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Abstract 

Head and neck cancer is the sixth most common cancer worldwide, with 686,328 new cases per 

year. Most head and neck cancers are squamous cell carcinomas of the oral cavity and oropharynx, 

and are burdened by high mortality (50% at 5 years from diagnosis), notwithstanding recent 

progress in treatment methods. The vast majority of oro-pharyngeal cancers are late diagnosed, with 

significant adverse effects on cure, morbidity and prognosis. There is general consensus that earlier 

diagnosis contributes to better outcome measures. Current diagnostic standards consist of clinical 

examination and surgical biopsy, which are associated with delayed presentation, diagnosis and 

greater mortality. There is an unmet need for effective diagnostic techniques to aid early 

identification of cancers.  

Optical coherence tomography (OCT) is one of a number of non-invasive real-time imaging 

systems, introduced during the last two decades aiming to provide tissue information similar to 

conventional histopathological examination. The technique is similar to a B-mode ultrasound 

section, but employs a scanning near infrared light source rather than ultrasound waves, generating 

cross-sectional images of the sample tissue in an X-Z orientation. 

In this study, I investigated a modified OCT oral instrument (VivoSight® Michelson Diagnostics 

Ltd, Orpington, Kent, UK) with adapted probe for intraoral use. The new oral instrument was not 

CE marked, was uncalibrated and consequently a non-standard instrument. Therefore, prior to 

clinical application, the new instrument required calibration and comparison with the conventional 

instrument to assess and confirm performance in image quality and resolution in X, Y, and Z-planes. 

A series of laboratory engineering standards were created and compared by scanning with both 

instruments in X, Y & Z planes. 

A second series of experiments were conducted using porcine tissue as models for human tissue, 

confirming the similarities of fact and artefact observable when the two instruments were applied to 

challenging imaging scenarios, in particular, the effects of dissimilar target tissue refractive indices 

on the OCT image. The effects (tissue dimensional changes) of fixing samples in formalin-

containing media and tissue processing were also then investigated using this non-invasive 

measuring technique. 
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With ethical approvals obtained, the human research moved on to measure the thickness of the 

epidermis and epithelium layers of skin and oral cavity in healthy subjects in vivo. With this normal 

data established, we interrogated suspicious lesions in the head and neck region including the oral 

cavity, scanning the lesions/biopsies in vivo and ex vivo, respectively, studying the oral 

instrument’s capabilities in detecting and diagnosing lesions, yielding sensitivity, specificity and 

accuracy data for the OCT technique, compared with the gold standard histopathology. 

Overall, we concluded that the OCT oral instrument is behaving similarly to the commercially 

available skin instrument in X, Y and Z planes, despite reconfiguration of the optical path lengths in 

sample and reference arms, suggesting the modified instrument is a direct surrogate for the CE 

certified OCT skin instrument in measurement of cutaneous and oral tumour thickness and depth. 

Our findings suggest that OCT has good sensitivity and specificity, easily discriminating healthy 

tissues, premalignant and malignant lesions in both cutaneous and oral arenas. Imaging depth 

limitations still preclude OCT from replacing histopathology but we envisage that further 

refinement of OCT in terms of improving its resolution and imaging depth as well as reducing 

probe diametre and increasing its flexibility could assists in gradual reduction of the need for biopsy, 

surgical margin delineation and offer evaluation/monitoring of the efficacy of malignancy 

treatments through regular follow-up visits.  
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  Chapter one 

Oral Cancer 

1.1 Definition 

The term oral cancer generally includes squamous cell carcinoma (SCC) of the lip, gingiva, tongue, 

floor of the mouth, oropharynx and other ill-defined sites and unspecified parts of the mouth that 

are registered in ICD-10 (International Classification of Diseases) as C00, C01, C02, C03, C04, 

C06, C10, and C14 (Table 1.1). Oral cancer accounts for more than 90% of all malignant diseases 

in the mouth (Chen et al, 1990). Other examples of malignancy that are found in the mouth include 

salivary gland tumours, sarcomas, liposarcomas (Nunes et al, 2002) and lymphomas (Flaitz et al, 

2002); these are relatively infrequent and tend to have dissimilar aetiological factors to SCC 

(Pindborg, 1977).  

Table (1.1) List of relevant malignant diseases and their ICD-10 identification numbers. 

ICD-10 Disease 

C00 Malignant neoplasm of the lip 

C01/02 Malignant neoplasm of the tongue 

C03 Malignant neoplasm of the gum 

C04 Malignant neoplasm of the floor of the mouth 

C05 Malignant neoplasm of the palate 

C06 Malignant neoplasm of other and unspecified parts 

of the mouth 

C10 Malignant neoplasm of the oropharynx 

C14 Malignant neoplasm of other and ill-defined sites in 

the lip, oral cavity and pharynx 
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1.2 Epidemiology 

1.2.1 Global incidence 

 Oral and pharyngeal cancer is the sixth most common cancer worldwide when grouped together, 

although in high incidence areas it is ranked in the top three of cancer list (Warnakulasuriya, 2010). 

The yearly estimated incidence is approximately 275,000 for oral and 130,300 for pharyngeal 

cancers discounting nasopharynx, with occurrence of around two-thirds of these cases in the 

developing countries (Ferlay et al, 2004). There is a broad (nearly 20-fold) geographical variation in 

the incidence of oral cancer, which is in turn related to risk factors exposure. The highest incidence 

rates for OSCC (excluding lip) are found in the South and Southeast Asia (e.g. Sri Lanka, India, 

Pakistan and Taiwan), parts of Eastern (e.g. Hungary, Slovakia and Slovenia) and Western Europe 

(e.g. France), Pacific regions (e.g. Papua New Guinea and Melanesia) and parts of the Caribbean 

and Latin America (e.g. Puerto Rico, Brazil, and Uruguay)(Warnakulasuriya, 2009). 

 

In India, Pakistan, Sri Lanka, and Bangladesh oral cancer is the commonest malignancy in males 

and might contribute nearly to 25% of all new cases of cancer. In countries with low incidence rates, 

as in the UK OSCC accounts for 3% of all cancers (Warnakulasuriya, 2009 & 2010). 

 

In 2008 worldwide, an estimated 263,900 new cases and 128,000 deaths from oral SCC, including 

cancer of the lip vermilion occurred. In general, the highest rates of cancer of the oral cavity are 

found in South-Central Asia, Melanesia, and Central and Eastern Europe and the lowest in Eastern 

Asia, Africa, and Central America for either sex (Jemal et al, 2011). Major risk factors include 

tobacco smoking, alcohol consumption, smokeless tobacco, and HPV infections, with the traditional 

two risk factors (smoking and alcohol) having synergistic effects (Blot et al, 1988; Hashibe et al, 

2009). The impact of each of these risk factors to the global burden of oral malignancy differs from 

region to region (Blot et al, 1988; International Agency for Research on Cancer (IARC), 2004, 2007; 

D’Souza et al, 2009; US Department of Health and Human Services, 2004). Globally, smoking 

accounts for 42% of deaths from oral cancer, including the pharynx, and heavy alcohol drinking for 

16% of the deaths; the corresponding percentages are around 70% and 30%, respectively in high-

income countries (Danaei et al, 2005). The major risk factors for OSCC in India, Taiwan and other 

neighbouring countries are betel quid/pan chewing with or without tobacco as well as smokeless 
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tobacco products (IARC, 2004; Jayalekshmi et al, 2009; Wen et al, 2010). Indeed, the recent 

increase in OSCC incidence rate observed in Taiwan could have been partly because of the 

increased consumption of alcohol and areca nut/betel quid chewing (Ho et al, 2002). 

 

Oral squamous cell carcinoma (OSCC) mortality rates amongst men fell considerably over the past 

decades in most countries, including those of Asia and Europe (Garavello et al, 2010; Mayne et al, 

2006), however the rates in several Eastern European countries continued to increase, including 

Slovakia and Hungary. In most European countries, the increasing number of affected women 

mostly reveals the ongoing tobacco epidemic (Garavello et al, 2010). These figures contrast with 

the decreasing trends in the UK and the US in both sexes and at all ages (Jemal et al, 2006; 

Garavello et al, 2010; DeLancey et al, 2008) where the tobacco epidemic started and dropped 

earlier. Yet, incidence rates are increasing in young adults for OSCC sites that is related to HPV 

infections, for example base of the tongue, oropharynx and tonsil, in some European countries and 

in the United States (Chaturvedi et al, 2008; Shiboski et al, 2005), which is postulated to be related 

to changes in sexual behaviour (D’Souza et al, 2009; Marur et al, 2010). 

 

In the European Union (EU) countries, there were 67,000 new cases and cancer of the oral and 

pharyngeal areas was the 7th most common malignancy (Boyle and Ferlay, 2005). Cyprus and 

Greece have the lowest male incidence rates, while the highest rates are found in Hungary and 

France within the EU countries. Black and associates (1997), in one report point that in France the 

oral cancer rate in males was almost seven times higher than that for males in Greece. In Northern 

or Southern Europe, the incidence rates are lower if compared with Western Europe, though highest 

mortality rates are reported from Eastern Europe.  

 
France has the highest incidence rates within the EU and around 15,500 cancers of lip, oral cavity 

and pharynx are reported yearly. The reported male incidence rates in France were 32.2 and 4.7 for 

females per 100,000 standardised to European populations. The male incidence rate of both oral and 

oropharyngeal malignancy in northern France is very high with a rate of nearly 42.3 per 100,000 

amongst males in the Somme and Bas Rhine regions. Almost 5000 deaths are reported annually 

(Remontet et al, 2002). Northern regions of Italy, Germany, Spain, Switzerland, and Portugal have 

reported intermediate rates in compare with other countries of EU. 
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Within EU, Sweden, Finland, and Greece have the lowest incidence rates. Numerous Eastern and 

Central European countries, for example Slovakia, Slovenia, and Hungary have reported high rates 

for OSCC in the recent decades. This is especially true for Hungary where rates of incidence and 

mortality have doubled (Banoczy & Squier, 2004). 

 
In the US around 34,360 of oral and pharynx cancer cases are reported. Age-adjusted incidence 

rates for males were 15.6 per 100,000 and 6.1 for females (10.5 for either sex). Higher incidence 

rates were observed amid the black men in the US mainly for oropharynx (Surveillance 

Epidemiology and End Results (SEER), Cancer statistics review1975–2004). 

 
Cancers of oral cavity and pharynx rank fifth in males and sixth in females in the Caribbean and 

South America. The highest incidence levels are found in the region comprising of Uruguay, 

Argentina, Southern Brazil, though highest rates are observed in Brazil. After those in India and 

France, the population of male in Brazil has the highest risk for OSCC in the globe and occupies the 

7th in the rank of the most common malignancy in the Brazilian population (Wunsch-Fiho & de 

Camargo, 2001). In Brazil 14,160 new cases of cancer of the mouth and pharynx (C00-10) are 

expected to occur in 2008, where 10,380 (11 per 100,000) and 3780 (3.9 per 100,000) in males and 

females respectively [National Cancer Institute (Brazil); 2007]. The distribution of new OSCC 

cases throughout the states and capital cities of the country is quite varied, and around 30% of all 

OSCC cases occur in capital cities. Overall, northern and north-eastern regions have lower rates, 

whereas higher rates are in southern and south-eastern regions of the country. In Brazil, several 

cancer registries indicate that Puerto Alegre and Sao Paulo have registered highest incidence rates 

for cancer of the oral cavity and tongue (National Cancer Institute (Brazil); 2007). 

 
 Quito, Equador was the city where the lowest male incidence rates has been observed with 2.4 

cases per 100,000, while Bangalore, India where the highest females incidence rates was observed 

with an average 11.2 cases per 100,000 (Parkin et al, 2002). 

 

 The highest reported incidence rates of OSCC in the Caribbean was observed in Puerto Rico with 

an average of more than 15 per 100,000 (Wunsch-Fiho& de Camargo, 2001). Cuba has intermediate 

incidence rates of OSCC. In 1986 in men with history of heavy cigar smoking, the incidence rate 

was around 7.2 per 100,000 and remained constant for more than a decade (Garrote et al, 2001). 
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There is difficulty in extrapolating the true incidence rates in African countries due to data are 

limited to few cancer registries; nevertheless reported incidence rates do not display evidence that 

OSCC in the African continent is a serious problem. Some researchers in a descriptive studies from 

Sudan suggest that rates of OSCC in men are high, relating the high incidence rate to toombak, type 

of oral snuff admixed with sodium bicarbonate (Idris et al, 1995). 

 

Several countries with the highest OSCC incidence rates globally are situated in South and 

Southeast Asia region. Worldwide, India is the country that is always cited to have the highest 

incidence rate, yet in some recent reports Pakistan and Sri Lanka are at the top of ranking list. In 

South Asia, Sri Lanka has the highest rates of OSCC incidence according to Globocan data (Ferlay 

et al, 2004). In men is the most common cancer with 15.5% of all malignancies reported in the oral 

cavity. The age standardised incidence for lip and anterior parts of mouth in 2000 was about 10.2 

and for posterior oral cavity and oropharynx was around 3.6 per 100,000, reaching to approximately 

13.8 per 100,000 together for lip, oral mouth and oropharynx (Sri Lanka National Cancer Control 

Programme, 2005). In Japan cancer of the oral cavity is uncommon. In 2001, the incidence rate 

(C00-14) in Japan based on 10 population-based cancer registries data was about 5.3 per 100,000, 

which is adjusted to world population. The total cases of cancers in these sites were around 9612, 

the distribution of cases were 6,984 in males and 2,628 in females (Marugame et al, 2007). 

 

 The highest reported incidence rates for lip cancers are in white populations in Australia and 

Canada. For instance, in Australians more than 50% of OSCC are found on the lip. It is rare in black 

populations (Sugerman & Savage, 2002). 

 

1.2.2 UK incidence 

In the UK, the 12th most common cancer amongst males is cancer of the oral cavity, accounting for 

more than 2% of all new cancer cases in men. OSCC is the 16th most common cancer among 

females accounting for over 1% of all new cancer cases in women. In 2009 in the UK, there were 

6,236 new OSCC cases (Table 1.2); distribution of cases was around 4,097 (66%) in males and 

2,139 (34%) in females, giving a male: female ratio of 1.9:1.0 (Office for National Statistics, 2011; 

ISD Scotland, 2011; Welsh Cancer Intelligence and Surveillance, 2011; Northern Ireland Cancer 

Registry, 2011). 
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Table (1.2) Oral cancer (C00-C06, C09, C10 and C12-C14), number of new cases, European 
Age-Standardised (AS) incidence rates per 100,000 populations, UK, 2009. 

  England Wales Scotland Northern 

Ireland 

UK 

Male Cases 3,246 236 501 114 4,097 

 AS Rate 11.4 13.4 17.1 12.7 12.0 

Female Cases 1,689 121 270 59 2,139 

 AS Rate 5.0 5.7 7.1 5.7 5.3 

Persons Cases 4,935 357 771 173 6,236 

 AS Rate 8.1 9.4 11.9 9.0 8.5 

 

In Scotland, the European age-standardised incidence rates (AS rates) are considerably higher if 

compared with Northern Ireland, Wales and England for men, while for women if compared 

with England only. The rates do not differ significantly for both genders between Northern 

Ireland, England and Wales. The geographical variation across the UK in oral cancer incidence 

rates mainly reveals the prevalence of the two traditional risk factors for the major OSCC types 

(smoking and alcohol consumption). The difference between south and north across the UK in 

oral cancer incidence largely for men has existed since at least the 1990s (Quinn et al, 2005). 

More recent data demonstrates that the highest oral cancer incidence rates for men (ICD-10 C02-

C04, C06) are still in Scotland, Northern Ireland and the north of England (Oxford Cancer 

Intelligence Unit, 2012). For women across the UK clear divide is much less pronounced, 

although the highest incidence rates for OSCC are also in Northern Ireland and Scotland. 
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Some studies that reflect the influence of life style describe patterns of incidence of OSCC amongst 

migrant groups. In Britain, some studies on minority ethnic and migrants populations have reported 

considerably higher cancer incidence rates in South Asian populations living in Birmingham, 

Yorkshire and Greater London (Bedi, 1996; Warnakulasuriya et al, 1999a). Risk of cancer mortality 

in the native population from 1973 to 1985, compared with cancer mortality in people born in the 

Indian subcontinent who migrated to Wales and England, revealed highly significant raised risks for 

cancers of the oral cavity and pharynx in Indian ethnic migrants (Swerdlow et al, 1995). 

OSCC is increasing in young adults and most cancer registries in the UK record 6% of all oral 

cancers in people below the age of 45 years. In Scotland, incidence rates are higher than the rest of 

the UK for both genders. The lifetime risk of developing mouth cancer in Scotland is greatly higher 

(1.84% in men and 0.74% in women) than the other regions of the UK (1.06% in males and for 

females is about 0.48% for UK as a whole)(Conway et al, 2006). 

 

1.3 Age and gender 

Cancer of the oral cavity is more common in males than in females in most countries. The reported 

gender differences are mainly due to male heavier indulgence in risk habits and sunlight exposure 

(particularly for cancer of the lower lip vermilion) as a part of outdoor occupations. The ratio of 

males to females that has been diagnosed with OSCC, though has dropped over the last few decades 

and is currently nearly 1.5:1.0 for cancer of the oral cavity and around 2.8:1.0 for oropharyngeal 

cancer (Warnakulasuriya, 2009). 

 

The risk of developing OSCC increases with age and most of cancer cases occur in those people 

aged 50 or over (Warnakulasuriya, 2009). From 2005 to 2009 in the US, the median age at 

diagnosis for cancer of the mouth and pharynx was 62 years of age, whereas 61 years of age was the 

median age at diagnosis for tongue cancer (SEER, 2009). 

Approximately 6% of cancers of the oral cavity occur in young people below 45 years of age 

(Llewellyn et al, 2001). In countries with high incidence rates, many oral cancer cases are reported 

before 40 years of age. A rise in oral and oropharyngeal cancer incidence and mortality rates is 

reported from many EU countries and parts of the US in young adults (Moller, 1989; Macfarlene et 
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al, 1994a, 1994b; Shiboski et al, 2005). In Scotland, between 1990-1999 the oral cancer men 

incidence rates under the age of 45 has more than doubled from around 0.6 to 1.3 per 100,000 

(Conway et al, 2006). The disease in young adults is fortunately not more aggressive than that 

occurring in older people either in South of England or in the US (Shiboski et al, 2005; 

Warnakulasuriya et al, 2007a). 

 

1.4 Anatomic sites 

The most common site amongst the US and a European population for cancer of the oral cavity is 

the tongue, amounting to 40–50% of OSCC. In 2009 in the UK, cancer of the mouth and tongue 

collectively was about 60% of cases (Office for National Statistics, 2011; ISD Scotland, 2011; 

Welsh Cancer Intelligence and Surveillance, 2011; Northern Ireland Cancer Registry, 2011). Cancer 

of the buccal mucosa is very common in the Asian populations because of betel quid/tobacco 

chewing habits (Warnakulasuriya, 2009). Around 40% of OSCC in Sri Lanka are located on buccal 

mucosa (National Cancer Control Programme, Sri Lanka, 2005). Lip cancer is accounting for more 

than 5% of cases. Some evidence are existed that cancer of the lip is associated with exposure to 

ultraviolet radiation from sunshine or sunbeds (tanning beds) (Lucas et al, 2006). Floor of mouth, 

gingivae and palate are other intraoral sites for cancer of the oral cavity. 

 

1.5 Socio-economic deprivation  

 Cancer of the oral cavity is related to deprivation and socio-economic status, with the highest 

incidence of oral cancer rates occurring in the most deprived sections of the population (Thames 

Cancer Registry, 2007). The association is especially strong for males, where the risk of developing 

a malignancy was above 4 times higher in the disadvantaged categories in compare to the least 

disadvantaged categories [Cancer Research Cmpaign (CRC), 2000]. Pukkala and co-workers (1994) 

in a study found in the lowest social class that cancer of the lip is 5 times more common when 

compared to the highest class. 

Given the most well established risk factors for OSCC are smoking and alcohol misuse, it is not 

surprising that the rates of the cancer of the mouth incidence is strongly linked with deprivation. 

Data for 2000-2004 demonstrates European AS incidence rates for cancer of the head and neck 
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(ICD-10 C00-C14, C30-C32) are approximately 130% higher, which is more than double for males 

living in more disadvantaged areas compared with the least disadvantaged, while for females is up 

to 74% higher (National Cancer Intelligence Network (NCIN), 2008a). Likewise, for Wales and 

Northern Ireland akin results have also been published (Donnelly et al, 2009; Cancer in Wales, 

2012). For 2005-2009 in Scotland, a study reveals that deprivation gap is somewhat larger, with 

European AS incidence OSCC rates being 3 times higher in the most underprivileged population 

(ISD Scotland, 2012). 

1.6 Epidemiologic trends over time 

In the USA and in some countries in the Europe, there have been reported an increase in the trends 

of OSCC in younger males and middle-aged especially for tongue cancer (Annertz et al, 2002; 

Shantz and Yu, 2002; Llwellyn et al, 2001). 

In Western Europe, the age-standardised incidence of OSCC in the last twenty years has gradually 

increased. In the UK for instance since 1989, an average rise of 2.7% annually has been reported. 

Since post Second World War in the UK, the rising trends of OSCC has been linked with increased 

alcohol consumption (Hindle et al, 1996). Since the mid 1970s in Britain, there has been an overall 

increase in OSCC incidence rates with majority of the increase happening since the late 1980s for 

both genders. European age standardised (AS) incidence rates for oral cancer have increased by 

25% for males and 28% for females in the last 15 years period, between 1998-2000 and 2007-2009 

(Office for National Statistics, 2011; ISD Scotland, 2011; Welsh Cancer Intelligence and 

Surveillance, 2011). 

 

From 1974-1990 in the USA, rising trends for incidence of oral cancer in black males were noted. 

However, from 1995 to 2004, trends for oral and pharyngeal cancer have considerably plummeted, 

with around -1.5% annual percentage change (APC) for all races (-1.6% and -1.8% for males for 

females respectively). Data from France from 1980 to 2000 also indicates a decline for males. The 

incidence in males over 20 years dropped from 40.2 to 32.2 per 100,000, with the APC being -1.0% 

from 1978 to 2000. Nevertheless, women incidence rates rose in 1980 from 3.3 per 100,000 to 4.7 

per 100,000 in 2000; with the APC was +1.73% (Warnakulasuriya, 2009). The incidence rates in 

Japan in 1975 has doubled from 2.7 per 100,000 to 5.4 in 1995, and has remained steady up to 2001 

(Marugame et al, 2007). 
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Changing patterns has been observed in both cancer of the lip and oral cavity. There has been a fall 

in men incidence rates of carcinoma of the lip vermilion over around three decades period, 

nonetheless, other studies show a rise in carcinoma of the tongue, mostly in younger patients, 

presently owing to binge drinking and smoking amongst younger people (Scully and Moles, 2008). 

Since the 1980s in Central and East Europe, there has been a rise in mortality rates in men alongside 

an increase in tobacco cosumption (Bray et al, 2002; La Vecchia et al, 2004). There has also been 

an increase in men from Western Europe, but in some countries where cancer of the lung has 

declined, which hints that it is not in those populations linked so much to tobacco use as to alcohol. 

While in women, there has been a small rise connected with more tobacco and alcohol use (Scully 

&Bagan, 2009). 

1.7 Survival rates 

Those patients who are effectively treated for cancer of the oral cavity often have to live with the 

devastating results of their treatment (British Dental Association, 2000). These may influence the 

function and appearance of the patient, for instance eating, drinking, swallowing and speaking 

might become challenging, and these defects may create other problems such as nutritional 

deficiency and depression. Consequently, quality of life issues are particularly essential for these 

patients’ categories (Warnakulasuriya, 2009). 

 

Five-year survival rates for oral, tongue and oropharyngeal cancers are approximately 50% for most 

countries. Lip cancers possess the best outcome with more than 90% of patients have five-year 

survival rate. Hypopharyngeal carcinomas have the lowest survival rate. Generally, as the disease 

advance (Stage IV) and the inaccessibility of the tumour increase, for example cancer of the 

hypopharynx, the prognosis will considerably decrease. Females had higher survival rates for oral 

and tongue cancers than males (Warnakulasuriya, 2009). Five-year survival rate is considerably 

influenced by TNM staging system at presentation. For mobile tongue at stage 1 disease, the five-

year survival rate is 80%, whereas for stage 1V disease the survival plummets to 15% (Rubin, 1993). 

The survival rates for oral cancer in the UK have not shown any improvement over the last thirty 

years period (Warnakulasuriya, 2009). As for most OSCC, survival for affluent groups is better 

compared with the deprived groups (Edwards & Jones, 1999) and for younger compared to older 

patients (Shiboski et al, 2005; Warnakulsuriya et al, 2007a). 
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1.8 Trends 

Age-adjusted death rates from OSCC for most countries have been estimated at 3–4 per 100,000 

and 1.5–2.0 per 100,000 for males and females respectively. In most countries of the Europe, 

mortality rates between 1950s and 1980s from cancer of the oral cavity had been rising significantly 

(La Vecchia et al, 2004). Amongst the Germans for example around four-fold rise was observed 

during this period. In the UK, Scottish males have the highest mortality rates that reflect their high 

incidence rates (Conway et al, 2006). An OSCC mortality rate has risen in the last two decades 

amongst French females. Mortality rates in 2000 stood at an average 4.7 per 100,000 and APC of 

nearly +1.73% was observed between the years 1980 and 2000 (Remontet et al, 2002). The most 

substantial rises were observed in men in several countries of East Europe (Hungary, Slovakia, 

Bulgaria, Czech Republic, Poland, and Romania) (La Vecchia et al, 2004). In mid1990s, 

remarkable high mortality rates of about 20.2 per 100,000 were noted in Hungary. 

 

   

In the US from 2005-2009, the median age at death was 67 years of age for mouth and pharynx 

cancer, while for cancer of the tongue the median age was 66 years of age. Mortality rates of about 

2.5 per 100,000 for males and females annually for cancer of the oral cavity and pharynx have been 

reported in the US based on patients who died in 2005 to 2009, while for tongue cancer, the age-

adjusted death rate was 0.6 per 100,000 yearly for both genders.  Black male mortality rates (6.8 per 

100,000) are greater when compared with rates of white or Hispanic (SEER, 2009). Amongst young 

people in most Western countries there has been a slight but steady rise in rates of mortality 

(Llwellyn et al, 2001). This is particularly noted in the US for cancer of the oropharynx populations 

(SEER, 2009). 
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1.9 Risk factors 

The most important aetiological factors are tobacco, excess consumption of alcohol (La Vecchia et 

al, 1997) and betel quid chewing (IARC, 2004), these factors act separately or synergistically (Blot 

et al, 1988). Other factors such as HPV infection might also be involved (Herrero et al, 2003), 

especially for cancer of the tonsil and oropharynx in younger people (D’Souza et al, 2007). 

1.9.1 Tobacco 

Tobacco whether smoked, for example cigarette, cigar and pipe smoking (Lee et al, 2009; 

Macfarlene et al, 1995) or smokeless tobacco (chewed or taken as snuff) (US Department of Health 

& Human Services, 1986; Llwellyn et al, 2001; Wanakulasuriya & Ralhan, 2007; Boffetta et al, 

2008) are undoubtedly a major carcinogen causing both initiation and promotion of OSCC. 

Cigarette smoking was first identified in 1957 as a potential risk factor for cancer of the mouth and 

oropharynx (Wynder & Bross, 1957) and later by other researchers in the past twenty years (Gupta 

et al, 1996). 

 A number of risk factors of OSCC have been identified in western countries by epidemiological 

studies with tobacco and alcohol consumption being the most two important risk factors (IARC, 

1986; Macfarlene et al, 1995; Llwellyn et al, 2001; Scully & Moles, 2008). The synergistic effect of 

tobacco and alcohol use is multiplicative in the oral cavity (Johnson, 2001). Also, the relative risk 

of developing OSCC might increase by threefold when tobacco added to betel quid (Johnson et al, 

1996). The strong relationship between tobacco use with oral and pharyngeal carcinoma is well 

established (Neville & Day, 2002).  

Epidemiological studies demonstrate that the relative risk of developing cancer of the oral cavity is 

5-9 times higher for smokers than for non-smokers, while in extremely heavy smoker (who smoke 

80 or more cigarettes/day) the risk might rise to approximately 17 times greater (Mashberg et al, 

1993; Jovanovic et al, 1993; Andre et al, 1995; Blot et al, 1988; Lewin et al, 1998; Neville et al, 

2002). Furthermore, patients who received treatment for cancer of the oral cavity and continue 

smoking have a 2-6 times higher risk of developing a second malignancy of the upper aerodigestive 

tract when compared to those who stop smoking (Silverman & Griffith, 1972; Silverman & 

Shillitoe, 1998). 
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Pipe smoking in the earlier parts of the last century was linked with lip malignancy (majority of lip 

cancers occur on the lower lip) and the reduction in popularity of pipe smoking could be related 

with some of the decline in cancer of the lip. In Spain, a case control study revealed that the risk of 

lip cancer increased when smokers leave the cigarette on the lip (Perea-Milla Lopez et al, 2003). 

The risk of developing OSCC is dependent upon the duration of smoking and the number of 

smoked cigarettes/day while smoking cessation results in a drop in the risk (Rodriguez et al, 2004; 

Castellsague et al, 2004; Blot et al, 1988). Yet, Bosetti and associates (2008) in a recent study 

reported that it takes two decades or longer for the reduction of the risk to that of never smokers.  

 

The rise in risk for cancer of the oral cavity have also linked with snuff and chewing tobacco 

(Brown et al, 1965). In the southern US, one study of chronic female snuff users were estimated to 

have 4 times higher risk of developing OSCC (Winn et al, 1981). Furthermore, a considerable 

number of OSCC in the users of smokeless tobacco develop at the site where the tobacco is placed. 

Though, smokeless tobacco use seems to be related with a much lower risk of developing oral 

cancer than the risk associated with smoked tobacco. Bouquot & Meckstroth (1998) reported that 

oral cancer incidence in West Virginia is below the national average, albeit this state in the USA has 

the highest level of tobacco chewing consumption. Several authors in other studies from 

Scandinavia have suggested that the Swedish snuff consumption, which has lower nitrosamine 

levels and is non-fermented, is not related with an increased risk for cancer of the oral cavity 

(Lewin et al, 1998; Johnson, 2001). 

Smokeless tobacco is also used in many Asian countries including India, Pakistan, Iran and 

Afghanistan. Sudan is also within the countries that use tobacco products without combustion. 

Tobacco is usually mixed with other ingredients such as cardamom oil, sesame oil, lime, areca, ash, 

menthol, and betel leaf and the mixture is placed in contact with the oral mucous membrane. Paan, 

betel quid, khaini, mishri, gutka, niswaar, and toombak are some examples of smokeless tobacco 

products and are used by circa 20% of world’s population (Cogliano et al, 2004). 

A recent study in the UK in 2010 estimated that approximately 70% of cancer of the mouth and 

pharynx in males and about 55% in females were caused by tobacco smoking (Parkin, 2011a). 
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Around 2% of British males in 2009 smoked at least 1 cigar/month, while below half of 1% of men 

said they smoked a pipe (Office for National Statistics, 2010). Very few females smoke cigars or 

pipes in the UK. In a case control study carried out in Cuba of OSCC, the odds ratio associated with 

smoking four or more cigars/day was comparable with that for smoking thirty or more 

cigarettes/day. Indian females (certain women in the Indian state of Andhra Pradesh) who practice 

reverse chutta smoking, with the cigar lighted end inside the mouth, have especially high risk rates 

of cancer of the palatal mucosa (Gupta et al, 1984). Smoking bidi(s), which are made of hand-rolled 

tobacco wrapped in tendu leaf, also rises the risk of oral malignancy (Rahman et al, 2003). 

Smoke inhaled by individuals other than the intended 'active' smoker is called passive smoking, 

which is also called environmental tobacco smoke (ETS) or second-hand smoke (SHS). SHS occurs 

when tobacco smoke permeates any environment and the smoke inhaled by persons within that 

environment. Evidence is existed that involuntary smoking or exposure to SHS might increase 

developing cancer of the oral cavity, with nearly 63% risk increase shown for non-smokers exposed 

at home or at workplaces and indoor public places to SHS. There was about 84% risk increase of 

developing oral cancer amongst non-smokers who exposed for more than 15 years to involuntary 

smoking at home and at work (IARC, 2004; Lee et al, 2009). 

1.9.2 Alcohol 

Alcohol is considered as a major risk factor for OSCC and a recent study carried out in the UK on 

alcohol consumption effect on oral cancer estimated that about 37% of cancer of the mouth and 

pharynx in males and around 17% in females in 2010 were linked to alcohol consumption (Parkin, 

2011b). Bagnardi and colleagues (2001) in a meta-analysis reported risk ratios for alcohol intake of 

25 grams/day of 1.8 risk ratio, and for 50 grams/day of 2.9, while for 100 grams/day the risk ratio 

was about 6.1 after adjustment for smoking. Doubling in increased risk for developing OSCC has 

been shown in a study by Castellsague and associates (2004) for people drinking 14 grams of 

alcohol daily. Those people who smoke and drink have a much higher risk of developing cancer of 

the oral cavity than those who only drink alcohol or use tobacco (Blot, 1992). About more than 80% 

increase risk of OSCC is estimated to be due to both tobacco and alcohol use. In addition, heavy 

smokers and drinkers have 38 times the risk of abstainers from smoking and drinking (Blot et al, 

1988). 
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Andre and co-workers (1995) in a case-control study in France reported that extremely heavy 

drinkers who consume 100 grams of alcohol daily had a 30 times higher risk of developing cancer 

of the oral cavity and oropharynx. Other researchers showed (in relation to synergistic effect of 

alcohol and smoking) that patients who are both heavy drinkers and heavy smokers can have above 

100 times higher risk for developing oral malignancy (Andre et al, 1995; Blot et al, 1988). Several 

recent studies have also reported that both tobacco use and alcohol consumption increase the risk of 

developing oral cancer in synergistic rather than additive manner (Blot et al, 1998; Lewin et al, 

1998; Talamini et al, 2002; Castellsague et al, 2004). 

 

Globally, an author notes that 25% OSCC are owing to tobacco usage (smoked and/or chewed), 7-

19% to alcohol consumption, 10–15% to deficiency in micronutrient, and in excess of 50% to areca 

nut/betel quid chewing in regions where chewing prevalence are high (Petti, 2009). The risk of 

increased oral cancer development that has been observed in southern part of Europe is likely to be 

associated with binge drinking (heavy alcohol abuse) (Macfarlene et al, 1996; Le Vecchia et al, 

1999). In a study, Pelucchi et al (2003) reported that heavy alcohol drinker have 5 times greater risk 

of developing oral malignancy than those people whom never drinked alcohol.  

 

OSCC related with heavy alcohol consumption and heavy smoking displays a peak age of onset at 

the age of 40 years and over (Parkin et al, 1999), however the peak age of onset is generally lower 

by nearly 10 years in persons who have the habit of areca nut/paan chewing (Reichart & Nguyen, 

2008). 

There has been a suggestion that it is the total quantity of ingested ethanol is more important rather 

than the brand (e.g. wine, beer, spirits etc.) of alcohol product (Altieri et al, 2004). In Europe, the 

rising trends in OSCC mortality rates have been linked to rising levels of alcohol use. The alarming 

rise in oral malignancies for instance, in Denmark has been ascribed primarily to higher 

consumption of alcohol (Moller, 1989). An exception to this increase in consumption of alcohol is 

seen in France, where a fall in consumption of alcohol has been related to the decrease in rates of 

OSCC mortality in the 1980s  (Blot, 1994).  



	  

40	  
	  

In 2009, the highest consumption of alcohol in Britain was in the age group 45-64 for males, with 

an average of 19 units a week, and 16-24 years for females with an average of 10 units a week. 

Since 2000 decrease in binge drinking have also observed particularly in those aged 16-24 (Office 

for National Statistics, 2010).  

 

1.9.3 Areca nut/pan chewing 

Areca nut is used by 600 million people in the world and it is the fourth commonest addictive 

substance after tobacco, alcohol, and caffeine (Warnakulasuriya, 2002). The chronic betel quid 

(paan) chewing in India and Southeast Asia has been strongly related with an increased risk of 

developing cancer of the oral cavity and oropharynx (Pindborg et al, 1984; Murti et al, 1985, 1995). 

Areca nut alone or in combination with other ingredients such as lime catechu (Indian acacia tree 

extract) usually with tobacco and sometimes with condiments and sweeteners that are wrapped in 

betel leaf (Piper betle) is referred to as betel quid or paan. Alkaloid from the areca nut will be 

released due to added lime, which produces in the user a feeling of well-being and euphoria 

(Neville & Day, 2002). Areca nut in the component of paan/betel quid or alone is known to be 

carcinogenic even without addition of tobacco (Van Wyk et al, 1993; Thomas & Kearsley, 1993; 

Warnakulasuriya, 1995). The risk of developing OSCC is rised hugely if tobacco is smoked or 

added to the quid. Therefore, Areca nut is considered as an independent risk factor for developing 

of oral malignancy. Furthermore it is also implicated in the development of oral submucous fibrosis 

(OSF) and leukoplakia, which are both potentially malignant disorders (PMD) (Warnakulasuriya, 

2002). Many researchers reported that the use of betel quid in India is a major contributor of cancer 

of the oral cavity and oropharynx (Znaor et al, 2003; Jacob et al, 2004; Carpenter et al, 2005; Guha 

et al, 2007; Reichart & Nguyen, 2008) and accounts for around 50% in males and 90% in females 

of oral and oropharyngeal malignancy (Balaram et al, 2002). The importance of Areca nut as a risk 

factor is also increasing in the UK because of the migration of people from Indian subcontinent, 

China and Southeast Asia (Swerdlow et al, 1995; Bedi, 1996). 
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1.9.4 Marijuana use 

There have been case reports of OSCC in marijuana users (Donald, 1986; Almadori et al, 1990). 

Other authors in more recent studies found evidence that marijuana smoking (cannabis or hashish) 

is linked with the rising risk of developing cancer of the oral cavity (Mao & Oh, 1998; Hashibe et al, 

2005). Other researchers considered marijuana to be a potential risk factor and could be in part 

accounted for the increase in OSCC that is seen amongst young adults (Zhang et al, 1999; 

Silverman, 2001; Schantz & Yu, 2002). Still, Neville & Day (2002) suggested that additional 

studies are required to confirm the purported relationship of marijuana and cancer of the oral cavity 

among younger patients. 

 

1.9.5 Mouthwash use 

There is controversy by many authors in regard to the likelihood that the regular use of 

mouthwashes, especially those containing high levels (25% or higher) of alcohol could be 

dangerous (Boyle et al, 1992). It seems that there is small risk and only possible to be expressed in 

smokers (Johnson et al, 1996). Nevertheless, most of the researches demonstrate no rise in risk for 

developing oral cancer with use of alcoholic mouthwash (Guha et al, 2007; Winn et al, 1991 & 

2001; Garrote et al, 2001; Talamini et al, 2000; D’Souza et al, 2007).  

1.9.6 Diet and nutrition 

Pavia and associates (2006) in a meta-analysis of observational studies reported a substantial risk 

decrease of nearly 50% for each additional serving of vegetables or fruit daily. In another large 

cohort prospective study, Freedman and colleagues (2008) showed a smaller considerable risk drop 

for cancer of oral cavity of about 26% for each additional serving of vegetables, however no 

connection found for fruit consumption. Results might differ by smoking status, with a case-control 

study carried out by Kreimer and co-workers (2006) reporting that the highest consumption of 

vegetables and fruit will reduce risk of OSCC among alcohol users and smokers but not amongst 

individuals who had never drunk alcohol or smoked. Other researchers in another study in 2010 

estimated that approximately 57% of cancer of the mouth and pharynx in males and about 54% in 

females in the UK were connected to individuals eating less than five portions of fruit and 

vegetables/day (400g/day) (Parkin and Boyd, 2011). Still, there is significantly more uncertainty 
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concerning the associations between cancer of the oral cavity and pharynx and diet than for other 

risk factors, for example alcohol and smoking (Parkin et al, 2011; Parkin and Boyd, 2011). The 

intake of enough portions (five/day) of vegetables and fruit is established to be associated with a 

reduction of OSCC risk, and each portion of vegetable or fruit lowers the risk by as a minimum a 

quarter (Warnakulasuriya, 2009). This suggests that a diet containing insufficient amount of 

antioxidants is another factor that predisposes for cancer of the oral cavity development 

(O’Shaughnessy et al, 2002) and for precancerous lesions (Nagao et al, 2000). Warnakulasuriya 

(2010) suggested that randomised clinical trials (RCT) are required on dietary supplementation 

efficacy to lower the risk of OSCC by chemoprevention and to reverse PMDs (leukoplakia and 

erythroplasia) in the high risk groups as well. 

Petti (2009) reported that detrimental life style is intake of high sugar and/or fat, resulting in a low 

vegetable and/or fruit consumption might also be associated with an increased risk of oral cancer 

(Winn et al, 1984; Winn, 1995; Pavia et al, 2006; Garavello et al, 2008). A diet that is rich in fruit 

(Winn, 1995) and vegetables (Lucenteforte et al, 2008), especially orange and yellow vegetables 

(Sapkota et al, 2008) has been revealed to be protective against majority of epithelial malignancies 

including OSCC and gastro-intestinal system and breast cancers possibly because of high levels of 

antioxidant (Suzuki et al, 2006) and folate (Pelucchi et al, 2003). Mayor (2002) in a research 

reported declines of about 60% of stomach cancers, 21% of breast cancers and around 43% of 

colorectal malignancies. Iron deficiency and low levels of antioxidant such as glutathione (GSH) is 

quite the reverse appear to increase the risk of cancer of the oral cavity (Richie et al, 2008). Many 

authors in several studies have reported that high consumption of vegetables and fruit, even in the 

presence of alcohol abuse and heavy smoking, could prevent nearly a quarter of head and neck 

cancer cases (Boccia et al, 2008) and around half of the oral cancer cases (Levi et al, 1998; 

Franceschi et al, 1991, 1999; Pavia et al, 2006). 

1.9.7 Ultraviolet radiation 

Ultraviolet radiation is a carcinogen for the different forms of skin cancer, including squamous cell 

carcinoma (SCC), basal cell carcinoma (BCC) and malignant melanoma. This is particularly the 

case in persons with fair-skinned who lives in countries, for instance Australia where there is a lot 

of sunshine (Johnson, 1991). In contrast to cancer of the oral cavity and oropharynx, the lip 

vermilion carcinoma are more similar epidemiologically to skin SCC and occur largely in white 
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males (Neville et al, 2002). Carcinomas of the lip are more strongly linked with chronic exposure to 

sunlight, though occasionally they have been related to the site where smokers have habitually held 

pipestems or cigarettes (Silverman &Shillitoe, 1998). These tumours are more common in males, 

probably because they are more likely to have vocations, for example farming and fishing and/or 

avocations that consequently result in more cumulative sun exposure. The most common location of 

oral malignancy at one time was on the lip; nevertheless, the incidence of malignancy has dropped 

considerably over the past five decades in this site since fewer males hold outdoor occupations 

(Neville et al, 2002; Silverman, 1998). 

 

The International Agency for Research on Cancer (IARC) reports that there is limited proof for 

relationship between cancer of the lip vermillion and solar radiation (Cogliano et al, 2011). 

According to the report of WHO, the evidence is generally indirect, for example the fact that most 

of the cancer occurring on the lower lip that receives more sun exposure comparing to the upper lip 

(Lucas et al, 2006).  

1.9.8 Human papillomavirus and immunosuppression 

There is evidence of increased risk in cancer of the oral cavity and oropharynx when there is 

infection with high-risk human papillomaviruses (HPV), especially HPV-16 (Miller & White, 1996; 

Sugerman & Shillitoe, 1997; Lindel et al, 2001; Gillison & Shah, 2001; Gillison, 2004; Mork et al, 

2011; Kreimer et al, 2005; Smith et al, 2004; Herrero et al, 2003). Sugerman & Shillitoe (1997) 

found that HPV-16 has been detected in approximately 22% of OSCC, and in up to 14% of cases 

HPV-18 has been detected. In case of oropharyngeal cancers the association is stronger (D'Souza et 

al, 2007). In the UK, it has been estimated that about 8% of oral cancers and up to 14% of 

oropharyngeal carcinomas are linked to infection with high-risk HPV (Parkin, 2011c). 

