438 - - - - - 6 64 - - - - -

siena 2 22 - 78.03 55.23 37.57 25.22 5 428 - - - - 99.56

3 83 - - 91.97 78.50 63.41 6 516 - - - - -

4 216 - - - 97.54 91.68

912 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 9, SEPTEMBER 2015

need to be added back to the CAs in order to produce com-
plete test suites. Interestingly, the lowest rates of coverage
for pairwise CAs occurred for MAKE, and GREP and SIENA,
which are the least and two of the most constrained subjects,
respectively.

To answer the subquestions of RQ4 on prioritisation,
we prioritised each of the 75 CAs according to five different
prioritisation criteria (two-, three-, four-, five- and six-way
interaction coverage), resulting in 375 prioritised CAs. The
results12 from the prioritisation are aggregated using APCC
(defined in Section 4.4) in Tables 13, 14 and 15.

The variation in APCC between the different strengths
of prioritisation criteria is observed to have little effect. It
caused up to 6:82 percent variation. Strength of covering
arrays has no impact on this variation. Thus no prioritisa-
tion criterion is clearly better than another. Furthermore,
the choice of CA generation tool had little influence on the
APCC values. Since CASA produces smaller test suites,
one might argue that t-way interactions should be covered
more quickly. However, this is not always the case. Cover-
ing arrays generated by ACTS achieved up to 8.34 percent
faster coverage (in the case of MAKE and three-way genera-
tion criterion: 52.72 percent versus 61.06 percent), while
CASA achieved up to 3.18 percent faster coverage than
ACTS (in the case of NANOXML and pairwise generation cri-
terion: 64.64 percent versus 61.46 percent), as shown in
Tables 13 and 14. In 590 cases CAs generated using ACTS
produced higher APCC values, while CAs generated using
CASA produced higher APCC values in 231 cases. More-
over, since higher-strength covering arrays contain more
test cases, they cover more t-way interactions for larger t,
as shown in Fig. 5.

This provides answers to the two subquestions in RQ4: it
seems that there is no clear advantage to be gained by pri-
oritising by interactions of higher/lower strength. Note that
whenever the next test case adds a new three-way interac-
tion to the test suite, it does not necessarily mean that a new
pairwise interaction has been added.

However, whenever a new two-way interaction is added,
then automatically new three-way, four-way, five-way and
six-way interactions are covered. Therefore, in terms of
interaction coverage, prioritising by the lowest strength (the
pairwise interaction criterion) will often prove to be suffi-
cient, as our results confirm. However, a further question
arises as to whether the same observation will hold for fault
detection rates. This is the question to which we turn in the
next section.

5.3 Fault Detection

This section addresses RQ5. Tables 16, 17 and 18 present the
percentage of detected faults after 25, 50, 75, and 100 percent
of each test suite is executed, aggregated over all versions of
subject programs. With FLEX, GREP, SED and NANOXML, CAs
with higher generation strength do detect more faults when
executed in their entirety. In all cases, the number of faults
detected by test cases assigning values to at least two
parameters was found to be identical in the case of t-way
covering arrays and full TSL test suites provided in SIR.

Thus, we achieve the same fault detection by using a
smaller number of tests. For FLEX, this was achieved with
four-way covering arrays (obtained with ACTS), for MAKE,

TABLE 12
Interaction Coverage Results for CAs Generated by GAcit

Subjects Gen. Size Cov. for Strength Subjects Gen. Size Cov. for Strength

Crit. 2 3 4 5 6 Crit. 2 3 4 5 6

flex 2 26 - 98.51 95.35 90.79 85.21 gzip 2 18 - 97.59 93.09 87.25 80.74
make 2 7 - 94.56 84.40 71.82 58.90 nanoxml 2 8 - 97.66 93.04 86.82 79.70
grep 2 44 - 88.48 73.72 59.62 47.49 siena 2 20 - 76.59 53.03 35.38 23.42

Fig. 5. Comparing APCC for pairwise and six-way CAs for MAKE (gener-
ated with ACTS).

