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Market Impacts of Energy Storage in a
Transmission-Constrained Power System

Vilma Virasjoki, Paula Rocha, Afzal S. Siddiqui, and Ahti Salo

Abstract—Environmental concerns have motivated govern-
ments in the European Union and elsewhere to set ambitious
targets for generation from renewable energy (RE) technologies
and to offer subsidies for their adoption along with priority grid
access. However, because RE technologies like solar and wind
power are intermittent, their penetration places greater strain
on existing conventional power plants that need to ramp up
more often. In turn, energy storage technologies, e.g., pumped
hydro storage or compressed air storage, are proposed to
offset the intermittency of RE technologies and to facilitate
their integration into the grid. We assess the economic and
environmental consequences of storage via a complementarity
model of a stylized Western European power system with market
power, representation of the transmission grid, and uncertainty
in RE output. Although storage helps to reduce congestion and
ramping costs, it may actually increase greenhouse gas emissions
from conventional power plants in a perfectly competitive setting.
Conversely, strategic use of storage by producers renders it less
effective at curbing both congestion and ramping costs, while
having no net overall impact on emissions.

Index Terms—Energy storage, wind power, complementarity
modeling.

NOMENCLATURE

Indices and Sets

a(s) ∈ S: ancestor node of scenario tree nodes ∈ S
e ∈ E := {solar,wind}: renewable energy sources
Fs ∈ S: descendant nodes of scenario tree nodes ∈ S
i ∈ I: power producers
ℓ ∈ L: transmission lines
n ∈ N : power network nodes
s ∈ S: scenario tree nodes
t ∈ T : time periods
t(s) ∈ T : time period to which scenario tree nodes ∈ S
belongs
u ∈ Un,i: conventional generation units of produceri ∈ I at
network noden ∈ N
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Parameters

Ae
s,n: availability factor for renewable energy generation of

type e ∈ E at noden ∈ N for scenarios ∈ S (–)
Bn,n′ : element (n, n′) of node susceptance matrix, where
n, n′ ∈ N (1/Ω)
Cconv

n,i,u: generation cost of unitu ∈ Un,i from produceri ∈ I
at noden ∈ N (e/MWh)
Cup

n,i,u: ramp-up cost of unitu ∈ Un,i from produceri ∈ I at
noden ∈ N (e/MWh)
Csto: cost of discharge from storage (e/MWh)
Dint

t,n: intercept of linear inverse demand function at node
n ∈ N in period t ∈ T (e/MWh)
Dslp

t,n: slope of linear inverse demand function at noden ∈ N
in period t ∈ T (e/MWh2)
E in: storage input efficiency (–)
Esto: hourly rate of storage decay (MW/MWh)
G

conv
n,i,u: maximum generation capacity of unitu ∈ Un,i from

produceri ∈ I at noden ∈ N (MW)
G

e

n,i: maximum generation capacity of produceri ∈ I for
renewable energy typee ∈ E at noden ∈ N (MW)
Hℓ,n: element (ℓ, n) of network transfer matrix, whereℓ ∈ L
andn ∈ N (1/Ω)
Kℓ: maximum capacity of power lineℓ ∈ L (MW)
Ps: probability of scenarios ∈ S (–)
Rin: hourly rate at which storage can be charged (MW/MWh)
Rout: hourly rate at which storage can be discharged
(MW/MWh)
Sn ∈ {0, 1}: dummy parameter for slack node, wheren ∈ N
(–)
Rn,i: maximum storage capacity of produceri ∈ I at node
n ∈ N (MWh)
Rn,i: minimum storage capacity of produceri ∈ I at node
n ∈ N (MWh)
Tt: duration of periodt ∈ T (h)

Primal Variables

gconv
s,n,i,u: generation at noden ∈ N by produceri ∈ I using

unit u ∈ Un,i for scenarios ∈ S (MWh)
ges,n,i: renewable energy generation of typee ∈ E at node
n ∈ N by produceri ∈ I for scenarios ∈ S (MWh)
gup
s,n,i,u: generation ramp-up at noden ∈ N by produceri ∈ I

using unitu ∈ Un,i for scenarios ∈ S (MWh)
qs,n,i: sales at noden ∈ N by produceri ∈ I for scenario
s ∈ S (MWh)
rs,n,i: (end-of-period) stored energy by produceri ∈ I at node
n ∈ N for scenarios ∈ S (MWh)
rin
s,n,i: energy charged into storage at noden ∈ N by producer
i ∈ I for scenarios ∈ S (MWh)
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rout
s,n,i: energy discharged from storage at noden ∈ N by

produceri ∈ I for scenarios ∈ S (MWh)
vs,n: voltage angle at noden ∈ N for scenarios ∈ S (rad)

Dual Variables

βconv
s,n,i,u: shadow price on generation capacity at noden ∈ N

for conventional generation unitu ∈ Un,i of produceri ∈ I
and scenarios ∈ S (e/MWh)
βe
s,n,i: shadow price on renewable energy generation capacity

at noden ∈ N for energy source typee ∈ E , produceri ∈ I
and scenarios ∈ S (e/MWh)
βup
s,n,i,u: shadow price on ramp-up constraint at noden ∈ N

for conventional generation unitu ∈ Un,i of produceri ∈ I
and scenarios ∈ S (e/MWh)
γs,n: dual for slack noden ∈ N and scenarios ∈ S (–)
θs,i: shadow price on energy balance for produceri ∈ I and
scenarios ∈ S (e/MWh)
λbal
s,n,i: shadow price on stored energy balance at noden ∈ N

for produceri ∈ I and scenarios ∈ S (e/MWh)
λin
s,n,i: shadow price on maximum storage charging at node

n ∈ N for produceri ∈ I and scenarios ∈ S (e/MWh)
λlb
s,n,i, λ

ub
s,n,i: shadow price on energy storage capacity at node

n ∈ N for produceri ∈ I and scenarios ∈ S (e/MWh)
λout
s,n,i: shadow price on maximum storage discharging at node

n ∈ N for produceri ∈ I and scenarios ∈ S (e/MWh)
µs,ℓ, µs,ℓ

: shadow price on transmission capacity for transmis-
sion line ℓ and scenarios ∈ S (e/MW)
ωs,n: congestion charge at noden ∈ N for scenarios ∈ S
(e/MWh)

