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Abstract 

Fault detection and diagnosis (FDD) is an important part to maintain the 

performance, improve the reliability and prevent energy wastage of the refrigeration 

systems. Binary ice systems, which have become more commonly employed in both 

industry and domestic applications, are essentially refrigeration systems using 

water-ice slurry mixture as a secondary refrigerant. The existence of the ice makes 

binary ice systems different from conventional liquid chillers, leading to the 

requirement of a specified FDD method. Therefore, the current research focuses on 

developing a model based dynamic FDD approach that can capture the unique 

features of binary ice systems in order to detect some pre-selected faults, including 

binary ice flow restriction, cooling water flow restriction, incorrect solution 

concentration, ice generator scraper fault and ice generator motor failure. 

To provide fault free predictions for the FDD, a dynamic hybrid model of the 

binary ice system was proposed. The model consisted of an analytical sub-model of 

the scraped surface ice generator, which was an essential component of the binary 

ice system that produced ice, and an artificial neural network (ANN) sub-model of 

the primary refrigeration circuit. The two sub-models were coupled by using two of 

the ANN model’s outputs as the inputs to the analytical model, namely the 

evaporating temperature and the compressor power consumption, as well as sharing 

some of the input parameters. The coupled model was validated with data from a 

2.5kW laboratory binary ice test rig.  

The FDD was carried out by monitoring the changes of the residuals of some 

carefully chosen parameters, using CUmulative SUM (CUSUM) test. Two 

parameters, namely cooling water temperature difference and evaporating 

temperature, were monitored for fault detection purpose, and condenser outlet 

temperature, cooling water temperature difference, discharge temperature and binary 

ice outlet temperature were observed for fault diagnosis function. An ANN fault 

classifier was developed to identify the type of the fault by analysing the 

combinations of the fault diagnosis parameter variations. This FDD method was 

found to be able to detect and diagnose successfully the pre-selected faults without 

raising any false alarm, and in addition it was capable of diagnosing three pairs of 

double fault. 
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Nomenclature 

A    area [m
2
] 

ANN artificial neural network 

b bias 

B      the number of blades per 360 degrees 

C     concentration by weight (weight of the ethanol divided by the total  

 solution weight) [%wt] 

Cp     specific heat capacity [kJ/(kgK)] 

CUSUM     cumulated sum  

Cv     concentration by volume [%] 

FDD     fault detection and diagnosis 

h heat transfer coefficient [W/(m
2
·K)] 

H specific enthalpy [J/kg] 

HVAC  heating, ventilation, and air conditioning 

k thermal conductivity [W/(m·K)] 

L      length [m] 

Lice     specific latent heat of the ice [J/kg] 

m   mass flowrate [kg/s] 

MLP     multilayer perceptron 

N rotation speed [rev/s] 

NARX    nonlinear autoregressive exogenous 

Nu     Nusselt number  

PCS    phase change slurry 

p    pressure [bar] 

PO    oil pressure [kPa] 

Q     capacity [kW] 

Qleak      equivalent heat loss from the chiller [kW] 
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r      radius [m] 

R     thermal resistance of the heat exchangers [K/kW] 

R
2    

coefficients of determination  

RBF    radial basis function 

Rea axial Reynolds number 

Rer rotational Reynolds number 

S    sensitivity factor 

SSIG    scraped surface ice generator 

ΔST     internal irreversibility [kW/K] 

t    time [s] 

T       temperature [°C] 

ΔT    temperature difference [°C] 

TDL     tapped delay line  

TO      oil temperature [°C] 

TXV    thermostatic expansion valve 

u    volume flowrate [L/min] 

U overall heat transfer coefficient [W/(m
2
·K)] 

w    weight matrix  

W     power consumption [kW] 

Greek letters 

β regression coefficient 

δ   threshold 

ε error 

ηchiller chiller efficiency [%] 

ηisen     isentropic efficiency [%] 

     statistical threshold 

μ dynamic viscosity [Pa·s] 
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µB      dynamic viscosities for Bingham fluid [Pa·s] 

µN      dynamic viscosities for Newtonian fluid [Pa·s] 

ρ density [kg/m
3
] 

σ standard deviation 

τ0     yield stress [MPa] 

Subscripts  

I Section I 

II Section II 

bi     binary ice 

c     condenser 

ca condenser approach 

cf     carrier fluid 

com    compressor 

dis    discharge 

e     evaporator 

ea evaporator approach 

f    freezing point or freezing front 

fluid    secondary fluid 

i    inner 

ice    ice properties 

in    inlet 

l     fluid 

latent    latent heat 

max   maximum value 

min    minimum value 

nor   normalised value 

o   original or outer 
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out    outlet 

r     refrigerant 

sec    secondary fluid 

sc    subcooling 

sh     superheat 

shaft     rotating shaft 

suc    suction 

tank    solution tank 

w    cooling water 

wall     wall 

water   cooling water 
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1. Introduction 

Refrigeration and Air Conditioning (RAC) systems have become an essential 

part of our daily lives, serving a wide range of domestic, commercial and industrial 

applications. As in many other thermal and electro-mechanical systems, faults could 

develop in the systems, causing system malfunction and leading to energy wastage, 

poor temperature/capacity control, unsafe operation, and in some cases, even 

catastrophic component failure (Stouppe and Lau 1989; Isermann 1997; Gertler 1998). 

Over the years, various fault detection and diagnosis (FDD) techniques/methodologies 

have been researched, developed, and implemented for RAC systems (Katipamula 

and Brambley 2005) in particular vapour compression systems (Rossi 1995; Breuker 

and Braun 1998b). Essentially, FDD is a process monitoring technique used for 

detecting abnormal working conditions of a system and deducing the sources of the 

faults by monitoring specific system parameters (Chiang et al. 2001).  

Over the past two decades, RAC industry has been developing and applying 

alternative refrigerants to replace the ozone depleting CFC/HCFC refrigerants (Sekiya 

and Misaki 2000; Spatz and Yana Motta 2004). However, many of these alternatives 

are still considered as threats to the environment or to human safety as they either 

have high global warming potentials (GWPs), e.g. R507, R404A, or high 

flammability/toxicity, e.g. R717 (Ammonia), R290 (Propane), R30 (methylene 

chloride). Therefore it is important to ensure there is minimal or no escape of 

refrigerant to the environment or into occupied space due to leakage which is a 

typical/common fault in RAC systems. In addition, some of the alternative 

refrigerants are also quite expensive, especially the synthetic ones (e.g. R507 is ten 

times more expensive than R22, and R1234yf is around £160/kg), it would be sensible 

to reduce total system refrigerant charge quantity and leakage possibility by 

improving the design of the system.   

One conventional approach employed to reduce the total refrigerant charge 

quantity, the possibility of refrigerant leakage and the potential hazardous impact on 

occupants is to confine the main refrigeration circuit, commonly referred as the 

primary circuit, and the primary refrigerant in a plant room, and use a heat transfer 

fluid (HTF) to distribute the cooling to the remote loads. The distribution system is 
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commonly referred as the secondary system (Arora 2010) and the heat transfer fluid 

as the secondary refrigerant. For conventional secondary systems, single phase fluids 

such as water are often employed as the secondary refrigerants (Riffat et al. 1997). 

For sub-zero temperature applications, where the water cannot be used, other 

secondary fluids such as brine or glycol solutions (Melinder 2007) are often employed 

instead. However, their concentrations need to be increased to depress their freezing 

point for lower temperature applications (Melinder 1997); this correspondingly 

increases their viscosities significantly, resulting in rather high pumping costs.  

Phase change slurries (PCSs)
1
, as a relatively new kind of secondary 

refrigerant, benefit from the high latent heat absorbed during the melting the solid 

phase (Egolf and Kauffeld 2005). The solid part of PCSs is generated as very small 

particles, and when suspended in the liquid phase, becomes a pumpable binary 

mixture. Among various PCSs, binary ice, also known as ice slurry, is receiving much 

attention in recent years (Wang and Kusumoto 2001; Davies 2005; Hägg 2005; 

Tamasauskas et al. 2012; Yeo et al. 2012). As defined by Egolf and Kauffeld (2005), 

binary ice is a homogenous mixture of aqueous solution and fine ice particles with 

diameters smaller than 1mm. It possesses unique thermal-physical properties and flow 

characteristics due to the presence of ice particles in the carrier fluid (Knodel et al. 

2000). Its advantages include high cooling capacity per unit flow rate, small 

temperature change, low pumping power requirement, etc. (Lee et al. 2006; Kauffeld 

et al. 2010; Kumano et al. 2010b), when compared to traditional single phase 

secondary fluids. The applications of binary ice include comfort cooling for 

multi-function buildings, food processing and preservations, mining, fire-fighting, etc. 

(Kauffeld et al. 2010).   

Binary ice systems possess unique operation characteristics, which may mean 

the existing FDD approaches are not applicable to binary ice refrigeration systems. In 

this thesis, the development of a FDD approach for binary ice system is presented.  

                                                 
1
 Phase change slurry is a mixture of dispersed phase change particles and a continuous 

carrier fluid. 
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1.1  Fault detection and diagnosis (FDD) 

1.1.1 FDD methods and procedures 

Faults, which can be caused by design error, aging, incorrect operation setting, 

human error, etc., result in system malfunction or/and performance degradation 

(Chiang et al. 2001). Even small faults could lead to substantial energy wastage, 

increase in maintenance cost and system down time (Isermann 2005). Some faults 

could potentially cause a complete system breakdown. As a result, fault detection and 

diagnosis techniques are introduced to detect the abnormal operation behaviour, so 

that problems can be identified and rectified in an effectively and timely manner.  

Figure 1.1 shows the typical structure of a FDD approach which essentially 

consists of three main steps: fault detection, fault diagnosis and fault evaluation. The 

first step, fault detection, is to determine whether a fault exists in the system or 

whether everything is working correctly. It is carried out by comparing certain 

measured (or derived) system parameters with fault-free data. The fault-free data can 

be obtained from model predictions or from historical/log data (Schein and Bushby 

2006). If the residual, which represents their difference, fails to fall within a 

pre-defined ‘fault-free’ threshold, a fault is registered. The next step is to identify the 

fault and isolate its source.  

 

Figure 1.1 Flow chart of a typical FDD process 

Fault-free data RAC System 

Measurement 

- 

Fault Detection 

Fault Diagnosis 

Fault Evaluation 

Residual 

+ 
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Different faults have different influences/impacts on the system behaviours, 

often referred to as fault signatures. For examples, condenser fouling will increase the 

evaporating temperature (Cui and Wang 2005), while refrigerant leakage will reduce 

it (Assawamartbunlue and Brandemuehl 2006). By analysing the combinations of the 

changes of various selected system parameters, faulty component(s) or types of faults 

can be isolated (Braun 1999). Their influences on system performance and operating 

conditions, safety, environment, energy penalty and repair cost can then be evaluated 

(Braun 2003); appropriate actions can then be taken accordingly. 

The previous three steps are usually followed by decision making to decide 

how to deal with the fault. If the fault may cause a severe problem, like damaging the 

system or being related to safety issues, the system should be shut down immediately. 

For less serious faults, the FDD system can choose whether to report the fault or to 

tolerate it without stopping its operation, but the fault has to be continuously 

monitored and eventually get rectified. 

Many kinds of FDD modelling techniques have been developed or studied for 

various systems including RACs. They can be put into three main groups: physical 

model-based (also referred as white box models or analytical models) (Koury et al. 

2001), process history based FDDs (i.e. black box models) (Swider et al. 2001; Ertunc 

and Hosoz 2006) and a combination of the two which often called hybrid or grey box 

models (Katipamula and Brambley 2005).  

For the physical model-based methods, a mathematical model, which has been 

properly validated, is to simulate the physical process of the system. This method is 

based on establishing physical relationships which require a thorough understanding 

of the physical process involved. The simulated outputs are then compared with the 

measured values. Although it may be more computationally intensive, it is capable of 

showing the transient state of a system in details and it can be utilised to simulate both 

normal and faulty working conditions. However, physical models are relatively hard 

to develop, especially for complicated systems, and sometimes when assumptions are 

made to simplify the calculations, the simulation accuracies could be compromised, 

which may generate unreliable FDD results (Chiang et al. 2001). In this case, extra 

calibrations using experimental data are necessary, resulting in the formation of some 

kind of grey box models (Ding et al. 2009).  
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Models based on process history show advantages when sufficient amount of 

historical data are available. The data, which can be divided into input and output data 

groups, are employed to train the model (Yegnanarayana 2004). The training process 

is to determine the correlations that can relate the inputs with the outputs, but they 

unfortunately cannot reflect the physical relationships between the two groups 

(Swider 2003). When applied to fault detection, the model uses a set of measured data 

as model input to generate predicted output data which are then compared with 

measured output data. This can be applied regardless of whether the physical 

processes involved are clearly understood or not, making it easier to develop when 

compared with the physical models. Artificial neural networks and regression 

algorithms (Sreedharan and Haves 2001) are some of the commonly used history data 

based FDD models.  

A grey box model is a combination of the physical and process history models, 

based on physical principles of the systems but with some of the modelling 

parameters obtained by black box models (Gordon and Ng 2000; Saththasivam and 

Ng 2008).  

It is unlikely a single FDD modelling technique can deal with all types of 

faults, as individual FDD technique has strengths and limitations in relation to the 

nature of the system and the fault(s); a combination of various techniques may often 

be used to achieve an effective and accurate detection for RAC systems 

(Estrada-Flores et al. 2006). 

1.1.2 Application of FDDs in RAC 

The applications of FDDs can be seen in a wide range of industry, including 

critical systems such as power plant (Gross et al. 1997; Tan and Lim 2004), aircraft 

(Marcos et al. 2005; Lu et al. 2015) and emergency department (Harrou et al. 2015) 

which generally involve advanced sensors and instrumentations, as compared to those 

used in non-critical systems such as RAC systems. 

FDDs for RAC systems are mainly employed to help reduce energy wastage 

due to faulty operation, food spoilage due to faulty components, human discomfort 

due to faulty controls, damage or excessive wear and tear of equipment due to 

unfavourable operating conditions, etc. (Viser et al. 1999; Grace et al. 2005; Rueda et 
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al. 2005). Compared to critical systems encountered in, say, the nuclear power 

generation and aviation industry, the budgets available for incorporating FDDs in 

RAC systems are much smaller, as faults in the latter are generally more tolerable and 

are less likely to cause fatalities or catastrophic failures. Therefore, it is essential that 

FDDs developed for the latter should use as few sensors and as simple measurements 

as possible to detect the faults, therefore keeping the cost down as well as making it 

simple to implement (Venkatasubramanian et al. 2003).   

Over the years, many FDD methods had been developed for RAC systems, 

although they are mainly oriented towards water chillers (Jia and Reddy 2003; Cui 

and Wang 2005; Reddy 2007a) and air-conditioning systems (Viser et al. 1999; Kelso 

and Wright 2005) for buildings; applications of FDDs in other systems such as 

supermarket refrigerated display cabinets (Assawamartbunlue 2000) and heat pumps 

(Kim et al. 2010) have also been looked at in recent years. 

It appears that all the current FDD techniques are developed for single phase 

secondary refrigerants, such as air or water, and no research had been done on the 

development of FDD for two-phase binary ice systems. Although binary ice has its 

unique characteristics, binary ice systems still share many similar features, including 

certain faults, with conventional single phase liquid chillers. Therefore, some insights 

into chiller faults and the detection methods will help to gain a better understanding of 

the FDD development of binary ice systems. 

Generally faults can be classified into two main groups: hard faults and soft 

faults. A hard fault means that some physical components fail to function. These 

include components failure, such as a broken belt or a stuck valve, electrical faults, 

such as control box failure or burnt motor, and so on. On the other hand, soft faults 

refer to degradation of the system/component performance such as refrigerant leakage 

and heat exchanger fouling (Comstock et al. 2002b). A hard fault is relatively easy to 

detect with simple measurements or observations but soft faults may not have 

sufficient impact on system behaviours until certain severity levels are reached. Thus 

most of the researches related to fault detection for RAC have been focussing on soft 

faults. 
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Various surveys on common faults in RAC equipment were carried out by 

previous researchers (Stouppe and Lau 1989; Breuker and Braun 1998a; Comstock et 

al. 2002b), for both hard and soft faults. For example, Comstock et al. (2002b) 

examined the service records of five domestic chiller manufacturers. Among all the 

chiller faults, the most frequently occurred faults were in the control box (about 33% 

of all faults), followed by refrigerant leakage (19%). Other less frequently occurring 

faults were liquid line faults (5%) and condenser fouling (4% average). Their reviews 

so far indicate almost all the FDD methods are developed based on certain 

pre-defined faults that are considered important in terms of their influence on system 

efficiency and operation. 

FDD techniques had been studied/developed by various researchers, for water 

chiller (Reddy 2007a) and for glycol systems (Rueda et al. 2005). Generally, those 

methods are based on the measurements of flow temperature, pressure, flowrate, etc. 

A more detailed review of those works will be given in Chapter 2. Though PCS 

systems share many common faults with other indirect systems (e.g. refrigerant 

leakage, heat transfer fluid flow restriction), some faults are only unique to them (e.g. 

incorrect solution concentration and malfunction of the ice generator). A 

representative number of faults will be studied in this project and attention will be 

paid particularly to those that are unique to binary ice systems.  

1.2 Binary ice and binary ice systems 

1.2.1 Phase change slurries (PCSs) 

For single phase fluids, such as glycol solution, ethanol solution, water and 

brine, the energy absorbed, as sensible heat, increases the temperature of the fluid. 

Though many of them have reasonably large values of specific heat capacity, their 

temperature increases are still large when absorbing the thermal load, making the 

component/system design relatively more complicated (Sharma et al. 2009). On the 

contrary, PCSs can store and release large amount of latent heat during phase changes 

and correspondingly they require smaller mass flow rates, less pumping power, 

smaller chillers and pipe sizes, as well as smaller thermal storage units (if any) for a 

given cooling capacity. They also experience much smaller temperature changes 

across the heat exchangers when performing a cooling function. 
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Many materials or mixtures can be potentially used as PCSs for refrigeration 

applications. The freezing point is an important parameter to consider when selecting 

a suitable PCS for a particular application, which depends on the type and 

concentration of the material; it should match with the desired operational 

temperature range (Sharma et al. 2009). Other selection criteria include the chemical 

stability and low cost (Zalba et al. 2003; Sharma et al. 2009).  

1.2.2 Binary ice properties and production 

A water-ice binary solution is among some of the first used PCSs. It is cheap, 

easy to obtain, safe and also with a very large latent heat. For sub-zero temperature 

applications, a freezing point depressant (or additive) has to be added, glycol, ethyl, 

ethanol and NaCl being some of the popular ones. By selecting an appropriate type of 

additive/solute and using a suitable concentration, an aqueous solution-ice mixture, 

also known as binary ice, can be generated when its temperature is reduced to below 

the freezing point.  

A number of ice generation methods have been developed. They can be 

broadly divided into the following groups: mechanical-scraper type (Kauffeld et al. 

1999; Stamatiou et al. 2005), vacuum type (Paul 1996), direct contact type (Byrd and 

Mulligan 1986; Fukusako et al. 1999), fluidized-bed ice generator (Klaren and Van 

Der Meer 1991), ice generators using sub-cooled water with different types of 

nucleation initialization (Mito et al. 2000) and ice slurry generators with specialized 

ice nucleating and ice repelling surfaces (Zwieg 2002). Among them, 

mechanical-scrapers are the most commonly applied type in industry because the heat 

transfer rate from the solution to the primary refrigerant can be greatly increased by 

agitation, leading to energy and space savings (Kauffeld et al. 1999).   

Scrape surface ice generator (SSIG) is one of the most popular 

mechanical-scraper type ice generators. The SSIG is essentially a co-axial concentric 

heat exchanger with the primary refrigerant flow in the annular space providing 

cooling to the solution flowing in the inner cylinder. A very thin layer of ice forms on 

the inner surface of the cylinder when the local solution temperature drops below its 

freezing point, and is then removed by the rotating scrapers. During this process, both 

the solution and ice concentrations increase, and the flow temperature decreases 

gradually along the SSIG towards the exit; the actual decrease, typically between 2 to 
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3 °C, depends on various parameters such as the length of the SSIG and initial 

solution concentration.  

To describe the states of binary ice, three independent variables are needed, 

namely solution and ice temperature (usually assumed to be the same (Kauffeld et al. 

2005)), carrier fluid concentration and ice concentration. When the binary ice is 

generated in a solution with a known initial concentration, only two of the variables 

are needed. 

 

Figure 1.2 Phase diagram of a binary ice mixture 

Figure 1.2 shows part of a typical phase change diagram of a hypo-eutectic 

solution (Ge and Wang 2009) at different temperatures (Y-axis) and solution 

concentrations (by mass
2
, X-axis). The freezing point curve (assumed under standard 

atmospheric pressure) gives the freezing temperature at a certain solution 

concentration, which decreases when the solution concentration increases. Above the 

freezing point curve, the solution is a single-phase liquid, whereas below the curve, a 

mixture of ice particles suspended in solution can be formed.  

Take a solution with an initial concentration, Co, at temperature 0°C (point A) 

as an example. When being cooled, solution remains as liquid until its temperature 

drops (assuming it is being cooled by an external medium) to its freezing point Tf  

(point B). At this point, part of the water begins to freeze. If the solution is cooled 

further down to a lower temperature T and the water is taken out during this freezing 

process, the solution concentration increases, moving from point B towards point C 
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(with the corresponding solution concentration changing from Co to Ccf) along the 

freezing point curve. At the same time, more and more ice is produced, and at point C, 

the corresponding ice concentration (Cice) can be calculated by: 

𝐶ice = 1 −
𝐶o
𝐶cf

                                                                                                                         1. 1 

where Ccf is the concentration of the carrier fluid at point C. 

An important property of binary ice related to the pumping power is the 

viscosity which increases with the solution concentration and ice concentration 

(Kumano et al. 2010a). Comparing a binary ice mixture (Point E in Figure 1.2) to a 

solution with a concentration of Ccf (Point C), both at the same temperature, the 

viscosity is larger at point E when there are ice particles in the mixture. However if 

the initial solution concentration is increased to C’ (Point D), its viscosity at the same 

temperature will be significantly higher than that of Point C, leading to potentially a 

lower viscosity at Point E than at Point D. 

Due to the presence of ice particles in the carrier fluid, the rheological 

behaviour of ice slurries is much more complex than a single phase fluid (Egolf and 

Kauffeld 2005). When the ice concentration is low, ice slurry flow behaves like 

Newtonian fluid; for suspensions containing a large amount of ice particles, 

non-Newtonian behaviours resulted (Darbouret et al. 2005). It has been observed that 

the transition of Newtonian fluid to non-Newtonian fluid happens at ice 

concentrations by mass between 6% and 15% (Ayel et al. 2003) which are lower than 

that commonly encountered in SSIGs (typically around 20% in practical applications) 

where binary ice are often treated as non-Newtonian. 

One of the non-Newtonian models that can be applied to describe the 

behaviour of binary ice is Bingham flow (Frei and Egolf 2000). Figure 1.3 tells the 

difference between a Newtonian fluid and a Bingham fluid. Bingham fluid (Bingham 

1917) behaves like rigid body when shear stress is lower than the yield stress τ0. Once 

the shear stress overcomes the yield stress, the suspensions become viscous fluid, 

which is pumpable. 
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Figure 1.3 Rheogram for Newtonian and Bingham fluid 

The relationship between the shear stress τB and shear rate 
𝑑𝑣

𝑑𝑦
 for Bingham 

fluid is: 

𝜏B = 𝜏0 + 𝜇B
𝑑𝑣

𝑑𝑦
                                                1. 2 

while the same relationship for Newtonian flow is 

𝜏N = 𝜇N
𝑑𝑣

𝑑𝑦
                                                  1. 3  

where µB and µN, shown as the gradients of the lines in Figure 1.3 are the dynamic 

viscosities for Bingham fluid and Newtonian fluid respectively. The pumping power 

to enable the Bingham fluid to start moving from quiescent state should be large 

enough to overcome τ0. The ice particles build some kind of internal structure when 

no stress is applied (Kauffeld et al. 2005). Once the yield stress is exceeded, the 

structure collapses, and the fluid begins to move.  

From the figure, it can be deduced that when the flowrate in a given pipe 

increases, the shear rate and the corresponding shear stress both increase. When the 

flowrates are small, the required shear stress for a Bingham fluid is always larger than 

that for a Newtonian fluid. However, for the case shown in Figure 1.3, the viscosity of 

the Bingham fluid is smaller as indicated by the gradients. When the flow rate 

increases, the required pumping power for the Bingham fluid will eventually be 

smaller than that of the Newtonian fluid, thus saving pumping power at higher flow 

rates. 
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Therefore, there are two main reasons that using binary ice as secondary 

refrigerant will reduce pumping power consumption. First, for a given cooling 

capacity, the required flowrate of binary ice is much smaller than a pure liquid due to 

the involvement of latent heat when the ice particles melt. Second, for a binary ice 

mixture, its viscosity could be potentially smaller than the single phase solution of a 

higher concentration at the same temperature. 

The relevant thermal-physical properties of binary ice such as viscosity, 

specific heat, specific enthalpy, density and thermal conductivity can be determined 

by combining the properties of the carrier fluid and ice at a given temperature once 

the ice concentration has been determined. The equations and calculation details can 

be found in Handbook on Ice Slurries (Kauffeld et al. 2005) and will be included in 

Appendix A and B.  

1.2.3 Binary ice systems and their operations 

The application of binary ice started from early 1990s (Paul 1992; Snoek 1993) 

and nowadays, they are widely employed. One of the most important application 

domains is the comfort cooling for large buildings (Wang and Kusumoto 2001). 

Using binary ice as the secondary refrigerant instead of chilled water can decrease the 

air distribution temperature and significantly reduce the air flowrate needed for a 

certain cooling capacity, meaning smaller equipment and less fan power for air 

distribution will be required.   

Japan has the most binary ice air conditioning systems installed in the world, 

for over 400 buildings; while Europe has approximately 150 systems in 2009 (Rivet 

2009). Examples include the Capcom Building (Bellas and Tassou 2005) which saved 

4% of overall building running cost due to the reduced fan power and Herbis building 

in Osaka (Wang and Kusumoto 2001), where about 1/3 of the peak system load was 

reduced by using thermal storage involving binary ice.  

 Food preservation and processing is another large application area for binary 

ice. Ice slurry can be used as direct contact cooling agent for fast cooling of food such 

as fish (Wang et al. 1999), or as indirect coolant in heat exchangers during food 

processing for industries such as dairy production (Gladis 1997) and breweries 

(Kauffeld et al. 2010). It can also be used in large kitchens (Campos et al. 2005) and 
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supermarket display cabinets (Lueders 1999; Davies and Lowes 2002). Other possible 

applications include mine cooling (Kidd 1995), medical cooling (Brooker et al. 1997; 

Becker et al. 2000; Laven et al. 2007), firefighting (Lowes 2002), etc. 

There are different strategies for the implimentation of a binary ice cooling 

system. Figure 1.4 displays a typical layout of a binary ice system for central air 

conditioning for buidings. Ice is generated by a vapour compression refrigeration. The 

ice and its carrier solution are then stored in a fully agitated tank before being pumped 

to the terminal units. Depending on the cooling demand, the fluid can return 

with/without ice to the tank. Under some circumstances, the storage tanks are not 

agitated. The concentrated ice at the top can be used for immersed cooling for food 

processing or medical use, while the pure liquid at the bottom can be pumped to the 

cooler for general comfort cooling (Guilpart et al. 2005). 

 

Figure 1.4 General binary ice system diagrams 

In summary, the properties of binary ice and the operation characteristics of 

binary ice cooling systems are quite different from those of the conventional 

secondary refrigeration systems. The existing FDDs developed for the latter are not 

expected as being capable of handling the faults in binary ice systems. Therefore in 

this report, a new method is proposed. 
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1.3 Outline of thesis  

Chapter 1 brings out the general concepts of FDD and binary ice systems. The 

unique features of binary ice systems have been introduced. It is necessary to develop 

a new FDD approach for binary ice systems as no existing method is applicable.  

The literature review (Chapter 2) looks into the development of FDD for 

conventional liquid chillers as they share some common features with binary ice 

systems. Observations have been made and based on which the methodology of this 

study is proposed. 

The FDD method is designed based on a particular binary ice test rig available 

in the laboratory. In Chapter 3, the experimental setup of this test rig is described. A 

prebuilt ice generator is coupled with a tank equipped with immersion heaters which 

simulates the cooling load. This test rig is monitored by various sensors to provide 

normal/faulty data for the studies.  

For a model based FDD, a simulation model of the system is needed to 

provide fault free benchmark for the fault detections. As reviewed in Chapter 2, a 

single type of model may not be able to serve the FDD purpose well. Therefore in this 

study, a hybrid model, which consists of a dynamic analytical mode for the ice 

generator and a dynamic ANN model for the rest of the system, is applied. Chapter 4 

looks at the process of ice forming in detail and the development of the associated 

mathematical formulations of the analytical model.  

For the ANN model, its basic concept and the configuration method is 

presented in Chapter 5. The analytical model and the ANN model are calibrated and 

trained respectively, and validated with the data collected from the test rig. The 

coupled hybrid model and its validation is also covered in Chapter 5. 

Based on the hybrid model, Chapter 6 focuses on the development of the 

actual FDD approach. The influences of the selected faults on various 

measured/derived parameters are investigated. The parameters for the detection and 

the diagnosis are selected respectively based on the above influence. To handle the 

dynamic feature of the system, a unique method called CUSUM test has been used to 
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speed up the detection and reduce false alarm. In addition, the diagnosis of some 

double faults is also addressed. 

The results and discussions are presented in Chapter 7, where the results of the 

FDD approach are evaluated. Last, the whole project is concluded in Chapter 8.  
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2. Literature review 

As pointed out previously, binary ice systems are similar to single phase liquid 

chillers in many ways. Therefore, the development of a FDD approach for a binary ice 

system can start from gaining a better understanding and analysing the existing FDD 

methods for single phase systems. In this chapter, previous researches related to FDD 

of RAC systems, in particular the vapour compression liquid chillers, are reviewed. 

The first part of the review focuses on the methods to obtain fault-free prediction data 

for fault detection in RAC applications. The development of analytical, black box and 

grey box models are examined here. The second part surveys the work on applying 

the modelling results together with the real system measurements for FDDs, including 

the selection of parameters and thresholds, and the development of diagnosis 

approaches. This is followed by a look into the evaluation of the FDDs performance 

by previous researchers, in terms of detection/diagnosis accuracy, speed, false alarm 

rate, etc. The motivation and objective of this project, and the overall research 

plan/methodology are then provided, based on the observations made from the 

previous work.  

2.1 Vapour compression liquid chiller models  

The implementation of FDDs is based on the comparisons of fault-free data 

and the measured data. In general, there are two ways to obtain fault free data: via 

historical data log or via model predictions (Chiang et al. 2001). Historical records are 

usually taken under specific working conditions at the specific time and therefore it 

may be difficult to apply them for general FDD purpose, as the data base can be too 

small to cover all the possible situations when faults are encountered. On the other 

hand, the development of a prediction model requires much less data points, and the 

models can produce simulated results over a wide range of conditions; this makes 

prediction models a preferred option to produce faults free data (Katipamula and 

Brambley 2005). 
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To develop a suitable model for a FDD, there are some general considerations. 

 Accuracy 

A reliable prediction model should be an accurate reflection of the actual 

system. The accuracy of the model has a great influence on the reliability of the FDD, 

in terms of detection accuracy, rate and speed (Reddy 2006). If a model has small 

predictions errors, the thresholds for fault detection(s) can be reduced, and for FDD 

applications, this would enable an earlier detection of a fault and reduce the false 

alarm rate (Sreedharan and Haves 2001). 

 Data requirement 

Prediction models often require data for validation, training or/and calibration, 

depending on the types of the model (Katipamula and Brambley 2005). Two main 

issues need to be addressed: 1) the number and type of the model input parameters 

and 2) the amount of data points required. The monitoring of the system parameters 

requires specific instrumentation and costs money; some parameters may not be 

acquired easily due to system constrains, such as acquiring the internal wall 

temperature of a ready built heat exchanger. Thus it is desirable to build a model 

which would require fewer input parameters that should also be cheap/easy to 

measure, in order to improve applicability and to save the cost of FDD. As for the 

second issue, generally speaking, making available a large amount of data points for 

model training and calibration would increase the accuracy of a model. However, data 

recording is both time consuming and expensive. A model should be developed in a 

way that it requires a smaller amount of data points while maintaining an acceptable 

level of accuracy. 

 Physical relevance of the modelling parameters 

Particularly for analytical/mathematical models, the parameters involved must 

have physical meanings and they should be, as far as practically possible, directly 

related to key operating characteristics or/and certain types of fault, making their 

detection relatively straight forward.  

As mentioned in Section 1.1.1, three types of models have been developed for 

FDDs, namely analytical model, black box model and grey box model. Some previous 

studies are surveyed below. 
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2.1.1 Analytical model 

To build an analytical model for a refrigeration system, a deep understanding 

of the associated physical principles that govern the system behaviour and operational 

characteristics is needed. The models are usually built from component level before 

system integration (Koury et al. 2001). For transient analytical models, the key to 

describe the dynamic behaviour of chillers is to capture the transient characteristics of 

the heat exchangers (evaporator and condenser), because they hold most of the 

refrigerant charges of the system. The expansion valve and the compressor can be 

treated as steady state all the time as their condition changes are much faster 

compared with the heat exchangers. 

For instance, sub-models of evaporator and condenser usually consist of a set 

of time-space partial differential equations representing heat, mass and momentum 

balances within the heat exchangers, which can be solved to determine local heat 

transfer, temperature and pressure at any specific time (Katipamula and Brambley 

2005). For compressors and expansion devices, as their thermal inertia are quite small 

(Bendapudi et al. 2002b), quasi-steady state assumptions are often applied. The 

component models are then coupled together with the thermodynamic states of 

refrigerant and mass continuity. The enthalpies, mass flowrates and properties of 

refrigerant at the outlet of one component become the inlet to the next coupled 

component.  

Detailed mathematical models are difficult to construct and require relatively 

huge computational time; to reduce the complexity of the modelling and simulation, 

assumptions are often made. Common assumptions from literatures include using the 

idealised refrigeration cycle, constant refrigerant charge level (McIntosh et al. 2000),  

1-D refrigerant flow in heat exchangers (Nyers and Stoyan 1994; He et al. 1997), etc. 

Assumptions vary with modelling approaches and they may affect the accuracy of the 

model and hence the reliability of the FDDs. Many of the assumptions may also be 

valid for the binary ice system involved in this study. By analysing the application 

and viability of the common assumptions for various RAC systems, it may help 

identifying the appropriate ones for the current study.  

Many analytical models have been built but they are mainly developed for 

system or component designs, not many of them have been used for FDDs. Some 
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examples of mathematical models for general vapour compression system simulation 

are given below. Attention will be paid to the type of system, the selection of 

modelling parameters and the model’s potential of being employed for FDD purpose. 

Browne and Bansal (2002) built a detailed dynamic model for a packaged 

liquid chiller. For individual system components, correlations of heat and mass 

transfers were developed. System geometrical parameters, such as size of the heat 

exchangers, total mass of chilled and cooling water, total amount of refrigerant and 

the assumed/estimated distribution within individual system components were needed 

as modelling parameters. The required input variables included chilled water and 

cooling water temperatures and mass flowrates, wall temperatures of condenser and 

evaporator, ambient temperature, as well as the estimated building load and the set 

point temperatures of the evaporator water outlet and condenser water inlet. Empirical 

regression had been used for the compressor sub-model, to improve the overall model 

accuracy. The simulation could be applied to calculate the cooling capacity, 

compressor input work and refrigerant temperatures of condenser and evaporator. The 

model provided good results for the transient period during system start-up. When the 

system was operating under steady state, the modelling accuracy was 90%; the errors 

were due to the omission of the control system in the model, though physically it was 

incorporated in the system. The model may not be suitable for general FDD 

applications as the distribution of the refrigerant cannot be easily measured in 

practical situations, as well as the wall surface temperatures of the heat exchangers. 