Studies by many authors have shown an increase in risk of developing OSCC in females with 

previous HPV-associated anogenital cancer that presents evidence of an association with HPV 

infection (Frisch & Biggar, 1999; Spitz et al, 1992). Besides, the risk of developing oral malignancy 

increased in their partners; hence the likelihood of sexual transmission has been raised (Scully, 

2002, 2005). Furthermore, a history of multiple or high number sexual partners (Scully & Bagan, 

2009) or oral sex partners has been linked with an increasing risk in developing cancer of the 

oropharynx, and sexual debut in young age (starting intercourse at a young age) or history of oral 



	  

44	  
	  

sex with rising risk of base of the tongue and tonsil cancer, indicating to the role of sexually-

transmitted HPV (Heck et al, 2009). 

An increased risk of developing OSCC has been shown by many investigators in individuals who 

have undergone organ transplants or young persons with HIV/AIDS, which supports a role of 

immunosuppression (Grulich et al, 2007; de Visscher et al, 1997; van Zuuren et al, 1988; Flaitz et al, 

1995; Flaitz & Silverman, 1998). King and Thornhill (1996) have noted a considerably greater risk 

of developing oral malignancy including cancer of the lip in immunosuppressed patients with renal 

transplant. 

1.9.9 Socio-economic status and deprivation 

OSCC is related strongly to social and economic deprivation with the occurrence of greatest rates in 

the most underprivileged categories of the population. In men the association is strong, where the 

risk of cancer development in males was more than four times higher in the most disadvantaged 

than the least disadvantaged sections (CRC, 2000). Some researchers found that cancer of the lip is 

more common in the lowest social class by five times than in the highest class (Pukkala et al, 1994). 

1.9.10 Oral hygiene 

There might be an association between oral carcinoma and bad oral hygiene (Zheng et al, 1990) and 

many studies have support that by finding head and neck, and oesophageal dysplasia/ cancer in 

individuals who have poor oral hygiene (Dye et al, 2007; Guha et al, 2007; Abnet et al, 2008) and 

reporting that individuals who had had dental care were 62% less probably to be diagnosed with 

cancer of the oral cavity (Holmes et al, 2008). Michaud and coworkers (2008) found that there is a 

link between bad oral hygiene and slight increases in other malignancies, such as kidney, pancreas, 

lung, and haematological. Furthermore, other researchers in a recent study pointed that periodontal 

disease/teeth loss has been linked with oral, lung, upper gastrointestinal and pancreatic 

malignancies (Meyer et al, 2008). There are vagueness in the mechanisms involved, however 

polymicrobial supragingival plaque could create a mutagenic interaction with saliva (Bloching et al, 

2007). 
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1.10 Clinical features 

1.10.1 Primary site 

OSCC is usually preceded by the occurrence of clinically evident premalignant changes or 

potentially malignant disorders (PMDs) in the oral mucosa, in particular erythroplakia 

(erythroplasia) and some leukoplakias (Zain et al, 1997; Neville & Day, 2002). The other PMDs 

(Table1.3) may include actinic cheilitis, oral submucous fibrosis and some lichen planus (Scully et 

al, 2008; Scully & Bagan, 2009). 

 

Table (1.3) Potentially malignant disorders (Scully & Bagan, 2009). 

Approximate malignant potential Disorder Known aetiological factors 

Very high (85%+) Erythroplakia Tobacco/alcohol 

High in some instances (30%+) 
 

Actinic cheilitis  
 
Chronic candidosis (candidal 
leukoplakia)  
 
Dyskeratosis congenita  
 
Leukoplakia (nonhomogeneous)  
 
Proliferative verrucous 
leukoplakia 
 
 
Sublingual keratosis  
 
Submucous fibrosis  
 
Syphilitic leukoplakia  
 
Xeroderma pigmentosum 
 

Sunlight 
 
Candida albicans 
 
 
Genetic  
 
Tobacco/alcohol 
 
Human papillomavirus (HPV)? 
most often no history of 
tobacco/alcohol 
 
Tobacco/alcohol  
 
Areca nut  
 
Treponema pallidum 
 
Genetic  
 
 

Low (<5%) Atypia in immunocompromised 
patients 
 
Diabetes  
 

HPV 
 
 
Idiopathic  
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Discoid lupus erythematosus 
 
Fanconi syndrome  
 
Leukoplakia (homogeneous)  
 
Lichen planus  
 
Paterson–Kelly-Brown 
syndrome (sideropenic 
dysphagia; Plummer–Vinson 
syndrome) 
 
Scleroderma 

Autoimmune  
 
Genetic; anaemia 
 
Friction/tobacco/alcohol  
 
Idiopathic 
 
Iron deficiency 
 
 
 
 
Autoimmune 
 

 

 

Early OSCC frequently presents as a white patch (leukoplakia), red patch (erythroplasia), or 

admixture of white and red lesion (erythro-leukoplakia), usually well demarcated with a slight 

roughness (Mashberg et al, 1989). There might be some discomfort, but often there is no pain. In 

addition, on palpation there is change in the soft tissue elasticity to harder sensation (induration) 

(Bagan et al, 2010). As time elapse, superficial ulceration might develop on the mucosal surface. As 

the OSCC grows to an advanced stage, it might develop to an exophytic mass with a papillary or 

fungating surface; other cancers have an inward pattern of growth (endophytic growth), which is 

usually characterised by an ulcerated depressed surface with a rolled raised border (Neville et al, 

2002; Silverman et al, 1998).  

 

A common symptom in patients with oral malignancy is pain that represents around 30-40% of their 

chief complaints. Although the main symptom is pain, it generally arises when the tumours become 

significant in size when at that time the patient seeks medical help. Consequently, most of the early 

OSCC frequently goes unnoticed since they are totally asymptomatic or could only be associated 

with minor discomfort (Neville & Day, 2002; Scully & Bagan, 2009). On the other hand, the 

symptom may vary in larger and advanced oral cancers from mild discomfort to severe pain, 

particularly in case of tongue, lip and buccal mucosa, there is usually intense pain at advanced 

stages (Barnes et al, 2005). Other symptoms include otalgia (ear pain), bleeding, teeth mobility, 

dysphagia, problems in breathing, speech difficulty, problems in fitness of dentures/prosthesis, 
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trismus and paraesthesia (Haya-Fernández et al, 2004). Bagan and associates (2010) reported that 

symptoms like otalgia, change in voice, dysphagia, and cervical tumours were more common in 

malignancies located at the base of the tongue. 

 

Cervical lymphadenopathy may sometimes be presents in patients without any other symptoms. In 

terminal stages of the disease, patients might develop skin fistulas, severe anaemia, bleeding, and 

cachexia (Milian et al, 1993). 

 

Jainkittivong and colleagues (2009) in a 432 oral cancers patients study reported that the first signs 

or symptoms were swelling and/or pain. Other researchers in a 1,425 OSCC case series analysis 

reported that the main symptoms were ulceration and swelling, followed by pain, bleeding, 

decreased mobility of the tongue, dysphagia and paraesthesia (Al-Rawi & Talabani, 2008). Gorsky 

and associates (2004) in a case series analysis of tongue cancers reported that the chief symptom 

was pain on the tongue (66.5%), while approximately 29% had a lump on the tongue.  

 

OSCC might appear in any location, however the most common site for OSCC is the tongue and 

floor of the mouth (Hirata et al, 1975; Oliver et al, 1996; Mashberg et al, 1989; Jovanovic et al, 

1993; Brandizzi et al, 2008), which accounts for approximately 40% of all oral cancer cases 

(Neville & Day, 2002). In western countries, it arises in more than 50% of OSCC cases (Bagan et al, 

2010). These cancers most often arise on the ventral surfaces and posterior lateral border of the 

tongue. Other sites of involvement are the gingiva, buccal mucosa, labial mucosa, retromolar area 

and soft palate. Less common regions include back of the tongue and hard palate. In some 

geographic locations the most involved site is lip (Silverman, 1998; Neville et al, 2002; Haya-

Fernández et al, 2004). 

The lateral surfaces of tongue and mouth floor with back extension to the lateral soft palate and 

tonsillar region combine, which lead to the formation of a region in the oral mucosa similar to 

horse-shoe that is at highest risk for developing OSCC. There are two chief factors that some 

authors have pointed to them, which might explain why the horse-shoe shaped region is at great risk: 

first, these sites are constantly bathed by saliva containing carcinogens (saliva mixed carcinogens) 

that pool into the bottom of the mouth; secondly, non-keratinised thinner mucosa is covering these 

areas of the mouth that provides less defense against carcinogens (Jovanovic et al, 1993). 
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 During oral examination, clinician should be attentive of this high-risk areas when a tongue blade 

or similar instrument is simply utilised to lower the tongue for the purpose of examining the rest of 

the mouth, subsequently this will lead to hiding the two most common regions for cancer of the oral 

cavity (Neville & Day, 2002). Cotton gauze is advocated to be used for holding the tongue tip, 

which allow the tongue to be pulled to either side and upward so that adequate visualisation and 

thorough examination of the lateral tongue and floor of the mouth can be achieved (National 

Institute of Dental and Craniofacial Research, 2001). 

 

In addition to the oral cavity, SCC also frequently arises on the oropharynx and the lip. There is 

striking tendency of vermilion carcinomas for the lower lip, and commonly arise in light-skinned 

persons who have long history of solar damage. Usually the tumour occurs in an actinic cheilosis, 

which is a precancerous condition that is analogous to actinic keratosis of the skin. Actinic cheilosis 

is recognised by vermilion border atrophy that might develop scaly, dry changes. As the lesion 

advances, ulcerated regions might develop that heals incompletely, which starts to reappear at a 

later date. Then gradually the evolving malignant lesion becomes a crusted, non-tender, indurated 

mass or ulcer (Neville et al, 2002; Silverman et al, 1998). 

 

Oropharyngeal malignancies have a similar clinical appearance that is similar to OSCC. They 

usually arise on the tonsillar region and lateral soft palate, but might also arise from the base of the 

tongue. Usually symptoms at presentation include difficulty in swallowing (dysphagia), pain during 

swallowing (odynophagia), and referred pain to ear (Silverman, 2001; Neville et al, 2002). 

 

1.10.2 Metastases 

 

Metastases from OSCC most commonly arise in the ipsilateral (same side) cervical lymph nodes. 

Submental lymph nodes might initially be involved from cancer of the floor of mouth and lower lip. 

Tumours that arise close to the midline, cancer of tongue base, and advanced cancer are commonly 

metastasised to bilateral or contralateral lymph nodes. Involved nodes are generally firm, enlarged 

and painless to palpation. Usually the involved node feel immovable and fixed to the underlying 

tissue if its capsule perforated (extracapsular spread) by the tumour cells and invaded into the 

surrounding connective tissue. More than 30% of OSCC at the time of first evaluation have cervical 
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metastases that might be occult or palpable (Shah et al, 1990). The reason behind the fact that more 

than 66% of patients with primary lesions on the tongue have cervical lymph node disease at the 

time of diagnosis is due to the profuse blood supply and lymphatic drainage that tongue possess (Ho 

et al, 1992). Distant metastases are most usual in the lungs, however other parts of the body, for 

example, brain, bone and liver might be affected (Neville & Day, 2002). 

1.11 Potentially malignant disorders 

1.11.1 Leukoplakia 

Schwimmer was first used the term leukoplakia in 1877 to describe a white lesion of the tongue that 

possibly represented a syphilitic glossitis (Schwimmer, 1877). Leukoplakia is defined by the World 

Health Organization as “a white patch or plaque that cannot be characterised clinically or 

pathologically as any other disease.” (Kramer et al, 1978). Per se, leukoplakia must be used as a 

clinical term only and must not be used as a microscopic diagnosis (Shafer & Waldron, 1961). If for 

instance a white patch in the oral cavity can be diagnosed as some other lesion or condition, for 

example lichen planus, candidiasis, leukoedema etc. then it must not be considered as an example of 

leukoplakia (Axéll et al, 1996).  

 

Leukoplakia occurs in about 2% of population (Petti, 2003) and is seen most commonly in middle-

aged and older males, with a rising incidence with age (Neville et al, 2002; Bouquot & Gorlin, 

1986). Less than 1% of males under the age of 30 years have leukoplakia, but the prevalence 

escalates to an alarming 8% in males over 70 years of age (Bouquot & Gorlin, 1986). In females 

aged over 70, the prevalence is nearly 2%. The most common sites are the buccal mucosa, alveolar 

mucosa, and lower lip; however, lesions in the floor of mouth, lateral tongue, and lower lip are most 

likely to show dysplastic or malignant changes (Waldron & Shafer, 1975). 

 

Thin or early leukoplakia develops as a greyish-white plaque that is slightly elevated, which might 

be well defined or might slowly merge into the surrounding healthy mucosa (Neville et al, 2002; 

Bouquot &Whitaker, 1994) (Fig. 1.1). It develops into a more white and thick lesion as it progress 

and occasionally evolving a leathery appearance with fissures on the surface of the lesion (referred 

to as thick or homogeneous leukoplakia) (Fig. 1.2). While granular or nodular leukoplakias (Fig. 1.3) 
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refer to some white patches that tend to develop surface irregularities, and those lesions that develop 

a papillary surface are usually known as verruciform or verrucous leukoplakia (Fig. 1.4). 

 

 
Figure (1.1) Early or thin leukoplakia on the lateral soft palate (Neville & Day, 2002). 

 

 

 

 
Figure (1.2) Thick leukoplakia on the lateral/ventral tongue. Thinner areas of leukoplakia are 

visible on the more posterior aspects of the lateral tongue and in the floor of mouth (Neville & Day, 

2002). 
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Figure (1.3) Granular leukoplakia on the posterior lateral border of the tongue. The biopsy showed 
early invasive SCC. Such a lesion would be easily missed during an oral examination unless the 
tongue is pulled out and to the side to allow visualisation of this high-risk site (Neville & Day, 
2002). 
 

 
Figure (1.4) Verruciform or verrucous leukoplakia. The papillary component of this lesion on the 
left side of the picture (patient’s right) showed well-differentiated SCC (Neville & Day, 2002). 
 

Proliferative verrucous leukoplakia (PVL) is one of the uncommon variant of leukoplakia 

characterised by extensive multifocal regions of involvement that usually occurs in individuals 

without recognised risk factors (Hansen et al, 1985; Kahn et al, 1994; Zakrzewska et al, 1996; 

Silverman & Gorsky, 1997; Fettig et al, 2000). PVL starts with usual white patches, which are flat 

initially, but as time elapsed the lesion tend to convert into much thicker and papillary in nature (Fig. 

1.5). Another variant of leukoplakias occur blended with adjacent red patches or erythroplasia. This 

red and white intermingled lesion is called speckled leukoplakia or speckled erythroplasia (Fig.1.6). 
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Figure (1.5) Proliferative verrucous leukoplakia on the labial gingiva (Neville & Day, 2002).  

 

Figure (1.6) Speckled leukoplakia (mixed white and red lesion) of the buccal mucosa (Neville & 
Day, 2002). 

 

Several studies have reported that the dysplastic or malignant transformation rate in oral 

leukoplakia could vary from approximately 15.6-39.2% (Shafer & Waldron, 1961; Waldron 

&Shafer, 1975; Pindborg et al, 1963; Feller et al, 1991). 

  

There is substantial correlation between locations of oral leukoplakia with the rate of finding 

malignant transformation changes at biopsy. In a clinico-pathologic study of 3256 oral leukoplakia 

cases, authors reported that the highest risk area was floor of mouth with about 42.9% of 

leukoplakias presenting some degree of epithelial dysplasia, carcinoma in situ, or unsuspected 

invasive SCC (Waldron &Shafer, 1975). Other areas that were also identified as high risk regions 

was lip and tongue, with dysplasia or carcinoma present in approximately 24.0% and about 24.2% 

of these cases, respectively. 
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Leukoplakia clinical features might also suggest some association with the possibility that the 

leukoplakia will demonstrate dysplastic or malignant changes. Generally, the likelihood of finding 

dysplastic changes will increase when there is thicker leukoplakia. Hence, a verrucous leukoplakia 

is more possible to display dysplasia compared to a thick homogeneous leukoplakia, which, in turn, 

is more probable to display dysplasia comparing to a thin leukoplakia. Leukoplakias with an 

intermixed red component (speckled leukoplakia) are at highest risk for exhibiting dysplasia or 

carcinoma. Pindborg et al (1963) in a study found that around 51% of speckled leukoplakias 

showing epithelial dysplasia, while 14% revealed carcinoma.  

Several studies have shown that the malignant transformation rates varying from 8.9 to 17.5% 

(Silverman et al, 1984a; Lind, 1987; Bouquot & Whitaker, 1994). Silverman and coworkers (1984a) 

reported around 17.5% malignant transformation rate. In this study, only about 6.5% of 

homogeneous leukoplakias underwent malignant transformation; nevertheless, approximately 

36.4% of leukoplakias with evidence of microscopic dysplastic changes and about 23.4% of 

speckled leukoplakias transformed into malignancy. 

 

PVL is an especially high-risk lesion in contrast with conventional leukoplakia. Silverman & 

Gorsky (1997) in a follow-up study of 54 cases of PVL reported that around 70.3% of the patients 

consequently developed SCC. 

 

Though leukoplakia is much common in males than females, many researchers have reported that 

females with leukoplakic lesions have a greater risk of developing cancer of the oral cavity 

(Silverman, 1968; Roed-Petersen, 1971; Bánóczy, 1977). In addition, many authors found that the 

likelihood of leukoplakia to transform into malignancy is higher in individuals who do not smoke 

than in individuals who do smoke (Einhorn &Wersäll, 1967; Bánóczy, 1977; Roed-Petersen, 1971; 

Silverman et al, 1984a). This must not be understood as a detraction from tobacco’s main role in 

oral carcinogenesis, however this might indicate that never smokers in whom leukoplakia is 

originating due to more powerful carcinogenic factors (Neville & Day, 2002). 
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1.11.2 Erythroplakia 

Queyrat was originally used the term erythroplasia to describe a red, premalignant lesion of the 

penis (Queyrat, 1911). The term erythroplakia is used for a clinically and histopathologically 

analogous process that appears on the oral mucosa. Erythroplakia, similar to the definition for 

leukoplakia, is a “clinical term that refers to a red patch that cannot be defined clinically or 

pathologically as any other condition (Kramer et al, 1978). This definition disregards inflammatory 

conditions that might cause red clinical appearance. 

 
Oral erythroplakia appears as a red plaque or macule with a soft, velvety texture (Fig. 1.7), which 

arises more often in older males (Neville et al, 2002) in the fourth to seventh decade of life and has 

a malignant transformation rates higher than leukoplakia ranging from 14.3-50% (Reichart & 

Philipsen, 2005). However, several researchers have reported that around 85 to 90% of early 

asymptomatic cancers of the oral cavity could clinically be described as erythroplakia (Mashberg & 

Meyers, 1976; Regezi & Sciubba, 1993). The commonest sites of involvement include floor of 

mouth, lateral tongue, retromolar pad and soft palate. Erythroplakia is frequently well demarcated, 

although some of them may gradually intermingle into the surrounding oral mucosa. Some lesions 

might be admixed with white patches, which known as erythroleukoplakia. Usually erythroplakia is 

asymptomatic, though there might be complains of a sore or burning sensation by some patients. 

 

 
(Figure 1.7) Erythroplakia on the right lateral border of the tongue (showed carcinoma in situ on 
biopsy). Adjacent slight leukoplakic changes are also evident (erythro-leukoplakia). (Neville & 
Day, 2002). 
 

Although erythroplakia is less common than leukoplakia, it is more possible to demonstrate 

dysplasia or malignancy. In a sister study to their large series of leukoplakia cases, Shafer and 

Waldron (1975) in a study with 65 cases of erythroplakia of the oral cavity reported that all cases 



	  

55	  
	  

exhibited some degree of epithelial dysplasia; 51% revealed invasive SCC, 40% were severe 

epithelial dysplasia or carcinoma in situ (CIS), and the remaining 9% showed mild-to-moderate 

dysplasia. Thus, leukoplakia is much less worrisome lesion than the true clinical erythroplakia 

(Meshberg & Samit, 1995). Equally, in a mixed erythroleukoplakia, the white component is much 

less possibly to show dysplastic changes than is the red component. The clinician must ensure that 

the red component is included in the specimen when selecting a proper site for biopsy in a mixed 

lesion (Neville & Day, 2002).  

 

1.11.3 Lichen planus 

Lichen planus is relatively common chronic mucocutaneous disease that affects around 0.5-3% of 

population (Murti et al, 1986; Axell & Rundquist, 1987) which is less common in men than women 

of 1.5:3 male to female ratio (Mollaoglu, 2000; Mignogna et al, 2001). Other authors reported that 

lichen planus prevalence is approximately 1% and it mainly affects those age ranges between 30-70 

years, remarkably women (Scully & El-Kom, 1985; Kaplan, 1991). Wilson has first described it in 

1869, and at the beginning of the 20th century a link with malignant transformation has been 

suggested (Hallopeau, 1910). The aetiology of lichen planus is idiopathic (Scully et al, 2008; Scully 

and bagan, 2009). Oral lichen planus (OLP) has a classic appearance of bilateral white lace-like 

lesions (reticular or papular) on the tongue and buccal mucosa. Other examples of lichen planus 

include erosive, ulcerative, bullous or atrophic lesions. 

 

Bernard and colleagues (1993) in a retrospective study suggest that there is clinically important 

malignant potential for lichen planus although it is small. A range of 0.4-5.6 of the annual 

malignant transformation of OLP has been documented by several studies (Silverman et al, 1985; 

Murti et al, 1986; Holmstrup et al, 1988; Rajentheran et al, 1999; Eisen, 2002). 

1.11.4 Oral submucous fibrosis  

Oral submucous fibrosis (OSF) is an irreversible chronic, insidious pre-malignant condition of the 

oral cavity, oropharynx and upper digestive tract characterised by juxta-epithelial inflammatory 

reaction and hyalinisation (progressive fibrosis) of the subepithelial stroma (lamina propria and 
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deeper connective tissues). As the disease advances, the patient experience extreme difficulty in 

mouth opening, swallowing and speaking (Rajendran, 1994; Cox & Walker, 1996; Aziz, 1997, 2010; 

Zain et al, 1999). Aetiology of OSF is connected directly to areca nut use, which is very common in 

the Indian subcontinent, east and Pacific rim countries. Researchers have suggested autoimmune 

and genetic aetiologies in OSF development, but the consumption of betel nut is considered to be 

the principal causative factor of OSF (Pindborg and Sirsat, 1966). The rates of morbidity and 

mortality are related to considerable masticatory dysfunction and oral discomfort, in addition to the 

rising risk of developing OSCC. OSF malignant transformation rate is ranging from 7-30% 

(Pindborg and Sirsat, 1966; pindborg et al, 1984; Yusuf & Yong, 2002). In another study in India 

reported that the rate of malignant transformation is approximately 7.6 %( Murti et al, 1985).  

 

In 1996, global estimates indicated that approximately 2.5 million people have OSF (Cox & Walker, 

1996). Nevertheless, in 2002 results from conducted studies (Chiu et al, 2002) indicated that in 

excess of 5 million people have OSF in India (around 0.5% of the Indian population). Furthermore, 

it has been estimated by some researchers that about 20% of the world’s population use betel nut in 

some form (Gupta and Warnakulasuriya, 2002). Accordingly, OSF prevalence is probably greater 

than that noted in the published literature (Aziz, 2010). 

 

1.12 Staging 

Staging of oral cancer is essential for establishing appropriate treatment and determining prognosis. 

TNM system is used to stage tumours, where T represents the size of the primary tumour, N 

indicates the status of the regional lymph nodes, and M indicates the presence or absence of distant 

metastases (Table 1.4).  

Pierre Denoix has devised the TNM system between 1943 and 1952 for all solid tumour, utilising 

primary tumour size and extension, its regional lymph node status, and the presence or absence of 

distant metastases to classify the progression of malignancy (Denoix, 1946). 
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Union for International Cancer Control (previously named International Union Against Cancer) or 

UICC (Union Internationale Contre le Cancer) have developed and maintained TNM to accomplish 

agreement on one internationally recognised standard aimed at classifying the extent of cancer 

spread. TNM staging system is also used by the American Joint Committee on Cancer (AJCC) and 

the International Federation of Gynaecology and Obstetrics (FIGO). AJCC and UICC staging 

systems in 1987 were incorporated into a single staging system. 
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Primary Tumour (T) 
TX Primary tumour cannot be assessed 
T0 No evidence of primary tumour 
Tis Carcinoma in situ 
T1 Tumour 2 cm or less in greatest dimension 
T2 Tumour more than 2 cm but not more than 4 cm in greatest dimension 
T3 Tumour more than 4 cm in greatest dimension 
T4a     Moderately advanced local disease★ 
          (Lip) Tumour invades through cortical bone, inferior alveolar nerve, floor of mouth, or skin of 
face, that is, chin or nose 
         (Oral cavity) Tumour invades adjacent structures only (e.g. through cortical bone [mandible or 
maxilla] into deep [extrinsic] muscle of tongue [genioglossus, hyoglossus, palatoglossus, and 
styloglossus], maxillary sinus, skin of face) 
T4b    Very advanced local disease 
           Tumour invades masticator space, pterygoid plates, or skull base and/or encases internal carotid 
artery 
★ Note: Superficial erosion alone of bone/ tooth socket by gingival primary is not sufficient to classify a 
tumour as T4. 
 
 
Nodal Involvement (N) 
NX Regional lymph nodes cannot be assessed 
N0 No regional lymph node metastasis 
N1 Metastasis in a single ipsilateral lymph node, 3 cm or less in greatest dimension 
N2 Metastasis in a single ipsilateral lymph node, more than 3 cm but not more than 6 cm in greatest 
dimension; or in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension; or in 
bilateral or contralateral lymph nodes, none more than 6 cm in greatest dimension 
 
N2a Metastasis in a single ipsilateral lymph node, more than 3 cm but not more than 6 cm in greatest 
dimension 
 
N2b Metastasis in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension 
 
N2c Metastasis in bilateral or contralateral lymph nodes, none more than 6 cm in greatest dimension 
 
N3     Metastasis in a lymph node more than 6 cm in greatest dimension 
 
Distant Metastasis (M) 
MX   Distant metastasis cannot be assessed  
 
M0    No distant metastasis 
 
M1    Distant metastasis 
 
 
 
Stage Grouping 
Stage 0         Tis                    N0                                     M0 
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Table (1.4) TNM staging of oral cancer (AJCC, 2010). 

 

1.13 Treatment of OSCC 

Different treatments methods have been applied for the purpose of treating OSCC including surgery, 

external beam radiotherapy, photodynamic therapy (PDT), brachytherapy, cytotoxic chemotherapy, 

cryotherapy, and molecularly targeted pharmacological agents (Shaw et al, 2011). 

1.13.1 Surgery 

The principal objective of surgical therapy of OSCC is to remove the entire tumour with a healthy 

tissue (disease free) at the margins, together with any cervical lymph nodes with possibly or proven 

metastatic involvement (Bogdanov et al, 2008; Shaw et al, 2011). Protection of the airway must be 

achieved first, with providing sufficient access to the oral cavity, and frequently a temporary 

tracheostomy is indicated. Usually a neck dissection is achieved next removing the cervical lymph 

nodes that have a great chance of metastasis or involved. Several purposes can be obtained from 

neck dissection procedure: the involved nodes are therapeutically removed, appropriate adjuvant 

therapy will be prescribed by obtaining staging of the neck (staging or diagnostic benefit for 

Stage I           T1                    N0                                     M0 
Stage II         T2                     N0                                    M0 
Stage III        T3                    N0                                     M0 
                       T1                    N1                                     M0 
                       T2                    N1                                     M0 
                       T3                    N1                                     M0 
 
 
Stage IV        T4a                  N0                                    M0  
                       T4a                  N1                                    M0 
                       T1                    N2                                    M0 
                       T2                    N2                                    M0 
                       T3                    N2                                    M0 
                       T4a                  N2                                    M0 
 
Stage IVB    Any T                N3                                    M0 
                      T4B                Any N                                 M0  
        
Stage IVC   Any T             Any N                                  M1    
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patients), attaining adequate access to the primary tumour, and the use of several neck blood vessels 

would be permitted in order to achieve microvascular anastamosis and reconstruction of free-flap 

(Kowalski, 2002; Shaw et al, 2011). 

Based on the primary tumour site, the metastatic spread is fairly predictable from head and neck 

squamous cell carcinoma (HNSCC). There are different groups of lymph nodes found in the neck 

that are related to OSCC, which are classified into numbered levels; I, II, III, IV and V (Fig. 1.8). 

Following thorough examination of several hundreds of neck dissections for oral cancer, metastases 

to lymph nodes were found to arise in an inverted cone, where levels I and II have the highest 

involvement, while levels III, IV and V have increasingly less involvement (Shaw et al, 2011). 

Primary tumour site affects the metastatic rate to regional lymph nodes. Cancers located on the hard 

palate or alveolar ridge is less probably to metastasise to lymph nodes in the neck in compare to 

primary tumours situated in the oral cavity midline structures, for example oral floor or midline oral 

tongue, where there is increasing risk for bilateral (contralateral) lymph nodes metastases 

(Ambrosch et al, 1996; Wooglar, 1999).  

 

Figure (1.8) Lymph node levels 1-5 (XI n = accessory nerve) (Shaw et al, 2011). 

O’Brien and colleagues (2003) reported that a selective neck dissection (SND) in OSCC is 

performed in most centres with tumour thickness more than 4 mm, addressing the first three levels 

and sometimes level IV. ‘Selective’ means that only fascia, lymph nodes and submandibular gland 

are removed while preserving the accessory nerve, sternocleidomastoid muscle and internal jugular 
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vein. Elective neck dissection improves loco-regional control rates when performed on patients 

having an N0 neck tumour (Hughes et al, 1993; Kowalski et al, 2000). Supraomohyoid neck 

dissection (SOHND) is the most usual neck dissection performed on patients with early cancer of 

the oral cavity (N0), which removes levels I, II, and III cervical nodes (Spiro et al, 1988). The 

advancement of selective or functional neck surgery is a rational sequence from the previous forms 

of radical neck dissection (RND), which was believed that radical excision of levels; I, II, III, IV 

and V were indispensable. However, Davidson and associates (1993) have realised that level V is 

seldom linked in OSCC, with around 2.4% in case of clinically positive necks and nearly 0.6% of 

clinically negative necks, and that shoulder function weakening is unduly related to accessory nerve 

dissection in level V. Similarly, the lymph nodes that are located posterior to the accessory nerve 

(level II b) are not always removed. In other studies, many researchers advocated the use of sentinel 

node biopsy, where removal of only the lymph node(s) that directly drain the tumour are performed, 

and a decision is made in regard to advancement to a more comprehensive neck dissection after 

analysis of the sentinel lymph nodes (Nieuwenhuis et al, 2003; Ross et al, 2002). 

Patients with early stage OSCC have similar survival data that treated with radiotherapy or surgical 

method, while patients that have advanced oral malignancy are treated best with combined therapy 

comprising surgical procedure and postoperative radiotherapy. Surgical resection for treating 

patients with cancer of the oral cavity could be achieved through either the transoral or trans-

cervical approach. The approach used is determined by factors including the location and extent of 

tumour, treatment of suspected or involved nodes in neck area, and planned reconstruction (Day et 

al, 2003). 

In many stage I and stage II oral cavity cancers, surgery can be accomplished without external 

incisions. In order to confirm complete clearance of the microscopic tumour, a margin of about 1-2 

cm of healthy-appearing tissue must be removed. External or trans-cervical approach is required in 

advanced malignancy, as well as neck dissection, to permit for comprehensive cancer tissue 

removal, lymphadenectomy (lymph node removal) and reconstruction. Tumour metastases and 

spread might be assisted by the course of different nerves within the oral cavity that act as routes for 

tumour invasion. Tumours of the lower alveolar bone might spread to the base of the skull tracking 

along the inferior alveolar nerve (branch of the mandibular nerve), while tumour of the hard palate 
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may infiltrate into the pterygo-palatine fossa and base of the skull tracking along the greater and 

lesser palatine foraminae through the course of the corresponding nerves (Day et al, 2003).    

 There are similarities in the survival rates amongst these different treatment modalities, which 

depend upon patient selection, and vary between 83-93% for early tumours (Mazeron et al, 1990; 

Cole et al, 1994). Majority of tongue cancer patients are treated with surgical resection, plus control 

of margins and neck dissection. The most challenging structure receiving treatment with 

radiotherapy is the tongue due to factors such as mobility, diffuse toxicity of radiotherapy through 

the mucosa, and vicinity to teeth and mandible. Due to the high rates of occult metastatic spread 

into the cervical nodes, neck irradiation or dissection is crucial in most cases. Many researchers 

reported that patients with early stages of tongue cancers such as T1 or T2 have local control rate of 

about 60-80% and a lower survival rate, while the survival rate is below 50% in patients with 

advanced stage of tongue cancers (Spiro & Strong, 1971; O’Brian et al, 1986). Zelefsky and 

associates (1990) in another study have reported that the five-year local control rate is around 62% 

in those patients with stage III and IV cancers of the tongue who were treated with combined 

surgery and radiation therapy.  

1.13.2 Radiotherapy 

Opinion regarding treatment of cancer of the oral cavity has generally preferred primary surgery to 

radiotherapy, although at some other HNSCC sites the role of radiation therapy as a primary method 

is well established. The high rate of osteoradionecrosis in cancers adjacent to the mandible is the 

main downside of primary radiotherapy in treating OSCC. Radiation therapy modalities have 

usually been divided into external beam radiation therapy (EBRT) or localised ⁄ interstitial forms 

known as brachytherapy (also called internal radiotherapy). EBRT application (with or without 

brachytherapy) has provided an alternative to surgical treatment of patients with cancer of the oral 

cavity. Patients in early cancer stages, EBRT has similar cure rates, though complications might 

constraint its use in early stages of tongue cancers and other oral cavity subsites (Wendt et al, 1990). 

Brachytherapy with implanted sources, for example iridium 192 have been in moderately common 

use in cases of SCC of mobile tongue; nonetheless, there seem to be lower rates of local control 

than of primary surgery (Henk, 1992; Podd et al, 1994) and these modalities are more likely 

appropriate to cancers in early stage, for which surgical method is of optimal advantage as well. 

There is agreement in general, that primary radiotherapy must not be applied for treating oral cancer 
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with frank bony invasion because of high complication rates and poor control (Shaw et al, 2011). 

 

The value of radiation therapy post-operatively is well established, though there is still controversy 

concerning the precise criteria for prescription (Brown et al, 2007). In cases with extracapsular 

spread in lymph nodes of the neck or frank involvement of the surgical margins, radiotherapy in a 

post-operative setting is indicated, but it should not be used in cases with uninvolved cervical lymph 

nodes and clear surgical margins of more than 5 mm (Peters et al, 1993; Shaw et al, 2011). In order 

to lessen osteoradionecrosis incidence, it is imperative to prudently assess and treat patients’ 

dentition being considered for radiotherapy (Shaw et al, 2011). 

 

In recent years numerous tries have been made to enhance the therapeutic ratio of EBRT in head 

and neck area. This therapeutic ratio is reflecting control of cancer and survival outcomes set 

against radiotherapy acute (or early) and late complications. The acute sequelae include lack of 

energy, mucositis, radiation dermatitis, changes in taste, and xerostomia, while late complications 

include persistent mucositis, xerostomia, laryngeal oedema (epiglottis and arytenoids), 

hypothyroidism, skin changes, hair loss, and changes in speech and deglutition. Secondary cancers 

induced by radiation and osteoradionecrosis of the mandible might appear many years following 

radiotherapy, however this is rare (Day et al, 2003). One of the optimisation method is altered 

fractionation regimens (fractionation radiotherapy), which has been introduced in the past few years 

including accelerated fractionation and hyper-fractionation with the goal of rising the intensity of 

the dose and lessening treatment time, thereby decreasing cancer cell re-population chances 

between sessions (Bernier, 2005). Accelerated fractionation designed to rise the intensity of the 

radiation dose by delivering 1.5-1.8 gray (Gy) fractions more than once daily with a total dose of 10 

Gy weekly. Hyper-fractionation delivers two or three fractions daily with a reduced dose/fraction 

ranging from1.0–1.2 Gy/fraction to a total of 81.6 Gy, with reduction in toxicity and improve 

effectiveness has been reported (Argiris, 2005).  

Patients receiving treatment at the primary cancer site must receive standard doses of radiotherapy 

of 2 Gy conventional fractions ranging from 66-70 Gy. Radiation dose in postoperative setting 

varies from 56-66 Gy that depends on risk factors with gross residual disease receives 70 Gy (Day 

et al, 2003). 
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Other novel techniques include intensity-modulated radiotherapy (IMRT) that targets to optimise 

the dose to primary site of the tumour and draining nodes and to significantly reducing the dose of 

the radiotherapy to vital neighbouring structures such as salivary glands, mandible, middle ear and 

spinal cord. Chao and coworkers (2001) in a study have reported that the possible advantage for 

patients through toxicity reduction, locoregional recurrence, long-term survival, and functional 

outcomes applying IMRT have not been determined. However, Nutting and associates (2011) in a 

recent phase III randomised clinical trial have showed that salivary glands sparing by using IMRT 

will considerably decreases xerostomia incidence in patients with cancers of the pharynx.  

 

 In definitive radiotherapy or chemoradiation therapy the duration of total treatment must stay from 

8-10 weeks, while in the adjuvant setting, the total treatment duration from surgery to the 

termination of radiation therapy should not surpass 12 weeks since extension of total treatment time 

results in high rates of locoregional failure (Day et al, 2003). 

1.13.3 Chemotherapy 

Previously systemic antineoplastic drug therapy (chemotherapy) had been used as a monotherapy in 

cancers of the oral cavity with somewhat poor results; nonetheless, currently the role of 

chemotherapy becoming well defined. Cisplatin, fluorouracil and methotrexate were the most 

frequently used chemotherapeutic agents. Generally, good responses (although transient) with 

monotherapy are seen in around 15–30% of cancer cases (Vermorken, 2005). The most established 

chemotherapy role in OSCC is the concurrent use of radiotherapy and cisplatin post-operatively or 

for treatment of un-resectable cancers (Cohen et al, 2004; Vokes et al, 2000). Many researchers in 

several clinical trial studies showed that better results were yielded by chemoradiotherapy than 

radiation therapy alone plus the locoregional tumour control has improved (Calais et al, 1999; 

Cooper et al, 2004, 2006; Adelstein et al, 2000; Lamont & Vokes, 2001). 

 

In other head and neck cancer primary sites, the synchronous use of chemotherapy plus radiation 

therapy is encouraging. A study by Bourhis and colleagues (1998) indicated that survival rate of 

patients with HNSCC has improved when chemotherapy has been used in the treatment regimen. 

Concurrent and sequential chemoradiotherapy are proven substitutes to radical surgery and 
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radiotherapy for patients with laryngeal and hypopharyngeal malignancies and to radiotherapy for 

patients with cancer of the oropharynx (Lefebvre et al, 1996; Brizel et al, 1998; Calais et al, 1999). 

 

 Cisplatin is a standard chemotherapeutic agent in combination with radiotherapy, however taxanes-

based compounds have also proven to be active (Argiris, 2005). Recently, an international 

consensus has been reached supporting the ‘TPF’ (taxanes, platinum, and fluorouracil) regimen 

(Vermoken et al, 2007). In HNSCC trials, a number of epidermal growth factor receptor (EGFR) 

inhibitor drugs have been used, however Cetuximab is regarded as less toxic for chemoradiotherapy 

combination (Bonner et al, 2006; Karamouzis et al, 2007). 

 

Chemotherapy alone for patients with recurrent OSCC is palliative. The majority of the regimens 

have used cisplatin plus fluorouracil or paclitaxel. Hydroxyurea, carboplatin, and docetaxel have 

also used combined with radiotherapy. Chemotherapy might be used as palliative for symptoms in 

patients with distant metastases, particularly those without previous systemic therapy (Forastiere, 

1992).  
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   Chapter 2 

Visual aids in oral cancer diagnosis 

2.1 Knowledge gap and research need 

In spite of the great improvement and the prognosis of a number of malignancies, parallel 

enhancement has not been observed with oral cancer (Silverman, 2001; Swango, 1996; Goldberg et 

al, 1994). As five-year survival rate is closely associated with stage at diagnosis, research on 

prevention and early detection has the potential for declining the incidence and also for survival 

improvement in those patients who develop this disease. Early diagnosis currently relies on skilled 

clinicians who could identify mucosal abnormalities while is still at an early stage. Nonetheless, it is 

obvious that many clinicians are not doing routine oral cancer examinations and/or might not be 

well-informed concerning early detection, risk factors, and diagnosis of these malignancies 

(Yellowitz & Goodman, 1995; Arvidson-Bufano et al, 1996; Blank et al, 1996; Yellowitz et al, 1998, 

2000; Horowitz et al, 2000, 2001). 

 

 Premalignant and early oral malignant lesions are usually asymptomatic and subtle. Hence, 

maintaining the highest index of suspicion by the clinician is imperative, particularly where risk 

factors are existed, for example tobacco use or heavy alcohol consumption. Invasive OSCC is 

frequently preceded by the occurrence of clinically recognisable precancerous changes of the oral 

mucous membrane (Neville & Day, 2002). Annual cancer-related check-up has been recommended 

by the American Cancer Society (ACS) for all individuals aged 40 years and older, while every 

three years for those whose ages ranging from 20-39 years. This must involve health counselling 

and, depending upon an individual's age, may include examinations for oral cancer and cancers of 

the skin, lymph nodes, thyroid, testes, and ovaries (Smith et al, 2002). 

 

Regrettably, little improvement in the early detection of cancer of the oral cavity has been observed. 

Patient delay can be defined as the amount of time taken by patients to request the initial 

professional advice since becoming aware of symptoms. Patients are considered to have delayed if 

more than 3 weeks had elapsed between first observing signs or symptoms and requesting a 
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professional advice, as the recommendation from public health promotion literature explains that 

patients must request professional medical advice, who complaining of symptoms, such as oral 

ulcers that do not heal for 2 weeks (Neville & Day, 2002; Pitiphat et al, 2002; Llewellyn et al, 

2004c).  

Public education is as yet cardinal in rising public knowledge of OSCC from an early age. 

Wanakulasuriya and associates (1999b) in a research have pointed to an alarming shortage of public 

awareness of symptoms of oral malignancies amongst the general public in Britain. It is essential 

for continued education amongst health care professionals, for example general medical 

practitioners and general dental practitioners if cancer of the oral cavity is to be detected early and 

diagnosed without delay (Schnetler, 1992). It would be judicious though, to state that research from 

the US indicate that general dentists are not as well-informed as they could be concerning 

prevention and early detection of oral malignancy, notwithstanding that most of the dentists report 

that they achieve examinations for oral cancer (Yellowitz et al, 2000; Horowitz et al, 2001). 

Contrasting to this, a study by Horowitz and Nourjah (1996) in a national survey reported that only 

about 14% of US adults recalled ever having mouth cancer examination, and in another study from 

New York, Cruz and coworkers (2002) have found that only around 12% of adults reported ever 

having mouth cancer examination. Thus, burden is on both professional development and raising 

people’s awareness (public education) so as to improve early detection of oral malignancies plus 

encouraging patients to eschew high risk behaviours and to request their health care providers 

concerning regular screening of oral cancer examinations (Neville & Day, 2002; Llewellyn et al, 

2004c). 

Various new and emergent optical diagnostic techniques are becoming available to clinicians, to 

assist them in early recognition and diagnosis of oral premalignant and malignant lesions, with a 

range of desirable features including: in vivo and in real-time information, non-invasiveness, 

absence of ionising radiation, patient friendliness, repeatability, and high-resolution surface and 

subsurface images (Wilder-Smith et al, 2010). Existing visual diagnostic aids developed for the 

early recognition of oral malignancy include tolonium chloride or toluidine blue (TB) dye, ViziLite 

Plus; Microlux/DL, and numerous imaging techniques, for example VELscope and multispectral 

optical imaging systems. None of these methods to date have revealed equivalency or been 
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established to be superior to clinical examination (Lingen et al, 2008; Trullenque-Eriksson et al, 

2009). 

