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Abstract

In this paper, we develop an analytical framework for personalizing the anticoagulation
therapy of patients who are taking warfarin. Consistent with medical practice, our treatment
design consists of two stages: (i) the initiation stage, modelled using a partially-observable
Markov decision process, during which the physician learns through systematic belief updates
about the unobservable patient sensitivity to warfarin, and (ii) the maintenance stage, mod-
elled using a Markov decision process, during which the physician relies on his formed belief
about patient sensitivity to determine the stable, patient-specific, warfarin dose to prescribe.
We develop an expression for belief updates in the POMDP, establish the optimality of the
myopic policy for the MDP, and derive conditions for the existence and uniqueness of a my-
opically optimal dose. We validate our models using a real-life patient data set gathered at
the Hematology Clinic of the Jewish General Hospital in Montreal. The proposed analytical
framework and case study enable us to develop useful clinical insights, e.g., concerning the
length of the initiation period and the importance of correctly assessing patient sensitivity.
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1. Introduction

The field of medicine has spent a considerable effort on the standardization of care during

the past few decades. However, recognizing the drawbacks of this “one size fits all” approach,

the more recent trend has been the development of personalized treatment schemes which

incorporate patient-specific characteristics and are tailored to each patient’s personal needs;

e.g., see Hamburg and Collins (2010) and Personalized Medicine Coalition (2015).
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In this paper, we focus on anticoagulation therapy for stroke prevention in atrial fib-

rillation (AF), and present an analytical framework for its personalization. In so doing,

we are motivated by recent clinical evidence presented by the American Heart Association

(2014) who stated that “most management strategies for (anticoagulation therapy) should

be individualized,” that “more research is needed for individualized approaches”, and that

determining “the optimal treatment (...) remains challenging”.

Atrial Fibrillation and Warfarin. Warfarin is the most commonly prescribed antico-

agulant drug in the world. However, despite warfarin’s popularity, its usage is complicated

by a narrow therapeutic window. Indeed, a high warfarin dose could have life-threatening

consequences, such as excessive bleeding, while a low warfarin dose could be ineffective in

preventing the formation of blood clots which, in turn, increases the risk of stroke; see Old-

gren et al. (2011). Moreover, patient response to warfarin is affected by both demographic

and clinical factors (age, ethnicity, gender, and diet), and is strongly influenced by several

comorbid conditions. Warfarin is also known to interact with other medication that the

patient may be taking; e.g., see White et al. (2010). Due to those complications, warfarin

remains designated as one of the most unsafe drugs; see the Institute for Safe Medication

Practices (2012) and the American Stroke Association (2015).

Recent medical research indicates that pharmacogenetic factors, i.e., genetic differences

between patients, may significantly affect patient response to warfarin; see Botton et al.

(2011). Nevertheless, genetic testing remains difficult, costly, and not widely used; e.g.,

see Patrick et al. (2009), Ginsburg and Voora (2010), and Bhatt (2014). This evidence has

prompted Holbrook et al. (2012) to specify in the 2012 ACCP guidelines that genetic testing

is “ not (considered) cost effective by most drug policy experts.” (p. e159S). Therefore, there

is a need for a treatment design that enables systematic learning about that unobservable

patient sensitivity without expensive genetic testing. In this paper, we propose such a design.
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Personalized Treatment Design for AF. Physicians typically use the International

Normalized Ratio (INR) to quantify patient response to warfarin. The desired INR range

for patients with AF is between 2 and 3. There are two stages involved (International

Warfarin Pharmacognetics Consortium, 2009). In the initiation stage, the physician learns

about patient sensitivity so as to prescribe an appropriate warfarin dose. In the maintenance

stage, the physician assumes prior knowledge of his patient’s sensitivity, with some acceptable

degree of uncertainty, and prescribes a stable warfarin dose accordingly. In this paper, we

model both stages involved in anticoagulation therapy. In particular, we use a partially-

observable Markov decision process (POMDP) to model the initiation stage of treatment and

enable learning about the unobservable patient sensitivity, and a Markov decision process

(MDP) to model the maintenance stage of treatment. As such, ours is the first paper which

proposes a systematic approach for the entire treatment process.

Contributions. We develop a closed-form expression for belief updates (about sensitivity)

in the POMDP framework; we prove that the myopic policy is optimal for the MDP model;

and we formulate sufficient conditions for the existence and uniqueness of the myopically

optimal warfarin dose for the MDP model: This is the stable dose; see Botton et al. (2011).

We also analyze the impact of this risk-minimizing dose on the time in therapeutic range

(TTR). The TTR is defined as the proportion of visits that the INR remains within the

target interval (2, 3) (Ansell et al., 2001). We prove that, contrary to common medical

belief, a risk-minimizing dose may not always lead to a desirable TTR.

Our work is grounded in the realities of current medical practice. The real-life patient

data, which we use in calibrating the proposed methodology, are gathered at the Hematology

Clinic of the Jewish General Hospital in the city of Montreal, Canada. We show that our

proposed models fit the data well. Last but not least, we conduct a detailed numerical study

and show, numerically, that the myopic policy is very close to optimal for the POMDP

model. This suggests that it suffices for physicians to solve the single-stage belief updating
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problem, at each decision epoch, during the initiation stage. We also formulate several

recommendations, e.g., concerning the required length of the initiation period and how it is

affected by the level of patient sensitivity, the effect of previous adverse events on subsequent

treatment, and the importance of correctly assessing patient sensitivity.

Literature Review. In this paper, we contribute to the emerging body of literature em-

ploying operational research techniques for the personalization of medical guidelines, which

was designated as one of the main open research challenges in Denton et al. (2011). In a set-

ting such as ours, where medical decisions need to be made sequentially in highly stochastic

environments, Markov decision processes (MDP) are ideally suited; see Shaefer et al. (2004)

for a comprehensive survey. More recent references include MDP applications to liver trans-

plantation (Alagoz et al., 2007), to HIV (Schechter et al., 2008), ovarian hyperstimulation

(He et al., 2010), the timing of biopsy decisions in mammography screening (Chhatwal et

al. 2010), and the optimizing of diagnostic decisions after a mammography (Avyaci et al.,

2012). POMDPs are an extension of MDPs which relax the assumption that the state of

the system is known. Recent references include POMDP applications to to heart disease

(Hauskrecht and Fraser, 2000), Parkinson’s disease (Goulionis and Vozikis, 2009), colorectal

cancer (Leshno et al. 2003), breast cancer (Maillart et al., 2008 and Ayer et al., 2010), and

stroke (Coroian and Hauser, 2015). The work of Coroian and Hauser is different from ours

in that the authors do not solve the problem of determining personalized dosing decisions, as

we do in this paper. Instead, they focus on selecting the learning technique in the POMDP

framework which optimizes predictive accuracy. Witt et al. (2009), Klein et al. (2009),

Millican et al. (2007), Botton et al. (2011), and references therein, use regression models to

determine the stable warfarin dose as a function of several covariates. However, they do not

address how to sequentially learn about an unobservable patient sensitivity.