He et al. (1997) developed a model for describing the dynamics of vapour 

compression cycles. In particular, the dynamics associated with the evaporator and the 

condensers were modelled based on a moving-interface approach in which the 

position of the two-phase/single-phase interface inside a one-dimensional heat 

exchanger could be properly predicted. Two sets of lumped parameters were applied 

in this model for the two-phase and the single phase zones separately. However, it is 

believed the lumped parameter models would not be suitable for binary ice system in 

which the properties of the binary ice change significantly inside the heat exchanger 

even under a small temperature variation.  

In modelling a variable speed chiller system, Koury et al. (2001) developed a 

transient distributed model for the condenser and the evaporator, in which the heat 



39 

 

 

exchanger was divided into small elements. Conservation equations and local heat 

transfer coefficients were applied for individual elements. A steady state assumption 

was employed for calculating the refrigerant mass flowrate through the compressor 

and the expansion valve. The model could predict system behaviour during start-up, 

compressor speed and TEV valve flow area variations. The use of finite element 

method helped increase the reliability of the model. Moreover, the ability of 

predicting system behaviours during dynamic change made it possible for dynamic 

fault detections.  

In general, it is difficult to apply and adapt a particular model to other chillers 

as each has a unique set of heat transfer coefficients depending on the type of heat 

exchanger employed and flow conditions encountered. However, with the help of 

calibration variables and/or experimental data, it is possible to modify a detailed 

physical model, developed for a system, and adapt it for another similar system. 

McIntosh et al. (2000) modified a detailed model from Braun (1988), which was 

originally developed for a 5500-ton centrifugal chiller, to be applied to a laboratory 

2000-ton centrifugal chiller. This calibration method could in fact be also used to 

improve modelling accuracies of a given system.  

Bendapudi et al. (2002a) developed an analytical model of a centrifugal chiller 

which they claimed to be potentially suitable for FDD purpose. Unlike all the 

dynamic models they have reviewed and presented in an earlier report (Bendapudi et 

al. 2002b), which were not able to predict accurately the dynamic behaviours of 

centrifugal liquid chillers, this model considered refrigerant re-distribution between 

components as part of the dynamic features. The influences of the control feedback 

were also included in the modelling. The model was capable of predicting the 

compressor start-up and load changes.  

Although some previous efforts had been made to applying analytical models 

to FDDs, full analytical models are still considered not common for FDD applications. 

The correlations, e.g. He et al. (1997), relating the relevant parameters are difficult to 

develop and computationally intensive to solve even after simplifying assumptions 

have been made. Browne and Bansal (2002) showed that the poor accuracy 

encountered in some of the pure analytical models could be improved by empirical 

calibrations. In addition, some common essential input parameters such as internal 
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heat exchanger wall temperature and the refrigerant distribution in individual 

components are difficult to determine in real applications.  

2.1.2 Black box model  

Black box model, as the name suggests, does not show the internal physical 

relationships between its input and output parameters. The model links the inputs to 

the outputs by developing its own set of mathematical correlations. There are two 

main kinds of black box model: Artificial neural networks (ANN) (Kubat 1999) and 

regression models (Sen and Srivastava 1990).  

 ANN model 

Artificial neural networks, which simulate the biological neural structures in 

human brain (Bar-Yam 2003), have the ability of machine learning and pattern 

recognition (Bishop 2006). An ANN model consists of interactive artificial neurons, 

which are considered as computational units. The neurons are grouped into an input 

layer, an output layer and hidden layer(s). Figure 2.1 shows a simple example of an 

ANN with only one hidden layer. This network has m inputs (x1, x2...xm), k hidden 

neurons (f1, f2…fk) and a single output (y). 

 

Figure 2.1 A typical structure of an ANN model 
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Each individual neuron in the input and output layer represents a parameter of 

the model, and each neuron of the hidden layer contains an activation function. The 

arrows between the input and the hidden layer are referred to as a 𝑚 × 𝑘 weight 

matrix w, while the arrows between the hidden and output layer form a 𝑘 × 1 weight 

matrix w’. The input values are multiplied by the weight matrix first and then added 

together before passing to the activation function in the hidden neurons. For instant, 

the input (lj) to the j
th

 (j = 1 to k) activation function can be calculated by 

𝑙𝑗 = ∑ 𝑤𝑖,𝑗𝑥𝑖
𝑚
𝑖=1 + 𝑏𝑗              2.1 

where wi,j is the weight (usually a number between 0 and 1) and bj is the bias (taken as 

between -1 and +1). The outputs of the activation functions are then weighted and 

summed again to generate the final model output(s), which can be expressed by,  

𝑦 = ∑ 𝑤′𝑗𝑓𝑗
𝑘
𝑗=1 (𝑙𝑗) 2.2 

The number and type of activation function are chosen by the users (Swider 

2003), depending on the amount of training data available and the desired accuracy. 

In practice, the same activation function is selected for all the hidden neurons in an 

ANN network. Step function, Gaussian function and sigmoid function are three 

typical activation functions (Halm-Owoo and Suen 2002). ANN training is to match 

the calculated model outputs with measured training data pattern by adjusting the 

weight and bias matrixes to keep the errors between the calculated and measured data 

to a minimal level (Yegnanarayana 2009). One of the most common training 

techniques is the back propagation algorithm (Hu et al. 2007). 

Among various ANN types, multilayer perceptron (MLP) and radial basis 

function (RBF) are most often applied for chiller fault detection modelling (Swider et 

al. 2001; Rueda et al. 2005; Navarro-Esbrí et al. 2007). For MLP, the activation 

functions are usually chosen as a tanh function (which is a kind of sigmoid function 

(Ertunc and Hosoz 2006)) and the network shown in Figure 2.1 is a typical MLP. 

RBFs commonly use Gaussian distribution (Albrecht et al. 2000) as an activation 

function, and instead of using the weight matrix w and bias b as shown in Equations 

2.1 and 2.2 for MLP, the centre μ and the standard deviation σ are adjusted to match 

the network output with the training data.  
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MLP and RBF can both provide highly accurate predictions, while the 

accuracy of MLP is even higher (Swider 2003). However, it was reported that when 

compared to MLP, RBF is less computationally intensive and needs less training time 

(Swider et al. 2001).  

Some examples of application of ANN models for chillers are presented below. 

An ANN model using the RBF network was reported by Swider et al. (2001). Model 

inputs were chosen from parameters which could be easily measured or derived, 

including cooling capacity, evaporator chilled water outlet and condenser cooling 

water inlet temperatures. The model was implemented by Matlab and tested with data 

from a single screw chiller and from a twin-circuited chiller under steady state 

conditions. Two steps were involved in the network training, 1) optimise the centre of 

the Gaussian functions and this was carried out by using K-means algorithm 

(MacQueen 1967) and 2) adjust the standard deviations of the Gaussian functions to 

be the same as the distance between the Gaussian functions, which is a common 

practice. The accuracy of the predicted chilled water inlet and cooling water outlet 

temperatures were within 0.5%. For COP and electrical power consumption of the 

compressor, prediction accuracies were within 5%. The author concluded that a RBF 

network can be applied to provide accurate predictions for vapour compression liquid 

chillers.  

Navarro-Esbrí et al. (2007) developed a RBF model for a variable-speed 

vapour compression glycol chiller. The key features of this model were its low data 

requirement for training and it had also been validated outside the range of the 

training data. In order to obtain a good accuracy using limited numbers of input 

variables and training data, the number of neurons needed to be increased gradually 

until the pre-set training goal was achieved. It took the return water/glycol 

temperature to the evaporator, the condensing water inlet temperature, the evaporator 

refrigerant outlet temperature and the compressor rotation speed as inputs to predict 

the cooling capacity, compressor power consumption and chilled fluid outlet 

temperature. Eight steady state tests were undertaken with various cooling loads and 

condensing conditions; 6 of them were applied for model training and validation and 

the other 2 were for testing the ability of the model. The model was validated with 

data from both inside the training data range and outside the range. The validations 
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showed that the prediction accuracies for both ranges were very good, although the 

former was slightly better.  

Rueda et al. (2005) built a set of ten MLP ANN models to detect refrigerant 

leakage based on ten system output parameters which were the secondary fluid outlet 

temperatures for both condenser and evaporator, the refrigerant temperatures at both 

inlet and outlet of condenser and the evaporator and compressor suction and discharge 

pressures. It took two secondary fluid flow inlet temperatures as inputs, one from the 

condenser and another from the evaporator. A tanh activation function and conjugate 

training (Barnard and Cole 1989) were employed. The model provided high 

coefficient of variance of around 0.99.  

The black box model has shown certain advantages, when compared to 

analytical approach, especially in modelling complicated systems. Ertunc and Hosoz 

(2006) developed a MLP ANN model of a refrigeration system. Their work was 

complicated by the fact that an evaporative condenser was used in the system. 

Compared with air- or water-cooled condenser, its operation related to both dry bulb 

and wet bulb temperatures, which made it relatively harder to be modelled physically. 

The input parameters were cooling load, air mass flowrate to the condenser, and the 

air dry and wet bulb temperature at the condenser inlet. Output parameters included 

condenser heat rejection rate, refrigerant mass flowrate, compressor power, 

compressor motor electric power and COP. Weights of the neurons were adjusted by a 

back propagation algorithm (Bryson and Ho 1975). This model had a good prediction 

performance with errors of around 2% ~ 4%.  

Static ANN networks can also be adapted to simulate dynamic system 

behaviours based on the same network structures (e.g. MLP or RBF) (Yoon and Lee 

2010). The inputs and outputs of a dynamic ANN are time series data. The value of an 

output at a particular moment is usually determined by the inputs at the previous 

moment(s) as well as the previous value(s) of the output itself. These inputs can be 

taken at one (known as one step delay) or more previous time steps (Chetouani 2008). 

The detailed structure of dynamic ANNs employed in this project will be described in 

Chapter 5. 
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Many dynamic ANNs of refrigeration systems have been built by previous 

researchers. One was developed by Bechtler et al. (2001) using a RBF network to 

simulate the start-up and transient fluctuations of chiller based on three outputs (i.e. 

compressor power consumption, COP and chilled water inlet temperature) and three 

inputs (i.e. cooling water inlet temperature, chilled water outlet temperature and 

evaporator capacity). It was found that when sudden change occurred to the system, 

the model generally provided a much smoother prediction than the actual variation 

creating larger errors. This was thought to be caused by the lack of training data and 

the use of a large sampling interval (30s). Only previous values of one time step were 

used.  

Yoon and Lee (2010) designed a dynamic RBF network with a one-step delay 

to predict the refrigerant temperatures at five different positions within the primary 

circuit. As the temperature of refrigerant at a particular position was influenced by 

what happened upstream of the flow, in order to predict the temperature at this 

location, the previous value of an upstream position was also used as an network input 

together with the previous values of the inputs and output of the current position. 

However, the selection of the time step must be careful and precise to ensure the 

upstream influence was captured. The authors also compared their network with two 

MLP networks trained by different methods, and concluded that the RBF had the best 

accuracy, though other paper (Swider 2003) pointed out that MLP structures had 

better accuracies when training time was not an issue. 

Hu et al. (2007) developed a dynamic ANN model for an air handling unit 

based on an MLP network. The inputs included the mass flow rates of both chilled 

water and the supply air, as well as the inlet temperatures of the chilled water and the 

air flow. The outputs were the outlet temperatures of the chilled water and the supply 

air. Having been trained by 410 data patterns, the errors for more than 90% of the 

model predictions were smaller than 5%. It could be used as a prediction model for 

FDD purposes.  
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 Regression model 

A regression model is another kind of black box model and it has a general 

form as: 

𝐭 = 𝛽𝑇 ∙ 𝐗 + 𝛆 2.3 

where vector t is the model output parameter matrix, X represents the experimental 

independent variables, β
T
 represents a transpose matrix of the fitted coefficients, 

which has no physical meaning, and ε is the remained error. The process of regression 

is to find a suitable parameter matrix β that best matches the input vector X into 

output vector t. Fitting can be done by minimizing the sum of least squares error 

(LSQ) (Björck 1996), the negative log likelihood (LLH) (Platt 1999) or ordinary least 

square (OLS) method (Björck 1996).  

Linear regression is one of the simplest regression methods. A bi-linear 

regression model was presented by Stylianou (1997), using the evaporator and 

condenser water inlet temperatures as the independent variables. The regression 

equation was: 

𝑦 = 𝛽0 + 𝛽1𝑇e,in + 𝛽2𝑇c,in + 𝜀 2.4 

where y was the dependent output variable of the model (e.g. COP), β0, β1 and β2 were 

regression coefficients and ε was the error that needed to be minimized by adjusting 

the regression coefficients.  

After training, this model could provide predictions with frictions of variance 

(Everitt and Skrondal 2002) higher than 99%. This linear regression model, which 

was very easy to develop and only required relatively a small amount of training data, 

had advantages when the target system was relatively simple. However, when a more 

complicated system, such as twin-circuited chillers were evolved, the accuracies of 

prediction dropped significantly (Swider 2003).  

A non-linear polynomial regression method was applied to predict the 

performance indexes in Cui and Wang’s work (2005). All the indexes were 

considered functions of cooling load Q, chilled water supply temperature Te,in and 

condenser water entering temperature Tc,in. The regression model took the following 

form: 
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𝑦 = 𝛽0 + 𝛽1𝑇e,in + 𝛽2𝑇c,in + 𝛽3𝑄 + 𝛽4𝑇e,in𝑇c,in + 

𝛽5𝑇e,in𝑄 + 𝛽6𝑇c,in𝑄 + 𝛽7𝑄
2 + 𝜀                                 2.5 

The output variable y could be the performance indexes: COP, LMTDe, 

LMTDc, motor efficiency, isentropic efficiency and refrigerant mass flowrate. Eight 

regression coefficients were employed. The model was validated with steady state 

fault free field data by OLS method. The coefficients of determination (Steel and 

Torrie 1960) for all model outputs were higher than 90%.  

Regression models can be applied for transient simulations as well. Similar to 

the dynamic ANN models, dynamic regression models also involve a delay line using 

the current and previous value(s) of both the input and output as the model input to 

predict the future value(s) of the output.  

Riemer et al. (2002) proposed an auto regressive moving average (ARMA) 

model. For an auto-correlated time series x, the value at a certain time step could be 

determined by using the previous values of the same time series, as demonstrated 

below. 

𝑥𝑡 = 𝛼1𝑥𝑡−1 + 𝛼2𝑥𝑡−2 +⋯+ 𝛼𝑝𝑥𝑡−𝑝 + 𝑧𝑡 + 𝛽1𝑧𝑡−1 + 𝛽2𝑧𝑡−2 +⋯ 

+𝛽𝑞𝑧𝑡−𝑞 2.6 

where 𝑧𝑡 = 𝑥𝑡 − 𝑥𝑡−1 was the difference term of x between time steps; 𝛼1, 𝛼2…𝛼𝑝 

and 𝛽1, 𝛽2…𝛽𝑞 were the regression coefficients; p and q were chosen by the user, 

based on the nature of the time series x. This model could be applied to predict chilled 

water flowrate, chilled water supply temperature and the evaporating temperature.  

In general, black box models, including ANN and regression models, show 

great advantages when modelling complex nonlinear systems compared to analytical 

models that are based on first principle. Both ANN and regression models are capable 

of handling dynamic system simulations and of producing relatively good accuracies 

when large amount of measured training data are needed, which could be regarded as 

a disadvantage.  
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2.1.3 Grey box model 

To minimise the drawbacks of analytical models and black box models, 

grey-box models are developed. There are various ways of formulating a grey-box 

model, e.g. a serial approach or a parallel approach (Estrada-Flores et al. 2006). A 

serial approach means an output of the black box model can be used as an input to the 

white box model (or vice versa). On the other hand, for the parallel approach, the 

same input data are sent to both the black and white box models at the same time. The 

model outputs were first calculated by the white box model, while the black box 

model compared the analytical results with the real fault free measurements and 

generated a correction signal to improve the overall accuracy.  

The serial approach is often applied in the modelling of refrigeration systems 

(Estrada-Flores et al. 2006). When building up a component level physical model for 

a system, a black box sub-model can be applied for the complex components such as 

the compressor (Browne and Bansal 2002). Other examples of serial approach 

grey-box models for FDD applications include the thermodynamic models    

Gordon and Ng (2000), Lee (2004), Ng (2008), and the characteristic models of Jia 

and Reddy (2003).  

The thermodynamic grey-box model of Gordon and Ng (2000), developed for 

centrifugal and reciprocating chillers, was based on the First and Second Laws of 

Thermodynamics, describing the energy and entropy balances of the chillers, as given 

below:  

𝑇e,in

𝑇c,in
 1 +

1

𝐶𝑂𝑃
 − 1 =

𝑇e,in

𝑄e
∆𝑆t + 𝑄leak

𝑇c,in−𝑇e,in

𝑇c,in×𝑄e
+

𝑅×𝑄e

𝑇c,in
 1 +

1

𝐶𝑂𝑃
   2.7 

where the internal entropy generation rate in the chiller due to internal irreversibility  

(ΔST, kW/K), the equivalent heat loss from the chiller (Qleak, kW) and the thermal 

resistance of the heat exchangers (R, K/kW) were the regression coefficients all of 

which had physical meanings, and they were obtained using a regression model. All 

the other parameters in the equation could be obtained from measurement. The 

training of this model was to use a set of the above measured parameters under fault 

free condition to determine ΔST, Qleak and R by multiple linear regressions. The model 

could then be used to predict system COP. In this case, ΔST, Qleak and R were the 

model parameters of a first principle model that cannot be measured directly. The 
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model was first transformed into a regression function to obtain the above three 

coefficients. Then they could be applied as constant inputs to Equation 2.7 to 

calculate the model output.  

One advantage of this kind of grey-box model is that as the regression 

coefficients of the grey-box models are physically meaningful and it is possible to 

carry out fault detection and diagnosis by examining their variations during faulty 

conditions. Saththasivam and Ng (2008) applied the above model for faults detection. 

Instead of relying upon the model output COP for FDD, they claimed that the values 

of ΔST and R could be used to indicate the health of the chillers. ΔST could be linked 

to the operation of the compressor and the expansion valve (e.g. an increased ΔST may 

suggest excessive oil in the compressor), whereas the thermal resistance R was related 

to heat transfer rates in the evaporator and condenser (e.g. an increased R could 

indicate reduced cooling water flow or condenser fouling). For a given chiller system, 

those coefficients were considered as constants under normal operating conditions.  

Equivalent heat loss Qleak was less likely to be influenced by operation 

conditions when compared with the other two, hence less useful as a FDD detection 

parameter. During the fault detection process, 12 fault free data sets from a 90-ton 

centrifugal chiller were applied to determine ΔST and R by the regression method. 

Input parameters based on measured values included: cooling load, secondary fluid 

inlet temperatures for the condenser and evaporator and COP, and model outputs were 

ΔST and R, and they were compared with the constant values for FDD.  

Another example of a serial hybrid model was the characteristic model 

developed by Jia and Reddy (2003). It combined refrigeration cycle analysis with 

regression correlations. Simplified lumped physical models were developed first to 

calculate the characteristic parameters of the components, that describe the 

performance of the components and were linked to certain types of faults (e.g. motor 

efficiency and polytrophic efficiency for the compressor, overall heat conductance (i.e. 

UA values) of the evaporator and condenser, the product of the fluid friction 

coefficient (a function of refrigerant velocity) and the cross-sectional area of the 

orifice for the expansion valve, and COP for the overall system performance).  
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When using the models for FDDs, the above characteristic parameters were 

first calculated by using a set of fault free measured data under different working 

conditions, and then they were fitted into regression functions taking cooling water 

inlet, chilled water inlet and chilled water outlet temperatures as inputs. The fitted 

regression functions were then used as baseline models for fault detection. This 

method was considered as an inversed serial grey-box model because the using of 

white box model is prior to the regression model. 

The three main types of refrigeration system models each have their strengths 

and limitations. Comparisons of different models, mainly based on the accuracy, data 

requirement and computational requirement, had been done by various researches 

(Peitsman and Bakker 1996; Sreedharan and Haves 2001; Swider 2003). Swider 

(2003) compared four regression models, including a grey box model, and two ANN 

models when applying them to a single-circuit centrifugal chiller and a twin-circuit 

twin-screw chiller. The four regression methods included linear regression, 

bi-quadratic (Yik and Lam 1998) regression, multivariable regression and the Gordon 

and Ng’s (2000) thermodynamic grey box model; the two ANN models were a RBF 

model from Swider et al. (2001) and a MLP model using tanh activation function. All, 

except the bi-quadratic model, used the same three input variables: cooling capacity, 

condenser water and evaporator water inlet temperatures; the bi-quadratic model only 

needed the first two, and they all were trained with the same set of data. The output of 

all the models was COP.  

In terms of modelling accuracy, all the above models provided accurate 

predictions for the centrifugal chiller, but the Gordon and Ng’s thermodynamic model 

had the advantage of requiring less training data due to its physical meaningful 

equations. However, for the more complicated twin-screw twin-circuit chiller, only 

the two ANN models could produce acceptable predictions, the four regression 

models could only provide accurate predictions when they were improved by setting 

up separate models for each circuit, hence reducing the system complexity in 

modelling sense. Generally speaking, when there were enough training data, the ANN 

models gave the highest accuracy, followed by the three regression models, and the 

thermodynamic model was the least accurate. The results also showed that although 

MLP gave slightly better prediction results than RBF, they required longer training 
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time. The thermodynamic model showed its advantage when the training data were 

highly limited. 

In conclusion, the selection of a prediction model for FDD should consider the 

complexity of the target system and the selected faults, the availability of the 

measurements and the accuracy of the prediction.  

2.2 FDD approaches 

The fault detection and diagnosis can be separated as two steps (Cui and Wang 

2005) or be integrated as one single step (Bailey and Kreider 2003; Rueda et al. 2005). 

In this review, the common approaches for detection and diagnosis will be presented 

separately.  

2.2.1 Fault detection 

Most FDDs are performed by comparing model predictions with real data. The 

development of fault detection approach involves selecting suitable detection 

parameters, determining the status (static or dynamic) of the system and calculating 

the appropriate thresholds. 

 Selection of fault detection parameter  

A large number of parameters, including measured and derived, are available 

to describe system behaviours. Under faulty conditions, some of these parameters 

need to be identified as they are more sensitive to the fault(s) and thus will produce 

relatively larger residuals while others will not be affected much. Table 2.1 lists the 

measurements used in some FDD studies; temperature, pressure, flowrate and 

electrical power were the main data group. Temperature measurements include the 

refrigerant temperatures around the system circuit, and the condenser/evaporator 

secondary fluid temperatures, usually taken at the inlet and outlet of the heat 

exchangers. Refrigerant pressures are normally measured at inlet and outlet of major 

components. Flowrate measurements are required for condenser and evaporator HTFs 

and sometimes the refrigerant flowrate is acquired as well. Electrical power 

consumption of compressor is often regarded as an important measurement 

(Comstock et al. 2002a). In some FDD development, oil pressure and temperatures 

were also used (Rueda et al. 2005). 
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Table 2.1 Measurements and derived parameters used for previous FDD development 

 
Castro 

(2002) 

Ertunc and 

Hosoz 

(2006) 

Lee 

(2004) 

Navarro-Esb

rí et al. 

(2007) 

Peitsman 

and Bakker 

(1996) 

Reddy 

(2007a) 

Rueda et 

al. (2005) 

Stylianou 

(1997) 

Tcom ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Tr e,in  ✓ ✓  ✓ ✓  ✓ ✓ 

Tr e,out  ✓ ✓  ✓ ✓ ✓ ✓ ✓ 

TTXV,in  ✓ ✓  ✓ ✓   ✓ 

Tr c,out  ✓ ✓  ✓ ✓ ✓ ✓ ✓ 

Tc,in ✓  ✓ ✓ ✓ ✓ ✓ ✓ 

Tc,out ✓  ✓ ✓ ✓ ✓ ✓ ✓ 

Te,in ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Te,out ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

mr ✓   ✓ ✓    

mc, sec   ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

me, sec   ✓ ✓ ✓  ✓ ✓ ✓ 

pc   ✓  ✓  ✓  ✓ 

pe   ✓  ✓ ✓ ✓   

pdis    ✓ ✓ ✓  ✓ ✓ 

psuc    ✓ ✓ ✓  ✓ ✓ 

pTXV,in    ✓ ✓  ✓  

pTXV,out    ✓ ✓  ✓  

W  ✓ ✓ ✓ ✓ ✓   

Qe   ✓    ✓   

Qc       ✓   

N    ✓     

TO       ✓  

PO       ✓  

 

It can be seen some researchers considered relatively more parameters than the 

others, though not all their parameters were eventually used for FDD. The selection of 

FDD parameters depended on the numbers and the types of faults involved and their 

sensitivity towards the chosen faults and the cost of implementing the measurements, 

which resulted in some parameters being common to almost all the works. The 

refrigerant discharge temperature and secondary flow temperatures/flowrates were 
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measured/used in nearly every test, as they are both easy to obtain and are sensitive to 

many kinds of faults. In general, temperature and pressure can be measured with 

inexpensive sensors, while flow meters and power meters are relatively more 

expensive. To achieve a cost effective and reliable FDD method, the measurement 

points and sensor types need to be carefully selected to ensure that accurate detection 

can be obtained with minimum number of sensors.  

 Dynamic VS steady state 

It is generally acknowledged that chillers operate for most of the times under 

unsteady conditions (Yoon and Lee 2010). Any changes of operation conditions, e.g. 

start-up, load fluctuations, feedback controls, climatic change, etc. can result in 

transient operations, where system parameters keep varying, making it difficult to 

detect the faults. On the other hand, most of the existing FDD methods aim at fault 

detection under steady state and they are applicable in transient systems provided 

certain quasi-steady criteria/conditions are satisfied. 

The criteria of steady state detection vary with individual systems, with a 

variety of techniques available from published literature. The simplest method is to 

assume that steady state condition is reached after a specified period of time following 

a change in operation. However, this period is hard to specify accurately and it varies 

with equipment type, cooling load, ambient temperature, etc. A more reliable steady 

state detection algorithm is to check, based on sensor measurements, whether the 

operating system is meeting certain steady state criteria.  

Rueda et al. (2005) developed a two-part steady state detector in which both 

parts need to be satisfied. The first part was to detect whether this system was on or 

off by measuring the pressure ratio. In the second part, the present and the previous 

values of the parameter that had the slowest response to condition variation were 

compared, which was identified as the compressor discharge temperature in their case. 

If the temperature change was less than 1 K in 10 minutes, the operation was 

considered as steady.  

Castro (2002) developed another steady state detector based on the calculation 

of the exponentially weighted moving average. For each measurement, more than 7 

points were taken for calculating a moving average. If the ratio of the standard 
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derivation of the 7 measurements to the moving average was smaller than a certain 

specified tolerance, a steady state condition was declared. 

There are also some dynamic FDDs aiming at detecting faults without the 

need of a steady state detector and they will be reviewed later. 

 Threshold selection 

Fault detections are carried out by comparing residuals between fault free data 

and actual measurements with pre-determined fault free thresholds. Residuals 

normally increase with the severity levels of the fault and they exist even under 

faulty-free conditions due to natural data variations as well as the modelling and 

measurement errors/uncertainties. Thresholds are set up benchmarks for residuals to 

distinguish faulty and normal operations. The setting of threshold is a trade-off 

between detection sensitivity and false alarm rate (Reddy 2007a).  

FDD methods with small thresholds can detect a fault at an earlier stage, but 

the residuals should be big enough to accommodate the modelling error and 

measurement uncertainties to avoid false alarm. 

Using fixed thresholds is the most common practice in FDDs. It can be applied 

for both static (Salsbury and Diamond 2001; Rueda et al. 2005) and dynamic (Chen 

and Lan 2009) FDDs. The values of the thresholds are usually determined by errors of 

modelling and measurements. Mean standard errors (Everitt and Skrondal 2002) have 

been applied to regulate the thresholds (Ng 2008). When using 1-mean standard error 

as a threshold, the false alarm rate was about 32%, but when using a 2-mean standard 

error, the false alarm rate dropped to 5%. T-value thresholds (Reddy 2007a) have also 

been used to reduce false alarm rate. It was essentially a trial-and-improve process. 

The threshold was tested with fault free data and if the false alarm rate was higher 

than anticipated, a larger threshold would then be chosen. 

However, the errors/uncertainties vary with operational conditions. One fixed 

value is not ideal for detecting faults under various conditions. Therefore some 

adaptable threshold estimation methods have been developed (Cui and Wang 2005; 

Navarro-Esbrí et al. 2006; Reddy 2007a) for FDD development for chillers.  
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Cui and Wang (2005) included an online threshold estimation scheme that 

could adapt thresholds according to the measurement error and modelling error. The 

thresholds were functions of cooling load, condenser flow inlet and evaporator water 

flow outlet temperatures. It was stated that smaller thresholds should be selected 

under larger cooling load and when encountering lower condenser flow inlet 

temperature because the parameters were more sensitive to faults under those 

conditions. This matched with the results from Comstock et al. (2002a), i.e. the 

sensitivity of a measured parameter to a fault (defined as the ratio of the measured 

residual under a certain fault level to the maximum experimental uncertainty of the 

parameter) increases with cooling load and decreases with condenser flow inlet 

temperature. 

 Navarro-Esbrí et al. (2006) designed an algorithm to determine thresholds for 

dynamic fault detections. The threshold at a certain time was calculated using the 

quadratic error between the measurement and prediction as well as the standard 

deviation of the modelling error at the previous time step. This method was able to 

reduce false alarm rate when the cooling load was changed.  

Under dynamic operations, the residual may go beyond the threshold for a 

very short period of time due to fluctuation or measurement error even when no fault 

is presented in the system. In this case, a rule is needed to define an actual ‘exceeding 

of the threshold’ condition to avoid false alarm. A CUSUM (cumulative sum) 

(Hinkley 1971; Basseville 1986) test can be applied to monitor the changes of a time 

series. The test aims to detect small changes of the mean of the data sequence. It 

assumes that under fault free condition, the residual sequence is normal distributed 

with a mean value of zero, while the presents of a fault will change its mean 

(Basseville and Nikiforov 1993). By using this method, the random isolated residual 

points that go beyond the threshold but do not change the mean of the time series; 

thus it won’t be identified as a fault and hence the chance of false alarm is reduced.  

The adaptable threshold methods are able to reduce the false alarms caused by a 

sudden change of the working condition in a system, while the CUSUM test can 

significantly reduce the false alarms caused by random measurement errors or 

fluctuations. In general, the adaptable threshold methods require a full understanding 

of a specified system and involve complicated mathematic formulations. The author 
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considers CUSUM test a better approach as it has a standard procedure that can be 

simply adjusted for different systems. In addition, comparing with the dynamic 

threshold method the calculation process of CUSUM test is much simpler. 

2.2.2 Fault diagnosis 

Having detected an abnormal operation condition, the fault itself needs to be 

identified. Compared with fault detection, fault diagnosis is more difficult. In this 

section, the influence of various faults on different parameters will be reviewed. The 

methods to develop fault diagnosis algorithms are also discussed.  

Variations in normal operation conditions due to fluctuations of load or 

ambient temperature may influence system outputs which are similar to those created 

by certain faults (Navarro-Esbrí et al. 2006). In addition, control feedback may try to 

correct the faulty outputs or multi-faults may cancel out the influence of each other; 

all these make diagnosis harder to perform (Wang and Cui 2005).  

Fault diagnosis requires a full understanding of how faults influence individual 

system outputs. Comstock et al. (2002a) carried out a comprehensive review on the 

responses of chiller parameters to some common faults. They analysed the deviations 

of some key parameters under different chiller loads with different fault types and 

severity levels. As expected, all the deviations increased with rising fault severities. It 

also revealed that the system parameters were more sensitive to faults when the chiller 

loads were large. Some parameters were particularly sensitive to certain types of fault 

because those faults could only influence part of the system. They introduced a 

concept of fault sensitivity for certain measurements, using a ratio of the residual at 

the largest fault level to the maximum measurement uncertainty. The larger the ratio, 

the more sensitive the measured parameter towards certain faults would be. For 

example, in their study, considering the condenser flow restriction, the flow 

temperature difference between inlet and outlet was the best indicator for the presence 

of the fault.  

Table 2.2 shows how various faults influence the operating characteristics of 

the evaporator, including evaporating temperature and pressure Te and pe, secondary 

fluid flow temperature difference ΔTe, discharge and suction superheat temperature 

Tsh,dis and Tsh, evaporator approach temperature difference Tea, over all heat 
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conductivity UAe and the log-mean temperature difference LMTDe. In the table, ↑ 

represents an increase of a parameter when a fault is encountered, ↓ for a decrease and 

- means it remains unchanged. It is noticeable that for flow restriction in evaporator, 

contradictory observations were reported, due to the differences in the equipment 

types and working conditions. Relevant parameters for the condenser are shown in 

Table 2.3. 

Table 2.4 shows the trends for the compressor as well as for the whole system. 

Isentropic efficiency ηisen, compressor discharge temperature Tcom and electrical work 

input (W) to the compressor are the common indicators for the compressor. System 

COP, chiller efficiency ηchiller and refrigerant mass flowrate, mr, are often used for 

monitoring the performance for the entire system. The information in these tables was 

collated from a number of published papers (Rossi and Braun 1997; McIntosh et al. 

2000; Castro 2002; Comstock et al. 2002a; Cui and Wang 2005; Reddy 2007a; 

Saththasivam and Ng 2008).  

Table 2.2 Variations of measurements in evaporator 

Faults 

Evaporator 

Te Tsh ΔTe Tea UAe LMTDe pe Tsh,dis 

Refrigerant leak ↓ ↑ ↓ - - - - - 

Refrigerant overcharge ↑ - - - - - ↓ ↑ 

Liquid line restriction ↓ ↑ ↓ - - - - - 

Condenser fouling ↑ ↓ ↑ - - - - - 

Evaporator fouling ↓ ↓ ↓ ↑ ↓ - - - 

Condenser flow restriction - ↓ - - - - ↑ - 

Evaporator flow restriction - - ↑ ↑(↓) ↓ ↑ ↑ ↓(↑) 

Non-condensables - - - - - - - - 

Tea: evaporator approach temperature difference (= Te, in - Te) 

Table 2.3 Variations of measurements in condenser 

Faults 

Condenser 

Tc Tsc ΔTc Tca UAc LMTDc pc 

Refrigerant leak ↓ ↓ ↓ ↓ ↑ - ↓ 

Refrigerant overcharge - ↑ ↑ ↑ ↓ - ↑ 

Liquid line restriction ↓ ↑ ↓ - - - - 

Condenser fouling ↑ ↓ ↓ - ↓ ↑ ↑ 

Evaporator fouling ↓ ↓ ↑ - - - - 

Condenser flow restriction ↑ ↑ ↑ ↑ ↓  ↑ 

Evaporator flow restriction ↓ - - - - - - 

Non-condensables - ↑ ↑ ↑ ↓ ↑ - 

Tca: condenser approach temperature difference (= Tc - Tc,out) 
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Table 2.4 Variations of measurements in compressor and at system level 

Faults 

Compressor System 

ηisen Tcom W COP ηchiller mr 

Refrigerant leak - ↑ ↓ ↓ ↓ ↓ 

Refrigerant overcharge - - ↑ - ↑  

Liquid line restriction - ↑ - - - ↑ 

Condenser fouling - ↑ - ↓ ↑ - 

Evaporator fouling - ↓ - ↓ - - 

Condenser flow restriction - ↑ ↑ ↓ ↑ - 

Evaporator flow restriction - ↑ ↑ ↓ ↑ - 

Non-condensables ↑ - - ↓ - - 

ηchiller: chiller efficiency (= cooling capacity/total electrical work input) 

 

It can be seen from Table 2.2 to Table 2.4 that some faults have a larger 

impact on certain components than the others, e.g. evaporator performance is not too 

sensitive to non-condensable gas which is mainly trapped in the condenser. In 

addition, some faults are known to produce similar fault signatures at component 

levels, e.g. liquid line restriction and refrigerant leakage will have the same influences 

on the evaporator behaviour. To isolate the source of the faults, parameters need to be 

carefully examined and selected so that each individual fault can be represented by a 

unique pattern of variations of the parameters.  