2.2 Toluidine blue 

Toluidine blue (TB) or tolonium chloride staining is an inexpensive and simple diagnostic aid, 

which uses a vital blue dye that is thought to stain nucleic acids and highlight abnormal regions of 

oral mucosa. TB for many years has been used as a tool to identify clinically ambiguous oral 

mucosal abnormalities and as a helpful method for demarcation of the potentially malignant lesion 

(PML) extension before excision. TB is staining nuclear material of PML and cancerous lesions, 

while normal oral mucosa is not stained (Mashberg, 1983; Epstein et al, 2003; Warnakulasuriya & 

Johnson, 1996; Onofre et al, 2001; Martin et al, 1998; Gandolfo et al, 2006; Scully et al, 2008). 

Patient first rinse the mouth with 1% acetic acid for 20 seconds, then rinsing with water twice for 20 

seconds; followed by rinsing the mouth with 1% toluidine blue solution; and rinsing with 1% acetic 

acid solution for around one minute and after that a water rinse (Scully et al, 2008). 

A recent study by Lingen and colleagues (2008) suggests that TB sensitivity is considerably lower 

in detecting dysplasia than in detecting carcinoma (Epstein et al, 2007; Lingen et al, 2008). 

Moreover, the high proportion of TB false positive stains weakens its application as a valid 

screening method in primary care settings (Lingen et al, 2008; Patton et al, 2008). Additionally, 

debate exists about the subjective mucosal staining interpretation and criteria for positive results, for 

example pale royal blue versus dark royal blue staining (Lingen et al, 2008). 

False positive staining (lesions take the blue stain, however no malignancy is recognised after 

taking biopsy) occurred in approximately 8-10% of cases related with regeneration of ulcers and 

erosions edges and keratotic lesions (Epstein et al, 2003). Rosenberg & Cretin (1989) in a meta- 

analysis evaluating TB for identifying oral cancer have reported a sensitivity ranging between 93-

97% and specificity between 73-92%. However, other researchers in a recent study suggested that 

the sensitivity in detecting OSCC by TB staining ranging from 78-100%, while the specificity is 

between 31-100% (Lingen et al, 2008). 

Many investigators in several study reported that TB stain might recognise high-risk PMLs that 

have poor outcome (Zhang et al, 2005; Guo et al, 2001; Silverman et al, 1984b) and positive TB 

staining might be associated with genetic changes (loss of allelomorph or loss of heterozygosity 
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[LOH]) which is linked to development to oral cancer even in lesions that have mild dysplasia and 

benign lesions on histology (Zhang et al, 2005; Guo et al, 2001). 

 

2.3 Light-based detection systems 

2.3.1 Chemiluminescence (ViziLite Plus; Microlux/DL) 

It has been suggested that rinsing the mouth with a dilute acetic acid solution and performing 

clinical examination under a chemiluminescent blue/white light (ViziLite) (Lingen et al, 2008; 

Patton et al, 2008; Ram & Siar, 2005; Epstein et al, 2006; Kerr et al, 2006; Farah & McCullough, 

2007; Oh & Laskin, 2007; Scully et al, 2008) could help to identify oral mucosal lesions. 

 

This non-invasive screening technology (ViziLite system – Zila Pharmaceuticals, Phoenix, AZ) 

consists of rinsing for 1-minute with 1% acetic acid solution, after that the oral mucosa is examined 

under diffuse blue/white light with a moderately short wavelength with peak outputs near 430, 540 

and 580 nm for illuminating the oral cavity. The dilute acetic acid in this technique dries the oral 

mucous membrane slightly plus eliminating the glycoprotein barrier, the blue/white light then 

absorbed and reflected by the abnormal mucosal cells in a different way in compare to normal cells 

(Lingen et al, 2008; Patton et al, 2008; Ram & Siar, 2005; Epstein et al, 2006; Kerr et al, 2006; 

Farah & McCullough, 2007; Oh & Laskin, 2007; DeCoro & Wilder-Smith, 2010). Consequently, 

light reflected by abnormal squamous epithelial sites (because of higher nuclear/cytoplasmic ratio 

of epithelial cells) and appear white when viewed under a diffuse low- energy wavelength light with 

distinct margins that appear sharper and brighter, while normal epithelium will absorb the light and 

appear dark (blue) (Ram & Siar, 2005; Epstein et al, 2006; Kerr et al, 2006; Farah & McCullough, 

2007; Oh & Laskin, 2007; DeCoro & Wilder-Smith, 2010). 

 

Lately both TB and ViziLite systems have been combined and a new device (MicroLux/ DL, 

AdDent Inc., Danbury, CT, USA) has been introduced (Poate et al, 2004; Epstein et al, 2008). 

McIntosh et al (2009) in a prospective study reported that Microlux DL sensitivity were 77% in 

detecting pre-malignant and malignant oral lesions while specificity were 70%. 
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It must be emphasised that no study has revealed that the chemiluminescence could assist in 

discrimination between benign lesions and dysplasia/malignancy (Lingen et al, 2008; Patton et al, 

2008). Therefore, most of the studies have considered how chemiluminescence improves subjective 

clinical evaluation of lesions in the oral cavity including sharpness, brightness, and texture in 

compare to conventional clinical examination. The results have been paradoxical due to highly 

subjective of these parameters (Lingen et al, 2008; Patton et al, 2008). Although some researchers 

reported that ViziLite might increase oral mucosal abnormalities detection irrespective to their 

nature, other authors have reported that there was no significant improvement in the general 

detection rate and that the reflection produced by the chemiluminescent light had made visualisation 

more challenging in contrast to normal incandescent light (Lingen et al, 2008; Patton et al, 2008; 

Ram & Siar, 2005; Epstein et al, 2006, 2008; Kerr et al, 2006; Farah & McCullough, 2007; Oh & 

Laskin, 2007). Many authors in some studies reported that chemiluminescence might assist in 

detecting ambiguous lesions undetectable with incandescent light, yet there is no strong evidence to 

support that (Lingen et al, 2008; Patton et al, 2008). 

 

2.3.2 Tissue fluorescence imaging  

Early recognition of oral mucosal lesions can be improved by fluorescence use. In the dark, all 

tissues tend to glow (fluoresce), either spontaneously (auto-fluorescence) or by application of an 

external sensitiser to the tissues. The tissue fluoresces because the cells contain fluorescent 

chromophores (also known as fluorophores). Fluorophores that are most commonly detected 

include flavin adenine dinucleotides (FAD), nicotine adenine dinucleotide hydrogenase (NADH), 

collagen, elastin, haemoglobin and vascular supply and oral microbial flora, and they differ in 

dissimilar tissues including different regions in the oral cavity. Changes in the tissue might 

influence both the fluorophores and tissue fluorescence, and this in turn could aid in the detection of 

lesions undetectable with the unassisted eye under normal incandescent white light (Gillenwater et 

al, 1998a; Gillenwater et al, 1998b; Schantz et al, 1998; Heintzelman et al, 2000; Muller et al, 2003; 

Ingrams et al, 1997; Inaguma & Hashimoto, 1999; Kulapaditharom & Boonkitticharoen, 2001; de 

Veld et al, 2005a, 2005b, 2005c; Svistun et al, 2004). 
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Tissue autofluorescence for decades has been described in the premalignant and early cancer 

screening and diagnosis of uterine cervix, lung and skin. Lately, it has also extended into the oral 

cavity field (Farrell et al, 1992; Poh et al, 2006; Poh et al, 2007; Roblyer et al, 2009; Rosin et al, 

2007; de Veld et al, 2005c). The notion of tissue autoflorescence is that changes happening in the 

metabolism, for example flavin adenine dinucleotide concentration (FAD) and nicotinamide 

adenine dinucleotide hydrogenase (NADH) and structure of the epithelium, for instance 

hyperkeratosis, hyperchromatin and increased cellular/nuclear pleomorphism, as well as changes of 

the subepithelial stroma, for example elastin and collagen matrix composition, alter their interaction 

with light (Lingen et al, 2008; de Veld et al, 2005c). These epithelial and stromal changes precisely 

could alter tissue fluorophores distribution and consequently the way that tissue produce 

fluorescence after stimulating the tissue with intense light, which is usually excitation with blue 

light with a wavelength ranging from 400 to 460 nm. The clinician can visualised directly the 

autoflorescence signal. The normal mucosa in the oral cavity emits a pale green autofluorescence 

when observed through the instrument handpiece, while abnormal tissue reveals reduced 

autofluorescence and looks darker than the surrounding healthy tissue (Poh et al, 2006; Roblyer et 

al, 2009; Rosin et al, 2007). One of the examples of tissue fluorescence imaging systems that has 

been marketed is VELscope system (Visually Enhanced Lesion Scope) (Lingen et al, 2008; Patton 

et al, 2008; de Veld et al, 2005c).  

 

The efficiency of the VELscope system has been investigated by some studies as an aide to visual 

examination for improving the discrimination between normal and abnormal tissues (benign and 

malignant changes), distinguishing between benign and dysplastic/malignant changes, and detecting 

dysplastic/malignant lesions or margins of the lesion, which are under white light invisible to the 

naked eye. Generally, the quality of available studies is considerably superior in compare to TB and 

chemiluminescence studies since the sensitivity and specificity of VELscope system in all patients 

studied was compared to gold standard histopathology (Lingen et al, 2008; Patton et al, 2008; de 

Veld et al, 2005c; Onizawa et al, 1996; Schantz et al, 1998; Onizawa et al, 1999). In a study de 

Veld and colleagues (2005c) reported that lesions contrast has been probably improved by 

autofluorescence imaging of the oral cavity, hence increase the capability to differentiate healthy 

oral mucosa from mucosal lesions, though additional research are required in diverse populations. 
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Furthermore, the ability of autofluorescence has been examined in a few studies to discriminate 

between different lesion types and in general the technique appears to demonstrate high sensitivity, 

but low specificity (de Veld et al, 2005c). Still, the VELscope technique appears to be very 

encouraging because of its capability and efficiency in recognising lesions and margins of the lesion, 

which are unclear to visual examination performed under white light. VELscope showed high 

sensitivity and specificity in detecting dysplasia and cancer areas that extended beyond the 

clinically evident tumours were histopathology applied as the gold standard (Lingen et al, 2008; 

Patton et al, 2008; de Veld et al, 2005c; Onizawa et al, 1996; Schantz et al, 1998; Onizawa et al, 

1999).  

 

Nevertheless, it must be emphasised that these results are not from clinical trials and that the results 

generated from case reports and series and that no published studies on VELscope system 

assessment to be regarded as a diagnostic adjunct in screening individuals at lower-risk, for instance 

patients seen by primary care providers or those individuals without a history of dysplasia/OSCC 

(Lingen et al, 2008; Patton et al, 2008; de Veld et al, 2005c; Onizawa et al, 1996; Schantz et al, 

1998; Onizawa et al, 1999; Poh et al, 2007; Rosin et al, 2007). 

 

 

2.3.3 Tissue fluorescence spectroscopy 

Lately a technique called autofluorescence spectroscopy been tested in the research of oral 

oncology. The autofluorescence spectroscopy system comprises of a small optical fibre that creates 

different excitation wavelengths and a spectrograph, which receives and records on a computer and 

analyses by the aid of dedicated software the spectra of the fluorescence that are reflected from the 

tissue (Lingen et al, 2008; Patton et al, 2008; de Veld et al, 2005c; Inaguma & Hashimoto, 1999). 

The subjective interpretation of the changes in tissue fluorescence can be eliminated by applying 

autofluorescence spectroscopy system, which is the main advantage of this method. Still, the 

disadvantage is that more variables, for instance methodology for analysing fluorescence, 

combination of wavelengths etc. required consideration and testing and this in turn has resulted in 

debatable and frequently unclear results. Generally, autofluorescence spectroscopy appears to be 

very accurate for differentiating healthy oral mucosa and abnormal mucosal lesions with high 

percentage of sensitivity and specificity, particularly when healthy mucosa is contrasted to 
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malignant tumours. Nevertheless, it has been reported by many authors that the ability of the 

technique is low in discriminating and categorising various types of lesion (Lingen et al, 2008; 

Patton et al, 2008; de Veld et al, 2005c; Inaguma & Hashimoto, 1999). Besides, autofluorescence 

spectroscopy is not suitable for practical reasons to demarcate sizeable lesions or distinguish new 

lesions as only small mucosal area can be sampled by the optical fibre (Lingen et al, 2008; Patton et 

al, 2008; de Veld et al, 2005c; Inaguma & Hashimoto, 1999). This bounds the application of 

spectroscopy modality to the assessment of a small well-defined mucosal lesion, which has been 

previously recognised through visual inspection, with an effort to elucidate its benign or 

precancerous/cancerous nature. Further investigation is required for backing this clinical application 

of autofluorescence spectroscopy (Fedele, 2009). 

 
 
2.3.4 Optical coherence tomography 

 

Optical coherence tomography (OCT) is an emerging imaging technique that use broadband light 

and based on low coherence Michelson interferometry and provide non-invasively and in real time a 

cross-sectional, high-resolution subsurface biological tissue images (Izatt et al, 1994a; Fercher, 

1996; Schmitt, 2001; Wilder-Smith et al, 2009b). It has been demonstrated in preliminary studies 

that detection and diagnosis of oral precancerous lesions can be achieved by using OCT (Wilder-

Smith et al, 2009b). This topic will be discussed in depth in the next chapter. Some other potential 

diagnostic systems are listed in table (2.1).  

 

 

 

 

 

 

 

 

 

 
 



	  

75	  
	  

Table (2.1) Other potential future diagnostic technologies (Scully et al, 2008). 
_____________________________________________________________________________ 
Laser-induced fluorescence spectroscopy 
  
Light-induced fluorescence spectroscopy 
  
Elastic scattering spectroscopy (ESS) 
  
Raman spectroscopy 
 
Photoacoustic imaging 
 
Photon fluorescence 
 
Orthogonal polarisation spectral (OPS) imaging 
 
Quantum dots 
 
Trimodal spectroscopy 
 
Doppler OCT 
 
Nuclear magnetic resonance spectroscopy 
 
Chromoendoscopy 
 
Narrow band imaging (NBI) 
 
Immunophotodiagnostic techniques 
 
Differential path length spectroscopy 
 
Two-photon fluorescence 
 
Second harmonic generation 
 
Terahertz imaging 
__________________________________________________________________________ 
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Chapter 3 
 

Optical coherence tomography 

 

3.1 Historical aspect of OCT 

In the last 10-15 years, optical coherence tomography (OCT) has evolved from a promising 

biomedical imaging method to a standard technique in some fields of medicine. OCT is a non-

invasive imaging modality that permits in-situ and in real-time a cross-sectional evaluation of 

transparent (retina of the eye) and turbid (skin or oral mucosa) biological tissues. Based on low 

coherence interferometry (LCI), OCT produce depth profiles that are parallel to the ultrasound A-

scans (Gambichler et al, 2011). This A-scan technique has been developed and applied for eye 

length measurements (Fercher & Roth, 1986; Fercher et al, 1988). Fercher (1993) has revealed the 

initial 2-dimensional (2-D) structure B-scan images. Other groups have picked up this concept and 

were further sophisticated through cooperation between Lincoln Laboratory, Massachusetts Institute 

of Technology (MIT) and the New England Eye Centre, Tufts University School of Medicine, the 

Department of Electrical Engineering and Computer Science at MIT. In the past two decades, 

Huang and colleagues (1991) in a study reported the first in vitro tomography of the human eye. In 

1993, many authors have claimed the first in vivo tomography images of the human macula and 

optic disc (Fercher et al, 1993; Swanson et al, 1993). The OCT application in ophthalmology 

resulted in the advanced diagnostic abilities and in 1996, OCT technology presented commercially 

for ophthalmic diagnostics (Humphrey Systems, Dublin, CA, later acquired by Carl Zeiss Meditec) 

(Gambichler et al, 2011; Fujimoto et al, 2000). Since then OCT clinical and experimental 

applications have exponentially been established in the medical fields. OCT is applied in many 

areas of medicine: gastroenterology, urology, surgery, cardiology, neurology, gynaecology, 

pneumology, rheumatology and dentistry for research and clinical practice (Cahill & Mortensen, 

2010; Chu et al, 2007; Drexler, 2004; Fujimoto, 2003; Lamirel et al, 2009; Schmitt, 1999; Tearney 

et al, 1997; Unterhuber et al, 2004). 

OCT was introduced in 1997 in dermatology and currently there is increase in application of this 

technology in clinical skin studies (Welzel et al, 1997). With application of OCT, the stratum 

corneum (horny layer) of glabrous skin (palmo-plantar region), the epidermis and the upper dermis 
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can obviously be recognised. Besides, blood/lymphatic vessels and skin appendages, for example 

hair and sweat glands can be identified. For micro-morphological analysis histopathology still 

represents the gold standard, but skin biopsies are traumatic and cannot be repeated on identical 

skin location. Consequently, diagnosis and monitoring of skin changes by application of in-situ and 

in real time non-invasive imaging modalities might improve dermatologic practice and research 

(Gambichler et al, 2007a, 2007b; Altintas et al, 2009; Treu et al, 2011). Examples of some OCT 

instruments for dermatological purposes that are already existing on a commercial basis includes 

Michelson Diagnostics, Kent, United Kingdom; IMALUX, Cleveland, OH, USA; Bioptigen, 

Durham, North Carolina, USA; and Thorlabs, Newton, NJ, USA (Gambichler et al, 2011).  

3.2 OCT technology 

3.2.1 Principles and operation  

The principle of OCT imaging technique is corresponds to that of B-mode ultrasonography imaging 

except that OCT uses near infrared (NIR) light rather than sound waves. Generation of cross-

sectional image is achieved by scanning an optical beam across the sample of interest (biological 

tissue) and measuring the time of flight delay (echo time delay) and intensity of backscattered or 

backreflected light (Fig. 3.1 a, b). Since the light velocity is extremely high, the echo time delay of 

light cannot be measured directly by electronic detection as in ultrasound. Sound velocity in water 

is nearly 1500 metre/second, while light velocity is approximately 3×108
 metre/second or 3×105 

kilometre/second. OCT is based on more than a century old principle of Michelson interferometer 

(low coherence interferometry) that is akin to white-light interferometry (Fig. 3.1c), first described 

by Sir Isaac Newton (Fujimoto et al, 2000; Fujimoto, 2003). In low-coherence interferometry, the 

backscattered or reflected light from inside the sample is measured by correlation with light that 

travelled for a known reference path. Opto-electronic devices (optical-to-electrical or electrical-to-

optical transducers) have been applied this technique to accomplish micrometre resolution optical 

ranging and measurement (Youngquist et al, 1987; Takada et al, 1987; Gilgen et al, 1989). 

Measurements of corneal thickness and axial eye length are examples of some of the first 

biomedical applications of low-coherence interferometry (Fercher et al, 1988; Huang et al, 1991). 
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Figure (3.1) Principles of OCT imaging. (a) OCT performs cross-sectional imaging of internal 
microstructure in tissue by measuring the echo time delay and magnitude of reflected light. (b) Cross-
sectional images are generated by scanning the incident light beam at different transverse positions. The 
resulting two-dimensional data set can be displayed as a gray-scale or false-colour image. (c) Echo time 
delays of light are measured using low coherence interferometry with a Michelson-type interferometer 
and low-coherence light source. (d) Fibre-optic implementations provide a compact and robust system 
that can be interfaced to a wide range of imaging instruments. (Fujimoto, 2003). 

 

OCT imaging is performed using a fibre-optic Michelson interferometer with a low-coherence-

length light source. The application of fibre-optic provides a robust and compact system, which can 

be integrated to a numerous clinical imaging instruments. Light sources that generate low coherence 

light in OCT instrument include compact superluminescent semiconductor diodes (SLD) or other 

sources, for example solid-state lasers. One arm of the interferometer contains a modular probe 

(called sample arm) that focuses and scans the light onto the specimen plus collecting the 

backreflected light. The second arm of the interferometer is a reference path with a revolving mirror 

or scanning delay line. Optical interference occurs between the light from both the reference and 

sample paths only when the distance travelled by the light in both paths matches to within the 

coherence length of the light (Swanson et al, 1992). The interference fringes are detected and 
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demodulated to generate a measurement of the magnitude and echo delay time of backscattered or 

backreflected light from microstructures inside the tissue sample of interest. Therefore, low 

coherence interferometry allows femtosecond time resolution of optical echoes, matching to 

micron-scale distance measurement. 

In OCT system, the 2-D cross-sectional images of the microstructure inside the sample are made by 

scanning the optical beam and performing multiple longitudinal (axial) measurements of 

backreflected light at different transverse locations. The developing data set is a 2-D array that 

represents the optical backreflecting within a cross-sectional slice of the tissue sample of interest. 

These data can be filtered digitally, then processed and displayed as a 2-D false colour or grey scale 

image. In addition to cross-sectional plane imaging, it is also possible to image in en face planes at a 

given depth (Izatt et al, 1994b; Podoleanu et al, 1998, 2000). 

The longitudinal (axial) resolution of the image is independent of numerical aperture and beam 

focusing conditions, while it depends upon the coherence length of the light source. For OCT 

imaging SLDs are commonly used that typically have 10-15µm longitudinal resolution. To identify 

individual cells or evaluating subcellular structures, for example nuclei, this resolution is 

insufficient to achieve that (Drexler et al, 1999). The transverse (lateral) resolution for OCT image 

depends on the beam spot size that focuses on the tissue sample (imaging aperture), as in 

microscopy (Swanson et al, 1992).  OCT instruments with ultrahigh depth resolution of around 1µm 

have been developed (Wang et al, 2003b). Though, the more common depth resolution is on the 

order of around 5–10 µm (Alex et al, 2010). For typical image resolutions and sizes, OCT 

techniques have a high sensitivity reaching around –100 dB. This means that backreflected signals 

as small 10–10 might be identified (Fujimoto, 2003). The OCT technique applies low energy of the 

order of 5-8 mW; hence no damage to the scanned biological tissue has been observed (Regar et al, 

2003).  

Strong scattering is limiting the OCT penetration depth ability in biological tissue (Brezinski et al, 

1996). Scattering arises from changes in the refractive index between different constituents of the 

tissue and the surrounding medium. It is reliant on present scatterers shape and size; accordingly the 

macroscopic scattering properties of different types of tissue can differ significantly. Absorption of 

the light waves by water, lipids, protein and haemoglobin could mainly be prevented by appropriate 

selection of the wavelength band. The absorption of water and other typical constituents of the 
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tissue such as haemoglobin or melanin between 600-1300 nm are low, which result in an optical 

window (also known as NIR or therapeutic window or window of transmission) (Parrish, 1981). 

Requirements of the OCT application influence the selection of the operating wavelength within the 

NIR window. Wavelength light at the range of 1300 nm permits for the deepest penetration into 

most non-transparent tissues such as skin or mucosa, because absorption in melanin and scattering 

reduce with rising wavelength (Brezinski et al, 1996). Deeper penetration for applications in the 

tissue may be achieved by using longer wavelengths, for example around 1700 nm where 

absorption of water has no substantial effect (Sharma et al, 2008). Nevertheless, examination of the 

posterior eye segment in vivo with these long wavelengths are not suitable because of strong 

attenuation of the signal in the vitreous that largely comprises of water. Therefore, for retinal 

imaging the commonly utilised range is about 800 nm wavelength that exhibits low water 

absorption (Považay et al, 2003), while wavelengths around 1050 nm allows deeper penetration into 

the subretinal layers (Považay et al, 2003) and at the same time performing marginal chromatic 

dispersion in water (Wang et al, 2003a). Although penetration depth of imaging is restricted by 

optical attenuation from tissue microstructure absorption and scattering, imaging up to 2-3 mm deep 

can be attained in most biological tissues. This imaging depth is identical to the scale that typically 

imaged by conventional biopsy and histolopathologic analysis. Though imaging depths are not as 

deep to that obtained with ultrasound, the OCT image resolution is in excess of 10-100 times finer 

than standard clinical ultrasonography (Fujimoto et al, 2000; Brezinski et al, 1996, 1997). 

 

A phenomenon called speckle can be observed when imaging highly scattering biological tissues 

with OCT such as skin or mucosa. Usually speckle pattern appears in OCT images as a grainy fine 

structure, which is resulted from the interference of reflected light from many scatterers that are 

randomly distributed within the scanning volume (Schmitt et al, 1999). Speckle characteristics, for 

example the size and the intensity distribution, can deliver further information concerning the 

underlying scatterers (Gossage et al, 2003; Hillman et al, 2006). On the other hand, the texture of 

speckle masks small features in the OCT images and is generally considered a source of noise. 

Consequently, various methods for decreasing speckle phenomenon have been developed and 

applied to OCT (Schmitt et al, 1999). Some of the methods are grounded on the incoherent addition 

of numerous signals from the identical position under varying conditions, for instance spatial 
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compounding (Sander et al, 2005; Jørgensen et al, 2007), frequency compounding (Pircher et al, 

2003), and angular compounding (Schmitt, 1997). Different methods for image processing can be 

used to quell speckle where compounding is unfeasible, like different types of smoothing filters, 

wavelet analysis (Xiang et al, 1998), anisotropic diffusion (Wang, 2005), deconvolution (Kulkarni 

et al, 1997; Schmitt, 1998), and rotating kernel transformation (Rogowska & Brezinski, 2000). 

3.2.2. OCT imaging modalities 

OCT imaging techniques separated into different concepts. The most important modalities are OCT 

in the time domain (TD-OCT) and in the frequency domain (FD-OCT) (Gambichler et al, 2011). 

3.2.2.1 Time domain OCT (TD-OCT) 

In TD-OCT the reference arm is furnished with a revolving (translating) mirror or scanning delay 

line. Figure (3.2) shows a typical TD-OCT system. 

 

 

Figure (3.2) Time domain OCT system, A-scans are obtained by movement of the mirror in the 
reference arm. (Gambichler et al, 2011). 

 

The distance between two points in space is determined by the coherence length of light source 

where interference is probable. Therefore, when the distance between a point inside the tissue and 

the reference arm, where the backreflecting or backscattering occurs is longer than the coherence 

length, no interference fringes are observed on the photodiode (detector). Accordingly, depth 
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filtering could be achieved by this coherence gate that limits the imaged region to the coherence 

length. For imaging the internal tissue microstructure as a function of depth, periodic shift of the 

reference arm mirror take place and the time-dependent signal is recorded. The interference fringes 

that are detected subsequently demodulated and form the axial (A-scan) measurement. The 

combination of several A-scans (one-dimensional depth scan) from various positions result in two 

or three cross-sectional images production. To attain high resolution over the entire imaging depth, 

the reference mirror and lens that focuses the light into the sample of interest can be moved with 

each other. Therefore, the focal gate and coherence is matched across the entire depth of the 

scanning (Gambichler et al, 2011). 

3.2.2.2 Frequency domain OCT (FD-OCT) 

In FD-OCT, there are two chief approaches where the mirror is fixed in the reference arm in both 

approaches. In the first approach, which is called spectral domain OCT (SD-OCT) a spectrometer is 

replacing the photodiode (photodetector). A typical FD- OCT system is shown in figure (3.3). The 

axial (longitudinal) depth scan can be achieved by reading out the diode array of the spectrometer 

without mechanical movement of the reference arm mirror. The light that reflected back from 

different depths in the sample and superimposes (interferes) with the reflected light from the 

reference arm, modulates the spectra. The frequency of the modulation is directly proportional to 

the depth of the sample microstructures. Fourier transform of the spectra is therefore provides direct 

access to the depth information (Gambichler et al, 2011). 
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Figure (3.3) Frequency domain OCT system, A-scans are obtained when the spectra, which are 
recorded by the spectrometer, are Fourier transformed. (Gambichler et al, 2011). 

 

The second approach is known as swept source OCT (SS- OCT). SS-OCT systems are working 

with a similar principle, which is shown in figure (3.4). Here, a tunable narrowband light source is 

replacing the broadband light source that scans over a time interval the wavelengths of the spectrum. 

Therefore, a simple photodetector can replace the spectrometer that permits high-speed detection. 

The photodetector is recording one-dimensional depth scan (A-scan) when the laser light is 

scanning over one wavelength interval. The recorded data are corresponding to the recorded data by 

the spectrometer. Therefore a Fourier transform provides access to the depth information (Marschall 

et al, 2011; Gambichler et al, 2011). 
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Figure (3.4) Swept source OCT system. An A-scans is recorded when the laser scans over the 
wavelength range and the recorded spectrum is Fourier transformed. (Gambichler et al, 2011). 

 

Many authors in several studies have reported the faster image acquisition rate and higher 

sensitivity of FD-OCT techniques in contrast with TD-OCT systems (Choma et al, 2003; de Boer et 

al, 2003; Leitgeb et al, 2003). Typical fast SS-OCT techniques of about 50 kHz record three-

dimensional data sets in about one second, while some investigators in a recent research reported 

line scan rates of 20.8 million A-scans/second (Wieser et al, 2010). 

3.2.2.3 Functional OCT 

Polarisation-sensitive OCT (PS-OCT) has the capability for visualising and quantifying the skin 

birefringence properties (Fan et al, 2007; Mogensen et al, 2008, 2009a, 2009c; Pierce et al, 2004; 

Sakai et al, 2009; Saxer et al, 2000; Strasswimmer et al, 2004) and has been applied as a useful 

instrument for tissue segmentation (Gotzinger et al, 2008). In PS-OCT numerous types of tissue are 

discernible, especially those with a high content of collagen, for example the skin. Defect or loss of 

collagen integrity and structure is frequently related with abnormalities of the skin, such as 

neoplasms and diseases of connective tissue. This proposes that evaluation of birefringence might 

prove useful as a diagnostic guide of certain cutaneous pathologies (Gambichler at al, 2011). 
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Optical Doppler Tomography (ODT), which is also known as Doppler OCT, uses the Doppler 

frequency shift. When an object is moving inside the sample such as blood, this frequency shift is 

introduced. The most common method in FD-OCT to measure flow velocities is termed phase-

resolved Doppler OCT. Applications of this method for observing changes in blood flow dynamics 

and vessel structure subsequent to pharmacological intervention and PDT have been exhibited 

(Aalders et al, 2006; Chen et al, 1997; Izatt et al, 1997; Leitgeb et al, 2003b; Nelson et al, 2001; 

Vakov et al, 2005; Wang et al, 2004; Zhang & Chen, 2005; Zhao et al, 2000). 

 

Spectroscopic OCT (S-OCT) is another region of investigation. In all methods that exploit reflected 

and backscattered light for tissue imaging, the spectral properties of light that is detected from each 

position inside the tissue is determined by the specific absorption and scattering properties of the 

intermediate tissues. Image contrast is improved by applying S-OCT and makes it probable to 

distinguish pathologies of the tissue by their functional state or spectroscopic properties. S-OCT 

may accordingly act as a type of ‘spectroscopic staining’, equivalent to histopathology staining, and 

with a single measurement it has the possibility for detecting spatially resolved functional and bio-

chemical tissue information over the whole area of emission wavelength of the light source (Drexler 

& Andersen, 2009). 

 3.3 Applications of OCT 

3.3.1 Ophthalmology 

In ophthalmology, direct imaging of the ocular structure of human eyes in both anterior and 

posterior segments utilising OCT has been performed in vivo and in vitro (Fercher et al, 1993; 

Swanson et al, 1993; Izatt et al, 1993). A cross-sectional image of the retina can be produced by 

using OCT that possess a resolution comparable to a histologic section in light microscopy (Tanno 

& Kishi, 1999) and retinal structures are visualised with this method that are unapproachable with 

any other technique (Fig. 3.5). OCT is non-invasive in contrasting to fluorescein angiography, and 

no physical contact is required with the eye, as opposed to ultrasound imaging that may result in a 

significant discomfort to the patient. These advantages were behind the fast success of OCT 

technique in ophthalmology. 
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Figure (3.5) OCT images of diseased human retinas. (a) Macular hole (MH) has developed after 
the detachment of the vitreous humour from the retina. The OCT image clearly shows the posterior 
surface of the vitreous (VIT) and reveals the presence of an operculum (OP). (b) Central serous 
chorioretinopathy has led to a large fluid accumulation anterior (A) and a smaller one posterior (P) 
to the retinal pigment epithelium (RPE). (Marschall et al, 2011). 

 

A number of retinal diseases have investigated by OCT imaging as a clinical standard and is being 

applied increasingly in the diagnosis, monitoring, and treatment control of glaucoma (Tan et al, 

2008), age-related macular degeneration (Kaiser et al, 2007), vitreo-retinal traction and macular 

holes (Larsson et al, 2006), and diabetic retinopathy (Soliman et al, 2008; Gaucher et al, 2008).  

Imagining of retinal morphology and measurement of thickness of the retina has become essential 

so as to evaluate patients with age-related macular degeneration. This condition if untreated will 

leads quickly to a considerable loss of vision. The condition can be treated by monthly application 

of vascular endothelium growth factor (VEGF) inhibitors until the disease is inactive (Chang et al, 

2007; Brown & Regillo, 2007). Because intra-vitreal injection of VEGF inhibitor into the eye is 

required for treatment, retreatment frequencies should be kept as low as possible. The existence of 

fluid inside or beneath the retina (intra-retinal or sub-retinal fluid respectively) and the related 
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thickness in retina have major influence on the decision to administer retreatment, and OCT 

imaging is applied for assessing these conditions in most major hospital clinics (Marschall et al, 

2011).  

Patients with type 1 or 2 diabetic retinopathy frequently develop retinal thickening and among those 

patients nearly 15% develop macular oedema, which is slowly developing and the patient may be 

unaware of the condition for a long time. Treatment will be crucial when the oedema is large or 

close to the fovea (the very centre of macula, which in turn is the centre of the retina), which is the 

area of maximal visual acuity. OCT modality has become a prevailing method for clinical studies 

investigating the treatment of oedema, especially the injection of intra-vitreal steroid and VEGF 

inhibitors. The main risk factors for the diabetic retinopathy progression are blood pressure and 

blood glucose, and OCT imaging has been applied to analyse the association between acute changes 

in blood glucose, thickness in retina and blood pressure (Jeppesen et al, 2007). The visualisation of 

fluid accumulation patterns might be an important tool for identifying patients who have more 

severe stages (Soliman et al, 2008; Gaucher et al, 2008). OCT is most probably will not replace 

invasive techniques completely, for example fluorescein angiography, however it might lessen their 

application and consequently the burden of repeated eye examinations for patients and clinics 

would be decreased (Kaiser et al, 2007; Bolz et al, 2009). 

Glaucoma is a leading cause of visual impairment, a disease that involves retinal nerve fibres layer 

atrophy. The diagnosis of glaucoma in the early stages is difficult as it based on defects in visual 

field, that is, the diagnosis of glaucoma is confirmed when the retinal nerve fibre damage has 

already occurred. Many investigators in recent studies have shown that the thinning of the retinal 

nerve fibre layer can be detected by OCT imaging that usually precedes the visual field loss 

(Hougaard et al, 2007; Tan et al, 2008; Gyatsho et al, 2008). With ongoing enhancements in both 

resolution and speed of OCT, it will possibly become a valuable apparatus for detecting glaucoma 

in its early stages (Marschall et al, 2011). In addition to the major diseases, OCT imaging technique 

is applied in almost all fields of eye diseases, for instance eye surgery monitoring and follow-up, 

vascular occlusions, macular holes, and examination of the anterior segment of the eye (Larsson et 

al, 2006; Kovacs et al, 2007; Kalev-Landoy et al, 2007; Doors et al, 2010). 

Clinical applications of OCT have up till now been established on structural images. Still, 

functional imaging offers many chances for attaining further information that assists in detection of 
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diseases. Polarisation-sensitive OCT (PS-OCT) facilitates quantitative measurements of the 

birefringence of the retinal nerve fibre layer (RNFL) (Chen et al, 2004). The detection of changes 

resulted from early stage glaucoma can advance diagnostic precision. PS-OCT is also helpful for a 

more accurate demarcation of different layers of retina based on their polarisation properties 

(Pircher et al, 2004; Baumann et al, 2010). Retinal pigment epithelium (RPE) for example can be 

recognised by its depolarising nature that might prove beneficial for the detection and monitoring of 

diseases that affects RPE layer (Michels et al, 2008). Blood flow in retinal vessels can be visualised 

by applying Doppler OCT (Yazdanfar et al, 2000). In combination with a 3-dimensional fast 

imaging, a new procedure can be employed for non-invasive angiography (Makita et al, 2006), 

which might improve the diagnosis and monitoring of some diseases like diabetic retinopathy and 

glaucoma. 

OCT in comparison with other methods, such as electro-retinography, provides non-invasive and 

uncomplicated approach for examining the physiology of the retina and could open new likelihoods 

for studying pathology of the retinal structures (Bizheva et al, 2006; Srinivasan et al, 2009). 

 

Because of ocular aberrations, there is difficulty in achieving high lateral (transverse) resolution in 

imaging of the retina. Adaptive optics can compensate these ocular aberrations to a certain range, 

thereby allowing transverse resolutions of a few micrometres as well as signal-to-noise ratio (S/N) 

improvement (Hermann et al, 2004; Zawadzki et al, 2005). 

 

Drexler and colleagues (2001) have reported that light source in the range of 800 nm wavelength 

allows ultrahigh resolution imaging of the retina. Yet, it can hardly penetrate retinal pigment 

epithelium (RPE), a structure that strongly absorbs the light and therefore the 800 nm wavelength is 

not sufficient enough for deep penetration into the choroidea (choroid coat), which is located under 

the retina. Imaging at a wavelength of around 1300 nm undergoes strong water absorption in the 

vitreous. The light source of 1050 nm wavelength band for this special purpose is therefore 

interesting as it demonstrates a local minimum of absorption and disappearance of chromatic 

dispersion in water. Since some researchers in the last decade have showed the potential for deep 

penetration into the choroid (Považay et al, 2003), a number of research have started application of 
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light source with a wavelength of around 1050 nm range (Yasuno et al, 2007; Hammer et al, 2010). 

Depending on the choroid OCT images diagnostic value (utilising 1050 nm wavelength), it might 

become an extra standard tool for ophthalmology (Marschall et al, 2011). In order to prevent motion 

artefacts, high data acquisition speed rates are essential for in vivo imaging (Yun et al, 2004), as the 

eye in particular is continuously moving (Leitgeb et al, 2009).  

 

3.3.2 Cardiology 

Cardiovascular disease is the leading cause of death worldwide, resulting in millions of deaths 

annually (World Health Organisation, 2010). Hence, early recognition and detection of vulnerable 

atherosclerotic plaques (VP), the most predominant condition that lead to myocardial infarctions, is 

highly pertinent. These lesions characterise by the existence fibrous cap thinner than 65 µm that 

covers a lipid-rich and infiltrating activated macrophages (Davies et al, 1993; Burke et al, 1997; 

Virmani et al, 2000, 2002; Kolodgie et al, 2004). Post-mortem analyses exhibit that the majority of 

fatal acute coronary events appear at the location of a ruptured, macrophage-rich, thin-capped fibro-

atheroma (TCFA) with a minority because of erosion of the endothelium (Arbustini et al, 1991; 

Farb et al, 1996; Davies et al, 1993; Burke et al, 1997; Virmani et al, 2000; Kolodgie et al, 2004). 

All TCFA will not rupture and the factors that initiate plaque rupture in one place in contrast to 

another place is unknown (Pinto & Waksman, 2006). Intra-vascular ultrasound imaging (IVUS) has 

been applied previously for visualising plaque lesions, although dependable characterisation was 

not performed adequately due to insufficient resolution of US images (Jang et al, 2002). Application 

of intra-vascular OCT (IV-OCT) can assist in resolving small details (Fig. 3.6), and thus IV-OCT is 

more likely to become a vital tool that enables clinicians in classifying atherosclerotic plaques (Low 

et al, 2006). 
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Figure (3.6) Images acquired with intravascular OCT (a) and 30 MHz ultrasound (b) for 
comparison. Due to its higher resolution, OCT has a clear advantage for visualising the structural 
details of the vessel walls. (i) Intima with intimal hyperplasia, (m) media, (a) adventitia, (f) fibrous 
plaque, (asterisk) guidewire shadow. (Jang et al, 2002). 

 

A number of non-invasive imaging techniques like multidetector-row computed tomography, 

coronary angiography, or magnetic resonance imaging (MRI) have been limited in resolution in 

comparing to invasive modalities such as IVUS, in addition their capability at imaging distal vessels 

are poor (Brezinski et al, 1996a, 1997; Jang et al, 2002). Similarly, angiography has a resolution of 

around 500 µm, which is not sufficient to permit visualisation of atherosclerotic plaque components 

(Brezinski, 2002). 

Brezinski and associates (1996b) in an in vitro study have first showed that OCT is feasible 

instrument for vascular imaging of blood vessels when they successfully scanned left anterior 

descending coronary artery from a cadaver, and the images acquired resembled the histology. 

Comparing IVUS images to OCT images and histopathology of post-mortem stenotic coronary 

arteries and aortas demonstrated several advantages (Brezinski et al, 1997; Patwari et al, 2000). 

OCT images had a greater resolution, a sharper demarcation between the plaque and tunica intima, 

capability to reveal beyond calcified tissue, and a higher capability to visualise lipid pools not 

demonstrated by IVUS images (Pinto et al, 2006). Ex vivo IV-OCT measurements revealed the 

ability to discriminate between different structures in the tissue (Brezinski et al, 1996) and types of 

VP (Yabushita et al, 2002; Levitz et al, 2004), and were followed by in vivo OCT studies that 

targets at VP identification (Jang et al, 2005;Tearney et al, 2006; Brezinski, 2007). Typical 
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characteristics can be quantified by OCT imaging, for instance the thickness of the fibrous cap 

(Kume et al, 2006), presence of macrophage infiltration (Tearney et al, 2003) or lipid (van der Meer 

et al, 2005). The application of PS-OCT could help in detecting the degradation of organised 

collagen fibres (Giattina et al, 2006; Nadkarni et al, 2007), and local attenuation coefficients 

extraction permits the automated identification of dissimilar tissue microstructures (van Soest et al, 

2010). The high-resolution IV-OCT imaging capabilities and extraction of information with regard 

to the tissue composition, it has become an important research method in playing an important role 

for examining cardiovascular diseases (Raffel et al, 2008; Li et al, 2010; Yamada et al, 2010) and 

possible treatments (Yu, 2009). 

 

While atherosclerotic plaques classification is the subject of ongoing investigations, the chief 

clinical IV-OCT application is for percutaneous coronary interventions (PCI) monitoring and 

follow-up (Diaz-Sandoval et al, 2005), particularly in coronary stents deployment (Gonzalo et al, 

2009). All stent struts when implanted must be adequately apposed to the wall of the vessel (Fig. 

3.7), and in the consequent healing process the stunt is covered by neointimal tissue layer. Lack of 

neointimal tissue layer coverage and inadequate stent apposition are suspected to rise the danger of 

probably fatal late stent thrombosis (Murata et al, 2010; Ozaki et al, 2010). Long-term follow up by 

IV-OCT is feasible so as to monitor the stent deployment outcome (Guagliumi & Sirbu, 2008), and 

as revealed by comparative studies, the superior resolution provides IV-OCT a strong advantage 

over IV-US (Bouma et al, 2003; Diaz-Sandoval et al, 2005; Ozaki et al, 2010). 
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 Figure (3.7) OCT images of a stented porcine coronary artery in vivo. The stent struts appear as 
highly reflective objects casting radial shadows. The images reveal tissue prolapses between the 
struts (asterisks). (Yun et al, 2006). 

 

When comparing to other invasive imaging techniques such as IVUS, it has two chief disadvantages. 