The remainder of this paper is organized as follows. In §2, we describe our two-stage

framework. In §3, we describe our POMDP model, and in §4, our MDP model. In §5,
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Initiation stage 

 Patient visit:

0. Measure patient INR
1. Update belief about γ
2. Prescribe new warfarin dose

Steps 0−2 are repeated until a desired
level of confidence about γ is reached

Maintenance stage 

           Stable warfarin dose 

Figure 1: Conceptual framework.

we describe our data set. In §6, we fit our POMDP model to data. In §7, we describe

our detailed numerical study. In §8, we make concluding remarks. We include supportive

material in an online supplement to this paper.

2. General Framework: A Two-Stage Methodology

In Figure 1, we describe the conceptual framework of this paper. We use a POMDP frame-

work to model the initiation stage of treatment. At the onset of treatment, the physician

has some initial belief about the patient’s sensitivity. At each patient visit to the clinic, the

physician measures the patient’s INR. Based on this new INR measurement and the patient’s

treatment history, the physician updates his/her belief about the patient’s sensitivity. Based

on this updated belief, the physician aims to prescribe an optimal, risk-minimizing, warfarin

dose. We quantify the risk associated with a given INR value by using a convex combination

of bleeding and stroke relative risks. For the functional forms of the bleeding and stroke

risks, we rely on the literature; see Hylek et al. (2003).

The belief-updating steps are repeated until the physician forms a belief about the pa-

tient’s sensitivity which is deemed to be sufficiently accurate. We assume that the conver-

gence criterion for the POMDP (the level of desired accuracy about the patient’s sensitivity)
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is exogenously specified. We do so intentionally because of the inherent tradeoff between the

clinical benefits of enhanced learning about patient sensitivity on one hand, and the incon-

venience of frequent visits to the clinic during the initiation stage on the other hand. Indeed,

clinical visits are typically costly for patients; e.g., see Hwang et al. (2012) and Shariff et al.

(2012). Since we take the physician’s perspective in this work, we do not consider additional

costs incurred by the patient per visit to the anticoagulation clinic. However, we indirectly

allow for those costs by assuming an exogenous stopping criterion for the POMDP.

We use an MDP framework to model the maintenance stage of treatment. Based on a

preformed belief about the patient’s sensitivity, which results from the initiation stage, the

physician prescribes the optimal dosage. We prove that the myopic policy is optimal for that

MDP, so that it suffices to solve the single-stage problem at each decision epoch.

In this paper, we determine optimal dosing decisions in the initiation and maintenance

stages separately. An alternative approach is to jointly solve the problems in both stages. In

a joint solution, the physician makes optimal dosing decisions which minimize the total ex-

pected discounted risk, cumulative over both stages, up to and beyond the stopping criterion

(for belief updating) in the initiation stage. We opt against such a joint solution approach

for two main reasons. First, our two-stage solution is in line with the realities of medical

practice where initiation and maintenance are typically treated independently because they

involve different visit frequencies, risks, and clinical objectives. Second, commercially avail-

able software for solving POMDP’s does not allow for such a joint solution where there is

no belief updating beyond a certain, pre-specified, point (end of initiation stage).

In general, a joint solution should typically lead to a smaller cumulative expected risk

compared to a separate solution. In the supplement, we numerically compare between the

joint and separate solutions of the problem, and show that they do not differ greatly; as

such, our two-stage solution approach is further justified.
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3. The Initiation Stage of Treatment

We formulate a discrete-time, finite-horizon, POMDP model to solve the initiation-stage

problem. In this modelling framework, a single decision maker (the physician) minimizes

the cumulative expected risk for the patient by prescribing appropriate warfarin dosages at

successive decision epochs, i.e., at clinical visits. A POMDP model is appropriate because

the physician cannot directly observe patient sensitivity to warfarin, i.e., the states of the

process are partially hidden. In this section, we first present the POMDP model, then we

describe both our dose-response model and the belief updating procedure.

3.1. POMDP Model Formulation

In order to behave optimally in a partially observable setting such as ours, it is necessary to

use the history of the treatment to aid in the disambiguation of patient sensitivity. Based on

previous dose prescriptions and corresponding INR measurements, the physician maintains

and updates a probability distribution over the set of possible patient sensitivity values.

This probability distribution represents the physician’s current belief about patient sensi-

tivity. Consecutive optimal dosages depend on sequentially updated beliefs. Our POMDP

framework constitutes a systematic way of doing that. Here is some notation that we use.

Decision Epochs: t = 1, 2, ..., T . Each decision epoch in the POMDP model corresponds

to a patient visit to the clinic, i.e., t = i corresponds to the ith visit, where 1 ≤ i ≤ T .

Consistent with medical practice, we assume that the times between successive visits are

long enough to allow for doses to exert their full effects; e.g., visits are scheduled every 2 or

3 days. We make no other assumptions about the times between successive decision epochs.

The time horizon, T , taken to be the time needed to adequately learn about patient

sensitivity, is typically not known at the onset of treatment. Indeed, T depends both on the

desired ensuing level of confidence about patient sensitivity and the specific characteristics

of the patient at hand. In §7, we use simulation to estimate the number of visits required to
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form different confidence levels (about sensitivity) for alternative patients.

State Space: S. We let st ∈ S denote the state of the system at time t. In particular,

we let st be the pair (INRt, γt), where INRt is the INR of the patient at t, and γt is the

sensitivity of the patient at t. We assume that the physician measures INRt but cannot

observe γt. Instead, the physician must maintain and update a belief distribution about γt.

We let γt be the slope of a linearly additive Gaussian dose-response model for the natural

logarithm of INRt; see §3.2. In our model, we do not impose a finite state space. Instead, we

assume that both INRt and γt may take values in the set of nonnegative real numbers. We

take patient sensitivity to be the result of the patient’s genetic information which does not

vary with time. Thus, in our context, it is reasonable to make the assumption of a constant,

time-invariant, γt; accordingly, we drop the time subscript, t, from its notation.