Rule based methods are also commonly used for fault diagnosis. A set of fault 

diagnosis rules is developed according to the changes of selected parameters under 

various faulty conditions. The residuals between measured and predicted parameters 

are used as inputs to the method and conclusion are drawn after searching through the 

whole rule space (Katipamula and Brambley 2005). 

Cui and Wang (2005) developed a rule based diagnosis method using 

performance indexes. They claimed, when compared to direct sensor measurements, 

performance indexes were able to provide a more complete description of the system 

health. Six performance indexes were used, including LMTD of the condenser and 

evaporator, mass flowrate of refrigerant, compressor isentropic efficiency, motor 

efficiency and coefficient of performance. A fault diagnosis classifier based on the 

impact of certain faults on individual indexes was applied to distinguish certain 

pre-defined faults. However, their approach had only achieved a successful diagnosis 

rate of 16% for the reduced evaporator flow. The corresponding rates for refrigerant 
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leakage, condenser fouling, non-condensable and excess oil were 25%, 27%, 54% and 

95% respectively.  

A rule based system was also employed by Castro for a two-stage chiller 

(Castro 2002). The faults considered included condenser/evaporator fouling, liquid 

line restriction, refrigerant under- and over-charge. To develop an appropriate fault 

classification rules, for individual specified faults, residuals of 12 parameters were 

calculated. For each fault, two parameters with the largest normalized residuals were 

picked out for fault diagnosis. If the use of two parameters were not able to identify a 

fault, the parameter with the next largest residual should also be included, until a fault 

could be diagnosed. This method could diagnose most of the faults with good 

accuracy, except for liquid line restriction which had around 75% mis-diagnosis at a 

30% restriction level. They suggested one possible reason for the low diagnosis 

accuracy could be due vapour flashing in the pipe creating similar symptoms as liquid 

line restriction. Their rules of selecting parameters could be modified and applied to 

the development of other fault diagnosis methods. 

Reddy (2007a) applied Characteristic Features (CFs) for fault diagnosis. 

Examples of the CF employed included the UA value of the condenser and the 

condenser water temperature difference. He observed that some CFs had a linear 

relationship with chiller load. Under faulty conditions (e.g. reduced condenser water 

flow and refrigerant leakage), the y-intercept and/or the gradient would change.  

When the fault detection rules are simple, they can be implemented manually; 

otherwise, certain pattern recognition programme would be needed. ANN fault 

classifier, whose output is the identified fault type, is a widely applied pattern 

recognition method. There are two common kinds of ANN fault classifier: (i) the 

residuals of the selected fault diagnosis parameters are transferred to simple pattern of 

-1, 0 and 1, representing the direction of variation of the parameters. The simplified 

patterns are used as input to the ANN classifier (e.g. Cho et al. (2005)), and (ii) the 

residuals are taken directly as inputs to train an ANN to generate the type of the fault 

as its output. 

In general, rule based diagnosis methods exhibit low accuracies in detection of 

faults with low severity levels. To improve accuracy, Stylianou (1997) developed a 
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fault classifier based on a statistical pattern recognition algorithm (SPRA). Residuals 

of discharge temperature, sub-cooled temperature, evaporator temperature, suction 

line temperature, condenser and evaporator flow outlet temperatures, discharge and 

suction pressures were calculated. The statistical properties of the residuals, including 

the mean, minimum value, maximum value, standard derivation, skewness and 

kurtosis (Groeneveld and Meeden 1984), were the inputs to the fault classification 

algorithm. The algorithm calculated the chance of a certain residual belonging to each 

type of faults, and the residual with largest possibility helps to pinpoint the fault.  

Most of the fault diagnosis methods are aiming at single fault. However, the 

co-occurrence of two or more faults is possible in many real systems. Cho et al. (2005) 

summarized that the interference between two faults could be grouped into three 

categories: 1) the magnitude of residuals of the single faults were similar with the 

double fault’s combined residuals, 2) the combined residuals were the sum of both of 

the single fault and 3) the two individual faults influence different system parameters. 

When the ANN classifier taking simplified residual patterns develop for single fault 

was applied when multiple fault exist, it might not be able to tell the difference 

whether a single or a multiple fault existed as they may had the same input to the 

system. To solve this problem, they proposed a residual ratio method. This method 

compared the residual of two selected parameters and used the range of the ratios to 

differentiate between a single fault and a double fault when they had the same fault 

pattern.  

In addition to the above reviewed quantitative model-based FDDs, qualitative 

model can also be used for FDD. Instead of using numerical inputs and outputs, 

qualitative parameters are used instead (e.g. temperature can be described as ‘hot’ or 

‘cold’). Expert systems (Kaldorf and Gruber 2002; Soyguder and Alli 2009) and 

decision trees (Katipamula et al. 2003) both fall into this category. The qualitative 

model based FDDs are usually very specific to a particular system and they are highly 

dependent on the knowledge of the developer. They are not widely applied in 

commercial systems (Katipamula and Brambley 2005); therefore in this study, 

qualitative model based FDD is not considered. 
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2.3 Evaluation of FDD performance  

A good FDD technique should be able to provide fast and reliable results with 

minimum costs. In general, the following aspects are needed to be considered when 

evaluating a FDD.  

1. High detection accuracy 

An accurate method has a better chance to detect and diagnose a fault 

successfully. It can find out a fault and its location when the fault occurs.  

2. High detection speed 

A fast detection method will detect a fault at a very early stage, before it 

causes more energy wastage and damages to the system. 

3. Low false alarm rate 

False alarm rate needs to be balance with detection speed. A smaller threshold 

can increase sensitivity while also increase the false alarm rate. 

4. Cost effective 

Unlike other critical systems, the budgets for FDDs of RAC systems are 

usually very limited. The initial installation costs as well as the running and 

maintenance cost should be kept low.  

5. Easy to use  

The method should be easy to implement, provide straight forward result and 

solutions for the targeted faults. 

Reddy (2007b) proposed a FDD evaluation method. Two indexes were used to 

rank the fault detection capability and the combined capability of fault detection and 

diagnosis separately. The fault detection index was calculated based on the false 

negative rate, the opportunity of occurrence and the energy penalty for each type of 

the fault. On the other hand, regarding the second index, referred as the diagnosis 

evaluation index, they considered the rates of four diagnosis results, namely correct 

and unique, correct but non-unique, incorrect and unable to diagnosis, combining 
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them each with a weight factor which is related to the time and cost taken to diagnose, 

evaluate and repair the fault. The two indexes were numbers between 0 and 1, while a 

larger number indicates the FDD being evaluated generates a better result. This 

method could be applied to compare the performance of different FDDs. The false 

alarm rate was not involved in the index calculation, as they were fixed to the same 

number by adjusting the thresholds. 

2.4 Summary of observations 

Based on the literature review, some observations on the development of FDD 

techniques for RAC systems can be made:  

 Large numbers of faults have been reported but only a few selected ones have 

been researched extensively for FDD development and most studies have been 

focussing on faults that would lead to performance degradations, examples 

include: refrigerant leakage or over-charge, cooling water or HTF flow restriction 

and heat exchanger fouling.  

 For model based approaches, there are two main types of FDD models, namely 

analytical (white box) model and data-driven (black box) model, each with their 

relative advantages and weaknesses. A popular approach is in fact to combine the 

two, forming a hybrid (grey box) model which aims at eliminating some of the 

limitations of the previous two model types. There are two ways to form a hybrid 

model: serial approach and parallel approach. They can be combined in some 

cases. 

 Within each model types, different techniques of FDD can be employed 

depending on a large number of factors, such as the accuracy or the data required. 

 Many analytical models have been developed, for mainly analysing system 

behaviour under varying operation conditions, and they are able to predict both 

steady and transient behaviour. However they are not specifically developed for 

FDD purposes and they may not be applicable or adaptable for FDD purposes. 

 Most models require experimental data for calibration (white box models), 

training (black and grey box models) and/or validation (all models).  

 Large numbers of measured parameters are usually involved in FDD 

development and application; some can be used directly in diagnosis rules (e.g. 
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condenser/evaporator HTF inlet/outlet temperatures, condensing and evaporating 

temperatures/pressures, HTF flowrates in condenser/evaporator, compressor 

power consumption) but others are used indirectly for deriving performance 

index or CF, such as COP, UA and LMTD for fault classification.  

 When a RAC system incorporates a control system, it is usually more difficult for 

the FDD to diagnose the faults as the controls may try to correct or compensate 

the faults by adjusting certain parameters.  

 Most existing FDD techniques can only detect faults under steady state conditions 

and therefore a steady state detector (an algorithm) is needed. Some methods 

have been observed to be able to detect and diagnose faults under transient 

conditions. 

 The selection of inputs and outputs to the model is depending on the FDD method. 

An input can even become an output for the same model when using different 

FDD methods. 

 Some faults exert more influence on certain parameters than others; the 

sensitivities of individual parameters vary with the types of fault as well as the 

system types. 

 If more than one fault occurs in a system, they may interact with each other 

resulting in more difficult diagnosis. The detection of double fault is similar to 

that of a single fault, but the diagnosis method usually differs. Residual ratio 

method is one of the approaches that can diagnose double fault. No work related 

to triple or more co-occurrence fault had been observed.  

2.5 Research objectives and originality 

From the above, it can be seen that existing FDDs may not be suitable for 

binary ice systems and it appears that a new FDD approach needs to be developed, 

especially looking at some faults that are unique to binary ice systems. Therefore, the 

objectives of this research are as follow:  

1. To fully understand the operation (both steady and dynamic) and control 

characteristics of a binary ice system as well as the scraped surface ice generator, 

under both faulty and fault-free conditions. 
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2. To build a dynamic hybrid model to predict the behaviour of binary ice system by 

coupling an analytical model of the ice generator and a system level ANN model. 

3. To develop a FDD approach that can be employed to detect several pre-defined 

faults in a binary ice system. The approach should be capable of detecting the 

faults without a steady state detector, i.e. under transient conditions, and of 

identifying some pre-defined double faults. 

 

Attention is paid to establish how the types/numbers of the faults and the 

systems types influence the choice and the number of the parameters to be measured 

or derived. Parameters that have been identified include condenser cooling water inlet 

and outlet temperatures and flowrate, pressures and temperatures of the primary 

refrigerant at inlet and outlet of individual main components, temperatures of binary 

ice at the inlet and outlet of the SSIG (for deducing the solution and ice 

concentrations), power consumption of the compressor and binary ice flow velocity. 

The final selections of parameters applied in the FDD technique will be decided based 

on the analysis of the experimental data.  

2.5.1 Selection of faults 

The main research aim is to develop a simple, effective and accurate FDD 

method to detect and diagnose several pre-defined faults in an on-off controlled 

binary ice system. The faults cover both conventional chiller faults and specific faults 

for binary ice systems. It is worth noting that although refrigerant over-/under- charge 

is recognised as one of the most common faults in refrigeration systems, it has already 

been extensively studied by various researchers (Grace et al. 2005; 

Assawamartbunlue and Brandemuehl 2006; Navarro-Esbrí et al. 2006). Therefore it is 

not included in this project. As far as the author is aware, no FDD specifically 

developed for binary ice systems has been constructed. Detailed experimental data is 

collected from a dedicated test facility and this will enable a full understanding of the 

operating characteristics of a binary system be obtained, under both fault-free and 

faulty conditions.  

This project will be based on a laboratory binary ice system (further details 

given in Chapter 3) using an ethanol-water solution as the heat transfer fluid. The 

primary circuit consists of a vapour compression refrigeration system with a 3kW 
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(power rating) semi-hermetic reciprocating compressor, a water-cooled shell-and-tube 

condenser, an evaporator (providing around 2.5kW of cooling capacity at Te of around 

-30 °C) and a thermostatic expansion valve (TXV). The secondary circuit consists of 

a scraped surface ice generator, a circulating pump and a storage tank equipped with 

immersion heaters, in steps of 2, 3 and 4kW, etc. to simulate the load. The capacity 

regulation is effected by using an on-off thermostat control for the compressor with a 

temperature sensor monitoring the outlet temperature of the binary ice from the ice 

generator. 

The faults chosen in this study include both some common chiller faults as 

well as faults that are unique to binary ice systems, as listed below. 

 Condensing water flow reduction 

 Binary ice flow reduction 

 Incorrect solution concentration (increase and decrease) 

 Ice generator broken blade 

 Ice generator blade motor failure 

 

2.5.2 Methodologies 

A pre-used binary ice test rig was re-commissioned to incorporate all the 

necessary instrumentation and to provide all the necessary data. A measurement 

matrix was implemented in order to acquire a full set of operation data at various 

loads and temperature set-points for the binary ice flow temperature and condenser 

inlet water temperatures. The pre-selected faults were introduced artificially to the 

system. The sensitivities of various parameters with respect to any adjustments or 

changes were thoroughly assessed.  

For model based FDD techniques, the measured data from the test rig were 

compared with fault free model predictions. Then the residuals between the two were 

used as input to the detection and diagnosis rules to check whether a fault exists and 

identify the fault. As a result, there were two main tasks in FDD construction: 1) to 

develop a model providing fault free data and 2) to identify the rules for diagnosis.  

To help analyse the behaviour of the ice generator, a mathematical model 

based on heat and mass balances was constructed. It was used to establish the 
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relationships between ice production rate, the flow temperature, the initial solution 

concentration and temperature, evaporating temperature, etc. Some of the data 

obtained from the experiment was used to validate the model.  

Different to the above analytical model for the ice generator, the model used 

for the primary circuit of the system was an ANN model. Its structure (the number of 

the hidden layers and the type of the activation function for ANN) were determined 

first. Next, the input/output parameters were selected based on the nature of the 

system and chosen faults. The input parameters were controllable by the user, such as 

the flowrates and inlet temperatures of the condenser water and binary ice, and initial 

solution concentration of binary ice, while the outputs were chosen from the 

parameters that were determined by the inputs, i.e. binary ice outlet temperature and 

ice concentration, evaporating and condensing temperature, power consumptions of 

compressor and system COP. Fault free data obtained from the test rig were divided 

into two groups: part of the data was applied for model training, with the help of 

Matlab to calculate the modelling coefficients, and others was used for model 

validation. 

The analytical model and the ANN model were then coupled together to form 

a hybrid model to provide fault free benchmark for the FDD application, It was 

necessary to use the hybrid model instead of a pure analytical or a pure ANN model 

because the development of an accurate analytical model for the entire binary ice 

system would be very difficult and a pure ANN model was not able to predict some 

parameters such as the ice concentration and cooling load. The model coupling was 

carried out by sending some of the ANN outputs, such as Te, to the analytical model 

as inputs. The two models also share some measured parameters as inputs, making the 

overall model both serial and parallel in nature - a unique feature of the proposed 

model. 

The main task for developing fault diagnosis method was to establish the 

suitable thresholds of the residuals for the selected output parameters that can indicate 

the existence of a fault. The thresholds should be neither too small (to reduce false 

alarm) nor too large (to detect a fault at an early stage).  
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Fault diagnosis was carried out by analysing the combinations of the 

parameter variations (increase or decrease) during faulty conditions. Diagnosis rules 

were formed by a set of unique patterns of parameter variations that could represent 

each of the pre-selected fault. Ideally the rules should include as few parameters as 

possible. To set up the rules, different faults were introduced to the test rig and the 

faulty data were compared with fault free data. A full list of the residuals of all the 

output parameters was built up. By carefully selecting the parameters, a unique 

pattern for each fault was found.  

The performances of the FDD approach was evaluated at different fault 

severity levels. The relationships between threshold and detection and diagnosis 

accuracy were examined.  
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3. Experimental setup 

3.1 Introduction 

A scraped surface binary ice system, originally built by the company called 

SRC as a pilot test rig to investigate the feasibility of binary ice application in 

supermarket refrigeration, was given to the RAC Research Group for this research 

project. It was re-commissioned and reconfigured to provide the necessary test data 

for the development of the FDD model.  

In addition to allowing the author to appreciate and understand more 

thoroughly the operating behaviour of a scraped surface binary ice system, the test rig 

was to serve two main purposes: (1) to obtain fault-free data for training, calibrating 

and validating both the analytical SSIG model and the grey-box system model and (2) 

to obtain data for various experimentally simulated pre-specified faults for the 

development of FDD algorithm as presented in Chapter 6. 

The test rig, as shown in Figure 3.1, consisted of two circuits, the primary 

refrigerant circuit and the secondary binary ice circuit, which were coupled to each 

other by the binary ice generator. A detailed description of the two circuits and the 

associated components of the test rig are given in the next section.  
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(a)                     (b)        

 

(c) 

Figure 3.1 Test rig, (a) and (b): primary and secondary circuit, (c): chiller unit for the condenser cooling 

water. 

3.2 Experimental Setup 

3.2.1 Primary circuit 

The primary circuit is shown schematically in Figure 3.2. The specifications 

for some of the main components and descriptions of various safety and operational 

controls are given below.  
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Figure 3.2 Schematic diagram of the primary circuit 

 

Compressor (1) 

The compressor (Bitzer 2DL-2.2) was a 3-phase, fan-cooled, semi-hermetic 

reciprocating compressor (displacement rate: 13.3m
3
/h, nominal speed of 1450 rpm at 

50Hz) with an estimated cooling duty of 3 kW at evaporating temperature of -20 °C, 

condensing temperature of 30 °C and a discharge temperature of around 45 °C when 

run with R507. The cooling fan was mounted above the cylinder head.  

The compressor was protected by a built-in current overload protector, as well 

as a HP/LP pressure switch (11, Danfoss KP 17) which was connected to the 

discharge and the suction lines of the compressor; when a certain pre-set current or 

pressure values were exceeded, the compressor motor would shut down. The 
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compressor was also equipped with a crankcase heater. The crankcase heater was 

automatically switched on when the system was stopped to prevent the refrigerant 

from dissolving into the oil (or foaming). 

Ice generator/evaporator (2) 

A FLO-ICE Generator DWT 3/4TR from Integral Technology was installed 

for ice production. Details of the dimensions were given in Chapter 4. Ice particles 

were scraped off by a two-blade scraper rotating at a speed of 168 rpm. The scrapers 

were driven by a 3 phase motor (SEW EURODRIVE WAF20) mounted at the top of 

the ice generator driving the scraper via a reduction gearbox. Based on an initial 

solution concentration of 15%, a binary ice outlet temperature of -7 °C with a 

temperature drop of 2 °C across the ice generator (assuming ice particles present at 

both inlet and outlet of the ice generator) and a binary ice flowrate of 0.1 kg/s, the 

rated capacity is about 2.5 kW. 

Condenser (3) 

The condenser was a Bizter (K122H) shell-and-tube water-cooled condenser 

with a nominal duty of 5.8 kW (based on 0.14 l/s water, 3-pass, with 10K temperature 

increase). The refrigerant vapour entered the shell side of the condenser which 

received cooling water from a process water chiller (FLOWCOOL SCW 10/S, Figure 

3.1c), which in turn rejected its heat via a rooftop cooling tower. A temperature 

controller (CAREL μC
2
) was employed to provide control of the flow temperature set 

point and the on/off differential for the process chiller (Appendix C).  

Expansion valve (4) 

A Danfoss TES 2 expansion valve with a rated capacity of 4.9 kW at an 

evaporating temperature of -20 °C was used; the valve was also equipped with an 

external equalizer. The expansion valve modulated the refrigerant flow rate, hence the 

capacity, by approximately maintaining a specified degree of superheat at the 

evaporator outlet. The sensing bulb was attached to the refrigerant outlet of the ice 

generator and the superheat was normally set to around 3 °C.  
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Pipe line and liquid/vapour heat exchanger 

1/4’’ (for liquid line), 5/8’’ and 7/8’’ (for vapour line) copper tubes were used 

in the primary circuit. The suction line and the liquid line were installed side by side 

and a thermal conductive paste was applied to enhance thermal contact between them, 

thus to facilitating the heat transfer from the relatively warm liquid exiting the 

condenser to the relatively cold vapour exiting the evaporator. Wherever appropriate, 

insulations were applied to minimise heat gains/ losses from/to the ambient. 

Refrigerant 

The system was originally designed for using R22. Due to supply issues of 

HCFC, it was decided to replace R22 with R507 which was a popular retrofit 

refrigerant for R22. R507 (also known as R507A) was an azeotropic mixture of 

HFC-125 and HFC-143a (50% wt./50% wt.) which was suitable for medium to low 

temperature applications. A Bizter software was used to verify there were only little 

changes in capacity and refrigerant mass flow rate when switching from R22 to R507 

for the compressor. Accordingly, the old oil was flushed out and replaced, so was the 

filter drier too. The thermodynamic properties of R507 can be dound in Appendix D 

Other auxiliary components of primary circuit are listed in Table 3.1. 

Table 3.1 Auxiliary components for the primary circuit 

Component Type Description 

Oil Emkarate RL 32H ~ 2.3 L 

Non-return valve 

(5)  

Danfoss NRV Preventing back flow 

Filter dryer (6) Danfoss DML 052 Removing dirt and moisture from 

refrigerant 

Sight 

glass/Moisture 

indicator (7) 

Danfoss SGI 6 Indicating moisture level in system 

Giving a visual indication of the flow 

circulation. Assisting detection of flash 

gas and refrigerant charging 

Solenoid valve (8) Danfoss BML Stopping refrigerant flow according to 

control signal 

Suction line 

accumulator (10) 

AC&R Components 

S-7061 

Preventing liquid refrigerant going into 

the compressor 
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Control of the primary circuit 

The primary circuit was controlled by a control box designed with over load 

protections for both the compressor and the ice generator motor. When the system 

was switched on, the scraper of the ice generator would start first, in order to avoid 

blade damage. The compressor, along with its cooling fan, would start about a minute 

after the scraper.  

The binary ice temperature at the outlet of the SSIG was monitored and 

controlled by a PTCS 1.5M -50/140 Silicon thermocouple and a thermostat (Elliwell, 

Appendix E), in association with a liquid line solenoid valve (8), which was used to 

implement an on/off control of the compressor for regulating the system capacity. 

When the temperature dropped below a pre-set value (with a band width of 2K), the 

thermostat would trigger a cut out of the refrigerant flow by closing the solenoid valve. 

As a result, the evaporating pressure would drop and the compressor would be cut off 

by the LP switch. As the temperature of binary ice rose above the upper band limit, 

the thermostat would signal the opening of the solenoid valve so that the refrigerant 

was allowed to enter the evaporator causing its pressure to rise, signalling the 

compressor to start again when the evaporating pressure reached approximately 3 bar. 

One shortcoming of this type of capacity control was that the number of starts/stop 

per hour for the compressor was limited; this could also result in a large flow 

temperature variation of the secondary flow, especially when the cooling capacity was 

small. Thus a too small band width setting was not recommended. 

3.2.2 Secondary circuit 

The secondary circuit, Figure 3.3, was for thermally simulating the 

consumption of binary ice by providing an artificial heat load using various 

immersion heaters (15) installed in a solution tank (14). It had a centrifugal pump to 

circulate the binary ice through the tank and a hand valve (16) to adjust the flowrate 

of binary ice.  

Pump (13) 

A Wilo TOP-S 30/7 centrifugal pump, capable of operating at temperatures as 

low as -20 °C, was used. A bypass connection with a ball valve (17) was incorporated 
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to ensure steady operation of the pump under small flowrates. A drain tap was 

installed at the pump discharge line for maintenance purpose. 

Solution tank (14) and heaters (15) 

A 68 litre fibreglass insulated tank from Drayton Tank was equipped with five 

immersion heaters (15) (two 1 kW, two 2 kW and one 3 kW) to provide the thermal 

loads to the refrigeration circuit. The heaters could be turned on and off separately to 

provide step variations of the load. One of the 2kW heaters was controlled separately 

by a PID temperature controller to provide fine tuning of the temperature. A shutdown 

valve (18) was installed to isolate the tank from the pump if necessary. The tank was 

also equipped with a mechanical stirrer driven by a low speed electrical drill to 

promote even temperature distribution within the bulk of the solution. 

Hand valve 
(16)

Solution tank (14)

Pump (13)

Heaters (15)

Ice generator (2)

V1

TB2

TB1

Thermocouple
Drain tap

（17）

（18）

TB3TB4
Air vent

To primary 
circuit

From primary 
circuit

Stirrer 

 

Figure 3.3 Schematic diagram of the secondary circuit  

 

Secondary solution 

The fluid used to generate binary ice was aqueous ethanol solution. The initial 

design ethanol concentration was 15% by weight.  
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Pipeline 

20mm PVC pipes were installed throughout the secondary circuit, all of which 

were insulated.  

3.3 Instrumentation 

3.3.1 Sensors 

The test rig was equipped with various sensors to monitor the system 

behaviours and a data logging system to record the data. The measured parameters 

included temperature, flowrate, pressure and power consumption. 

 Thermocouple  

Temperatures of refrigerant, secondary fluid and the cooling water at different 

locations of the circuits were all measured by type T thermocouples 

(copper-constantan, welded tip, glass fibre insulated). The sensitivity and 

uncertainty/accuracy of type T thermocouples are approximately 43µV/˚C and ± 0.5 

˚C respectively. For the refrigerant temperature measurements, the thermocouple were 

attached on the outer surface of the copper refrigerant tube and insulated from the 

surrounding environment. Thermocouples used to measure the secondary fluid and 

cooling water temperatures were dipped into the liquid directly (with the exceptions 

of the thermocouples at the entrance and exit of the ice generator TB1 and TB2, 

which were attached on the outer surface of the tube). All the thermocouples were 

calibrated and when tested for the same temperatures none of them deviated more 

than 0.5 °C from the others. Any two thermocouples that exhibit the closest readings 

with each other were paired together to measure temperatures at the inlet and outlet of 

the same component.  

 Pressure transducers 

Two Cole-Parmer Ashcroft G2 Pressure Transducers with a range of 0-500 

psig (0 to 34.5 bar) and a corresponding analogue output of 4 to 20 mA were installed. 

The high-pressure side transducer P1 was installed at the refrigerant inlet of the 

condenser while the low-pressure side transducer P2 was installed at the evaporator 

outlet, monitoring respectively the evaporating and condensing pressures. The 

pressure transducers provided an accuracy of ±1% full scale which was considered 

adequate for this type of work. 
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 Power meter 

The compressor power consumption measurement was carried out with a 

Multitek M100-WA2 power transducer which took the line current of one phase and 

the line voltage for all three phases. It was configured to measure three-phase 

three-wire balanced load power up to 5 kW and the maximum working current it can 

take was 7 A. The output is 0 - 20 mA current, corresponding to 0 - 5 kW. The wiring 

diagram is presented in Appendix F. 

 Flowmeter  

Two flowmeters were used in the tests. An Omega FPR302 Low-Flow Meter 

with a measuring range between 0.38 - 37.9 litre/min was employed to determine the 

flowrate of the binary ice in the secondary circuit (V1 in Figure 3.3). This turbine type 

flowmeter measured the volume of the flow passing through it by a turbine wheel 

which turned with a fix number of rotations for a given volume of fluid flow. The 

meter generated a current pulse for each rotation. A ratemeter (Omega DPF75-A) was 

used to read the pulse rate (number of pulses/min) and convert it into flowrate using a 

K-factor (expressed as the number of pulses per litre) given by the manufacturer. This 

flowmeter’s accuracy was ± 1% of full scale. A detailed operation procedure of the 

flowmeter and the ratemeter can be found in Appendix G. 

Essentially, the flowrate (litre/min) could be calculated as below, 

Flowrate =
𝑃𝑢𝑙𝑠𝑒 𝑟𝑎𝑡𝑒

𝐾
 3.1 

where K was a unique factor for each flowmeter. For the one employed in the tests, K 

was 164.8 pulse/litre as stated by the manufacturer.   

A calibration of the Omega FPR302 flowmeter was carried out to verify the 

accuracy of the K value for the range of flow rates likely to be encountered in the tests. 

This was done by first comparing the actual flow rates, determined by measuring 

known volumes water through the flowmeter over specified periods of time, with the 

nominal flowrates based on the pulse rates and the manufacturer’s stated K-factor. It 

can be seen in Figure 3.4 that although all the measurements fell within the ± 1% FS 

range, some of the data at low flow rates were outside the ± 20% error band, resulting 

in larger relative errors at low flowrates if the same K-factor was applied for the entire 

range.  
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Figure 3.4 Omega FPR302 flowmeter calibration 

Therefore, to increase the measurement accuracy, the K-factor was calibrated 

for different ranges as shown below.  

𝐾actual =
𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒nonimal×𝐾nominal

𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒actual
 3.2 

Variation of actual K-factors with the flow rates are shown in Figure 3.5. 

When the flow rate was less than 4 litre/min, there were significant deviations 

between the actual K-factor and the manufacturer’s value. A correction was 

implemented through the data logging software using the following equation obtained 

by data fitting. 

𝐾calibrated =
164.8𝑢

0.1836+𝑢
 3.3 

where u is the nominal volume flowrate (litre/min) from the meter. The Kcalibrated was 

then used in Equation 3.1 to determine the actual flowrate. 
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Figure 3.5 Variations of actual K-factor with flow rate  

 

Table 3.2 presents the results of the flowmeter calibration. Each data point 

represents an average value of several repeated measurements. It can be seen that the 

calibrated readings provided significantly improved accuracies at the low flow rate 

within the 3L/min range.  

Table 3.2 Flowmeter calibration results 

Actual 

flowrate 

(L/min) 

Flowmetre reading 

without calibration, 

i.e. using the 

manufacturer’s K 

value (L/min) 

Discrepancy 

(%) 

Flowmetre reading 

with calibration, i.e. 

based on calibrated 

K values (L/min) 

Discrepancy 

(%) 

1.11 0.95 14.64  1.13  1.93  

1.16 1.02 11.87  1.20  4.00  

1.17 1.03 11.52  1.22  4.22  

1.84 1.72 6.05  1.91  3.95  

1.91 1.76 7.24  1.96  2.35  

2.76 2.63 4.68  2.81  1.98  

3.09 2.94 4.85  3.12  1.09  

 

The cooling water flowrate was measured by an Omega FV102 Vortex 

Shedding Flowmeter (V2). It could handle flowrate between 4.5 and 45.4 litre/min 

with an accuracy of ± 5% full scale and provided a 4 mA (corresponding to zero 

litre/min) to 20 mA (at 45.4 litre/min) output signal to the data acquisition system. 

This flowmeter was checked against the previously calibrated flowmeter Omega 

Manufacturer’s K factor 
164.8 



78 

 

 

FPR302. A good accuracy of about ± 6% was noted within the designed cooling water 

flowrate range, which was considered adequate for this study. 

 Solution concentration 

The concentration of the ethanol solution may change overtime due to 

evaporation, condensation, etc. and therefore it was required to check regularly to 

ensure it is within the specified concentration tolerance of ± 0.5% of the initial 

concentration. This was done by using a set of hydrometers which can measure 

specific gravity between 0.65 and 1.10, and with a resolution of 0.0005. Figure 3.6 

shows the density (or specific gravity) of the solution and its temperature for a range 

of concentrations (Melinder 1997); tables and equations are also available to provide 

the solution density as a function of temperature and concentration.  

Specific gravity was measured on a regular basis according to the following 

procedures. A 3kW heater and the solution pump were turn on (to ensure through 

mixing), but the refrigeration unit remained switched off. The heater was then turned 

off when the solution temperature reached around 22 °C. The solution was allowed to 

cool down gradually, with the pump still running, and a measurement of the specific 

gravity of the solution in the storage tank was taken manually when the temperature 

dropped to 20 °C, and the measurement was checked against the published data. The 

solution level in the tank was also noted each time. If necessary, water or ethanol 

would be added.  

 

Figure 3.6 Relationships between the ethanol density and its concentration and temperature (Melinder 1997) 
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In summary, Table 3.3 presents all the sensor types, their locations in the test 

rig as well as their measurement uncertainties. 

Table 3.3 Sensor measurement points and measurement uncertainties 

Temperature Uncertainty Pressure  Uncertainty 

TR1: Ice generator 

refrigerant inlet 

± 0.5 ˚C P1: Compressor 

discharge pressure  

±1% full 

scale 

TR2: Ice generator 

refrigerant outlet 

± 0.5 ˚C P2: Ice generator 

refrigerant outlet  

±1% full 

scale 

TR3: Accumulator inlet ± 0.5 ˚C   

TR4: Compressor inlet ± 0.5 ˚C Flowrate   

TR5: Compressor discharge ± 0.5 ˚C V1: Binary ice ± 5% 

TR6: Condenser refrigerant 

outlet 

± 0.5 ˚C V2: Condenser cooling 

water 

± 6% 

TR7: Condenser outlet 

before suction  line heat 

exchanger 

± 0.5 ˚C   

TR8: TEV inlet ± 0.5 ˚C Power meter   

TW1: Condenser water 

inlet 

± 0.5 ˚C W: Compressor  ± 10% 

TW2: Condenser water 

outlet 

± 0.5 ˚C   

TB1: Ice generator binary 

ice inlet 

± 0.5 ˚C   

TB2: Ice generator binary 

ice outlet 

± 0.5 ˚C   

TB3: Tank inlet ± 0.5 ˚C   

TB4: Tank outlet ± 0.5 ˚C   

 

3.3.2 Data acquisition  

The outputs of all the sensors were fed into a PC via a data logger (Datascan 

Module 7320 and 7020) and a PS232 link (Figure 3.7). Module 7320 was a 

measurement processor and 7020 was its expansion module. Each module had 16 

input channels and 3 poles for each channel. The data logger accepted DC voltage, 

thermocouples or current as inputs. Each individual channel, with a maximum 

allowable sampling rate of 1Hz, was connected with a sensor and was configured 

according to the type of the signal from the sensor using a data acquisition software 

package Dalite, storing the data in the txt format on the computer.   
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Figure 3.7 The data logging system 

 

Two types of output signal were involved in the test, namely thermocouple 

and 4-20mA current. The connection methods for both types are shown below.   

 Thermocouple  

The data logger was capable of taking the voltages generated by the 

thermocouples and converted them into temperatures according to the type of the 

thermocouple. Thermocouples were connected to the data logger using 2 core 

compensating cables, as shown in Figure 3.8.  

H

L

G
 

Figure 3.8 Thermocouple wiring diagram using 2 core compensating cable 

 4-20 mA current output 

Sensor with 4-20mA current output could provide a fixed current representing 

its reading at a specific moment when a closed circuit was formed by connecting a 

resistor across its output terminals. A voltage was generated across the resister, which 

was picked up by the data logger and converted into current according to the resistor 

value. The pressure transducers, flowmeters and the power meter all belonged to this 
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type. 62 Ω resisters were used in all the connections as specified by the data logger. 

Figure 3.9 shows the wiring diagram.  