First is weak penetration depth in nontransparent highly scattered tissues, with a 2–3 mm 

visualisation limit (Brezinski et al, 1997; Stamper et al, 2006). Penetration depth is sufficient to 

assess the tunica intima and composition of plaque and to measure thin cap, however this limited 

depth does not permit evaluation of positive or negative remodelling and the total lipid pool cannot 

be completely imaged in deep plaques that have large necrotic cores. Nevertheless, the depth of 

penetration is adequate for the purpose of evaluating VP and for coronary pathology and 

microstructure imaging for most lesions. Notwithstanding the better penetration depth of IVUS 

(approximately 5 mm), it has not been revealed to detect VP dependably most likely because of its 

low resolution. In general, for the purpose of detecting unstable plaque, IV-OCT is more sensitive 

and specific in compare to IVUS (Brezinski, 2002; MacNeill et al, 2003). Signal attenuation by 

RBCs is more challenging problem that is thought to be due to mismatch in index of refraction 

between red blood cell (RBC) cytoplasm and serum. Furthermore, this has been supported in a 

study done by Brezinski and colleagues (2001), and they showed that lysed blood does not interfere 

with OCT imaging. 
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To overcome the blood opacity for near-infrared light is the main difficulty for in vivo IV-OCT 

imaging that occurs because of scattering by RBCs. Clearing the blood vessel by saline flushing for 

a short time has been successfully showed in both animals (Fujimoto et al, 1999) and humans (Jang 

et al, 2002), and has become a common practice at present. Many investigators in initial patient 

studies have demonstrated the general safety of this technique (Prati et al, 2007; Yamaguchi et al, 

2008). Though, research continues to totally remove the risk of ischemia, for example by matching 

blood serum refractive index with that of the RBCs (Brezinski et al, 2001), or by utilising oxygen-

carrying flushing liquids (Villard et al, 2002; Hoang et al, 2009). The introduction of high-speed 

FD-OCT instruments was an important stride as it enables in a relatively short flushing periods the 

acquisition of large sampling volumes (Yun et al, 2006; Bouma et al, 2009). 

 

3.3.3 Dermatology 

The OCT technique seemed promising for examination of skin abnormalities, particularly lesions or 

conditions that are challenging to be assessed by visual inspection. Therefore, in the area of 

dermatology most OCT research has addressed non- melanoma skin cancer (NMSC), though OCT 

studies in relation to inflammatory diseases such as eczema and psoriasis, photo-damage, and burns 

has also been studied (Steiner et al, 2003; Mogensen et al, 2009a). Morsy and associates (2010) in a 

recent research have suggested that OCT might be applied for measuring thickness of the epidermis 

in psoriasis and that these measurements correlate with numerous other disease severity parameters. 

This indicates that assessment of psoriatic plaques by OCT imaging might offer a useful approach 

for non-invasive and in vivo technique to follow the development of psoriatic lesions (Fig. 3.8). 

NMSC term includes mainly common skin tumours like basal cell carcinoma (BCC), squamous cell 

carcinoma (SCC) and actinic keratosis (AK). OCT with regard to these tumours looks to be efficient 

in revealing the tumour cell aggregates derivation from the epidermis (Gambichler et al, 2011). In 

the diagnosis of NMSC, OCT could possibly lessen the frequency of invasive skin biopsies, aid in 

finding an optimal biopsy sites, or measuring the thickness of tumour (Mogensen et al, 2009b). Still, 

in spite of many initial promising study results, OCT in clinical dermatology has not hitherto been 

established (Marschall et al, 2011). 
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Figure (3.8) OCT of psoriasis vulgaris showing a thickened hyperreflective band (arrow heads 
thickened stratum corneum) and acanthotic epidermis (asterisk) with elongated rete ridges. 
(Gambichler et al, 2011). 

 

The upper part of the skin can be demonstrated on OCT images. In normal skin (Fig. 3.9a), a well-

defined boundary between the horny layer (stratum corneum) and the living part of the epidermis 

can usually be seen in palmo-planter region of skin (glabrous skin), and the upper dermis can be 

discriminated from epidermis in OCT images (Mogensen et al, 2008; Alex et al, 2010). Due to 

incapability of OCT modality in resolving single cells, diagnosis of the disease should be dependent 

on alteration in the morphology of skin (Fig. 3.9b), for example a separation or breaking up of 

tissue layers, general disarray structure, or a change in the amount of backreflected light contrasted 

to normal skin (Mogensen et al, 2008; Welzel, 2001). OCT, for example can recognise the loss of 

architecture of normal skin in malignant melanomas (MMs) that might be applied to distinguish 

them from benign melanocytic nevi (BMN) (Gambichler et al, 2007c). 
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Figure (3.9) OCT images of normal skin (a) and basal cell carcinoma (b) show a clear structural 
difference. The basaloid carcinoma cell islands, the main features in the corresponding histological 
image (c), can also be recognised in the OCT image (arrows). (Marschall et al, 2011). 

 

AK is an intraepithelial premalignant neoplasm and considered the precursor lesion of SCC, 

characterised by partial thickness epidermal dysplasia, hyperkeratosis, parakeratosis and solar 

elastosis (Gambichler et al, 2011). Nearly 10% of AK lesions will advance to SCC (Glogau, 2000). 

OCT images of AK display streaks and white dots congruent to hyperkeratosis (Jorgensen et al, 

2008). It has been suggested in a pilot study by Barton and associates (2003) that OCT is beneficial 

in AK detection and characterisation, as well as monitoring their reaction to chemoprevention 

agents. According to a study by Korde and coworkers (2007), AK can be discriminated from 

healthy skin with 86% and 83% sensitivity and specificity respectively.  

Solid tumours such as BCC are usually characterised by a consistent signal distribution (Forsea et al, 

2010; Welzel et al, 2002). Subepidermal hyperreflective zones would be observed in the OCT 

images of BCC lesion that had analogous size, allocation and form similar to the tumour cell nests 

in histopathological slides. The echo-rich tumour aggregates separated from the tumour stroma by a 

narrow hyporeflective band. In the deeper dermis, many smaller tumour cell nests were seen as 
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echo poor roundish spots (Bechara et al, 2004). Gambichler and colleagues (2007d) in a more 

systematic study have found that on OCT images of BCCs, a loss of normal architecture of the skin 

and a disarray of the epidermal and upper dermal layers were seen as compared with contiguous 

non-lesional skin. Moreover in the upper dermis, big signal-intense plug-like structures, signal-free 

honeycomb-like structures and prominent cavities (signal-free) were frequently identified. The 

latter descriptions correlated with histopathology sections (Fig. 3.10). Olmedo and associates (2006) 

in a pilot study have reported that an excellent correlation between histological features of BCC and 

OCT images can be recognised. Consequently, the altered architecture of the skin layers that present 

in BCC lesion can be visualised on OCT images along with good correlation with histopathological 

section.  

 

 

 

Figure (3.10) Image (A) showing H&E slide of infiltrative BCC with multiple adjacent oval tumour 
nodules. The latter histologic finding correlated with honeycomb-like signal-poor structures in the 
OCT image (B). (Gambichler et al, 2011). 

 

Similarly, in polarisation-sensitive OCT the same is true (Strasswimmer et al, 2004). Functional 
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OCT can provide additional information that may be used to locate and characterise skin cancer. 

The highly organised structure of collagen fibres in the dermis, resulting in birefringence, breaks 

down in skin cancer lesions (Marschall et al, 2011). Strasswimmer and associates (2004) in a pilot 

study have concluded that there might be possibility for distinguishing normal skin and basal cell 

carcinoma by utilising PS-OCT. Nonetheless, in a recent study by Mogensen and coworkers (2009c) 

on more than 100 patients with various types of lesions have reported that the diagnostic precision 

using PS-OCT could not improve when contrasted to an evaluation based on structural OCT images. 

 

The discrimination, in a clinical setting, between benign and malignant lesions is significantly more 

challenging since benign lesions frequently demonstrate similar structure in OCT images to 

malignant lesions. Additionally, some factors should be taken into account such as variations with 

age, type of the skin, anatomical location, etc. (Mogensen et al, 2008; Gambichler et al, 2006a). 

Nevertheless, many authors in different studies have shown a high correlation between 

histopathology sections and OCT images of BCCs lesion, which suggest that OCT can be applied to 

distinguish NMSC lesions (Gambichler et al, 2007d; Khandwala et al, 2010). Assessment of 

thickness of tumour is very important in non-invasive treatments of superficial BCC and AK. 

Mogensen and colleagues (2009b) in a study compared OCT with a wavelength around 1318 nm 

with 20-MHz ultrasound imaging and reported that both modalities overestimated depth of the 

tumour compared with histopathology, however, OCT was less partial and more accurate. Though, 

Gambichler et al (2007d) in an in vivo OCT study on BCC lesion have revealed that discrimination 

between the dissimilar BCC subtypes (nodular, multifocal superficial and infiltrative) with OCT 

application is not possible. Mogensen and colleagues (2009c) in another study with observer-

blinded evaluation by both pathologists and dermatologists of OCT images have pointed out that 

discrimination of BCC and AK cannot be achieved grounding on the OCT images alone. 

Nevertheless, though OCT is less accurate in diagnosing NMSC than clinical differential diagnosis, 

it has a relatively high accuracy in tumour borders delineation and differentiating lesions from 

normal skin (Mogensen et al, 2009c). Several investigators in a recent pilot study have reported that 

imaging of the skin by using OCT is a useful instrument for delineating BCCs on eyelids and the 

face (Khandwala et al, 2010). Besides, Hamdoon and associates (2011) in another recent study have 

showed that photodynamic therapy (PDT) guided by OCT is a promising method to differentiate 
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between tumour involved and non- involved margins efficiently. OCT-guided PDT has lessened the 

unfavourable necrosis of healthy tissue and delivers an encouraging monitoring of the process of 

healing. 

 

Melanocytic naevi on OCT images frequently demonstrate elongated rete ridges and accentuated 

epidermal layer (Figures 3.11 & 3.12). Naevus cells nests are distinguished as areas of poor signals 

with a typical arrangement in the rete ridges (apical part). As the naevus cells nests are more 

compact, they can be better showed (Welzel et al, 1997; Gladkova et al, 2000; Welzel, 2001; 

Bechara et al, 2004). In compound naevi or infiltrative growing melanoma, the second intensity 

peak (represents the boundary between the dermis and epidermis) might disappear. The penetration 

depth of melanomas could only be measured in lesions that are very thin of about less than 1 mm in 

tumour thickness. Deeper OCT measurements in skin are hardly probable because of the limited 

depth of penetration owing to the absorption and scattering effects (Gambichler et al, 2011). In 

another study, Gambichler and coworkers (2007c) have reported the detection of important 

differences between MM and benign naevi with respect to micro-morphological features revealed 

by OCT. Large vertical, icicle-shaped structures in MM were the most remarkable OCT feature that 

did not appear in benign naevi OCT images. There is a good correlation between this distinct OCT 

features and histology findings (Figures 3.13 & 3.14). Hence, these OCT features may assist as a 

valuable distinguishing parameters that can be applied in future studies to explore OCT sensitivity 

and specificity in melanocytic skin lesions (Gambichler et al, 2007c). Systematic studies are still 

deficient for the diagnosis of pigmented lesions utilising OCT with respect to sensitivity and 

specificity. 
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Figure (3.11) H&E slide of a melanocytic naevus (A) & the corresponding OCT image (B). OCT 
displays finger-shaped elongated and broadened rete ridges including dense naevus cell clusters. 
The dermo-epidermal junction zone is relatively clearly demarcated from the more or less dark 
appearing upper dermis (B). (Gambichler et al, 2011). 

 

 

Figure (3.12) Immuno-histology showing MART-staining of a melanocytic naevus (A). On OCT 
image (B), the quite regularly arranged naevus cell nests are visualised. (Gambichler et al, 2011). 
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Figure (3.13) Histology (A, haematoxylin–eosin) a superficial spreading melanoma including the 
corresponding OCT image (B). OCT displays marked architectural disarray including large 
vertically arranged icicle-shaped structures (B). (Gambichler et al, 2011). 

 

 

Figure (3.14) Showing corresponding images of a superficial spreading melanoma on digital 
dermoscopy (A), immunohistology (MART-staining, B), 20 MHz ultrasound (C), and OCT 
displaying elongated rete ridges and tumour cell nests in the upper dermis (D). (Gambichler et al, 
2011). 
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3.3.4 Application of OCT in the oral cavity 

Many investigators in numerous studies have tried to explore the in vivo OCT diagnostic efficacy 

for the detection and diagnosis of oral pre-malignant and malignant lesions (Tsai et al, 2008a,b; 

Wilder-Smith et al, 2009a,b). In a study by Wilder-Smith et al (2009b) involving 50 patients with 

suspicious oral lesions, the evaluation of the usefulness of OCT for detecting oral dysplasia and 

malignancy has been investigated. The dysplastic lesions on OCT images have showed loss of 

stratification in the epithelium, visible thickening of the epithelium, and down-growth epithelial 

pattern (Fig. 3.15). In the OCT images, regions of OSCC of the buccal mucosa were recognised by 

discontinuity (disruption) or loss of the basement membrane, high variability in thickness of the 

epithelial layers, with erosion areas and extensive down-growth pattern of the epithelium and 

invasion into the sub-epithelial layers (Fig. 3.16). Statistical analysis of data from this research 

supported the capability of in vivo OCT with excellent diagnostic precision to detect and diagnose 

oral pre-malignant and malignant lesions. OCT sensitivity of 0.931 and specificity of 0.931 was 

obtained for identifying CIS or SCC versus non-cancer, while sensitivity of 0.931 and specificity of 

0.973 for distinguishing SCC versus all other pathologies. 

 

Figure (3.15) Dysplastic and normal buccal mucosa: (A) Photograph, (B) in vivo optical coherence 
tomography (OCT) image, and (C) H&E (10X) of dysplastic buccal mucosa. (D) In vivo OCT 
image of normal buccal mucosa. 1: stratified squamous epithelium; 2: keratinised epithelial surface 
layer; 3: basement membrane; 4: submucosa). (Wilder-Smith et al, 2009b).  
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Figure (3.16) SCC of the buccal mucosa: (A) photograph, (B) in vivo OCT image and (C) H&E 
(10X) of buccal mucosa with SCC. (D) In vivo OCT image of normal buccal mucosa. 1: stratified 
squamous epithelium; 2: keratinised epithelial surface layer; 3: basement membrane; 4: submucosa). 
(Wilder-Smith et al, 2009b).  

 

Tsai and colleagues (2009) in a study involving 97 patients applying OCT imaging for the detection 

of oral neoplasia have reported that the principal diagnostic criterion for high-grade dysplasia/CIS 

was absence of a layered structural arrangement. Diagnosis for dysplastic and or malignant versus 

benign and or reactive conditions established on this criterion accomplished a sensitivity and 

specificity of 83% and 98% respectively with about 0.76 inter-observer agreement value. This OCT 

study has concluded that with high sensitivity and specificity combined with good inter-observer 

agreement, is a promising imaging modality which is non-invasive, real time, and evaluates tissue 

sites that may have high-grade dysplasia or malignancy. 

 

In other studies by Tsai and associates (2008a,b) have applied direct evaluation of OCT scan 

profiles instead of image-based criteria, as a method of demarcating the location and margins of oral 

malignant lesions. Applying numerical parameters from A-scan profiles as diagnostic criteria, the 

decay constant in the exponential fitting of the OCT signal intensity along the depth of the tissue 

reduced as the A-scan point moved across the lesion margin laterally. Furthermore, the standard 

deviation of the OCT signal intensity fluctuation considerably increased across the transition region 

between the abnormal and normal portions. The investigators concluded that such parameters might 
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be beneficial for determining an algorithm for identifying and mapping of oral cancer lesion 

margins. Such a capability has massive clinical importance, because of the demand to better define 

excisional margins during surgical removal of precancerous and cancerous oral lesions (Tsai et al, 

2008b). 

Since subtle changes in epithelial thickening, stratification, sub-epithelial integrity and continuity 

can be delineated by utilising OCT instrument, this imaging modality has potential wide 

applications in other mucosal lesions related with immune or inflammatory diseases, such as 

pemphigus, pemphigoid, lichen planus, lupus erythematosus, graft versus host disease, or anomalies 

like vascular lesions (Wilder-Smith et al, 2010). 

 

OCT images of oral vascular anomalies have been reported in two cases in a recent study by Ozawa 

and colleagues (2009), one with a capillary–venous malformation located on the lower lip and the 

other with a reddish mass situated on the buccal mucosa. OCT images in the reported cases are 

correlated well with histopathological structures, satisfactorily displaying defined capillary vessel 

lumina and endothelial lining. Information about the vascular lesion area, size, and borders can be 

advantageous for the diagnosis and for surgical treatment options especially for vascular anomalies 

and hemangiomas in the oral and facial region. The high resolution in real-time and in situ, non-

invasiveness, and its ease of use deliver a safe ways of oral structure imaging at a level that is 

otherwise only attainable by histo-pathological analysis of a biopsy specimen (Wilder-Smith et al, 

2010).  

Most interest in the application of OCT in the head and neck area has concentrated on early 

recognition and monitoring of dysplasia and malignancy to aid in less destructive treatment and also 

in a better prognosis as well. Jerjes and associates (2009) in a recent study have carried out a 

comparison between OCT images and histological findings of suspicious oral lesions to establish 

whether this method would assist in clinical examination and monitoring of these lesions that would 

not usually necessitate a biopsy. The researchers based on four variables for assessment; changes in 

keratin, epithelial, sub-epithelial layers, and identification of the basement membrane and from 

these variables they calculated whether or not there were architectural changes. 34 oral lesions were 

assessed applying OCT and compared with histopathological results. In only 15 oral lesions the 
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basement membrane was identified. OCT could distinguish diseased areas, however it could not 

offer a diagnosis or discriminate between lesions.  

 

Fluid-filled vesicle on the lower lip was one of the lesions that perfectly demarcated by OCT with 

defined keratin, epithelial layer, and lamina propria. Vesiculo-bullous lesion of the buccal mucosa 

was another case where OCT image showed the basement membrane with unclear outline, which 

correlated with the histological descriptions of the disease. There was break in the keratin layer with 

ulceration of the epithelium and areas of keratosis and thickening when plaque lesion on the cheek 

mucosa has been OCT imaged, which is suggestive of submucous fibrosis. Jerjes and coworkers 

(2009) pilot study approves the practicability of applying OCT as an imaging technique for the 

diagnosis and monitoring of some benign and potentially malignant oral lesions without the 

necessity for many biopsies. This real time, non-invasive, and in situ modality is less morbid for 

patients and permits preventive screening of at-risk populations (Wilder-Smith et al, 2010).  

 

In a recent ex vivo study, Hamdoon and colleagues (2010) assessed the tumour resection margins 

utilising OCT on 24 patients with diagnosed T1-T2 OSCC. The surgical margins of the specimens 

have been interrogated by OCT and the acquired images were compared with histopathology slides. 

Recognition of the junctional epithelium between negative and positive margins has been observed 

by gradual change in thickness of the epithelium and basement membrane integrity or organisation 

from the normal to pathological margins. Recognisable changes in the positive margins of the 

resected tumour include hyperkeratinisation, break or discontinuity of the basement membrane and 

disarray of the epithelial structure. Calculation of sensitivity and specificity in this study have 

showed to be encouraging and the authors suggested that OCT imaging modality is feasible in 

discrimination between negative and positive surgical margins. 
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Chapter 4 

Validation of the modified OCT oral instrument compared to the commercial 
standard OCT dermatology instrument 

 

4.1 Introduction 

The Michelson Diagnostics VivoSight® topical OCT instrument (version 2.0), which is CE-certified 

(Conformité Européene) for clinical dermatological imaging, has a handheld probe (Fig. 4.1) 

designed for imaging skin. The large size, imaging head bulk and the short working distance of the 

dermatology probe makes it practical only for scanning the anterior region of the oral cavity 

including lips, anterior part of the tongue and a small area of the inner side of the cheek. In order to 

enables the clinician to examine different and distant oral mucosal surfaces, for example hard palate, 

lateral and ventral surfaces of the tongue, etc. the Michelson company have adapted the probe with 

an additional oral extension tube to reach anatomical locations where it was previously impossible 

to image. The new oral instrument (Michelson Diagnostics VivoSight® OCT oral scanning 

instrument, version 2.1) is a one-off, non-CE certified, uncalibrated and consequently non-standard 

modification of the existing CE marking instrument. Therefore, prior to any clinical application or 

use, the new oral instrument required confirmatory calibration and comparison with the 

conventional skin instrument to assess and confirm performance in image quality and resolution in 

X, Y, and Z-planes (Fig. 4.3), equates to the existing instrument.  

The oral probe (Fig. 4.1) comprising a metal tube extension of about 12.5cm in length and 1.4cm in 

diametre, has a glass window at the patient imaging end at 90°degrees to the axis of the probe to 

facilitate access to anterior-posterior orientated surfaces within the oral cavity. 

 
Figure (4.1) OCT oral instrument probe (left) and dermatology probe (right).  
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In this study, we used a commercial frequency domain swept source optical coherence tomography 

(SS-OCT, VivoSight® Michelson Diagnostics Ltd, Orpington, Kent, UK) as a standard for 

calibrating the modified oral instrument. The light source utilised by this instrument is Santec HSL-

2000 swept laser with a centre wavelength of 1.305± 15nm, and sweep range of 150nm. In standard 

configuration, the instrument achieves axial and lateral resolutions of < 10µm over a depth range of 

2mm and image width up to 6mm. The tissue penetration depth is around 1-2mm depending on the 

optical absorption and scattering properties of the object being imaged. In addition, the system can 

generate both two-dimensional and three-dimensional images by reconstruction of serial two 

dimensional slice data (www.michelsondiagnostics.com). 

 

From our initial observation, the image produced by scanning with the OCT oral instrument has a 

convex white line (Fig. 4.2) at the top of the image. This line is not apparent when the skin 

instrument is used to scan the same sample.  

 

 

Figure (4.2) OCT oral instrument image (left) reveal the convex white line (arrows), when 
compared with more uniform OCT skin instrument image (right). Maximum of 56µm rise in the 
curvature over the 6000µm imaging width field.  

 

To find out the degree of the convex line curvature, a line drawn from one end of the arc to the 

other end and the distance (in the middle of the image) between the arc and the straight line drawn 

has been measured by utilising image J programme. Over the 6mm (6000µm) imaging width field 

the curvature allowed a maximum rise of 14 pixels (56µm) where the scale set on 250 pixels/mm. 

This has raised concern about the new OCT oral instrument images in providing accurate 
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measurements in X, Y, and Z-planes in comparing with OCT skin images. Therefore,  achieving the 

following objectives need to be achieved in order to make sure that OCT oral instrument can be 

used as a surrogate for the CE certified OCT skin instrument. The objectives of this study are: 

1. Comparison of OCT oral and skin instruments by calibrating NPL Optical Dimensional Standard 

and metric slip gauges in air. 

2.  Comparison of OCT oral and skin instruments by calibrating metric slip gauges Z step height 

model and Perspex plate slopes phantom in liquids (effects of change in medium refractive index).   

4.2 Materials and methods 
4.2.1 Materials 
 
1. National Physical Laboratory (NPL) Optical Dimensional Standard (Fig. 4.3B). 

2. Metric slip gauges blocks, Mitutoyo Corporation, Japan. 

3. Purpose-built phantom comprising Petri dish containing Perspex plates fixed to the upper border 

of the dish in different and ascending slope angles. 

4. Collagen matrix gel block (Fig. 4.7). 

 
4.2.2 Methods/ study design 
 
4.2.2.1 Calibration of instruments using NPL and slip gauges step height phantoms: 
4.2.2.1.1 Calibration in X and Z planes  

To measure the instruments’ accuracy in X-axis, NPL Optical Dimensional Standard has been 

utilised to achieve this experiment (Fig. 4.3 A&B). Images of a standard known dimension 

reflecting panel were taken across its known 1200µm linewidth, with each instrument. The 

linewidth (rectangular-shaped) was first imaged in the centre of the 6mm imaging field, then in the 

right and left side of the field to measure the accuracy across the field in both OCT systems. Six 

measurements or readings were obtained for the scanned rectangle width in the centre, right, and 

left side of the imaging field and the mean and standard deviations (SD) were calculated for both 

oral and skin instruments (Table 4.1). The same NPL linewidth was re-imaged by both OCT 

instruments under the water and water adulterated with surfactant.  

 



	  

110	  
	  

 

 

              

Figure (4.3) (A) Diagram show X, Y, and Z-planes. (B) Calibration of X-plane utilising an NPL set of 

standard sized shapes.   

To assess the Z dimension measurements, a series of calibrated engineering standard depth gauges 

(slip gauges) were arranged as a series of steps, imaged in the vertical axis, normal to their 

combined width and length axes, ensuring a uniform image plane orientated to the centre line of the 

step intervals of the ladder phantom (Fig. 4.4A&B). Each imaging measurement was taken 6 times, 

and all images were measured in “image J programme” integrated in the OCT system yielding mean, 

SD and Bland and Altman plots for variation compared to known laboratory standards for each 

instrument. Vertical step heights were difficult to assess as the machined edges were rounded rather 

than right angle sharp. The end of the bright reflections of each surface were joined by construction 

lines in image J – their angle to the horizontal face of each slip gauge was found to be a reliable 

surrogate for vertical height by construction lines using the option ‘angle measure’ in image J (Fig. 

4.4B). 

      

Figure (4.4) (A) Metric slip gauges Z step height model. (B) OCT image of the metric slip gauge steps. 
In many of the images it was difficult to determine the edge of the slip gauge because it was rounded. 
To overcome this problem we used Image J software to add construction lines, shown in blue, and then 
calculated the step height by measuring the angles.     

 

1200µm	  

	  

X 
Y 

(A) (B) 

(A) (B) 

Z 



	  

111	  
	  

To assess the effects of imaging environment refractive index (RI) change on the Z-axis imaging, 

the same slip gauge step phantom was re-imaged by both instruments as before, but the phantom 

was serially immersed in transparent media with RI’s higher than water [RI of water=1.333 

(www.physicsclassroom.com)], such as surfactant RI=1.359  (Lee et al, 2005) and microscopist’s 

imaging immersion lens oil RI=1.515  (Abramowitz et al, 2002) and an aqueous scattering medium, 

milk RI=1.344-1.348 (Hui et al, 2007; www.iftbu.org/milk.htm), to assess the changes in depth 

measurement due to dissimilar media with different RIs. Changes in included angle measurements 

reflect altered apparent Z step heights in the resulting images, introduced by the imaging 

environment as the only variable. Six measurements were taken for each angle in each medium and 

the mean and SD of the angles calculated for both instruments for statistical analysis (Table 4.3).   

4.2.2.1.2 Calibration in X, Y, and Z-plane (3-D object measurement) 

A slip gauge block (1.5mm) was taken and arranged on a suitable stage so that its edge would be 

scanned and 3-D data can be obtained. Both OCT skin and oral instruments were applied to obtain 

3-D 500 multislice images (Fig. 4.11). After that, the 3-D multislice images were analysed and the 

width of the slices were measured using image J programme. Six measurements were taken for the 

first slice width, then followed by measuring slice number 100, slice 200, slice 300, slice 400 and 

finally the last slice was measured. The mean and SD of the readings were calculated for each slice. 

This was repeated for the 3-D images taken by the OCT oral instrument and measurement done 

using the same procedure. The purpose of measuring the width of the first and last slice as well as 

selected slices in between was to establish whether or not any distortion was occurring in OCT oral 

instrument images across Y scan aspect, which could progressively alter volumetric (3-D) OCT data 

and compare that to the known standard OCT skin instrument. All the measurements are illustrated 

in table (4.4) for OCT skin and oral instruments respectively. 

4.2.2.2 Effects of change in medium refractive index on the Perspex plate slopes phantom 

 

The definition of refraction is “the bending of the path of a light wave as it passes across the 

boundary separating two media” (www.physicsclassroom.com). Refraction is a result in the change 

of speed in the progression from one medium to another (Fig. 4.5). 
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Figure (4.5) Diagram illustrates angles of incidence & refraction. 

 

The diagram illustrates the light ray undergoing refraction as it passes from one medium to another 

as in this paradigm from air into water below. As the light ray travels to the boundary from one 

medium to another, is referred to as the incident ray and the refracted ray is the direction that light 

travels after hitting the boundary. In the above diagram, a normal line (dashed line) at the point of 

incidence is drawn to the surface, which always drawn perpendicular to the boundary. The angle of 

incidence, which is denoted by the symbol (θi), produced by the angle formed between normal line 

and incident ray. Likewise, the angle of refraction, which is denoted by the symbol (θr), produced 

by the angle formed between normal line and refracted ray. The angle of refraction is a quantifiable 

assessment of the amount of refraction that is taking place at any boundary. With any angle of 

incidence, the angle of refraction is dependent upon the speeds of light through the two materials. 

This speed is dependent on the index of the refraction values and optical density of the two 

materials. The relationship between the angles of incidence and refraction and the indices of the 

refraction of two media is referred to as Snell’s Law (www.physicsclassroom.com). Snell’s law 

allows assessing the angle of refraction provided the refractive indices of the materials of interest 

and the angle of incidence are known. Snell’s law is demonstrated mathematically as: 

Ni × Sin (θi) = Nr × Sin (θr)  

Ni = index of refraction of the incident medium 

Nr = index of refraction of the refractive medium 

θi("theta i") = angle of incidence 

θr("theta r") = angle of refraction 
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As the OCT instruments employ near infrared (NIR) scanning wavelengths and only a visible red 

line to indicate the approximate orientation of the imaging beam for operator alignment purposes, it 

is very difficult to measure RI or effects directly with the Michelson OCT instruments.  

 

Not all Z-axis measurements are taken on step heights arranged perpendicular to the imaging axis in 

clinical medical imaging. To investigate subject tissue RI changes on an obliquely orientated 

phantom, effects of a change in RI of the imaging environment were investigated using a simple 

oblique flat plane surface phantom, entering a different RI environment. For simplicity, an air-liquid 

interface phantom was constructed (Fig. 4.6) and serial 6 images of each air-fluid interface at the 

point of penetration by an oblique surface (of known angulation) were taken. The oblique plane was 

bright reflecting polished Perspex, visible on both sides of the air-fluid interface. Distortion of the 

planar surface geometry would reflect interference by environmental RI. Scattering and non-

scattering media were employed to transparent media (water) were compared, along with scattering 

media (milk) to assess impact of a more translucent (surfactant) or scattering environment (milk) 

representing variations in tissues within the body. Environments chosen were water adulterated with 

surfactant and milk.  

 

 

Fig. (4.6) Schematic shows how OCT scanning performed to scan the air-aqueous boundary of the 
Perspex plate in water adulterated with surfactant/milk. The solid red line represents the Perspex 
plate slope undistorted (if scanned dry) (left panel). Measurement of distortion angle (θ D) 
illustrated on OCT image (right panel).  

 

OCT imaging beam 

θ D	  
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Serial Perspex slope angles were imaged at the air-fluid interface and the difference in plane angle 

from the air to the fluid interface was measured. In air no change would exist. Water represents the 

lowest RI interface. OCT images obtained for each Perspex slope and by utilising image J software 

the angle for each slope has calculated. Slope angles ranged from 4.62°-11.44°. θ D was used as a 

representation of the effect of RI change in the media utilised to scan the Perspex slopes for both 

OCT instruments and consequently comparing the imaging behaviour between the systems. Using 

the 4.62° slope as a constant, aliquots of 1ml of surfactant (teepol) were added and the slope 

distortion θ D was reassessed six times after each of six additional 1ml teepol aliquots were added. 

To establish influence of scatter, the θ D assessments were repeated for milk dilutions to 

demonstrate any scattering influence on the altered image, again using image J programme.  

 

4.2.2.3 Investigation of OCT skin and oral instruments using tissue mimics (collagen gel 

block) 

 
A block of collagen gel was prepared and used as a connective tissue substitute model to observe 

the effect of RI change of the collagen medium on the OCT laser light beam by observing a known 

flat reflective plane (Surgical Scalpel Blade No. 15, Swann-Morton, Sheffield, UK) inserted into the 

collagen block (Fig. 4.7). The collagen gel was prepared as follow; acid solubilised rat-tail collagen 

(First Link, UK) was neutralised using 10X Minimum Essential Medium (MEM) from Invitrogen™ 

as an indicator and dropwise addition of sodium hydroxide [NaOH (5Molar and 1Molar)]. This was 

then poured into a casting reservoir (2ml capacity, 13mm x 43mm) and allowed to set at room 

temperature for 30 minutes. The samples of collagen block were prepared in the laboratories of the 

Biomaterials and Tissue Engineering Department at UCL, Eastman Dental Institute, UK.  

The block of wet collagen matrix placed inside a suitable Petri dish. A convenient reflective and 

reliably flat plane that could be inserted into the tissue was a scalpel blade. Images were acquired 

for the scalpel blade penetrating the collagen block utilising OCT skin instrument. Extreme 

difficulty was experienced in scanning and obtaining images for the scalpel blade penetrating the 

collagen block by using the OCT oral instrument because of the geometry of the oral probe that 

require to be in close proximity to the object to be imaged. Therefore, it was not possible to obtain a 

good quality image that could be trustworthy and comparable with the image obtained by OCT skin 
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instrument in order to demonstrate the similarity in θ D changes. 

        

 

Figure (4.7) OCT skin instrument used to scan the scalpel blade inserted into the collagen gel block. 

4.3 Statistical analysis      

Data were analysed by Stata statistical software for the Bland-Altman analysis (StataCorp. 

2013. Stata Statistical Software: Release 13. College Station, TX: StataCorp LP.), whereas for the 

scatter diagram SPSS statistical software was utilised (IBM Corp. Released 2013. IBM SPSS 

Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.). P < 0.05 was considered 

statistically significant.  

 

4.4 Results 

4.4.1 Calibration in X and Z planes  

The mean and SD of the six measurements of the NPL linewidth (1200µm width, which is equal to 

300 pixels) that was scanned crosswise by both OCT instruments in the centre, right and left side of 

the 6mm imaging field to compare the accuracy in X-plane (Fig. 4.8) are illustrated in table (4.1) 

below. The reason behind measuring the 1200µm linewidth on both sides of the imaging field was 

to observe whether the convex distortion of the oral instrument had any influence on the accuracy of 

measurement across the field of image. By comparing the mean and SD for the linewidth imaged by 

both instruments across the imaging field, there is consistency between OCT skin and oral 

instruments in measurement in X-plane both in air and liquids that possess dissimilar RI.   
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Table (4.1) Calibration of NPL rectangle shape in X-plane scanned crosswise by OCT skin  & oral 
instruments in the centre, right, and left side of the imaging field (measurements in pixel and scale 
set on 250 pixels/mm). 

 

Types of OCT Centre (Mean± SD) Right (Mean ± SD) Left (Mean ± SD) 

Skin  300.03± 0.17 300.02± 0.09 300.04± 0.15 

Oral  300.04± 0.22 300.03± 0.22 300.00± 0.06 

 

 

 

 

 

 

                              

Figure (4.8) OCT oral image for the NPL linewidth in the centre of the 6mm imaging field 
(arrowed). 

 

With regard to calibration in Z-plane, table (4.2) illustrates all the angle measurements between the 

metric slip gauges Z steps phantom in air and it shows that although the readings were not identical 

between both instruments, it still demonstrates consistency and similarity in trends between both 

instruments in measuring the angles between the steps when the mean and SD of the OCT skin and 

oral instrument measurements are compared with each other. 

 

 

 

 

1200µm	  

1200µm	  
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Table (4.2) Mean and standard deviation of 1st and 2nd angle readings of the metric slip gauges Z 
steps height model produced on images scanned by both OCT skin and oral instruments in air. 

OCT Type  Angles Mean ±SD 

Skin 1st angle 

2nd angle  

160.54°± 0.33° 

151.39°±0.41° 

Oral 1st angle 

2nd angle 

162.10°±0.30° 

152.25°±0.33° 

 

After examining metric slip gauge Z height model by both OCT skin and oral instruments in 

different liquids, the obtained images were analysed and by using image J software all the angles 

between the steps were measured in the same way followed for measuring angles of the steps of the 

Z phantom in air.  Table (4.3) shows the mean and SD of the readings.   

Table (4.3) Mean and SD of the metric slip gauge step angles measurements produced on images 
scanned by both OCT skin and oral instruments in different liquids. 2nd angle measurements for 
phantom in milk (both OCT systems) & 2nd angle for phantom in immersion oil (OCT oral only) 
were not recorded due to invisibility of the lower step of the phantom.  

 

 

Types of media  Angles (Mean ± SD) 

OCT skin 

(Mean ± SD) 

OCT oral 

Water 1st angle 
 2nd angle 

152.43° ± 0.40° 

139.90°± 0.36° 

153.68°± 0.33° 

141.44°± 0.32° 

Milk 1st angle 151.64°± 0.26° 152.62°± 0.37° 

Surfactant 1st angle  

2nd angle 

151.18°± 0.34° 

138.78°± 0.37° 

152.35°± 0.38° 

141.01°± 0.31° 

Immersion oil 1st angle 
 2nd angle  

149.54°± 0.42° 

136.79°± 0.39° 

150.53°± 0.40° 



	  

118	  
	  

Moreover, the table displays increases in the step height distances (represented as reduction in 1st 

and 2nd angles) between metric slip gauge steps when scanned in water and progressively increasing 

RI media as described. Similarly, the table also illustrates the same trend in the increase of the step 

height distances between the slip gauge steps using OCT oral instrument to scan the steps (Fig. 4.9). 

The 2nd angle in both OCT skin and oral images of steps in the milk were not measured due to 

difficulty in viewing the lower slip gauge in the images shown below. Besides, the 2nd angle for 

OCT oral images of steps in microscopist’s immersion lens oil was invisible as well (Fig. 4.9).  

  

    

    

Figure (4.9) OCT images show distances between the steps is increased due to change in RIs of the 
media (RI of milk = 1.344-1.348, RI of immersion oil = 1.515). OCT skin (left) and oral (right) 
instrument images are acquired for ladder phantom in milk and microscopist’s immersion lens oil 
respectively.  Arrow indicates reflection from the lower step. 

 

It can be perceived from the table (4.3) that as the RI of the medium is increased (from lowest 1.333 

of water to the highest 1.515 of immersion lens oil) the angles between the tip of the slip gauges is 

decreased, demonstrating that the distance between the steps is increased as a result of reduction in 

light speed (or increased time of flight) due to optical density and RI of the medium (Fig. 4.9). The 

plot in Fig. (4.10) below illustrates similarity in behaviour between both OCT instruments.   
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Figure (4.10) Bland and Altman (1986) plot (n=36) of the mean of 1st and 2nd angle readings for 
both OCT skin and oral instruments (horizontal axis), while vertical axis represents the difference 
between the mean angles (in degrees) measured by OCT skin and oral systems (mean of OCT skin 
readings- mean of OCT oral readings). The green line represents zero bias (mean of OCT skin 
reading- OCT oral reading = 0). Apart from bias of nearly -1.30° degrees [P < 0.001 from a paired 
t-test (the purple line below the zero bias line)], there is good agreement between OCT skin and oral 
instruments with expected discrepancies ranging from just below zero bias to nearly -2.70° degree 
(95% limits of agreement represented by the top and bottom red lines).  

 

4.4.2 Calibration in X, Y, and Z-plane (3-D object measurement) 

Assessment of the volumetric (3-D) OCT oral instrument capability was undertaken by scanning a 

laboratory calibration standard (metric slip gauge block, 1.5mm in width) in serial Y-axis slices, to 

obtain a 3-D image of the object (Fig. 4.11) and assess any distortion. Direct comparison with the 3-

D images produced by the OCT skin instrument (Fig. 4.11) allowed an assessment of the impact of 

the altered scanning geometry in the new instrument. Six readings were obtained for each slice site 

in a 500-slice reconstruction and the mean and SD of the readings calculated. Table (4.4) show that 

the mean of the readings for all the examined slices are either 375 pixels or slightly above or below 

this figure (375×4= 1.5mm) for both OCT skin and oral instruments slice measurement. This 

indicates congruence between both systems in producing 3-D sample volume, which can be 

observed in the scatter plot in (Fig. 4.12) below. 
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Figure (4.11) 3-D OCT images of slip gauge block (1.5mm in width) by skin (left) and oral 

instruments (right).  Arrow indicates the glass window of the oral probe that represent 3-D of the 

convex white line. 

 

 

 

Table (4.4) Measurement of 3-D multislice images of slip gauge (1.5mm in width) produced by 

both OCT instruments using image J software. All measurements are in pixels where scale set on 

250 pixels/mm.   

Types of OCT OCT skin (Mean± SD) OCT oral (Mean ± SD) 

Slice 1  374.98± 0.10 375.00± 0.08 

Slice 100  375.01± 0.15 375.00± 0.11 

Slice 200 374.98± 0.13 375.02± 0.10 

Slice 300 374.98± 0.12 375.01± 0.12 

Slice 400 375.01± 0.10 374.99± 0.09 

Slice 500 374.99± 0.11 374.98± 0.10 
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Figure (4.12) Scatter plot illustrates parity between both OCT systems in measuring the 3-D 
multislice images of slip gauge (1.5mm in width) using image J software programme. All 
measurements are in pixels where scale set on 250 pixels/mm.    

 

 

Bland and Altman (1986) statistical analysis was applied to evaluate the agreement between both 

OCT instruments. Bland and Altman plot in figure (4.13) shows random scatter around the mean 

difference between slices width determined using OCT skin and oral instruments. There is no 

evidence of systematic effect between the two instruments with the mean of the differences being 

0.008 (SD= 0.025) and P value equal to 0.44 from a paired t test. Lin’s concordance correlation 

coefficient equal to -0.40 (95% CI from -0.87 to 0.44). In addition, the maximum likely difference 

between the two instruments is approximately 0.05 pixel, which is clinically acceptable.    
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Figure (4.13) Bland and Altman (1986) plot (n=6) of the mean of slices width for both OCT skin 
and oral instruments (horizontal axis), while vertical axis represents the difference between the 
mean of the slices width measured by OCT skin and oral systems (mean of skin- mean of oral). The 
green line represents zero bias (mean of OCT skin- OCT oral = 0). Apart from bias of nearly -0.01 
pixel [P = 0.44 from a paired t-test (the purple line below the zero bias line)], there is very good 
agreement between mean of OCT skin and mean of OCT oral with expected discrepancies ranging 
from just below -0.06 to 0.04 pixel (95% limits of agreement represented by the top and bottom red 
lines).  

 

 
4.4.3 Effects of change in medium refractive index on the Perspex plate slopes phantom 

 

In this experiment it can be observe that θ D is increasing gradually as the RI of the medium 

(water+ surfactant or water+ milk) is increased by adding more surfactant or milk to the medium. In 

addition, θ D is also increasing when the angulation of the Perspex slopes are increasing. Figure 

(4.14) below show how θ D was increased as a result of increasing the Perspex slope angulation and 

also increase in the RI of the medium by adding more milk to the water. Similarly, the same change 

or increase in θ D has been observed when surfactant was added to the water confirming that the 
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behaviour of milk and surfactant solutions is similar and that once again behaviour of the OCT oral 

instrument is similar to the OCT skin instrument. Six times repeat of this experiment led to 

generation of six readings in order to obtain accurate measurement by calculating the mean of the 

readings and also for the purpose of statistical analysis (Raw data can be found in tables in appendix 

1). The Bland-Altman plot in figure (4.15) below shows congruency between both OCT instruments. 
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Figure (4.14) Images for both OCT skin (left) and oral (right) instruments show increase in the 
distortion angle (θ D) subsequent to increase in the index of refraction of the medium as well as 
increase in the Perspex slope angulation. Top image represents Perspex slope 4.62° in water+1ml 
milk (θ D= 3.67°, θ D= 2.99° for OCT skin and oral respectively), middle image represents Perspex 
slope 4.62° in water+4ml milk (θ D=4.28°, θ D=3.43° for OCT skin and oral respectively), while 
lower image represents Perspex slope 11.44° in water+6ml milk (θ D=6.93°, θ D=5.35° for OCT 
skin and oral respectively). It can be noted that changes in θ D are introduced by both slope angle 
and solution RI together, the slope angle having a more pronounced effect in this model. 
Furthermore, the behaviour of the OCT oral instrument is similar to the OCT skin instrument. The 
blue line represents air-liquid boundary. Blue and dashed red lines have been drawn on OCT oral 
images due to difficulty in observing the original lines.  
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Figure (4.15) Bland and Altman (1986) plot (n=48) of the mean of θ D for both OCT skin and oral 
instruments [both water+ surfactant and water+ milk (horizontal axis)], while vertical axis 
represents the difference between θ D measured by OCT skin and oral systems (mean of OCT skin- 
OCT oral). The green line represents zero bias or perfect average agreement (no difference between 
both OCT systems). Aside from the bias of just above 0.60° [P < 0.001 from a paired t-test (the 
purple line above the zero bias line)], there is a very good agreement between mean of OCT skin 
and mean of OCT oral with expected discrepancies ranging from just below 0.40° to 0. 90° (95% 
limits of agreement represented by the top and bottom red lines).  