12. The complete data and all APCC plots are available at the com-
panion webpage: http://www0.cs.ucl.ac.uk/staff/J.Petke/cittse/
html/index.html.

PETKE ET AL.: PRACTICAL COMBINATORIAL INTERACTION TESTING: EMPIRICAL FINDINGS ON EFFICIENCY AND EARLY FAULT... 913

TABLE 13
APCC Values for CAs Generated by CASA

914 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 9, SEPTEMBER 2015

TABLE 14
APCC Values for CAs Generated by ACTS

PETKE ET AL.: PRACTICAL COMBINATORIAL INTERACTION TESTING: EMPIRICAL FINDINGS ON EFFICIENCY AND EARLY FAULT... 915

GZIP and SIENA we just needed pairwise coverage; for GREP,
three-way coverage; for NANOXML, three-way as well
(obtained with ACTS). For SED it was sufficient to generate a
four-way covering array to detect the same faults as the
full TSL suite. In all cases pairwise coverage achieves at
least 75 percent fault coverage.

Furthermore, all prioritisation strategies achieved simi-
lar fault detection rates. In 85.29 percent (90 percent for
Java subjects only) of cases in Table 16 and 77.14 percent
(75 percent for Java subjects only) of cases in Table 17,
covering arrays ordered by pairwise criterion achieve best
fault detection rates in comparison to higher-strength pri-
oritisation criteria. Overall, the five-way criterion is the
best producing best results in 85.29 percent of cases for
covering arrays generated using CASA and in 85.71 per-
cent of cases for covering arrays generated using ACTS.
However, all prioritisation strategies produce best fault
detection rates in at least 77.14 percent of cases presented
in Tables 16 and 17.

Partially answering RQ5, we have found no clear consis-
tency between the different prioritisation strategies. This
might be partially due to the small number of faults avail-
able (up to 16 involving multi-valued parameters). How-
ever, pairwise coverage scaled well in comparison to
higher-strength coverage prioritisation criteria.

Since higher strength CAs contain a larger number of test
cases, comparing fault detection rates against percentages
of test suite executed is not fair for lower strength covering
arrays. To address this issue, Tables 19, 20 and 21 present
the fault detection rate information against actual numbers
of test cases executed, allowing direct comparison over all
CAs: the tables show the percentage of detected faults after
multiples of 10 test case executions (CAs smaller than the
given number of executions are marked with -).

In 58.71 percent (56.10 percent for Java subjects only) of
cases, CAs generated by CASA and ordered by the pairwise
criterion achieve best fault detection rates. For CAs gener-
ated by ACTS, the pairwise strategy is the best, achieving
best fault detection rates in 68.05 percent (72.09 percent for
Java subjects only) cases. The six-way prioritisation criterion
is slightly better for CAs generated using CASA, producing
best fault detection rates in 72.90 percent of cases. However,
all prioritisation strategies produce best fault detection rates
in at least 58.06 percent of cases.

Moreover, pairwise CAs are no worse at early fault
detection than higher-strength CAs. In 43 percent of cases
presented in Tables 19 and 20, at least one pairwise ordered
CA produces the best fault detection rate among all cover-
ing arrays for a given subject.

These results provide a mixed response to the remainder
of RQ5: there is no dominant prioritisation criterion with
respect to fault detection rate after a specific number of test
executions; lower strength CAs produce fault detection
rates comparable to those of higher strengths.

This suggests the following recommendation for best
practice in prioritised combinatorial interaction testing:
given sufficient time and resources for testing, higher strength
CAs under constraints are feasible and detect more faults. How-
ever, with limited time, lower strength CAs still provide a reason-
able fault detection rate.