PSU

4 to 20 mA

+

-

62 ohm

H

L

G
 

Figure 3.9 sensors with 4-20mA outputs wiring diagram 

3.4 Experimental procedures and results 

In this section, the operation procedure of the test rig was described. Some test 

results were also presented here, in order to confirm that the system was functioning 

as expected and to illustrate the operation characteristic of the binary ice system. Both 

standard pressure and vacuum testing had been carried out before the refrigerant was 

charged into the primary circuit to ensure that no leakage existed. The system was 

first charged with nitrogen to a pressure of 30 bars and kept for 48 hours. The 

pressure held well, the variations were purely due to the daily changes in the ambient 

temperature. Then the primary circuit was evacuated down to 250 micron to remove 

the moistures and kept for overnight. After the test rig had passed both tests, about 2.7 

kg of R507 was charged into the system through the suction line service valve until 

there was no visible bubble in the liquid line sight glass when the system was running.  

Figure 3.10 to Figure 3.13 illustrate a set of data recorded during a 3-hour test 

during which the binary ice flow rate was adjusted. A 10-second sampling interval 

and a 15% wt ethanol solution were used in this test. The components were started 

from off cycle according to the following sequence: 

1) Time step 10 (i.e. 100 seconds from start), binary ice tank stirrer starts 

2) Time step 17, the secondary circuit pump starts 

3) Time step 28, process chiller and cooling water pump start 

4) Time step 40, ice generator scraper motor starts 

5) Time step 46, compressor and fan switched on 

Power 
Supply 

Unit 
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6) Followed by the heater (2kW) being switched on when the solution’s 

temperature got closer to the freezing point. 

 

Figure 3.10 Binary ice and cooling water flow variations 

 Figure 3.10 shows both the flowrate of the binary ice (V1) and of the   

cooling water (V2). Initially, binary ice flowrate was set at 11.6 litre/min, then it was 

manually adjusted to 9.0, 7.5, 6.3 and 5.2 litre/min at time step 393, 574, 764 and 962 

respectively. Each time when the flow rate was adjusted, it took about 10 minutes (~ 1 

cycle) to acquire a stable cycle pattern. The system was allowed to run for two further 

cycles (~20 minutes) before the flowrate was changed again. In total, data for 15 

cycles were captured. The cooling water flowrate was kept constant at 10.8 litre/min 

during the whole 3-hour test, though some occasional minor fluctuations were noted. 
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Figure 3.11 Condensing and evaporating pressures 

Figure 3.11 shows the variations of the condensing (P1) and evaporating (P2) 

pressures when the binary ice flow rate was reduced. The initial decrease of the 

condensing pressure at around 28
th

 time step was caused by the starting of the process 

chiller. When the compressor started at around 46
th

 time step, both pressures 

increased rapidly. At the 210
th

 time step, the compressor was turned off as the binary 

ice temperature reached its set point; then both pressures dropped. The cyclic 

variations of the pressures followed the compressor on/off cycle. The decreased 

binary ice flowrate resulted in a slightly lower evaporating pressure during the on 

cycle while the pressure remained the same during the off cycle. The average 

condensing pressure during on-cycle did not vary much; this was attributed to the fact 

that the heaters input was kept constant during the tests, so were the temperature and 

the flow rate of the cooling water. The noted changes in the profile shape with both 

the on and off period were believed to be caused by the cyclic variation in the cooling 

water temperature (also see Figure 3.12). 
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The tank inlet (TB3) and outlet (TB4) temperatures of the binary ice, and the 

condenser cooling water inlet (TW1) and outlet (TW2) temperatures are shown in 

Figure 3.12 which also plots the corresponding differences between the in- and outlet 

temperatures, i.e. (TB4-TB3) and (TW2-TW1) respectively. Initially, both the binary 

ice temperatures and their difference decreased steadily until the outlet temperature 

(TB4) reached its set point and the compressor was cut off at around 210
th

 time step. 

After that, cooling water temperature differences (TW2-TW1) decreased almost 

linearly with time within individual compressor on-cycles, and naturally had very 

small values when the compressor was off.  

A decrease in binary ice flowrate appeared to increase the binary ice 

temperature difference (TB4-TB3) slightly and resulted in small temperature 

differences even during compressor off cycle which were not present previously. The 

change of binary ice flowrate had negligible influences on the (TW2-TW1) values 

throughout the 15 cycles. It was worth noting that the last three cycles of TW1 and 

TW2 showed different profiles compared with others. This is because the on-off 

timings of the compressor and the process chiller varied with respect to each other. 

The unique change of profile must not be interpreted as a fault.  
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Figure 3.13 displays the variations of refrigerant temperature at various 

locations of the primary circuit. As expected, the outlet temperature (TR2, 

superheated vapour) of the evaporator was slightly higher than the inlet saturation 

temperature (TR1), representing typically 2 to 3 °C superheat. Both temperatures 

increased rapidly during the compressor off-cycle periods, but there was an initial 

small decrease in TR1 following the shutdown of the solenoid valve, causing the 

saturation pressure in the evaporator to drop before the compressor stopped 

completely. When the compressor was back on again, both temperatures decreased, 

though once again TR1 momentary dropped (for ~20 seconds) sharply, before their 

differences returned to around 2~3 °C. Both TR1 and TR2 were observed to decrease 

due to the temperature drop of the binary ice when its flow rate was decreased.   

  Qualitatively, the profile of the refrigerant temperature at the compressor inlet 

(TR4) was very similar to TR1 and TR2, but with higher values due to the heat gained 

in the suction line heat exchanger. Due to the drop in TR2, the discharge temperature 

(TR5) also increased during the compressor on-periods when the binary ice flow rate 

was decreased. 

During on-cycle periods, the temperature at the inlet to the expansion valve 

(TR8) is lower than TR6 at the condenser outlet; this was due to the heat released to 

the suction line vapour. When the compressor stopped, the drop in TR8 was 

significantly larger than that of TR6, as the former’s location was closer to the 

evaporator which had a much lower temperature, but the latter was kept high by the 

condenser cooling water. When the compressor restarted, the profiles of these two 

temperatures were qualitatively similar to that of TW2 and the binary ice flowrate 

appeared to have little influences on the maximum and minimum of these two 

temperatures.  
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Figure 3.14 Compressor power consumption 

The power consumption of the compressor is shown in Figure 3.14. During the 

initial system start-up stage, the compressor remained on for a longer duration (up to 

around 210 time steps) trying to pull down the solution from the relatively high room 

temperature; the corresponding power consumption for this stage was higher 

compared with the cyclic variations of the power consumption during the rest of the 

on-off cycles. During the on cycles, the typical average power consumption was about 

2.5 kW regardless the decrease of the binary ice flowrate, while the consumption 

maintained at a relatively constant value of 0.5kW during off cycles under the 

stand-by mode. A typical cycle will have a compressor on-off time ratio of 6:4, and 

the ratio will increase slightly when the binary ice flowrate decreased.  

A quick energy balance was carried out for a typical cycle to assess whether 

overall the measurements were accurate and reliable, and the results showed that a 

very satisfactory match was obtained taking into account of some heat and energy loss 

such as compressor heat lost to and the heat gained by the solution from the 

environment. Calculations show that for 370 seconds over an on-cycle period, the 

average power consumption of the compressor was 2.5kW. The cooling capacity of 

the ice generator calculated based on the properties and temperature difference of the 

binary ice was 3.6 kW. The condenser capacity calculated based on the cooling water 

flowrate and temperature difference was about 5.8 kW. It can be seen that the energy 

picked up from the cooling duty plus the work input from the compressor matched 

with the energy released to the cooling water, to within 5%.  When considering the 

secondary circuit, the heater used to simulate the load was 2kW and was kept on all 
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the time for both on (370 seconds) and off cycle (240 seconds), providing a heat input 

of 1220 kJ in total. The 3.6 kW ice generator operated for 370 seconds during the on 

cycle, therefore the heat absorbed from the binary ice is 1332 kJ. The two matched 

within 10% of each other; the difference heat could be due to the heat picked up from 

the environment.  

3.5 Fault simulations 

The following system parameters were varied to provide data under both fault 

free and experimentally simulated faulty working conditions. The design (fault free) 

operation conditions were:  

Cooling water flowrate: 10.6 litre/min 

Initial binary ice solution concentration: 15% by weight 

Binary ice flowrate: 9 litre/min at -7 °C   

As the study mainly was aiming at single fault detection, for each set of test, 

only one fault would be generated. 

  Cooling water flow restriction 

Cooling water flow restriction was simulated by throttling the valve (12) at the 

condenser water inlet. The fault was generated at 3 severity levels: 9.6, 8.1 and 7.0 

litre/min.  

 Binary ice flow restriction 

The binary ice flowrate was controlled by the hand valve (16). Again, 3 levels 

of fault were introduced by reducing the flowrate to 7.5, 6.3 and 5.2 litre/min. 

 Incorrect solution concentration 

Ethanol solution concentrations of 10%, 12.5%, 17.5% and 20% were 

employed as faulty concentrations. Tests started with a small concentration and then 

certain amount of pure ethanol was added gradually. The total amount of the volume 

was kept the same by taking the extra solution out after the desired concentration was 

obtained.  
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 Broken SSIG scraper 

A broken blade in the ice generator was simulated by switching off-on the 

scraper motor for a specific time profile. The validity and limitations of this idea will 

be discussed in Chapter 6.  

 Ice generator motor failure 

The ice generator motor failure was a hard fault. It could be simulated by 

simply switching off the motor resulting in no binary ice being produced. The 

secondary fluid leaving the ice generator would contain no ice and with a higher 

solution concentration than its original value. Further discussion will be covered in 

Chapter 6. 

Table 3.4 Parameter variations during faulty conditions in conventional chillers and the current binary ice 

system 

Fault Chiller Binary ice system 

Cooling water flow 

restriction 

increase Pe, Tc, TCA, 

Pc, Tcom, W 

increase Tc, TCA, Pc, 

Tcom, W 

decrease Tc, Tsc, UAc, 

COP, Tsh 

decrease Tc, Tsc, UAc, 

COP 

Secondary fluid flow 

restriction 

increase Te, LMTDe, 

Tcom, W, 

ΔTsec 

increase LMTDe, 

Tcom 

decrease UAe, Tc, 

COP 

decrease UAe, COP, 

Te 

 

Table 3.4 compares the influence of the first two main faults on conventional 

chillers as noted from the literature with those observed from the current binary ice 

system. Some key differences and similarities were noted. For examples, for the first 

fault, most of the system parameters were noted to vary with similar patterns between 

the two system types, except Pe and Tsh were found not to vary by any noticeable 

extent in the binary ice system. On the other hand, for the second fault, the two 

systems shared variations in 5 common parameters, namely LMTDe, Tcom, UAe, Te and 

COP when the secondary flow rate was reduced, though some had different directions 

of changes. In addition, it appeared that the compressor power consumption W was 

not sensitive to the second fault in the binary ice system but increased in the chillers 
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fault. Furthermore, another unique difference was that ΔTsec was not involved in the 

current binary ice system as temperature change of the binary fluid was found to be 

insensitive to faults; in contrary, ΔTsec was often used as an indicator for chiller faults.  

 Double faults 

Three sets of double faults are also covered, including: 

1. Binary ice flow reduction + solution concentration increase 

(BR+SCI) 

2. Cooling water flow reduction + solution concentration increase 

(CR+SCI) 

3. Binary ice flow reduction + broken blade (BR+BB) 

The double faults were simulated by adding two single faults together, both at 

their highest severity level. For example, a BR+SCI fault was created by reducing the 

binary ice flowrate to 5.2 l/min, while increasing the concentration of the original 

ethanol solution to 20%.  
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4. Modelling of scraped surface ice generator 

In this chapter, the construction of a mathematical model of the binary ice 

generator is presented. The model represents a component level sub-model of the 

scraped surface ice generator, which was used for analysing the effects of various 

operation conditions on the ice generation process. More importantly, the model was 

also used to obtain some of the parameters which were not directly measurable but 

could potentially be used for FDD; examples included internal wall surface 

temperature and ice concentration.  

The SSIG model was a quasi-steady state distributed model. It was capable of 

predicting various key parameters, such as binary ice outlet temperature, the outlet ice 

concentration and the cooling capacity of the ice generator. The model was validated 

and calibrated, in terms of heat transfer coefficient, using experimental data.  

4.1 The development of an analytical model of the SSIG 

4.1.1 Scraped surface ice generator 

Figure 4.1 shows the schematic configuration of a binary ice generation 

system, which is essentially a vapour compression refrigeration system with its 

evaporator functioning as an ice generator.  

 

Figure 4.1 Schematic arrangement of a binary ice system 
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Figure 4.2 presents the internal details of the ice generator which is of a 

mechanical scraped surface type (Stamatiou et al. 2005).The SSIG contains two 

concentric cylinders, with scraper blades attached to a centrally rotating shaft which is 

driven by an electric motor. The numbers of blades vary with design (in this case, two 

blades are mounted) and the blades are spring loaded to maintain sufficient scrapping 

contact with the inner surface of the inner cylinder. The whole heat exchanger is 

insulated to prevent heat gain from the surroundings. The primary refrigerant flows in 

the annular gap between the two cylinders; it evaporates and absorbs heat from the 

secondary fluid that flows in the inner cylinder. Ice particles form as the evaporating 

temperature of primary refrigerant is sufficiently below the freezing point of the 

secondary fluid (Schwartzberg and Liu 1990).  

 

 

Figure 4.2 Structure of a scraped surface heat exchanger  

Contrary to a conventional single-phase secondary system, at outlet of the ice 

generator, the secondary fluid is an ice-liquid mixture and its thermo-physical 
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flow temperature (Kauffeld et al. 2005); all these parameters will have to be 

incorporated in the present model.  

The performance of the ice generator is usually characterized by its ice 

production rate which needs to be controlled and matched with the load characteristics. 

Too much ice built up on the surface between two scraping actions would increase the 

required scraping power (Qin et al. 2006), also potentially cause damage to the 

scrapers and freeze-up/blockage in the heat exchanger. On the other hand, a low ice 

production rate reflects poor system efficiency, resulting in possible single phase 

operation and unable to benefit from the latent heat of ice. The mean diameter of the 

ice particles is generally approximated to be the thickness of the ice layer when it is 

scraped off from the surface, and this is determined by the growth rate of the ice layer 

and the rotating speed of the scraper. Binary ice with smaller particle sizes, having a 

larger surface area to volume ratio, usually provides a better heat transfer 

characteristics (Kauffeld et al. 2005).  

The ice production rate can be determined by the following parameters: 

evaporating temperature of the refrigerant, mass flow rate and properties of the 

secondary fluid, scraping speed, number of the blades, fluid inlet temperature. As 

previously reviewed, faults such as refrigerant leakage and over-charge will influence 

evaporating temperature/pressure; flow restriction will decrease the mass flowrate of 

binary ice; mechanical damage of the scraper motor or the blade leads to incomplete 

or slow ice removal from heat exchanger surface, creating a similar effect to heat 

exchanger fouling. For a given SSIG, all of the above faults will affect heat transfer as 

well as ice production rates, influencing the properties/conditions (temperature, 

carrier fluid solution concentration and ice concentration) of the binary mixture at the 

heat exchanger outlet. These properties can be either directly measured or deduced 

from other measurements.  

The SSIG model takes initial solution concentration, evaporation temperature, 

inlet solution temperature, solution mass flowrate and scraper rotating speed (rev/s) as 

input parameters. The dimensions of SSIG and the refrigerant side heat transfer 

coefficient ho, a function of refrigerant Re and properties, etc., are also needed as 

input modelling parameters. The model outputs include: outlet flow temperature, ice 

concentration or ice production rate, cooling capacity and COP. 
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4.1.2 Modelling approach and formulation  

The modelling of SSIGs had been carried out by previous researchers. 

Examples include heat transfer models of SSIG for making ice creams (Bongers 2006) 

and for freezing aqueous solutions (Qin et al. 2006). The above two models were both 

designed to simulate a fixed amount of fluid being cooled and frozen inside the heat 

exchanger with no flow, thus they are not entirely applicable for the current study. 

The model being built here is based on a transient freezing model for forced flow 

inside a convectively cooled tube (Seeniraj and Hari 2008). The original model used 

water as secondary fluid and no scraper was involved. Therefore two major 

modifications were carried out: (i) replace the water by ethanol solution and (ii) 

incorporate the rotating scraper blades.  

 Figure 4.3 illustrates the ice generation process inside a SSIG, with the 

corresponding physical and operation parameters given in Table 4.1. r and z represent 

respectively the radial and axial coordinate, with z = 0 defined as the inlet of the ice 

generator and z is positive upward.  

      

Figure 4.3 Ice layer on the inner surface of SSIG (blades not shown)  
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Table 4.1 Physical and operation parameters of the SSIG 

ri Inside radius of inner cylinder [m] Co initial solution concentration [kg/kg] 

rshaft Radius of the rotating shaft [m] Tfluid,in Inlet solution temperature [°C] 

rf Radial distance of the ice front [m] mfluid Mass flowrate of the solution [kg/s] 

ro Outside radius of inner cylinder [m] L Total length of the heat exchanger [m] 

 

To simplify the simulation, assumptions were made but some of them could be 

removed if necessary. On the primary refrigerant side, evaporating temperature Te 

(which was sufficiently lower than the local solution freezing point) and the 

convective heat transfer coefficient ho were both assumed to be constant along the 

entire length of the SSIG. The adoption of assuming a constant ho along the heat 

exchanger length was noted in many other researchers (Admiraal and Bullard 1993; 

Dehghan et al. 2015) to simplify the calculations. In addition, the constant ho was also 

used in all simulations. This was considered justified/valid for the following reasons. 

First the test ranges were relative small and thus ho was not expected to vary much. 

Second, the simulations were verified by comparing the calculated binary ice 

temperatures with the measured ones, and a good agreement was observed. The 

thermal resistance of the wall was initially assumed negligible (Lakhdar et al. 2005). 

Due to the agitating action of the scraper blades, no temperature gradient in radial 

direction in bulk fluid was assumed; in other words, the ice particles scraped off from 

the surface and carrier fluid were mixed instantaneously to form a homogeneous 

mixture. The temperature of the suspended ice particles was assumed to acquire 

approximately the same as the bulk flow temperature at the same axial coordinate, 

with no heat conduction in axial direction in the ice layer (Seeniraj and Hari 2008). 

The fluid boundary layer was assumed to be renewed immediately with bulk fluid 

after the scrapping action (Rao and Hartel 2006).  

In the model, the flow region could be divided into two sections along the 

axial direction. Solution with an initial concentration of Co and temperature Tfluid,in 

entered from the bottom end of the cylinder. In the first section, sensible heat was 

absorbed by the evaporating refrigerant on the other side of the cylinder. The solution 

temperature gradually decreased, along the positive z direction, approaching the 

freezing point of the solution and signifying the end of Section I in which no ice was 

being produced. The length of Section I was determined by the difference between the 
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fluid inlet temperature and its freezing point, the flowrate, the refrigerant temperature 

and the overall heat transfer coefficient. 

When the flow temperature gradually dropped to its freezing point, ice crystals 

started building up on the inner surface, signifying the start of Section II. Due to the 

agitation of the rotating blades, the bulk flow temperature at this stage could be 

assumed as the local freezing temperature (Qin et al. 2003). As water was taken out, 

solution concentration of the flow increases and the solution freezing point decreased 

along the positive z direction. As Te was assumed to be constant at this stage, the 

difference between Te and the local freezing point of the fluid decreased along z 

direction, causing it harder to form ice and thus the ice thickness decreased as well. 

The ice layer grew rapidly from zero to its maximum value at the beginning of 

Section II. This increase was difficult to be model accurately; therefore it was 

assumed to be a step jump. If the ice generator were long enough, it was possible that 

the ice layer thickness eventually reduces to zero and an ice free section III would 

form near the end of the ice generator.  

 Heat transfer without phase change (Section I) 

As the thermal resistance of the cylinder wall is neglected, there is no 

temperature gradient across the wall. Taking a small section of the cylinder (dz) as a 

control volume, the heat removed from the flow to the wall (second term of Equation 

4.1) balances the energy absorbed by the refrigerant (3
rd

 term). 

𝑑𝑄 = ℎo𝐴o(𝑇e − 𝑇wall) = ℎI𝐴i(𝑇wall − 𝑇̅fluid) 4.1 

where 

      ℎI =
𝑁𝑢I𝑘l

2(𝑟i−𝑟shaft)
 4.2 

and ho and hI are the convective heat transfer coefficients of the refrigerant and the 

solution respectively, Ao and Ai are the outer and inner heat transfer areas of the 

cylindrical section, Twall is the wall temperature, 𝑇̅fluid is the average bulk flow 

temperature in the control volume, kl is bulk thermal conductivity of solution, NuI is 

the Nusselt number for Section I. According to (Stamatiou et al. 2005), the Nusselt 

number of a laminar or transition flow inside the heat exchanger without phase 

change can be expressed as: 
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𝑁𝑢I =
2

√𝜋
 
2𝑁𝑟i𝜌l𝐶p,l𝐵

𝑘l
 
0.5

 4.3 

where N is the rotational speed of the scrapers (rev/s), ρl is the density and Cp,l is the 

specific heat capacity of the fluid, and B is the number of blades per 360 degrees. As 

expected, the higher the rotational speed or the larger the blade number, the higher 

would be the heat transfer coefficient.  

Initially, the value of heat transfer coefficient ho, is chosen as 3000 W/(m
2
K) 

according to previous researches for similar conditions (Greco and Vanoli 2005) for 

R507. It is then calibrated according to the measured data.  

Based on energy conservation, heat transfer rate dQ can also be equated to the 

heat loss of secondary flow, Equation 4.4. 

𝑑𝑄 = 𝐶p,l𝑚fluid∆𝑇fluid 4.4 

where mfluid is the mass flowrate of the solution and ΔTfluid is the temperature change 

of the solution across the control volume in the z direction.  

If the outlet fluid temperature of a control volume drops below the freezing 

point, this control volume will be assumed as the last element of Section I. The total 

heat transfer rate from the solution to the refrigerant in Section I can be obtained by 

summing up the heat transfer rate of individual control volumes. 

𝑄total = ∑𝑑𝑄 4.5 

 

 Heat transfer with phase change (Section II) 

In Section II, ice builds up on the cylinder surface. The heat absorbed by 

refrigerant represents partly the latent heat released due to solidification and partly the 

enthalpy drop of the solution across the control volume. The energy paths are shown 

in Figure 4.4a. Under quasi-steady state, the temperatures of the solution entering and 

exiting the control volume dz can be considered constant. With no scrapping action 

taking place, at any time t, the thickness of ice layer is rice = (ri – rf) and it will 

increase by (∂rf) over a period of Δt. The corresponding temperature profile between 

the fluids, the cylinder wall and the ice layer is shown in Figure 4.4b.  
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Figure 4.4 Ice layer building up on the inner surface of a SSIG, (a) heat transfer within a control 

volume and (b) temperature profile at the cross section  

 

The evaporating temperature stays relatively constant at Te outside the heat 

exchanger wall, and increases at the boundary layer near the wall. As the wall is 

assumed to have no thermal resistance, temperature remains the same inside it. The 

temperature was assumed to have a linear profile inside the ice layer (Seeniraj and 

Hari 2008), when the influence of the temperature to the thermal resistance of the ice 

is ignored. There is a sharp temperature increase in the boundary layer of the fluid 

near the inside surface of the ice layer, until temperature reaches the freezing point of 

the fluid, which is also regarded as the local fluid temperature.  

Across the control volume in the z direction, the enthalpy drop (ΔH) of the 

bulk fluid (i.e. the sensible heat component), represented by the middle term of 

Equation 4.6, is equal to the convective heat from the bulk flow to the ice layer (i.e. 

the last term of the equation). 

∆𝐻 = 𝑚fluid𝐶𝑝,l
𝜕𝑇fluid

𝜕𝑧
𝑑𝑧 = −ℎII𝐴i(𝑇fluid − 𝑇ice|𝑟=𝑟f) 4.6 

where Tice|r=rf is the temperature of ice at the solid/fluid interface, hII is the localised 

heat transfer coefficient of binary mixture in Section II, Tfluid is the bulk temperature 
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of the fluid, which is assumed to be equal to the local freezing temperature of flow at 

Section II.  

At the ice/solution interface (r = rf), the heat conduction through the ice layer, 

left hand side of Equation 4.7, is equal to the total amount of convective heat from the 

solution to ice layer (ΔH), i.e. the first term on the right, and the latent heat released 

by ice formation (Qlatent), represented by the second term on the right.   

−𝑘ice  
𝜕𝑇ice

𝜕𝑟
 
𝑟=𝑟f

𝐴f = ℎII𝐴f(𝑇fluid − 𝑇ice|𝑟=𝑟f) −
𝜕𝑟f

𝜕𝑡
𝜌ice𝐿ice𝐴f  4.7 

where 

ℎII =
𝑁𝑢II𝑘fluid

2(𝑟i−𝑟shaft)
 4.8 

and Af is the surface area of ice layer when r = rf, kice is the thermal conductivity of 

ice, kfluid is the thermal conductivity of binary ice, ρice is the density and Lice is the 

specific latent heat of the ice. Under quasi steady state, Tfluid is a function of axial 

coordinate z.  

Equation 4.9 indicates that at the boundary between the two sections, the 

temperature of the fluid is at its freezing point.  

𝑇fluid(𝑧 = 𝐿I) = 𝑇f(𝐶o) 4.9 

where LI, is the length of Section I. For a given solute, the freezing temperature, Tf, is 

a function of solution concentration, and its calculation procedure is given in the 

Appendix A.  

The radial distance of the freezing ice front rf is a function of time t, axial 

coordinate z, as well as the angular position within the cylinder with respect to the 

blade position; the distance between rf and ri represents the local ice thickness. Figure 

4.5 shows the profile of the ice layer when the cylinder wall is unwrapped to 

approximate a flat surface for an element in Section II. B is the number of the blades 

per 360 degrees and 
2𝜋

𝐵
 is the angular distance (in radians) between two blades. After 

each scraping at a given angular position, ice gradually accumulates on the surface, 

until being scraped off by the next blade.  
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Figure 4.5 Ice layer profile on the unwrapped SSIG surface 

 

 

Figure 4.6 rf as a function of time at a given axial position 
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ice at this location occurs at time 𝑡 =
𝑛

𝑁𝐵
 where n = 1, 2, 3, etc. When the rotational 

speed or the number of blade increases, the time interval between two scraping 

actions will decrease as well as the maximum ice thickness (ri -rf) or ice particle sizes, 

but the ice concentration will increase as illustrated in later predictions.  

Lakhdar et al. (2005) developed an empirical correlation for calculating the 

Nusselt number for ethanol-water solution in a SSIG with phase change, and it can be 

applied for Section II. The conditions of use are compatible to current SSIG 

configuration and operation. 

𝑁𝑢II = 4.47𝑅𝑒a
0.27𝑅𝑒r

0.38𝐶o
0.8 4.10 

where Rea is axial Reynolds number and Rer is rotational Reynolds number, defined 

as: 

𝑅𝑒a =
2𝜌bi𝑢(𝑟f−𝑟shaft)

𝜇bi
 4.11 

𝑅𝑒r =
4𝜌bi𝑁𝑟f

2

𝜇bi
 4.12  

where u is the axial bulk velocity of solution, ρbi is the density and μbi is the dynamic 

viscosity of the binary ice. The calculation procedures for various properties of binary 

ice mixture, including thermal conductivity, density and dynamic viscosity can be 

found in the Appendix A and B, and they are all based on the local solution 

temperature and concentration.  

All the released latent and sensible heat from the control volume is absorbed 

by refrigerant, i.e. the right hand term of the equation 4.13, on the other side of the 

cylinder, assuming the steel cylinder has not thermal resistance.  

𝑘ice
𝜕𝑇ice

𝜕𝑟
|
𝑟=𝑟i

𝐴i = ℎo[𝑇ice(𝑡, 𝑧, 𝑟i) − 𝑇e]𝐴o 4.13 

The heat conduction in the ice layer at a given z location can be expressed by 

quasi- steady state 1-D heat conduction equation for a cylinder.  

1

𝑟

𝜕

𝜕𝑟
 𝑟

𝜕𝑇ice

𝜕𝑟
 = 0 4.14 
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4.1.3 Numerical solutions 

Calculations involved in Section I are mainly for determining the position of 

the boundary between Sections I and II. All the fluid properties in Section I can be 

assumed constant as their variations with temperature are quite minimal. Equations 

4.1 and 4.4 are applied to determine the outlet flow temperature of each successive 

control element, which is then compared with the freezing point temperature at initial 

concentration Co. Sections II starts when the flow temperature drops below this 

freezing point. The length of Section I is  

𝐿I = 𝑎 × 𝑑𝑧 4.15

where a is the number of control volume in Section I to achieve the freezing condition; 

typically dz is set at 5mm. It is possible to have LI reached the full length of the ice 

generator; this represents the condition that no ice is being produced and the ice 

generator is essentially functioning as a chiller, i.e. no ice in and no ice out. 

For section II, fluid bulk temperature Tfluid (z) and radial distance of the 

freezing front rf (t,z) can be determined by solving equations 4.6, 4.7, 4.13 and 4.14 

simultaneously.  

The differential equation 4.14 has a general solution in the form of: 

𝑇ice = 𝐶1 ln 𝑟 + 𝐶2 4.16 

Combining it with Equation 4.13, C1 and C2 can be obtained 

𝐶1 =
ℎo 𝑇e−𝑇ice|𝑟=𝑟f

 

ℎo ln(𝑟i∕𝑟f)+𝑘ice∕𝑟i
  

and 

𝐶2 = 𝑇ice|𝑟=𝑟f −
ln𝑟fℎo 𝑇e−𝑇ice|𝑟=𝑟f

 

ℎo ln(𝑟i∕𝑟f)+𝑘ice∕𝑟i
  4.17 

Then equation 4.16 becomes 

𝜕𝑇ice

𝜕𝑟
=

ℎo 𝑇e−𝑇ice|𝑟=𝑟f
 

(ℎo ln(𝑟i∕𝑟f)+𝑘ice∕𝑟i)𝑟
 4.18 
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Substituting Equation  4.18 into Equation 4.13 yields 

−𝑘iceℎo 𝑇e−𝑇ice|𝑟=𝑟f
 

(ℎo ln(𝑟i∕𝑟f)+𝑘ice∕𝑟i)𝑟f
= ℎi(𝑇fluid − 𝑇ice|𝑟=𝑟f) −

𝜕𝑟f

𝜕𝑡
𝜌ice𝐿ice  4.19 

The differential equations, Equations 4.6 and 4.19, are solved to get two 

unknowns, namely the Tfluid and rf in Section II by using the predictor-corrector Euler 

method (Butcher and Wiley 2008). For each control volume dz, the inlet temperature, 

solution and ice concentration of binary mixture at any time are known from the 

outputs of the previous control volume; (the inlet ice concentration of the first control 

volume in Section II is taken as zero). By using a guessed temperature at the 

solid/liquid interface (Tice|r=rf), Tfluid and rf can be found according to equations 4.6 

and  4.19. A new interface temperature Tice|r=rf can then be calculated and 

compared with the guessed value. If the difference between them is within a pre-set 

tolerance, the calculations can be considered completed, then the calculation proceeds 

to the next control volume; if not, the new interface temperature should be used 

instead of the guessed value until the calculation converges.  

When the dynamic response of a system is much faster than the change of its 

operation conditions, it can be assumed that the system is operating under 

quasi-steady state. The assumption had been successfully applied in many transient 

heat transfer models including both liquid chillers (Browne and Bansal 2000; Wang et 

al. 2000) and binary ice system (Knodel et al. 2000). In this study, the system is also 

assumed to operate under quasi-steady state for the purpose of modelling and 

simulation.  

To simulate transient operations, the input time variables, including the 

measured inlet fluid and evaporating temperatures, were discretised into time steps 

first. The SSIG model predicted a new set of outputs, such as the outlet of the fluid 

temperature, for each time step under the specified inlet variables. Then the procedure 

was repeated for the next time step. The final outputs of the model captured both the 

temporal and spatial variations of the variables, describing the status of the fluid 

inside the SSIG. Essentially, a quasi-steady state SSIG model was composed by a 

series of steady state predictions.  
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Figure 4.7 shows the flow chart of the simulation process at any given instant. 

 

Figure 4.7 Flow chart of modelling process at a given time step 
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In addition, as an on/off control was used in the system, the model 

incorporated a detector taking the power consumption of the compressor as an input 

to detect whether the compressor was running. The simulation process of the SSIG 

was kept unchanged when the compressor is off-cycle, but the heat transfer 

coefficient of the refrigerant was artificially set to a very low value, as the refrigerant 

flow had been cut off. 

4.2 Model validation and results  

The fluid used to generate ice is ethanol-water solution. The dimensions of the 

SSIG were estimated based on the laboratory unit: 

Table 4.2 Dimensions of the SSIG 

ri Inside radius of inner cylinder [m] 0.10 

ro Outside radius of inner cylinder [m] 0.11 

rshaft Radius of the rotating shaft [m] 0.02 

L Total length of the heat exchanger [m] 0.46 

B Number of blade per 360° 2 

N Scraper rotation speed [rpm] 168 

 

4.2.1 The validation of the model  

The verification of the code was done by testing the code against some set 

scenarios as well as some manual calculations to ensure the algorithm and the 

calculation steps were correctly implemented to produce the expected results. As for 

validations, the simulation results were compared with the experimental data obtained 

from the test rig described in Chapter 3. These were based on the data from several 

complete on/off cycles under different conditions, though only one set of 

representative data was presented here. The initial ethanol mass concentration was 

15%. The inlet binary ice temperature and the refrigerant evaporating temperature 

were measured and used as the model inputs. The flow rate of binary ice was set at 9 

litres/min and remained constant during the test. The set point of the binary ice 

temperature at the inlet of the SSIG was -5 °C with a differential of +2 °C. All the 

data was taken with a 10 second interval (i.e. each time step corresponds to 10 

seconds).  
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Figure 4.8 Comparison of measured and calculated binary outlet temperature 

 

Figure 4.9 Comparison of derived and calculated ice concentration at the SSIG outlet 

 

Figure 4.8 and Figure 4.9 show validation results of binary ice temperature 

and ice concentration (the ice concentration was derived from measured binary ice 

temperature based on the initial solution concentration) at the SSIG outlet. Within the 

first 24 time steps, the compressor was cycled off by the thermostat and thus no ice 

was produced. During this period, the binary ice outlet temperature increased 

gradually. At around the 25
th

 time step, the compressor was turned on. The 

temperature dropped rapidly while the ice concentration (calculated based on 

predicted and measured temperatures) rose to a value of about 7%.  

More than 90% of the temperature and ice concentration predictions fell 

respectively within the ±0.5 °C and ±10% band of the measured or derived values. 

The derived ice concentrations (based on measurement) in the first 25 time steps were 

zero as all the measured solution temperatures were found to be above the freezing 

point during this period so no ice was formed. Potentially, there could be some 
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measurement errors leading to a positive concentrations, but it was not possible to 

have negative concentration. Therefore, no error band was included for this part of the 

data. Large discrepancies mainly occurred when sudden changes of the system 

operation happened (i.e. during compressor off/on switching). It can be seen from 

Figure 4.8 that the model under-predicted the binary ice outlet temperature when the 

compressor was not running, while the prediction became much more accurate during 

the compressor running (within ±0.2 °C error band). The coefficient of determination 

(R
2
) for the binary ice outlet temperature prediction 0.85. In Figure 4.9, much larger 

discrepancies between the derived and predicted values were observed during the 

compressor on-cycle suggesting that even small error in the temperature prediction 

could result in large difference in the ice concentration. When the compressor was not 

running, as long as the predicted binary ice temperature was above the freezing point, 

the ice concentration would stay at zero. The R
2
 for the ice concentration prediction is 

0.90. 

4.2.2  Simulated behaviour of the SSIG 

Having validated the model, it can be used to simulate and understand the 

general behaviours of the SSIG. Another main advantage of having an analytical 

model is its ability of calculating some immeasurable parameters such as the ice 

particle size and the axial variation of the fluid temperature within the SSIG. In this 

section, the validated model is used to generate data to demonstrate some operating 

characteristics of the binary ice system.  