 

4.4.4 Investigation of OCT skin and oral instruments using tissue mimics (collagen gel block) 

 

With regard to collagen matrix block experiment, figure (4.16) below displays the refraction 

(bending) of the scalpel blade when it crosses two different media with different indices of 

refraction (air-water boundary). A marked second distortion can be observed when the blade passes 

from the simple aqueous to the hydrated collagen environment (collagen gel), which is more turbid 

and optically denser than the water. 
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Figure (4.16) OCT skin image showing that a scalpel blade (blue arrow) undergoes first bending 
(red arrow) as it crosses air-water boundary (green arrows), then second refraction (bold red arrow) 
when it crosses water-collagen boundary. 

 

4.5 Discussion 

Convex white line on the top of OCT oral instrument image 

 

The adaptation from the original OCT skin instrument to the new OCT oral instrument involved the 

application of a long imaging tube with a 45 degree planar surface scanning mirror to facilitate side 

viewing. The optical path length increase was matched by the reference path to sustain the 

interferometric imaging technique. However over such an elongated path, the tendency for a radial 

scanning effect in X- plane across a flat planar mirror introduced an immediately apparent distortion 

in the X plane (the apparent convexity of the planar viewing window), which is visible in all scans. 

Although Z scanning is relatively unaffected by this geometry, there was a real concern that serial 

Y-plane scans to build a 3-D model might demonstrate a serial amplification or reduction of the 

effect, thus compromising the integrity of any volumetric data (for example, tumour volume change 

data) derived from the instrument. This curvature allowed a maximum rise of 14 pixels (56µm) over 

the 6mm (6000µm) imaging width field. Comparison of standards measured across the field width 

failed to show additional distortion from one side of the image to the other.  
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Calibration of NPL and metric slip gauges in X-plane, Z-plane, & X, Y, and Z-planes (3-D)  

 
Despite the apparent arc distortion of the plane viewing window in the OCT oral instrument, 

measurements of the linewidth (rectangle width) on the NPL standard at both extremes and centre 

of the imaging field in the OCT oral instrument and comparing that with the measurements obtained 

by the CE certified OCT skin instrument failed to demonstrate any significant error in object 

dimension. This is encouraging, suggesting that the distortion observed (56µm height in a 6 mm 

wide field) is tolerable in clinical feature size assessment, as a cell is approximately 10µm in 

diametre and the instrument resolution in clinical practice is limited to several cell width 

equivalents. Moreover, no distortion of the linewidth sample was observed when re-imaged under 

aqueous imaging environments that have dissimilar RIs. This indicates the stability of the OCT scan 

X dimension regardless of environmental RI change. This also confirms that the distortions of the 

planar surface phantom were mainly induced by time of flight delays, reflecting the differing RI of 

the surrounding media. This enhances our confidence in the reliability of width measurements (X 

axis) in OCT if applied to human in vivo/ ex vivo research. 

 

Calibration in Z-plane in air and in different liquid environments that possess dissimilar RIs 

revealed that OCT oral system is performing identically to OCT skin instrument in measuring the 

distance between the metric slip gauges steps by measuring the angles between the tips of the steps, 

although the angles were not identical from both OCT oral and skin instruments. Both OCT systems 

revealed the same reduction in the angles across different RI media reporting increases in the 

distance between steps with higher RI, for instance in immersion oil (RI=1.515) compared to milk 

(RI=1.344-1.348). Furthermore, the distance is also increased gradually when the difference in the 

RI between the media were slight, for example RI of milk and surfactant (RI=1.359). One indicator 

of the material optical density is the RI value of the material. RI values are numerical index values 

that are expressed in relation to light speed in a vacuum. The index of refraction value of a material 

is a number that indicates the number of times slower that a light wave would travel in that material 

than if it were in a vacuum. The least optically dense materials are those through which light travels 

fastest, while the most optically dense materials are those through which light travels slowest. So as 

the RI value increases, the optical density increases, and the light speed in that material decreases. 

The optical density of a material refers to the sluggish tendency of the atoms of a material to 
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maintain the absorbed energy of the light wave in the form of vibrating electrons before reemitting 

it as a new electromagnetic disturbance (www.physicsclassroom.com). Statistical analysis using 

Bland and Altman (1986) method has displayed good consistency in measuring the angles of step 

height model in liquid between both OCT systems. 

 

The images obtained by both instruments for the step height model in milk and immersion lens oil 

has demonstrated that increase in RI has minimal influence on the penetration depth of the OCT 

light beam, but the optical scattering properties of milk has influenced (reduced) the depth of OCT 

light beam where the lower step was invisible in both OCT skin and oral images. In immersion oil, 

the lower step was visible in the OCT skin image, while in the OCT oral image, although it was 

invisible, the reflection from the step can still be observed (Fig. 4.9). This reflects the reduction of 

imaging depth when changing from a transparent to a scattering environment such as skin or oral 

mucosa compared to relatively deeper imaging depth when scanning through more transparent 

media, for example the humours, anterior to the retina of the eye. 

 

The volumetric (3-D) measurement of the standard slip gauge (1.5mm) was demonstrating an 

excellent congruence in performance between the OCT skin and oral systems. The width 

measurement X orientation of the slip gauge slices through the entire multislice scan Y-plane 

demonstrate that the OCT oral instrument is scanning the sample of interest without producing 

additional distortions in any planes of the obtained image. The Bland and Altman (1986) statistical 

method confirmed that the width measurement identified throughout the 500 slice Y-scans in both 

instruments was the same (~ 375 pixels × 4µm = 1,500µm) confirming the known width of the slip 

gauge block.  

Perspex plate slopes phantom in liquids (effects of change in medium refractive index) 
 
The Perspex slope phantom experiment also exhibited concordance between both OCT instruments 

performance in observing the effect of RI change of the material or medium on the distortion angle 

(θ D). Surfactant was used to adulterate water and obtain media with gradually increasing index of 

refraction, that is, more optically dense media and assess the effect of that on the change of θ D. 

Human tissues have variable RI and scattering properties, so milk was used for second comparisons 
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to assess affects of media with different refractive indices plus adding scattering properties. The fat 

component (4%) of milk is present as 1-10µm diametre globules (Hui et al, 2007; Mulder & Walstra, 

1974; Michalski et al, 2001) that act as light scattering surfaces, along with casein micelles, and 

colloidal calcium phosphate (Hui et al, 2007). Our transparent surfactant experiments showed a 

similar increase in RI effect to the milk provides valuable evidence that the apparent RI change and 

distortion (θ D) of a known planar object passing into that medium, is principally a feature of RI 

and not scattering. This offers a potential mechanism for RI description of dissimilar tissues in 

surface structures by θ D type distortion. One possible application of this could be the assessment of 

a suspect lesion by following needle distortion during fine needle aspiration (FNA) and 

confirmation that the target tissue had been breached by the FNA needle prior to sampling. At 

present still theoretical, this could offer a useful tissue assessment, biopsy confirmation or guidance 

mechanism in the future.  

 

The tables in appendix 1 show that as the Perspex slope angle is increased and as the RI of the 

medium increased by adding more surfactant or milk to water, this has influence in increasing θ D. 

There were consistencies of behaviour between both OCT systems in detecting the change in θ D, 

which suggest that the OCT oral instrument is performing in similar ways to the standard OCT skin 

instrument. This validation is essential, as National Research Ethics Service (NRES) have been 

granted to allow the first application of this new instrument to human lesion imaging in vivo 

(12/LO/0371). As both instruments run the same display and calibration software, it is an essential 

first step to assess the performance of the new instrument against the CE marked standard to ensure 

the 2D and 3D scan measurements and volumetric analyses are the same and consistent. It is 

encouraging that the planar X distortion that introduced by an elongated final optical path to the 

head of the instrument and an arc scan across a planar mirror final geometry, is not significantly 

amplified in sequential Y-slices, amplifying the effect throughout a 3-D volume scan. Thus 3-D 

datasets and 2-D tissue slice images can be interpreted in the same way and considered similarly 

reliable whether from the oral or the skin instruments. 
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Investigation of OCT skin & oral instruments using tissue mimics (collagen gel block) 
 

Collagen matrix gel block were prepared to act as connective tissue substitute model. Collagen is 

the principal constituent of connective tissue, making up approximately 25-35% of the total body 

protein content. Collagen, in the form of elongated fibrils, is mainly found in fibrous tissues, for 

example tendon, ligament and skin (Di Lullo et al, 2002).  

 

The collagen gel block models were selected to evaluate and observe the refraction of the OCT light 

beam in a medium that model connective tissues. The double refraction of the scalpel blade at air-

aqueous boundary, then aqueous-collagen boundary serves as a clear demonstration of serial image 

distortions with serial RI changes. In this case the interfaces were the air-water/water-wet collagen 

boundaries where the light wave slows down upon crossing the boundary due to higher optical 

density of the water/collagen compared with air.  

 

4.6 Conclusion 

This study revealed that changes in RI of the imaging environments for scanning objects in the X 

plane has no apparent influence upon the measurement and thus no effects on the accuracy of data 

of both OCT systems. However, for the Z plane, changes in RI media have resulted in decelerating 

and scattering of the OCT light beam, which was obvious in the step phantom experiment when 

scanned in different liquids having dissimilar RIs. Furthermore, there was refraction of the OCT 

light beam when scanning obliquely orientated objects with refraction increasing or decreasing with 

the RI value of the medium.  

 
This series of laboratory experiments would suggest that despite a small arc distortion in the X scan 

plane due to the final right angle turn geometry in the scanning system, the non-CE certified OCT 

oral instrument offers comparable images and measurement data in X, Y, and Z parameters 

compared to the clinically available CE certified OCT skin instrument marketed for dermatological 

imaging applications. Notwithstanding the initially concerning distortion in the single X-plane scan 

of the oral instrument, there is consistency in measurement of 3-D objects. Conformity in measuring 

small object dimension, on standard phantoms such as NPL microscopy and engineering standards 

to the level of pixel precision, render the convex X distortion negligible. Of greater significance is 
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that the distortion is consistent throughout serial Y scans (3-D volume scans), rendering the 

volumetric analyses trustworthy. The investigators were concerned that a radial X scan geometry 

against a planar mirror could introduce additional and progressive distortions by use of same mirror 

in serial Y scans, but this was not identified in the reported single media serial slice studies. 

  
Consequently, we suggest that the OCT oral system can be used as direct surrogate for the CE 

certified OCT skin instrument in measurement of cutaneous and oral tumour thickness and depth 

with confidence and accuracy. NRES ethical approval for these studies (12/LO/0371) has now been 

granted for this purpose. 

 
In order to be able to apply a new or modified OCT instrument from existing standard and 

calibrated instrument, it was fundamental to assess and validate the modified instrument before 

starting to examine ex vivo and in vivo human cutaneous and oral tissue to evaluate OCT oral 

instrument in diagnosing and monitoring premalignant and malignant lesions in the head and neck 

region especially in the oral cavity. The series of laboratory experiments have paved the way for 

application of the oral instrument into ex vivo and in vivo human clinical research. 
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Chapter 5 

Evaluation of effects of refractive index change on new OCT oral instrument 
using different porcine tissue models 

5.1 Background and objectives 

Propagation of light through an optical system can be attenuated by absorption, reflection and 

scattering (Fox, 2002 & Smith, 1972). Optical scattering occurs because of mismatches in the index 

of refraction of the different components of the tissue, varying from cell membranes to whole cells. 

The most important scatterers are cell nuclei and mitochondria (Wang & Wu, 2007). Their 

dimensions range from 100nm to 6µm. Most of these organelles exhibit highly forward-directed 

scattering (Vo-Dinh, 2002). 

Strong scattering limits the OCT penetration depth ability in biological tissue (Brezinski et al, 1996). 

Scattering arises from changes in the refractive index (RI) between different constituents of the 

tissue and the surrounding medium. It is reliant on the shape and size of scattering components in 

the area and material of interest; accordingly the macroscopic scattering properties of different 

types of tissue can differ significantly. Absorption of the light waves by water, lipids, protein and 

haemoglobin could mainly be prevented by appropriate selection of the wavelength. The optical 

absorption of water and other typical constituents of tissues such as haemoglobin or melanin 

between 600-1300 nm is low (Parrish, 1981; Brezinski et al, 1996), which results in an optical 

window [also known as near infrared (NIR) or therapeutic window or window of transmission] 

(Parrish, 1981). 

The depth of OCT imaging influences the selection of the operating wavelength within the NIR 

window. Light at approximately 1300nm permits deepest penetration into most translucent tissues 

such as skin or mucosa, because absorption in melanin and scattering reduce with rising wavelength 

(Brezinski et al, 1996). Deeper penetration for applications in the tissue may be achieved by using 

even longer wavelengths, for example around 1700nm in applications where there is a low 

concentration of water so water absorption has no substantial effect (Sharma et al, 2008). However, 

these long wavelengths are not suitable for in vivo examination of the posterior eye segment 

because of strong attenuation of the signal in the vitreous humour, which largely comprises of water 

and is situated between the lens at the front and the retina at the back. Therefore, for retinal imaging 
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the commonly utilised range is about 800nm wavelength that exhibits very low water absorption 

(Považay et al, 2003), while wavelengths around 1050nm allows deeper penetration into the 

subretinal layers plus provides the best compromise between these factors (Považay et al, 2003) and 

at the same time featuring slight chromatic dispersion in water (Wang et al, 2003a).  

In this study we aimed to evaluate human skin/oral mucous membrane layers for differing RI, 

depending on the constituents and properties of each layer. Based on morphological and functional 

data, porcine skin appears to be the closest to human skin (Meyer et al, 1978; Monteiro-Riviere and 

Riviere, 1996; Barbero and Frasch, 2009), and is frequently used as a substitute in numerous human 

skin studies (Barbero and Frasch, 2009; Godin and Touitou, 2007). Therefore, porcine skin and 

subcutaneous tissue models were selected to evaluate and observe the refraction of the OCT 

imaging beam.  

In transparent media, the direction of the imaging beam can be demonstrated simply in figure (5.1) 

below. However, in translucent animal tissues this form of RI interrogation is not possible. An 

alternative mechanism had to be developed showing optical distortion, based upon the previous 

slope imaging experiments (Chapter 4), examining the distortion of a known linear reference plane 

as tissue type boundaries are traversed.  

 

 

Figure (5.1) A ray of light being refracted in a plastic block. 
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5.2 Materials and methods 

Fresh porcine skin samples with the underlying subcutaneous fat and muscle were obtained from a 

local abattoir and each tissue type was separated and put separately in suitable Petri dish. Ten 

shortened surgical scalpel blades (No. 15, Swann-Morton, UK) were placed into each tissue type at 

40-60° angle, allowing scanning by the OCT oral instrument of the aforementioned tissues with the 

scalpel blades penetrating the tissues (Fig. 5.2).  

Direct simple imaging of the distortion of the known flat bright steel surgical blade upon change 

from air-tissue interface allowed calculation of distortion angle (θ D) as in previous chapter by 

observing apparent image distortion as a result of differing indices of refraction. This was repeated 

for both OCT instrument types. Images of the air-tissue interface were captured using software with 

the beam perpendicular to the tissue surface and scanning parallel to the long axis of the blade 

inserted. 

To measure (θ D), 10 measurements were obtained for each tissue sample and the mean and 

standard deviation (SD) calculated (Tables 1 & 2 in appendix 2) for statistical analysis using “Three 

way Analysis of Variance” method.  
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Figure (5.2) Images of fresh porcine skin, subcutaneous fat, and muscle scanned by OCT 
dermatology (left) and oral instruments (right), respectively.  

  

After scanning each of the three fresh porcine tissues, the samples were immersed in isotonic 

phosphate buffered saline (PBS) solution for three days, to rehydrate the tissues in an isotonic 

environment. All scalpel blades were kept in their positions. Repeat imaging was conducted using 

both instruments after decanting the hydration fluid. Again, ten images were taken for each tissue 

type and analysed in the same way (Tables 3 & 4 in appendix 2). Direct pre- and post-hydration 

comparison demonstrated change in the distortion angles (θ D) as a result of the isotonic solution. 

As a third environmental change, each series of tissue / blade samples were then deep frozen for 

three days at a temperature of -20° C. On day 4 the same samples were thawed for 30 minutes prior 
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to re-imaging in the same fashion, looking for freeze-thaw damage effects. Images of the blades 

penetrating the frozen samples were acquired by both OCT skin and oral systems to evaluate the 

distortion angle (θ D) by utilising image J programme (Tables 5 & 6 in appendix 2).  

 

5.3 Statistical analysis 

Statistical study was performed using “Three way Analysis of Variance” method for three factors: 

OCT skin and oral instruments, conditions of the porcine tissue samples (fresh samples, samples in 

PBS, and samples after freezing) and types of tissue (skin, fat, and muscle). “Bonferroni Post Hoc 

Tests” method was used to compare between the three porcine tissue types. P < 0.05 was considered 

statistically significant.   

 

5.4 Results 

With regard to fresh porcine tissue samples, the refraction of the apparent image of the scalpel blade 

was observed as the blade entered into different tissue samples that have different indices of 

refraction, which affected the degree of the bending of the blades (i.e. the apparent distortion of the 

image we are looking for) because of optical density of the medium that has been observed in the 

Perspex plate slope phantom experiment in previous chapter. Images of the fresh skin, adipose 

tissue, and muscle samples were acquired by both OCT systems, which can be seen in figures (5.3, 

5.4 & 5.5) below.  
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Figure (5.3) OCT images of scalpel blade refraction in porcine skin sample (fresh) scanned by OCT 
dermatology (above) and oral instruments (below). Red arrows indicate air-tissue interface, whereas 
the blue arrow indicates the glass window of the oral probe.  

  

 

Figure (5.4) OCT images of scalpel blade refraction in porcine fat sample (fresh) scanned by OCT 
dermatology (above) and oral instruments (below). Undulation of the blade bend (blue arrows) can 
be noted, which corresponds with the undulation in the superficial layer of the sample (green 
arrows). 



	  

139	  
	  

 

 

Figure (5.5) OCT images of scalpel blade refraction in porcine muscle sample (fresh) scanned by 
OCT dermatology (above) and oral instruments (below).  

 

Table (5.1) below shows the summary mean and SD  “angle of distortion (θ D)” data for all images 

obtained by scanning the porcine skin, fat, and muscle samples (fresh, in PBS and after freezing) 

using both OCT instruments. Raw data can be found in tables 1-6 in appendix 2. It appeared that 

there were similarities between the OCT skin and oral instruments data in different tissues that have 

dissimilar indices of refraction. The table illustrate that θ D is increased as the optical density of the 

media is increased, for e.g., muscle was the least optically denser (mean of θ D= 11.51°) in 

comparison to fat (mean of θ D= 15.52°) and skin (mean of θ D= 19.53°) confirming the findings of 

the Perspex slopes model experiment in previous chapter.  
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(Table 5.1)  Summarise and illustrate the mean of θ D and SD for all the porcine tissue types (fresh, 
in PBS, and after freezing) for both OCT skin and oral instruments. 

 

Type of tissue Mean of θD ± SD  

(OCT skin) 

Mean of θD ± SD  

(OCT oral) 

Skin  (Fresh) 19.53° ± 0.25° 19.53° ± 0.28° 

Fat  (Fresh) 15.52° ± 0.21° 15.54° ± 0.23° 

Muscle (Fresh) 11.51° ± 0.23° 11.52° ± 0.23° 

Skin  (in PBS) 20.65° ± 0.35° 20.66° ± 0.26° 

Fat (in PBS) 16.57° ± 0.21° 16.59° ± 0.36° 

Muscle (in PBS) 12.58° ± 0.34° 12.55° ± 0.33° 

Skin (after freezing) 19.47° ± 0.33° 19.33° ± 0.28° 

Fat (after freezing) 15.30° ± 0.22° 15.27° ± 0.19° 

Muscle (after freezing) 11.21° ± 0.13° 11.20° ± 0.11° 

 

 

Table (5.1) above demonstrates the mean of θ D for all the images obtained by scanning the porcine 

skin, fat, and muscle samples after they have been immersed in PBS for three days using both OCT 

skin and oral systems. By looking at the table, it can be noted again that there were resemblance 

between the OCT skin and oral instruments data in different tissues (PBS) that have different 

indices of refraction. The table illustrates that mean of θ D is increased by about 1 degree or so for 

each tissue type in comparison to fresh tissues as the PBS resulted in altering the index of refraction 

of each porcine tissue samples.  
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The above table (5.1) reveals mean of θ D for all the images attained by scanning the porcine skin, 

adipose tissue, and muscle samples after being frozen for three days using both OCT skin and oral 

instruments. By observing the table, it can be noticed again that there were parity between the OCT 

skin and oral instruments data in different tissues (after freezing) that have different indices of 

refraction. The table illustrates that mean of θ D is dropped by about 0.20°-0.30°or so for each 

tissue type in comparison to fresh porcine tissues as the freezing result in slight decrease in the 

index of refraction of each porcine tissue samples, though the change is lesser when compared to 

the tissue samples in PBS.   

 

The assumption of the analysis were checked by the study of the residual and found to be satisfied. 

There were no significant differences between the two instruments (P = 0.059). Furthermore, there 

were highly significant differences between the three tissue types (P < 0.001), and there were 

significant difference between the conditions of the porcine tissue samples (P < 0.001).  

 

A comparison of the three tissue types using “Bonferroni Post Hoc Tests” method indicated 

significant difference between each porcine tissue types (P < 0.001), and between all the three 

conditions of the porcine tissues (P< 0.001). These statistical findings can be observed in the below 

plots (Figures 5.6, 5.7 & 5.8).  
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Figure (5.6) Box and whisker diagram illustrates congruency between both OCT skin and oral 
systems in scanning different porcine tissue samples (fresh) that have dissimilar RI. 

 

Figure (5.7) Box and whisker diagram illustrates congruency between both OCT skin and oral 
systems in scanning different porcine tissue samples (PBS) that have dissimilar RI. 
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Figure (5.8) Box and whisker diagram illustrates congruency between both OCT skin and oral 

systems in scanning different porcine tissue samples (after freezing) that have dissimilar RI. 

 

5.5 Discussion 

Scanning of porcine tissue samples (skin, fat, and muscle) in different conditions (fresh or dry, 

soaked in PBS for 3 days, and finally freezing the samples for 3 days) with the scalpel blades 

inserted into the tissues, aid in evaluating the effect of RI of each tissue type on the distortion angle 

(θ D) and whether it will be affected by changing the condition of the fresh porcine tissue types. 

From observing and comparing the obtained data pertaining the measurements of θ D in different 

porcine tissues that possess dissimilar RIs and in different conditions for both OCT skin and oral 

instruments (Table 5.1), it appears that hydrating the tissues in isotonic PBS for 3 days, has 

mimicked replacement of tissue fluids, which in turn has increased the apparent RI of the tissue 

samples. This can be observed from the summary table (5.1), where the mean of θ D has increased 

by about 1° or so. A freezing cycle imposed upon the same fresh tissues had lesser effects on the RI 

of the different types when compared to hydration. The mean of θ D that dropped by an additional 

0.20°-0.30° due to the freeze-thaw damage. There were highly significant differences between the 
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three tissue types (P < 0.001), and there were significant difference between the conditions of the 

porcine tissue samples (P < 0.001).  

Comparison of the data obtained for both OCT systems in table (5.1) as well as the statistical 

diagrams in the figures (5.6, 5.7 & 5.8), were clearly displayed the conformity in behaviour between 

the CE marked OCT skin instrument and the modified non-CE certified OCT oral instrument. There 

were no significant differences between the two instruments (P = 0.059). It is of interest that the 

apparent surface of the scalpel blade was uniformly altered by θ D depending on the tissue type, but 

the ragged tissue surfaces introduced multiple parallel segments to the distorted plane (Fig. 5.4), 

reflecting the effect of distance travelled through a material of increased optical density as well as 

its RI on the final image, disrupting the apparent plane’s continuity, but not the apparent image 

distortion (θ D). So time of flight mechanism gives additional distortion. These results point to a 

clear need for caution with navigation or tissue sampling proposals guided by markers not 

positioned within the tissue, or RI of similar value. Apparent angulation changes and distortions 

could lead to tissue sampling errors and guidance errors for the unwary.  

 

Based on theta D (effect of RI) obtained in each porcine tissue, we can infer that cutaneous/ oral 

premalignant or malignant tissues could possess higher RI than benign and normal tissues due to the 

change in histopathological features, for instance increased N/C ratio, nuclear hyperchromatism, 

fluid content etc. altering the apparent optical density of adjacent malignant tissues. One possible 

application of this could be the assessment of a suspect lesion by following needle distortion during 

fine needle aspiration (FNA) and confirmation that the target tissue had been breached by the FNA 

needle prior to sampling, as monitored by intra-operative OCT guidance. At present still theoretical, 

this could offer a useful tissue assessment, biopsy confirmation or guidance mechanism in the 

future. Figure (4.16) in chapter 4 clearly demonstrates multiple theta D effects of each medium, i.e. 

first refraction in water followed by second refraction in collagen.  
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5.6 Conclusion 

The series of the porcine skin and subcutaneous tissue scanning while penetrated by the scalpel 

blades using both OCT systems to observe the effects of different tissue types that possess 

dissimilar RIs on the distortion angle (θ D) of the OCT light beam has clearly revealed that the 

modified non-CE certified OCT oral instrument is performing similarly to the standard CE certified 

OCT skin instruments and offered comparable and trustworthy images when compared to OCT skin 

system images.    
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Chapter 6 

Utilising OCT for tissue dimensional changes measurements: Shrinkage of 
porcine cutaneous specimens after formalin fixation and histopathology 

preparation 

 

6.1 Background and objectives 

It is widely accepted that tissue samples will shrink after excision and through histopathological 

processing (Ma et al, 2004; Goldstein et al, 1999; Quester & Schroder, 1997; Schned et al, 1996; 

Ladekarl, 1994; Lum & Mitzner, 1985; Boonstra et al, 1983), though there is a paucity of data 

concerning cutaneous specimen responses. As most close margins are reported in millimetre by 

pathologists, the meaning of that figure is debatable in direct translation into life. Cutaneous tissue 

shrinkage during processing is a source of debate (Kerns et al, 2008). A few studies have examined 

shrinkage of cutaneous tissue with contradictory results (Hudson-Peacock et al, 1995; Gardner et al, 

2001; Golomb et al, 1991; Silverman et al, 1992). Yet, most previous studies have not stressed the 

significance of shrinkage as an element in settling inconsistencies in the medical record (Kerns et al, 

2008). 

 

Malignancies of the head and neck, including cancers occurring in the oral cavity, oropharynx, 

hypopharynx and larynx, represent globally the sixth most common type of cancers (Chang et al, 

2008). One of the most prognostic factors in head and neck cancer is tumour size. According to the 

American Joint Committee on Cancer (AJCC) staging system, the pathological classification of a 

carcinoma is determined by evidence gained prior to treatment, then supplemented and modified by 

further evidence acquired during surgery, especially examination of the specimen by a pathologist. 

The pathological T (tumour size) category is derived from the actual measurement of the unfixed 

tumour in the resected specimen since up to 30% shrinkage of soft tissue might occur in a resected 

specimen after fixation in formalin (Edge et al, 2009).  
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In this study we utilised a porcine model in order to evaluate and measure the percentages of both 

horizontal and vertical dimensional changes, using our modified OCT oral instrument and the 

standard OCT skin instrument, before and after 48-hour formalin fixation. In addition, we re-

measured the dimensions on the histopathology slides that corresponded to the same measured sites.  

 
6.2 Materials and methods 

Fresh full thickness epidermis, dermis and muscle porcine tissue samples were obtained from a 

local abattoir. Two parallel rows of six identical holes were cauterised into the skin tissue by 

heating the working end (smooth-faced) of an amalgam condenser in a Bunsen burner and applying 

the condenser firmly on the skin sample to (burn) create a sufficient and as uniform a depth hole as 

possible, the depth being regulated by the shape of the cylindrical instrument. We ensured that each 

parallel pair of holes remained within the maximum 6mm scan width of each OCT instrument by 

drawing parallel lines on the skin sample prior to creating the holes (Fig. 6.1).  

 

Samples were retained in suitable Petri dishes and scans were conducted with both dermatological 

and oral OCT instruments, across the maximum diametre of each hole pair. Image J software was 

used to analyse all the images obtained by both OCT skin and oral systems to attain different 

measurements between the holes (X-plane) as well as between the walls of the holes (depth or Z-

plane), see table (6.1).   

 

Directly after first measurement, the tissues were fixed in 10% NBF (neutral buffered formalin) 

within the same Petri dish to minimise tissue disturbance. It was essential to ensure the tissues were 

completely immersed in 10% NBF and the cover of the Petrie dish were secured with adhesive tape 

for vapour control. 

After 7 days the 10% NBF solution was decanted and the tissue sample were gently dried with a 

piece of tissue paper before commencing scanning, to avoid fluid collection in the perforated holes, 

distorting the measurements further. Again both OCT instruments were used to scan the six sets of 

the parallel holes across their maximum diametres to allow as best an approximation of co-
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localisation that was possible. Images were further analysed and measurements taken using image J 

software. 

  

  

Figure (6.1) Images of fresh (upper set) and formalin-fixed (lower set) porcine skin parallel holes 
scanned by OCT dermatology (left) and oral instruments (right). 

 

Once scanning was completed, the tissue were sent to the Core-Pathology laboratory department at 

Blizard Institute/Queen Mary University of London (QMUL) for routine paraffin embedding, 

sectioning and H&E staining according to a standard histopathological reference laboratory 

protocol. Outsourcing avoided any direct bias in sectioning / processing by the author. Care was 

taken by the laboratory to cut the sections at the middle of the circles (parallel holes) to match with 

nearly exact area of tissues that underwent scanning by both OCT instruments. All the 

measurements obtained for the porcine skin H&E slides in X and Z planes can be found in table 1, 

appendix 4.  
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6.3 Statistical analysis 

The data were analysed by Stata statistical software for the Bland-Altman analysis (StataCorp. 

2013. Stata Statistical Software: Release 13. College Station, TX: StataCorp LP.). P < 0.05 was 

considered statistically significant.   

6.4 Results 

All the images obtained from scanning the fresh porcine skin parallel holes, utilising both OCT skin 

and oral instruments, were subjected to analysis using image J programme to measure the distance 

between the holes as well as each hole separately (X-plane). In addition, the distance from the top 

of the holes to the bottom was measured (Z-plane). Figure (6.2) below illustrates how image J 

software was utilised to obtain all the measurements in both X and Z planes for the first parallel 

holes of the OCT skin instrument image. The same procedure was followed for measuring the 

remaining five parallel holes for the images attained by both OCT systems.  

 
 

 
Figure (6.2) OCT images of fresh porcine skin first parallel holes scanned by OCT dermatology 
(above) and oral instruments (below). Double head blue arrows represent measurements in X-plane, 
while orange arrows represent measurements in depth plane (Z-plane).  
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Table (6.1) below demonstrates all the measurements in X and Z planes for the first set of the 

parallel holes for both OCT skin and oral images. The letters C, D, I, and J represent measurements 

in Z-plane, while the other letters represent measurements in X-plane. By comparing the data 

obtained for both OCT systems, it appear that there is congruency between both OCT instruments in 

measurements in both X and Z planes confirming the findings of measuring the linewidth (rectangle 

shape) on the NPL Optical Dimensional Standard and Z step height slip gauges model in the 

aforementioned planes, which can be found in chapter 4. Raw data for the remaining five sets of the 

parallel holes can be found in tables (1-5) in appendix 3.   

 

(Table 6.1) Fresh porcine skin first parallel holes measurements by both OCT skin & oral 
instruments. Letters from A-J stands for the different measurements in Z (highlighted in green) & X 
planes in millimetre using image J programme. 

Type 
of 
OCT	  

A B C D E F G H I J 

Skin	   0.77 0.47 0.58 0.51 1.02 1.18 0.77 0.43 0.42 0.43 

Oral	   0.77 0.46 0.58 0.52 1.01 1.18 0.78 0.45 0.42 0.43 

  

All the repeat images obtained from scanning the formalinised sample were analysed in the same 

way using image J programme (Fig. 6.2) to measure the distance between the holes (X-plane) as 

well as the depth of the holes (Z-plane).  

 

It can be noted again that there is parity in behaviour between both OCT skin and oral systems 

when comparing the measurements from A-J in table (6.2) for the first parallel holes (raw data for 

the remaining five sets of the parallel holes can be found in tables 6-10 in appendix 3). However, 

the measurements in X and Z planes, which represented by letters from A-J, for the six sets of the 

parallel holes for both OCT skin and oral images appears to be smaller compared to the tables 

pertaining fresh porcine skin parallel holes. These reductions in the measurements are due to the 

resultant shrinkage of the skin sample after fixing it in 10% NBF for one week. The findings of 
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calibrating the NPL and Z step height slip gauges phantoms in X and Z planes using both OCT skin 

and oral instruments (chapter four) are confirmed again by the similarity in the data obtained for 

both OCT systems. 

 

(Table 6.2) Porcine skin (formalin-fixed) first parallel holes measurements by both OCT skin & 
oral instruments. Letters from A-J stands for the different measurements in Z (highlighted in green) 
& X planes in millimetre using image J programme. 

Type 
of 
OCT	  

A B C D E F G H I J 

Skin	   0.87 0.43 0.52 0.45 0.90 1.20 0.87 0.39 0.41 0.42 

Oral	   0.88 0.43 0.51 0.45 0.90 1.20 0.89 0.39 0.41 0.42 

 
 
 

Table (6.3) below shows the mean of A-J tissue dimensional changes in both X (A, B, E, F, G, and 

H) and Z planes (C, D, I, and J) for all the six set of the parallel holes. The means of tissue 

dimensional changes were obtained by subtracting A-J figures of the fresh porcine tissue from A-J 

figures of the formalin-fixed porcine tissue for all the six holes.  
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(Table 6.3) Illustrate the mean ± SD of A-J tissue dimensional change after formalin-fixed for all 
the six set of the parallel holes, highlighted figures underwent expansion, while the rest underwent 
shrinkage. All the measurements are in millimetres. 

 
 
 
 
 
 
 
 

 

The mean percentage of tissue expansion and shrinkage in horizontal (X) plane as a result of 

formalin fixation was about 7.2% for OCT skin instrument, while for OCT oral system was about 

7.4%, whereas in vertical (Z) plane the mean percentage of tissue shrinkage was 7.01% and 7.4% 

for OCT skin and oral systems respectively (raw data can be found in tables 1 & 2 in appendix 5). 

Figure (6.3) below explain the mean % tissue dimensional changes of both X & Z planes from A-J 

for both OCT instruments. 

 

Figure (6.3) OCT image of formalin-fixed porcine skin illustrates the mean % change of both X & 
Z planes dimensions A-J. Double head blue arrows represent measurements in X-plane, while 
orange arrows represent measurements in depth plane (Z-plane). Percentages between brackets 
represent tissue contraction and expansion (A, F, & G) measurements for OCT skin and oral 
instruments, respectively.  

 
 

OCT	   A B 

 

C 

 

D E 

 

F G H I J 

Skin	   0.061± 

0.02 

0.025± 

0.08 

0.041± 

0.02 

0.031± 

0.02 

0.053± 

0.035 

0.036± 

0.018 

0.061± 

0.049 

0.045± 

0.042 

0.021± 

0.014 

0.021± 

0.014 

Oral	   0.060± 

0.03 

0.028± 

0.009 

0.040± 

0.03 

0.036± 

0.026 

0.055± 

0.03 

0.036± 

0.016 

0.065± 

0.050 

0.043± 

0.031 

0.023± 

0.015 

0.025± 

0.013 
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The statistical results for evaluating the mean difference between both OCT skin and oral 

instruments in measuring the distances in both X and Z planes for the porcine skin parallel holes, 

which is illustrated in figure (6.4) were as follows: the mean of the differences being -0.001(SD= 

0.007) and P value equal to 0.208 from a paired t test indicating no systematic difference between 

OCT skin and oral instruments. “Lin’s concordance correlation coefficient” equal to 1.000 (95% CI 

from 0.99 to 1.00) suggesting good agreement. Additionally, the maximum likely difference 

between the two instruments is approximately 0.014 mm, which is clinically acceptable.   

 

 

Figure (6.4) Bland and Altman (1986) plot (n=82) illustrates the measured distances (in millimetre) 
in X and Z planes (mean of A-J) represented by the orange circles for both skin and oral instruments 
(horizontal axis), while vertical axis represents the difference of measurements for both OCT skin 
and oral systems (measurements of OCT skin- measurements of OCT oral). The green line 
represents zero bias or perfect average agreement (no difference between both OCT systems). The 
purple line below the zero bias line represent bias, which indicates a very good agreement between 
mean of OCT skin and mean of OCT oral with expected discrepancies ranging from just below -
0.01mm to just above 0.01mm (95% limits of agreement represented by the top and bottom red 
lines).  
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The parity in behaviour between both OCT skin and oral instruments, in scanning porcine skin 

(fresh and formalin-fixed) parallel holes in both X and Z planes, can be observed in figure (6.5) 

below. 

 

 

 

Figure (6.5) Diagram illustrates parity in behaviour between OCT skin and oral instruments in 
scanning fresh or dry porcine skin (above) and formalin-fixed porcine skin (below) for measure A 
of all the six set of the parallel holes. 
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After obtaining the H&E slides/images of the six sets of the parallel holes, all the images were 

underwent analysis using the “NanoZoomer Digital Pathology” programme (Hamamatsu Photonics 

K.K., Japan) with an integrated scale to measure the distance between the holes (X-plane) as well as 

the depth of the holes (Z-plane), represented by the letters from A-J (Fig. 6.6), to find out the degree 

of shrinkage on the porcine skin sample as a result of the steps that followed for processing the 

tissue for obtaining the histology sections.    

 

 

Figure (6.6) Haematoxylin and Eosin (H & E) slide of the porcine skin first parallel holes. Double 
head blue arrows represent measurements in X-plane, while orange arrows represent measurements 
in depth plane (Z-plane).   

 
Table 1 in appendix 4 shows all the measurements obtained for the porcine skin H&E slides in X 

and Z planes. When comparing these data with the data obtained for fresh porcine skin sample 

scanned by both OCT instruments, it demonstrates the reduction in both X and Z plane 

measurements due to the resultant tissue dimensional change. The exception are axes A, F, and G 

where the measurements increased, which is due to contraction of the tissue bulk at both the upper 

and lower ends of each hole.   

A 

B 

C D 

E 

F 

G 

H 
I 

J 
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Table (6.4) below demonstrates the mean of A-J histopathology tissue dimensional change in both 

X and Z planes for all the six set of the parallel holes. The mean of tissue dimensional change was 

obtained by subtracting A-J figures of the fresh porcine tissue from A-J figures of the 

histopathology porcine tissue slides for all the six holes.  

 
(Table 6.4) illustrate the mean± SD of A-J histopathology tissue dimensional change for all the six 
set of the parallel holes, highlighted figures underwent expansion, while the remainder underwent 
shrinkage. All the measurements are in millimetres. 

OCT	   A B 

 

C 

 

D E 

 

F G H I J 

Skin	   0.100± 

0.02 

0.046± 

0.05 

0.066± 

0.017 

0.053± 

0.018 

0.076± 

0.01 

0.063± 

0.016 

0.093± 

0.04 

0.065± 

0.042 

0.040± 

0.009 

0.046± 

0.001 

Oral	   0.096± 

0.016 

0.046± 

0.08 

0.063± 

0.02 

0.056± 

0.021 

0.078± 

0.01 

0.061± 

0.013 

0.090± 

0.04 

0.065± 

0.034 

0.041± 

0.03 

0.048± 

0.08 

 
 
 
The mean percentage of tissue expansion and shrinkage in horizontal (X) plane for the 

histopathology sections/images was greater compared to formalin fixation of the porcine skin tissue 

and was approximately 11.3% for OCT skin instrument, while for the oral system was 11.2%. In the 

vertical (Z) plane the mean percentage of tissue shrinkage was 12.4% and 12.8% for OCT skin and 

oral systems respectively (raw data in tables 3 and 4 in appendix 5). Figure (6.7) below explain the 

mean % tissue dimensional changes of both X & Z planes from A-J. 
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Figure (6.7) H & E slide of porcine skin illustrates the mean % change of both X & Z planes 
dimensions A-J. Double head blue arrows represent measurements in X-plane, while orange arrows 
represent measurements in depth plane (Z-plane). Percentages between round brackets represent 
tissue contraction and expansion (A, F, & G).   

 
 

 

 

 

 

 

 

 

 

 

A (11.96%) 

B (9.75%) 

C (16.54%) D (13.31%) 
I (9.41%) 

J (10.52%) 

E (12.58%) 

F (7.21%) 

G (12.39%) 

H (14.07%) 
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6.5 Discussion 

Porcine skin (fresh and formalin-fixed) parallel holes 

The measurements of the distances between the sets of the parallel holes (both X and Z planes) 

using both OCT skin and oral systems for scanning porcine skin (both fresh and formalin-fixed) 

demonstrate similarity in behaviour by comparing the figures, which represented by the letters from 

A-J, in the tables (6.1 & 6.2). Moreover, the results of the statistical analysis represented by the 

diagrams in figure (6.5) demonstrate that both OCT instruments are performing in the same way 

and are reporting the same dimensional changes in horizontal (X) and vertical (Z) planes. This 

confirms the findings of calibrating the NPL and Z step height slip gauges phantom in the 

aforementioned planes in chapter 4. 

 

The NBF fixation of the porcine skin sample in a formalin-containing solution for 7 days resulted in 

tissue dimensional change in both X and Z planes (Table 6.3). For example, the mean of E 

shrinkage (shrinkage in X plane) for all the six set of the parallel holes were 53µm and 55µm for 

OCT skin and oral instruments respectively. Taking a closer look at the table, one can notice that 

figures of A, F, and G were increased as the tissue shrank at both the upper and lower ends of each 

hole and resulted in stretching the tissue at these locations. While for the shrinkage in Z plane, for 

example, the mean of I shrinkage for all the six set of the parallel holes were 21µm and 23µm for 

OCT skin and oral instruments, respectively. Moreover, the mean percentage of tissue dimensional 

change in horizontal (X) plane as a result of formalin fixation was about 7.2% for OCT skin 

instrument, while for OCT oral system was about 7.4%, whereas in vertical (Z) plane the mean 

percentage of tissue shrinkage was 7.01% and 7.4% for OCT skin and oral systems, respectively. 

 

Due to creating holes in our specimen, the tissue underwent expansion in the periphery and 

contraction at the centre where it has surrounded by holes in both sides. Similar expansion and 

contraction may not occur within routine incisional/ excisional biopsies, as the tissue is usually a 

single piece. However, any sectioning / disturbance will have significant impacts on dimensional 

stability in formalinisation and tissue processing. Usually an incisional biopsy will take a complete 

mixture of normal and abnormal tissues, contracts in both horizontal and vertical planes and there is 
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no holes surrounding a lump of tissue in the middle. The sample might probably undergo various 

degrees of contraction depending on the type of tissue (normal or cancerous). Therefore our data 

pertaining to the percentage of tissue changes in both X and Z planes might not correlate exactly 

with biopsies taken from patients who have cutaneous or oral malignant lesions, as our porcine 

sample was free from malignant change.  However, the work highlights the instability of tissues in 

formalin fixation.  

 

Histopathology sections for the porcine skin parallel holes 

The measurements and analysis of the porcine skin H&E slides/images of the six sets of the parallel 

holes demonstrated that tissue processing (dehydration stage using fixative, for example 10% NBF, 

and clearing agent such as xylene) to obtain the histopathology slides has resulted in further 

shrinkage of the porcine skin sample in both X and Z planes when compared to the fresh porcine 

tissue, which can be seen in table (6.4). This table, for instance, shows that the mean of E shrinkage 

for all the six set of the parallel holes were 76µm and 78µm for OCT skin and oral instruments 

respectively, which has been calculated by subtracting E (fresh porcine holes) from E 

(histopathology porcine holes). Whereas for the shrinkage in Z plane, for example, the mean of I 

shrinkage for all the six set of the parallel holes were 40µm and 41µm for OCT skin and oral 

instruments, respectively.      