I. I NTRODUCTION

A. Background

In order to mitigate climate change, governments have im-
posed increasingly stringent restrictions on CO2 emissions and
introduced policies to incentivize the adoption of renewable
energy (RE) technologies. For example, in the European Union
(EU), one of the 20-20-20 climate change targets requires all
member states to reduce their CO2 emissions by 20% by the
year 2020 relative to 1990 levels [1] with more ambitious
targets proposed from 2020 onward [2]. However, given that
electricity industries in most OECD countries have been
deregulated with the aim of improving economic efficiency [3],
investment and operational decisions are typically undertaken
by profit-maximizing companies that may balk at adopting
socially desirable but costly RE technologies. Thus, in order
to entice power companies to invest in RE technologies, pol-
icymakers have both introduced new regulation, e.g., priority
grid access, and provided economic incentives, e.g., feed-in
tariffs and renewable energy certificates [4].

While such measures have increased RE technology output,
e.g., to over 25% of German electricity generation in 2013,
and reduced CO2 emissions, e.g., by nearly 30% in 2013
relative to 1990 levels, further penetration of such resources
may be limited by the complexities of integrating them into the
grid. Moreover, because RE technologies like solar and wind
power are intermittent, their adoption implies that existing
conventional power plants must ramp more frequently. In order
to address this difficulty, energy storage technologies, e.g.,
pumped hydro storage (PHS) or compressed air storage, have

been proposed to offset the intermittency of RE technologies.
Together with subsequent expansion and reinforcement of
the transmission grid itself [5], [6], better techniques for
congestion management [7], and enhanced demand response
[8], storage is likely to facilitate an economically viable
way to integrate intermittent RE technologies. Yet, a deeper
understanding of the economic and environmental impacts of
storage coupled with RE technologies is required for crafting
policy.

B. Literature Review

Previous work, such as [9], has shown that storage in a
power system can have welfare-enhancing effects, albeit at
the expense of producers as it reduces the price differen-
tial between peak and off-peak periods. Moreover, [10] has
demonstrated that when storage belongs to producers behaving
à la Cournot, they are able to use it to move energy from
peak to off-peak periods, thereby increasing peak prices above
competitive levels. Sioshansi [11] has concluded, using a
stylized model without transmission constraints or uncertainty,
that strategic generators with standalone storage or generator-
owned storage may cause social welfare to decrease. Focusing
on emissions, a supply-function equilibrium model of ERCOT
illustrates that greenhouse gas (GHG) emissions may increase
in the presence of both wind power and storage [12].

In contrast to these papers, which do not represent the trans-
mission network, [13] examine electricity storage with trans-
mission constraints. By formulating a mixed-complementarity
problem (MCP) [14], they determine how storage affects
the formation of locational marginal prices. Consequently,
the optimal locations and sizes of storage systems can be
obtained from such a modeling approach. Likewise, [15] use
a DC optimal power flow (OPF) model to assess storage
technology portfolios in a transmission-constrained network.
In an analysis of battery storage, [16] perform a case study
of the PJM market using a unit-commitment model to show
the potential for modest savings for consumers, which are
more than offset by capital expenditures for energy storage
and lower profits for generators along with increased CO2

emissions. Similar results for a 25-node test network are
reported by [17] using an OPF model. However, [13], [15],
[16], and [17] consider neither uncertainty in RE output nor
market power. Therefore, we aim to investigate the economic
and environmental impacts of energy storage using a realistic
test network that incorporates features such as market power
and uncertainty in RE output.

C. Research Objectives and Contribution

Using a complementarity approach [14], we model the
decision-making problems of power producers and the grid
owner. The former decide how to operate power plants (both
conventional and RE) and storage in order to maximize
expected profit inclusive of congestion payments to transmit
electricity between nodes. Uncertainty in RE output is rep-
resented via discrete scenarios that evolve over several hours
of a typical day, while inventory-balance constraints regulate
charging and discharging decisions for storage. Meanwhile,
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the grid owner decides how much electricity to import at each
node in order to maximize revenues from congestion fees [18].

We implement the resulting MCP for a 15-node (and 28-
line) test network of Western Europe [19] over four hours
corresponding to the critical morning ramping periods for
conventional power plants with intermittent RE output repre-
sented by discrete scenarios in each hour. We estimate installed
capacities in Belgium, France, Germany, and the Netherlands
as well as representations of demand and transmission in-
terconnections. A linearized direct current (DC) load-flow
approximates physical flows of electricity in the network.

We demonstrate that while storage facilitates the integration
of RE technologies by reducing network congestion and ramp-
ing costs, it may actually result in higher CO2 emissions. This
somewhat counterintuitive result occurs because conventional
power plants are used during early-morning hours to charge
storage for use later in the day when RE output may not
be adequate. In turn, peak-hour conventional generation is
reduced, but the corresponding reduction in CO2 emissions
does not offset its increase during off-peak hours due to the
efficiency losses associated with storage and the displacement
of gas-fired generation (used for ramping without storage) by
coal plants (used for charging storage).