Action Space: A. We let dt ∈ A be the warfarin dose (in milligrams) prescribed by the

physician at visiting epoch t. That is, dt ≥ 0.

POMDPs are computationally difficult to solve; see Braziunas (2003). Indeed, since the

underlying states are not known with certainty, the decision maker has to base his decisions

on belief states. Since a belief state assigns a given probability to every system state, there

is a continuous number of possible belief states to encounter. Essentially, solving a POMDP

amounts to solving a continuous state-space belief MDP; e.g., see Hauskert and Fraser (2000).

To alleviate some of that computational burden, and to be consistent with medical prac-

tice, we discretize the action and state spaces, A and S, when numerically solving our

POMDP in §7. For simplicity, and to be consistent with our subsequent numerical results,

we hereafter use notation which is consistent with having a discrete state space.

State-Transition Function: PS : S × A × S → [0, 1]. We let PS(s, d, s′) denote the

probability that the next state is s′ given that the current state is s and the current action

taken is d. This probability is specified by our dose-response model; see §3.2. (We assume
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time-homogeneous transition probabilities.) In a model with time-independent γ, we assume

that transitions from a given state (INRt, γ) to other states with different γ values are not

possible, i.e., PS((INR, γ), d, (INR′, γ′)) = 0 if γ 6= γ′. In §6 and §7, we discretize states by

replacing individual INR values by corresponding intervals.

Observation Space: O. We denote an observation made at time t by ot ∈ O. Since we

assume that the physician can only observe INRt at t, we let ot = INRt.

Observation Probability Function: PO : S × O → [0, 1]. We let PO(s, o) denote the

probability of making observation o given that the current state is s. In our context, PO

has the following simplified form. Since we assume that the physician correctly measures

the patient’s INR at each visiting epoch, we must have that PO((INR, γ), INR′) = 1 if and

only if INR = INR′ and PO((INR, γ), INR′) = 0 otherwise. Allowing for measurement errors

in the INR, or for INR measurements outside scheduled clinical visits, e.g., as would be the

case with patient self-monitoring of their INR, are left as directions for future research.

Belief space: B. An element b ∈ B is a probability vector over possible γ values. (To

denote the belief at a particular state s, we will use the notation b(s).) The policy component

of a POMDP maps the physician’s current belief state into an optimal dose. In §3.3, we

describe how the physician transitions between different belief states.

Risk function: r : S × A → R, where R denotes the set of real numbers. This function

gives the immediate risk, r(s, d), associated with prescribing a dose d and ending up in state

s; for a specification of this risk function in our case study, see §5.

Our objective is to minimize the cumulative discounted expected risk over the horizon T .

The solution of the POMDP can be carried out using dynamic programming techniques; see

Bellman (1957). Let the value function V ∗j denote the optimal expected reward when there
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are j steps to go until T . Then, V ∗j satisfies the following Bellman’s equation:

V ∗j+1(b) = min
d∈A

{
R(b, d) + θ

∑
o∈O

p(b, d, o)V ∗j (τ(b, d, o))

}
, (3.1)

where θ is some discount factor (since the decision does not observe the underlying state,

we do not sum over these). In (3.1), p(b, d, o) is the probability of making an observation o

in the next epoch given that the current action is d and the current belief is b, and R(b, d)

is the expected one-step risk given current belief b and action d. That is, p(b, d, o) can be

calculated using basic probability as follows:

p(b, d, o) =
∑
s′∈S

PO(s′, o)PS(s, d, s′)b(s).

In (3.1), τ is an update function that computes a new belief b′ = τ(b, d, o) given the current

belief b, the current dose decision d, and the future observation o; see §3.3. Finally, in (3.1),

R(b, d) can be calculated as:

R(b, d) =
∑
s′∈S

∑
s∈S

r(s′, d)PS(s, d, s′)b(s).

It was shown in Smallwood and Sondik (1973) that the value functions for POMDPs are

finite, piecewise linear, and convex which greatly simplifies the solution of (3.1). We will

make use of that piecewise linear representation when solving our POMDP in §7.

3.2. Dose-Response Model

We model the log-transformed INR using a linearly additive Gaussian model with several

clinical and demographic fixed effects. In §5, we fit this model to data.

Let tj1 < tj2 < ... < tj
Nj be the visiting epochs for patient j. Let N j be the total number

of visits for patient j. Let INRj
i be the INR of patient j measured at visiting epoch tji .

Define Y j
i ≡ ln(INRj) where ln(·) denotes the natural logarithm function. Let dji be the dose
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prescription between tji−1 and tji , resulting in INRj
i . Let γj denote the sensitivity of patient

j. Our model for the log-transformed INR is given by:

Y j
i ≡ ln(INRj

i ) =
K∑
k=1

νkI
j
k + γjdji + εji = β + γjdji + εji , (3.2)

where β is defined as β ≡
∑K

k=1 νkI
j
k and 1 ≤ i ≤ N j. We let εji be independent and

identically distributed (i.i.d.) normal random variables with mean 0 and variance σ2
ε . We let

Ijk be an indicator random variable which equals 1 when fixed effect k is present for patient

j. We define K as the total number of fixed effects. For example, if k corresponds to gender,

then we let Ijk = 1 when patient j is male, and 0 otherwise. We omit the superscript j when

the specific patient index does not matter. In Table 1 of the supplement, we describe all

fixed effects in (3.2). The parameters νk in (3.2) and the variance parameter, σ2
ε , need to be

estimated from data. In §6, we use (3.2) to compute state transition probabilities.

3.3. Belief Updates

The physician is uncertain about the value of γ, which he treats as random. Here, we

assume that the physician’s initial belief about γ is normally distributed with mean µ0 and

variance σ2
0. In Bayesian parlance, this is the prior distribution. (We selected a normal prior

for analytical convenience; however, we conducted numerical experiments using a lognormal

prior instead and reached largely the same conclusions.) Let Y1, Y2, ..., Yn denote the history

of log-transformed INR observations up to, and including, epoch n, and the parameters β,

di for 1 ≤ i ≤ n, and σ2
ε be defined as in (3.2). Then, the following lemma holds.