  

 Furthermore, the mean percentage of tissue dimensional change in horizontal (X) plane for the 

histopathology sections/images was greater compared to formalin fixation of the porcine skin tissue 

and was 11.3% for OCT skin instrument, while for OCT oral system was about 11.2%. In vertical 

(Z) plane the mean percentage of tissue shrinkage was 12.4% and 12.8% for OCT skin and oral 

systems respectively.  

Though a variety of fixatives were developed for preparation of surgical specimen, formalin 

fixation offers the maximum histo-morphological quality for staining of biopsied tissues and 

determining a pathological diagnosis (Titford & Horenstein, 2005). The most common fixative used 

in the laboratory is 10% NBF that contains 4% formaldehyde. The formalin effects on the biopsied 

tissues can be divided into two phases. Formalin in the early phase penetrates the tissue by diffusion 
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and accumulates to a concentration sufficient for the next phase to commence (Hsu et al, 2007). In 

the second phase, the molecular changes include crosslinks formation between proteins or between 

nucleic acids and proteins, which involve hydroxymethylene bridges. Another proposed mechanism 

is the creation of coordinate bonds with calcium ions. The crosslinks and coordinate bonds might 

alter the proteins three-dimensional structure (Werner et al, 2000). This is a slow reaction, taking 

24-48 hours to complete. Fixation for a short time results in incomplete processing, hence the 

duration of fixation can affect the degree of tissue shrinkage (Jonmarker et al, 2006 & Hsu et al, 

2007). In the current investigation, we had fixed the sample in 10% NBF for more than 48 hours in 

order to circumvent incomplete processing and partial tissue shrinkage as well as achieving 

credibility for our findings.  

 

It is well known that tissues will shrink after fixation in a formalin-containing solution. Nonetheless, 

different findings have been reported from different studies (Chen et al, 2012).  Boonstra & 

associates (1983) found that cervical tissue shrank up to 15% after formalin fixation and processing. 

In another study, esophageal tumours demonstrated 10% shrinkage after formalin fixation (Siu et al, 

1986). Jonmarker et al (2006) also reported that prostate biopsies shrank by 4.5% in diametre and 

13% in volume after formalin fixation. Different results have been reported from two researches on 

breast cancer specimens. Yeap et al (2007) in a study on breast cancer have reported 4.5% 

shrinkage in diametre after histological fixation. On the contrary, in another study by Pritt et al 

(2005), the authors reported no significant change between fresh and fixed states in 96% of breast 

cancer biopsies. Concerning the difference in shrinkage reported in the aforementioned researches, 

it is likely that the type and composition of the tissues, for instance amount of fat or muscle tissues 

could impact the overall degree of shrinkage. Thus, it is rational that researches addressing 

dimensional changes must be organ-specific and explain tissue constitution (Chen et al, 2012).  

 

Formalin fixation might cause tumour to shrink and consequently lead to the underestimation of T 

(tumour) staging. The study by Chen and colleagues (2012) in which they examined a total of 100 

head and neck cancer specimens (first study investigating head and neck cancer specimens 

shrinkage), have found that the maximal diametre of the head and neck cancer specimens shrank 1.5 

mm (4.40%) after fixation in formalin. The authors found that there was underestimation of T 
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staging in eight patients according to AJCC (American Joint Committee on Cancer) guidelines, in 

which five patients underestimated from T3 (tumour > 4 cm) to T2 (tumour 2-4 cm) and three 

patients from T2 to T1 (tumour < 2 cm). Alike result was reported by Hsu et al (2007) in their 

research on the effects of formalin fixation on tumour size underestimation in lung cancer. The 

authors found tumour shrinkage and migration from T2 to T1. 

 

There was no substantial difference in the rate of tumour shrinkage between subgroups in terms of 

gender, age, and site of the tumour. Sex has not been reported as an association with shrinkage after 

formalin fixation (Chen et al, 2012). However, Kerns and associates (2008) reported that patient age 

is an important factor related to shrinkage in cutaneous biopsies. The authors also found that there 

was 5% greater shrinkage in trunk excisions when compared to head and neck excisions. This 

incongruence may be because of the diverse pathological features in the different researches. Most 

of the patients in Chen et al (2012) study had SCC, while patients in Kerns et al (2008) study had 

skin malignancy. Another potential explication is that the skin biopsies shrank in length and width 

instantly after excision owing to intrinsic tissue contractility, not formalin fixation (Kerns et al, 

2008 & Dauendorffer et al, 2009).   

Consistent with the latest version of the “AJCC Cancer Staging Manual”, the pathological 

classification of a cancer is determined by the evidence obtained prior to treatment, then 

supplemented and modified by further proof acquired during and from surgery, especially 

pathological examinations of resected tissues (Edge et al, 2009). The pathologists do not routinely 

measure fresh biopsies in the operating theatre, but they always measure specimens that have 

undergone overnight fixation in formalin solution. Not all medical facilities have their 

histopathologists handle the fresh biopsies directly after resecting the tumour in the operating room 

(Hsu et al, 2007).  Hence, the surgeons must measure the fresh specimens so as to avoid erroneous 

determination of the tumour stage.  Chen et al (2012) report a mean shrinkage of 4.40% of the 

greatest diametre of head and neck cancer specimens. Therefore the authors recommended that size 

of the tumour require measuring immediately once resection in the operation room performed so as 

to eschew the understaging of head and neck cancers. 
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It has been reported that malignant tumours shrink less than benign tumours (Hudson-Peacock et al, 

1995). In frozen sections from MMS (Mohs Micrographic Surgery) specimens, shrinkage of the 

tissue was statistically greater during processing in those above 60 years of age, and tissue from 

extremities and the trunk displayed considerably more shrinkage during processing than that from 

the head and neck region (Gardner et al, 2001). It has been determined that tissue shrinkage is not 

affected by gender (Hudson-Peacock et al, 1995 & Gardner et al, 2001). The use of formalin-

containing solution for preservation in some studies has been found to further increase the shrinkage 

seen in excised cutaneous specimens (Hudson-Peacock et al, 1995); nevertheless, in another study 

by Golomb et al (1991) for determination of pre-excision surgical margins of melanomas from fixed 

tissue specimens, the authors have concluded that formalin is non-contributory to cutaneous 

specimens shrinkage with the majority of shrinkage occurring at time of removal of tissue from the 

body. 

In another study by Kerns et al (2008) indicated that the majority of post-excision cutaneous tissue 

shrinkage is owing to intrinsic contractile properties of the tissue itself, and not to formalin. The 

intrinsic contractile properties of the tissue are negatively affected (diminished) by both the aging 

process and the solar damage as measured by solar elastosis, both of which reduce the viable elastin 

in the skin leading to reduced contractility.  

 

Shrinkage of tissue specimens in length and width occurred straightway after excision and then on 

average, re-expanded to some extent with formalin fixation. These results resemble other 

researchers’ findings in a study on shrinkage of resected specimens of esophageal carcinoma where 

rate of tumour shrinkage was 83.59% after resection but only 80.92% subsequent to formalin 

fixation (Ma et al, 2004). Contrary to that, Hudson-Peacock et al (1995) previously noted that 

biopsied tissue shrank by 22% post-excision with a further 11% decrease in size following fixation 

in formalin. Other researchers also found that the majority of tissue shrinkage happened before 

formalin fixation (Golomb et al, 1991). The clinicians and dermatopathologists should be 

acquainted with the predictable shrinkage of submitted biopsies for settling inconsistencies within 

the medical record (Kerns et al, 2008).  
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6.6 Conclusion 

The findings in this study demonstrated that cutaneous porcine specimen has shrunk after fixing it 

in formalin-containing solution. Further shrinkage occurred by subjecting the specimen to paraffin-

embedding and histologic processing in order to obtain the H&E slides. Our results established that 

OCT oral instrument behaved similarly to the standard OCT dermatology system in measuring the 

dimensional changes in both X and Z planes. This was demonstrated by the statistical analyses of 

both OCT systems data, including the Bland-Altman plot and the P value that showed no significant 

differences between both OCT instruments.   
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Chapter 7 

Section I: Epidermal layer thickness measurements of normal skin imaged by 
the OCT oral instrument in vivo 

 

7.1 Background and objectives 

A knowledge of skin thickness in different anatomical sites of human body, especially in the head 

and neck region, is of huge importance in various medical and biological research areas 

(Gambichler et al, 2006b). Epidermal thickness (ET) of healthy human skin differs depending on 

the site (Whitton & Everall, 1973; Sandby-Moller et al, 2003). Detailed understanding of ET in the 

various anatomical facial subunits is useful when performing facial reconstructive surgery and can 

optimise cosmetic outcomes.  

 

Most of the earlier studies on evaluation of ET used confocal laser scanning microscopy (CLSM) in 

vivo (Corcuff et al, 1993; Huzaira et al, 2001; Sauermann et al, 2002; Neerken et al, 2004). 

Nevertheless, the first report provided only limited data with limited depth of penetration, as the ET 

thickness measurement was fairly significant (Branchet et al, 1990). 

 

In order to distinguish different cutaneous pathologies utilising OCT, it is essential to determine 

baseline morphological features of normal skin layers especially the thickness of the topmost layer 

(ET). The aim of the present clinical in vivo study was to assess the effectiveness of the OCT oral 

instrument in measuring the mean ET in different age groups and skin types and different 

anatomical sites of the body. 

7.2 Materials & methods 

7.2.1 Patients 

Sixty healthy subjects were registered for the current study. The study protocol approved by the 

NRES REC London-Dulwich (12/LO/0371), and informed consents was obtained from volunteers. 

Inclusion criteria included patients above 18 years old, whilst any subjects with a history of 

dermatological disease were excluded. 
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7.2.2 Methods/ study design 

 The study protocol was explained to recruited healthy subjects before they underwent OCT 

imaging of their skin. Imaging was performed at 14 anatomical sites: forehead, nasal tip and lateral 

nose, infra-orbital skin (lower eyelid), cheek, chin, ear, back of neck, palm and back of hand, 

ventral and dorsal forearm, chest and calf. All OCT images were examined by a single investigator 

to measure the ET using image J programme. The mean ET on the OCT image was calculated from 

7 measurements taken from the centre of the image and 3 lateral measures on each side at equal 

distances from the centre. These values were utilised in order to determine an overall mean for each 

site and their standard deviations. 

7.3 Statistical analysis 

SPSS statistical software was utilised to analyse the data (IBM Corp. Released 2013. IBM SPSS 

Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.). In addition, two-way analysis of 

variance (ANOVA) was utilised to find out differences in ET with regard to skin type and gender. 

For assessing the relationship between quantitative variables for ET and age, a Pearson’s 

Correlation method was used. P value of ≤ 0.01 rather than 0.05, to adjust for multiple testing, was 

considered to indicate statistical significance.  

7.4 Results  

The mean age of volunteers was 31 years (range 19–66). Females comprised 34 subjects, while 

males were 26. The cohort consisted of 29 subjects with skin type I-III (Fitzpatrick skin type scale), 

and 31 with skin type IV-VI. The OCT images of different anatomical regions of the body revealed 

layered architecture of skin with a clear demarcation (represented by the DEJ) between the darker, 

less reflective epidermis layer compared to the brighter, more backscattering dermis layer. In some 

of the OCT images with subtle layering, we had difficulty in measuring the ET. Figures (7.1-7.13) 

show all OCT images of the anatomical regions examined. Stratum corneum layer was invisible 

except on the palm of the hand. Glabrous skin also showed sudoriferous (sweat) gland duct in the 

epidermis, which featured as hyper-reflective (high scattering) coiled structure.  
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The epidermal layer of back of the neck, forearm (both ventral and dorsal surface) and calf have 

more ragged surface in comparison to the rest of the anatomical regions scrutinised. There were 

difficulties in identifying and measuring ET of forehead, cheek, chin and nose in comparison to 

other anatomical body regions examined. In addition, the skin layering was less well-defined in 

these regions. This is probably because of the large number of hair follicles and sebaceous glands 

that reside in these anatomical regions. Interestingly, in the reticular dermis of the ear OCT scans, 

we noticed dark (hypo-reflective) elongated structures ranging from 1-4mm in length in the 

majority of the images examined. 

 

The thinnest epidermal layer of all areas examined was infra-orbital skin (92.88µm) followed by ear 

(103.14µm), while the thickest was back of hand (121.90µm) followed by back of neck (121.88µm) 

if palm of hand is excluded from the analysis (Table 7.1 & Fig. 7.14).  

 

Two way ANOVA was utilised to calculate P values. Skin type and gender do not affect thickness 

of epidermis, except the ET in cheek, back of neck and dorsal forearm. Furthermore, Pearson’s 

Correlation method indicated no statistical significance correlation between age and ET, except the 

epidermis in the forehead region became thinner in the older population (old group ranged from 40-

63 years, while young group from 19-39 years) compared to younger group of the cohort {P value = 

0.024 (correlation is significant at the 0.05 level (2-tailed)}. 
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Table (7.1) Values of mean epidermis layer thickness of normal skin at different anatomical body 
regions of the population studied (n = 60). 

 

   Anatomical location                           Mean ET thickness ±  SD 

 

   Lower lid (Infra-orbital skin)                92.88± 10.99 

   Ear               103.14± 16.34 

   Cheek          105.23± 11 

   Forehead              106.52± 10.51 

   Chest                109.35± 10.63 

   Chin             111.23± 9.27 

   Nasal tip                                               112.95± 11.05 

   Lateral nose               112.95± 11.05 

   Forearm (dorsal surface)               114.04± 10.52 

   Calf               115.92± 10.65 

   Forearm (ventral surface)               117.85± 11.47 

   Back of neck               121.88± 12.02 

   Hand (back)               121.90± 10.36 

   Hand (palm)               168.07± 13.10      
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Figure (7.1) OCT image of forehead. DEJ= dermal-epidermal junction; EP= epidermis; D= dermis; 
HF= hair follicle. Epidermis appears dark (hypo-reflective) due to high nuclear content, while the higher 
reflectivity of dermis layers (papillary & reticular) is assumed to be the result of the collagen content. 

Figure (7.2) Nose. SeG= sebaceous gland.  

Figure (7.3) Infra-orbital skin. 

DEJ 
HF 

EP 

D 

SeG 
HF 



	  

171	  
	  

Figure (7.4) Cheek. 

 

Figure (7.5) Chin. 

 

Figure (7.6) Ear. HC= hyaline cartilage 

SeG 

HC 
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Figure (7.7) Back of the neck.  

 

Figure (7.8) Palm of hand. Curly bracket indicates sudoriferous (sweat) gland duct present as hyper-
reflective spiral structures. These ducts can only be recognised in glabrous skin regions (palm-plantar 
region) and are absent in follicular skin. 

Figure (7.9) Back of hand.   

HF 
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Figure (7.10) Ventral forearm.   

Figure (7.11) Dorsal forearm.   

Figure (7.12) Chest.   

HF 
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Figure (7.13) Calf.   
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Anatomical location 

 

Figure (7.14) Box and whisker plot illustrates the mean of normal value of epidermal thickness in 

various anatomical body regions. (A) Forehead, (B) Nose, (C) Infra-orbital skin, (D) Cheek, (E) 

Chin, (F) Ear lobe, (G) Back of neck, (H) Palm of hand, (I) Back of hand, (J) Ventral forearm, (K) 

Dorsal forearm, (L) Chest, (M) Calf.  
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Section II: Epithelial layer thickness measurements of normal oral mucosa 
imaged by the OCT oral instrument in vivo 

 

7.5 Background and objectives 

With regard to the oral epithelial layer, thickness assessment at different anatomical locations in the 

oral cavity is fundamental for early recognition and diagnosis of precancerous and cancerous 

lesions. Up to the present time, little data and research exist vis-à-vis the thickness of epithelial 

layer of normal oral mucosa, especially utilising non-invasive techniques, such as confocal laser 

scanning microscopy (CLSM) or OCT in vivo. The purpose of this prospective clinical study was to 

provide a reference values for thickness of epithelium at different anatomical regions within the oral 

cavity using OCT oral system in vivo. 

7.6 Materials & methods 

7.6.1 Patients 

Seventy healthy subjects were recruited for the current study. The study protocol approved by the 

NRES REC London-Dulwich (12/LO/0371), and informed consents were obtained from the 

volunteers. The cohort comprised of two ethnic groups: 38 Caucasian and 32 Black subjects.   

Inclusion criteria included patients above 18 years old, while exclusion criteria was any subject with 

history of any previous/current pathology (both benign and malignant) in the oral cavity. 

7.6.2 Methods/ study design 

The study protocol was explained to the recruited healthy volunteers before undergoing OCT 

imaging of their clinically normal oral mucosa. Images performed at 9 anatomical sites: buccal 

mucosa, floor of mouth, upper and lower lip (both vermilion and mucosal surfaces), lateral tongue, 

gingival tissue and hard palate. Soft palate, retromolar trigone, anterior palatine arch and palatine 

uvula measurements were not possible due to pharyngeal reflex that caused by relatively large size 

and geometry of the oral probe. For each location, one typical image was captured and we 

endeavoured to scan the exact site in all participants. All OCT images were scrutinised by a single 

investigator to measure the epithelial thickness using image J programme. The mean epithelial 

thickness on the OCT image was calculated from 7 measurements taken from the centre of the 

image and 3 lateral measures on each side at equal distances from the centre. These values were 

utilised in order to determine an overall mean for each site and their standard deviations. 
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7.7 Statistical analysis 

For analysing the obtained data, we utilised SPSS statistical software (IBM Corp. Released 2013. 

IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.) . Furthermore, two-way 

analysis of variance (ANOVA) was utilised to find out differences in epithelial thickness with 

regard to gender and ethnicity. For assessing the relationship between quantitative variables for 

epithelial thickness and age, a Pearson’s Correlation method was used. P value < 0.05 was 

considered statistically significant.   

 

7.8 Results  

The mean age of patients was 35 years (range 19–63). A total of 70 healthy volunteers underwent 

OCT scanning of their oral mucosa at different anatomical regions. Females comprised 37 subjects, 

while males were 33.  

The OCT images of different anatomical regions of oral mucous membrane divulged layered 

architecture of oral mucosa with a clear discrimination (represented by the basement membrane) 

between the darker, less reflective epithelial layer compared to the brighter, more backscattering 

lamina propria layer.  

 

The epithelial layer demonstrated variable thickness across the anatomical locations scanned within 

the oral cavity. The thinnest epithelium measured was in the floor of mouth area (159.04µm), 

whereas the thickest epithelium (493.92µm) observed was in the buccal mucosa region (Table 7.2 

& Fig. 7.24). We found no statistically significant differences in epithelial thickness for both sexes 

(P value = 0.114), as well as for both volunteer groups, i.e. Caucasian and black population (P value 

= 0.568). Moreover, Pearson’s Correlation coefficient statistical method has shown no statistically 

significant correlation between epithelial thickness and age, except the floor of mouth where the 

epithelium was thinner in the older age group (older group from 40-63 years, young group from 19-

39 years) compared to the young group {P value = 0.017 (correlation is significant at the 0.05 level 

(2-tailed)}. 
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 In some of the OCT mages with subtle layering in particular hard palate, gingiva and vermillion 

border of lip, we identified epithelial thickness but with extreme difficulties. Figures (7.15-7.23) 

show OCT images of all the anatomical regions studied. Additionally, we encountered challenges in 

obtaining decent OCT images of hard palate, floor of mouth and gingiva among the anatomical 

locations examined. 

OCT images of buccal mucosa, lower and upper lip mucosa, lateral tongue and floor of mouth 

showed dark (hypo-reflective) tube-like structures frequently appearing with tapering ends ranging 

from 1-3mm in length in sub-mucosa layer. No such structures have been observed in epithelial 

layer of all areas examined. 

Table (7.2) Values of mean epithelial layer thickness of normal mucous membrane at different 
anatomical regions in the oral cavity. Measurements in µm. 

 

   Anatomical location                           Mean thickness ±  SD (µm)  

 

   Floor of mouth                              159.04± 14.77 

   Hard palate                                          187.21± 4.82 

   Gingiva                  221.28± 12.69 

   Lower lip vermilion                235.85± 11.48 

   Upper lip vermilion                 243.83± 17.26 

   Lateral tongue                282.33± 16.01 

   Upper lip mucous                309.07± 20.56 

   Lower lip mucous                311.69± 18.04 

   Buccal mucosa                              493.92± 25.10 
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Figure (7.15) OCT image of buccal mucosa. EP= Epithelium, BM= basement membrane, 

LP= lamina propria. Blood and lymphatic vessels indicated by curly brackets appear as low-

scattering tube-like structures in lamina propria layer.  

 

 

Figure (7.16) Lateral tongue. Blood/lymphatic vessels indicated by curly brackets. 

 

 

Figure (7.17) Lower lip mucosa. 

  

EP 

BM 

LP 
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Figure (7.18) Lower lip vermillion. 

 

 

 

Figure (7.19) Upper lip mucosa.  

 

 

 

Figure (7.20) Upper lip vermillion. 
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Figure (7.21) Hard palate. 

 

 

 

Figure (7.22) Floor of mouth. Blood and/ or lymphatic vessels in the lamina propria 
indicated by brackets. 

 

 

Figure (7.23) Gingival tissue. 
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                             A                 B             C                D                E                 F                G                H                I        

                        Anatomical location 

 

Figure (7.24) Box and whisker plot illustrates the mean of normal value of epithelial 

thickness in various anatomical regions within the oral cavity. (A) Buccal mucosa, (B) 

Lateral tongue, (C) Lower lip vermillion, (D) Lower lip mucosa, (E) Upper lip vermillion, (F) 

Upper lip mucosa, (G) Hard palate, (H) Floor of mouth, (I) Gingiva.  
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7.9 Discussion 

In the present clinical investigation, we utilised OCT in vivo to obtain precise measurements 

of epidermal thickness in different anatomical regions of the body. The temperature of 

normal skin is approximately 37 °C and its water content is between 60-70%. In addition, it’s 

well known that image quality would be negatively affected by the water content and 

temperature of the body tissue.  

 

In excisional biopsies these constants are affected and could alter the optical properties of the 

skin (Troy & Thennadil, 2001). For this reason we conducted ET measurements in vivo to 

eschew the downsides of ex vivo measurements, of healthy skin around the surgical margins 

of excisional biopsies, including the known shrinkage of excised tissue (Kimura et al, 2003), 

which will adversely affect the accuracy of thickness measurements. 

 

In this study, we noticed some regional dissimilarity on the OCT images of the examined 

anatomical locations. Glabrous skin (palm of the hand) for example, was the only location 

where stratum corneum and sweat gland ducts could be identified. Moreover, the dark (low-

scattering) elongated structures that were observed in the reticular dermis layer of the 

posterior ear, which ranged from 1-4mm in length were in keeping with the hyaline cartilage 

of the ear. Mogensen et al (2008) reported similar findings in a clinical prospective study on 

20 healthy volunteers, utilising both OCT and polarisation-sensitive OCT (PS-OCT) to scan 

skin tissue at different anatomical regions to measure ET and describe normal skin 

morphology.  

 

The difficulties in recognising and measuring ET of forehead, cheek, chin and nose relative 

to other anatomical regions examined as well as the ill-defined skin layering in these regions 

may reflect the sizeable number of hair follicles and sebaceous glands residing in these 

anatomical regions. 

In the present study, the means of ET (measured in vivo) were inconsistent with those 

measured by other researchers in two separate in vivo studies (Gambichler et al, 2006b; 

Mogensen et al, 2008). There was either over-estimation in ET measurements in our research 

or under-estimation by other researchers in the above-mentioned studies. For example, mean 
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ET of ear and back of hand measured by Mogensen et al were 85.11µm and 86.65µm, while 

our measurements were 103.14µm and 121.90µm, respectively. Nonetheless, there was parity 

in our and the above researchers’ (Gambichler et al, 2006b; Mogensen et al, 2008) findings 

with regard to ET measurements between people of light skin (type I-III Fitzpatrick skin type 

scale) and those of darker skin (type IV-VI Fitzpatrick skin type scale). The only exception 

was the cheek, as we found that the epidermis in this region is thicker in darker skin 

volunteers when compared to lighter skin subjects (P value = 0.003). This is also in line with 

another study by Sandby-Moller et al (2003) who reported that ET does not correlate with 

type of skin.        

 
Our study revealed that gender does not influenced epidermal thickness in the majority of the 

anatomical sites investigated. The clinical study by Mogensen et al (2008) also confirmed 

similar results. The only exceptions were the back of neck and forearm (dorsal antebrachium), 

where we found statistical significant difference, i.e. P value equal to 0.003 and 0.001 

respectively. In females, the epidermis in these locations was thinner when compared to 

males. Similarly, in the clinical study of Gambichler et al (2006b), the authors reported that 

epidermis layer in the forehead region is significantly thinner in women compared to men. 

 

Vis-à-vis the relation of ET and age, Mogensen et al (2008) study reported that the adult 

group had a thinner ET compared to children. These findings were not seen in our study as 

the protocol excluded volunteers below 18 years. Therefore, further studies including more 

volunteers of children, adult and old age groups of both genders, especially older groups from 

60-90 years, are required to identify any relationship between ET and different age groups, 

gender, etc. 

 

In the current prospective clinical study, we applied OCT in vivo to attain accurate 

measurements of epithelial thickness in different anatomical regions of the oral cavity.  

 

So far, there are few optical imaging methods, for example CLSM and OCT that can be 

applied in vivo. These techniques possess high spatial resolution ranging from 1-15µm in 

order to accurately characterise pathological changes of oral mucous membrane as well as 

measuring their exact thickness. An ideal optical imaging method must have high-resolution 
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approaching 10µm (Ridgway et al, 2006) so that it can dependably distinguish abnormal 

changes of the mucosa. It is well known that thickness derived from excised tissue, i.e. gold 

standard histopathology, is subject to tissue shrinkage associated with fixation in formalin 

during histopathologic processing, which in the oral cavity ranges from 30-50% (Johnson et 

al, 1997). Additionally, the thickness obtained from ex vivo scanning of specimens using any 

optical imaging method is subject to shrinkage error. This is due to intrinsic contractile 

properties of the tissue itself immediately after excision, and not to fixation in formalin 

(Kerns et al, 2008; Ma et al, 2004; Golomb et al, 1991). Therefore, we aimed to obtain the 

measurements using in vivo method so as to generate reliable data that can serve as reference 

values of epithelial thickness in different anatomical oral regions.   

 

Current imaging systems, for example ultrasonography, CT, MRI and positron emission 

tomography have spatial resolution as follow: 100-500µm, 500-1000µm, 500-1000µm and 

1000-5000µm, respectively. These resolutions are inadequate for the recognition of 

pathological changes at the epithelial level (Ridgway et al, 2006). Other diagnostic imaging 

instruments, e.g. contact endoscopy, which is based on in vivo stains use, for example 

methylene blue, acetic acid or toluidine blue. Even though they achieve a high resolution of 

approximately 5µm, this modality allows examination of only the most superficial layers of 

the epithelium (Andrea et al, 1995). OCT imaging systems have a spatial resolution range 

from 5-20µm and a penetration depth from 1-2 mm, which depends upon the turbidity 

(optical absorption and scattering properties) of the scrutinised tissue. This allows non-

invasive, in vivo imaging of macroscopic and microscopic characteristics of both epithelium 

and lamina propria structures, without application of chemical substances (Wilder-Smith et al, 

2009b). 

 

Identification of epithelial thickness was difficult on some of the OCT mages, especially 

those with very subtle change between epithelium and lamina propria layers. This is because 

we could barely detect the transition area from darker epithelium to brighter lamina propria 

(represented by the basement membrane), which could be possibly due to less collagen fibres 

content in the upper lamina propria layer compared to the brighter lower lamina propria layer. 

The hard palate was the most challenging location to recognise basement membrane, 

followed by gingiva then the vermillion border of lip. Moreover, because of the diametre and 
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geometry of the oral probe, we faced challenges in acquiring decent OCT images of hard 

palate, floor of mouth and gingiva among the anatomical locations examined. In our 

perspective, refinement of the OCT oral probe by reducing probe diametre and increasing its 

flexibility could assist and improve imaging of these anatomical locations in the oral cavity 

significantly as well as lessening the time spent on OCT scanning.  

 

In this study, we noticed hypo-reflective tube-like structures in lamina propria but mainly in 

its lower layers, commonly appearing with tapering ends of varying length from 1-3mm or 

even longer. These structures are in keeping with blood and lymphatic vessels, which have 

been observed in the OCT images of buccal mucosa, upper and lower lips (mucosal surface), 

lateral tongue and floor of mouth. These structures have also been recognised by other 

researchers in their study to measure epithelial thickness within the oral cavity utilising OCT 

in vivo (Prestin et al, 2012).  

 

The means of epithelial thickness measured in the current investigation were inconsistent 

with that measured by Prestin et al (2012), who used a commercial Niris OCT imaging 

system (Imalux, Cleveland, OH) in their in vivo clinical study. There were either over-

estimation in epithelial thickness measurements in our study or under-estimation by Prestin 

and colleagues. For example, mean thickness of the floor of mouth and buccal mucosa 

measured by Prestin et al were 113µm and 350µm, while our measurements were 159µm and 

493µm, respectively.   

 

A number of researchers in two studies measuring thickness of healthy oral and oro-

pharyngeal epithelium and underlying lamina propria, reported variation in epithelial 

thickness from 70-550µm, whereas sub-epithelial layer thickness reached 2000µm (Klein-

Szanto & Schroeder, 1977; Paulsen & Thale, 1998). Arens and colleagues (2007), in a study 

including 161 patients underwent surgery to remove 206 benign and malignant lesions of the 

vocal folds, reported a progressive thickening of normal laryngeal epithelium from 147µm to 

258µm in mild dysplasia, 301µm in moderate dysplasia, 445µm in severe dysplasia and 974 

in early invasive carcinoma. In benign lesions, there were only slight epithelial thickenings of 
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about 100µm. Moderate dysplasia displayed a double increase and severe dysplasia showed a 

triple increase, while early invasive malignancy revealed even a sixfold increase of the mean 

epithelial thickness when compared to normal laryngeal mucous membrane.  

 

Our study revealed that gender does not influenced epithelial thickness in all anatomical sites 

examined (P = 0.114). Furthermore, the present study revealed that all anatomic locations 

examined were influenced epithelial thickness insignificantly on an inter-individual level (P = 

0.757), but on intra-individual level there were significant effects of anatomic sites on the 

epithelial thickness (P < 0.003). Vis-à-vis age and epithelial thickness relation, we found no 

effects of age in all anatomical regions examined. The exception was the floor of mouth 

epithelium, which was significantly thinner in the older age group between 40-63 years when 

compared to the younger group between 19-39 years. The reasons for this remain unclear.  

 

Because our investigation included fewer occasional alcohol drinkers and tobacco product 

consumers, therefore it was not possible to rely on such a small group and perform statistical 

study on it, although during OCT image analyses to measure epithelial thickness, we noticed 

insignificant differences in their epithelial thickness when compared with the majority of our 

cohort study (non-smoker and non-drinker). The study of Prestin and associates (2012) 

reported that epithelium of anterior palatal arch and anterior floor of mouth was significantly 

thicker in men than women. In addition, smokers group have significantly thicker epithelium 

of anterior floor of mouth compared to non-smokers. Use of alcoholic beverages was not 

associated with any differences in thickness of epithelial layer. Regression analysis revealed a 

highly significant connection of age with thickness of palatine uvula epithelium and an 

inverse association of age with thickness of buccal mucosa epithelium. Accordingly, further 

studies including more volunteers of young and old age groups of both genders, especially 

older groups from 60-90 years, will be essential in order to find out any relations between 

epithelial thickness and different age groups, gender, smoker vs. non-smoker and alcohol 

drinker vs. teetotal. 
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7.10 Conclusion 

Our findings indicate that the modified OCT oral instrument can be used in a simple way to 

evaluate and measure accurately both epidermal and epithelial thickness in vivo, thereby 

avoiding any discrepancies in thickness measurements generated by utilising other techniques, 

such as ex vivo scanning method or even the gold standard histopathology.  

 

In our view, cutaneous and oral lesions can best be reliably assessed by excisional biopsy and 

histopathological investigation, which remains the gold standard. Nevertheless, OCT 

techniques are capable of distinguishing dysplasias and malignancies prior to surgery. Hence, 

small tumours can be removed completely by excisional biopsy procedure or in case of large 

tumours, the surgeon could perform a targeted incisional biopsy at the most suspicious 

location where premalignancy/ malignancy is strongly suspected. In this way, OCT may act 

as an adjunct that could considerably contribute to the early recognition of cutaneous and oral 

malignancy. 

 

The results presented in this study indicate that both quantitative and qualitative evaluation of 

cutaneous and oral structures are feasible utilising the OCT instrument in vivo. Furthermore, 

the data presented here could serve as basic reference values for normal epidermal and 

epithelial thickness, which might be advantageous in various clinical and experimental 

matters. 
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Chapter 8 

Comparison of Mohs micrographic surgery with OCT 

 

8.1 Introduction 

8.1.1 Mohs micrographic surgery 

 Mohs surgery, also known as chemosurgery or Mohs micrographic surgery (MMS), 

developed by Frederic E. Mohs in 1938, is a surgical procedure that is microscopically 

controlled used to treat common types of cutaneous malignancy. Mohs surgery allows 

complete margin control during skin cancer removal (CCPDMA – complete circumferential 

peripheral and deep margin assessment), using frozen section histology (National 

Comprehensive Cancer Network, 2006; Dhingra et al, 2007). CCPDMA or MMS permits for 

the elimination of a cutaneous cancer with high cure rate and a very narrow surgical margin 

(Bentkover et al, 2002; Minton, 2008). 

 

The cure rate with MMS cited by most studies is from 97% to 99.8% (Mikhail & Mohs, 1991) 

for primary BCC. Two studies reported a lower cure rate for primary BCC, 95% and 96% 

(Smeets et al, 2004). Recurrent BCC has a lower cure rate with Mohs surgery, approximately 

94% (Mikhail & Mohs, 1991). MMS has been used in melanoma-in-situ removal with a cure 

rate between 77% and 98%, and certain types of melanoma with a cure rate 52% (Mikhail & 

Mohs, 1991; Gross et al, 1999). Studies examining Mohs surgery for melanoma-in-situ 

reported a cure rate of 95% for frozen section Mohs, and from 98% to 99% for fixed tissue 

Mohs technique (Bene et al, 2008; Stevenson & Ahmed, 2005). 

 

The treatment of choice for high-risk localised cutaneous SCCs and SCCs situated in 

cosmetically sensitive or critical areas is MMS. This is because of its capability to spare 

normal tissue as well as a high cure rate. Reported 5-year cure rates for primary SCCs are 

about 97%, while for recurrent SCCs are between 90-94%. Cure rates are consistently higher 

with Mohs surgery for all types of high risk SCCs than with other modalities (Rowe et al, 

1992; Lawrence & Cottel, 1994).  
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Other indications for Mohs surgery include dermatofibrosarcoma protuberans, spindle cell 

tumours, sebaceous carcinomas, microcystic adnexal carcinoma, merkel cell carcinoma, 

Paget's disease of the breast, atypical fibroxanthoma, leiomyosarcoma, and angiosarcoma. 

Since the Mohs technique is controlled micrographically, it offers accurate removal of the 

malignant tissue, while healthy tissue is spared. It is also more cost effective compared to 

other surgical techniques when considering the cost of surgical removal and separate 

histology examination. Nonetheless, MMS should be reserved for the cutaneous malignancy 

treatment in anatomic areas where tissue preservation is of greatest importance, for instance 

in the facial region, hands, feet and genitals (Gross et al, 1999). 

 

The MMS procedure is basically a pathology sectioning technique, which allows for the 

surgical margins to be completely examined under light microscopy. The Mohs technique is 

different from the standard ‘bread loafing’ method of sectioning (Fig. 8.1B), where 

examination of random samples of the surgical margin are performed (Connolly et al, 2012; 

National Comprehensive Cancer Network, 2011). 

Four stages are involved in Mohs surgery: 

1. Surgical removal of tissue (surgical oncology) 

2. The piece of tissue is mapped, frozen and cut between 5-10µm in a cryostat, and stained 

with haematoxylin and eosin (H&E) and/ or other stains including toluidine blue 

3. Interpretation of slides (histopathology) 

4. Surgical defect reconstruction (reconstructive surgery) 
 

Mohs technique is usually performed under local anaesthetic in an outpatient setting. Cutting 

around the visible tumour is performed using a small scalpel blade, positioned at an angle of 

45 degrees. A very small surgical margin is utilised, usually about 1-1.5 mm of uninvolved 

skin or free margin. The amount of free margin removed is considerably less than the usual 4-

6 mm, which is required for the standard excision of cutaneous malignancy (Maloney, 1999). 

Following each surgical removal of the cancerous tissue, the sample is processed, cut on the 

cryostat and placed on slides, stained with H&E and then read by the Mohs 
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surgeon/pathologist who examines the sections for tumour cells. The location of cancerous 

tissue is marked on the map (drawing of the tissue) if cancer is found, and the Mohs surgeon 

removes the indicated cancerous tissue from the patient in the second stage. This surgical 

procedure can be repeated in several stages until no further tumour is found (Fig. 8.1A). Then 

the Mohs surgeon/ plastic and reconstructive surgeon will perform the facial reconstructive 

surgery following removal of the skin cancer. 

 

The technique is well described in current references (Maloney, 1999; Gross & Steinman, 

2009). The mapping combined with the "smashing the pie pan" technique of processing is the 

essence of MMS surgery. If one imagines an aluminium pie pan as the blood covered surgical 

margin, and the topmost of the pie is the crust covered surface of the skin – the objective is to 

flatten the aluminium pie pan into one flat sheet, mark it, stain it, and examine it under light 

microscopy. Another author utilises the paradigm of peeling the skin off an orange (Mikhail 

& Mohs, 1991). Imagine an orange cut in half as the CCPDMA layer. The peel is considered 

to be the surgical margin. One can remove this peel and flatten it out on a glass slide in order 

to scrutinise the invasive cancer margins.  

 

It is believed by some physicians that frozen section histology is the same as Mohs surgery, 

but it is not (Maloney, 1999). MMS is achieved by utilising fresh tissue samples, whereas 

frozen section histology might or might not be CCPDMA. Non-CCPDMA histology analysis 

normally uses a method of random tissue sampling, which is called "bread loafing". In "bread 

loafing", less than 5% of the entire surgical margin is examined (consider pulling 5 slices of 

bread out of a whole loaf of sliced bread and investigating simply those 5 slices in order to 

visualise the entire loaf). While in CCPDMA histology processing, the whole surgical margin 

is investigated (consider examining the whole outside crust of the same loaf of bread). In 

statistical terms, the false negative rate will become lower by examining more slices of bread 

(Gross et al, 1999). False negatives occur when a histopathologist reads cancer excision as 

free of residual cancer, albeit carcinoma may be present in the specimen and missed due to 

the random sampling method (Mikhail & Mohs, 1991) (Fig. 8.2). 
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Figure (8.1) Schematic of MMS technique (A), diagram of histopathology examination of 
tissue margins (B). 
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Figure (8.2) Schematic illustrates Mohs method compared with different methods of 
microscopic processing: cross sectioning (A), peripheral sectioning (B), bread loaf sectioning 
(C), Mohs method (D).   

 
8.1.2 Aims 

The purpose of this study was to: 

1. Study the accuracy of a recently modified and validated OCT oral system in discerning 

normal facial skin cancer (BCC) margins by comparison with the frozen section histology of 

the specimens that undergo MMS. 

2. Possibility of identifying the different BCC subtypes by comparing the OCT images with 

the corresponding histopathology slides. 

8.2 Materials & methods 

8.2.1 Patients 

Seventy-three subjects with biopsy-proven BCC undergoing MMS at University College 

Hospital/ Dermatology Department were selected and recruited for the current study. 

Inclusion criteria included patients above 18 years old. Additional inclusion criteria were 

clinically apparent lesions that haven’t undergone any previous treatment modality, for 

instance topical therapeutic agents such as imiquimod or 5-fluorouracil and PDT. The study 

protocol approved by the NRES REC London-Dulwich (12/LO/0371), and informed consents 

were obtained from all patients.  
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8.2.2 Methods/study designs 

Subjects with biopsy proven BCCs on the facial region in whom a decision to undergo MMS, 

were prepared by mapping the boundary of the lesion with the naked eye using a surgical 

skin marker pen. Narrow clinically healthy margins of the skin surrounding the tumour were 

included in the excisional biopsy performed by the Mohs surgeon. Following the first and ⁄or 

the second stages of MMS, the OCT oral instrument was used for immediate ex vivo 

scanning and capturing images of the margins of the specimen to verify its status. Four 

margins per biopsy tissue were studied (total number 292). The four locations scanned were 

at the 3, 6, 9 and 12 o’clock positions. Scanning was initiated from the periphery towards the 

centre for each location. As part of our routine practice in Dermatologic Surgery unit at 

UCLH, the biopsies were processed for horizontal frozen sections by a Mohs histotechnician 

after image acquisition of the specimen by OCT instrument. Then the acquired OCT images 

of the specimen margins were compared with the H&E sections.  

 

Two investigators have independently examined and compared the OCT images with the 

H&E slides to find out whether or not the margins were clear or involved. The margin status 

of the histopathology was determined by a consultant histopathologist involved in this study. 

Assessment was conducted according to WHO guidelines. The criteria that have been 

considered to identify and rate a margin as negative (tumour-free) are the presence of an 

intact DEJ with the overlying normal epidermal layer and the underlying homogenous dermis 

layer (Fig. 8.3), whereas for identification of a BCC in the positive margin (tumour-laden 

margin), at least one of the following criteria was required; presence of honeycomb-like 

aggregates (lobules of small tumour), dark rounded areas (islands of tumour nests), or plug-

like signal-intense structures (dense tumour clusters) with or without breached DEJ (Fig. 8.4). 

The two assessors re-examined all the OCT images after 5 weeks in order to determine intra-

observer differences. 

8.3 Statistical analysis 

In order to assess the effectiveness; sensitivity, specificity and overall accuracy of OCT (not 

accounting for chance agreement) were calculated in Excel, Microsoft Office 2003 according 

to the data given by both investigators. Kappa statistics were calculated in ‘2015 GraphPad 

Prism Software’ to assess the agreement between the readers and interpreted as poor if κ < 
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0.00, slight if 0.00 ≤ κ ≤ to 0.20, fair if 0.21 ≤ κ ≤ to 0.40, moderate if 0.41 ≤ κ ≤ to 0.60, 

substantial (or good) if 0.61 ≤ κ ≤ 0.80, almost perfect (or excellent) if κ > 0.80 (Landis & 

Koch, 1977).   

8.4 Results  

The mean age of patients was 67.5 years (range 26–96). Men comprised 39 subjects, while 

women were 34. BCC lesions were mainly of mixed subtypes (two or more than two 

subtypes) in 27 cases, followed by nodular (20 cases), micronodular (11 cases), infiltrative (8 

cases) and superficial subtype (7 cases) (Figures 8.7, 8.8 & 8.9). Cheek (17) and nose (17) 

were the main common locations for the BCC lesions, followed by forehead/temple (14), 

periorbital area (10) and scalp (10). Ears (3) and lips (2) were the least common locations in 

the head and neck areas for BCC lesions in this study (Table 8.1). 

The histopathological analysis of 292 margins showed 232 tumour free margins and 48 

tumour-involved margins. 12 margins were excluded because of distortion (severe artefact) 

during histopathologic processing as well as bad quality OCT images. Previously described 

honeycomb-like aggregates and plug-like signal-intense structures were not identified. 

Adnexal structures were also identified, but were often difficult to differentiate from tumour 

in some areas. 

 Sensitivity and specificity for the first observer for distinguishing the BCCs margins was 

77% and 96.6%, respectively. The positive predictive value (PPV) was 82.2% and the 

negative predictive value (NPV) was 95.3%. Prevalence was 0.16, OCT accuracy was 93.2% 

and the kappa statistic was 0.75 (95% CI: From 0.65 to 0.86) (substantial agreement). There 

were 8 false positives and 11 false negatives, with positive likelihood ratio (LR+) of 22, 

suggesting that OCT is useful and provides evidence to support the diagnosis and negative 

likelihood ratio (LR-) of 0.24, which allows us to rule out the diagnosis (Table 8.2). The 

sensitivity and specificity for the second observer was 85.4% and 95.3%, respectively. The 

PPV was 78.8% and the NPV was 96.9%. Prevalence was 0.17, OCT accuracy was 93.5% 

and the kappa statistic was 0.78 (95% CI: From 0.68 to 0.87) (nearly excellent agreement). 