By contrast, storage does not significantly affect CO2 emis-
sions when producers exercise market power. In effect, produc-
ers have reduced incentives for using storage as it depresses
peak-hour prices. This suggests that the environmental effects
of storage may not be detrimental in practice because of
the presence of market power. Nevertheless, the results are
for a stylized example during a specific period of the day,
and policymakers should consider such unintended environ-
mental consequences when setting targets for RE generation.
Indeed, [20] demonstrates with a two-node example that CO2

emissions may increase once a CO2 tax is introduced as it
makes the coal power plant at the exporting node relatively
more expensive than the gas-fired plant at the importing
node. Hence, the resulting alleviation of congestion on the
transmission line effectively replaces two monopolies with a
single duopoly, which leads to lower prices and increased
consumption to the extent that CO2 emissions rise overall.

D. Structure of the Paper

In Section II, we present our modeling assumptions and
the mathematical formulation for the MCP that captures pro-
duction, sales, storage, and transmission decisions. Next, in
Section III, we implement numerical examples on a Western
European test network to gain insights about how market
power, storage, and wind output interact. We conclude the pa-
per in Section IV by summarizing our main points, discussing
the limitations of our approach, and outlining directions for
future research.

II. PROBLEM FORMULATION

A. Assumptions

Following the standard approach in power system eco-
nomics [18], we use a DC load-flow approximation in rep-
resenting transmission flows. Here, the susceptance,Bn,n′ ,

and network transfer,Hℓ,n, parameters capture power transfer
distribution factors. Given voltage angles,vs,n, and the dec-
laration of a slack node (with zero voltage angle), the power
flow on line ℓ is

∑

n∈N Hℓ,nvs,n and the imported energy at
noden is

∑

n′∈N Tt(s)Bn′,nvs,n′ in scenarios.
Each producer may own both conventional and RE plants

as well as energy storage facilities anywhere in the network.
As we will describe in Section III, storage capacities are
assigned to generators based on current market conditions in
Western Europe. However, following [11], storage facilities
could be standalone or managed by a welfare-maximizing
independent system operator (ISO). In the case of perfect
competition, this would yield the same results as in our setup
but would mitigate the exercise of market power by strategic
producers in the case of Cournot oligopoly. The conventional
units with installed capacities,G

conv
n,i,u, have generation costs

of Cconv
n,i,u and ramp-up costs ofCup

n,i,u to reflect the wear
and tear on turbines from changes in operating levels. RE
plants with installed capacities,G

e
n,i, have no operating costs

but are non-dispatchable, i.e., their output depends solely on
stochastic availability factors,Ae

s,n, for each scenarios and
noden with probabilityPs. Producers may inject or withdraw
energy from storage at withdrawal costCsto as long as they
respect the maximum charging (Rin) and discharging (Rout)
rates along with the minimum (Rn,i) and maximum (Rn,i)
storage capacities. There are also losses associated with both
the charging (E in) and storage (Esto) processes. Finally, each
producer may generate electricity at one node and sell it
(or store it) at another one provided that it pays to access
transmission capacity.

By selling electricity at noden in scenarios, produceri re-
ceives a price that depends on the linear inverse demand curve,
i.e.,Dint

t(s),n−Dslp
t(s),n

∑

i′∈I qs,n,i′ , where
∑

i′∈I qs,n,i′ is the
total sales (and consumption). Under perfect competition,each
producer treats the price at each node as a constant.

As in [18], we assume that the grid owner controls transmis-
sion flows to maximize its expected revenues from congestion
charges paid on imports at each node while respecting the ther-
mal limits of the transmission lines. The congestion charge,
ωs,n, is the shadow price on the market-clearing condition that
balances supply and demand at each node. Hence, a producer
that generates electricity at noden and sells it at noden′

receivesωs,n to send electricity from noden to a hub node
and paysωs,n′ to send electricity from the hub to noden′ for
a net congestion payment ofωs,n′ − ωs,n.

B. Decision-Making Problems and Equilibrium Conditions

1) Producers’ Problems:Each produceri ∈ I finds gen-
eration (both conventional and RE), storage, and sales levels
to maximize its expected profit. The profit consists of sales
revenues less generation and ramp-up costs incurred by con-
ventional generation units, storage costs, and net congestion
payments for electricity transmission between nodes (1). Each
producer’s profits are represented in terms of the point-to-point
congestion charges, which enables the effect of market power
on sales to be captured through each producer’s revenue at
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each node inclusive of congestion charges.

max
x

∑

s∈S

∑

n∈N

Ps

[

(

Dint
t(s),n −Dslp

t(s),n

∑

i′∈I

qs,n,i′ − ωs,n

)

qs,n,i

−
∑

u∈Un,i

(

Cconv
n,i,u − ωs,n

)

gconv
s,n,i,u

−
∑

u∈Un,i

Cup
n,i,u g

up
s,n,i,u + ωs,n

∑

e∈E

ges,n,i

− ωs,n r
in
s,n,i −

(

Csto− ωs,n

)

rout
s,n,i

]