 

Figure 4.10 Variations of binary ice temperature along the SSIG for the three modes of operation 
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Figure 4.10 shows the simulated axial temperature profiles of the fluid along 

the SSIG under different loads when the compressor is running; the left hand side 

represents the inlet to the SSIG. In general, 3 different modes can be expected. 

 

Mode 1: No ice is produce in the SSIG. The SSIG inlet liquid temperature is 

high enough that the liquid cannot be cooled down to its freezing 

point in the ice generator. Therefore the SSIG essentially operates as 

an ordinary liquid chiller with a significant difference between inlet 

and outlet temperatures.  

Mode 2: Initial part of the scraped heat exchanger acts as a liquid chiller 

bringing the fluid temperature down towards its freezing point, 

while the rest produces ice. The profile can be divided into two 

sections as discussed previously. The temperature gradient of the 

first section is much larger than the second section and the boundary 

between the two sections moves with the load conditions. 

Mode 3: Ice is generated along the entire length of the SSIG. In this case, the 

fluid going into the ice generator already contains some ice in it. The 

temperature of the fluid drops slightly along the SSIG. 

Among the three operation modes, mode 2, particularly with a small length of 

Section I, is the most desirable one. In Mode 1, no ice can be produced, suggesting the 

cooling capacity is too small when compared to the required load. It should be 

avoided through proper design and sizing of the equipment. Binary ice systems 

normally incorporate with control mechanisms (Guilpart et al. 2005) to ensure the 

appropriate amount of ice is generated to avoid ice blockage. When the load is too 

low (Mode 3), the system will be cycled-off by the control monitoring the inlet 

temperature. Therefore, in practice, Mode 2 is the most likely to occur.  
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(a) 

 

(b) 

Figure 4.11 Local fluid temperature and ice concentration along the SSIG  

 

Figure 4.11 illustrates the binary ice temperature and ice concentration profiles 

along the SSIG under Mode 2 with a fixed evaporating temperature. It can be seen 

that there are two distinct gradients of temperature profile along the length of the 

SSIG, with relatively much larger temperature drop in Section I; in fact, over 70% of 

the overall temperature drop takes place in the first 20% of the length in Figure 4.11a. 

As expected, Section II experiences a much smaller temperature drop (no more than 

1 °C), due to involvement of the latent heat. The ice concentration increases steadily 

in a slightly non-linear manner to ~6.3%.  

As the load changes, both the gradients and the lengths of the two sections will 

change accordingly. Figure 4.11b demonstrates the binary ice temperature and ice 

Section II Section I 

Section I Section II 
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concentration with a higher inlet temperature but with all other working conditions 

remained unchanged. Section I becomes longer when the difference between the inlet 

temperature and the freezing point is larger. At the outlet of the ice generator, the ice 

concentration (~5.4%) is smaller thus less ice is produced when compared to Figure 

4.11a. Unless the length of the SSIG exceeds an estimated length of 2.3m based on 

the design working conditions of the test rig, it is rather unlikely that Section III will 

occur.   

Figure 4.12 shows the maximum thickness of the ice layer between two 

scraping actions along the SSIG, which is thicker at the initial part of Section II, 

suggesting the predicted ice particle sizes are between 6 to 8 µm. The reason is that 

when water is taken out from the solution, solution concentration goes up and the 

freezing point of the remained liquid decreases, and this leads to a smaller difference 

between the solution freezing point and the wall surface temperature, assuming the 

evaporating temperature remains constant; the generated ice layer becomes thinner. A 

limitation of the model is that it can only predict a sudden jump of ice thickness 

between section I and II; however as in reality, the thickness increases from zero 

thickness over a short distance.    

 

Figure 4.12 Maximum ice layer thickness between two scrapings along the SSIG 

 

To make full use of the SSIG, the length of Section I should be kept as short as 

possible during operation. The length is determined by the many parameters such as 

the fluid inlet temperature, the flowrate, the solution freezing point and the 

evaporation temperature. In practice, if the same solution concentration is used, then 

the freezing point is a fixed value. The evaporation temperature cannot be controlled 

Section I Section II 
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directly. Therefore only the influences of the first two parameters are addressed here. 

The length of Section I against the inlet fluid temperature Tfluid,in under three different 

flowrates is shown in Figure 4.13 Apparently, when the inlet temperature is higher (i.e. 

a higher load), more heat needs to be taken out from the solution in order get to the 

freezing point. This leads to a longer section without producing ice. A larger flowrate 

also increases the length of section I.  

 

Figure 4.13 Variation of the length of Section I against the inlet fluid temperature Tfluid,in under 

three different flowrates 

 

The following figures (Figure 4.14 - Figure 4.16) present the variations of 

some of the model outputs due to changes in working conditions that could be caused 

by occurrence of a fault. Y-coordinate on the right is the temperature of binary ice at 

the SSIG outlet and the left hand is the cooling capacity of the SSIG, for a range of 

evaporating temperatures, flowrates and initial solution concentrations, while the inlet 

temperature is kept constant at -5 °C. Depending on the combination of various 

parameters, individual data points can fall into one of the three possible operation 

modes described earlier. 
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Figure 4.14 Binary ice temperature and cooling capacity at ice generator outlet against 

evaporating temperature (design Te = -20 °C, flowrate fixed at 9L/min, initial solution 

concentration at 15% by mass)  

 

The effects of evaporating temperature are shown in Figure 4.14. A lower 

evaporating temperature increases the temperature difference between the binary ice 

and the refrigerant under the same initial solution concentration and the inlet 

temperature, resulting in a lower flow temperature at the outlet and a higher cooling 

capacity. It is worth noting that, in a system, one would normally expect the cooling 

capacity increases with increasing Te, as the refrigerant mass flow rate increases due 

to higher suction vapour densities at higher Te. However, the presented results are for 

the SSIG alone in which the refrigerant mass flow rate is assumed constant. Therefore 

the capacity decreases as the Te increases. Faults such as binary ice flow reduction and 

cooling water flow reduction would change the evaporating temperature.  

 

Figure 4.15 Variations of outlet flow temperature and cooling capacity with flowrate (design 

flowrate = 9 Litre/min, design Te = -20 °C, initial solution concentration at 15% by mass) 
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Flowrate could decrease due to flow restriction, which is a common fault in 

secondary system. Figure 4.15 indicates that a lower solution flowrate would lead to a 

lower outlet flow temperature. Though this results in a higher ice concentration, the 

cooling capacity reduces due to the reduced flow rate. 

The output parameters will deviate from the expected values when an 

incorrect solution concentration is assumed in the model, which can be interpreted as 

a fault. Figure 4.16 shows that both cooling capacity and outlet temperature drop 

when the initial solution concentration is increased. A fluid with a higher solution 

concentration has a lower freezing point. Although the fluids enter the heat exchanger 

at the same temperature, the temperatures at the end of Section I (or at the beginning 

of Section II) are at the freezing points corresponding to individual initial 

concentrations. For a fluid with a lower freezing point (i.e. with a higher initial 

solution concentration), its temperature difference with the refrigerant is smaller (as 

observed from the measurements), resulting in a lower cooling capacity. In addition, a 

higher initial solution concentration also leads to a decrease in the length of Section II. 

As the cooling capacity is much higher in Section II than in Section I due to the 

involvement of latent, a shorter Section II will reduce the overall cooling capacity too. 

 

Figure 4.16 Outlet binary ice temperature and cooling capacity against initial solution 

concentration (weight of ethanol/total solution weight) (design flowrate = 9 Litre/min, design Te = 

-20 °C, design solution concentration at 15% by mass)  
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5. Development of the overall hybrid model 

This chapter presents the establishment of the overall system level model for 

the entire binary ice system. The ANN modelling of the primary circuit are described 

in the following two sub-sections; Section 5.1 introduces the basic concept and the 

modelling tools for the chosen ANN model, followed by the presentation of the 

training procedures in Section 5.2. Section 5.3 describes the hybrid coupling of the 

physical model of the scrape surface ice generator in the secondary circuit with the 

ANN model of the primary circuit. The results of the overall model are then discussed 

in relation to why a hybrid coupling approach to create the overall system model is 

needed as well as the associated advantages.  

5.1 Establishment of the ANN model 

Refrigeration systems are known to be non-linear and of dynamic nature 

(Haves and Khalsa 2000); binary ice systems are of no exceptions. It is very difficult 

to set up physical meaningful equations to represent accurately the correlations among 

all the inter-dependant parameters involved in the system components, in particular 

the compressor. According to Rasmussen and Jakobsen (2000), the development of a 

pure analytical compressor model could be impossible. Many existing first principle 

compressor models (He et al. 1997; Koury et al. 2001) are mainly for design and 

general control purpose instead of operation monitoring which usually requires much 

higher accuracy as in fault diagnosis. Therefore it is not practical to develop a pure 

analytical model for the primary circuit for FDD purpose. As an alternative to the 

analytical model, black box method based on ANN was employed in this study to 

simulate the system parameters/indexes of the primary circuit. The model was 

constructed within the Matlab environment using its neural network toolbox (The 

MathWorks 2010).  

To construct an ANN model, the following steps need to be followed: 

1. Data collection 

2. Create the ANN network 

3. Configure the network 
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4. Train the network including initialization of the weights and biases 

5. Validate the network 

The data is collected via experiment measurements, which has been discussed 

in Chapter 3. For Step 2, whether a steady state or a dynamic ANN model should be 

used will be decided within which further choices are available (e.g. MLP and RBF 

under steady state, NARX and Auto-Regressive Moving Average under the dynamic 

category). In addition, the type of the activation function should be chosen; 

possibilities include Gaussian function, sigmoid function, etc. In this step, various 

parameters should be examined for their use as input or output parameters, depending 

on the data availability and the purpose of the simulation. In general, the control 

variables (e.g. condenser cooling water flowrate) are chosen as inputs and the 

parameters that are sensitive to faults chosen as outputs for FDD purpose. However, 

the combinations must be assessed carefully in relation to specific system types and 

study objectives. The next step is to set up the structure of network, including the 

number of hidden layers, the number of the neutrons in the hidden layer and the 

number of the delay steps; the last parameter is needed for dynamic modelling which 

will be explained later.  

Steps 4 and 5 are automatically performed by Matlab, though certain default 

settings can be changed by the users, to achieve for instance a better training time or 

accuracy. During network training (Step 4), the experimental data are fed into the 

network to help it adjust the weights in order to match the model output data to the 

desired values (i.e. the measured outputs). The outcome of the training is validated in 

Step 5. The network can be trained repeatedly until a user specified accuracy is 

achieved, and the fully trained model can then be employed to simulate the operation 

of the system.  

5.1.1 Model structure  

This section provides more details of Step 2 as how various decisions are 

made. Chapter 2 reviewed some of the ANN models used by previous researchers for 

chillers. Two types of ANN model architectures are popular and commonly applied, 

namely RBF and MLP. The pros and cons of the two types have been discussed also 

in Chapter 2. On their own, these two architectures are only for static/steady state 

predictions. However, for the test rig employed in this project, an on/off thermostat 
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was used to control the compressor capacity, which made it impossible to acquire a 

real steady state. Therefore a static model based on the averaged value of the data 

could not fully characterise the system behaviour.  

To establish a reliable dynamic model, the Nonlinear Auto-Regressive model 

with eXogenous input (NARX) (Billings 2013) is widely used to reproduce the 

process dynamics under various operating conditions because of its high accuracy 

(Ingrassia and Morlini 2007).  

NARX dynamic neural networks have an input vector that contains both 

lagged input and output values of the dynamic system. The model can be used to 

predict the current value of a time series data using the past value of the driving 

(exogenous) time series, as well as the past value of same series that being predicted 

(Chetouani 2008). It can be defined by the following function f:  

𝑦(𝑡) = 𝑓  𝑦(𝑡 − 1), 𝑦(𝑡 − 2),… , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2), … , 𝑢(𝑡 −

𝑛𝑢)  5.1  

where the current value of the dependent output y(t) is regressed on previous ny values 

of the output y and previous nu values of the independent (exogenous) driving input u. 

In some cases, multiple independent driving data sets can be involved. For example, 

to predict the binary ice outlet temperature (y) of the SSIG, the driving input(s) u 

could be chosen from the binary ice inlet temperature, its flowrate, the evaporating 

temperature, etc. The NARX model can provide good predictions, because it uses the 

additional information contained in the previous values of y.  

The NARX model can be implemented by using a feed-forward neural 

network (i.e. MLP network) to approximate the function f. The term ‘feed-forward’ 

means that the connections between nodes only allows signals to be sent in one 

direction to the next layer of nodes and not back to the previous layer, as illustrated in 

Chapter 2.   

The MLP neural network itself is a static system. When combined with an 

input structure known as the Tapped-delay-line (TDL), the dynamic characteristics 

can be incorporated into the system; the overall architecture is referred previously as 
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NARX. Figure 5.1 shows that the input time series u passes through a TDL with nu 

delays. At a certain time t, the output of the TDL is u(t-1), u(t-2)…u(t-nu).   

 
Figure 5.1 Tapped delay line 

There are two ways to implement a NARX dynamic network, either as a 

parallel architecture or a series-parallel architecture as shown in Figure 5.2. The 

parallel architecture is a recurrent dynamic network where the predicted output of the 

network is fed back to the input layer, while the series-parallel architecture uses the 

true measured past output from the system to form part of the input vector of the 

network instead of feeding back the predicted value.  

  

 

Figure 5.2 Dynamic network structures 

For the current study, the series-parallel architecture is chosen because the 

measured outputs of the system are available. It also has a major benefit over the 

parallel architecture, i.e. the measured outputs y(t) which are expected to be more 

accurate than the predicted output in the parallel architecture are available to be fed 
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into the TDL, resulting in a more accurate final prediction of y(t). Thus the parallel 

architecture should only be considered when the measured output is not available.  

Having determined the basic structure of the network, as part of Step 2, the 

input and output parameters are chosen carefully. The aim of FDD was to use fewer 

sensor measurements to detect as many faults as possible. Therefore, a model 

developed for FDD purpose should use parameters that are easy to obtain from direct 

measurements and/or from simple calculations and it should keep the number of 

inputs as small as practically possible. Based on the observations of the measurements 

in Chapter 3, the parameters describe the condition of the condenser cooling water (i.e. 

inlet temperature and flow rate) and the secondary circuit operation (i.e. the 

temperature and the carrier fluid solution concentration of the binary ice at the outlet 

of the ice generator and the corresponding flow rate) are taken as the inputs to the 

NARX model.  

Theoretically, any parameters can be used as model output due to the fact that 

black box models discard any physical relationships among the parameters. In this 

study, the independent variables that can be controlled directly are considered as 

inputs as described above, while the dependent variables which are sensitive to 

selected faults are to be taken as outputs, namely the condenser cooling water 

temperature difference (ΔTw) which was chosen because it can be influenced by fault 

such as the cooling water flow reduction. Also as observed in Chapter 3, other outputs 

parameters that are seen to reflect both normal system behaviours and mal-function 

operations include the evaporating temperature, compressor power, discharge 

temperature, condensing temperature, etc. The values of the above parameters need to 

be measured and used in the training of the ANN model. They may not be monitored 

for FDD in the later stage. 

5.1.2 The application of Matlab Neural Network Toolbox 

 The construction of the NARX model was implemented with Matlab Neural 

Network Toolbox. The Toolbox offers a number of tools that make it possible to 

configure (Step 3), train (Step 4) and validate (Step 5) the neural networks. Graphical 

User Interface (GUI) and the command-line functions are two main tools for the 

above tasks. 
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The GUI provides a point-and-click control of the neural network toolbox, 

allowing the users to setup the network structure with little knowledge of 

programming language. With the help of GUI, the users can load the input/output data, 

divide them into three groups respectively for training, validation and testing, and 

change the proportions of the latter two, choose the number of neurons in the hidden 

layer and number of delays in the TDL (i.e. the nu and ny). The default setting for the 

training data proportion is set at 70%. GUI also allows users to visualize the training 

results showing the network response (i.e. the network output) and error (discrepancy 

between the output and the measured output). Furthermore, the GUI can automatically 

generate MATLAB scripts (command lines) that allow the tasks to be modified and 

improved if desired.  

In addition, the command lines can be written manually using the 

command-line function, which gives user more flexibility in terms of choosing certain 

network parameters/functions such as the transfer function, training function, 

performance function etc. To make the best use of these two tools, GUI is normally 

used first to set up the network and automatically generate the scripts as a template, 

and then the command-line function is used to manually modify the scripts to obtain 

the desired network. For the current study, mainly GUI was used. 
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(a) 

 

 
(b) 

 
Figure 5.3 Matlab Neural Network Toolbox GUI 

(a) select the network structure, (b) select the input and output data 
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(c) 

 

 
(d) 

 
Figure 5.3 Matlab Neural Network Toolbox GUI (continued) 

(c) choose percentage for the validation and testing data and (d) choose the number of neurons and delays.  
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Figure 5.3 a-d demonstrate the procedures of creating a NARX model using 

the Matlab GUI. The first step is to choose the desired network structure, three 

structures are available and NARX, as explained previously, is chosen for this study, 

Figure 5.3(a). The time series of the measured and calculated data of various 

parameters, originally stored in Excel files in a matrix format (time-step × number of 

variables), need to be imported to the MatLab. As shown in Figure 5.3(b), they can be 

specified and uploaded as either inputs or target outputs. The user also needs to 

instruct the GUI whether the time-step is represented by the row or the column of the 

matrix by selecting the time series format. Among all the data, 70% (by default) of 

them will be used for model training, the split of the rest of 30% between validation 

and testing can be varied as shown in Figure 5.3(c). Matlab will randomly divide the 

data into the above three groups each time this process is repeated as requested by the 

user. The number of neurons in the hidden layer and the number of delay for both y(t) 

and u(t) in the TDL can then be specified by the user, Figure 5.3(d). The default 

settings of Matlab for above two parameters are 10 neurons and 2 delays respectively.  

A brief description on their setting is given below: 

 Number of hidden neurons 

The determination of the optimal number of the hidden neurons requires a 

trail-and-error approach. The users can change the number and select the one 

that creates the best performance, i.e. with a minimum difference between the 

model output and the measured output. Adding additional neurons to the 

hidden layer will generally increase accuracy but also increase the training 

time, thus a trade-off is needed. Preliminarily observations suggested that the 

Matlab default setting of 10 hidden neurons provided good accuracy for the 

binary ice system under investigation. Increasing the number did not increase 

the accuracy significantly.  

 The number of delays 

The number of delays is determined by the operating characteristics of the 

system regarding the time response of the outputs to the variation of the inputs. 

For binary ice systems, or in general refrigeration systems, the change of the 

dependent parameters, such evaporating temperature, with respect to the 
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variations of control parameters, such as cooling water flow rate is slow. 

Therefore a larger sampling time ∆t can be used, and accordingly only a small 

delay number is needed, as suggested by (Yoon and Lee 2010). Once again, 

preliminary observations indicated that 2 delays were sufficient to give good 

accuracy when compared to 3 or 4 delays. 

In addition, MatLab allows users to choose the transfer function between the 

input and output layers. The default transfer functions, Tan-sigmoid function in the 

hidden layer of a dynamic network, and the Linear transfer function in the output 

layer, are used; as commented by Cybenko (1989) this combination can be used to 

approximate any functional forms. 

5.2 Model training and validation 

Having set up the network architecture, the relevant data can be fed into the 

network for training purpose. This section first explains the data processing and 

training algorithm of the ANN. The control variables which are selected as inputs and 

some of the possible outputs are listed. The results of the NARX model were 

compared with the measured values. 

5.2.1 Data pre-processing  

Measured data are in different value range. When being used as network input, 

large value will saturate sigmoid transfer function, resulting in a very slow training 

progress (Glorot and Bengio 2010). Pre-processing essentially normalise the both 

input and target output data to within [-1, 1] so to avoid saturation of the transfer 

function (Chetouani 2008) thus improving the training efficiency of the network. Post 

processing then transforms the normalised output back to the original data range after 

model training stage to enable user carry out result comparison.  

The data pre-processing is completed by MatLab function mapminmax. The 

normalised value can be calculated as: 

𝑢nor(𝑖) =
2×[𝑢(𝑖)−𝑢max]

𝑢max−𝑢min
− 1 5.2 

where 𝑢(𝑖) is the i
th 

element of the original input/target time series, 𝑢nor(𝑖) is its 

normalised value, 𝑢max is the maximum value of the time series and 𝑢min is the 
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minima value. Both the pre- and post-processing are automatically completed by 

Matlab toolbox. 

5.2.2 Back-propagation training algorithm  

The network training is the procedure of adjusting the weights and bias in 

order to obtain good simulation accuracy. A performance function can be applied to 

assess the network accuracy and the Mean square error (mse) is used in this study, 

defined as: 

mse =
1

𝑁
∑ (𝑦(𝑖) − 𝑎(𝑖))

2𝑁
𝑖=1  5.3 

where 𝑦(𝑖) is the training target, 𝑎(𝑖) is the network predicted output and N is the 

number of time steps in target/output time series. Network training aims at 

minimising the mse. The back-propagation training algorithm (Werbos 1974) is one 

of the most commonly used training and learning mathematical procedure that 

automatically adjusts the weights and biases of the network. Being a back-propagation 

algorithm, the trainlm (Levenberg-Marquardt) algorithm (LMA) (Rumelhart et al. 

1986) is provided as the default training function in Matlab. It is a very fast method, 

suitable for small networks with less than thousands of weights, hence used for this 

study.  

Back-propagation training is an iterative procedure. The training is carried out 

in steps as follows: 

1. Initialized the weights. Some random numbers between [-1, 1] are 

automatically generated by MatLab toolbox to start with.  

2. The weighted input data are forward propagated through the network to the 

output layer to obtain the network outputs.  

3. The outputs are back propagated to the hidden layer to calculate the gradient 

of the weights. 

4. A new weight matrix can be generated by moving the original weights to 

the opposite direction of the gradient. 

5. Use the new weight matrix to replace the original one. Go back to step 2 

and repeat the process. 
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To stop the loop, certain criteria must be fulfilled: i) the value of the 

performance function is smaller than the pre-set goal, ii) the gradient of the weight is 

smaller than a certain number or iii) the performance function fails to decrease in a 

certain number of iterations. If one of the above criteria is achieved, the training is 

stopped and the appropriate weights which can minimize the network error are 

considered found.  

5.2.3 Data management  

Generally speaking, the system parameters can be divided into two groups: the 

control variable and the internal state (dependent) variables. Control variables are the 

independent parameters that can be changed by the user directly and are used as 

inputs to the neural network. Table 5.1 provides a list of the variables and the ranges 

used in the experiments.   

Table 5.1 List of control variables in the binary ice experiments 

Control 

Variable 

Physical Meaning Unit Range 

uice Binary ice volume flow rate L/min 3.5 ~ 11.0 (5 settings) 

uw Cooling water volume flow rate L/min 7.1 ~ 10.8 (4 settings) 

Co Original ethanol solution concentration %wt 10 ~ 20 (5 settings) 

Tw,in Cooling water inlet temperature °C 13.4 ~ 18 

Tice, in Binary ice inlet temperature °C -4 ~ -8 

 

On the other hand, internal state variables which are dependent on the control 

variables can be used as indicators to the system working conditions, representing the 

outputs of the model. They are either directly measured parameters or derived 

performance indexes. Some of the state variables are showed in Table 5.2 and a full 

list will be presented and their relevance for FDD will be examined in Chapter 6. 

Table 5.2 List of internal state variables as the model outputs 

State 

variable 

Physical meaning Unit Formulation 

Tdis Compressor discharge temperature °C Measured 

Te Evaporating temperature °C Measured 

W Electrical power consumption of the compressor kW Measured 

ΔTw Cooling water temperature difference °C Tw,out - Tw,in 

Qc Condenser capacity kW uwρwcpΔTw 

Tc, out condenser refrigerant outlet temperature °C Measured 
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The experimental data used in the network training were collected from the 

test rig described in Chapter 3. All data were recorded with a 10 second interval. 

Altogether about 100 patterns of fault free data were collected, involving 5 input 

parameters and one output for each pattern; each network is designed to handle only 

one output at a time. Typically, each pattern represents 3 on-off cycles of compressor 

lasting about 30 minutes. Out of these 100 patterns, around 75 of them were sent into 

the neural network toolbox for training, testing and validation, and the rest were 

randomly reserved and applied for manual assessment of the model accuracy as 

presented in Section 5.2.4. Majority of the 100 patterns were for “no ice-in but ice-out” 

mode of operation, as previously described in Chapter 3. Any manual start-up and 

shut down data were not used in the model training.  

5.2.4 Results comparison    

This section presents selective data from the primary circuit when applying 

different cooling water and binary ice flow rate, keeping the temperature set points for 

the cooling water and binary ice, as well as the load constant. The influences of the 

variations of the several control parameters on the selected system outputs are 

described. The recorded data are also compared with the NARX model predictions to 

demonstrate the prediction accuracy. 

During the tests, the original ethanol solution concentration remained 

unchanged at 15%wt The temperature of the cooling water was controlled by an 

external cooling unit that was not included in the NARX model, and was set at 15°C 

with a +2°C differential, giving a corresponding actual inlet cooling water 

temperature variation between 13.8 and 17.5 °C in a cyclic manner. The compressor 

was controlled by a thermostat detecting the temperature of binary ice at the ice 

generator inlet, which was set at -7°C with a +2°C differential, corresponding to a 

temperature variation between -7.6 and -5 °C. 
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(a) 

 

(b) 

Figure 5.4 Comparison of NARX model prediction with measurements 

(a) variations of cooling water and binary ice flow rates, (b) comparison of predicted and measured 

evaporating temperature 
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(c) 

 

(d) 

Figure 5.4 Comparison of NARX model prediction with measurements (continued) 

(c) comparison of predicted and measured cooling water temperature difference and (d) comparison of 

predicted and measured compressor power consumption  

 

Figure 5.4a shows three patterns (each lasted about 200 time steps, 

representing about three compressor on-off cycles) of the cooling water and the binary 

ice flow rates which were adjusted. The initial part of the data representing the system 

start-up period was not included. The time step 1 represents the moment when the 

compressor was switched off by the thermostat. The flow rates were kept steady at the 

beginning for around 200 time steps (10s per step), and the cooling water flow rate 

was reduced for the next 200 time steps, followed by a reduction of the binary ice 

flow rate for the last pattern. 

Figure 5.4b, 5.4c and 5.4d compare the predicted parameters with the 

experimental data and good prediction accuracies were obtained in general. Figure 

5.4b shows the prediction of evaporating temperature Te. Regarding the accuracy of 

model prediction, the coefficients of determination (R
2
) is 0.95. Errors mainly occur 
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at the compressor restart point. The cooling water temperature difference ΔTw are 

shown in Figure 5.4c. The predictions of ΔTw had the best accuracy among the three 

parameters showed here, R
2
 is 0.99. In Figure 5.4d compressor power W consumption 

is displayed, showing a residual power rating of about 0.5 kW. The predicted W has a 

R
2 
value of 0.98.  

Overall it can be shown that the ANN NARX for the primary circuit is capable 

of predicting the transient data well with very good accuracy, except when the 

moments when the compressor was cycled on or off.  

5.3 Hybrid model coupling  

As discussed in Chapter 2, both analytical models and black box models have 

their limitations. The above black box model for the primary circuit is easy to setup 

and can provide good simulation results. However, it can only predict the parameters 

that are available from measurements or relatively simple calculations. Due to the 

unavailability of certain measuring equipment in the current project, some parameters 

that are important for FDD were not measured (e.g. refrigerant mass flow rate), and 

due to the unique characteristic of binary ice system, some parameters cannot be 

directly calculated through the measured data (e.g. ice concentration, carrier fluid 

concentration and ice generator cooling capacity).  

In practice it is also unlikely that a refrigeration system will have flow meter 

to measure the refrigerant flow rate or will have a calibrated conductivity meter to 

monitor the solution concentration in real time. These parameters are all related to 

binary ice system performance/operation and can be potentially used as FDD 

parameters. Therefore, a pure black box model to include both the primary and the 

secondary circuits may not have sufficient numbers of output for FDD purpose, thus a 

hybrid model coupling a black box model with an analytical model is proposed in this 

study.   
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Generally, when coupling two models together, it involves identifying the 

following:  

1.  The models to be coupled 

2.  The coupling interface 

3.  The relevant control and dependent variables (i.e. the inputs and outputs 

parameters respectively) 

For the current project, the two models involved are an analytical SSIG model 

and a NARX model for the primary refrigerant circuit of the system. The coupling 

interface is taken as the physical interface where the primary and secondary 

refrigerant circuits are linked, i.e. the entries to the ice generator for both the primary 

refrigerant (Te) and the binary ice (Tice,in).  

There are two ways to couple the two models. The first was by sharing their 

inputs. The parameters describing binary ice status, which are the original solution 

concentration Co, the inlet temperature Tice,in and the volume flow rate uice, are fed into 

both models as inputs, because they are linked to the operation of both primary and 

secondary circuit directly. 

The second way is to loop an output from one model to become an input of the 

other. During the development of the SSIG model, an assumed evaporating 

temperature was employed as a model input. However, Te is a function of the load for 

a given system, and therefore it is an output parameter of the primary circuit. As a 

result, the two models are coupled by using the Te from the ANN of the primary 

circuit as an input to the mathematical model of the SSIG. 

Occasionally, the calculation of certain parameter requires outputs from both 

of the models. For example, to calculate system COP, the evaporator capacity and the 

compressor power consumption are needed. So W is also sent to the analytical model 

as a coupling parameter. The coupled model is shown in Figure 5.5.  

The main benefits of adopting the loop approach are: 1. The model is now 

capable of predicting some un-measurable variables, such as COP which could be an 

index for FDD. 2. The robustness and performance of the resulting FDD technique 

can be improved, as some of the SSIG model inputs are taken from the ANN model 

instead of from the sensors, such as Te and W. This is because in order to obtain the 
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fault free predictions for FDD, the inputs to the SSIG model need to be fault free as 

well. When a fault occurs, if the SSIG model takes the measured faulty Te and W as 

inputs, its outputs cannot be regarded as fault-free, thus they are not capable of being 

applied as benchmarks for fault detection. Instead, the Te and W predicted by the 

ANN model are fault-free even under faulty conditions. When they are fed into the 

SSIG model, fault-free predictions can be made. 

Therefore, combining the analytical SSIG model with the NARX black box 

model is expected to give a better accuracy when compared to a full analytical model.  

 

Figure 5.5 The coupling of SSIG and ANN model  
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5.4 Results and discussion  

The output data of the hybrid model could be divided into two groups, one 

was directly from the ANN model (e.g. Te, Qc, Tdis, etc.) and the other group was from 

the analytical model (e.g. Tice,out and Cice,out). The validations of the former were 

discussed in Section 5.2.4 and this section only discussed the validation of the second 

group. 

 

(a) 

 

(b) 

Figure 5.6 Hybrid model prediction validation, (a) comparison of predicted and measured binary ice outlet 

temperature, (b) comparison of predicted and derived (from measurement) outlet ice concentration  

 

Figure 5.6 presents sample results of the hybrid model. The data was taken 

from the same tests described in Section 5.2.4. The predicted evaporating temperature 

showed in Figure 5.4b was used as input to the analytical mode. Figure 5.6a displays 

both predicted and measured temperatures of binary ice at the outlet of the ice 

generator, Figure 5.6b presents the corresponding ice concentrations. When the 

compressor was off, cooling capacity was very close to zero, therefore no ice was 

produced. The binary ice outlet temperature increased significantly until it reached the 

high setting of the thermostat and triggered on the compressor. Then the binary ice 
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temperature dropped below its freezing point instantly. During the cooling process, 

the ice concentration raised steadily, while the temperature decreased in a small range 

along with the cooling capacity.  

The coefficients of determination of the hybrid model outputs for the binary 

ice outlet temperature and ice concentration were 0.82 and 0.83 respectively, which 

were lower compared to the corresponding R
2 
of the analytical model (0.85 and 0.90 

respectively). However, when both models were validated using data taken from a 

reduced cooling water flow tests, the R
2 

values for the analytical model dropped to 

0.78 and 0.75 (reasons as explained in Section 5.3), whereas the R2 values stayed the 

same for the hybrid model. Therefore, it would appear reasonable and logical to use 

the hybrid model to generate fault free predictions.  
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6. Faults detection and diagnosis 

This chapter will first analysis the influence of the selected faults on various 

parameters of the binary ice system. This is followed by a discussion on how the 

parameters, including several derived ones such as the cooling capacity of the SSIG, 

are identified to allow comparisons between predicted and measured/derived values, 

for the purpose of generating residuals. The sensitivity of the parameters to different 

faults will be examined.  

Next, appropriate thresholds of the residuals to distinguish a faulty condition 

from a normal one are determined. A control chart algorithm, i.e. CUSUM test (Page 

1954; Hinkley 1971; Basseville 1986; Schein and House 2003), is applied here for the 

dynamic fault detection. A rule based algorithm is then set up for the fault diagnosis. 

The latter aims at reducing the number of sensors needed to a practical minimum 

while being able to diagnose faults in an efficient way.  

Most existing FDD methods only focused on single fault detections. However 

multiple faults could take place at the same time, and this makes FDD more 

challenging. Some studies on multiple faults are to be included in this research to 

highlight some of the technical challenges such as establishing whether more than one 

fault exists. In addition to single fault analysis, three sets of double faults were 

considered: a set which consists of two randomly chosen faults, a set in which two 

faults appear to have opposite effects on certain parameters and a final set in which 

the faults will have similar impacts on certain system parameters.  

6.1 Faults and their influences on the binary ice system behaviour  

In order to detect a fault, the impacts of the fault on the system 

behaviour/performance must be examined systematically and carefully. Prior to 

attempting a fault detection, there must be a clear definition of the ‘fault-free’ 

condition. Table 6.1 lists selected faults and the settings of the relevant control 

variables used in the tests. When the system is running with the nominal design values, 

the system is defined as fault-free, while all other combinations of values represent 
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some kind of faults, except that both the load and the cooling water temperature were 

fixed in the study.  

The levels of the faults are differentiated by the degrees of deviation of the 

actual values from the nominal ones; a larger deviation suggests a more severe fault 

(i.e. a higher fault level, e.g. Level 3 for cooling water flowrate reduction). Three 

levels of faults had been introduced for cooling water and binary ice flowrate 

reduction, while two levels of faults had been simulated for either the solution 

concentration increase or decrease. As for the scraper fault, both the scenarios of a 

completely broken blade (i.e. only one blade left for providing the scraping action) 

and the scraper motor failure were considered in this study.  

Table 6.1 Values of the control variables under both fault-free and various levels of faulty conditions 

Fault Control variable 

Nominal 

Value 

(normal 

operation) 

Severity Level 

1 2 3 

Cooling water flowrate 

reduction 

Cooling water 

flowrate V2 

10.8 l/m 9.6 l/m 8.1 l/m 7.0 l/m 

Binary ice flowrate 

reduction 

Binary ice flowrate 

V1 

9 l/m 7.5 l/m 6.3 l/m 5.2 l/m 

Solution concentration 

increase 

Initial solution 

concentration Co 

15% wt. 17.5% 

wt. 

20% 

wt. 

- 

Solution concentration 

decrease 

Initial solution 

concentration Co 

15% wt. 12.5% 

wt. 

10% 

wt. 

- 

A broken SSIG scraper  Experimentally 

simulated by 

switching on/off the 

scraper motor at a 

fixed time intervals 

motor 

always on 

Only one completely broken 

blade is considered and was 

simulated by 20/20 seconds 

on/off cycles.  