There were 11 false positives and 7 false negatives, with LR+ of 18 and LR- of 0.15 (Figures 

8.5 & 8.6, Table 8.3).      

The intra-observer agreement was substantial (Kappa statistic= 0.76). Furthermore, the 

degree of concordance between both readers (inter-observer agreement) was also good, 
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although the kappa statistic was a little lower (Kappa statistic= 0.63) according to Landis & 

Koch, 1977. 

 
Table (8.1) Clinical data and BCC histopathology subtypes and location of the population 
studied (N = 73). 

 

 1. Gender                                                                                                  No (%) 

        Male                                                                                                   39 (53.5%) 

        Female                                                                                                34 (46.5%) 

 2. Age (years), mean (range)                                                                     67.5 (26–96)  

3. Location of BCC 

        Cheek                                                                                                  17 (23.2%) 

        Nose                                                                                                    17 (23.2%) 

        Forehead ⁄temple                                                                                 14 (19.2%) 

        Scalp                                                                                                    10 (13.7%) 

        Periorbital                                                                                            10 (13.7%)   

        Ear                                                                                                          3 (4.2%) 

        Lip                                                                                                          2 (2.8%) 

4. BCC subtypes 

        Mixed (two or more than two subtypes)                                              27 (37%) 

        Nodular                                                                                                20 (27.4%) 

        Micronodular                                                                                       11 (15%) 

        Infiltrative                                                                                              8 (11%) 

        Superficial                                                                                              7 (9.6%) 
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Table (8.2) BCC margins assessment by the first investigator (total 292 margins, 12 
margins were excluded). Sensitivity 77%; specificity 96.5%; (PPV) 82.2%; (NPV) 95.3%; 
accuracy of OCT oral system 93.2%. TP: true positive, FP: false positive, TN: true negative, 
FN: false negative. 

 

 

Table (8.3) BCC margins assessment by the second investigator (total 292 margins, 12 
margins were excluded). Sensitivity 85.4%; specificity 96.9%; (PPV) 78.8%; (NPV) 96.9%; 
accuracy of OCT oral system 93.5%. TP: true positive, FP: false positive, TN: true negative, 
FN: false negative. 

 

 

 

 

 

 

 

 

                                         Histopathology 

                    
OCT 

 Positive Negative Total 

Positive 37 (TP) 8 (FP) 45 

Negative 11 (FN) 224 (TN) 235 

Total 48 232 280 

                                             Histopathology 

                    
OCT 

 Positive Negative Total 

Positive 41 (TP) 11 (FP) 52 

Negative 7 (FN) 221 (TN) 228 

Total 48 232 280 
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Figure (8.3) True negative margin from BCC lesion. Both OCT & histopathology images 
reveal no tumour cell nests, intact dermo-epidermal junction (DEJ) and homogenous dermis 
(D) within the 6 mm scan length. EP= epidermis; HF= hair follicle; SeG= sebaceous gland. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

Figure (8.4) True positive margin from a tumour-laden resection margin of a nodulocystic 
(or nodular) BCC lesion. Both images show tumour nests and cystic changes in the papillary 
& reticular dermis layers (PD & RD), with breach in continuity of DEJ in some areas.  

	  

Figure (8.5) False positive margin of a BCC lesion. H&E image reveals intact DEJ with no 
tumour nests, whereas OCT image shows no clear distinction (DEJ) between epidermal and 
dermal layers, and the presence of numerous large hypo-reflective (low scattering) tumour-
like round structures in both epidermal and dermal layers.	  
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Figure (8.6) False negative margin of a BCC resection margin. H&E picture showing deep 
tumour nests of both nodular & micronodular subtypes in the reticular dermis, which is 
clearly beyond OCT penetration depth capability. OCT scan revealing distinct epidermis, 
intact DEJ and homogenous dermis. 

 

 

                                                   

                       

Figure (8.7) Superficial BCC shown in both histology slide & OCT image. Note the 
downward growth of basal cell layer of epidermis (arrows) without breach in the continuity 
of DEJ. 
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Figure (8.8) Mixed nodular & micronodular BCC subtypes shown in both histology slide & 
OCT image. Red arrows indicate nodular nests, whereas white arrows indicate micronodular 
basaloid nests. Palisading (halo-like region) is obvious around the ovoid basaloid nest 
(bracketed), which is due to the presence of either mucin secretion within a cleft or nuclear 
material that has been suggested to cause hypo-reflectivity (low scattering properties). SwG 
(sweat glands) can be seen in the pathology picture, which is beyond OCT penetration depth 
ability. Note that due to the high scattering nature of the crusting surface of epidermis on the 
right side of the OCT image (blue arrow), shadowing occurs that results in obscuring the 
layers and features in the region.   

 

 

Figure (8.9) Infiltrative type BCC shown in both histopathology & OCT pictures. Note the 
dramatic alteration to the morphology of both epidermal and dermal layers in the region 
where the BCC nests resides in. Variability in shape & size of tumour cell nests is noticeable 
with jagged contours in comparison with other BCC subtypes. It is pretty much similar to a 
worm holes down into both epidermal & dermal layers.  

 

 
 
 

BCC Infiltrative strands and nests 

SwG 

SwG 



	  

	  
	  

202	  

8.5 Discussion 

The results of the current investigation revealed that normal histopathological landmarks, for 

example epidermis, dermis (including both papillary and reticular layers) and DEJ could be 

clearly recognised using OCT instrument. This study shows that the normal skin 

characteristic layerings are lost in BCCs, and this is detectable on OCT images.  

 

The OCT penetration depth in the current study is limited to a maximum of only 1.5-2mm, 

which is adequate to visualise both the epidermal and dermal layers where occurrence of 

most of the pathological changes can be observed. However, the BCC lesions and nests that 

penetrate deep (2mm onwards) in the lower reticular dermis or even subcutis (subcutaneous 

or hypodermis) layers are beyond OCT’s scope owing to the relatively shallow penetration 

depth ability. The lateral and axial resolution of 10-15µm would not permit single cell 

detection. Nevertheless, One of the advantages of OCT over CLSM (or LSCM), which has 

achieved in near real time and noninvasively 1µm resolution with a 200-400µm field of view 

but with a very shallow depth of penetration up to 500µm (Rajadhyaksha et al, 1995; 

Rajadhyaksha et al, 1999a; Rajadhyaksha et al, 1999b; White et al, 1999; Collier et al, 2000; 

Collier et al, 2000), is the possibility of microanatomical structures analysis to a depth of 

1500µm. This indicates the likelihood of diagnosing any abnormalities that extend from the 

papillary dermis to the upper reticular dermis. This involves regions where the epidermis has 

slight thickness, in which assessment of part of the reticular dermis can be achieved 

(Sauermann et al, 2000).  

 

In the current investigation, BCC nodular and micronodular subtypes have shown a single 

important feature, i.e. circular or oval tumour aggregates formation in the epidermal and 

upper dermal layers, which was found to be distinctive feature in the lesions examined. While 

vis-à-vis infiltrative subtype, tumour nests are much smaller in width, which is about few 

cells width (the majority are two cell width), with jagged contours that gives the appearance 

of either straight or curved small spikes and strands of tissue. Furthermore, the superficial 

growth pattern BCC appear as atypical basaloid proliferation, which is parallel to the long 

axis of epidermal layer and showing little penetration into the dermal layer. This research 

showed that the OCT oral instrument diagnostic capability is ideal for BCC subtypes 

detection. 



	  

	  
	  

203	  

The OCT oral instrument features in BCC lesions were very distinctive. BCCs in this study 

showed diagnostically reliable features, albeit some difficulties were encountered by the 

investigators during assessment of some OCT images of the BCC lesions due to lack of 

sufficient contrast (image quality) and resolution. This had led to difficulties in easily 

defining the borders of the nests and strands of the BCC subtypes and differentiate them from 

the adnexal structures (particularly sebaceous glands), other anatomical features, and 

shadows and artefacts which had resulted owing to hyperreflectivity of the keratinised or 

ulcerated surface layers of the skin in the regions where the BCCs resides. This is in 

contradiction to a study carried out by Mogensen et al (2009) who assessed OCT imaging in 

the diagnosis of benign lesions and NMSC versus normal skin in 104 subjects. They 

concluded that the naked eye is superior to OCT for the diagnosis of NMSC.  

 

Other research performed by Gambichler et al (2007a) on BCCs utilised in vivo OCT. The 

researchers have reported the capability of in vivo OCT in imaging the altered architecture of 

skin layers and histology correlates of BCC. The BCC tumour nests in its different shapes, i.e. 

lobules, islands, and infiltrating strands appeared similar in OCT images and histopathology 

pictures, regardless of the tumour subtype. 

 

In comparison to the physical examination published rates at 92% by Berg and Atkins (2002) 

in a cutaneous cancer screening study, the accuracy of OCT for BCC diagnosis exceeds that 

of the physical examination at 93.2%. Moreover, OCT imaging has the capability to non-

invasively, remotely and in real time confirms the diagnoses, while physical examination 

usually followed by a tissue biopsy. Utilising specified simple criteria, we have established 

that OCT scanning is sensitive and specific for BCC diagnosis, without huge difference 

amongst different subtypes of BCC.  

 

In the current investigation, the practicability of OCT imaging in the identification of 

cutaneous tumour resection margins has been demonstrated. Utilising any optical non-

invasive diagnostic method in order to improve the accuracy of excisions might advantage 

patients by preserving as much normal tissue as possible mainly in the head and neck region 

where functional and cosmetic reasons are of fundamental importance as well as lessening 

the number of repeat surgeries. However, the current OCT oral instrument technology needs 



	  

	  
	  

204	  

refining (by improving image resolution and penetration depth) in order to make it useful in 

the clinical setting. 

The facial cutaneous malignancies tends to be widespread below the surface and in some 

cases have poor delineation, which means requiring several stages of Mohs in order to 

determine the margins of the tumour. Frozen or permanent histopathology preparation could 

take hours to days or is not possible with some tissues. This might have a significant effect on 

the prognosis of early stage disease. In a recent study by Cunha et al (2011) who investigated 

and compared a lab-based OCT microscope (EX1301; Michelson Diagnostics, Orpington, 

Kent, UK) with conventional frozen-section histopathology for visualising BCC during MMS 

by enrolling 38 patients, have reported that on the average the mean time to produce one 

OCT image was 7 minutes, whereas 20-40 minutes were required to produce H&E sections. 

However, in comparison to our hand-held oral probe OCT system that was used in the current 

investigation, the acquisition time was very fast, which was about 10 seconds. Hence, the 

time required to examine the margins of the excised tumours is at the most several seconds. 

Subsequently, this real-time intraoperative system is highly unlikely to considerably lengthen 

the time of the surgical procedure.  

 

It is improbable that intraoperative OCT imaging will identify occult lesions at a distance of 

several millimetres from the primary tumour, as presently the greatest depth of penetration of 

OCT imaging is around 2mm. Therefore, in iceberg-shaped tumours for instance, resection 

margin analysis is becoming increasingly arduous. The majority of false negative readings in 

the current study were owing to this fact.  

 

Notwithstanding that, the real-time morphological information attained by OCT scanning, 

vis-à-vis the epidermal and dermal layers in addition to the capability to demonstrate the 

junction between these two layers, makes it a promising mapping instrument. In diagnostic 

ability terms, these are the best performing parameters to distinguish tumour-laden margins.   

 

Investigations of the surgical margins of BCCs have disclosed a gradual transition from more 

normal appearing images to frank tumours. Detection of features that could discriminate 

normal skin from cancer tissue is possible by scanning with OCT system. Therefore, a 
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research by Gossage and associates (2003) have suggested that statistical and spectral texture 

analysis together with OCT imaging would likely to provide automated methods of the 

diagnostic tissue differentiation.   

 

8.6 Conclusion  

This study shows the accuracy of the recently modified OCT oral instrument in identifying 

the margins status of BCCs located in the head and neck region, albeit with some false 

positive and negative margins of the excisional biopsies examined. By comparing to 

histopathology, a good correlation has been revealed by the OCT oral system.  

 

Furthermore, the OCT oral system has shown good capability in discerning different BCC 

subtypes, for instance, imaging the various nests of BCCs (lobules, islands and infiltrating 

strands). Nevertheless, tumour identification could be more challenging in thick tumours that 

exceeds 2mm, which stretch beyond the OCT signal depth, especially with our modified OCT 

oral system- as we noticed a slight reduction in the penetration depth when compared with 

the standard OCT skin instrument. Eventually, intraoperative OCT imaging might guide BCC 

excision with MMS technique and the preservation of as much normal tissue as possible. In 

addition, it should be of value in the diagnosis and mapping of premalignant and malignant 

lesions in the head and neck region including the oral cavity.         
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Chapter 9 
 

Assessment of premalignant/malignant lesions utilising OCT oral 
instrument: Immediate ex vivo study 

 

9.1 Background and objectives 

In oral cancer, local recurrence and high mortality rate is in part due to the incomplete 

removal of the primary tumour. In order to reduce the recurrence rate, one of the pivotal 

factors is to accomplish cancer-free surgical margins. In the previous chapter (MMS for BCC 

lesion removal), the modified OCT oral instrument proved successful in discerning tissue 

structures in healthy (tumour free margins) and pathological (tumour-laden) margins with 

good sensitivity, specificity and accuracy. The goal of this prospective clinical study was to 

assess the OCT oral instrument’s abilities in examining oral premalignant and malignant 

lesion resection margins and to understand if this imaging technique could be used to guide 

surgical resection.   

9.2 Materials & methods 

9.2.1 Patients 

Eighty-eight subjects who presented with suspicious intra-oral premalignant and malignant 

lesions to the UCLH/ Macmillan Cancer Centre- Head & Neck Department were selected and 

recruited for the current study. The protocol of this study was approved by the NRES REC 

London-Dulwich (12/LO/0371), and informed consent was obtained from all patients. 

Inclusion criteria included patients above 18 years of age and patients with T1 & T2 oral 

squamous cell carcinoma (OSCC) with thin resection margins that could be easily scanned 

with OCT imaging.  Bulky tumours, i.e. T3 & T4 OSCC, are unsuitable for OCT scanning 

due to the irregular tumour margins. Other exclusion criteria were patients with a previous 

history of aero-digestive tract carcinoma who had received either radio- or chemotherapy.  

9.2.2 Methods/study design 

Subjects with white, red and/ or white and red patches (leukoplakia, erythroplakia and 

erythroleukoplakia) and unhealed ulcer lesions present for more than three weeks in the oral 

cavity were booked to undergo excisional biopsy surgical procedure under general 

anaesthetic after previous incisional biopsies confirming that these lesions were dysplastic 

and/ or malignant. Suspected lesions were mapped by the head and neck/maxillofacial 
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surgeon using surgical marker pen (including free surgical margins) before excision of the 

lesion using scalpel blade and/ or CO2 laser. Prior to surgical resection, photos of the lesions 

were taken utilising (Canon EOS 500D, Japan) camera so that the investigators would be able 

to envisage the clinical situation and to correlate them with images obtained from the OCT 

oral instrument after scanning the specimens. As well as digital images, diagrams and 

specimen orientation utilising sutures were included in the co-registration process (Fig. 9.1). 

These steps have enabled the histopathologist to recognise the scanned planes precisely and 

provide H&E sections co-localised to the OCT scan images. For each biopsy, the OCT oral 

instrument was used to acquire immediate ex vivo images (OCT system applied in the 

operating theatre) from several areas of interest including medial, lateral, anterior and 

posterior margins.  

So as to ensure objectivity, one consultant oral and maxillofacial histopathologist, was 

involved in the study, examined all H&E slides and provided the histopathology diagnoses. 

Assessment was conducted according to WHO guidelines. Histopathological evaluation of 

each H&E section was scored using a scale of 0 (normal)-6 (SCC) according to the criteria 

established by MacDonald (1980) using the Smith & Pindborg (1969) technique for oral 

epithelial atypia scoring. The stained sections were graded on the scale of mild-moderate-

severe dysplasia relying on the range and severity of individual features and the ratio of 

epithelial thickness affected. 

For each H&E slide, the following numerical grading system was utilised:  

• 0= healthy  

• 1=hyperkeratosis 

• 2=mild dysplasia  

• 3=moderate dysplasia 

• 4=severe dysplasia  

• 5=CIS   

• 6=SCC  

 

The criteria for oral epithelial dysplasia were as follows: drop-shaped rete ridges, irregular 

epithelial stratification, individual cell keratinisation, basal cell hyperplasia, loss of 

intercellular adherence, loss of polarity, hyperchromatic nuclei, increased 
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nuclear/cytoplasmic ratio, anisocytosis, pleomorphic nuclei & cells, abnormal mitotic figures, 

and increased mitotic activity. 

 

Two investigators, who were experienced in interpreting OCT images, examined all OCT 

images obtained from scanning the specimens’ margins. Both investigators have good 

knowledge in interpreting OCT images as they had involved in many OCT-related research. 

A set of OCT images with their corresponding H&E slides for different grades of dysplasia 

and malignancy were used to consolidate the scorers’ assessment dexterity and knowledge. 

Each scorer examined the images independently and classified and diagnosed them (blinded 

of the histopathological diagnosis) on a scale of 0 to 6 (where 0 is normal and 6 is SCC). This 

scale was devised to match the scale utilised for evaluating the H&E slides (MacDonald, 

1980; Smith & Pindborg, 1969). After four weeks had elapsed, all OCT images were re-

evaluated by the same scorers in order to work out the intra-observer agreement, whilst inter-

observer agreement was assessed by comparing the scorers’ findings. Scoring of OCT images 

were based on certain diagnostic features; changes in keratin layer, thickening of epithelium, 

epithelial proliferation and invasion, elongation of rete ridges, irregularity in epithelial 

stratification and basal cell hyperplasia. Epithelial invasion was described as loss of visible 

basement membrane.  

The scoring for the OCT images were depending on the range and severity of individual 

features and the ratio of epithelial thickness affected. All OCT images were compared with 

their corresponding gold standard H&E pictures to expose whether or not the resection 

margins were positive or negative and to calculate sensitivity, specificity and accuracy of 

OCT oral system. 

9.3 Statistical Analysis 

In order to assess the effectiveness; sensitivity, specificity and overall accuracy of OCT (not 

accounting for chance agreement) were calculated in Excel, Microsoft Office 2003 according 

to the data given by both investigators. Cohen’s Kappa statistics were calculated in ‘2015 

GraphPad Prism Software’ to assess the agreement between the readers and interpreted as 

poor if κ < 0.00, slight if 0.00 ≤ κ ≤ to 0.20, fair if 0.21 ≤ κ ≤ to 0.40, moderate if 0.41 ≤ κ ≤ 

to 0.60, substantial (or good) if 0.61 ≤ κ ≤ 0.80, almost perfect (or excellent) if κ > 0.80 

(Landis & Koch, 1977).   
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9.4 Results  

52 (59.1%) males and 36 (40.9%) females participated in this research. The mean age of 

patients was 63 years (range 27-91 years). More than one third of the patients were current 

smokers (43%), while only 15% were non-smoker. Vis-à-vis drinking status, more than half 

of the cohort (56%) consumed alcoholic beverages on a regular basis, 18 subjects (20%) were 

teetotal and only 10 patients (11%) were paan chewers. 

Ulcers were constituted 36% of the lesions presented, while the remainder (64%) showed as 

white, red and mixed white and red patches. 50% (n=44) of the lesions were leukoplakia, 

erythroplakia constituted 34%, while erythro-leukoplakia comprised the smallest group of the 

lesions at 16%. The distribution of the lesions anatomically revealed almost 30% in the 

ventro-lateral tongue (n=25), a quarter of the lesions in the floor of mouth (25%), 16 in 

retromolar trigone, 12 in the buccal mucosa, 5 on lower lip (Table 9.1). 

The histopathology result of 352 margins (88 specimen, four images per specimen) revealed 

275 (81.8%) tumour free margins, 36 (10.8%) margins involved with dysplasia of different 

grades (mild=4, moderate=13, and severe=19) and 25 (7.4%) SCC-involved margins (Figures 

9.2-9.5). 16 margins were excluded owing to either distortion during histopathologic 

processing or bad quality OCT images. The H&E slides that have severe artefacts were 

excluded, while those bad quality OCT images, for instance blurred images, were also 

disregarded (Table 9.2).  

 

The sensitivity and specificity for the first assessor was 83.6% and 94.5%, respectively. 

Whilst the positive predictive value (PPV) was 77.2% and the negative predictive value 

(NPV) was 96.2%. Prevalence was 0.18, OCT accuracy was 92.5% and the kappa statistic 

was 0.75 (95% CI: From 0.66 to 0.84) (substantial agreement). 

 

There were 15 false positives and 10 false negatives, with positive likelihood ratio (LR+) of 

15, suggesting that OCT is useful and provides evidence to support the diagnosis with a 

negative likelihood ratio (LR-) of 0.17, it allows us to rule out the malignant diagnosis with 

significant confidence (Tables 9.3 & 9.5). 
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The sensitivity and specificity for the second assessor was 82% and 93.8%, respectively. The 

PPV was 74.6% and the NPV was 95.9%. Prevalence was 0.18, OCT accuracy was 91.6% 

and the kappa statistic was 0.73 (95% CI: From 0.63 to 0.82) (substantial agreement). There 

were 17 false positives and 11 false negatives, with LR+ of 13 and LR- of 0.19 (Tables 9.4 & 

9.5).      

The intra-observer agreement was substantial (Kappa statistic= 0.74). Furthermore, the 

degree of concordance between both readers (inter-observer agreement) was also good, 

although the kappa statistic was a little lower (Kappa statistic= 0.69) according to Landis & 

Koch, 1977. 

 

 

 

Figure (9.1) Assessment of tumour resection margin. A: Clinical photograph reveals marking 
of a dysplastic lesion on left lateral tongue preceding resection under general anaesthetic. B: 
shows specimen resected and orientated using sutures, then subjected to OCT scanning. 

 

 
 
 
 

A 

B 
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Table (9.1) Clinical data and location of the lesions of the population studied (N = 88). 

 

 1. Gender                                                                                                       No (%) 

        Male                                                                                                        52 (59%) 

        Female                                                                                                     36 (41%) 

 2. Age (years), mean (range)                                                                          63 (27–91)  

3. Location of lesion 

       Ventral-lateral tongue                                                                               25 (29%) 

       Floor of mouth                                                                                          22 (26%) 

       Retromolar region                                                                                     16 (18%) 

       Buccal mucosa                                                                                          12 (14%) 

       Lower lip                                                                                                   5 (5%)   

       Upper lip                                                                                                    3 (3%) 

       Soft palate                                                                                                  3 (3%) 

       Dorsum of tongue                                                                                      2 (2%) 

4. Colour of lesion 

        Leukoplakia                                                                                              44 (50%) 

        Erythroplakia                                                                                            30 (34%) 

        Erythroleukoplakia                                                                                   14(16%)         

5. Clinical features 

        Patch                                                                                                         56(64%) 

        Ulcer                                                                                                         32(36%) 

6. Smoking status 

        Current smoker                                                                                         38(43%) 

        Ex-smoker                                                                                                 37(42%) 

        Non-smoker                                                                                              13(15%) 

7. Drinking status 

        Current drinker                                                                                         49(56%) 

        Ex-drinker                                                                                                 21(24%) 

        Non-drinker                                                                                              18(20%) 

8. Betel nut (Pan) chewing                                                                             10(11%) 
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Table (9.2) Histopatholgical findings for the surgical margins of the examined biopsies.   

Margins Numbers (%) 

Healthy 

Mild dysplasia 

Moderate dysplasia 

Severe dysplasia 

SCC 

Excluded margins 

275 (81.8%) 

4 (1.2%) 

13 (3.9%) 

19 (5.7%) 

25 (7.4%) 

16  

Total 336 (16 margins not 
included) 

 

Table (9.3) Oral lesions biopsy margins assessment by the first assessor (total 352 margins, 16 
margins were excluded). Sensitivity 83.6%; specificity 94.5%; (PPV) 77.2%; (NPV) 96.2%; 
accuracy of OCT oral system 92.5%. TP: true positive, FP: false positive, TN: true negative, FN: 
false negative. 

 

Table (9.4) Oral lesions biopsy margins assessment by the second assessor (total 352 margins, 
16 margins were excluded). Sensitivity 82%; specificity 93.8%; (PPV) 74.6%; (NPV) 95.9%; 
accuracy of OCT oral system 91.6%. TP: true positive, FP: false positive, TN: true negative, FN: 
false negative. 

                                             Histopathology 

                    
OCT 

 Positive Negative Total 

Positive 51 (TP) 15 (FP) 66 

Negative 10 (FN) 260 (TN) 270 

Total 61 275 336 

 

 

 

 
 
 

 
 
 
 

                                             Histopathology 

                    
OCT 

 Positive Negative Total 

Positive 50 (TP) 17 (FP) 67 

Negative 11 (FN) 258 (TN) 269 

Total 61 275 336 
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Table (9.5) Assessors findings vs. parameters. 

Parameters 1st Assessor 2nd Assessor 

Sensitivity 83.6% 82% 

Specificity 94.5% 93.8% 

PPV 77.2% 74.6% 

NPV 96.2% 95.9% 

False positive 15 17 

False negative 10 11 

Prevalence 0.18 0.18 

LR+ 15 13 

LR- 0.17 0.19 

OCT accuracy 92.5% 91.6% 

Kappa 0.75 0.73 

 
 
 
 
 

 

Figure (9.2) Both OCT & histopathology images reveal keratosis and mild epithelial 
dysplasia of a leukoplakic lesion on the buccal mucosa. K= keratosis. 

 
 
 
 

K 
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Figure (9.3) Both OCT & histopathology images (A&B) reveal transition between healthy 
margin and moderate epithelial dysplasia of a white patch lesion on the retromolar area, while 
the bottom set images (C&D) show hyperparakeratosis with moderate dysplasia of an 
involved margin of a leukoplakic lesion on lateral tongue. BM= basement membrane.  
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Figure (9.4) OCT & histopathology images (A&B) reveal healthy margin transition to severe 
epithelial dysplasia of an ulcer on floor of mouth, whereas the bottom set images (C&D) 
show severe epithelial dysplasia at the centre of the ulcer.  
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Figure (9.5) (A&B) OCT & histopathology images reveal invasive SCC in floor of mouth and 
lateral tongue. OCT image parallels histology status displaying high variability in epithelium 
thickness with areas of breakdown of the epithelium (erosion) (indicated by long white arrows) 
and the large epithelial down growth and invasion into the subepithelial layers (blue arrows). 
Furthermore, the basement membrane (disrupted and penetrated) is indiscernible through the 
entire OCT scan as a coherent prominent feature. (C) OCT image of the healthy tissue margin 
(corresponding to the margins shown in the H&E picture) that shows normal thickness epithelium, 
which is hyporeflective (dark) compared to the hyperreflective (bright) lamina propria that 
contains many hypoechoic tube-like structure that represent blood vessels. Intact basement 
membrane is also clearly visible. BM= basement membrane; EP= epithelium; LP= lamina propria; 
BV= blood vessel.  

 

Figure (9.6) Histopathology picture of keratosis & epithelial hyperplasia (without dysplasia) of a 
white lesion on the lower lip with the corresponding OCT image that usually erroneously 
interpreted as mild or moderate dysplasia (false positive reading) owing to rete ridges elongation. 
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9.5 Discussion 

Precise evaluation of tumour extension utilising conventional visual examination and 

palpation is critical. Some radiological modalities are currently used to evaluate tumour 

extent, such as MRI and CT, which possess insufficient image resolution and contrast to be 

able to correctly measure cancer dimensions with confidence. In a clinical study by Heissler 

et al (1994) on 46 patients with malignant carcinomas of the oral cavity and oropharynx to 

study the value of MRI in preoperative tumour (T) staging, reported confusion in delineating 

between the normal tissue and tumour, making recognition of most of the carcinoma within 5 

mm margin very challenging that is unsuitable for most T1 and T2 malignancies of the oral 

cavity. 

 

In another study utilising high-resolution ultrasound for interrogation of OSCC thickness and 

resection margin status, Songra and associates (2006) in a single blind prospective study on 

14 patients with biopsy proven OSCC that had intraoral ultrasound imaging done 

preoperatively, reported that ultrasound detection of close surgical margins had sensitivity 

and specificity of 83% and 63% respectively. Compared to our results, the sensitivity was 

nearly similar, but specificity was inferior to ours (mean specificity =94.1%). Songra et al 

(2006) concluded that high-resolution ultrasound imaging, which applied intraorally, is a 

trustworthy modality in evaluating thickness of tumour and the clearance of surgical margins 

at the time of surgery. 

 

A prospective clinical in vivo study carried out by Shintani and coworkers (1997) on 24 

patients with tongue malignancy that underwent preoperative evaluation with intraoral 

ultrasonography to measure tumour thickness and the subsequent comparison with the 

measurements obtained from histological sections. They found out that tumour thickness 

were measurable within 1mm on the obtained high quality ultrasonic images, and that 

significant correlation was exist between ultrasonography images and H&E sections 

measurements. In their conclusion, they demonstrated that ultrasonography application in the 

oral cavity is an excellent approach to delineate extent of tumour and measurement of tumour 

thickness in malignancy of tongue. 
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In this prospective clinico-pathological ex vivo research, OCT oral system demonstrated 

efficacy and feasibility in detecting surgical free margins from tumour-laden margins of 

biopsies excised in different anatomical region in the oral cavity with very good sensitivity 

and specificity. Visibility of basement membrane was the major parameter (key landmark) in 

discerning healthy and dysplastic tissues from cancerous tissues. In malignancy, the invasive 

tumour penetrates through the basement membrane to the subepithelial layers, and become 

invisible in both OCT and H&E pictures. 

 

Another important fact that assisted in detecting healthy from pathological margins was the 

obvious change in reflectivity between the epithelium and the underlying connective tissue 

layer (lamina propria), which is delineated by the basement membrane. Since the epithelial 

layer is mostly comprised of well-separated scatterers, for example cells (Kumar & Schmitt, 

1996), multiple scattering in this layer is insignificant. Thus, scattering in the epithelial layer 

is chiefly in the forward direction that reflects the scattering property of a single cell. 

Furthermore, as epithelium acts as a strong absorber and not as a scatterer (Jacques, 1998; 

Igarashi et al, 2005), therefore the epithelium appears darker on OCT images when compared 

to the brighter lamina propria (Fig. 9.5C). In contrast, lamina propria’s (which has similar 

composition and structure to the dermis layer of the skin) most common cell type is the 

fibroblast. In addition, collagen type I is the predominant fibre component of the extracellular 

matrix followed by both collagen type III and elastic fibers. All these components in lamina 

propria are highly backscattering, hence appear brighter compared to the surrounding 

structures including epithelium (Bashkatov et al, 2011). The homogeneity of this layer 

(lamina propria) becomes less consistent and uniform and loses its brightness as well in the 

presence of dysplasia/malignancy that invade through the basement membrane, thus aid in 

discriminating between healthy or surgical-free and tumour-involved margins. 

 

The co-registration process that included digital images, diagrams of the specimens and 

orientation utilising sutures were extremely important so as to obtain as exactly as possible 

both OCT and histology images of the same area of interest. Sparing no effort were sought to 

correlate OCT scans with the histopathology sections by liaising directly with the consultant 

histopathologist who participated in the current investigation. However, no exact comparison 

between the OCT images and the corresponding H&E pictures were possible due to the well-
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known fact of tissue shrinkage (up to 30%) after fixing the specimens in 10% buffered 

formalin and histological preparation (such as embedding and sectioning) during laboratory 

processing (Kimura et al, 2003), some degree of discrepancy between OCT and 

histopathology pictures was inevitable. This inconsistency can be clearly noticed in figure 

(9.5 A&B) for example, where OCT image displayed two dips (epithelial erosion), while 

corresponding H&E only showed one dip. This is probably has resulted in some of our false 

negatives and false positives investigators reading. Additionally, another reason behind the 

false positive readings was the presence of epithelial hyperplasia (without dysplasia), which 

has influenced on assessors’ decision to consider it as mild or moderate dysplasia according 

to OCT images (Fig. 9.6).  

 

The robust OCT and their correlative H&E training set pictures for dysplasia and malignancy 

had positive outcome on the assessors’ ability to learn to read OCT images swiftly and 

precisely, as corroborated by the strong intra- and inter-rater reliability on OCT scores, in 

addition to the good agreement between OCT and H&E scores, albeit with some difficulties 

in precise grading of some of the dysplastic lesions on the OCT images due to insufficient 

resolution to view subcellular features. This is apparent in figure (9.3 C&D) where basement 

membrane can be easily recognised on the H&E slide, whereas it can be hardly detected on 

the OCT image. The resolution of the OCT oral system that we utilised in our research only 

provides an idea of structural architectural changes but not cellular changes.  

 

In a recent clinical study, Jerjes et al (2010) examined 34 biopsies of suspicious intraoral 

lesions from 27 subjects utilising ex vivo OCT imaging to assess the feasibility of this 

modality in identifying malignant tissue. Four variables in this pilot research were scrutinised: 

changes in keratin; epithelium; sub-epithelial layers; and identification of the basement 

membrane. From this they calculated whether or not there were architectural changes and the 

data were then compared with H&E diagnoses. The authors concluded that OCT technique 

might recognise diseased areas but could not provide a diagnosis or differentiate between 

lesions and that their pilot work approves the feasibility of utilising OCT to distinguish 

architectural changes in malignant tissues. 
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Similar to our findings in the previous chapter (MMS versus ex vivo OCT), some false 

negative readings on the OCT images were perhaps because of iceberg-shaped tumours, 

which penetrate deep in the submucosa and that cannot be detected at the margins of the 

specimens with a shallow penetration depth of about 2mm maximum. Moreover, to make 

matters worse, some tumours develop finger-like projections beneath the subepithelial layers. 

These types of submucosal tumour extensions penetrate deep in a way that surpasses the 

OCT detection capability. 

 

In the present investigation, the most challenging aspect in discriminating and diagnosing the 

dysplastic margins on OCT images was the lack of insufficient contrast and resolution 

(magnification) in order to be able to accurately score and grade them as we encountered 

insurmountable difficulties in visualising the cellular features (for example, anisocytosis, 

nuclear/cytoplasmic ratio and so forth) that suggest and help in grading the lesion as mild, 

moderate and severe dysplasia. Single cell detection would not be achievable with OCT 

lateral and axial resolution of 10-15µm. Subtle changes in the epithelial cells/shapes and 

aggregations (for e.g., basal cell hyperplasia) might affect the histological diagnosis from 

moderate to severe dysplasia or even from the latter to invasive carcinoma in the presence of 

epithelial invasion and budding, which will ultimately influence clinicians’ decision-making 

in the treatment options of the dysplastic/ malignant lesion. Low-resolution OCT images 

compared to high-resolution H&E pictures has influenced on the discrepancy between the 

two diagnostic methods in the current study.  
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9.6 Conclusion 

 

The present prospective ex vivo OCT work, for interrogating precancerous and cancerous 

lesion margins, demonstrated a capability of the new OCT instrument systems in recognising 

healthy from dysplastic and malignant margins with reasonable degree of sensitivity, 

specificity as well as accuracy, albeit with difficulties in grading the dysplastic lesions. Since 

the resolution abilities of OCT technique are briskly rising, their capability in differentiating 

between dysplasia’s different stages is also likely to advance. Hence, this modality may aid in 

declining the delay in diagnosis of malignancy in addition to notably increasing the clinicians’ 

capability in recognising and diagnosing pre-cancer/cancer of the oral cavity correctly. 

Furthermore, it can also be concluded that epithelial thickness change and status of the 

basement membrane were key points in the detection and diagnosis of invasive carcinoma 

whatsoever the optical modality used. Our study revealed that these two parameters played 

key roles in interpreting OCT images.  

 

Finally the current work will pave the way in applying the OCT oral instrument in vivo to 

interrogate intraoral pathological (benign and malignant) conditions to study it’s accuracy, 

sensitivity and specificity and aid the clinicians in reaching the diagnosis more expeditiously 

plus in treatment decision-making in future.  
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Chapter 10 

In vivo OCT oral system for interrogating and diagnosing different 
suspicious oral lesions and premalignancy/malignancy 

 

10.1 Background and objectives 

In the previous chapter, we demonstrated the ex vivo OCT oral instrument ability in 

identifying healthy margin from margins involved with dysplasia and/ or malignancy, with 

good sensitivity, specificity and with good kappa score inter-observer reliability. To the best 

of our knowledge, there is little in the literature, utilising OCT in vivo to detect suspicious 

lesions, especially in the oral cavity. This is due to rigidity and limited length of most of the 

OCT skin probes that act as a major hindrance in applying this high-resolution imaging 

modality in hard and soft tissues of the oral cavity. There are very few systems that possess 

an oral probe such as the commercial Niris OCT imaging system [Imalux, Cleveland, OH]. 

The goal of this clinical study was to investigate in real-time and non-invasively, the 

capability of the recently modified Michelson OCT oral instrument in identifying and aid 

diagnosis of lesions in the head and neck region including the oral cavity.  

 

10.2 Materials and Methods 

10.2.1 Patients 

130 subjects who presented with undiagnosed lesions in the head and neck region including 

the oral cavity to the UCLH/ Macmillan Cancer Centre- Head & Neck/Maxillofacial 

Department were selected and recruited for the current study. The protocol of this study was 

approved by the NRES REC London-Dulwich (12/LO/0371), and informed consent was 

obtained from all patients. Inclusion criteria were patients over 18 years of age who presented 

with suspicious intraoral lesions.  

 

 Patients were undergone detailed clinical examination in order to evaluate the size and site of 

their suspicious lesions as well as the clinical characteristic of the lesion. Smoking and 

drinking status were also recorded (Table 10.1).  
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10.2.2 Methods/study design 

 

After examination of the lesions and digital photos taken (using Canon EOS 500D camera, 

Japan), the lesions in doubt were subjected to in vivo OCT scanning. OCT images acquired 

from several areas of interest including margins and centres of the lesions prior to injection of 

local anaesthesia as the solution will lead to blurred images as confirmed by other researchers 

(Mogensen et al, 2009). The lesions then underwent either excisional or incisional biopsy (as 

clinically appropriate) under local/general anaesthetic. 130 biopsies were obtained at the end 

of the study (1 biopsy per patient). After the lesions were biopsied using scalpel blade and/ or 

CO2 laser, they routinely sent off to the histopathology department to obtain H&E pictures so 

as to be compared with the in vivo OCT images. In order to ensure objectivity, one consultant 

oral and maxillofacial histopathologist, who is involved in the current investigation, 

examined all H&E slides and provided the histopathology diagnoses. Assessment was 

conducted according to WHO guidelines. Regarding the dysplasia H&E slides, similar 

histopathologic evaluation has been followed for scoring mild, moderate and severe dysplasia 

as in the ex vivo study in the previous chapter according to the criteria established by 

MacDonald (1980) using the Smith & Pindborg (1969) technique for oral epithelial atypia 

scoring.  

 

Two assessors, who experienced in interpreting OCT images, scrutinised all OCT images 

acquired from scanning the lesions’ margins and centres. They were provided with a brief 

clinical history of the dubious lesions, and were asked to write their comments on each OCT 

image on a premade pro forma. Each assessor examined the OCT images independently and 

was blinded to the histological diagnosis. 

 

 Each observer was asked to provide a diagnosis for the patients’ lesions so as to be compared 

with the actual histopathology reports later. After four weeks had elapsed, all OCT images 

were re-evaluated by the same scorers in order to work out the intra-observer agreement. The 

inter-observer agreement was obtained by comparing the individual scorers’ findings. Based 

upon 4 criteria, the investigators scored the OCT images:  
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• Keratin layer thickness (increased, decreased or no change)  
• Epithelial layer (increased, decreased or no change)  
• Status of the basement membrane (intact, breached or difficult to assess)  
• Changes in the lamina propria (homogeneous or non-homogeneous) (Table 10.2) 

 
Afterwards, all OCT images were compared with their corresponding H&E pictures to 

expose the concordance (kappa agreement) of OCT technique with the gold standard 

histopathology and to calculate OCT accuracy. 

10.3 Statistical Analysis 

In order to assess the effectiveness; sensitivity, specificity and overall accuracy of OCT (not 

accounting for chance agreement) were calculated in Excel, Microsoft Office 2003 according 

to the data given by both investigators. Cohen’s Kappa statistics (κ) were calculated in ‘2015 

GraphPad Prism Software’ to assess the agreement between the readers and interpreted as 

poor if κ < 0.00, slight if 0.00 ≤ κ ≤ to 0.20, fair if 0.21 ≤ κ ≤ to 0.40, moderate if 0.41 ≤ κ ≤ 

to 0.60, substantial (or good) if 0.61 ≤ κ ≤ 0.80, almost perfect (or excellent) if κ > 0.80 

(Landis & Koch, 1977).   

 

10.4 Results 

The majority of the patients were males [n=72 (55.4%)], while the number of females who 

took part in this clinical study were 58 (44.6%). The mean age of patients was 60 years 

(range 22-94 years). More than a third of the patients were current smokers (37%), while only 

21% were non-smoker. Regarding drinking status, 79 subjects (61%) consumed alcoholic 

beverages on a regular basis, 23 subjects (17.5%) were teetotal and only 14 patients (10.5%) 

were paan chewers (Table 10.1). 

Nearly half of the lesions clinically appeared as patches (46%), followed by ulcer (27.5%), 

then plaque lesions constitute 12%, whereas bulla constituted the least lesion group in the 

cohort studied (1.5%). There was variability in lesion colours: 45.5% (n=59) of the lesions 

were leukoplakic, erythroplakic lesion constituted 28%, while erythro-leukoplakic lesion 

comprised 21.5%, and only 6 lesions were bluish. The anatomical distribution of the lesions 

shown quarter (25%) of them (most prevalent site) located in the ventral-lateral tongue 

(n=33), followed by 19 lesions on floor of mouth, 17 on retromolar trigone, 16 on dorsum of 

tongue, 15 on buccal mucosa (Table 10.1). 
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The histopathological diagnosis of the population studied (n=130) divulged that more than 

half of the lesions (n=78) were premalignant and malignant and were as follows: 42 dysplasia 

of different grades followed by 36 OSCC (Figures 10.10-10.13). While benign intraoral 

lesions were less common and included the following: 9 Keratosis, 8 non-specific ulcers, 7 

chronic hyperplastic candidiasis and 18 cases distributed equally between fibro-epithelial 

hyperplasia, papilloma and mucocoele. Fibro-epithelial polyp constituted 5 lesions, whereas 

pemphigus vulgaris (3) and lipoma (2) were the least common lesions in this study (Table 

10.1 & Figures 10.1-10.9). 

The results of assessing the four diagnostic parameters by both investigators were detailed in 

table 2. A total of 650 OCT images were obtained (130 lesions, 5 images per lesion) and 

compared with their corresponding H&E. The histopathology results of the biopsied lesions’ 

margins disclosed 518 pathology-free margins and 87 pathology-involved margins 

(pathology here means both benign and malignant). 45 OCT and H&E pictures were 

excluded and disregarded due to either blurry images or severe artefact slides, respectively.  

 

The sensitivity and specificity for the first investigator was 78.2% and 93.8%, respectively. 

Whilst the positive predictive value (PPV) was 68% and the negative predictive value (NPV) 

was 96.2%. Prevalence was 0.14, OCT accuracy was 91.5% and the kappa statistic was 0.67 

(95% CI: From 0.59 to 0.76) (substantial agreement). There were 32 false positives and 19 

false negatives, with positive likelihood ratio (LR+) of 13, suggesting that OCT is useful and 

provides evidence to support the diagnosis and negative likelihood ratio (LR-) of 0.23, which 

allows us to rule out the diagnosis (Tables 10.3 & 10.5). The sensitivity and specificity for 

the second investigator was 81.6% and 93.4%, respectively. The PPV was 67.6% and the 

NPV was 96.8%. Prevalence was 0.14, OCT accuracy was 91.7% and the kappa statistic was 

0.69 (95% CI: From 0.61 to 0.77) (substantial agreement). There were 34 false positives and 

16 false negatives, with LR+ of 12 and LR- of 0.20 (Tables 10.4 & 10.5). 