(1)

s.t.
∑

n∈N

qs,n,i =
∑

n∈N

∑

u∈Un,i

gconv
s,n,i,u +

∑

n∈N

∑

e∈E

ges,n,i

+
∑

n∈N

rout
s,n,i −

∑

n∈N

rin
s,n,i (θs,i), ∀s (2)

gconv
s,n,i,u ≤ Tt(s) G

conv
n,i,u (βconv

s,n,i,u), ∀n, s, ∀u ∈ Un,i (3)

gconv
s,n,i,u − gconv

a(s),n,i,u ≤ gup
s,n,i,u (β

up

s,n,i,u),

∀n, s, ∀u ∈ Un,i (4)

ges,n,i = Tt(s) A
e
s,n G

e
n,i (β

e

s,n,i), ∀e, n, s (5)

rs,n,i = Tt(s) (1− Esto) ra(s),n,i + E in rin
s,n,i

− rout
s,n,i (λ

bal
s,n,i), ∀n, s (6)

rin
s,n,i ≤ Tt(s) R

in Rn,i (λ
in
s,n,i), ∀n, s (7)

rout
s,n,i ≤ Tt(s) R

outRn,i (λ
out
s,n,i), ∀n, s (8)

Rn,i ≤ rs,n,i ≤ Rn,i (λ
lb
s,n,i, λ

ub
s,n,i), ∀n, s (9)

gconv
s,n,i,u, g

up
s,n,i,u ≥ 0, ∀n, s, ∀u ∈ Un,i; g

e
s,n,i ≥ 0, ∀e, n, s;

qs,n,i, rs,n,i, r
in
s,n,i, r

out
s,n,i ≥ 0, ∀n, s (10)

Here,x := {gconv
s,n,i,u, g

e
s,n,i, g

up
s,n,i,u, qs,n,i, rs,n,i, r

in
s,n,i, r

out
s,n,i :

e ∈ E , i ∈ I, n ∈ N , s ∈ S, u ∈ Un,i}, and dual variables are
in brackets next to their corresponding constraints. Constraints
(2) ensure energy balance between total sales and total (con-
ventional and RE) generation plus total net discharge from
storage in each scenario. For each conventional generation
unit, capacity generation (3) and ramp-up (4) constraints are
imposed, while RE generation depends simply on resource
availability (5). While RE outputs are decision variables, they
are effectively exogenous because output equals to availability
in each scenario. Thus, although substantial RE capacity may
belong to fringe producers, they are unable to use it to
withhold sales. Furthermore, any strategic producers withRE
capacity cannot use it to exert market power. Restrictions (6)
guarantee that the electric energy available in storage at the
end of a given period is equal to the energy stored at the end
of the previous period plus the energy charged into storage
minus the energy discharged from storage during that period.
Constraints (7) and (8) impose an upper limit on the amount
of electricity that can be charged into and discharged from
storage, respectively, whereas constraints (9) guaranteethat
the amount of electricity stored remains within certain limits.

2) Grid Owner’s Problem:The grid owner determines how
much power to import at each network node in order to

maximize its expected net payments from congestion charges:

max
vs,n

∑

s∈S

∑

n∈N

Ps ωs,n

∑

n′
∈N

Tt(s) Bn,n′ vs,n′ (11)

s.t.
∑

n∈N

Hℓ,nvs,n ≤ Kℓ (µs,ℓ), ∀ℓ, s (12)

−
∑

n∈N

Hℓ,nvs,n ≤ Kℓ (µs,ℓ
), ∀ℓ, s (13)

Sn vs,n = 0 (γs,n), ∀n, s (14)

vs,n u.r.s., ∀n, s, (15)

where u.r.s. stands for “unrestricted in sign.” Reflecting the
DC load-flow approximation, constraints (12)–(13) guarantee
that the power flow on each transmission line remains within
the line’s capacity limit, whereas (14) defines the slack node
of the network.

3) Market-Clearing Conditions:The market-clearing con-
ditions ensure that, in each network node and each scenario,
the energy demand (equal to sales) is met by energy produced
plus net energy discharged from storage at that node and net
energy imports from other network nodes.

∑

i∈I

qs,n,i −
∑

i∈I

∑

u∈Un,i

gconv
s,n,i,u −

∑

i∈I

∑

e∈E

ges,n,i −
∑

i∈I

rout
s,n,i

+
∑

i∈I

rin
s,n,i −

∑

n′
∈N

Tt(s)Bn,n′vs,n′ = 0,with ωs,n u.r.s., ∀n, s

(16)

C. Mixed Complementarity Problem

In order to find a market-equilibrium solution, we formulate
a stochastic MCP by taking the Karush-Kuhn-Tucker (KKT)
conditions for the producers’ and grid owner’s optimization
problems defined in (1)–(10) and (11)–(15), respectively, along
with the market-clearing constraints (16). The aforementioned
KKT conditions are presented in the Appendix. We remark
that, like in [18], our MCP can be analogously formulated
as a convex quadratic program (QP), and, thus, the globally
optimal solution to the equivalent QP [14, Theorem 4.4] also
provides an equilibrium to the MCP.

III. N UMERICAL EXAMPLES

A. Data

We implement our model for a stylized 15-node network
representing Western Europe (Fig. 1). The network parameters,
such as line capacities and the node structure, are based on
[19]. Nodesn1–n7 represent actual generation and load, while
n8–n15 are auxiliary nodes without any supply or demand that
are required for modeling cross-border flows.