 

Scraper motor failure Stop the motor Motor on Motor off 

 

Figure 6.1 demonstrates the mechanism of residual generation. The nominal 

values of the control variables in Table 6.1 are used as default parameters and 

conditions of the hybrid model. The corresponding outputs represent the fault-free 

predictions; the validations have already been shown in Chapter 5. They will then be 

compared with either the direct measured parameters or the parameters derived from 

the sensor measurements.  
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Figure 6.1 The generation of residuals 

Table 6.2 listed some of the derived parameters which have been commonly 

applied by other researches in chiller FDDs. It is worth noting that only the ones that 

can be determined by simple calculations are listed in the table. Other parameters such 

as the solution concentration and ice concentration at the outlet of the SSIG need to be 

obtained using the analytical model. Other direct measured parameters have already 

been listed in Chapter 4. The table also includes the estimated errors/uncertainties of 

the derived parameters, as calculated by the error propagation equation (Clifford 

1973). Taking a derived parameter N = f(a, b, c, …) for example, where a, b, c,… are 

independent measurements, its absolute error |∆𝑵| can be expressed in Eq. 6.1, as 

|∆𝑁| = |
𝜕𝑓

𝜕𝑎
| ∆𝑎 + |

𝜕𝑓

𝜕𝑏
| ∆𝑏 + |

𝜕𝑓

𝜕𝑐
| ∆𝑐 + ⋯                         6.1 

where ∆𝑎, ∆𝑏 and ∆𝑐 are the absolute errors of the measurements a, b and c 

respectively. These errors are needed for the calculation of the sensitivity factor in 

Equation 6.2. 

 

  

Nominal 

setting 
Hybrid 

model 

Fault-free 

predictions 

Sensor 
measurements 

Residuals 

Analytical 

model 

Derived 

parameter 

Sensor 

measurements + 

Measured 

parameter 
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Table 6.2 Errors of derived parameters 

Parameter Equation Estimated Error 

Degree of superheat (°C), ΔTsh TR2 - Saturation temperature ± 2.5 ˚C 

Binary ice temperature 

difference (°C), ΔTice 
TB1-TB2 ± 1 ˚C 

Degree of sub-cooling (°C), 

ΔTsc 
Saturation temperature - TR6 ± 2.5 ˚C 

Degree of discharge super heat 

(°C), ΔTsh,dis 
TR5 - Saturation temperature ± 2.5 ˚C 

Condenser cooling water 

temperature difference (°C), 

ΔTwater 

TW2-TW1 ± 1 ˚C 

Condenser capacity (kW), Qc 
V2ρwCpw(TW2-TW1) ± 0.9 kW  

 

Table 6.3 Observed dynamic variations of evaporator and condenser parameters under faulty conditions 

with the corresponding sensitivity factor in brackets 

                  

Fault 

 

Parameter   

Binary ice 

reduction 

 (Level 3) 

Cooling 

water 

reduction 

(Level 3) 

Solution 

concentration 

increase  

(@20% wt) 

Solution 

concentration 

decrease 

(@12.5% wt) 

A broken 

scraper 

(motor off 

time 50%) 

Scraper 

motor 

failure 

E
v
ap

o
ra

to
r 

Te [°C] 
On ↓(-1.2) ↓↓(-4.9) ↓↓(-5.3) - ↓↓(-4.3) ↓↓(-8.3) 

Off - ↓↓(-5.6) ↓↓(-5.1) - ↓↓(-3.0)  

ΔTsh [°C] 
On - ↓↓(-0.3) - - ↓(-0.2) ↑↑(0.3) 

Off - ↓(-0.8) ↓(-0.8) ↓(-1.2) -  

pe [bar] 
On ↓(-0.2) ↓↓(-0.8) ↓(-0.7) - ↓(-0.7) ↓↓(-1.5) 

Off ↓(-0.06) - - - -  

Qe [kW] 
On ↓↓(0.3) - ↓(0.6)  ↓↓↓(0.4) ↓↓(0.2) 

Off - - ↓  -  

C
o
n
d
en

se
r 

ΔTsh,dis 

[°C] 

On ↑↑(0.8) ↑↑↑(2.4) ↑↑(0.7) ↑↑(3.6) ↓↓(-1.1) ↓↓↓(-4.6) 

Off - ↑(0.9) - ↑↑(1.9) -  

Tc, out [°C] 
On ↑(0.4) ↑↑(5.7) ↓(-1) ↓(-0.4) ↓(-1.0) ↓↓(-5.3) 

Off ↓(-1.6) ↑(2.9) ↓(-3.3) ↓(-2.2) ↓(-1.4)  

ΔTsc [°C] 
On - ↑↑(0.3) - - ↓↓(-0.2) ↓↓↓(-1.3) 

Off - - ↑↑(0.07) ↑(0.3) -  

ΔTwater 

[°C] 

On - ↑↑(2.6) ↓(-1.0) ↓(-1.2) ↓(-0.5) ↓↓(-2.5) 

Off - ↑↑↑(0.7) - ↓(-0.1) -  

pc [bar] 
On - ↑(4.9) ↓(-0.4) ↓(-0.2) ↓(-1.4) ↓↓(-6.9) 

Off - ↑(1.3) ↑(0.4) ↓(-0.4)   

Qc [kW] 
On - ↓(-0.4) ↓(-0.2) ↑(0.02) ↓(-0.3) ↓↓↓(-1.0) 

Off ↓↓(-0.05) ↑↑(0.1) - -   
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Table 6.4 Observed changes in the average values of compressor & system and ice generator parameters 

under faulty conditions with corresponding sensitivity factor in brackets 

               

Fault 

 

Parameter       

 

Binary ice 

reduction 
 (Level 3) 

Cooling 

water 

reduction 
(Level 3) 

Solution 

concentration 

increase  
(@20% wt) 

Solution 

concentration 

decrease 
(@12.5% wt) 

A broken 

scraper 

(motor off 
time 50%) 

Scraper 

motor 
failure 

C
o
m

p
re

ss
o
r 

&
 s

y
st

em
 

Tdis[°C] 
On ↑↑(0.8) ↑↑(19.0) ↑(2.6) ↑↑(17.7) ↓(-7.8) ↓↓(-34.9) 

Off - ↑(7.5) - ↑(8.6) ↓(-1.6)  

W [kW] 
On - ↓(-5.7) ↓(-9.8) ↓(-15.6) ↓↓(-33.2) ↓↓(-45.8) 

Off - - - - -  

COP 
On ↓(0.3) ↓(0.2) ↓(0.5) ↓(0.8) ↓↓(1.3) ↓↓(1.6) 

Off ↓(0.1) ↓(0.2) ↓(0.2) - - - 

Duration* 

(s) 

On ↑ ↑↑ ↑ ↑ ↑↑ N/A 

Off ↑ - - - - - 
Total ↑ ↑ ↑ ↑ ↑↑ - 

Ic
e 

g
en

er
at

o
r 

Tice,out[°C] 

On ↓(-0.5) - ↓↓(-3.6) ↑↑(2.4) ↑(1.2） ↑↑↑(7.7) 

Off ↓(-1.0) - ↓(-0.8) ↑(0.3) - - 

Tice,in[°C] 
On - - - - - ↑↑(3.6) 

Off - - - - - - 

ΔTice[°C] 
On ↑↑(0.4) - ↑↑↑(1.75) ↓↓(-1.3) ↓↓(-0.4) ↓↓↓(-2.0) 

Off ↑↑↑(0.4) ↑(0.08) ↑↑↑(0.4) ↓↓(-0.2) - - 

Cout[%wt] 
On ↑(0.4) - ↑↑05.8) ↓↓0-3.3) ↓(-0.8) ↓(-0.8) 

Off - - ↑↑f6.9) ↓↓9-3.1) -  

Cice, out 

[%wt] 

On ↑↑(0.2) - ↓↓(0.6) ↑↑(0.3) ↓↓↓(-0.3) ↓↓↓(-0.3) 

Off - - - - - - 

*Same durations are observed for all the parameters listed in Tables 6.3 and 6.4.  

 In Table 6.3 and Table 6.4 the changes in the average values during both the 

compressor on- and off-cycle durations, as well as the sensitivity factors (in brackets) 

of certain derived and measured parameters under the five specified faulty conditions 

are presented. The parameters are separated into 4 groups, relating to the evaporator, 

condenser, compressor & system level and the binary ice generator respectively. The 

relative impacts on the parameters are illustrated qualitatively by the direction and the 

number of the arrows, whilst a “-” represents no noticeable changes; essentially the 

larger the numbers of arrows, the greater the percentage changes of the parameters 

caused by the faults.  

 In general, parameters with large percentage changes are chosen to be employed 

for fault detection. However, for certain parameters that have small absolute values, a 

small change in their value would lead to a large percentage variation. These small 

changes in certain occasions could be even smaller than the measurement 

uncertainties/errors, making the detections of the associated faults difficult should 

they be chosen as a possible detection parameter. Particularly in the current research, 



140 

 

 

the value of the binary ice temperature difference (ΔTice) is small (typically ~2 °C). A 

residual (~ 0.4 °C) caused by a small fault could lead to a large percentage change (i.e. 

3 arrows). With a measurement uncertainty of ± 1°C for ΔTice, this suggests that the 

residual of ΔTice is not significant enough to indicate a fault, and more importantly 

percentage changes may not be an appropriate indication whether a parameter is 

suitable or not to be used for FDD. 

Instead of using the percentage changes, the sensitivity factor S (Comstock et 

al. 2002a) is considered a more appropriate indication; it is essentially a 

signal-to-noise ratio, as expressed: 

𝑆 =  
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑡 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑓𝑎𝑢𝑙𝑡 𝑙𝑒𝑣𝑒𝑙

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦/𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
 6.2 

The corresponding sensitivity factors are also presented in Tables 6.3 and 6.4. 

The uncertainties needed in the calculations were taken from Table 3.3 in Chapter 3 

and Table 6.2. A large sensitivity factor means that the given parameter is more 

sensitive to the occurrence of the fault; therefore, it is more likely to be selected to 

detect the fault.  

 The influences of the above listed parameters to individual selected faults are 

examined below.  

 The binary ice flowrate reduction  

 The temperature difference of the secondary fluid is one of the most common 

parameters used in detecting a secondary flow reduction according to published 

literatures. However, in the current study, the change of binary ice temperature 

difference (ΔTice), i.e. the residual, is very small (0.4 °C, even for the severity Level 3). 

Combining with the uncertainty in the temperature measurement, the resulted small 

sensitivity factor of 0.4 suggests indeed that it is not suitable for fault detection. 

Contrary to the conventional chiller behaviour, most of the parameters do not seem to 

have significant variations (sensitivity factor mainly ranging from -0.5 to +0.5) under 

the reduced binary ice flowrate, with only three exceptions observed to have a 

relativity large sensitive factors during the compressor on cycle; these are the 

evaporating temperature (-1.2), the discharge super heat (0.8) and the discharge 

temperature (0.8).  
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 Cooling water flow reduction 

A reduction in cooling water flow rate is known to have larger influences on 

the parameters on the condenser side rather than on the evaporator side, regardless 

whether it is a binary ice system or a chiller, suggesting similar FDD approaches 

could be adopted. The experimental observations showed a good agreement with 

other researchers in terms of response behaviour. It is noted that the cooling capacity 

stays constant when the cooling water flowrate drops. This is because the condenser is 

oversized; it is adequate to remove the heat absorbed by the evaporator even under a 

reduced flowrate. Most of the condenser parameters are sensitive to the change of 

cooling water flowrate, with sensitivity factors ranging from -5.7 to 19, suggesting it 

has a large impact on the discharge temperature (Tdis) and the power consumption of 

the compressor (W).  

 Initial solution concentration increase or decrease 

The change of initial solution concentration has influences on many 

parameters of both the primary and the secondary side of the system, as shown in 

Tables 6.3 and 6.4, respectively. In general, one would expect the influence on certain 

parameters due to concentration increase is the opposite of that caused by a 

concentration reduction, as reflected by the parameters associated with the ice 

generator in Table 6.4. However, from a closer examination of Tables 6.3 and 6.4, 

some of the parameters have the same directional changes at certain concentrations 

both below and above the nominal concentration at 15% wt. For instant, the Tdis was 

found to increase when the solution concentration is raised from 15% to 20% as well 

as when the concentration is reduced from 15% to 12.5%. This could be explained by 

the fact that when the solution concentration is increased up to a particular level, no 

ice can be produced, assuming the set point remained unchanged; the SSIG essentially 

behaves like a chiller. This obviously affects how certain parameters vary.  

In addition, if the solution concentration drops too much, then for a given 

temperature set point, the compressor will never cycle off and ice will be continuously 

produced. Eventually, there will be an ice-in and ice-out mode of the SSIG operation 

and the ice concentration will continue to increase and the flow to drop, leading 

eventually to a flow stoppage. This is encountered when the solution concentration is 

dropped to 12.5%wt. To avoid the flow stoppage, the measurements were made by 
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resetting the set point from -5 °C to -3 °C, and this could result in some of the 

variation patterns noted.  

Furthermore, based on the sensitivity factor, it was also observed a parameter 

suitable for detecting a concentration decrease may not be suitable to detecting an 

increase, depending on the magnitudes of the concentration changes, e.g. ΔTsh,dis. 

 Broken scraper and motor failure 

The SSIG used in this study has two spring loaded blades 180° apart. There 

are several possible cases regarding blade breakage/operation. 1) One blade is either 

partially or totally broken, leaving part of the surface scraped with half of the scraping 

frequency by the other blade. This is likely to occur at the outlet end of the SSIG as 

the blades are subject to more mechanical wear and tear. 2) There could be problems 

with the spring loading/setting which causes the blades to loss physical contacts with 

the inner surface of the SSIG resulting in a permanent thin layer of ice between the 

scraping blades and the surface. Binary ice can still be produced if the gap between 

the blades and the inner surface is small. However, in an extreme condition, the gap 

may become too large for the ice thickness to fill depending on the Te, resulting in no 

scraping action at all and the binary ice production ceases. 3) Both blades are 

completely broken with no scraping action at all. This is expected to have, to a large 

extent, a similar consequence as having a very large gap in the second case. 4) 

Scraper motor failure in which the blades are not rotating; this is also expected to 

produce similar results as Case 3, though in this case, the agitation caused by any 

rotating elements within the SSIG would be completely absent.  

Essentially all the above cases can be divided into two situations: one still has 

binary ice production capability and the one without. As previously mentioned, only 

two scenarios involving (i) a completely broken blade (i.e. only one blade left for 

providing the scraping action) and (ii) the scraper motor failure are considered in this 

study; the former represents a fault with binary ice production and the latter without.  

In the present setup, it is practically difficult to take out any blades from the 

SSIG, and thus an approach was “invented” to experimentally simulate scenario (i), 

i.e. a completely broken blade, by switching the SSIG motor according to certain 

on/off schedules, e.g. a complete breakage of one blade could be achieved by 
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switching periodically half of the motor time off. The feasibility of this idea or the 

validity of this logic could be assessed by first obtaining some analytical results 

reflecting the above scenario, and comparing with measured results. Some 

representative analytical results are presented in Figure 6.2 and Figure 6.3.  

 

Figure 6.2 Simulated binary ice outlet temperature under fault free and one broken blade conditions 

 

Figure 6.3 Simulated binary ice outlet ice concentration under fault free and one broken blade conditions 

 

The mathematical simulation of scenario (i) was performed under some initial 

assumptions. First, both the evaporating temperature and the compressor cycle 

duration remained unchanged, not influenced by the faults. In reality, the Te is 

expected to be lower than the fault-free value due to the increased thermal resistance, 

and the cycle duration is expected to increase due to reduced system capacity. 

However, it is possible to refine/improve the simulation at a later stage by using the 

measured values of Te and cycle duration. Second, no partial blade breakage is 

encountered. In Figure 6.2 and Figure 6.3, the simulated outlet temperature and ice 

concentration of the binary ice mixture over 3 cycles are presented for fault free and 
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faulty operations. The faults were introduced at the start of the second cycle. The 

same fault free measured parameters (i.e. evaporation temperature, initial solution 

concentration and binary ice flowrate) are used as inputs for the simulation.  

It can be seen that at the beginning of the second cycle when the compressor is 

off (~time step 57 to 85), the fault has no influence on the outlet conditions of the 

binary ice. When the compressor is re-started at time step of around 86, the fault 

results in a higher temperature and a lower ice concentration respectively, relative to 

the fault free condition. This is due to a thicker ice layer cumulating on the SSIG 

inner surface, thus increasing the overall thermal resistance. The temperature 

differences between faulty and fault free conditions are rather small (~ 0.2 °C).  

For the comparison, four tests were carried out with different off/on schedules 

of the blade motor including 10s/30s, 20/20, 10s/10s, and 30/30. The intervals are 

chosen as a compromise between not too long to protect the blade and not too short to 

protect the blade motor. The results of Test 1 and 2 are presented in Figure 6.4, as 

they both have the same total motor off/on cycle duration of 40 seconds.  

  



145 

 

 

 

(a) 

 

(b) 

Figure 6.4 Measured output of the faulty blade Tests 1 and 3. (a) binary ice temperature at the SSIG outlet, 

(b)ice concentration at the SSIG outlet.  

 

In Figure 6.4, three compressor cycles are shown. The first cycle is fault free, 

with the blade motor rotating all the times. The second cycle is for Test 1 (i.e. 10s 

on/30s off) and the third cycle is for Test 3 (i.e. 10s on/10s off). The periodic off/on 

switching of the blade motor resulted in the oscillations of the binary ice outlet 

temperature as well as the ice concentration. When the blade is stopped, no scraping 

was taken place, the ice accumulated on the surface increased the thermal resistance. 

In addition, the lack of agitation reduced the heat transfer coefficient significantly, 

hence an increase in the outlet temperature of the binary ice due to reduced cooling 

and a decrease in the ice concentration. As the blade stopped for a longer duration in 
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test 3, the outlet temperature of binary ice is higher than in test 1, and as expected the 

magnitudes of oscillations of the two parameters are much bigger too.  

The measured (oscillating) results cannot be directly compared with the results 

in Figure 6.2 and Figure 6.3, nor can they be used directly for fault detection, as they 

are generated in a unique experimentally simulated condition. Therefore, an 8-point 

average is used to obtain the “modified” measured results as the orange lines shown in 

Figure 6.4a and Figure 6.4b; it is clear they share a very similar trends with the 

previous mathematical simulations (Figure 6.2 and Figure 6.3) for a broken blade, i.e. 

the average binary ice outlet temperatures are higher and the corresponding ice 

concentration is lower than the fault free values. Therefore, one could argue that the 

motor on/off switching method can be interpreted as an alternative way to 

experimentally create a broken blade scenario, but it is necessary to establish an 

appropriate off/on schedule as well as a suitable total duration. 

 

  



147 

 

 

 

(a) 

 

(b) 

Figure 6.5 Measured output of the faulty blade Test 3, 4 and 2 a) binary ice temperature at the SSIG outlet, 

b)ice concentration at the SSIG outlet  

 

Figure 6.5 demonstrates the SSIG outlet binary ice temperature and the ice 

concentration for again three compressor cycles (time step 1~73, 74~160 and 

161~253). The SSIG blade motor off/on schedules (Test 3: 10s/10s; Test 4: 30s/30s; 

Test 2: 20s/20s respectively) are all having the same 50% off/on proportion but with 

different total cycle durations from 20s to 60s. It can be seen that the compressor stays 

on for a longer time when the motor off/on switching is less frequent (i.e. Test 4), and 

at the same time, the binary ice temperature rose and its ice concentration dropped 

when compared to a more frequent off/on schedule (i.e. Test 3), as a result of the 

increased thermal resistance. As expected, the magnitudes of the oscillations also 

became larger when the motor overall cycle duration is increased. In general, it is 
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observed that while keeping the same off/on proportion, an increase in total motor 

off/on duration has a very similar effect as increasing the off duration proportion 

while keeping the total cycle duration unchanged.  

When choosing the appropriate blade motor off/on schedule, all the modified 

test results are compared with the mathematical simulations in Figure 6.2 and Figure 

6.3. The simulations shows that the increase in the binary ice temperature when the 

one of the blades is broken is rather small, which should also be reflected closely by 

the modified measured results. Among all the tests, the 10s/10s and 10s/30s motor 

schedules appear to be suitable in terms of the magnitudes of changes. However, as 

the motor switching was carried out manually, it is practically difficult to have 

accurate switching timing when involving short switching intervals such as 10s, 

causing irregular oscillation pattern as seen in the first cycle in Figure 6.5 and also 

leading to rather unstable moving point averaging. As a result, the 20s/20s schedule 

was chosen as a compromise between having a close match with simulated results and 

avoiding irregular oscillations. When analysing the measured data in Figure 6.5, 2- to 

12-point moving averages have been trialled and the best fitted curves are chosen for 

individual off/on schedules. Therefore, in this study, a broken blade fault is to be 

experimentally simulated by switching the blade motor with an off/on schedule of 

20s/20s coupled with an 8-point moving averaging.   

 

 

Figure 6.6 Variation of some of the parameters in the binary ice system after a SSIG blade motor failure 

 

Blade motor failure 
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For the blade motor failure (scenario ii), the hard fault can be experimentally 

simulated by switching off the scraper motor thus stopping all scraping actions. (Note: 

the motor must not be switched back on until all the ice has melted to avoid blade 

damage!). During the test, the system was allowed to run for at least a complete 

compressor cycle under fault-free condition before a scraper motor failure occurred 

(by turning off the blade motor) in order to generate a set of fault free measurements 

for comparison purpose. Figure 6.6 demonstrates the change of the binary ice outlet 

temperature, evaporating temperature and the cooling water temperature difference, 

before and after the motor failure which took place at time step 108, i.e. near the 

middle of the second compressor on-cycle.  

When the ice thickness gradually built up after the blades had been stopped, 

the cooling capacity of the system momentarily dropped below the 2 kW heater load 

inside the tank. Therefore the outlet solution temperature of the SSIG kept increasing, 

though the rate of its increase is decreasing, and the compressor stayed on all the 

times as it was not capable of bringing down the solution temperature in the tank to 

the set point. The temperature difference between the evaporator and the solution 

gradually increased to restore the thermal equilibrium between the load and capacity. 

Therefore, the binary ice outlet temperature would eventually be stabilised at a higher 

temperature (around 10 °C) and the ice thickness inside the SSIG would stop 

increasing. 

It appears that several parameters could be used to detect this fault. The 

evaporating temperature decreased to below its normal operating temperature of 

around -20 ºC to -27 ºC. The cooling water temperature difference also dropped by 

about 5 ºC, as less heat was rejected by the condenser under the reduced cooling 

capacity. The variations of some other parameters under this fault are also included in 

Table 6.3 and 6.4; as observed, many of them are very sensitive to this fault, so it 

would be detected relatively easily. 

It is clear from Table 6.3 and 6.4 that how individual faults influence the 

system parameters differently. For binary ice flow reduction, the most sensitive 

parameters are the discharge temperature and the evaporating temperature. For 

reduced cooling water flow, its temperature difference between the condenser inlet 
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and out let, as well as the capacity of the condenser, are the most influenced. As a 

result, it is possible to find a unique pattern for each kind of fault.  

6.2 Development of the fault detection approach  

In order to detect a fault, three main tasks are involved, as presented in the 

following sub-sections. First is to find out the suitable parameter(s) that can be 

applied as the fault indicators. This step is closely related to the influences of the 

faults on various system parameters discussed in the previous section and will be 

described in Section 6.2.1. Second is to monitor the residuals of the chosen 

parameters; a monitoring method called CUSUM test (Page 1954) is used for the 

dynamic FDD of the binary ice system in this study, as presented in Sections 6.2.2 

and 6.2.3. The final task (Section 6.2.4) is to determine the appropriate threshold that 

triggers the fault alarm; a demonstration on the application of CUSUM test is also 

given. 

6.2.1 Selection of fault detection parameters 

 The selection of the parameters used for fault detection was based on Table 

6.3 and Table 6.4. In an ideal situation, one would like to identify a single parameter 

that is sensitive to all of the selected faults, thus reducing the complexity of the fault 

detection process. In order to reduce the detection time, this parameter should also be 

sensitive to the fault regardless whether the compressor is running or not. In reality, 

one would try to employ as few as practically possible the number of parameters 

needed. 

 Among all the parameters listed in Table 6.3 and Table 6.4, the evaporating 

temperature Te is noted to be sensitive to all the specified faults, during the 

compressor on-cycle. Additionally, the condenser cooling water temperature 

difference ΔTwater was selected, due to the fact that most of the faults, except binary 

ice flow reduction, were found to have an influence on it even during the compressor 

off-cycle. Unlike some of the previous works where the temperature difference of the 

secondary fluid was applied as fault indicator (Rueda et al. 2005; Ertunc and Hosoz 

2006), the binary ice temperature difference in this study would not be suitable as 

reflected by its low values of sensitivity factor for most of the faults. Therefore it is 

not suitable to be selected as a fault detection parameter.  
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Having identified the two parameters for fault detection (Te and ΔTwater), the 

detection relies on the monitoring of their residuals as a function of time. Several 

different kinds of methods for detecting changes have been developed by previous 

researches, e.g. generalized likelihood ratio (Willsky and Jones 1976), statistical 

process control (Oakland 2008), filtered derivatives detectors (Basseville and 

Benveniste 1983), etc. Basseville and Benveniste (1983) compared some of the 

techniques and concluded that the CUSUM test is one of the best for dealing with 

noise/disturbance in the signal for the following reasons. 

1.  Optimality of minimizing the delay for detection for a fixed false alarm rate 

2.  Robustness to disturbance and noise, especially when the noise to signal ratio 

increases  

3.   More efficient in tracking changes in the relevant parameters. 

Other researchers including Box and Ramirez (1992) and Basseville and 

Nikiforov (1993) had further improved the CUSUM test in terms of robustness and 

fault detection speed. Chetouani (2008) had successfully demonstrated its application 

in real-time process monitoring of a dynamic FDD system. Therefore, in this study 

CUSUM test is applied. 

6.2.2 CUSUM test 

CUmulated SUM (CUSUM) test is a statistical quality control method applied 

in sequential analysis (Chetouani 2008). It aims to detect the changes in the mean of a 

time series prediction y(t), as in the case of dynamic system modelling. In fault 

detection, it is often used as a part of the real time detection tool to track the changes 

of the residuals (Schein and House 2003). The reasons that the CUSUM test was 

involved in addition to directly employing the residuals are 1) to reduce false alarm 

rate and 2) to enlarge the deviations between the measured and the predicted values 

by accumulating their differences. 

The residual between the measured and predicted parameters should be in 

theory very small under fault free conditions. However, any noises, disturbances, 

measurement and modelling errors may increase the residuals even under fault free 

conditions and this would cause a false alarm depending on the threshold setting. 

CUSUM test serves to reduce the frequency of the false alarm.  
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In a fault detection scheme, the residual r(t) between the measured and the 

predicted parameters is defined as: 

𝑟(t) = 𝑦(t) − 𝑦̂(t) 6.3  

where y(t) is the measured parameter and 𝑦̂(t) is the fault free prediction, r(t), y(t) 

and 𝑦̂(t) are all time series. Meanwhile, the residual r(t) can also be expressed as 

𝑟(t) = 𝜇(t) + 𝜀(t) 6.4 

where 𝜀(t) is the Gaussian noise with variances of 𝜎2and 𝜇(t) is the mean value 

defined by 

𝜇(t) = {
𝜇0   if t ≤ 𝜏 − 1
 𝜇1   if t ≥  𝜏       

     6.5 

A fault occurred in the system at the 𝜏th
 time step. µ0 is the mean value of the 

residual before the fault and µ1 is the mean value after the fault. It is assumed that 

only the mean values of the residuals are changed due to the fault and the fault has 

little influence on the noise levels. In practice, µ0 is usually known from fault free 

residual data analysis.  

The method aims at detecting a possible jump of ± ½δ on either side of the 

mean value µ0, where δ is a pre-specified threshold, namely an increase to (µ0+δ/2) or 

a decrease to (µ0-δ/2), and two separate conditions for triggering the alarm can be 

applied: 

For an increase in the mean value of the residual, 

𝑈0 = 0  

𝑈𝑛 = ∑  𝑦(t) − (𝜇0 +
𝛿

2
) 𝑛

𝑡=1  

𝑚𝑛 = min(𝑈𝑡) (1 ≤  t ≤ 𝑛)  

Alarm when 𝑈𝑛 −𝑚𝑛 >  

 

 

6.6 
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and for a decrease in the mean value of the residual, 

𝑇0 = 0  

𝑇𝑛 = ∑  𝑦(t) − (𝜇0 −
𝛿

2
) 𝑛

𝑡=1  

𝑀𝑛 = max(𝑇𝑡) (1 ≤  t ≤ 𝑛)  

Alarm when 𝑀𝑛 − 𝑇𝑛 >  

 

where Un and Tn are the cumulative sums for the increase or decrease of the mean 

value and  is the statistical threshold. The selection of δ is usually related to the 

standard deviation of the data set under fault free condition and  can be chosen based 

on the desired detection speed and the false alarm rate (Chetouani 2008). 

 In order to understand the applications of CUSUM test and the interpretation 

of the results from the current dynamic on-off cycles, some artificially predicted and 

measured parameters are generated so that the exact characteristics of the residual 

patterns can be studied and understood.  

Six different cases are examined representing various combinations of fault 

free and faulty conditions; each case, all having the same step function, consists of 6 

cycles of a predicted parameter, say temperature values, i.e. 15 data points at 5 °C and 

10 data points at 0 °C, to represent the on-off nature of the binary ice system, as 

shown in Figure 6.7. The individual patterns of the measured values are described as 

follow and it is believed that they cover all the likely combinations of possible 

scenarios of residual variations. The corresponding average values of the residuals of 

each case are shown in Table 6.5. 

 

 

 

 

 

 

6.7 
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Table 6.5 Average value of the residuals 

Cycle 

number 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 

On Off On Off On Off On Off On Off On Off 

Case 1 -0.02 0.02 -0.01 0.09 0.00 0.00 -0.07 0.02 0.03 -0.03 0.06 0.05 

Case 2 0.01 -0.02 0.71 0.68 0.73 0.71 0.70 0.71 0.66 0.69 0.70 0.72 

Case 3 0.00 0.03 -0.72 -0.73 -0.68 -0.70 -0.71 -0.67 -1.02 -1.03 -0.98 -1.00 

Case 4 -0.02 -0.01 0.56 0.01 0.62 0.01 0.73 -0.03 0.98 0.01 0.97 0.03 

Case 5 0.03 0.00 0.58 -0.62 1.02 -0.99 1.04 -0.99 0.61 -0.63 0.01 0.03 

Case 6 0.02 -0.02 0.13 0.23 0.39 0.61 0.74 0.87 1.11 1.21 1.31 1.54 

 

Case 1: The measured values are artificially generated such that the residuals 

are small. The average values of the residuals for individual on-off sections are very 

close to zero, typically representing fault free conditions. Two random data points 

were deliberately set to have a larger residual.  

 Case 2: The first cycle remains as fault free as in Case 1. Faulty conditions 

are introduced from cycle 2, with similar positive residuals for all the on- and off- 

sections for the rest of the 5 cycles.   

 Case 3: Negative residuals are introduced for cycle 2 to cycle 6, with a larger 

magnitude for the last two cycles, equivalent to the fault getting more severe.  

 Case 4: The measured values are “generated” in such a way that they mimic 

the situation when the fault only impact on the parameter during the compressor 

on-period, as observed in the study. The residuals are increasing during on-cycle as 

the fault becomes more severe, with an average of around 0.6 for cycles 2 and 3, 

around 0.7 for cycle 4, and around 1.0 for the last two cycles, whereas the residuals 

always remain small during off cycle periods. 

Case 5: The on-cycles are set to have positive residuals whilst the off-cycles 

are set to have negative ones with the same magnitude. The magnitude of residual is 

increased from around 0.6 in Cycle 2 to around 1 in Cycles 3 and 4, then drops back 

to around 0.6 in Cycle 5, and assuming the fault disappears in the last cycle. This may 

be useful in detecting temporary faults.  

Case 6: The residuals increase gradually and progressively for both the on- 

and off- periods 
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(a) Case 1 

 

 
(b) Case 2 

 

 
(c) Case 3 

Figure 6.7 Fictitious generated model prediction and measured data under various fault-free and faulty 

patterns. 
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(d) Case 4 

 

 
(e) Case 5 

 

 
(f) Case 6 

Figure 6.7 Fictitious generated model prediction and measured data under various fault-free and faulty 

patterns (continued). 

 

CUSUM tests are performed on the residuals data of the above cases. Average 

value of the fault free residuals (µ0) should be close to zero. In the current analysis, µ0 

is chosen to be 0. For the CUSUM, δ/2 is set at 0.5. For each of the 6 Cases, two tests 

(Un-mn, Tn-Mn) corresponding respectively to increasing (positive residuals) and 
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decreasing (negative residuals) directions are carried out simultaneously. All the 

CuSum results are shown in Figure 6.8.  

In Case 1, two data points are deliberately set to fall outside the δ/2 of ±0.5 (i.e. 

data point 42 and 87 in Figure 6.7a). Two spikes have been detected as shown in 

Figure 6.8a in the corresponding positions. These would appear as isolated incidences, 

such as one off signal interference, and since majority of the residuals are close to 

zero and the CUSUM test results were not accumulating, they should not be identified 

as a fault, as expected for Case 1.  

As the residuals in Case 2 stay at a positive constant value of around 0.7 in the 

last 5 cycles for both on and off periods, the CUSUM output (Un-mn) in the increase 

direction rises steadily, implying the likelihood of a fault. As expected the output for 

the decrease direction remains at zero since no negative residuals are present. In Case 

3, as the residuals are having negative values, Tn-Mn increases gradually, also 

implying the likelihood of a fault as similar to Case 2. An increase in the severities of 

the fault in cycle 5 and 6 is introduced and hence a faster accumulating effect (or a 

steeper gradient) is noted.  

 In Case 4, since only the on-cycle periods are set to have positive residuals 

and the off-cycle periods are set to have close to zero residual, naturally Tn-Mn will 

have only zero output. From the start of Cycle 2 (sample number 26), Un-mn starts to 

increase due to positive residuals but starts to drop during off cycle period when very 

small residuals are encountered; eventually Un-mn drops back to zero again. This 

suggests that the fault can only be detected during on cycles. This pattern repeats for 

the 3
rd

 cycle as they have the same residuals behaviour. As the fault severity increases, 

a higher peak value of Un-mn is noticed in the 4
th

 cycle (sample number 76), resulting 

in a longer time needed for it to drop back to zero value, when compared to the two 

previous cycles. The last two cycles are set to have the same residual (~1) which are 

larger than that of the previous 3 cycles, representing an even more severe fault. 

Un-mn are found to reach such a high value in the 5
th

 cycle that it is not able to return 

to zero during off-cycle period and hence Un-mn increases further during the last cycle, 

making the fault more detectable. 
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 In Case 5, the 2
nd

 on-cycle has the same rising trend of Un-mn values as in the 

2
nd

 on-cycle of Case 4, but as it has a negative residual for the off-cycle, it has a faster 

drop of the Un-mn back to zero value. When the residuals are increased to 1 in the 3
rd

 

cycle, the Un-mn values achieve the same peak value as that of the 5
th

 cycle in Case 4 

as they both have the same residuals. However, once again due to the negative 

residuals during the off cycle part of the 3
rd

 cycle in Case 5, the Un-mn values are able 

drop back to zero without further accumulating. This is different from the situation of 

the last two cycles in Case 4 where the Un-mn values accumulate to a higher peak. 

Essentially, that makes fault detection easier in Case 4 when there are no negative 

residuals to cancel out the accumulating effect. In other words, once the Un-mn values 

drop back to zero, they will not be able to assist the detection of the subsequent faults. 

The pattern of Tn-Mn is similar to Un-mn, only the maximum values for individual 

peaks are smaller, as only fewer data points are included in the off-cycle. 