 

The intra-observer agreement was substantial (Kappa statistic= 0.71). Furthermore, the 

degree of concordance between both readers (inter-observer agreement) was also good 

(Kappa statistic= 0.70) according to Landis & Koch, 1977. 
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With regard to the agreement between the assessors in assessing the four diagnostic 

parameters on the 605 OCT images, the results were as follow: there was excellent weighted 

kappa (0.87) vis-à-vis keratin layer thickness, almost perfect agreement (weighted kappa= 

0.92) regarding epithelial layer thickness, excellent agreement (weighted kappa= 0.95) for 

basement membrane status and almost perfect agreement concerning changes in lamina 

propria (weighted kappa= 0.96).  

Table (10.1) Clinical data and location of the lesions of the population studied (N = 130). 

 

 1. Gender No (%) 

        Male                                                                                                          72 (55.4%) 

        Female                                                                                                      58 (44.6%) 

 2. Age (years), mean (range)                                                                           60 (22–94)  

3. Types of lesion (Histopathology diagnosis) 

        Dysplasia (all grades)                                                                               42 (32.3%) 

        SCC                                                                                                          36 (27.6%) 

        Keratosis                                                                                                     9 (6.9%) 

        Non-specific ulcers                                                                                     8 (6.1%) 

        Chronic hyperplastic candidiasis                                                                7 (5.3%) 

        Fibro-epithelial hyperplasia                                                                        6 (4.7%) 

        Papilloma                                                                                                    6 (4.7%) 

        Mucocoele                                                                                                   6 (4.7%) 

        Fibro-epithelial polyp                                                                                  5 (3.9%) 

        Pemphigus vulgaris                                                                                     3 (2.3%) 

        Lipoma                                                                                                        2 (1.5%)       

3. Location of lesion 

       Ventral-lateral tongue                                                                                33 (25%) 

       Floor of mouth                                                                                           19 (15.5%) 

       Retromolar region                                                                                      17 (13%) 

       Dorsum of tongue                                                                                      16 (12%) 

       Buccal mucosa                                                                                           15 (11.5%) 
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       Lower lip                                                                                                    12 (10%)   

       Upper lip                                                                                                       6 (5%) 

       Soft palate                                                                                                     6 (5%) 

       Hard palate                                                                                                    3 (2.5%) 

       Gingiva                                                                                                          3 (2.5%)      

4. Colour of lesion 

        Leukoplakia                                                                                               59 (45.5%) 

        Erythroplakia                                                                                             37 (28%) 

        Erythroleukoplakia                                                                                    28 (21.5%) 

        Bluish                                                                                                           6 (5%)        

5. Clinical features 

        Patch                                                                                                          60 (46%) 

        Ulcer                                                                                                          36 (27.5%) 

        Plaque                                                                                                        16 (12%) 

        Papule                                                                                                        11 (8.5%) 

        Macule                                                                                                         5 (4.5%) 

        Bulla                                                                                                            2 (1.5%) 

6. Smoking status 

        Current smoking                                                                                        48 (37%) 

        Ex-smoker                                                                                                 55 (42%) 

        Non-smoker                                                                                               27 (21%) 

7. Drinking status 

        Current drinker                                                                                          79 (61%) 

        Ex-drinker                                                                                                  28 (21.5%) 

        Non-drinker                                                                                                23 (17.5%) 

8. Betel nut (Pan) chewing                                                                               14 (10.5%) 
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Table (10.2) Assessment of four diagnostic parameters (tissue structures) on the OCT images 

by both assessors (total 650 images, 45 were excluded). KL= keratin layer, EL= epithelial 

layer, BM= basement membrane, LP= lamina propria. Increase= ⇑, no change= ⇔, 

decrease= ⇓. 

 

Parameters                  First assessor              Second assessor 

KL   ⇑          ⇔   ⇓   ⇑           ⇔     ⇓ 

  202        168           235   240       181            184 

EL   ⇑          ⇔   ⇓   ⇑          ⇔     ⇓ 

  404          189            12   423            172             10 

BM Intact  Breached Difficult to 

assess 

Intact Breached Difficult to 

assess 

450 140         15   443      137                 25 

LP Homogenous Non-homogenous Homogenous                     Non-homogenous 

        377            228         369             236 
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Table (10.3) Margins assessment by the first investigator (total 605 margins, 45 
margins were excluded). Sensitivity 78.2%; specificity 93.8%; (PPV) 68%; (NPV) 
96.2%; accuracy of OCT oral system 91.5%. TP= true positive, FP= false positive, 
TN= true negative, FN= false negative. 

 

 

 

 

 

 

 

 

                                             Histopathology 

                    
OCT 

 Positive Negative Total 

Positive 68 (TP) 32 (FP) 100 

Negative 19 (FN) 486 (TN) 505 

Total 87 518 605 

 

Table (10.4) Margins assessment by the second investigator (total 605 margins, 45 
margins were excluded). Sensitivity 81.6%; specificity 93.4%; (PPV) 67.6%; (NPV) 
96.8%; accuracy of OCT oral system 91.7%. TP= true positive, FP= false positive, 
TN= true negative, FN= false negative. 

 
                                              Histopathology 

                    
OCT 

 Positive Negative Total 

Positive 71 (TP) 34 (FP) 105 

Negative 16 (FN) 484 (TN) 500 

Total 87 518 605 
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Table (10.5) Assessors findings vs. parameters. 

Parameters 1st Investigator 2nd Investigator 

Sensitivity 78.2% 81.6% 

Specificity 93.8% 93.4% 

PPV 68% 67.6% 

NPV 96.2% 96.8% 

False positive 32 34 

False negative 19 16 

Prevalence 0.14 0.14 

LR+ 13 12 

LR- 0.23 0.20 

OCT accuracy 91.5% 91.7% 

Kappa 0.67 0.69 

 

 
 
 
 

 

Figure (10.1) OCT & histopathology images reveal fibroepithelial polyp on lateral tongue.  
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Figure (10.2) OCT & histology images disclose keratosis of a white lesion on buccal mucosa. 
One can also note epithelial hyperplasia (square bracket).  

 

 

 

Figure (10.3) Histopathology of an elevated white lesion on left side lower lip revealed 
chronic hyperplastic candidiasis (A) with the characteristic finger-like projections of the 
epithelial layer, with the corresponding OCT image (B). Red arrow on OCT image shows 
transition zone from normal thickness epithelium toward the hyperplastic candidiasis (C), 
while image (D) is the contralateral normal side imaged to notice the disparity between 
normal and pathological side. BM= basement membrane; EP= epithelium; LP= lamina 
propria.  
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Figure (10.4) Histopathology diagnosis of an ulcer on lateral tongue revealed non-specific 
ulcer. Epithelial surface tissue disintegration can also be observed on the OCT image, which 
appears as depressed floor (crater) surrounded by edges that are sharply defined. 

 

Figure (10.5) Histopathology and OCT images of a squamous papilloma on upper lip. Both 
images depict the papillary exophytic mass as a result of stratified squamous epithelium 
proliferation. 

 

Figure (10.6) Histopathology and in vivo OCT images of a pemphigus vulgaris lesion on soft 
palate. Intraepithelial blisters (suprabasal split) that are filled with transudative fluid appear 
as dark (hyporeflective) structures in the OCT image.  
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Figure (10.7) Histology and in vivo OCT images of a lipoma in floor of mouth. OCT image 
shows its diagnostic ability in detecting the adipocytes that appear as round/polygonal in 
shape and hyporeflective compared to the surrounding structures.   
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Figure (10.8) Histopathology slide and in vivo OCT image of a mucocoele (mucous 
retention cyst) on the lower lip (A&B). The non-scattering properties of mucin fluid rendered 
the cyst completely dark (hyporeflective). (D&E) Histology & in vivo OCT image of a 
mucous extravasation cyst that appears as mucin surrounded by granulation tissue. Image (C) 
represents the contralateral side (normal lower lip mucosa). In image (E), BM is 
imperceptible and the LP is non-homogeneous compared with the mucous retention cyst (this 
does not necessarily mean dysplasia or invasive carcinoma). BM= basement membrane; EP= 
epithelium; LP= lamina propria. 
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Figure (10.9) Histology picture and in vivo OCT image of a fibroepithelial hyperplasia on 
posterior dorsum tongue (with no dysplasia). The hyperplastic epithelium on OCT image 
(square bracket) might be misdiagnosed as mild/moderate dysplasia due to insufficient 
resolution of the image, when compared to gold standard histopathology, to visualise cellular 
atypia.  

 

Figure (10.10) In vivo OCT image & histopathology picture of a white patch on posterior 
lateral tongue reveals keratosis & mild to moderate epithelial dysplasia. K= keratosis.  

 

Figure (10.11) In vivo OCT image & histopathology slide divulge keratosis and moderate 
epithelial dysplasia of an erythroplakic lesion on anterior lateral tongue.  
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Figure (10.12) OCT (in vivo) & histopathology images reveal hyperkeratosis & severe 
epithelial dysplasia of a speckled leukoplakia on floor of mouth. Early invasive carcinoma 
(arrows) shown on histology cannot be visualised on the corresponding OCT image due to 
lack of sufficient depth of penetration as well as inferior image resolution compared to H&E 
slide.  
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Figure (10.13) In vivo OCT & histopathology images (A&B) of an erythro-leukoplakic 
lesion on soft palate revealing multifocal carcinoma (CA). OCT image matches 
histopathology in displaying multifocal epithelial down growth and invasion into the 
subepithelial layers (white arrows). Furthermore, the basement membrane is indiscernible 
through the entire OCT scan as a coherent prominent landmark. The bottom image (C) is an 
in vivo OCT image of a transition zone (blue arrow) between healthy tissue & invasive 
carcinoma (CA) invading through the basement membrane. It also shows normal thickness 
stratified squamous epithelium, which is darker compared to the homogeneous lamina 
propria, while crossing the transition zone, epithelial downgrowth and invasion can be clearly 
recognised, and lamina propria become non-homogeneous. BM= basement membrane; EP= 
epithelium; LP= lamina propria; CA= invasive carcinoma.  
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10.5 Discussion 

	  Existing techniques for diagnosis of premalignancy and malignancy of the oral cavity 

demand to be improved and amplified by better early recognition, monitoring and screening 

methods. A new non-invasive optical diagnostic method is required that would provides in 

situ and in real-time accurate and reliable diagnosis of cancers in the head and neck region 

including the oral cavity.  

 

The results of the current prospective study revealed that in vivo OCT oral instrument 

imaging technique can produce cross-sectional, high-resolution in vivo images of epithelial 

and subepithelial layer architectural changes, recognising increase or decrease in both keratin 

cell layer and epithelial layer, changes in epithelial stratification and structure, detecting the 

status of basement membrane and the homogeneousness of lamina propria as well. The 

results of our prospective clinical work have demonstrated very good capability and 

applicability of in vivo OCT imaging to recognise and diagnose different suspicious benign 

and malignant lesions in different anatomical locations in the oral cavity with good intra- and 

inter-rater reliability.  

 

OCT imaging procedure of the subjects recruited in the present study was uncomplicated, fast 

and well tolerated by all patients. Moreover, OCT imaging protocol resulted in addition of an 

extra 5-10 minutes to the duration of the patients visit. Accordingly, it will be well received 

identically by both clinicians and patients for introducing this non-invasive and in real-time 

OCT imaging modality to routine patient visits. Nonetheless, we encountered difficulties in 

scanning those lesions situated far posterior in the oral cavity, for instance posterior tongue, 

soft palate and so on due to pharyngeal (gag) reflex in some cases, which act as hindrance in 

capturing decent images. While in other cases, inaccessibility due to diametre and geometry 

of the newly introduced oral probe was the second obstacle in obtaining OCT images. We 

envisage that refinements in the oral probe such as reduced diametre and increased flexibility 

would significantly improve imaging in inaccessible anatomical locations and reduce the time 

spent on OCT scanning.  
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The good agreement between gold standard histopathology and OCT diagnosis for benign 

intraoral lesions, oral dysplastic and malignant lesions established in the present human 

prospective clinical in vivo OCT study matched data from previous animal and human OCT 

imaging researches (Matheny et al, 2003; Matheny et al, 2004; Wilder-Smith et al, 2004; 

Wilder-Smith et al, 2009b), where, Kappa value (inter-observer agreement) varied from 0.62-

0.78, average sensitivity and specificity of OCT versus histology for both observers ranged 

from 79.9–93.6%. Many authors in numerous studies have investigated other existing non-

invasive diagnostic procedures, mainly vital staining and oral brush cytology. They 

concluded that even though staining agents sensitivity, for example Toluidine blue, Tolonium 

chloride and Lugol iodine for oral cancer detection in the hands of experts usually approaches 

90%, however, specificity of these agents is poor, falling quickly when non-experts, for 

instance screeners in field units, use this method (Silverman et al, 1984; Epstein et al, 1992; 

Onofre et al, 2001; Epstein et al, 2002; Epstein et al, 2003; Patton, 2003). In order to perform 

these examinations satisfactorily, sizeable clinical experience is essential to achieve that. Vis-

à-vis Utilising oral brush biopsy samples as a non-invasive modality for diagnosis of oral 

cancer and precancer, a great deal of researchers have studies this method and reported 

moderate sensitivity levels between 70% to 90% for detecting intraoral epithelial dysplasia or 

invasive carcinoma, but with poor specificity ranged between 3–44%. The authors concluded 

that oral brush cytology approach is of inadequate diagnostic usefulness without 

reinforcement by biopsy procedure (Poate et al, 2004; Acha et al, 2005; Ogden et al, 1991; 

Sciubba, 1999; Nicholas et al, 1991; Rick & Slater, 2003; Rosin et al, 1997; Huang et al, 

1999). 

 

In a prospective, double-blinded study conducted by Isenberg et al (2005) to evaluate the 

accuracy of endoscopic OCT (EOCT) in the detection of dysplasia in 33 patients with 

Barrett’s esophagus reported that their EOCT system accuracy was 78% in detecting the 

presence or absence of dysplasia with sensitivity of 68% and specificity of 82%. PPV was 

53% and NPV was 89%. The diagnostic accuracy in the current investigation was much 

higher (91.6%) compared to Isenberg and associates’ work, although dysplasia is different in 

the oesophagus compared with the oral cavity. The authors also recommended that additional 

modifications, including improved resolution and identifying more would-be OCT 

characteristics of dysplasia, are necessary before clinical application of EOCT. 
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In a more recent study performed by Wilder-Smith and colleagues (2009b), to investigate the 

clinical capability of non-invasive in vivo OCT for detecting intraoral precancerous/ 

cancerous lesions by recruiting 50 subjects with oral lesions, reported 93.1% for both 

sensitivity and specificity for detecting CIS or SCC versus non-cancer, while for detecting 

SCC versus all other pathologies, the sensitivity was 93.1% and specificity was 97.3%. The 

researchers concluded the excellent ability of in vivo OCT imaging technique in recognising 

and diagnosing intraoral premalignancy and malignancy in human subjects. The results in our 

study, which is very similar to the above study, indicates that our modified OCT system is as 

specific as Wilder-Smith et al’s system, but the sensitivity was inferior.   

 

Another recent immediate ex vivo prospective clinical research conducted by Hamdoon et al 

(2013), who analysed 125 patients with suspicious intraoral lesions including both benign and 

malignant lesions, to assess the OCT imaging technique on biopsy material in identifying 

potentially malignant and malignant lesions of the oral cavity. The results of their study 

showed that sensitivity was 85%, while specificity was 78% in assessing oral precancerous 

and cancerous lesions. The PPV and NPV were 86.5% and 77.5%, respectively and the 

accuracy of OCT was 82%. In comparison to our results, the OCT sensitivity, specificity and 

accuracy of their work were slightly inferior. We postulate that this could be due to the 

difference in the study design, where they scanned the suspicious tissues ex vivo, while we 

applied OCT in vivo to interrogate the dubious lesions. In addition, one of the most essential 

facts during in vivo OCT scanning of the lesions is that it will give clinicians the opportunity 

to utilise and scan the contralateral anatomical side to refer to it as a reference point, 

especially in the presence of slight or subtle change in the pathological side. Intraoperative 

(or in clinical setting) OCT visualisation of normal tissue when scanning doubtful lesions has 

a great significance in reaching the diagnosis more swiftly and also save time in both clinics 

or in operation theatre.           

 

Finally, a group of researchers in a prospective clinical study analysed in vivo OCT to image 

56 pathologic lesions (including leukoplakia, lichen planus and OSCC) in 43 patients with 

intraoral precancer and cancer lesions. The authors concluded excellent diagnostic accuracy 

of OCT in detecting benign and malignant neoplasm of the oral cavity with very good 

sensitivity (83%), specificity (98%), accuracy (81%) and substantial inter-rater reliability 
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(Kappa value= 0.76) (Fomina et al, 2004). The intraoral and oropharyngeal mucosae were 

studied using OCT system by Ridgway et al (2006) in 41 subjects during operative 

endoscopy, and captures OCT images was combined with endoscopic photography for gross 

and histologic image correlation. The authors found out that OCT images of the oral cavity 

and oropharynx have provided micro-anatomical information of epithelium, basement 

membrane, and lamina propria and displayed distinct zones of normal, altered, and ablated 

tissue microstructures for each pathologic process examined. Our current investigation also 

revealed similar findings observed by Fomina et al & Ridgway et al. 

 

10.6 Conclusion 

The robust agreement between diagnoses based on the OCT oral instrument and the gold 

standard histopathology shown in the present clinical study supports the notion that OCT is a 

practical technique for the early recognition, diagnosis and monitoring of intraoral lesions. 

Since the introduction of the technique into a wider clinical setting and as it experiences 

additional testing and optimisation, the OCT’s primary usage might be to signal the need for 

biopsy. As the OCT technology is continuously evolving and undergoing refinements in 

terms of image contrast, resolution and improving depth of penetration, this imaging method 

could assists in gradual reduction of the need for biopsy, surgical margin delineation and 

offer evaluation/monitoring of the efficacy of malignancy treatments through regular follow-

up visits. 
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Chapter 11 
 

Suggestions 
 
 

Suggested further studies 

1. Recruitment of a larger cohort age group population including older population (60-90 

years) to measure the mean epidermal and epithelial thickness of skin and mucosa and to 

compare the differences in thickness between young and older age groups.   

 

2.  In vivo combined investigation of OCT with another biomedical optical imaging modality, 

such as high-frequency ultrasound (HFUS) in early recognition and detection of 

cutaneous/oral pre-malignancy/ malignancy and possible mapping of the lesions. Then 

consequent comparison of the accuracy of the above imaging modalities with the gold 

standard histology.   

 

3. OCT oral instrument application in Mohs surgery prior to biopsy, i.e. in vivo scanning/ 

delineation of BCC lesion to study the practicability of OCT technique in clinical setting. 

 

4. OCT guided PDT treatment of SCC in the facial region. Pre-PDT OCT scanning of the 

lesions undergoing treatment, re-scanning of the lesions post-PDT at 1, 3 and 6 month to 

monitor the effectiveness of the treatment. 

 

5. In vivo OCT scanning of oral premalignant and malignant lesion margins before excisional 

biopsy under GA, followed by immediate ex vivo scanning of the biopsied tissue margins. 

After that, analyses of both in vivo and ex vivo OCT images of the lesion to compare any 

differences in terms of image quality and contrast, and consequently comparing the images 

with the gold standard histopathology.    
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Appendices     
Appendix 1 (Raw data of OCT skin & oral instrument) 
1. Raw data of OCT skin instrument  

Slope angle 4.62° in water + surfactant.  R= reading 

Amount 1st R 
of θ D 

2nd R of θ 
D 

3rd R of θ 
D 

4th R of θ 
D 

5th R of θ 
D 

6th R of θ 
D 

Mean of 
θ D 

1ml surfactant 4.95° 5.00° 5.05° 5.08° 5.05° 4.95° 5.01° 

2ml surfactant 5.10° 5.20° 5.25° 5.27° 5.15° 5.15° 5.18° 

3ml surfactant 5.30° 5.35° 5.40° 5.45° 5.45° 5.30° 5.37° 

4ml surfactant 5.45° 5.50° 5.60° 5.63° 5.48° 5.50° 5.52° 

5ml surfactant 5.65° 5.70° 5.80° 5.85° 5.75° 5.75° 5.75° 

6ml surfactant 5.90° 6.00° 6.05° 6.05° 5.90° 6.05° 5.99° 

Slope angle 7.61° in water + surfactant  

Amount 1st R 
of θ D 

2nd R of θ 
D 

3rd R of θ 
D 

4th R of θ 
D 

5th R of θ 
D 

6th R of θ 
D 

Mean of θ 
D 

1ml surfactant 5.45° 5.60° 5.55° 5.56° 5.45° 5.60° 5.53° 

2ml surfactant 5.60° 5.60° 5.78° 5.70° 5.70° 5.74° 5.68° 

3ml surfactant 5.80° 6.00° 6.00° 5.85° 5.85° 5.92° 5.90° 

4ml surfactant 6.00° 6.20° 6.19° 6.10° 6.05° 6.05° 6.09° 

5ml surfactant 6.20° 6.40° 6.25° 6.38° 6.20° 6.32° 6.29° 

6ml surfactant 6.40° 6.60° 6.50° 6.56° 6.40° 6.40° 6.47° 

Slope angle 8.95° in water + surfactant  

Amount 1st R 
of θ D 

2nd R of θ 
D 

3rd R of θ 
D 

4th R of θ 
D 

5th R of θ 
D 

6th R of θ 
D 

Mean of θ 
D 

1ml surfactant 6.00° 6.15° 6.10° 6.06° 6.06° 6.00° 6.06° 

2ml surfactant 6.15° 6.35° 6.15° 6.30° 6.32° 6.27° 6.25° 

3ml surfactant 6.35° 6.40° 6.50° 6.50° 6.58° 6.52° 6.47° 

4ml surfactant 6.60° 6.85° 6.80° 6.60° 6.78° 6.78° 6.73° 

5ml surfactant 6.85° 6.85° 6.92° 6.95° 7.00° 7.00° 6.92° 

6ml surfactant 7.00° 7.20° 7.20° 7.05° 7.17° 7.09° 7.11° 
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Slope angle 11.44° in water + surfactant  

Amount 1st R 
of θ D 

2nd R of θ 
D 

3rd R of θ 
D 

4th R of θ 
D 

5th R of θ 
D 

6th R of θ 
D 

Mean of θ 
D 

1ml surfactant 6.60° 6.80° 6.69° 6.60° 6.64° 6.76° 6.68° 

2ml surfactant 6.80° 6.80° 7.00° 7.00° 6.95° 6.91° 6.91° 

3ml surfactant 7.00° 7.00° 7.20° 7.10° 7.06° 7.19° 7.09° 

4ml surfactant 7.20° 7.45° 7.38° 7.24° 7.24° 7.41° 7.32° 

5ml surfactant 7.45° 7.70° 7.49° 7.50° 7.38° 7.33° 7.47° 

6ml surfactant 7.70° 7.70° 7.74° 7.95° 7.95° 7.86° 7.81° 

 

Slope angle 4.62° in water + milk  

Amount 1st R of θ 
D 

2nd R of θ 
D 

3rd R of θ 
D 

4th R of θ 
D 

5th R of θ 
D 

6th R of θ 
D 

Mean of θ 
D 

1ml milk 3.60° 3.70° 3.75° 3.66° 3.73° 3.60° 3.67° 

2ml milk 3.75° 3.75° 3.94° 3.85° 3.80° 3.80° 3.81° 

3ml milk 3.95° 4.00° 3.98° 4.20° 4.14° 4.06° 4.05° 

4ml milk 4.20° 4.35° 4.35° 4.20° 4.28° 4.32° 4.28° 

5ml milk 4.35° 4.55° 4.45° 4.39° 4.35° 4.35° 4.40° 

6ml milk 4.55° 4.55° 4.80° 4.71° 4.64° 4.64° 4.64° 

 

Slope angle 7.61° in water + milk  

Amount 1st R of θ 
D 

2nd R of θ 
D 

3rd R of θ 
D 

4th R of θ 
D 

5th R of θ 
D 

6th R of θ 
D 

Mean of θ 
D 

1ml milk 4.20° 4.30° 4.34° 4.26° 4.45° 4.45° 4.33° 

2ml milk 4.50° 4.70° 4.60° 4.56° 4.50° 4.67° 4.58° 

3ml milk 4.70° 4.90° 4.84° 4.75° 4.79° 4.70° 4.78° 

4ml milk 4.90° 4.90° 5.15° 5.07° 5.05° 5.00° 5.01° 

5ml milk 5.15° 5.40° 5.22° 5.33° 5.15° 5.30° 5.25° 

6ml milk 5.40° 5.60° 5.60° 5.56° 5.45° 5.55° 5.52° 
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Slope angle 8.95° in water + milk  

Amount 1st R of θ 
D 

2nd R of θ 
D 

3rd R of θ 
D 

4th R of θ 
D 

5th R of θ 
D 

6th R of θ 
D 

Mean of θ 
D 

1ml milk 4.90° 5.20° 5.08° 5.02° 4.97° 4.90° 5.01° 

2ml milk 5.20° 5.40° 5.40° 5.20° 5.35° 5.29° 5.30° 

3ml milk 5.40° 5.65° 5.50° 5.40° 5.57° 5.51° 5.50° 

4ml milk 5.65° 5.80° 5.80° 5.65° 5.77° 5.78° 5.74° 

5ml milk 5.80° 6.00° 6.00° 5.91° 5.82° 5.80° 5.88° 

6ml milk 6.00° 6.00° 6.20° 6.07° 6.03° 6.15° 6.07° 

 

Slope angle 11.44° in water + milk  

Amount 1st R of θ 
D 

2nd R of θ 
D 

3rd R of θ 
D 

4th R of θ 
D 

5th R of θ 
D 

6th R of θ 
D 

Mean of θ 
D 

1ml milk 5.65° 5.90° 5.84° 5.70° 5.75° 5.75° 5.76° 

2ml milk 5.90° 5.90° 6.10° 6.03° 5.93° 6.00° 5.96° 

3ml milk 6.10° 6.35° 6.22° 6.17° 6.10° 6.31° 6.20° 

4ml milk 6.35° 6.55° 6.39° 6.51° 6.43° 6.40° 6.43° 

5ml milk 6.55° 6.80° 6.75° 6.68° 6.56° 6.56° 6.65° 

6ml milk 6.80° 7.00° 7.00° 6.90° 6.95° 6.95° 6.93° 

 

2. Raw data of OCT oral instrument  

Slope angle 4.62° in water + surfactant  

Amount 1st R 
of θ D 

2nd R of θ 
D 

3rd R of θ 
D 

4th R of θ 
D 

5th R of θ 
D 

6th R of θ 
D 

Mean of θ 
D 

1ml surfactant 3.85° 3.97° 3.89° 4.00° 4.05° 4.05° 3.96° 

2ml surfactant 4.05° 4.19° 4.39° 4.14° 4.28° 4.10° 4.19° 

3ml surfactant 4.40° 4.49° 4.55° 4.60° 4.40° 4.58° 4.50° 

4ml surfactant 4.60° 4.85° 4.74° 4.65° 4.65° 4.78° 4.71° 

5ml surfactant 4.85° 5.00° 5.00° 4.85° 4.93° 4.90° 4.92° 

6ml surfactant 5.00° 5.20° 5.11° 5.06° 5.00° 5.02° 5.06° 

 



	  

	  
	  

324	  

Slope angle 7.61° in water + surfactant  

Amount 1st R 
of θ D 

2nd R of θ 
D 

3rd R of θ 
D 

4th R of θ 
D 

5th R of θ 
D 

6th R of θ 
D 

Mean of θ 
D 

1ml surfactant 4.60° 4.80° 4.80° 4.60° 4.67° 4.75° 4.70° 

2ml surfactant 4.80° 5.00° 4.90° 4.97° 5.05° 5.05° 4.96° 

3ml surfactant 5.05° 5.40° 5.34° 5.23° 5.11° 5.05° 5.19° 

4ml surfactant 5.40° 5.55° 5.45° 5.45° 5.43° 5.44° 5.45° 

5ml surfactant 5.55° 5.90° 5.86° 5.76° 5.69° 5.60° 5.72° 

6ml surfactant 5.90° 6.00° 6.10° 6.04° 6.06° 5.93° 6.00° 

 

Slope angle 8.95° in water + surfactant  

Amount 1st R 
of θ D 

2nd R of θ 
D 

3rd R of θ 
D 

4th R of θ 
D 

5th R of θ 
D 

6th R of θ 
D 

Mean of θ 
D 

1ml surfactant 5.40° 5.45° 5.65° 5.56° 5.46° 5.40° 5.48° 

2ml surfactant 5.65° 5.85° 5.78° 5.66° 5.66° 5.85° 5.74° 

3ml surfactant 5.85° 6.00° 6.00° 5.88° 5.85° 5.90° 5.91° 

4ml surfactant 6.00° 6.00° 6.25° 6.25° 6.15° 6.08° 6.12° 

5ml surfactant 6.25° 6.50° 6.36° 6.36° 6.46° 6.46° 6.39° 

6ml surfactant 6.50° 6.70° 6.50° 6.58° 6.69° 6.69° 6.61° 

 

Slope angle 11.44° in water + surfactant  

Amount 1st R 
of θ D 

2nd R of θ 
D 

3rd R of θ 
D 

4th R of θ 
D 

5th R of θ 
D 

6th R of θ 
D 

Mean of θ 
D 

1ml surfactant 6.00° 6.00° 6.30° 6.15° 6.04° 6.09° 6.09° 

2ml surfactant 6.30° 6.55° 6.48° 6.36° 6.40° 6.40° 6.41° 

3ml surfactant 6.55° 6.80° 6.80° 6.58° 6.67° 6.75° 6.69° 

4ml surfactant 6.80° 7.00° 6.90° 6.86° 6.93° 6.96° 6.90° 

5ml surfactant 7.00° 7.00° 7.20° 7.07° 7.14° 7.08° 7.08° 

6ml surfactant 7.20° 7.50° 7.44° 7.31° 7.31° 7.22° 7.33° 
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Slope angle 4.62° in water + milk  

Amount 1st R of θ 
D 

2nd R of θ 
D 

3rd R of θ 
D 

4th R of θ 
D 

5th R of θ 
D 

6th R of θ 
D 

Mean of θ 
D 

1ml milk 2.90° 2.93° 3.10° 3.04° 3.02° 3.00° 2.99° 

2ml milk 3.10° 3.35° 3.25° 3.16° 3.10° 3.35° 3.21° 

3ml milk 3.35° 3.55° 3.45° 3.38° 3.35° 3.51° 3.43° 

4ml milk 3.55° 3.80° 3.68° 3.56° 3.60° 3.75° 3.65° 

5ml milk 3.80° 4.00° 4.00° 3.85° 3.94° 3.94° 3.92° 

6ml milk 4.00° 4.20° 4.11° 4.01° 4.15° 4.00° 4.07° 

 

Slope angle 7.61° in water + milk  

Amount 1st R of θ 
D 

2nd R of θ 
D 

3rd R of θ 
D 

4th R of θ 
D 

5th R of θ 
D 

6th R of θ 
D 

Mean of θ 
D 

1ml milk 3.55° 3.85° 3.78° 3.60° 3.68° 3.68° 3.69° 

2ml milk 3.85° 4.10° 4.03° 4.10° 3.85° 3.93° 3.97° 

3ml milk 4.10° 4.35° 4.20° 4.25° 4.35° 4.17° 4.23° 

4ml milk 4.35° 4.50° 4.48° 4.41° 4.39° 4.36° 4.41° 

5ml milk 4.50° 4.75° 4.60° 4.69° 4.74° 4.75° 4.67° 

6ml milk 4.75° 4.98° 4.82° 4.92° 4.92° 4.80° 4.86° 

 

Slope angle 8.95° in water + milk  

Amount 1st R of θ 
D 

2nd R of θ 
D 

3rd R of θ 
D 

4th R of θ 
D 

5th R of θ 
D 

6th R of θ 
D 

Mean of θ 
D 

1ml milk 4.35° 4.55° 4.48° 4.38° 4.38° 4.47° 4.43° 

2ml milk 4.55° 4.80° 4.80° 4.66° 4.70° 4.64° 4.69° 

3ml milk 4.80° 5.00° 4.86° 4.94° 4.90° 5.00° 4.91° 

4ml milk 5.00° 5.00° 5.25° 5.17° 5.10° 5.04° 5.09° 

5ml milk 5.25° 5.45° 5.40° 5.30° 5.28° 5.42° 5.35° 

6ml milk 5.45° 5.64° 5.47° 5.58° 5.65° 5.61° 5.56° 
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Slope angle 11.44° in water + milk  

Amount 1st R of θ 
D 

2nd R of θ 
D 

3rd R of θ 
D 

4th R of θ 
D 

5th R of θ 
D 

6th R of θ 
D 

Mean of θ 
D 

1ml milk 5.00° 5.30° 5.14° 5.04° 5.23° 5.05° 5.12° 

2ml milk 5.30° 5.45° 5.39° 5.34° 5.37° 5.39° 5.37° 

3ml milk 5.45° 5.65° 5.56° 5.48° 5.45° 5.61° 5.53° 

4ml milk 5.65° 5.90° 5.80° 5.67° 5.78° 5.65° 5.74° 

5ml milk 5.90° 6.00° 6.06° 6.20° 6.14° 6.17° 6.07° 

6ml milk 6.20° 6.50° 6.43° 6.25° 6.35° 6.40° 6.35° 

 

 

Appendix 2 

(Table 1) OCT skin instrument (fresh porcine tissue). R= reading 

Type of 
tissue 

1st R 2nd R 3rd R 4th R 5th R 6th R 7th R 8th R 9th R 10thR Mean ±SD 

of  θD 

Skin 19.89 19.76 19.64 19.49 19.28 19.17 19.31 19.86 19.76 19.72 19.53±0.25 

Fat 15.79 15.82 15.62 15.57 15.42 15.26 15.19 15.40 15.67 15.53 15.52±0.21 

Muscle 11.57 11.51 11.32 11.73 11.87 11.20 11.15 11.59 11.53 11.70 11.51±0.23 

 

 

(Table 2) OCT oral instrument (fresh porcine tissue). R= reading 

Type of 
tissue 

1st R 2nd R 3rd R 4th R 5th R 6th R 7th R 8th R 9th R 10thR Mean ±SD 

Skin 19.06 19.19 19.28 19.89 19.80 19.73 19.55 19.43 19.82 19.61 19.53±0.28 

Fat 15.82 15.73 15.61 15.56 15.50 15.12 15.27 15.77 15.33 15.70 15.54±0.23 

Muscle 11.54 11.50 11.34 11.78 11.86 11.16 11.19 11.59 11.60 11.67 11.52±0.23 
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(Table 3) OCT skin instrument (porcine tissue in PBS). R= reading 

Type of 
tissue 

1st R 2nd R 3rd R 4th R 5th R 6th R 7th R 8th R 9th R 10thR Mean ±SD 

Skin 21.09 21.04 20.03 20.81 20.66 20.38 20.23 20.70 21.00 20.57 20.65±0.35 

Fat 16.60 16.87 16.91 16.16 16.10 16.31 16.44 16.32 17.00 16.99 16.57±0.21 

Muscle 13.00 12.95 12.83 12.76 12.49 12.48 12.21 12.10 12.12 12.88 12.58±0.34 

 

(Table 4) OCT oral instrument (porcine tissue in PBS). R= reading 

Type of 
tissue 

1st R 2nd R 3rd R 4th R 5th R 6th R 7th R 8th R 9th R 10thR Mean ±SD 

Skin 21.02 20.96 20.83 20.61 20.34 20.27 20.62 20.49 20.91 20.56 20.66±0.26 

Fat 17.00 17.00 16.93 16.11 16.07 16.30 16.49 16.38 16.84 16.81 16.59±0.36 

Muscle 12.99 12.91 12.86 12.71 12.44 12.41 12.26 12.07 12.10 12.75 12.55±0.33 

 

(Table 5) OCT skin instrument (porcine tissue after freezing). R= reading 

Type of 
tissue 

1st R 2nd R 3rd R 4th R 5th R 6th R 7th R 8th R 9th R 10thR Mean ±SD 

Skin 19.01 19.10 19.19 19.16 19.45 19.58 19.69 19.82 19.86 19.86 19.47±0.33 

Fat 15.01 15.09 15.20 15.49 15.55 15.55 15.23 15.31 15.60 15.06 15.30±0.22 

Muscle 11.05 11.05 11.14 11.41 11.38 11.36 11.26 11.19 11.12 11.21 11.21±0.13 

 

(Table 6) OCT oral instrument (porcine tissue after freezing). R= reading 

Type of 
tissue 

1st R 2nd R 3rd R 4th R 5th R 6th R 7th R 8th R 9th R 10thR Mean ±SD 

Skin 19.03 19.07 19.16 19.19 19.49 19.66 19.54 19.89 19.21 19.12 19.33±0.28 

Fat 15.58 15.03 15.34 15.29 15.23 15.02 15.10 15.17 15.51 15.44 15.27±0.19 

Muscle 11.01 11.29 11.08 11.17 11.11 11.19 11.30 11.42 11.23 11.23 11.20±0.11 

 

 



	  

	  
	  

328	  

Appendix 3 

(Table 1) Fresh porcine skin second parallel holes measurements by both OCT skin & oral 
instruments. Letters from A-J stands for the different measurements in X & Z planes in 
millimetre using image J programme.  

OCT	   A B C D E F G H I J 

Skin	   0.82 0.37 0.40 0.38 0.76 1.10 0.64 0.37 0.41 0.47 

Oral	   0.83 0.38 0.39 0.39 0.76 1.10 0.65 0.37 0.41 0.48 

 

(Table 2) Fresh porcine skin third parallel holes measurements by both OCT skin & oral 
instruments. Letters from A-J stands for the different measurements in X & Z planes in 
millimetre using image J programme. 

OCT	   A B C D E F G H I J 

Skin	   0.92 0.55 0.38 0.44 0.56 1.02 0.75 0.40 0.51 0.55 

Oral	   0.92 0.55 0.37 0.43 0.56 1.02 0.75 0.39 0.52 0.54 

 

(Table 3) Fresh porcine skin fourth parallel holes measurements by both OCT skin & oral 
instruments. Letters from A-J stands for the different measurements in X & Z planes in 
millimetre using image J programme. 

OCT	   A B C D E F G H I J 

Skin	   0.97 0.52 0.32 0.30 0.41 0.76 0.80 0.52 0.39 0.43 

Oral	   0.97 0.52 0.33 0.31 0.42 0.77 0.80 0.50 0.39 0.44 

 

(Table 4) Fresh porcine skin fifth parallel holes measurements by both OCT skin & oral 
instruments. Letters from A-J stands for the different measurements in X & Z planes in 
millimetre using image J programme. 

OCT	   A B C D E F G H I J 

Skin	   0.89 0.56 0.42 0.44 0.42 0.76 0.90 0.50 0.50 0.47 

Oral	   0.89 0.56 0.41 0.44 0.43 0.76 0.90 0.51 0.50 0.47 
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(Table 5) Fresh porcine skin sixth parallel holes measurements by both OCT skin & oral 
instruments. Letters from A-J stands for the different measurements in X & Z planes in 
millimetre using image J programme. 

OCT	   A B C D E F G H I J 

Skin	   0.75 0.48 0.40 0.42 0.44 0.80 0.76 0.48 0.33 0.32 

Oral	   0.76 0.48 0.40 0.42 0.44 0.80 0.76 0.48 0.33 0.32 

 

 

(Table 6) Porcine skin (formalin-fixed) second parallel holes measurements by both OCT skin & 
oral instruments. Letters from A-J stands for the different measurements in X & Z planes in 
millimetre using image J programme. 

OCT	   A B C D E F G H I J 

Skin	   0.88 0.35 0.35 0.37 0.70 1.12 0.75 0.35 0.39 0.45 

Oral	   0.88 0.34 0.35 0.37 0.70 1.12 0.75 0.35 0.38 0.45 

 

(Table 7) Porcine skin (formalin-fixed) third parallel holes measurements by both OCT skin & 
oral instruments. Letters from A-J stands for the different measurements in X & Z planes in 
millimetre using image J programme. 

OCT	   A B C D E F G H I J 

Skin	   0.96 0.52 0.37 0.42 0.53 1.06 0.77 0.36 0.46 0.50 

Oral	   0.95 0.51 0.37 0.42 0.54 1.07 0.77 0.36 0.47 0.49 

 

(Table 8) Porcine skin (formalin-fixed) fourth parallel holes measurements by both OCT skin & 
oral instruments. Letters from A-J stands for the different measurements in X & Z planes in 
millimetre using image J programme. 

OCT	   A B C D E F G H I J 

Skin	   1.03 0.50 0.25 0.24 0.38 0.83 0.91 0.39 0.38 0.42 

Oral	   1.03 0.50 0.25 0.24 0.37 0.83 0.92 0.40 0.38 0.42 
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(Table 9) Porcine skin (formalin-fixed) fifth parallel holes measurements by both OCT skin & 
oral instruments. Letters from A-J stands for the different measurements in X & Z planes in 
millimetre using image J programme. 

OCT	   A B C D E F G H I J 

Skin	   0.93 0.54 0.38 0.42 0.39 0.80 0.92 0.48 0.48 0.45 

Oral	   0.93 0.54 0.38 0.41 0.39 0.80 0.93 0.48 0.48 0.45 

 

(Table 10) Porcine skin (formalin-fixed) sixth parallel holes measurements by both OCT skin & 
oral instruments. Letters from A-J stands for the different measurements in X & Z planes in 
millimetre using image J programme. 

OCT	   A B C D E F G H I J 

Skin	   0.82 0.46 0.38 0.40 0.39 0.83 0.77 0.46 0.31 0.30 

Oral	   0.82 0.46 0.38 0.40 0.39 0.83 0.77 0.46 0.31 0.30 

 

 

Appendix 4 

(Table 1) Porcine skin parallel holes measurements (histopathology). Letters from A-J stands for 
the different measurements in X & Z planes in millimetre using “Nanozoomer Digital Pathology” 
programme with an integrated scale. 
Holes 	   A B C D E F G H I J 

1	   0.92 0.41 0.50 0.42 0.87 1.23 0.91 0.37 0.39 0.39 

2	   0.91 0.32 0.33 0.35 0.67 1.15 0.77 0.33 0.37 0.43 

3	   0.89 0.50 0.33 0.39 0.51 1.08 0.79 0.35 0.45 0.48 

4	   1.08 0.48 0.23 0.22 0.36 0.85 0.94 0.37 0.36 0.38 

5	   0.98 0.52 0.35 0.41 0.37 0.84 0.97 0.45 0.46 0.43 

6	   0.85 0.44 0.36 0.38 0.37 0.85 0.80 0.44 0.29 0.28 
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Appendix 5 

Table (1) Illustrate mean % change of X plane dimensions (fresh-formalin fixed tissue). 
Highlighted figures were expansion, while the rest were contraction. 
OCT A B E F G H Mean  SD 

Skin 7.44% 
 

5.15% 

 
 

8.47% 
 

4.27% 
 

8.35% 

 
 

9.64% 

 
 

7.22% 

 
 

2.08% 

 
 

Oral   7.02%   5.98%   9.15%   4.20%   8.63%   9.41%   7.40%   2.05% 

 

Table (2) Illustrate mean % of formalin fixed tissue shrinkage in Z-plane (fresh-formalin fixed). 

 

Table (3) Illustrate mean % change of X plane dimensions (fresh-histopathology). Highlighted 
figures were expansion, while the rest were contraction. 

OCT A B E F G H Mean  SD 

Skin 11.96% 

 
 

9.75% 

 
 

12.58% 

 
 

7.21% 

 
 

12.39% 

 
 

14.07% 

 
 

11.33% 

 
 

2.45% 

 
 

Oral   11.48%   9.81%   13.13%   6.97%   11.83%   14.15%   11.23% 2.55% 

 

 

 

 

 

 	  

OCT C D I J Mean (%) SD 

Skin 10.31% 8.04% 4.94% 9.64% 7.01% 2.66% 

Oral 9.81% 9.17% 5.32% 5.48% 7.44% 2.37% 

OCT C D I J Mean (%) SD 

Skin 16.54% 13.31% 9.41% 10.52% 12.45% 3.18% 

Oral 16.98% 14.02% 9.69% 10.59% 12.82% 3.34% 

Table (4) Illustrate mean % of histopathology tissue shrinkage in Z-plane (fresh- histopathology). 