Uncertainty in wind and solar generation is modeled by
a scenario tree with equiprobable scenario paths (Fig. 2).
The time frame represents the four-hour morning ramp during
which producers make critical generation dispatch and storage
decisions. The solar and wind availabilities represent the
situation in June/July 2011 based on German data from the
EEX. Using the average hourly solar generation in Fig. 3,
we calculate an hourly solar availability factor by dividing
the mean observed output by the German installed capacity
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(25 GW, see Table II). This yields mean availability factors
of 0.002, 0.019, 0.064, and 0.135 for hourst5–t8 along with
standard deviations of 0.001, 0.007, 0.021, and 0.043. Our
scenarios in Fig. 2 approximate these summary statistics:
the mean availability factors are 0, 0.025, 0.075, and 0.150
with standard deviations of 0, 0.021, 0.025, and 0.047. The
expected wind availability factor for each hour is obtained
from the average observed wind production in Fig. 4. Since
installed German wind capacity is 29 GW (see Table II),
the mean availability factor during June/July 2011 for each
of the four hours,t5–t8, corresponds to approximately 14%
of the total installed capacity. The corresponding standard
deviation of the wind availability factor in each hour is about
10%. Using this information, the scenarios are constructed
such that (a) the expected wind generation is the same in
each hour (approximately 14% of installed capacity) while
(b) the correlation between solar and wind remains low. For
example, during hourt7, scenarios4 is based on 6 GWh of
output, which yields an availability factor of 0.21. By contrast,
scenarios7 has 2 GWh of output (resulting in an availability
factor of 0.07), whereas both scenarioss5 and s6 have 4
GWh of output (resulting in an availability factor of 0.14). The
standard deviation of possible wind availability factors in Fig.
2 varies between 5% and 7% during each hour (excludingt5),
which is roughly in line with the observed data. The assumed
increase in demand in relation to average hourly demand, a
stylized load profile fromt5 to t8, is: 0.84, 0.92, 1.01, 1.07.

n2

France

The Netherlands

Belgium

n12

n11

n1

n9

n8
n7

n4

n5

n6

n3

n13

n14

n15

n10

Germany

Fig. 1. Stylized Western European test network [19]

Market characteristics, nodal reference demands, and refer-
ence prices are calibrated to estimated linear inverse demand
functions. The annual average hourly loads (in GW) are 62,
55, 2, 8, 3, 8, and 3 for nodesn1–n7, respectively, which are
based on [23] for 2011. Correspondingly, the weighted average
price is e50.2/MWh. Price elasticity at the reference point
is assumed to be -0.25 [23], and details about the parameter
calculation of the linear inverse demand function are in [24].

On the supply side, generation costs for technologies in
Table I are based on [19] and the merit-order curve of [23].
The complexity of generation processes causes additional
technology-specific ramping costs when output is adjusted.
These costs are driven by the decreased fuel efficiency com-

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

Time
t5 t7 t8t6

Path

1
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7

8

A
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  = 0.14

A
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A
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A
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A
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A
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A
solar
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A
wind

  = 0.14

A
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 = 0.08

A
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  = 0.14

A
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 = 0.08

A
wind

  = 0.07

A
solar

 = 0.04

A
wind

  = 0.17

A
solar

 = 0.20

A
wind

  = 0.24

A
solar

 = 0.16

A
wind

  = 0.10

A
solar

= 0.20

A
wind

  = 0.17

A
solar

 = 0.16

A
wind

  = 0.10

A
solar

= 0.16

A
wind

  = 0.17

A
solar

 = 0.08

A
wind

  = 0.03

A
solar

 = 0.16

A
wind

  = 0.10

A
solar

= 0.08

Fig. 2. Scenario tree for wind and solar generation availability as a fraction
of installed capacity
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Fig. 3. Average hourly solar generation in Germany for 2011 [21]

pared to constant generation, increased stress on generators’
components, and replacement costs. We use stylized ramp-up
costs [25] that prevent unrealistic ramping. Thus, the observed
ramping rates (as a percentage of total generation) in our
model are in line with most plants’ ramping feasibilities [26],
[27]. One distinction is that neither [26] nor [27] allows for
nuclear plants to ramp. However, in France, load following by
nuclear plants is required because they generate over 75% of
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Fig. 4. Average hourly wind generation in Germany for 2011 [22]
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TABLE I
MARGINAL COST, RAMP-UP COST, AND CO2 EMISSIONS RATE

Type Marginal cost Ramp-up cost CO2 emissions per

(e/MWh) (e/MWh) unit of electricity

output (kg/kWh)

u1 (nuclear) 10 6.7 0

u2 (lignite) 20 6.7 0.94

u3 (coal) 22 4.7 0.83

u4 (CCGT) 30 5.8 0.37

u5 (gas) 45 2.3 0.50

u6 (oil) 60 2.3 0.72

u7 (hydro) 0 6.7 0

TABLE II
ESTIMATED INSTALLED GENERATION CAPACITY OF PRODUCERS(GW) IN

2011AND AVAILABILITY PERCENTAGES PER TECHNOLOGY

Node Producer u1 u2 u3 u4 u5 u6 u7 S W

n1 E.ON 5 1 5 2 2 1 - - -

RWE 4 10 5 3 3 - 0.5 - 0.5

EnBW 3 - 4 0.5 - 0.5 0.5 - -

Vattenfall - 9 2 1 1 0.5 - - -

FringeD - - 9 4.5 4 2 1 25 28.5

n2 EDF 63 - 4 - - 7 15 - 0.5

FringeF - 2 - 3 2 - 2 - 6.5

n3, Electrabel 4 - - 3 1 - - - 0.5

n6 FringeB 2 - 1 1 - - - 2 0.5

n4, Electrabel - - 1 3 2 - - - 0.5

n5, Essent - - 1 1.5 - - - - -

n7 Nuon - - 1 2 1 - - - 0.5

FringeN - - 1 3.5 2 - - - 1.5

% Available 80 85 84 89 86 86 30 Fig.
2

Fig.
2

the country’s electricity. Meanwhile, load following by nuclear
plants in Germany is increasingly common because of the
need to avoid negative electricity prices [28]. Related work
on the use of storage in Europe likewise allows for nuclear
plants to ramp up and down by 5% and 10% of rated capacity,
respectively [9]. The CO2 emissions of fossil fuels in Table
I are estimated from average plant efficiencies and emissions
factors reported in [23] and [29], respectively.