Lemma 3.1. The updated belief distribution about γ at the nth decision epoch is normal

with variance σ2
n =

(
1
σ2
0

+
∑n

i=1
d2i
σ2
ε

)−1
and mean µn = σ2

n

(∑n
i=1 di

yi−β
σ2
ε

+ µ0
σ2
0

)
,
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Proof. The proof readily follows from conditional multivariate Gaussian theory and the

linearity assumption in (3.2). Indeed, we can write the following vector equation:

(Y1, ..., Yn) = (d1, d2, ..., dn) · γ + (β, β, ..., β) + (ε1, ..., εn),

where γ is normally distributed with mean µ0 and variance σ2
0, . The updated belief dis-

tribution about γ is the conditional distribution of γ given the observations Y1 = y1, Y2 =

y2, ..., Yn = yn. This conditional distribution can be easily shown to be normal as well; ap-

plying equations (2.113)-(2.117) of Bishop (2006) yields the desired expressions for the mean

and variance of this conditional distribution, as stated in the lemma.

It is insightful that the variance term in Lemma 3.1 decreases with increasing dosages.

This indicates that, at any decision epoch prior to T , a myopically suboptimal dose may

be optimal for the POMDP since it may lead to faster learning about γ (reduction in the

belief distribution’s variance). In other words, the optimal solution for the POMDP bal-

ances, at every epoch, risk minimization with faster learning about γ. This is known as the

“exploitation versus exploration” tradeoff in reinforcement learning.

4. The Maintenance Stage of Treatment

In the maintenance stage, the physician assumes prior knowledge of his patient’s sensitivity,

with some degree of uncertainty, and prescribes warfarin doses accordingly. We model the

maintenance stage of treatment using a discrete-time, finite-horizon MDP framework. We

begin by briefly describing our MDP model, and then derive some relevant analytical results.

4.1. MDP Model Formulation

State Space and decision epochs. We define the state of the MDP, at a given decision

epoch, to be the observable INR. As such, the state of the process is fully observable which

makes the MDP framework appropriate. The decision epochs correspond, as in the POMDP
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framework, to patient visiting epochs to the clinic.

State transition function. Transitions between system states are specified by the dose-

response model in (3.2) where, taking the physician’s perspective, γ is now assumed to be

normally distributed with a mean of µM and a variance of σ2
M . That is, the log-transformed

INR is assumed to be normally distributed with a mean equal to β + diµM and a variance

equal to d2iσ
2
M +σ2

ε . The distribution of γ at the onset of the maintenance stage results from

belief updates during the initiation stage: µM and σ2
M are given by Lemma 3.1, and depend on

the entire history of treatment during the initiation stage. We assume that the distribution

of γ does not change during the maintenance stage, i.e., consistently with medical practice,

the physician’s belief about patient sensitivity is invariant during that stage.

Action space, risk function, horizon, and objective. The action space and risk func-

tion for the MDP are as in §3.1. The time horizon, TM is set to 100 visits. Finally, the

objective of the problem remains to determine appropriate dosages so as to minimize the

total expected cumulative risk. Let H∗j denote the optimal expected reward when there are

j steps to go until TM . Then, H∗j satisfies the following Bellman’s equation:

H∗j+1(s) = min
d∈A

{
r(s, d) + θ

∑
s′∈S

PS(s, d, s′)H∗j (s′)

}
. (4.1)

4.2. Optimality of the Myopic Policy

We now characterize the optimal policy for the MDP.

Theorem 4.1. The myopic, single-stage, policy is optimal for the MDP.

Proof. Our proof proceeds by induction on the number, n, of remaining epochs until TM .

It is not hard to see that the induction hypothesis holds initially: n = 0 corresponds to

time TM , at which point it is optimal to select the myopically optimal dose. To prove the

inductive step, we assume that myopically optimal doses are optimal for the MDP for the
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final k decision epochs, i.e., for all n ≤ k, where k ≤ TM is some nonnegative integer. We

now show that the same must hold for n = k+ 1. Let dTM−k be the selected dose when there

are n = k + 1 decision epochs remaining. Since the distribution of γ is invariant during the

maintenance stage, the future dynamics of the system and, in particular, the future risks are

unaffected by dTM−k. Thus, given that future optimal doses are also myopically optimal, by

the induction hypothesis, the same must also hold for dTM−k; indeed, there is no advantage

in selecting a myopically subpotimal dose for dTM−k. This completes the inductive proof.

The myopic, single-stage, problem is the same across all decisions epochs of the MDP.

Thus, the solution to that problem, if it exists and is unique, is constant throughout the

maintenance stage. This coincides with medical practice where it is common that a unique,

stable, dose is prescribed to patients during the maintenance stage of treatment; e.g., see

Witt et al. (2009), Klein et al. (2009), Millican et al. (2007) and Botton et al. (2011). Next,

we investigate sufficient conditions for the existence and uniqueness of that stable dose.

4.3. Stable Dose

Consistent with the literature, we assume that the stroke and bleeding risks are exponential

functions of the INR; see Rosendaal et al. (1993). For exact functional forms, we rely on

previous literature; e.g., see Hylek et al. (2003).

We focus on relative risks of stroke and bleeding, as a function of the reported INR

for the patient. The relative risk for stroke (bleeding) is the ratio between the (estimated)

probability of stroke for a given INR value, and the (estimated) probability of stroke for

a baseline INR value lying in the desired interval (2, 3). Indeed, most current guidelines

recommend an INR target of 2.5 (with the range of 2 and 3); see Oden et al. (2006).

Usually, estimates of probabilities of stroke and bleeding events are reported in the liter-

ature in units of incidence rates per 100 patient-years for a given INR level; e.g., see Hylek

et al. (2003), Hylek et al. (2007), and Patrick et al. (2009). More precisely, a cohort of

patients is followed up for some period of time during warfarin treatment, usually a year,
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Figure 2: Weighted total risk function, minimized at an INR of 2.5.

and the proportion of patients during that year who have experienced an adverse event, be

it a stroke or a severe bleeding, for a given INR value, is reported.

It is important to note that relative risks do not have time units, since they are ratios

of probabilities, and that is why we assume that they are independent of time. We let the

total risk associated with a given INR be equal to a convex combination of the corresponding

stroke and bleeding risks. We choose the weights in this convex combination so that the risk

is minimized for an INR value of 2.5. In the appendix (§??), we justify the additive nature

of our risk criterion in solving the POMDP and MDP models.

In Figure 2, we plot the resulting risk function. For analytical tractability, we use an

approximating quadratic function (dashed curve) as our risk function. Figure 2 shows that

this is a good approximation for reasonable values of the INR. In closed form, for a given

INR value equal to x, where x ≥ 0, the risk function r(x) can then be given by

r(x) = a+ b(x− c)2 ; (4.2)

in Figure 2, a = 1.19, b = 2/7, and c = 2.5.
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The single-stage problem, to be solved at every decision epoch i of the MDP, is to

minimize E[r(eYi)] where Yi = β + γdi + εi is normally distributed with a of mean β + diµM

and a variance of d2iσ
2
M + σ2

ε . That is, eYi is lognormally distributed.