 In Case 6, positive residuals appear during both on-cycle and off-cycle 

periods, and their values increase steadily from the beginning of the 2
nd

 cycle. The 

CUSUM test however, only manages to show an increase in Un-mn at sample number 

66, i.e. nearly at the middle of the 3
rd

 cycle. The delayed detection is due to the setting 

of δ/2, suggesting the setting of an appropriate δ/2 is crucial for early detection. 
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(a) Case 1 

 

 

(b) Case 2 

 

 

(c) Case 3 

Figure 6.8 CUSUM test results for the artificially generated data.  
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(d) Case 4 

 

 

(e) Case 5 

 

 

(f) Case 6 

Figure 6.8 CUSUM test results for the artificially generated data (continued).  
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 In general, when the data points exceed the pre-set limit of δ/2, a positive 

output of the CUSUM test in the corresponding direction would result. If the 

subsequent data points are still beyond this limit, the CUSUM outputs will 

accumulate from the previous ones. On the other hand, when the subsequent data 

points are within the limit or exceeding the limit in the opposite direction, the 

corresponding CUSUM output would reduce.  

 The detection of a fault depends on the selection of the two thresholds; ±δ/2 

determines when Un-mn or Tn-Mn will produce positive outputs and  decides when to 

report the present of a fault. Figure 6.9 demonstrates the detection of a fault with 

different setting of these two thresholds.  
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(a) 

 

(b) 

 

(c) 

Figure 6.9 Selection of the thresholds, (a) residual data set, (b) CUSUM test results when δ/2 is 0.5 °C, (c) 

CUSUM test results when δ/2 is 0.2 °C. 

 

×Un - mn 

•Tn - Mn 

× Un - mn  

• Tn - Mn 

Fault occurs 

at sample 31 

δ/2=±0.5 °C 

δ/2=±0.2 °C 
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Some artificially generated temperature residuals are shown in Figure 6.9a, 

together with two pair of ±δ/2 lines (±0.2 °C and ±0.5 °C). The first 30 residual data 

points have an average value of around zero, hence regarded as a fault free period, 

with a standard deviation of 0.2. A linear function is artificially generated to create 

some faulty data from 31
st
 data point and to gradually increase the residual values, 

reflecting increasing level of severity. The corresponding CUSUM test results for δ/2 

= ±0.5 °C and ±0.2 °C are plotted respectively in Figure 6.9b and 6.9c which also 

show the two selected , i.e.  = 0.5 and 2.0.  

When δ/2 is chosen to be ±0.5 °C, only one point in the fault-free zone is 

outside the boundaries so Un-mn only have one positive response (data point 24
th

). In 

response to the fault function, the Un-mn begins to rise steadily from data point 40. 

When δ/2 is reduced ±0.2 °C, the steady increase of Un-mn starts earlier at data point 

35. As expected, since the fault function is increasing in the positive direction, the 

Tn-Mn values for both tests stay close to zero throughout. It is clear that the CUSUM 

test responds to a fault earlier when a smaller δ/2 is chosen. 

 The second consideration is to choose an appropriate threshold for raising an 

alarm . Again, two settings ( = 0.5 and 2) were tested. In Figure 6.9b, δ/2 = ±0.5, 

all the CUSUM outputs, including the 24
th
 data point, stay within  = 0.5 in the fault 

free period, i.e. no false alarm is detected. Un-mn first exceeds the threshold of  = 0.5 

at data point 44
th

 and exceeds the large threshold setting of  = 2 with a further delay 

at data point 59
th

. In Figure 6.9c, δ/2 = ±0.2, Un-mn at data point 24
th

 is now larger 

than the  = 0.5, which resulted in a false alarm if this  value is chosen and the fault 

is first detected at data point 35
th

. If  is set at a higher value of 2.0, the detection is 

achieved at a later time (data point 42
nd

) but with no false alarm. In general, the 

detection speed is noted to increase when a smaller  is used for a given δ/2. 

 When comparing the above four combinations of the threshold settings, a 

small  with a small δ/2 have a larger chance of creating false alarm, while a large  

with a large δ/2 delays the detection significantly. In this illustration, both a large  

with a small δ/2 or a small  with a large δ/2 managed to avoid a false alarm and to 

trigger the alarm correctly at about the same time (at 42
nd

 and 44
th

 data point 

respectively). However, the former is considered to be a better option in the author’s 
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opinion, because it has a better tolerance of the random noise signals going beyond 

the ±δ/2 boundary in the fault free period. In Figure 6.5b, Un-mn at data point 24th is 

too close to  = 0.5 when δ/2 is 0.5 °C, but the corresponding Un-mn has a larger 

margin from  = 2 when δ/2 is 0.2 °C (Figure 6.5c). Therefore, it is better to choose a 

small δ/2 value (one standard deviation of the fault free residual data has been 

suggested) with a large .  

 The detection process is shown in Figure 6.10. Both of the parameters 

selected, as discussed in Section 6.2.1, for fault detection need to go through the 

CUSUM test separately. If the either of the test triggers the alarm, then a fault is 

present. 

 

Figure 6.10 Fault detection procedure 

 

6.2.3 Residual pre-processing 

This section illustrates how to prepare the residual data for the CUSUM test. 

In relation to the fault of cooling water flowrate reduction, Figure 6.11 shows the 

residuals of the cooling water temperature difference across the condenser, i.e. the 

differences between the predicted values and the measured values of the temperature 

differences. The first three compressor cycles (from time step 1 to around 189) were 

under fault free condition; while the fault of cooling water flowrate reduction was 

introduced at the 190 time step. It is evident that the residuals increase within the 

on-cycle period under this fault, and during the last part of this on-cycle period it is 

also clear that the residuals increased at a slower rate relative to those under the first 

three fault free cycles. It is worth to point out that the residuals became much larger at 
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the compressor starting-up and shutting-down moments even under fault free 

conditions, reflecting poor accuracies of the prediction model for these periods.  

 

Figure 6.11 The residuals of the cooling water temperature difference 

The residuals caused by the modelling errors during the compressor on/off 

moments are much larger than the residuals resulting from the actual fault. 

Pre-processing of the residuals is therefore needed to avoid false alarm during these 

moments, assuming the fault can be detected during other parts of the cycle operation. 

Figure 6.12 illustrates the CUSUM test results following equations 6.6 and 6.7 based 

on the original residuals of cooling water temperature difference (detailed CUSUM 

test procedures are presented in next section). Both Un - mn and Mn - Tn have 

increasing outputs in the first three fault free cycles. The bumps in Figure 6.12a for Un 

- mn occurred when the compressor is being turned off while in figure 6.12b for Mn - 

Tn they occurred when the compressor is restarted. A larger and wider bump means 

the local residuals are larger based on earlier observations of the 6 fictitious cases. In 

the faulty zone, the Un - mn values due to the fault during the on-cycle period is much 

smaller, making it impossible to detect the fault without creating any false alarm.  
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(a) 

 

(b)

 

Figure 6.12 CUSUM test results of the original residuals of ΔTwater, (a) increase in the mean residual and (b) 

decrease in the mean residual 
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(a) 3-point resetting 

 

(b) 5-point resetting 

 

(c) 7-point resetting 

 

Figure 6.13 Reset residuals of the cooling water temperature difference ΔTwater 
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In order to avoid the prediction errors being interpreted as a fault, a software 

detector is created to detect the compressor on-off or off-on switching moment as 

signalled by the compressor power meter. A certain number of data points with large 

residuals near the switching moments were then set to zero. With the current sampling 

interval of 10 seconds, three tests were carried out, namely 3, 5 and 7 residual data 

points centred at the switching moment were respectively set to zero. The results are 

shown in Figure 6.13. It appeared that a 5 point-resetting is sufficient to reduce the 

maximum residual to less than 1 °C which is comparable to the faulty residual levels 

in the faulty zone, and there were no noticeable differences between 5-point and 

7-point resetting. Therefore the 5-point mode was chosen to reduce the influences 

from the modelling error. When more than one parameter is involved in fault 

detection, this resetting strategy needs to be applied to individual parameters 

separately, each may require a different number of resetting points, depending on the 

modelling accuracy of the parameter.  

The proposed data chopping method is essentially the same as ignoring the 

associated alarm within these switching periods, hoping the fault could be picked up 

later, but it would delay the detection as seen later in Figure 6.14a that the genuine 

peak representing the fault would be ignored near the switching periods.  

6.2.4 Fault detection procedures 

Having “pre-processed” the residual data set to reduce the influences of the 

modelling error, the fault detection can be now implemented via the CUSUM test; 3 

steps need to be followed. 

1.  Calculate the mean values µ0 of the residuals and this should have a value 

of around zero during the fault free period. 

2.  Detecting a change in the mean values µ0 based on the selection of δ/2. 

3.  Determining as soon as possible the time when a fault occurs based on the 

threshold, λ. 

The mean value µ0 of the fault free residuals of ΔTwater, excluding the 

reset-to-zero data points, shown in Figure 6.13b is calculated to be 0.01 °C and the 

corresponding standard deviation is 0.8 °C (before the residual resetting), over 3 
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complete cycles. The outputs at various stages of the CUSUM test calculations from 

Equations 6.1 and 6.2 are given in Table 6.6, which illustrates how the equations are 

implemented. Due to space limitation, only three blocks of data of a time series 

measurements of 4 complete cycles were presented. The first and second blocks are 

both for fault free conditions, and a fault was introduced in the 3
rd

 block of residual 

data. 

Table 6.6 CUSUM test spreadsheet calculations  

Time 

step 

ΔTwater(t)  

[°C] 

residual 

Increase in mean Decrease in mean 

 y(t)-(µ0+δ/2) Un mn Un - mn y(t)-(µ0-δ/2) Tn Mn Mn - Tn  

1 0.00  -0.41  -0.41  -0.41  0.00  0.39  0.39  0.39  0.00  

2 0.00  -0.41  -0.82  -0.82  0.00  0.39 0.78  0.78  0.00  

3 0.00  -0.41  -1.23  -1.23  0.00  0.39 1.17  1.17  0.00  

4 0.00  -0.41  -1.64  -1.64  0.00  0.39 1.56  1.56  0.00  

5 0.00  -0.41  -2.05  -2.05  0.00  0.39 1.95  1.95  0.00  

6 0.38  -0.03  -2.08  -2.08  0.00  0.37  2.72  2.72  0.00  

7 0.30  -0.11  -2.20  -2.20  0.00  0.29  3.40  3.40  0.00  

8 0.20  -0.21  -2.40  -2.40  0.00  0.19  4.00  4.00  0.00  

9 0.13  -0.28  -2.69  -2.69  0.00  0.12  4.51  4.51  0.00  

10 0.09  -0.32  -3.01  -3.01  0.00  0.08  4.99  4.99  0.00  

11 0.02  -0.39  -3.39  -3.39  0.00  0.01  5.41  5.41  0.00  

…
  

148 -0.01  -0.42  -62.64  -62.64  0.00  0.38  55.76  55.76  0.00  

149 -0.83  -1.24  -63.88  -63.88  0.00  -0.44  55.32  55.76  0.44  

150 0.00  -0.41  -64.29  -64.29  0.00  0.39  55.71  55.76  0.05  

151 0.00  -0.41  -64.70  -64.70  0.00  0.39  56.10  56.10  0.00  

152 0.00  -0.41  -65.11  -65.11  0.00  0.39  56.49  56.49  0.00  

153 0.00  -0.41  -65.52  -65.52  0.00  0.39  56.88  56.88  0.00  

154 0.00  -0.41  -65.93  -65.93  0.00  0.39  57.27  57.27  0.00  

155 -0.42  -0.83  -66.77  -66.77  0.00  -0.03  57.23  57.27  0.03  

…
 

190 1.22  0.81  -83.99  -84.81  0.81  1.21  68.01  68.01  0.00  

191 0.75  0.34  -83.65  -84.81  1.16  0.74  69.15  69.15  0.00  

192 0.75  0.34  -83.32  -84.81  1.49  0.74  70.28  70.28  0.00  

193 0.67  0.26  -83.05  -84.81  1.76  0.66  71.35  71.35  0.00  

194 0.50  0.09  -82.96  -84.81  1.85  0.49  72.24  72.24  0.00  

195 0.18  -0.23  -83.19  -84.81  1.62  0.17  72.81  72.81  0.00  

…
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The first block presents the fault free residuals from the beginning of the data 

set when the compressor was switched off, noting that the first 5 residual points were 

set at zero. It is common to set the δ in equation 6.1 as the same value as one standard 

deviation (Chetouani 2008), i.e. δ/2 was thus set to be ±0.4 °C and as all the data 

points in the first block are within this range, therefore the CUSUM test results 

(Un-mn) and (Tn-Mn) are all zero.  

For the second block, as before, the residuals for 5 data points were set to zero 

during the switching moment. However, it is evident that relatively large prediction 

errors (or residuals) were still encountered before (time step 149) and after (time step 

155) the switching moment that were not reset to zero; both exceed a half δ of 0.4 °C. 

These residuals lead to a positive value of Tn-Mn in the CUSUM test at the 

corresponding time steps, suggesting that a positive CUSUM output may not always 

imply a fault (i.e. a false alarm).  

The last block in Table 6.6 presents some of the residuals from time step 190 

after a fault of flow reduction has been introduced. A series of positive (Un-mn) values 

suggests that the mean values of the residuals are increasing from the original value of 

0.01 °C. Meanwhile, (Tn-Mn) remains at zero as it can only have a value when the 

residual is negative. Essentially, whenever a series of positive values of (Un-mn) or 

(Tn-Mn) occur, potentially a fault could be present. 
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The CUSUM test results (Un-mn) and (Tn-Mn) for the entire four cycles are 

shown in Figure 6.14a and Figure 6.14b respectively. Since only 5 residual data points 

were set to zero during the on-off/off-on switching moments, it is possible to have 

some data points in the vicinity of these periods to exceed ±½δ due to modelling 

errors resulting in some small positive test results (small spikes).  

When the fault of the cooling water flowrate reduction occurred at time step 

190 in the 4
th

 cycle, the residuals of the ΔTwater increased (as seen the faulty cycle in 

Figure 6.13b). The CUSUM test output in the faulty zone of Figure 6.14a increased 

sharply for a short period when compressor shut down and went back to zero (even 

after the 5-point resetting, followed by a larger peak for a longer period of time when 

the compressor was re-started at time step 221. The short section between the two 

peaks suggested that the cooling water restriction had a very little influence on ΔTwater 

when the compressor was not running.  

(a)

 

(b) 

 

Figure 6.14 CUSUM test results of the ΔTwater residuals after 5-point resetting, (a)Un-mn and (b) Mn-Tn  

  

Fault free Faulty 

Fault free Faulty 
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(a)  

(b)  

Figure 6.15 (a) The residuals of the evaporating temperature Te, (b) The residuals of the Te after 5 data points 

being reset 

 

Figure 6.15a shows the residuals of the evaporating temperature for the same 

four cycles. It was noticed the evaporating temperature also experienced larger 

prediction errors at the compressor on-off moments though the prediction accuracy of 

Te was much better during off-on moments; as a result, as shown in Figure 6.15b, two 

data points were needed to be set to zero during switching-off moment but none were 

set to zero during switching-on moment. It could also be seen that the model 

prediction errors during the compressor off periods were larger than that of the on 

periods.  

From Table 6.3 (Section 6.1), it can be seen that the evaporating temperature 

was not too sensitive to the cooling water flow reduction, which can also be noted 

from Figure 6.13b when comparing the fault-free with the faulty cycles, both having 

the similar patterns of Te residuals, thus suggesting that Te is not a suitable parameter 

for detecting this fault. 

  

Fault free Faulty 

Fault free Faulty 
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Figure 6.16 CUSUM test results for evaporating temperature residual 

For the same fault, the CUSUM test procedures were performed for the 

evaporating temperature of all the 4 cycles. The results are presented in Figure 6.16. 

Un - mn remains at zero throughout as there are no large positive residuals and Tn - Mn 

has large peaks each time corresponding to negative residuals during off-cycle periods. 

The sizes of the peaks in both fault free and faulty zone are very similar, making it 

difficult to select a suitable threshold that can detect the fault without causing a false 

alarm, implying that the off-cycle residuals are not suitable to be used as a fault 

indicator and the evaporating temperature is not an appropriate choice to detect a 

cooling water flow restriction fault.  

The final step in fault detection is to determine a suitable fault-free threshold λ 

that can detect fault at a low severity level without causing too many false alarms. As 

mentioned previously, it is better to choose a small δ/2 at one standard deviation of 

the fault free residual and adjust the value of λ accordingly. An easier way is to set the 

threshold according to the CUSUM test results. In Figure 6.14, two thresholds, λ = 0.4 

and 0.8, are tested. The λ = 0.4 threshold is able to tolerate the small jumps in Figure 

6.14a and at the same time detect the fault at the 191 time step. In Figure 6.14b, using 

the same λ = 0.4, a false alarm is triggered at 149 time step. However, if the threshold 

is set to 0.8, the possibility of the false alarm is eliminated. The drawback is that the 

fault is detected 10s later than with the smaller threshold. In this case, because the 
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delay in detection is rather small, it is more important to avoid the false alarm. Thus λ 

could be selected as 0.8. 

The CuSum tests and the similar analysis had been carried out for all the other 

specified faults. Table 6.7 shows the results of the threshold selection. The standard 

deviation after the residual resetting of the fault free residuals is used as δ for both 

ΔTwater and Te. λ was selected manually to achieve the quickest detection speed while 

avoiding any false alarm for individual faults. Therefore, 4.0 was chosen respectively 

for ΔTwater and Te, i.e. the largest among all the possible λ for individual faults.  

In practice, at any instant only one of the two mentioned parameters is needed 

to raise an alarm for each type of fault. ΔTwater was not sensitive to the binary ice flow 

reduction fault and the broken scraper fault, therefore the two faults can only be 

flagged by Te. Similarly, the solution concentration decrease fault could only be 

flagged by ΔTwater. For the rest three faults, as the sensitivity factors of Te were all 

larger than those of ΔTwater, the alarms were triggered by the former in most cases. 

Table 6.7 The selection of threshold for various faults 

Faults ΔTwater Te 

δ [°C] λ δ [°C] λ 

Binary ice flow reduction 0.01 4.0 0.07 4.0 

Cooling water flow 

reduction 

0.01 3.8 0.07 4.0 

Initial solution 

concentration increase 

0.01 3.8 0.07 3.7 

Initial solution 

concentration decrease 

0.01 4.0 0.07 4.0 

Broken scraper 0.01 4.0 0.07 3.8 

Scraper motor failure 0.01 4.0 0.07 4.0 

 

6.3 The development of the fault diagnosis approach 

The procedures described in the previous section are capable of reporting the 

existence of a fault. However, to determine the type and cause of the fault, a fault 

diagnosis/classification is needed. The rule-based fault classification process involves 

the use of the various variation patterns associated with a particular fault(s). Various 

classifiers have been used previously, ranging from the use of diagnosis tables to 

artificial neural network (ANN) classifiers (Wang et al. 1998; House et al. 1999). For 
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this study, an ANN based pattern recognition strategy is used for automatic fault 

classification (Cho et al. 2005). The development of the fault classifier will be 

introduced first, followed by a demonstration of fault diagnosis example (a cooling 

water flow reduction fault). Double fault diagnosis will also be addressed here.  

6.3.1 Fault classifier 

The fault diagnosis is carried out essentially by identifying the unique patterns 

of variation of various parameters under certain faulty conditions. To enhance the 

reliability of the fault diagnosis, a common practice is to use the fault sensitive factors 

in Table 6.3 and 6.4. Depending on the sign and the magnitude of the numerical 

values of the sensitivity factors, they are replaced by either -1, 0 or 1, representing 

respectively a decrease (i.e. sensitivity factor < -1), normal (i.e. little ± changes or no 

changes) or an increase (i.e. sensitivity factor > 1) in the value of the selected 

parameters. However, there is one exception for which the -1 and 1 boundaries of the 

sensitivity factors are revised to ±0.5 for the parameters when a binary ice flow 

reduction fault is encountered, as explained previously.  

Table 6.8 Fault diagnosis patterns  

Diagnosis  

Parameters 

               

Output Faults  

Tc, out  ΔTwater  Tdis Tice,out 

1 Binary ice 

reduction  
0 0 1 -1 

2 Cooling water 

reduction 
1 1 1 0 

3 Solution 

concentration 

increase 

-1 -1 1 -1 

4 Solution 

concentration 

decrease 

0 -1 1 1 

5 A broken 

scraper 
-1 0 -1 1 

6 Scraper motor 

failure 
-1 -1 -1 1 

7 Unable to 

determine 
- - - - 

 

The number of the parameters should be kept as few as possible, in order to 

keep the FDD method simple and cost effective. Therefore, if a parameter has the 
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similar response under different faults, it is not useful for the diagnosis purpose, and if 

several parameters have the same pattern of variation for the same faults, only the one 

with the largest fault sensitive factor is employed. Having analysed all the variation 

patterns of the chosen parameters in Tables 6.3 and 6.4, the final selected parameters 

are listed in Table 6.8 together with the individual and unique fault recognition 

patterns. If two faults share the same pattern, it implies that extra parameter(s) is 

needed. 

An ANN classifier is employed to help the automatic recognition of the 

patterns for the associated faults. The inputs to the ANN are unique -1, 0 and 1 code 

combinations of the selected parameters and the output is the fault(s). The hidden 

layer contains a single neuron and a linear transfer function. The network is trained 

with the data in Table 6.8. The output of the ANN classifier contains 7 Codes (1, 

2 …7): 6 for each of the single faults and 1 for the situation when it is unable to 

diagnose the fault. If an input pattern matches with any of the fault pattern in Table 

6.8, the ANN output will indicate the fault type. Otherwise, Code 7 will be reported; 

this could be due to modelling or measurement inaccuracies, poor design of the 

diagnosis method, or the existence of unspecified faults. 

6.3.2 The diagnosis of a cooling water reduction fault 

In Section 6.2.4, a cooling water reduction fault was used as a demonstration 

for the fault detection method; the same fault is used to illustrate the development of 

the diagnosis procedure. For a specified threshold, the presence of a fault is flagged 

up when the CUSUM test result is larger than the threshold for one of the two fault 

detection parameters, i.e. ΔTwater and Te, as discussed in Section 6.2.1, followed by the 

activation of the fault diagnosis classifier.  

The first step for the fault diagnosis is to compare the measured/derived values 

of the fault diagnosis parameters listed in Table 6.8 to the model predictions, 

generating the corresponding time-series of the residuals which are tested again by the 

CUSUM tests. For each of the parameters listed, an appropriate threshold has been 

chosen, as discussed previously. A value of -1 or 1 is assigned when the CUSUM test 

result is lower or higher than the lower and upper limits of λ. If the result stays within 

the limits, a zero value is assigned. The next step is to compare the unique pattern of 

-1, 0 and 1 for the 4 chosen parameters with those presented in the table to identify the 
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individual fault. Since the pattern is of dynamic nature, the fault can be diagnosed at 

any time after it has been detected, potentially making this FDD approach applicable 

for real-time applications. 

6.3.3 Double fault diagnosis 

During the operation of the binary ice system, it may be possible that more 

than one fault could develop at any given time. The fault diagnosis method in Section 

6.3.1 was mainly developed to cope with a single fault, thus it is not expected to 

diagnose a double fault. From the literature review presented in Chapter 2, it was 

noted that very little previous work on chillers FDD looked into double fault. In this 

section, a diagnosis strategy was developed to differentiate the occurrence of a single 

and a double fault scenario. The work is unique in a sense that the diagnosis is 

implemented using dynamic data, and the double faults being selected could have 

opposite fault signatures making both detection and diagnosis difficult. In this study, 

however it is also assumed that triple fault scenarios are excluded. 

As previously mentioned, three sets of double faults are investigated. If two 

faults have similar influence to the system behaviours, the residuals of some of the 

parameters are expected to add up, usually making them easier to be detected, though 

their diagnosis become more challenging when it is needed to differentiate it from a 

single fault. When two simultaneous faults affect the parameters in the opposite 

manners, they may cancel the some of the effects of each other, leading to harder 

detection as well as diagnosis. In the third set, the two faults are affecting different 

system parameters, thus creating a new fault signature. This could potentially be 

mis-diagnosed as another single fault. 

Based on the above, the system behaviours in Table 6.8 were examined and 

accordingly, three pairs of faults are respectively selected. 

1. Binary ice flow reduction + solution concentration increase (BR+SCI) 

2. Cooling water flow reduction + solution concentration increase (CR+SCI) 

3. Binary ice flow reduction + broken blade (BR+BB) 

Following the similar procedures described in Section 6.1, experimental fault 

simulations were carried out according to the selected double faults. To avoid 

complications, the single faults involved were all kept at their maximum severity level, 
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though the logics in developing the strategy remains unchanged regardless of the 

severity levels. Observations on system behaviours under double faults were made 

and the associated residuals are transformed into fault pattern, as presented in Table 

6.9, which enables unique double faults to be diagnosed. It should also be noted that 

no additional parameters were found to be necessary when these three double faults 

are involved. 

Table 6.9 Fault patterns for both single and double faults 

                  

 Parameter 

Fault  
Tc, out  ΔTwater  Tdis Tice, out 

1 Binary ice flow reduction (BR) 0 0 1 -1 

2 Cooling water flow reduction (CR) 1 1 1 0 

3 Solution concentration increase (SCI) -1 -1 1 -1 

4 Solution concentration decrease (SCD) 0 -1 1 1 

5 A broken scraper (BS) -1 0 -1 1 

6 Scraper motor failure -1 -1 -1 1 

7 Unable to determine  - - - - 

8 BR+SCI -1 -1 1 -1 

9 CR+SCI 1 1 1 -1 

10 BR+BS -1 0 1 1 

 

It is noticed from Table 6.9 that both CR+SCI and BR+BS created their 

distinct pattern different to all the other faults. They can be diagnosed using the 

previously mentioned ANN fault classifier (Section 6.3.2) trained with additional fault 

patterns. However, BR+SCI has the same pattern as SCI fault, necessitating additional 

considerations. One initial thought is to use extra parameters other than those shown 

in Table 6.9. However, having analysed the variations of all the available parameters 

in Tables 6.3 and 6.4, none of them can be used to create a different pattern for either 

the single (SCI) or the double fault (BR+SCI), due to the close similarity of their fault 

influences. 

To resolve this, the method proposed by Cho et al. (2005) was used. They 

developed a residual ratio method for the diagnosis of a single and a double fault, in 

an air handling unit, which have the same fault pattern; in their study, no extra 

parameters were required when compared to those used for the single faults. The main 
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principle is to use the magnitudes of the ratios between certain existing parameters to 

differentiate between a single and a double fault which have the same fault pattern. 

Their method is adapted and adopted for the current application. 

From Table 6.9, it can be seen that BR and SCI have the same influences on a 

group of two parameters (Tdis and Tice,out) but different influences on the other group 

of two parameters (Tc, out and ΔTwater). Assuming a SCI fault exists first and a BR fault 

follows, the residuals of those in the first group are expected to become larger but 

those in the latter group will not change much. Therefore it is possible to diagnose a 

fault by analysing the ratio between two parameters, one from each group. The 

parameter with the highest sensitivity factor in each group should be chosen and 

accordingly, in this study ΔTwater and Tdis are selected. The residual ratios (RR) for the 

single fault SCI and the double fault BR+SCI can respectively be calculated, using the 

average of the compressor on-cycle data, as:  

RRSCI =
|𝛥𝑇water,normal−𝛥𝑇water,faulty|SCI

|𝑇dis,normal−𝑇dis,faulty|SCI

= 1.4 6.8 

and 

RRBR+SCI =
|ΔTwater,normal−ΔTwater,faulty|BR+SCI

|Tdis,normal−Tdis,faulty|BR+SCI

= 0.8 6.9 

It is clear that based on the difference of RR magnitude (in absolute term), it 

can be distinguished whether a single or a double fault occurs, knowing a double fault 

will reduce the value of the ratio, due to the fact that the change in Tdis will be added 

up and hence a smaller RR. Having analysed different combinations of severity levels, 

it can be concluded that if a residual ratio of larger than 1 represents a single SCI fault, 

otherwise a double BR+SCI fault occurs. Though the use of only two parameters is 

sufficient to diagnose a BR+SCI fault, further ratios based on other combinations of 

parameters could be used if necessary.  

In conclusion, to diagnose a possible double fault, the ANN classifier that has 

been trained by the fault patterns in Table 6.9, will be applied first. The classifier has 

8 output types excluding Code 7, 5 for single faults (Code 2 to Code 6), 2 for double 

faults (Code 9 and Code 10) and 1 for SCI or SCI+BR (Code 1 same as Code 8). If 
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the last one is encountered, a residual ratio calculator is activated, and the final step of 

the diagnosis will be carried out by comparing the residual ratios. 
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7. Results and discussion 

This chapter starts with a summary review of the overall implementation of 

the designed FDD. The performance of the fault detection and diagnosis are evaluated 

and presented. The evaluation of the FDD results is carried out by analysing the 

detection speed and accuracy, the false alarm rate and diagnosis accuracy, under 

various severity levels. How the performance is affected by the number and the 

selection of the parameters involved as well as the setting of the thresholds are also 

examined and discussed.  

7.1 Implementation of the FDD 

The flow chart of the overall FDD implementation procedure is presented in 

Figure 7.1, which consists of two main steps: a fault detection step and a fault 

diagnosis step. The binary ice system and its hybrid model are running in parallel, and 

the real time measurements are being input to the hybrid model from which the 

chosen time dependent outputs are generated. As previously discussed, this stage only 

involves the residuals of the cooling water temperature difference and the evaporating 

temperature that are fed into the CUSUM test. Once either of the two test results 

exceeds the pre-selected threshold, a fault is detected and declared. In the second step, 

a set of chosen measured/calculated fault diagnosis parameters are compared to their 

fault free model predictions. Once again the residuals of these parameters need to go 

through the CUSUM test, and the test results are used to generate the fault diagnosis 

patterns, as previously shown in Tables 6.8 and 6.9. The patterns are sent to the ANN 

fault classifier (or the double fault classifier when a double fault is involved), which 

based on the fault pattern, automatically generates the type of fault as its output. At 

this point, either a fault is diagnosed or it is not possible to identify the fault. 
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Figure 7.1 Overall FDD implementation procedure 
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7.2 Results 

Evaluations of the FDD performance and/or reliability had been carried by 

previous researchers (e.g. (Comstock and Braun 1999; Reddy 2006). Reddy (2006) 

evaluated the fault detection and diagnosis separately. He used four different rates to 

assess the performance of the detection. 

 False negative rate: the probability of diagnose a faulty process as 

fault free, i.e. missed diagnose; 

 Correct fault-free detection rate: the probability of detecting a fault 

free process as fault free;  

 False positive rate: the probability of detecting a fault-free process as 

faulty, i.e. false alarm;  

 Correct fault detection rate: the probability of correctly detecting a 

fault.  

The false negative rate can be in fact deduced from the correct fault detection 

rate, while the correct fault-free detection rate can also be deduced from the false 

alarm rate. The probabilities of each pair should add up to unity. Essentially, therefore 

only two rates, namely false alarm rate and correct fault detection rate, are needed. 

Furthermore, Reddy divided the results of the fault diagnosis into four groups: 

 Correct and unique diagnosis: the fault is correctly and clearly 

identified;  

 Correct but non-unique: the diagnosis rules are unable to diagnose 

between more than one possible faults;  

 Unable to diagnose: the fault patterns do not match with any 

predefined diagnosis rules;  

 Incorrect diagnosis: a fault is wrongly diagnosed as another fault. 

Correct and unique diagnosis is the desired results of a fault diagnosis 

procedure. The number of correct and unique diagnosis against the total number of 

diagnosis is used to measure the accuracy of the fault diagnosis method. For the 

current study, the correct but non-unique diagnosis is not applicable, as the diagnosis 

method is designed to identify a unique diagnosis pattern associated with each of the 5 

chosen faults. The last two diagnosis results are both essentially non-correct diagnosis, 

and their combined rate can be deduced from the correct and unique diagnosis rate, as 

all the probabilities add up to unity. 
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In addition, for dynamic FDDs, one further factor needs to be considered, i.e. 

the speed of the detection. A faster or an earlier detection reduces the amount of time 

when the system is running under faulty conditions, thus cutting energy wastage and 

system downtime. 

Therefore the overall performance analysis of the proposed FDD approach is 

based on the following performance indicators: (i) the false alarm rate, (ii) the correct 

fault detection rate, (iii) the fault detection speed, and (iv) the correct fault diagnosis 

rate. The FDD method was tested with experimental data and was evaluated based on 

the above four indicators. For each of the indicators of a particular fault, though data 

from 3 cycles were used for the overall assessment, only data from one cycle were 

presented for demonstration purpose, as shown in Figures 7.2 - 7.6. The overall 

results for all the tests are summarised in Tables 7.1 and 7.3 

7.2.1 False alarm rate 

 False alarm is defined as the report of a fault during fault free conditions. 

Figure 7.2 and Figure 7.3 present the false alarm test results. The residuals of the fault 

detection parameter Te and ΔTwater taken from a fault free test are shown respectively 

in Figures 7.2a and 7.3a. Five data points before and after the compressor on/off 

switching moments have been set to zero to reduce the influences of the modelling 

inaccuracy, as discussed in the previous chapter. The corresponding CUSUM test 

results are presented in Figure 7.2b for Te, and Figure 7.3b for ΔTwater. The thresholds 

δ are set to the standard deviation of the fault free residual sets, which are 0.07 and 

0.01 for Te and ΔTwater respectively and the dynamic threshold  is set to 4, as 

previously stated. Though many residual data points fall outside the ranges of ±0.035 

and ±0.005 respectively, none of the CUSUM test results goes beyond the pre-set , 

suggesting that there is no fault present during the assessment period. 

 

 

 



185 

 

 

 

(a) 

 

 

(b) 

Figure 7.2 False alarm test under fault free condition for Te, (a) residual of Te, (b) CUSUM test for Residual of 

Te.  
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(a) 

(b) 

Figure 7.3 False alarm test under fault free condition for ΔTwater. (a) residual of ΔTwater, (b) CUSUM test for 

the residuals of ΔTwater. 

Further tests regarding the false alarm had been performed on 318 data points 

from 5 different complete compressor cycles under fault free condition. No false 

alarm was reported during all the tests. Therefore it can be concluded that the 

procedure of setting the residual data points near the compressor switching moments 

to zero and the application CUSUM test eliminated the false alarm effectively. Based 

on the observation, it is possible to set a  value as small as 2 without raising a false 

alarm, but to improve detection speed by approximately 1 to 3 minutes.  

7.2.2 The correct fault detection rate and detection speed 

The correct fault detection rate stands for the probability/percentage of a fault 

being detected. The speed of the fault detection is measured by the time delay 

between the occurrence of a fault and the detection of it. These two performance 
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indicators are addressed together because the detection speed will only apply when a 

fault is being detected. Figure 7.4 demonstrates the detection procedure of the binary 

ice flowrate reduction. The residual data sets of Te and ΔTwater in Figure 7.4a is taken 

from a complete cycle when the binary ice flowrate reduction fault is at severity level 

3. Figure 7.4b and 7.4c are the CUSUM test results for ΔTwater and Te respectively. 

The thresholds are selected as specified in Chapter 6. In Figure 7.4b, the CUSUM 

tests for ΔTwater stay within the limit throughout the test. However, the CUSUM test 

Tn-Mn for Te exceeds the threshold  at time step 47 (time step 1 is defined as the 

beginning of the compressor off cycle), therefore a fault is detected and this case is 

count as a valid fault detection. 
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(a)

(b) 

(c) 

Figure 7.4 Fault detection test for binary ice flowrate reduction, (a) residuals of ΔTwater and Te, (b) CUSUM 

test for ΔTwater and (c) CUSUM test for Te 

Similar tests were carried out for all the selected faults under all severity levels. 