Table II estimates producers’ installed generation capac-
ities. Companies with the largest national shares of power
production are taken into account with the remaining capacity
allocated to a fringe. Figures are estimates for 2011 gathered
from companies’ websites and annual activity reports so that
the aggregated capacities match national capacity in [23].The
stylized data do not permit in-depth firm-level analyses, but
they help to assess aggregate market outcomes. To account
for plants’ offline time, such as outages and revisions, onlya
defined share of the installed capacity for each technology is
assumed to be available for generation.

Estimates for installed storage capacities in the year 2014
are based on operational installations’ power in 2014 [30].
At noden1, E.ON, RWE, EnBW, Vattenfall, and a fringe of
German producers own 5, 11, 1, 16, and 3 GWh, respectively.

EDF owns 30 GWh at noden2, and Electrabel owns a
combined 6 GWh at nodesn3 andn6. There is insignificant
grid-connected storage in the Netherlands, and over 90% of
the storage capacity in the other three countries is PHS.

The cost of storage discharge,Csto, is assumed to be
zero because most of the current capacity is PHS [9]. Other
storage parameter assumptions areEsto = 0, E in = 0.75,
Rin = 0.16, and Rout = 0.16. We assume no losses for
stored electricity on an hourly basis but account for round-trip
efficiencies viaE in < 1. Furthermore, for each noden and
produceri, the minimum storage capacity,Rn,i, is calculated
asRn,i = 0.3Rn,i, which is also the initial storage level.

B. Computational Issues

We present numerical results for four cases: perfect com-
petition (PC) with and without storage capacity in the grid
and likewise for Cournot oligopoly (CO). The model and
corresponding cases are implemented in GAMS, and the
resulting MCP is solved with CPLEX after re-formulation as
a QP problem in less than one minute on a workstation using
a 3.40 GHz Intel i7-4770 core processor and 8 GB of RAM.

C. Results

The price-smoothing effect of storage from [9] is corrob-
orated in Fig. 5. The impact is roughly similar in off-peak
periods (t5–t6) for both PC and CO but is much larger under
PC during peak hours (t7–t8). This is because Cournot pro-
ducers have the incentive to withhold sales, which diminishes
the price decrease and yields higher profits in peak hours.
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Fig. 5. Expected prices over all nodes and scenarios

Fig. 6 illustrates total expected a) conventional generation
(gconv), b) ramping (gup) and c) CO2 emissions by technology
type in off-peak (t5–t6) and peak (t7–t8) periods. In addition,
d) total expected stored energy (r) is presented. We observe
that Cournot producers withhold their output and use less stor-
age in comparison to the perfectly competitive situation. The
results also demonstrate that producers with storage increase
their conventional production in off-peak hours to store energy
and, consequently, reduce conventional production duringpeak
hours due to storage discharge.

Fig. 6b shows that producers with storage rely less on
ramping their conventional production to meet the higher
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Fig. 6. Expected a) conventional generation (GWh), b) ramping(GWh), c) CO2 emissions (Gg), and d) stored energy (GWh) in off-peak (t5–t6) and peak
hours (t7–t8) for PC and CO with (s) and without (ns) storage cases

demand of peak periods. As presented in Fig. 7, this gives
significant savings in ramping costs of 74% and 80% for CO
and PC, respectively. Indeed, the possibility to use storage
removes an obstacle to integrating intermittent RE by lowering
ramping costs for producers. More ramping is used under CO
than under PC when producers have storage. Consequently,
under CO, ramping accounts for a higher relative share of
total supply. This can result from a situation in which capacity
withholding, e.g., by a large nuclear provider, creates an
incentive for others to utilize their more expensive, yet flexible
generation, such as gas plants.
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Fig. 7. Effect of storage on expected ramping costs (%)

Since increased penetration of intermittent RE technologies
can also pose problems for network congestion, we examine
the expected congestion rent collected by the grid owner in
Fig. 8. While storage alleviates network congestion, the effect
is slightly stronger under PC, where total expected congestion
charges decrease by 12%. Under CO, the expected congestion
revenue is higher to begin with, and the alleviating effect is
relatively smaller, i.e., 6%. More network congestion under
CO seems to result from strategically withheld sales (at nodes
n2 andn3 in particular). This creates an incentive to increase
imports and could cause congestion on relatively small cross-
border lines such as the ones connecting nodesn3–n5, n6–
n12, andn11–n15 in Fig. 1.