Given the quadratic form of the risk function in (4.2), the myopically optimal dose is the

one which minimizes E[(eYi − c)2], i.e., it minimizes V ar[eYi ] + (E[eYi ] − c)2. Hereafter, we

drop dependence on i since the specific visiting epoch does not matter. By exploiting the

properties of the lognormal distribution, our single-stage problem becomes:

min
d≥0

(eσ
2
Md

2+σ2
ε − 1)(E[eY ])2 + (E[eY ])2 − 2cE[eY ] + c2,

where we can drop the constant term and simplify as follows:

min
d≥0

eσ
2
Md

2+σ2
ε (E[eY ])2 − 2cE[eY ]. (4.3)

We can expand (4.3) using the fact that E[eY ] = eβ+µMd+0.5(d2σ2
M+σ2

ε ), and obtain:

min
d≥0

e2β+2µMd+2σ2
Md

2+2σ2
ε − 2ceβ+µMd+0.5σ2

Md
2+0.5σ2

ε .

In the following theorem, we investigate sufficient conditions guaranteeing the existence and

uniqueness of a stable dose. Essentially, the lower bound in these conditions guarantees that

the objective of our single-stage problem is strictly convex. We impose the upper bound to

guarantee the existence of a local minimum, which must, by strict convexity, be both global

and unique. We relegate the proof of the theorem to the appendix.

Theorem 4.2. A sufficient condition for the existence and uniqueness of the stable dose is

the following:

max{ c
2
,

cσ4
M

3σ4
M + 4σ2

Mµ
2
M + µ4

M

,
cσ2

M

σ2
M + µ2

M

} < eβ+1.5σ2
ε < c,
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where µM and σ2
M are the physician’s belief about the mean and variance of γ, respectively,

at the beginning of the maintenance stage; β and σ2
ε are as in (3.2).

4.4. An Alternative Criterion: Time in Therapeutic Range

The time in therapeutic range, TTR, is defined as the probability that the INR lies in the

therapeutic range; see Ansell et al. (2001). The higher the TTR, the more effective the

treatment. In this section, we investigate how the TTR maximization and risk minimization

criteria are different, in the maintenance stage, by computing the optimal dose under each

criterion. This is important because those two criteria are often confused in practice.

In what follows, we assume an idealized scenario where patient sensitivity is known. (For

numerical results comparing the two criteria when there is uncertainty about γ, see Table

S2 in the supplement.) We denote patient sensitivity by γa. Under that assumption, we can

derive a closed-form expression for the optimal dose under each criterion; see Lemma 4.1.

The dynamics of the log-transformed INR are given by Y = β + γad + ε. The optimal dose

under the TTR criterion maximizes the probability that eY lies in the therapeutic range; the

optimal dose under the risk minimization criterion minimizes E[(eY − c)2].

Lemma 4.1. The stable dose which maximizes the TTR is:

d∗TTR =
ln(2) + ln(3)− 2β

2γa
,

and the stable dose which minimizes the risk is:

d∗R =
1

γa
(ln(c)− β − 1.5σ2

ε ),

for known patient sensitivity γa, and β and σ2
ε as in (3.2).
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Proof. Given the normality of Y , a closed-form expression for the TTR is given by

TTR = P (Y ∈ (ln(2), ln(3))) = Φ

(
ln(3)− β − γad

σε

)
− Φ

(
ln(2)− β − γad

σε

)
, (4.4)

where Φ(·) is the cumulative distribution function of a normal random variable with a mean

equal to 0 and a variance equal to 1. Given (4.4), we see that selecting d such that the origin

is the midpoint of the interval ((ln(2) − β − γad)/σε, (ln(3) − β − γad)/σε) maximizes the

TTR. This corresponds to an optimal value d∗TTR as in the statement of the lemma.

Deriving the risk minimizing dose amounts to solving the problem

min
d≥0

e2β+2γT d+2σ2
ε − 2ceβ+γT d+0.5σ2

ε .

Upon differentiation of the objective function and setting the derivative to 0, we obtain that

the unique minimizing dose is d∗R = (ln(c)− β − 1.5σ2
ε )/γT , as desired.

Interestingly, the optimal dosages under the TTR maximization and risk minimization

criteria can be quite different. For example, for a patient sensitivity equal to the average

sensitivity in our data set, and for β and σ2
ε as estimated from our data, we find that d∗TTR = 4

mgs (leading to a maximal value of the TTR equal to 47.5%) whereas d∗R = 2.34 mgs: such

dosages typically lead to different patient responses in practice. In this section, we compared

the TTR and risk criteria in the maintenance stage of the problem. In §2 of the supplement,

we include numerical results comparing the TTR and risk criteria in the initiation stage (by

solving the POMDP under each criterion), and show that when there is uncertainty about

γ, the difference in performance between those two criteria is generally not too great.

4.5. Adverse Events

The occurrence of a previous stroke is incorporated in the fixed effect term, β, in our dose-

response model. Thus, in the event of a stroke, β should be updated. Consequently, the

future dynamics of the INR and all subsequent risks (which are functions of the INR) are
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effected by that stroke event through the updated value of β. In §7, we include a numerical

study which quantifies the effect of ignoring a previous stroke on future dosages.

5. The Case Study

The data were gathered at the hematology clinic of the Jewish General Hospital in Montreal,

Canada. They were collected over several years, ranging from January 3, 2000 to May 10,

2007. The data describe the anticoagulation treatment of 547 patients diagnosed with AF,

and taking warfarin to reduce their risk of stroke. Each patient’s treatment consists of

successive visits to the clinic. At each visit, the patient’s INR is measured through a blood

test and, depending on this INR value, a new warfarin dose (in mgs) is prescribed. In our

data set, warfarin dose prescriptions are based solely on the physician’s best judgment. As

this is the common situation in practice, there is no systematic bias in the data resulting

from the usage of a specific algorithm to determine warfarin dose recommendations.

5.1. Description of the Data Set

Our data set contains both demographic and clinical information for each patient. Demo-

graphic information consists of age and gender. Clinical information can be divided into two

main categories. The first category describes the relevant past medical history of the patient,

i.e., the presence of other diseases. The second category contains information relating to the

bleeding risk of the patient. In Table 1 of the supplement, we specify all data variables.