When comparing CASA and ACTS covering array gener-
ation tools, there is no clear winner. GAcit achieves similar
results. Analysing data in Tables 16 and 17 shows that, in
121 cases, CAs generated by CASA produce higher fault
detection rates than CAs generated by ACTS, while in
129 cases the opposite is true. Test suites generated by
CASA are sometimes better in terms of fault detection than
the ones generated by ACTS, as is in the case of pairwise
and three-way test suites for FLEX, where ACTS-generated
test suites cover 92 and 96 percent of six-way interactions,
while CASA-generated test suites cover 94 and 98 percent
six-way interactions, respectively. However, for example,
ACTS’s four-way test suites for FLEX detect more faults than
CASA—100 percent versus 96 percent (see Tables 16 and
17). Furthermore, previously generated minimal test suites
for FLEX, shown in our previous work [21], cover more faults.
Hence, two question arise: how many times should CASA
be run? and which test suites should be chosen to increase
the probability of high fault detection rates?

5.4 Greedy Scalability on Unconstrained Problems

In this section we address RQ2 for unconstrained CIT.
Table 22 presents the results that compare the executions
times for the greedy algorithm on constrained and uncon-
strained CIT. As we can see, the worst case execution time
is for six-way interaction testing of GZIP, for which the execu-
tion time is about 8 minutes (486.390 seconds in Table 22).
Though this is considerably slower than the timings for

TABLE 15
APCC Values for CAs Generated by GAcit

916 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 9, SEPTEMBER 2015

TABLE 16
Percentage of Detected Faults for All Versions of Subjects Used (CASA)

PETKE ET AL.: PRACTICAL COMBINATORIAL INTERACTION TESTING: EMPIRICAL FINDINGS ON EFFICIENCY AND EARLY FAULT... 917

TABLE 17
Percentage of Detected Faults for All Versions of Subjects Used (ACTS)

918 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 9, SEPTEMBER 2015

constrained problems (all of which terminated in under one
second), it is by no means infeasible. Moreover, runtimes
for unconstrained and constrained CIT models for SIENA, in
contrast to other subjects, are comparable. We note that size
reduction (in terms of the number of parameters) due to
constraints for this subject is the lowest, as shown in Table 7.

The ‘forbidden tuples’ constraint handling option turned
out to be efficient, suggesting that majority of time spent by
ACTS on constrained CIT problems was devoted to con-
straint satisfaction. Therefore, it is not surprising that ACTS
remains as reasonably scalable on unconstrained problems
as it is on constrained problems (by suitable deployment of
the ‘forbidden tuples’ constraint handling procedure).

Table 22 also reveals the considerable influence of the
constraints on the overall CIT test process. While the greedy
algorithm is feasible for unconstrained problems, it produ-
ces between one and three orders of magnitude more test
cases for unconstrained CIT problems. This further under-
scores the importance of constraints, suggesting that future
work on CIT should explore ways of increasing the amount
of constraint information available to the CIT algorithm.
One way to do this would be through the exploration of soft
constraints, which have hitherto been less widely studied in
the CIT literature.

5.5 Greedy vs SA vs GA

Overall, we observed little difference between test suites
generated by CASA and ACTS in terms of efficiency, t-way
coverage and fault detection rates. GAcit was significantly
worse than the other two approaches. Greedily generated
test suites are usually bigger (and generated in a shorter
amount of time) than those generated by both CASA and
GAcit. Therefore, they cover more t-way interactions. How-
ever, they do not always discover faults as quickly as CASA
does when the test suite is prioritised.

6 FUTURE WORK

Since SA and Greedy algorithms produce good, small test
suites, a question arises: which test suites are the best in
terms of coverage and fault detection rates? Moreover, is
there a way of making an SA-based CIT tool produce deter-
ministic results? Determinism is important in the industry.
For example, one might want to extend an existing test suite

to cover all t-way interactions when a new component is
added to the system. Seeding can be used and a test suite
built around the existing tests, or incremental approaches
may be in order [37].