Under PC, storage is used in a socially optimal way, i.e., for

TABLE III
TOTAL EXPECTED HOURLY POWER FLOWS(GW), INCLUDING THEIR SUM

(Σ), MEAN (x), AND STANDARD DEVIATION (σ) WITH DIFFERENCES

BETWEEN NO-STORAGE AND STORAGE CASES INDICATED AS∆

Hour PC PC ∆ CO CO ∆

No storage Storage No Storage Storage

t5 15.27 13.76 -1.52 14.11 15.19 1.08

t6 14.41 13.43 -0.98 14.84 14.80 -0.04

t7 14.63 14.10 -0.53 14.93 14.98 0.05

t8 14.13 14.74 0.61 14.67 14.41 -0.26

Σ 58.45 56.03 -2.41 58.55 59.38 0.82

x 14.61 14.01 -0.60 14.64 14.84 0.21

σ 0.49 0.56 0.07 0.37 0.33 -0.04

charging using the cheapest technology in off-peak hours in
order to back up RE generation during peak hours. As a result,
transmission flows decrease during off-peak hours because of
the reduction in sales and are hardly affected during peak
hours (Table III). Furthermore, flows under PC are generally
from west to east, i.e., fromn3 to n5, n12 to n6, andn15
to n11. Market power, however, reverses these flows because
of the withholding of sales atn2, n3, andn6 by EDF, which
owns the most capacity. Under CO, EDF’s withholding creates
an opening for fringe firms fromn1, which are enticed by
higher prices atn2, n3, andn6. In fact, flows on the three
aforementioned lines are reversed because of market power,
and these flows actually increase because of the combined
effect of market power and storage. A plausible explanation
for the former outcome without storage is that EDF withholds
nuclear production int5 only to ramp up att6 (Fig. 6b). This
helps it to earn extraordinary profits from both its nuclear
and hydro production even though ramping nuclear plants is
costly. With storage, EDF produces up to its optimal level at
t5 without having to ramp up as much later on because it can
divert “surplus” generation to storage. Hence, storage hasa
mild impact on congestion under CO partially because of the
strategic use of storage by EDF, which entices German fringe
producers to increase sales at nodesn2, n3, and n6 during
off-peak hours.

From Fig. 9, storage may increase expected CO2 emissions
under PC, but its effect is marginal under CO. In spite
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Fig. 8. Effect of storage on expected congestion revenues (%)

of the emissions-increasing characteristic of storage opera-
tions, removing both storage and wind capacity from the
grid would result in more fossil-fuel generation and, thus,
increased emissions. As a benchmark, expected CO2 emissions
would be 1.2% (PC) or 3.0% (CO) higher in a “no wind
and storage” case than in the “wind and storage” case. The
expected hourly CO2 emissions in Fig. 10 indicate that the
undesirable effect of storage on CO2 emissions results from
an increase in conventional generation during off-peak hours.
When storage’s efficiency losses are taken into account, the
production decrease during peak hours is not enough to offset
it, especially under PC. As seen in Fig. 6a, less polluting and
more flexible gas production is substituted by cheaper but
emission-increasing coal and by CCGT for off-peak storage
charging. The difference between PC and CO can be attributed
to Cournot producers’ incentives to exploit their storage ca-
pacity to withhold sales. Finally, the results presented inthis
section are robust with respect to volatility in RE generation.
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Fig. 9. Total expected CO2 emissions (Gg)

D. Sensitivity Analysis with Respect to Nuclear Ramping

We perform sensitivity analyses with respect to the nuclear
ramp-up cost in order to examine its impact on the main
results in the CO cases. Specifically, we increase the nuclear
ramp-up cost in the CO(ns) and CO(s) cases until ramping
by nuclear plants is eliminated. This occurs for ramp-up costs
that are five times as high as the original, i.e.,e33.50/MWh.
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Fig. 10. Hourly expected CO2 emissions (Gg)

In spite of no ramping by nuclear plants in the CO cases,
our results remain qualitatively unchanged. Furthermore,the
counterintuitive impact of storage on expected emissions in the
PC cases is not affected at all because there was no nuclear
ramping to begin with in the absence of market power.

Specifically, after we eliminate nuclear ramping, the only
aspect that changes is that nuclear generation is the same dur-
ing off-peak and peak hours in both CO(ns) and CO(s) cases
(Fig. 11). As with the original ramp-up costs, total expected
nuclear generation is drastically reduced from approximately
260 GWh in the PC cases to 190 GWh in the CO cases,
thereby resulting in similar consequences for expected prices,
CO2 emissions, ramping costs, and congestion costs. While
elimination of nuclear ramping is offset to some extent by
increased gas and hydro ramping, expected ramping costs are
lower to begin with in case CO(ns). Thus, the reduction in
expected ramping costs as a result of storage under CO is 64%
rather than 74% with the original ramp-up costs, which does
not change the main finding in Fig. 7. Similarly, expected CO2

emissions were unaffected by storage in the CO cases using
the original data and are now decreased by 0.1% with the
elimination of nuclear ramping. Finally, prevalent transmission
flows still go from east to west in the CO cases because of
the withholding of nuclear generation relative to the PC cases.
Table IV indicates that in spite of the elimination of nuclear
ramping, expected flows still increase in off-peak hours due
to storage because it enables EDF to exert market power to a
greater extent. The reduction in expected congestion costsdue
to storage with the elimination of nuclear ramping under CO
is 10% rather than 6% as with the original data (Fig. 8). This
is because congestion is higher to begin with in the CO(ns)
case as EDF reduces generation in peak hours, which creates
more east-to-west transmission flows.

IV. D ISCUSSION ANDCONCLUSIONS

Electricity storage can contribute to increased energy sus-
tainability by integrating increasing shares of intermittent
RE in the power grid. Our examples show that in addition
to previous findings on impacts of storage, e.g., its price-
smoothing effect and welfare benefits for society [9], [11],
[13], it can alleviate network congestion and reduce producers’
ramping of conventional generation.
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Fig. 11. Expected a) conventional generation (GWh), b) ramping (GWh), c) CO2 emissions (Gg), and d) stored energy (GWh) in off-peak (t5–t6) and peak
hours (t7–t8) for CO with (s) and without (ns) storage cases without nuclear ramping

TABLE IV
TOTAL EXPECTED HOURLY POWER FLOWS(GW), INCLUDING THEIR SUM

(Σ), MEAN (x), AND STANDARD DEVIATION (σ) WITH DIFFERENCES

BETWEEN NO-STORAGE AND STORAGE CASES INDICATED AS∆ WITHOUT

NUCLEAR RAMPING

Hour CO CO ∆

No Storage Storage

t5 14.12 15.18 1.07

t6 14.83 14.80 -0.03

t7 15.02 15.00 -0.02

t8 14.73 14.42 -0.31

Σ 58.69 59.40 0.71

x 14.67 14.85 0.18

σ 0.39 0.33 -0.06

We also demonstrate that storage may increase CO2 emis-
sions especially in the case of perfect competition due to effi-
ciency losses and changes in the generation mix. Interestingly,
the effect of storage on CO2 emissions is negligible under
market power as Cournot producers use storage strategically
and not in a socially optimal manner. However, CO2 emissions
are always lower than in a case with neither wind nor storage.