We do not have any additional information about how patients manage their prescrip-

tions. In the absence of such information, we assume that all doses are consistently taken by

patients, as prescribed, throughout their treatments. The data set represents all patients at

the hematology clinic who are receiving warfarin for stroke prevention, and who were active

patients for given time period. As such, there is no sampling bias, and the data does not

correspond to only one physician. In Figure 3, we plot INR measurements for three patients
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who received treatment at the clinic. Figure 3 illustrates the need to develop a more ef-

fective anticoagulation treatment. Indeed, Figure 3 shows that the INR for those patients

consistently falls outside the desired target range, between 2 and 3. The patterns observed

in Figure 3 are consistent across most patients.

The number of clinical visits depends on the patient at hand, and ranges from a single

visit to a maximum of 29 visits. It is important to note that this maximum number of visits

is due to the fact that our data collection is limited in time, and does not span the entire

length of the patient’s treatment. There are 17 patients who visited the clinic only once. We

remove those patients from our data set since we cannot observe their INR responses to the

prescribed dosages. For each patient, we do not know the last dose taken prior to the first

recorded INR value (patients may have begun treatment earlier). Therefore, we remove all

initial INR measurements from the data. There are also some missing values in our data set.

For example, there are 10 patients with no gender listed. Additionally, there are missing

INR values for 6 patients. Finally, different conventions for warfarin dose prescriptions are

used, and some are hard to interpret. We remove all patients with missing or erroneous data,

and are left with a total of 503 patients. For each patient, we compute the average daily

warfarin dose prescribed at each visit, and use that as a covariate in our model.

5.2. Fitting to Data

We begin by investigating the validity of our normality assumption for the log-transformed

INR, as described in §3.2. In Figure 4, we present a QQ-plot for the residuals of the model

in (3.2). Figure 4 shows that the normality assumption is reasonable.

In Table 1, we present point estimates of some model parameters and statistical sig-

nificance results, at the 95% confidence level, for selected fixed effects in (3.2). The fixed

effects that were found to be significant are: the warfarin dose, adult-onset-diabetes-mellitus

(AODM), and previous cerebrovascular accident (CVA). The significance of those factors is

consistent with the physician’s intuition.
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Figure 3: Plot of the INR for three AF patients
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Figure 4: QQ-plot of residuals of the dose-
response model.

6. Estimates of POMDP Model Parameters

In this section, we estimate the parameters of the POMDP model, described in §3, based

on our data set. In §7, we numerically solve the resulting POMDP and formulate several

insights. Solving POMDPs is intractable in general, partly because the optimal policy may

be infinitely large. To alleviate some of that computational burden, we discretize as follows.

State space. As explained in §3, we define the state in our POMDP model, at a given

decision epoch t, to be the pair (INRt, γ). We fit our dose-response model in (3.2) to data, and

estimate corresponding γ values for our patient population. We find that the average value

of γ in our data set is equal to 0.08, its first quartile is equal to 0.03, and its third quartile

equal to 0.13. Based on these estimates, we designate three levels of patient sensitivity: (1)

Low (γ = 0.05), (2) Medium (γ = 0.11) and (3) High (γ = 0.15). Categorizing patients into

three levels of sensitivity is often done by physicians in practice; see Moyer et al. (2009).

We discretize INR values into 5 different intervals. These intervals are: I1 = (0, 1.5],

I2 = (1.5, 2], I3 = (2, 3], I4 = (3, 4], and I5 = [4,∞). Discretizing the INR as such is

consistent with medical practice; e.g., see Jaffer and Bragg (2003). Since we have 3 values

for γ and 5 intervals for the INR, the total number of states is 5× 3 = 15 states.
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Category Coefficient Std. error p-value

AODM (0) 0.914 0.11 < 0.001
RH (0) 0.00175 0.025 0.95
HYP (0) 0.0384 0.025 0.13
MHV (0) -0.339 0.083 < 0.001
CVA (0) -0.0696 0.027 0.011
ULC (0) -0.01323 0.027 0.062
AGE IND (0) -0.0325 0.023 0.15
Risk of fall medium (1) 0.0392 0.76 0.45
AC (0) 0.0309 0.031 0.33
Gender (Female) 0.0554 0.030 0.57
Warfarin dose – – < 0.001

Table 1: Partial results for the fixed effects and covariance parameters specified in (3.2).
Point estimates of model coefficients are shown with corresponding standard errors and p-
values of tests for statistical significance. The numbers in parentheses indicate whether or
not the effect is present (1) or not (0).

Action space. We let the set of allowed warfarin doses coincide with the available con-

centrations of warfarin pills in practice; see Ansell et al. (2001). That is, we let d (in mgs)

be one of the following: 0, 2.5, 5, 7.5, and 10. A dose d = 0 corresponds to interrupting

warfarin treatment until the next patient visit.

State-transition probabilities. For each dose d, we associate a 15 × 15 state-transition

probability matrix, Md
S. We let Md

S(s, s′) = PS(s, d, s′) where, as explained in §3, PS(s, d, s′)

denotes the probability that the next state is s′ given that the current state is s and the

current action taken is d. Since the transition from a given state to another state with a

different patient sensitivity is not possible, Md
S has a block diagonal matrix structure, where

each block corresponds to a given patient’s sensitivity level.

To compute the terms of each submatrix, we rely on the dynamics of our dose-response

model in (3.2). To illustrate, let the current dose be equal to d0 and let γ0 denote patient

sensitivity. Then, ln(INR) is normally distributed with mean β + γ0d0 and variance σ2
ε ,

independently of the current INR level. Thus, the probability of transitioning into a certain

INR interval can be computed based on the cumulative distribution function of a normal
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random variable. For example, the probability of transitioning into the interval (1.5, 2] is

given by Φ((ln(2)− β − γ0d0)/σε)−Φ((ln(1.5)− β − γ0d0)/σε) where Φ(·) is the cumulative

distribution function of a (standard) normal random variable with mean 0 and variance 1.

Risk function. We use the risk function in Figure 2. In order to compute the immediate

risk r((I, γ), d) associated with transitioning into state (I, γ), given a current prescribed

dose d, we assume that the new INR coincides with the midpoint of I. For example, the

immediate risk associated with an INR transition into the interval (2, 3) is r(2.5) = 0. We

let r(5) be the immediate risk associated with a transition into the interval [4,∞).