Moreover, further investigation has shown that the effi-
ciency of the tools used highly relies on constraint handling.
Constraint handling in ACTS is much faster on our subjects
when the ‘forbidden tuples’ constraint handling technique
is used (that is a list of interactions that cannot occur
together is generated). The default method, that is, using a
CSP solver (a constraint solver for Constraint Satisfaction
Problems, specialising in various types of constraints) pro-
vides substantial overhead. For GREP result for six-way was
not generated within several hours, but it was generated
within seconds when ‘forbidden tuples’ method was used.
It is unclear if there are certain parameter sizes of software
systems where this result will differ. Subjects with high
number of constraints also significantly decreased efficiency
of the Greedy approach.

7 THREATS TO VALIDITY

We tested the scalability of CIT techniques for test case gen-
eration in the presence of constraints. To test two of the most
popular techniques, one based on simulated-annealing and
another using a greedy approach, we used two state-of-the-
art CIT tools. Our results might thus depend on the imple-
mentation of the algorithms within these two tools, however
given that these are considered state-of-the-art we believe
that they are representative of their respective algorithms.
As for the GA, since they have not been used as much in the
literature, there is a risk that our results for GAcit have more
dependence on the specific implementation.

As our results indicated, the choice of constraint han-
dling method adopted has a dramatic impact on the perfor-
mance of the greedy approach. Thus direct comparison of
SA and greedy in presence of constraints is clearly depen-
dent on the constraint solving method used.

The CASA approach is stochastic in nature, since it uses
simulated annealing. Therefore, its results can vary from
one execution to the next. Same is true for GAcit. Since
Greedy is deterministic, there is no value to be gained from
an inferential statistical analysis (the Greedy results are not
drawn from a population). However, in order to cater for

TABLE 18
Percentage of Detected Faults for All Versions of Subjects Used (GAcit)

PETKE ET AL.: PRACTICAL COMBINATORIAL INTERACTION TESTING: EMPIRICAL FINDINGS ON EFFICIENCY AND EARLY FAULT... 919

TABLE 19
Percentage of Detected Faults up to Multiples of 10 Test Case Executions (CASA)

920 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 9, SEPTEMBER 2015

TABLE 20
Percentage of Detected Faults up to Multiples of 10 Test Case Executions (ACTS)

PETKE ET AL.: PRACTICAL COMBINATORIAL INTERACTION TESTING: EMPIRICAL FINDINGS ON EFFICIENCY AND EARLY FAULT... 921

this potential threat to validity, we reported runtimes over
20 runs of CASA, ACTS and GAcit.

All of the programs we used in this study are relatively
small with respect to the number of parameters. Moreover,
there is little diversity in their type, four of them are text
manipulation utilities.

But we have used real programs from a well-studied
subject repository and believe that this represents a realis-
tic use of CIT.

8 CONCLUSIONS

In this paper we investigated greedy, simulated annealing
and genetic algorithm approaches to the constrained, pri-
oritised, interaction testing problem, presenting results for

their application to multiple versions of seven subjects
using interaction strengths from two-way (pairwise) to six-
way interactions. Our results hold for both C and Java pro-
grams used.

Our findings challenge the conventional wisdom that
higher strength interaction testing is infeasible for simulated
annealing; we were able to construct six-way interaction test
suites in reasonable time. Furthermore, these higher strength
test suites findmore faults overall, making themworthwhile
for comprehensive testing. We also find that ordering test
suites for lower strengths performs no worse than higher
strengths in terms of early fault revelation.

However, our findings also challenge the previously
widely-held assumption that, compared to simulated

TABLE 21
Percentage of Detected Faults up to Multiples of 10 Test Case Executions (GAcit)

TABLE 22
ACTS Runtimes, Averages Over 20 Runs

Constrained CAs were obtained by using the ‘forbidden tuples’ setting for constraint handing.