Some limitations of the modeling approach are the relatively
short studied time frame due to the scenario tree analysis, the
stylized and aggregated form of the network, and the absence
of any restrictions on GHG emissions. Thus, extending our
framework to include regulation to cap emissions by account-
ing for their social costs and investigating market design to
find incentives for storage investments are important areas
for future research. In the latter context, either a welfare-
maximizing ISO or profit-maximizing strategic generators
could invest in storage, thereby necessitating a bi-level pro-
gramming approach [31], [32]. Finally, storage arbitrageurs
in the Cournot oligopoly cases could be introduced since it
is likely that standalone storage operation without generation
would limit the extent to which strategic producers could exert
market power [18].

APPENDIX

From (1)–(10), the producers’ KKT conditions are:

0 ≤ −Ps

[

Dint
t(s),n −Dslp

t(s),n

(

∑

i′∈I

qs,n,i′ + qs,n,i

)

− ωs,n

]

+ θsi ⊥ qs,n,i ≥ 0, ∀i, n, s (17)

0 ≤ Ps

(

Cconv
n,i,u − ωs,n

)

+ βconv
s,n,i,u + βup

s,n,i,u −
∑

s′∈Fs

βup
s′,n,i,u

− θs,i ⊥ gconv
s,n,i,u ≥ 0, ∀i, n, s, ∀u ∈ Un,i (18)

0 ≤ Ps C
up
n,i,u − βup

s,n,i,u ⊥ gup
s,n,i,u ≥ 0, ∀i, n, s, ∀u ∈ Un,i

(19)

0 ≤ −Ps ωs,n − θs,i + βe
s,n,i ⊥ ges,n,i ≥ 0, ∀e, i, n, s (20)

0 ≤ Ps ωs,n + θs,i − E in λbal
s,n,i + λin

s,n,i ⊥ rin
s,n,i ≥ 0, ∀i, n, s

(21)

0 ≤ Ps

(

Csto− ωs,n

)

− θs,i + λbal
s,n,i + λout

s,n,i

⊥ rout
s,n,i ≥ 0, ∀i, n, s (22)

0 ≤ λbal
s,n,i −

∑

s′∈Fs

Tt(s) · (1− Esto) · λbal
s′,n,i + λub

s,n,i − λlb
s,n,i

⊥ rs,n,i ≥ 0, ∀i, n, s (23)
∑

n∈N

qs,n,i −
∑

n∈N

∑

u∈Un,i

gconv
s,n,i,u −

∑

n∈N

∑

e∈E

ges,n,i

−
∑

n∈N

rout
s,n,i +

∑

n∈N

rin
s,n,i = 0 with θs,i u.r.s., ∀i, s (24)

0 ≤ Tt(s) G
conv
n,i,u − gconv

s,n,i,u ⊥ βconv
s,n,i,u ≥ 0, ∀i, n, s, ∀u ∈ Un,i

(25)

0 ≤ −gconv
s,n,i,u + gconv

a(s),n,i,u + gup
s,n,i,u ⊥ βup

s,n,i,u ≥ 0,

∀i, n, s, ∀u ∈ Un,i (26)

ges,n,i − Tt(s) A
e
s,n G

e
n,i = 0 with β

e

s,n,i u.r.s., ∀e, i, n, s
(27)

rs,n,i − Tt(s) (1− Esto) ra(s),n,i − E in rin
s,n,i + rout

s,n,i = 0

with λbal
s,n,i u.r.s., ∀i, n, s (28)

0 ≤ Tt(s) ·R
in ·Rn,i − rin

s,n,i ⊥ λin
s,n,i ≥ 0, ∀i, n, s (29)

0 ≤ Tt(s) ·R
out ·Rn,i − rout

s,n,i ⊥ λout
s,n,i ≥ 0, ∀i, n, s (30)

0 ≤ Rn,i − rs,n,i ⊥ λub
s,n,i ≥ 0, ∀i, n, s (31)

0 ≤ −Rn,i + rs,n,i ⊥ λlb
s,n,i ≥ 0, ∀i, n, s. (32)

From (11)–(15), the grid owner’s KKT conditions are:
∑

n′
∈N

Ps Tt(s) Bn′,n ωs,n′ −
∑

ℓ∈L

Hℓ,n µs,ℓ +
∑

ℓ∈L

Hℓ,n µs,ℓ

− Sn γs,n = 0 with vs,n u.r.s., ∀n, s (33)
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0 ≤ −
∑

n∈N

Hℓ,nvs,n +Kℓ ⊥ µs,ℓ ≥ 0, ∀ℓ, s (34)

0 ≤
∑

n∈N

Hℓ,nvs,n +Kℓ ⊥ µ
s,ℓ

≥ 0, ∀ℓ, s (35)

Sn vs,n = 0 with γs,n u.r.s., ∀n, s. (36)
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