We let the time horizon T be long enough to allow convergence to a desired belief about

patient sensitivity. The belief about patient sensitivity, in our discrete context, is a proba-

bility vector (pL, pM , pH) of probabilities that γ is low, medium, or high, respectively. This

probability vector is updated sequentially according to a simple application of Bayes’ rule,

given the observed INR values. The convergence criterion for our belief updating procedure

is the final desired belief probability that γ is either low, medium, or high; we denote this

convergence probability by p. In §7, we vary the desired belief and find that an upper bound

T = 200 guarantees convergence in each case. We let the discount factor θ = 0.8.

Recognizing that θ = 0.8 may be considered low in a clinical setting, we also conducted

some of the experiments with a discount factor of 0.98. The results that we obtain are largely

consistent. For the MDP, we proved that the myopic policy is optimal, so the discount factor

has no effect at all. In the POMDP, we show, numerically, next that the myopic policy is

roughly optimal, so that there is also little impact for the discount factor.

7. Numerical Study

In this section, we present numerical results corresponding to both the initiation and main-

tenance stages of treatment. For the numerical solution of the POMDP model, we rely on

the widely used “pomdp-solve” software; see Cassandra (2014). Based on our results, we

derive insights pertaining to the design of anticoagulation therapy in practice. We present
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additional numerical results and discuss related insights in the supplement.

7.1. The Initiation Stage

Near optimality of the myopic policy. We use simulation to compare the performances

of the optimal solution for the POMDP and the myopically optimal solution. (We include

detailed numerical results and a description of our simulation experiments in §S4.1 of the

supplement.) We consider low, medium, and high sensitivity patients, alternative values for

p (0.7, 0.9, and 0.995), and different initial belief probability vectors. For each sensitivity

level and each value of p, we report estimates of the average TTR, average risk value, and

average number of visits required in the initiation stage to reach convergence.

Our results indicate that the performance of the myopically optimal policy is close to that

of the POMDP optimal policy, given our discretization of the problem which is consistent

with medical practice. Indeed, for all initial belief vectors and all patient sensitivities con-

sidered, the average TTR and risk values are close under those two policies. Thus, our study

gives numerical support to solving the single-stage problem instead of the POMDP; this is

practically useful given the numerical complexity of the POMDP.

Length of the initiation stage. In Figures 5, 6, and 7, we report simulation estimates

of the average risk as a function of the number of visits in the initiation stage, averaged

over 10,000 independent simulation replications (we deliberately choose such a large number

of replications to smoothe out the stochastic noise in the plots). In Figure 5, we consider

a uniform initial belief vector and a medium sensitivity level. In Figure 6, we consider a

uniform initial belief vector and a high sensitivity level. Finally, in Figure 7, we consider a

high sensitivity level and an initial probability vector which assigns a probability equal to

0.6 to high sensitivity, and 0.2 to both medium or low sensitivities.

Figures 5, 6, and 7 show that even though smaller risk values are obtained for high values

of p, as expected, the risks corresponding to smaller values of p need not be much larger.
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Therefore, a relatively small number of visits for the initiation stage may be sufficient in

practice. For example, Figures 5 and 6 show that the greatest reduction in risk results from

the initial 20 visits to the clinic. Beyond 20 visits (corresponding to p = 0.54 in Figure 5

and p = 0.68 in Figure 6), risk reduction is relatively marginal.

Such lengths for the initiation stage are reasonable particularly in light of recent tech-

nological advances which permit INR self-monitoring by patients. Indeed, self-monitoring

reduces the number of required patient visits to the clinic, enables more frequent testing,

and is recommended by both The National Institute for Health and Care Excellence (2014)

and The United States Department of Health and Human Services (2014).

Effect of patient sensitivity on learning. Comparing Figures 5 and 6 shows that, for

the same initial probability vector, it usually takes longer to learn about a medium sensitivity,

compared to a high sensitivity (and to a low sensitivity). Indeed, in both figures we consider

a uniform initial probability vector, but different sensitivity values (medium in Figure 5 and

high in Figure 6). However, reaching p = 0.4 for a medium γ, i.e., in Figure 5, requires

around 15 visits, whereas it can be reached in around 5 visits for high γ, i.e., in Figure 6.

The intuition behind this observation is that patients with either low or high sensitivities are

easier to identify due to their more extreme reactions to prescribed dosages. Also, Figures

5, 6, and 7 clearly show that the required number of patient visits sharply increases as our

desired final belief probability about γ increases.

Effect of the initial belief vector. Comparing Figures 6 and 7 quantifies the advantage

of selecting an adequate initial belief vector. Indeed, those figures assume the same (high)

sensitivity but different initial belief vectors. Figure 7 shows that a high level of confidence,

p = 0.8, is reached in less than 10 visits with a strong initial belief about a high sensitivity

value. In contrast, a level of confidence p = 0.65 is reached after about 20 visits in Figure

6. Our recommendation to physicians is to allocate a significant effort in pre-diagnosing the

patient, e.g., via preliminary medical tests or by soliciting additional patient information, to
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Figure 6: Optimal average risk for a uniform
initial belief vector and a high γ.

identify unique patient profiles and form a better initial belief about patient sensitivity; this

would lead to substantially reducing the length of the initiation stage.

7.2. The Maintenance Stage

We now turn to the maintenance stage of treatment. Our objective is to demonstrate,

numerically, the importance of effectively learning about γ during the initiation stage, and

to quantify the effect of ignoring a previous stroke on future treatment. We assume that

the physician has formed a belief about γ during the initiation stage; this belief remains

unchanged during the maintenance stage. In particular, we assume that the belief about

γ at the beginning of the maintenance stage is normally distributed with mean µM and

variance σ2
M . In this section, we plot and discuss corresponding figures; we include detailed

numerical results in §S4.2 of the supplement.

Correct assessment of patient sensitivity. In Figure 8, we consider a medium sensitiv-

ity γtrue = 0.11, and assume that µM = γtrue = 0.11. We then vary the squared coefficient of

variation (SCV) of the belief about γ, SCV ≡ σ2
M/µ

2
M , and study the effect of this variation
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on the optimal risk in the maintenance stage (corresponding to the myopically optimal dose).

Figure 8 shows that the optimal risk in the maintenance stage increases as the uncertainty

about γ increases. In Figure 9, we assume that σ2
M = 0 and, once more, a medium sensitivity

γtrue = 0.11. We vary the value of µM and find, as expected, that the lowest value of the

optimal risk is achieved at µM = γtrue = 0.11 (mean equal to true value). Interestingly,

having µM = γtrue may not always be risk minimizing, as we show next.