922 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 9, SEPTEMBER 2015

annealing, greedy algorithms are fast, yet produce larger
test suites with lower fault revealing potency with respect
to time. Not only did we find that, without careful selection
of the constraint handling mechanism, greedy approaches
can be surprisingly slow, but also more importantly, that
their fault revealing power is comparable to that of simu-
lated annealing. Genetic algorithms, on the other hand, do
not scale to constrained higher-strength CIT.

Our results and test data, together with reports of cover-
age and fault detection and plots of Average Percentage of
Covering-array Coverage for all cases are contained in this
paper’s companion website: http://www0.cs.ucl.ac.uk/
staff/J.Petke/cittse/html/index.html.

ACKNOWLEDGMENTS

Myra Cohen is partly supported by the National Science
Foundation, through awards CCF-1161767, CCF-0747009 and
by the Air Force Office of Scientific Research through award
FA9550-10-1-0406. Mark Harman is partly supported by the
following grants from the UK Engineering and Physical Sci-
ences ResearchCouncil (EPSRC): DAASE:DynamicAdaptive
Automated Software Engineering, GISMO: Genetic Improve-
ment of Software for Multiple Objectives and CREST: Centre
for Research on Evolution, Search and Testing (Platform
Grant). The DAASE grant also partly supports Shin Yoo, and
completely supports Justyna Petke. The authors would also
like to acknowledge the Software-artifact Infrastructure
Repository (SIR) [20] which provided the source code and
fault data for the seven programs used in the empirical stud-
ies reported. The authors would like to thank Tatsuhiro Tsu-
chiya for the GA tool used in this study and Wayne Motycka
for advice on SIR. J. Petke is the corresponding author.

REFERENCES

[1] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., vol. 43, no. 2, pp. 11:1–11:29, 2011.

[2] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG/
IPOG-D: Efficient test generation for multi-way combinatorial
testing,” Softw. Test., Verification Reliab., vol. 18, no. 3, pp. 125–148,
2008.

[3] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The
AETG system: An approach to testing based on combinatorial
design,” IEEE Trans. Softw. Eng., vol. 23, no. 7, pp. 437–444, Jul.
1997.

[4] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Evaluating improve-
ments to a meta-heuristic search for constrained interaction
testing,” Empirical Softw. Eng., vol. 16, no. 1, pp. 61–102, 2011.

[5] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software fault inter-
actions and implications for software testing,” IEEE Trans. Softw.
Eng., vol. 30, no. 6, pp. 418–421, Jun. 2004.

[6] R. C. Bryce and C. J. Colbourn, “Prioritized interaction testing for
pair-wise coverage with seeding and constraints,” Inf. Softw. Tech-
nol., vol. 48, no. 10, pp. 960–970, 2006.

[7] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction testing of
highly-configurable systems in the presence of constraints,” in
Proc. Int. Symp. Softw. Testing Anal., 2007, pp. 129–139.

[8] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing interaction
test suites for highly-configurable systems in the presence of con-
straints: A greedy approach,” IEEE Trans. Softw. Eng., vol. 34,
no. 5, pp. 633–650, Sep./Oct. 2008.

[9] B. Hnich, S. D. Prestwich, E. Selensky, and B. M. Smith,
“Constraint models for the covering test problem,” Constraints,
vol. 11, no. 2-3, pp. 199–219, 2006.

[10] S. Yoo and M. Harman, “Regression testing minimisation, selec-
tion and prioritisation: A survey,” Softw. Testing, Verification, Rel.,
vol. 22, no. 2, pp. 67–120, Mar. 2012.

[11] R. C. Bryce and C. J. Colbourn, “Test prioritization for pairwise
interaction coverage,” ACM SIGSOFT Softw. Eng. Notes, vol. 30,
no. 4, pp. 1–7, 2005.

[12] R. C. Bryce, S. Sampath, and A. M. Memon, “Developing a single
model and test prioritization strategies for event-driven software,”
IEEE Trans. Softw. Eng., vol. 37, no. 1, pp. 48–64, Jan.-Feb. 2011.

[13] X. Qu, M. B. Cohen, and K. M. Woolf, “Combinatorial interaction
regression testing: A study of test case generation and prior-
itization,” in Proc. IEEE Int. Conf. Softw. Maintenance, 2007,
pp. 255–264.

[14] T. Shiba, T. Tsuchiya, and T. Kikuno, “Using artificial life techni-
ques to generate test cases for combinatorial testing,” in Proc. 28th
Int. Comput. Softw. Appl. Conf., Des. Assessment Trustworthy Softw.-
Based Syst., 2004, pp. 72–77.

[15] G. Dueck, “New optimization heuristics: The great deluge algo-
rithm and the record-to-record travel,” J. Comput. Phys., vol. 104,
no. 1, pp. 86–92, 1993.

[16] J. Stardom, Metaheuristics and the Search for Covering and Packing
Arrays (Series Canadian theses). Thesis (M.Sc.)-Simon Fraser Uni-
versity, Burnaby, British Columbia, Canada, 2001.

[17] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B. Mugridge,
“Constructing test suites for interaction testing,” in Proc. Int. Conf.
Softw. Eng., May 2003, pp. 38–48.

[18] D. Kuhn, R. Kacker, and Y. Lei, “Automated combinatorial test
methods: Beyond pairwise testing,” Crosstalk, J. Defense Softw.
Eng., vol. 21, no. 6, pp. 22–26, 2008.

[19] S. K. Khalsa and Y. Labiche, “An orchestrated survey of available
algorithms and tools for combinatorial testing,” in Proc. 25th IEEE
Int. Symp. Softw. Rel. Eng., 2014, pp. 323–334.

[20] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure and
its potential impact,” Empirical Softw. Eng., vol. 10, no. 4, pp. 405–
435, 2005.

[21] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, “Efficiency and
early fault detection with lower and higher strength combinatorial
interaction testing,” in Proc. Eur. Softw. Eng. Conf. ACM SIGSOFT
Symp. Found. Softw. Eng., Saint Petersburg, Russian Federation,
Aug. 2013, pp. 26–36.

[22] D. R. Kuhn and V. Okun, “Pseudo-exhaustive testing for
software,” in Proc. 30th Annu. IEEE/NASA Softw. Eng. Workshop,
2006, pp. 153–158.

[23] S. Sampath, R. C. Bryce, G. Viswanath, V. Kandimalla, and A. G.
Koru, “Prioritizing user-session-based test cases for web applica-
tions testing,” in Proc. Int. Conf. Softw. Testing, Verification, Valida-
tion, 2008, pp. 141–150.

[24] X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-aware
regression testing: An empirical study of sampling and prior-
itization,” in Proc. Int. Symp. Softw. Testing Anal., 2008, pp. 75–86.

[25] C. Yilmaz, M. B. Cohen, and A. Porter, “Covering arrays for effi-
cient fault characterization in complex configuration spaces,”
IEEE Trans. Softw. Eng., vol. 31, no. 1, pp. 20–34, Jan. 2006.

[26] P. Schroeder, P. Bolaki, and V. Gopu, “Comparing the fault detec-
tion effectiveness of n-way and random test suites,” in Proc.
Empirical Softw. Eng., Aug. 2004, pp. 49–59.

[27] M. Grindal, J. Offutt, and J. Mellin, “Handling constraints in the
input space when using combination strategies for software
testing,” Univ. of Sk€ovde, Sweden, Tech. Rep. TR-06-001, 2006.

[28] T. Nanba, T. Tsuchiya, and T. Kikuno, “Using satisfiability solving
for pairwise testing in the presence of constraints,” Inst. Electron.,
Inform. Commun. Eng. Trans., vol. 95-A, no. 9, pp. 1501–1505, 2012.

[29] R. C. Bryce, S. Sampath, J. B. Pedersen, and S.Manchester, “Test suite
prioritization by cost-based combinatorial interaction coverage,”
Int. J. Syst. Assurance Eng.Manage., vol. 2, no. 2, pp. 126–134, 2011.