In Figure 10, we assume that the physician’s belief about γ is uncertain. In particular,

we assume that γtrue = 0.11 but σ2
M = 5. Figure 10 shows that with such a high σ2

M

value, the optimal risk does not, surprisingly, correspond to µM = γtrue = 0.11. Indeed,

the optimal risk is monotone increasing in µM , so that underestimating sensitivity results

in a smaller risk value. In other words, we can formulate the following recommendation: If

the physician remains highly uncertain about the true value of γ after the initiation stage

(e.g., in exceptional cases where the patient state is unusually variable), then it may be risk

minimizing to underestimate γ.

Effect of ignoring previous stroke events. We now study the effect of ignoring a

previous stroke when treating a patient in the maintenance stage. For this, we assume a

sensitivity level γ = 0.12 and compare the following three scenarios for different values of the

SCV and of µM : (1) the patient does not experience any previous strokes; (2) the patient

experiences a stroke and the physician updates the fixed effect β in (3.2) accordingly after

this stroke; and (3) the patient experiences a stroke and the physician does not update β.

We present our results in Table 2. Table 2 shows that risk can considerably increase by

not taking into account the occurrence of a previous stroke event, and that this increase is

particularly strong when the uncertainty, σ2
M , about γ is low. This is intuitively clear since

in this case the physician is “confident” about a wrong model for the patient’s INR. For

example, for an SCV equal to 0.01 and µM = 0.02, the optimal risk increases from 5.1 to

14.1 when ignoring a previous stroke in designing future treatment.
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XXXXXXXXXXXXSCV for γ
µM 0.02 0.04 0.08 0.1 0.12

No previous stroke

0.01 11.9 (12.7) 2.06 (6.4) 1.39 (3.2) 1.37 (2.5) 1.37 (2.1)
0.5 3.22 (8.2) 1.48 (4.1) 1.36 (2.1) 1.37 (1.6) 1.38 (1.4)
5 1.37 (2.6) 1.38 (1.3) 1.41 (0.64) 1.41 (0.52) 1.42 (0.43)

Previous stroke taken into account

0.01 5.13 (9.3) 1.69 (4.7) 1.38 (2.3) 1.36 (1.9) 1.36 (1.5)
0.5 2.19 (6.0) 1.42 (3.0) 1.36 (1.5) 1.37 (1.2) 1.37 (1.0)
5 1.36 (1.8) 1.37 (0.90) 1.39 (0.45) 1.39 (0.36) 1.40 (0.30)

Previous stroke ignored i.e., use same dosages as without a stroke

0.01 14.1 2.34 1.44 1.39 1.37
0.5 3.77 1.57 1.37 1.36 1.36
5 1.39 1.36 1.38 1.39 1.39

Table 2: Expected risk values in the maintenance stage under different scenarios and γ =
0.12. We include in parentheses the optimal dosages required to minimize the risk criterion.

8. Concluding Remarks

In this paper, we proposed an individualized design for the anticoagulation treatment of

patients with AF. This heart condition puts patients at an increased risk of occurrence of a

stroke. Patients with AF are typically prescribed warfarin, a popular anticoagulant drug, as

a preventive measure. Despite its popularity, warfarin is notoriously difficult to manage.

We modelled the initiation stage of treatment using a POMDP model (§3). In the

POMDP modelling framework, we proposed a systematic way to learn about patient sensi-

tivity, γ, which strongly influences patient response to warfarin and is typically unobservable.

We modelled the maintenance stage of treatment using an MDP model (§4). In the

MDP modelling framework, we assumed some pre-formed belief about γ and derived several

analytical results. We analyzed data provided by a hematology clinic in Montreal (§5).

Through direct analysis and numerical experiments, we investigated issues faced by doctors in
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practice. For the initiation stage of treatment, we derived a closed-form expression for belief

updates in the POMDP framework (§3.3). We showed that the complexity of the POMDP

lies in balancing risk minimization with faster learning about γ, at each decision epoch. In

§6, we fit our POMDP model to data. In §7, we discretized our problem, consistently with

medical practice, and presented simulation results based on the numerical solution of the

POMDP. Our experiments showed that the performance of the myopically optimal policy is

close, in terms of both average risk and TTR, to the optimal POMDP policy.

We proved that the myopic policy is optimal for the MDP model (§4.2). This shows

that it suffices to solve the myopic problem, at every decision epoch, during the maintenance

stage. Moreover, there is a unique optimal dose for all decision epochs during that stage.

This is consistent with medical practice where such a dose is called the stable dose.

We formulated sufficient conditions for the existence and uniqueness of that stable, risk-

minimizing, dose for the MDP model (§4.3). We also analyzed how that dose affects other

clinical measures commonly used in medical practice, such as the TTR (§4.4). We showed

that doses which are optimal under the TTR maximization criterion may be very different

from doses which are optimal under the risk minimization criterion. This is insightful since

those two criteria are often assumed to be equivalent in medical practice.

Numerically, we investigated the required length of the initiation stage, and showed

that the greatest decrease in risk typically results from the initial visits to the clinic. This

substantiates that it suffices to have a short initiation stage in practice. We also studied how

that length is affected by the physician’s initial belief about patient sensitivity. Consistent

with intuition, we found that the length of the initiation stage increases sharply as the desired

level of accuracy about γ increases. We also found that the initial belief about γ strongly

impacts the required length for the initiation stage.

At the onset of the maintenance stage, the physician has already formed a reliable belief

about patient sensitivity. We showed the importance of forming a correct belief about γ at

the beginning of the maintenance stage, and showed that if the physician is uncertain about
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the value of patient sensitivity, then it may be best to underestimate it. We also studied the

effect of ignoring a previous stroke on subsequent dosing decisions and risks.

In both our POMDP and MDP frameworks, we took the physician’s perspective and

excluded costs that patients may incur upon each visit to the clinic. A natural extension of

our models would be to include both visiting costs and the effect of time between successive

visits. Then, the decision to be made at each epoch concerns both the dosage and the

time until the next visit. It would be interesting to investigate structural properties of the

solutions of our decision-making problems in that case.

In this paper, we assumed that patients take their doses as prescribed, since we did

not have any additional information about how patients manage their prescriptions. It is

important to try to gather such data in the future, in order to develop more reliable models.

Finally, there is a need to conduct a randomized trial to test the effectiveness of our proposed

treatment procedure, and to compare it to treatments that are currently used in practice.
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