[30] X. Qu and M. B. Cohen, “A study in prioritization for higher
strength combinatorial testing,” in Proc. 2nd Int. Workshop Combi-
natorial Testing, 2013, pp. 285–294.

[31] R. C. Bryce and A. M. Memon, “Test suite prioritization by inter-
action coverage,” in Proc. Workshop Domain Specific Approaches
Softw. Test Autom.: In Conjunction with 6th ESEC/FSE Joint Meeting,
2007, pp. 1–7.

[32] L. Shi, C. Nie, and B. Xu, “A software debugging method based on
pairwise testing,” in Proc. Int. Conf. Comput. Sci., 2005, pp. 1088–
1091.

[33] M. Cohen, P. Gibbons, W. Mugridge, C. Colbourn, and J. Collo-
fello, “A variable strength interaction testing of components,”
in Proc. 27th Annu. Int. Comput. Softw. Appl. Conf., Nov. 2003,
pp. 413–418.

PETKE ET AL.: PRACTICAL COMBINATORIAL INTERACTION TESTING: EMPIRICAL FINDINGS ON EFFICIENCY AND EARLY FAULT... 923

[34] T. J. Ostrand and M. J. Balcer, “The category-partition method for
specifying and generating functional tests,” Commun. ACM, vol.
31, no. 6, pp. 676–686, 1988.

[35] S. Manchester, N. Samant, R. Bryce, S. Sampath, D. R. Kuhn, and
R. Kacker, “Applying higher strength combinatorial criteria to test
prioritization: A case study,” J. Combinatorial Math. Combinatorial
Comput., vol. 86, pp. 51–72, Aug. 2013.

[36] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing
test cases for regression testing,” in Proc. Int. Symp. Softw. Testing
Anal., 2000, pp. 102–112.

[37] S. Fouch�e, M. B. Cohen, and A. A. Porter, “Incremental covering
array failure characterization in large configuration spaces,” in
Proc. 18th Int. Symp. Softw. Testing Anal., 2009, pp. 177–188.

Justyna Petke received the BSc degree in math-
ematics and computer science from the University
College London, and the DPhil degree in com-
puter science from the University of Oxford. She
is a research associate at the Centre for Research
on Evolution, Search and Testing (CREST),
located in the Department of Computer Science,
University College London. Her current research
interests include genetic improvement, combina-
torial interaction testing, and constraint solving.

Myra B. Cohen received the PhD degree from
the University of Auckland, New Zealand, and
the MS degree from the University of Vermont.
She is a Susan J. Rosowski associate professor
in computer science and engineering at the
University of Nebraska-Lincoln, where she is a
member of the ESQuaReD software engineering
research group. Her research interests include
software testing of highly configurable software,
combinatorial interaction testing, testing of soft-
ware product lines, and search-based software

engineering. She received the US National Science Foundation Early
Career award and an Air Force Office of Scientific Research Young
Investigator award. She has served on the PCs of many software engi-
neering conferences including ICSE, ISSTA, ESEC/FSE, ASE, and is
the general chair of ASE 2015.

Mark Harman is the head of Software Systems
Engineering and the director of the CREST at
UCL. He is widely known for work on source
code analysis and testing and was instrumental
in the founding of the field of Search Based Soft-
ware Engineering (SBSE), a sub- field of software
engineering which is now attracted over 1,600
authors, spread over more than 40 countries.

Shin Yoo is a lecturer of software engineering at
the Centre of Research on Evolution, Search and
Testing (CREST), located in the Department of
Computer Science, University College London.
He has a broad range of research interests, but
most of them are centred around search-based
software engineering (SBSE), i.e., the application
of meta-heuristic optimisation algorithms to prob-
lems in software engineering. His main research
interest is regression testing and fault localisa-
tion, as well as how information theory and infor-

mation retrieval techniques can be used to aid software testing process.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

924 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 9, SEPTEMBER 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