For each severity level of each fault, three sets of measured faulty data, each from a 

compressor off/on cycle, were used. The testing results are shown in Table 7.1. The 

correct detection is the number of times (out of 3) when the detection is successful. 

The detection speed is regarded as the average time from the beginning of the 

compressor off-cycle to when the fault is first reported by the CUSUM test.  

 

 

Fault detected 
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Table 7.1 The results of fault detection test. 

Fault Cooling water 

flow reduction 

Binary ice flow 

reduction  

Concentration 

increase 

Concentration 

decrease 

SSIG 

faulty 

blade 

SSIG blade 

motor failure 

Level 1 2 3 1 2 3 1 2 1 2   
Number of  
detection (out 

of  a total of 

three)  

2 3 3 1 2 3 3 3 3 3 2 3 

Time step 

when the 

fault is first 
reported 

48 42 39 52 47 41 43 35 42 37 40 18 

 

As expected, the numbers of detection increase with the increasing fault 

severity level. Success rate is 100% for all the Level 3 faults, though at lower severity 

levels the detection rates drop, especially for the binary ice flow reduction fault as the 

present of the ice particle makes the changes of the parameters less obvious. The 

detection speed also increases (i.e. a shorter detection time) with the severity level, as 

the residuals become larger at higher fault severity levels. Once again, the detection 

speed for the binary ice flow reduction fault is poorest. 5 out of the 6 specified faults 

cannot be detected during the compressor off cycle because many of the parameters 

tend to stay relatively unaffected by the fault when the compressor is not running. 

However, the SSIG blade motor failure can be detected very early following the 

occurrence of the fault, causing Te to increase rapidly, regardless whether the 

compressor is running or not, though it a faster detection can be achieved when the 

compressor is on. 

7.2.3 The correct diagnosis accuracy  

When a fault is detected, the fault diagnosis module is activated. The residuals 

of the fault diagnosis parameters listed in Table 6.9 are presented in Figures 7.5 for 

ΔTwater, Tice, out, Tc, out, Tdis, using the same binary ice flow reduction data as used in 

Figure 7.4. The CUSUM test results for these parameters reveal that Figures 7.6a-d. 

ΔTwater (Figure 7.6a) and Tc, out (Figure 7.6c) stay within the threshold of 4 all the time. 

The Un-mn value of the discharge temperature (Figure 7.6d) and the Tn-Mn values for 

Tice, out (Figure 7.6b) are higher than the thresholds. The CUSUM test results are then 

converted into patterns as shown in Table 7.2. Essentially, an increase in Un-mn 

above the threshold will return a +1 and an increase in Tn-Mn above the threshold 
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will return an -1. By using the ANN fault classifier, the pattern in Table 7.2 is 

identified as binary ice flow reduction fault.  

 

Figure 7.5 residuals of the fault diagnosis parameters.  

(a) ΔTwater  

(b) Tice, out  

Figure 7.6 CUSUM tests for fault diagnosis parameters 

(a) ΔTwater, (b) Tice, out 
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c) Tc, out 

 

d) Tdis   

Figure 7.6 CUSUM tests for fault diagnosis parameters (continued) 

(c) Tc, out, and d) Tdis     

 

Table 7.2 fault diagnosis pattern for the parameters in Figure 7.5 

Tc, out  ΔTwater  Tdis Tice, out 

0 0 1 -1 

 

Table 7.3 Fault diagnosis results 

Fault Cooling water 

flow 

reduction 

Binary ice 

flow reduction 

Concentration 

increase 

Concentration 

decrease 

SSIG faulty 

blade 

SSIG blade 

motor 

failure 

Level 1 2 3 1 2 3 1 2 1 2   

Correct 

diagnose 

1/2 3/3 3/3 0/1 1/2 3/3 2/3 3/3 3/3 3/3 2/2 3/3 

 

Table 7.3 shows the number of correct diagnoses based on a successful 

detection. The diagnosis of binary ice flow reduction once again has the poorest 
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accuracy. At the severity level 1, among the three faulty data sets, only one was 

detected successfully, as shown in Table 7.1, but the FDD failed to diagnose it. For 

level 2, only one of the two detected faults was correctly diagnosed. But as the fault 

becoming more severe the diagnose method shows a better performance with a 100% 

success rate.  

Another two incorrect diagnoses are found in level 1 for cooling water flow 

reduction (only one of the two detected faults was identified correctly) and level 1 for 

concentration increase (with 66.6% success rate). In both cases the FDD was unable 

to diagnose which should not be confused with mis-diagnosis. The last three faults in 

Table 7.3 were found to have 100% diagnosis rate.  

Tests for double fault FDD detection were also carried. Similar to the previous 

tests, three data sets were applied, each contained one compressor off/on cycle. All 

the faults were taken at their highest severity levels. As previously discussed, the fault 

BR and SCI have a similar pattern, therefore the residuals of the FDD parameters 

become larger, making the detection easier. All three data sets were correctly detected. 

The detection speed was faster than both of the single fault detections. The detected 

faults were also diagnosed correctly, suggesting the residual rate method (Chapter 6) 

is capable of distinguishing between a double fault and a single fault with the same 

pattern.  

For the CR+SCI fault, as they cancel the effect of each other, the detection is 

less accurate, only 2 of the 3 data sets were detected as faulty but both were diagnosed 

correctly. The detection of the double fault is relatively slower than the individual 

single faults, due to smaller residual involved.  

The three sets of BR+BS faults were all detected and diagnosed successfully. 

As the two faults did not have much influence on each other, the detection speed of 

the double fault followed the faster one of the two single fault detections, which was 

at time step 40 for BS.  

Table 7.4 Double fault detection and diagnosis results 

Fault BR+SCI CR+SCI BR+BS 

Correct detection 3 2 3 

Detection speed (time step) 32 42 40 

Correct diagnose  3 2 3 
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7.3 Discussion 

As the results of the hybrid model were discussed in Chapter 5, this discussion 

mainly focusses on the performance of the FDD. 

With the use of the hybrid prediction model, it can be seen from the results 

that the proposed FDD approach is able to reliably detect and diagnosis most of the 

pre-selected faults, including both the faults that common to many other refrigeration 

systems and those unique to binary ice systems. The unique characterises of binary ice 

and features of the binary ice system necessitate the careful selection of the FDD 

parameters, especially the output parameters, also taking into consideration their 

sensitivities to the selected fault as well as their ability to form unique patterns for 

individual faults.  

The binary ice test rig is incorporated a compressor on/off thermostat to 

control the binary ice temperature at the outlet of the tank (i.e. the inlet of SSIG). 

Though the hybrid model is capable of predicting the periodical variations of various 

parameters, large modelling errors were encountered during the on/off switching 

moments. It is possible to improve the accuracy by using more training data collected 

from the measurements. 

As stated in the beginning of this thesis, the existing FDD approaches for 

conventional chillers are not suitable for binary ice system. This is proved later by 

noting the secondary flow temperature difference (ΔTice) having a small sensitivity 

factor, which was often used by the others for chillers faults. Therefore, new FDD 

parameters are needed. Unlike many other FDD techniques which normally used the 

same parameters for both fault detection and diagnosis, the proposed method uses two 

separate groups of parameters. For the specified faults, two parameters (Te and ΔTwater) 

are found needed for the detection purposes and a minimum of 4 parameters (ΔTwater, 

Tice, out, Tc, out, and Tdis) are needed for the diagnosis.  

As only two parameters, compared to usually 4 or 5 used by the others, are 

needed for detection, accordingly there will be less chances of a false alarm, assuming 

only one of two is needed to trigger an alarm for a given fault, with an additional 
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benefit of having a reduced real-time monitoring resources requirement for the fault 

detection. However, if the FDD is designed in such a way that more than one 

parameter are needed simultaneously to trigger an alarm for the fault, then the false 

alarm rate should reduce with increasing number of parameters involved. In addition, 

the selected parameters only involved temperature measurements which are relatively 

easy to implement. 

Beside the selection of the parameters, the performance of the FDD is mainly 

depended on the thresholds, in particular the value of λ used in the CUSUM test. The 

current setting of λ is capable of detecting and diagnosing the majority of faults. In 

this study, λ is kept at 4, though as previously stated, detection could have been made 

around 2 minutes early if a λ of 2 were, as a 2 minute delay is considered insignificant 

for binary ice system. The elimination of false alarm is considered more important. 

Furthermore, the reduction of λ do not help improve the accuracies of the detection or 

diagnosis in the current study.  

Another way of selecting the threshold for dynamic FDD is to use adaptable 

threshold. The calculations of the adaptable threshold are usually complicated, 

relating to some specified parameters in a particular system, such as the modelling 

error and the heat load (Cui and Wang 2005; Estrada-Flores et al. 2006). It is difficult 

to adapt the threshold calculation method of one system to another. On the contrary, a 

CUSUM test is common to various systems and its application is much easier. As a 

result, CUSUM test is selected for this project instead of adaptable threshold. 

As shown in Table 7.1 and 7.3, there are both mis-detections and mis- 

diagnosis. To improve the performance, one possibility is to incorporate additional 

parameters. The fault with the lowest detection and diagnosis rate is the binary ice 

flow reduction. It will be helpful if, say, the electrical conductivity of the solution is 

monitored in real time, though it was unlikely to be implemented in practice due to 

cost and maintenance issues.  

Although all the mis-diagnosis encountered in the current study are reported as 

unable to determine, it is also possible that one fault can be mis-diagnosed as another 

one when the two faults shared a similar fault pattern. One example is the binary ice 

flow reduction (Fault 1) and the solution concentration increase (Fault 3). It is noted 
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from Table 6.9 that the two faults cause the same variations in two parameters (Tdis 

and Tice,out), and the other two parameters (Tc,out and ΔTwater) decrease under the latter 

fault but stay unchanged for the former. Also, the sensitivity factors of Tc,out and 

ΔTwater in Table 6.3 for the Fault 3 during the compressor on cycle are relatively small 

(both were -1). Therefore, it is likely that this fault can be mis-diagnosed as Fault 1, 

especially when the fault severity level is low. In this situation, it might be necessary 

to identify additional diagnosis parameters. However, when considering Fault 5 (the 

broken scraper) and Fault 6 (scraper motor failure) which also have similar patterns, 

and could only be separated by one parameter (ΔTwater), it is believed that these two 

faults are less likely to be confused during diagnosis because change of ΔTwater when 

Fault 6 occurs is more prominent (sensitivity factor -2.5).  

The proposed FDD approach at present is designed to tackle certain specified 

faults, assuming no other types of fault will occur in the system at the same time. 

However If a fault which is not considered in this study occurs in the system, it may 

be mis-diagnosed as one of the six faults or reported as not able to diagnose. 

As mentioned before, the SSIG can work in three modes, namely no ice in and 

no ice out, no ice in but ice out, and no ice in and no ice out. The analytical SSIG 

model has been shown to be able to differentiate the individual modes, thus the hybrid 

model is also capable of FDD in any of the 3 modes. The results for second mode are 

extensively presented in previous chapters. Not much data on first mode was collected 

as it was very much similar to chiller operation. Again, no false alarm was flagged 

during the tests. A detection rate of 100% for all selected fault and a diagnosis rate of 

66% was obtained based on the same 6 parameters above. Only a very limited number 

of tests were performed as it was considered unsafe to run the system with high ice 

concentration which could potentially break the blades or overload the motor. 

Strictly speaking, the duration of a fault free cycle differs from that of a faulty 

cycle, and their differences vary with the type and severity of the fault. As the 

proposed hybrid model is not capable of predicting the cycle durations, in the current 

study, the fault free parameters predicted at a particular instant are calculated based on 

the inputs (Tice,in and Twater,in) measured at the same time, not knowing if the inputs are 

from a faulty or fault free condition. This is considered acceptable based on the 

following observation. The deviations between the measured data from a fault free 
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cycle and a faulty cycle (as seen in Tables 6.3 and 6.4) are compared to the deviations 

between fault free predicted data and measured faulty data. Almost identical patterns 

of variations are noted.   

The proposed FDD method is able to diagnose three pairs of double fault. As 

summarised by Cho et al. (2005), there are three types of interaction between two 

faults. Their first type of interaction (i.e. the magnitude of residuals of the single 

faults are similar with the double fault) is not applicable as such behaviour was not 

seen in the current study. Instead, another type of interaction is noticed, where the 

double faults have opposite influences on the system and their residuals cancel out 

each other.    
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8. Conclusions 

An approach to detect and diagnose certain pre-specified faults in a binary ice 

system has been proposed and developed. A number of single and double faults are 

considered in the study; most of them are unique to the binary ice system though a 

fault common to both conventional water-cooled chillers and binary ice system is also 

included. The fault detection and diagnosis is based on comparing the measurements 

from a re-commissioned test rig with the predictions from a simulation model 

specifically developed for this study. Both binary ice and binary ice system have 

unique and different characteristics when compared to convention secondary systems, 

and thus existing FDD techniques are considered not applicable. As far as the author 

is aware, this is the first time a FDD approach has been developed for a binary ice 

system.  

A hybrid approach is used to construct the dynamic simulation model that is 

based on a novel coupling of an ANN model of the primary refrigeration circuit with 

an analytical model of the scraped surface ice generator. The NARX ANN model is 

essentially a neural network with a tapped-delay-line to simulate the dynamic 

behaviour. On the other hand, the analytical model is a quasi-steady state distributed 

model based on mass and energy balances.  

Using a unique combination of three set-parameters (flowrates of the binary 

ice and the condenser cooling water, and the initial solution concentration) and two 

measured control variables (cooling water inlet temperate to the condenser and binary 

ice inlet temperature to the SSIG), as well as looping two ANN outputs (evaporating 

temperature and compressor power consumption) as inputs to the analytical model, 

the coupled hybrid model is capable of predicting a range of fault free parameters 

under transient conditions. Extensive validations have been carried out and it is found 

in general, the measurements agree well with the predictions. 

A huge amount of data has been collected from the test rig and generated by 

the model. Observations based on the data enable the author to gain a better insight 

and understanding (an objective of this study) into the operation behaviour of the 

SSIG as well as the binary ice system as a whole, in particular how various 
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parameters, including unmeasured ones, vary under both fault free and faulty 

conditions.  

Having carefully analysed the residuals of various parameters together with 

their sensitivities towards the specified faults, it is concluded that only two parameters 

are needed for detection. Unlike many conventional chiller FDDs that use the 

temperature difference of the secondary fluid across the chiller as a detection 

parameter, plus probably 3 or 4 more other parameters, the current approach only uses 

the evaporating temperature and the temperature difference of the cooling water 

instead; this again reflects the unique features of the binary system. No other 

measurements such as pressure and flowrate need to be monitored for the fault 

detection purpose; this should reduce instrumentation resources and simplify the 

implementation of the proposed approach.   

Based on the changes of the residuals of the parameters under various faults, it 

is found that four parameters, namely the refrigerant temperature at the compressor 

discharge and condenser outlet, the temperature difference of the cooling water across 

the condenser and binary temperature at the SSIG outlet, are sufficient to identify all 

the individual faults, each has a unique pattern of their residual variations.  

CUSUM test is successfully applied to monitor the time-variations of residuals 

of the selected parameters, enabling both detection and diagnosis be carried reliably at 

any instant without the need to acquire any steady state status. The influence of the 

thresholds are systematically examined and evaluated, and by carefully choosing an 

appropriate combination of the thresholds needed in the CUSUM test, it has been 

proved possible to eliminate any false alarm in the current study. A great deal of effort 

is devoted to understand the application and implementation of CUSUM test to ensure 

the transient results are interpreted correctly. 

The FDD performances with respect to diagnosis accuracy are examined. 

Though the overall FDD performance is considered satisfactory, the accuracies for the 

diagnosis of the binary ice flow reduction fault are generally lower than other 

specified faults due to the fact that the chosen parameters are relatively less sensitive 

to this fault, suggesting that some additional parameters need to be identified to 

improve accuracy. 
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The developed FDD are used to diagnose 3 sets of specified double faults, i.e. 

when two single faults occur simultaneously. The interactions between two faults are 

examined in details and their fault patterns are analysed. In particular, when two 

single fault patterns are similar to that of the associated double fault, the concept of 

comparing the residual ratio of two chosen diagnosis parameters is used successfully 

to differentiate the single and the double fault. The study also includes a case when 

the two single faults have their influence cancelled out each other; to the author’s 

knowledge this has not been done before by other researchers. However, there is one 

type of previously reported interaction that is not seen in the current study of the 

chosen faults, i.e. the magnitudes of residuals of the single faults are similar with the 

double fault.  

Various obstacles and limitations have been encountered, some are related to 

the inherent characteristics of the test rig and some are related to the model’s 

incapability to provide accurate predictions during compressor on-off moments. 

Measures and ideas are devised and implemented to resolve the issues, including, say, 

the generation of “artificial” data to “experimentally simulate” a broken blade, and 

designing the FDD in such a way that the COP and Qe are not included as detection 

and diagnosis parameters since the test rig has not got a refrigerant mass flowrate 

meter. The idea of “removing” some of the residual data during compressor on-off 

switching moments is also found to be effective in eliminating the false alarm caused 

by the erroneous residuals.   

Further works have been identified for improving the accuracy of the model 

and to expand the scope of the work.  

The developed approach is directly applicable for real time FDD. It will be 

useful to see how the FDD performs for variable loads and ambient temperatures. The 

FDD approach can be further developed to tackle other faults. It would be interesting 

to see for example how the system behaviour evolves in transient manner under a 

refrigerant leakage fault. They could enable early detection before a substantial 

quantity of refrigerant is lost. 

The analytical model can be improved by using a calculated heat transfer 

coefficient ho based on the evaporating temperature and the refrigerant mass flowrate 
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instead of the assumed constant value. As the changes of ho become more significant 

when the temperature of the secondary fluid changes (i.e. under variable loads or 

different initial solution concentrations), a pre-set ho value may not be valid. The 

performance of the FDD could also be improved by using some additional sensors 

and parameters. One possible parameter is the compressor power consumption, if a 

better power transducer is available to provide more reliable readings. 

In practice, it is not uncommon to see a thermal storage unit incorporated into 

a binary system; it would be useful to expand the project to include this type of 

secondary circuit. As various control mechanisms have been applied in HVAC 

systems in addition to the on/off control in this study, (e.g. variable speed fans, direct 

digital control, etc.) It would also be necessary to improve the FDD method so that it 

can be used for binary ice systems with different kind of controls. 

The project aims to achieve the following three main objectives: 

(i) To fully understand the operation (both steady and dynamic) and control 

characteristics of a binary ice system as well as the scraped surface ice 

generator, under both faulty and fault-free conditions. 

(ii) To build a dynamic hybrid model to predict the behaviour of binary ice 

system by coupling an analytical model of the ice generator and a system 

level ANN model. 

(iii) To develop a FDD approach that can be employed to detect several 

pre-defined single faults in a binary ice system. The approach should be 

capable of detecting the faults without a steady state detector, i.e. under 

transient conditions, and of identifying some pre-defined double faults. 

Overall, it can be concluded that the set objectives are fulfilled satisfactory 

and the study was considered unique and novel. Six faults in the binary ice system, 

namely condensing water flow reduction, binary ice flow reduction, increase or 

decrease of solution concentrations, ice generator broken blade and motor failure, can 

be diagnosed reliably based on six temperature measurements.  
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Appendix 

 Calculation of properties of ethanol solution A.

The properties of ethanol-water solution under different temperature and 

concentration can be calculated by the following equation from Thermophysical 

Properties of Liquid Secondary Refrigerant (Melinder 1997). 

 

f = C00 + C01(y-ym) + C02(y-ym)
2 
+ C03(y-ym)

3
 + 
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     A.1 

 

where f represents the properties that can be calculated including freezing point 

temperature Tf, density ρ, specific heat capacity Cp, thermal conductivity k and 

dynamic viscosity μ. For a given solution concentration (x, %) and fluid temperature 

(y, °C), the properties can be determined using the coefficients xm, ym and Cij, all 

determined by experiments, given below in Table A.1. 

  



213 

 

 

 

Table A.1 Coefficients for property calculation of ethanol-water solution with known solution concentration 

and temperature (Melinder 1997) 

  xm = 38.9250, validity limits: 11% ≤ x ≤ 60% 

  ym = -4.9038, validity limits: Tf ≤ y ≤ 20 °C 

i j Tf ρ Cp k μ 

0 0 -2.842e+001 9.544e+002 3.925e+003 3.545e-001 2.214e+000 

0 1 9.753e-006 -6.416e-001 3.876e+000 4.421e-004 -5.710e-002 

0 2 -1.236e-005 -2.495e-003 2.300e-004 -2.942e-007 4.679e-004 

0 3 6.378e-007 1.729e-005 1.322e-005 -1.115e-008 -1.374e-006 

1 0 -8.563e-001 -1.729e+000 -2.795e+001 -4.334e-003 8.025e-004 

1 1 5.274e-005 -1.824e-002 1.773e-001 -2.021e-005 2.618e-004 

1 2 1.843e-006 3.116e-004 4.769e-005 -4.865e-009 -8.472e-006 

1 3 -1.428e-007 -6.425e-007 3.008e-006 2.972e-010 1.478e-007 

2 0 4.050e-003 -2.193e-002 -9.620e-002 3.021e-005 -7.330e-004 

2 1 -3.058e-006 5.847e-004 -3.908e-003 4.239e-007 7.056e-006 

2 2 -1.531e-007 -2.517e-006 1.951e-005 1.007e-009 2.473e-007 

2 3 5.543e-009 -2.875e-008 3.366e-008 -7.325e-012 -1.329e-008 

3 0 -1.179e-004 6.217e-004 7.580e-003 6.904e-007 4.285e-007 

3 1 -9.416e-008 4.208e-006 2.283e-005 -3.203e-009 3.239e-007 

3 2 4.676e-009 -3.460e-007 -9.149e-007 -1.439e-011 -1.234e-008 

4 0 -1.992e-006 2.288e-006 -1.213e-004 -1.512e-008 4.313e-008 

4 1 5.409e-009 -4.141e-007 2.545e-006 -3.486e-010 8.582e-009 

5 0 2.951e-007 -6.412e-007 2.235e-007 -1.012e-009 7.654e-009 

 

On the other hand, when the solution temperature and its freezing point are 

known, the above equation can be used to determine the solution concentration C, 

density ρ, specific heat conductivity Cp, thermal conductivity k and dynamic viscosity 

μ using the coefficients in Table A.2. Table A.1 and Table A.2 are used in Chapter 4 

for the modelling of the SSIG 
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 Table A.2 Coefficients for solution concentration and property calculation of ethanol-water solution when 

its temperature and freezing point are specified 

  x = Tf (°C); xm = -27.8846, validity limits: -45 °C  ≤  x  ≤  -5 °C 

  y = T (°C); ym = -4.9038, validity limits: x ≤ y ≤ 20 °C 

i j C ρ Cp k μ 

0 0 3.830e+001 9.554e+002 3.940e+003 3.573e-001 2.211e+000 

0 1 1.853e-004 -6.281e-001 3.745e+000 4.570e-004 -5.724e-002 

0 2 -6.849e-006 -2.644e-003 8.054e-004 -2.695e-007 4.705e-004 

0 3 1.566e-007 1.597e-005 -5.778e-006 -1.221e-008 -1.358e-006 

1 0 -1.174e+000 1.988e+000 3.195e+001 5.161e-003 -2.923e-003 

1 1 -3.691e-005 2.195e-002 -2.061e-001 2.287e-005 -2.696e-004 

1 2 -2.130e-007 -3.693e-004 -3.060e-005 1.768e-009 9.900e-006 

1 3 7.393e-008 -4.714e-007 1.413e-006 -5.937e-010 -2.024e-007 

2 0 5.947e-003 -3.759e-002 -2.548e-001 1.297e-005 -9.079e-004 

2 1 -4.386e-006 6.311e-004 -3.510e-003 3.639e-007 9.402e-006 

2 2 -8.485e-008 -5.612e-007 1.084e-005 1.651e-009 3.813e-007 

2 3 4.058e-009 -1.174e-007 4.766e-007 -2.258e-011 -2.138e-008 

3 0 3.233e-004 -1.040e-003 -8.398e-003 -3.327e-006 2.378e-005 

3 1 8.389e-008 -1.117e-005 -3.151e-005 8.246e-009 -8.056e-007 

3 2 -6.145e-009 7.605e-007 5.825e-007 5.777e-011 2.577e-008 

4 0 -9.750e-007 -2.033e-006 -2.319e-004 -1.514e-008 -2.184e-007 

4 1 9.984e-009 -5.091e-007 2.082e-006 -2.981e-010 2.584e-008 

5 0 -1.143e-006 2.597e-006 1.964e-006 8.600e-009 -6.136e-008 

 



215 

 

 

 Binary ice property calculation B.

The thermo-physical properties of the binary ice at certain temperature T, 

carrier fluid concentration Ccf and ice concentration Cice can be obtained by 

combining the properties of the ice and the solution. The subscript bi represents the 

properties for the binary ice, cf is for the carrier fluid and ice is for the properties of 

ice. All calculations can be found in Handbook on Ice Slurries (Kauffeld et al. 2005) 

 Specific Enthalpy 

Specific enthalpy of binary ice at a given temperature T (°C) is determined by  

ℎ𝑏𝑖 = ℎ𝑖𝑐𝑒𝐶𝑖𝑐𝑒+ℎ𝑐𝑓(1−𝐶𝑖𝑐𝑒) B.1 

where hice is the specific enthalpy of ice 

ℎ𝑖𝑐𝑒 = −332.4 + 𝑇(2.12 + 0.008𝑇) B.2 

and hcf is the specific enthalpy of the carrier fluid at the same temperature   

ℎ𝑐𝑓 = 𝑐𝑝,𝑐𝑓𝑇  B.3 

cp,cf is the specific heat of the carrier fluid which can be calculated by Equation A.1 

and the coefficients in Table A.1 

 Density 

Density of binary ice is derived from the density of ice and carrier fluid as 

well. 

𝜌𝑏𝑖 = 𝜌𝑖𝑐𝑒𝐶𝑖𝑐𝑒 + 𝜌𝑐𝑓(1 − 𝐶𝑖𝑐𝑒) B.4 

Density of ice is a function of temperature T (°C) 

𝜌𝑖𝑐𝑒 = 917 − 0.13𝑇  B.5 

The ice concentration 𝐶𝑖𝑐𝑒 can be calculated by Equation 1.1 in Chapter 1.  

 Viscosity 

The correlation from Thomas (1965) will be applied to calculate the viscosity 

of binary ice.  
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𝜇𝑏𝑖 = 𝜇𝑐𝑓(1 + 2.5𝐶𝑣,𝑖𝑐𝑒 + 10.05𝐶𝑣,𝑖𝑐𝑒
2 + 0.00273𝑒16.6𝐶𝑣,𝑖𝑐𝑒)   B.6 

where Cv,ice is the ice concentration by volume,  

𝐶𝑣,𝑖𝑐𝑒 =
𝐶𝑖𝑐𝑒

𝐶𝑖𝑐𝑒+
(1−𝐶𝑖𝑐𝑒)𝜌𝑖𝑐𝑒

𝜌𝑐𝑓

  B.7 

Equation B.7 is valid when the ice concentration by volume is smaller than 62.5%. 

Thermal conductivity 

The calculation of thermal conductivity is based on the equation from Jeffrey 

(Jeffrey 1973).  

𝑘𝑏𝑖 = 𝑘𝑐𝑓(1 + 3𝐶𝑣,𝑖𝑐𝑒 + 3𝐶𝑣,𝑖𝑐𝑒
2𝛽2𝜒) B.8 

where  

𝛼 = 𝑘𝑖𝑐𝑒/𝑘𝑐𝑓 B.9 

𝛽 =
𝛼−1

𝛼+2
 B.10 

𝜒 = 1 +
𝛽

4
+

3𝛽

16

𝛼+2

2𝛼+3
 B.11 

and the thermal conductivity of ice at temperature T (°C) is obtained by the following 

equation 

𝑘𝑖𝑐𝑒 = 2.21 − 0.012𝑇 B.12 
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 Process chiller temperature controller C.

The control of the cooling water temperature to the condenser is carried out by 

a CAREL µC2 controller. It takes analogue input from a Negative Temperature 

Coefficient (NTC) temperature probe, which is installed inside the cooling water tank 

inside the chiller.  

 

Figure C.1 Control panel of CAREL µC2 controller 

Adjusting the set point and the temperature differential: 

1. Press and hold “Sel” button for 5 seconds, until  is displayed.  

2. Press “▼” button twice to select the control setting (r) parameter group, and 

then press “Sel”.  

3. Select parameter r01 (cooling set point) by pressing “Sel”. Use “▲” or “▼” 

to change its value. Press “Sel” to confirm the change. 

4. Press “▼” and “Sel” to select parameter r02 (cooling differential). Use “▲” 

or “▼” to change its value. Press “Sel” to confirm the change. 

5. Press “Prg” repeatedly until returning to the main menu to save all the 

changes.  

Operation of the process chiller: 

1. To start the cooling unit, switch on the main power supply. Then press and 

hold “▲”. The cooling water pump will start first, followed by the 

compressor.  

2 To stop the cooling unit, press and hold “▲” when the compressor is not 

running. Then switch off the main power. 
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 Thermodynamic properties of R507 D.

 

Table D.1 R507 saturation properties - temperature  
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Table D.1 R507 saturation properties - temperature (continued)  
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Table D.1 R507 saturation properties - temperature (continued) 
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 Binary ice temperature control  E.

The capacity control of the ice generator is implemented by monitoring the 

binary ice temperature at the outlet of the tank (i.e. the inlet to the ice generator) with 

a Positive Temperature Coefficient (PTC) 1.5M -50/140 Silicon thermocouple 

connected to a EWPC 901/N temperature controller from Eliwell 

The EWPC 901/N is an one-intervention point electronic temperature 

controller specifically designed for refrigeration applications. It can cut off the 

compressor at the set-point temperature and restart the compressor at the set-point 

temperature plus a positive differential.   

 

      (a)                      (b) 

Figure E.1 (a) the front view of the EWPC 901/N control panel and (b) wiring diagram 

Control setting of the binary ice temperature outlet of the load tank: 

 Change of set-point 

1. Press and release “Set” button to display the current set-point temperature.  

2. The set-point can then be changed within 15 seconds with the “UP” or 

“DOWN” button and the new value is automatically stored after 15 seconds. 

 Parameter programming 

Programming is accessed by holding the “SET” button down for more than 5 

seconds. Various parameters, including the positive temperature differential, can be 

accessed with the “UP” and “DOWN” button. Pressing the “SET” button will display 

current setting of the parameter. The “UP” or“DOWN” key allows this setting to be 

changed; the new value is stored automatically when no further key is pressed within 

15 seconds. 
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 Wiring diagram of Multitek M100-WA2 power transducer F.

 

 

Figure F.1 Wiring diagram of Multitek M100-WA2 power transducer 

 

  

5 2 8 

1 3 

Compressor 

3-phase 
power 

supply 

15 16 

Output to 

data logger 

L1 

L2 

L3 

Multitek M100-WA2 power 

transducer 



223 

 

 

 Binary ice flow meter Omega FPR302 and the counter G.

The flowrate of the binary ice is measured by an Omega FPR302 Low-Flow 

Meter. Its electrical current sinking pulse output is measured by an Omega DPF75-A 

Rate Meter which needs to be programmed to display the corresponding flowrate in 

litre/min. The rate meter has two input channels, A and B. The output of the 

flowmeter is only connected to channel A, leaving Channel B empty. 

 

Figure G.1 Omega FPR302 Low-Flow Meter,  

 

(a)  (b)  

Figure G.2 Omega DPF75-A Rate Meter (a) front view and (b) back view and the setup switches 
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There are four setup switches on the back of the ratemeter as shown in Figure 

E.2. 

Switch 1: View or change set values (normally off) 

 OFF: the rate meter is set to the run mode. The front display panel will 

show the flowrate.  

 ON: allow setting the "low" and/or "high" flowrate values corresponding 

to the limits of output current.  

Switch 2: Select output for rate or total (normally off) 

 OFF: the pulse rate (1 pulse per rotation of the rotor) is displayed.  

 ON: the total count of the pulse number. 

Switch 3: Select output signal range (normally off). 

 OFF: 4-20 mA 

 ON: 0-20 mA 

Switch 4: Unit calibration (normally off) 

The ratemeter is pre-calibrated by the manufacturer, thus Switch 4 should 

always be left at the OFF position during the test.  

The rate meter needs to be programmed so that the pulse rate can be converted 

to flowrate accurately. This requires inputting the scaling factor, selecting the units for 

the flowrate and matching the current output limits with the flowrate range.  

1. Inputting Scaling factor. 

 Press “PRGM”. 

 Press “ENTER” to set the position of the decimal point for the scaling 

factor of channel A. Press the arrow key under the digit where the decimal 

is desired. To clear the decimal, press “PRGM”. 

 Press “ENTER” to input the scaling factor of channel A. Press the arrow 

key under the digits to change the number. The scaling factor which is the 

K factor of the flowmeter, i.e. 164.8 pulses per litre provided by the 

manufacturer of the flowmeter.  

 Press “ENTER” repeatedly to save the setting and return to the run mode.  

2. Selecting the units for the flowrate 

 Press “PRGM” three times. 

 Press “ENTER” to choose RPS (rate per second) or SCALE (RPM, RPH). 

Press “PRGM” to select SCALE. 

 Press “ENTER”. Press PRGM to choose ÷60 (RPM) or ÷3600 (RPH). 

 Press “ENTER” repeatedly to save the setting and return to the run mode. 

3. Turn Switch 1 to ON position. 

4. Matching the current output limits with the flowrate range 
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 LOW SETTING can be changed by pressing PRE A. Press buttons A 

through E to step to the desired value and press ENTER, e.g. setting 0.5 

l/min to correspond to 4mA output.  

 HIGH SETTING can be changed by pressing PRE B. Press buttons A 

through E to step to the desired value and press ENTER, e.g. setting 15 

l/min to correspond to 20mA output.  
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 Data acquisition software Dalite H.

A software package Dalite for Windows is the used with the Datascan data 

acquisition modules. It allows real time processing and display of the logged data. A 

brief instruction of this software is given here.  

 Communication configuration 

This step connects the Datascan modules to the computer. To specify the PC 

communication port for the Datascan modules, choose the Communication from the 

Configure menu, then select the correct baud rate and the communication port as 

shown in Figure H.1. 

 

Figure H.1 Communication setup dialogue box 
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 Data scan module configuration 

Next step is to configure the Datascan modules and their channels. Choose 

Channels under the Configure menu. A Datascan module dialogue box will pop up as 

shown in Figure H.2.  

 

Figure H.2 Datascan module configuration dialogue box 

First is to choose the module type from the drop down menu on the lower left 

half of the box (Models 7320 and 7020 are used in this case). Then, match the module 

address switches on the dialogue box with the switches on the actual Datascan module. 

Next is to set the channel address range using the scroll bar on the right. Both 

modules 7320 and 7020 are 16 channel-modules and their ranges are set to 1-16 and 

17-32 respectively, though not all of them will be used during the study. To configure 

any newly added modules, click Add Module button and repeat the above procedure.  
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 Data scan channel configuration 

To configure each individual channel, click Channel Configuration button and 

a dialog box as shown in Figure H.3 will appear. This box allows the user to select the 

type of the sensor connected to the channel, the sensor output signal type and the 

measured parameter range.  

 

Figure H.3 Analogue input channel configuration dialogue box 

First is to select the channel number which the sensor connected to using the 

scroll bar in the upper loft corner. Then choose the right channel type to match with 

the sensor 

 Monitor page configuration 

The monitor page provides the user real time readings of the sensors. After all 

the sensors are configured, click Monitor from the configure menu, the monitor 

configuration window will appear. 

The frist step is to configure the layout of the monitor page. Click Grid in the 

menu bar to show the grid adjust dialogue box. It allows the user to choose the 

numbers of row and column for the monitor page.  
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Figure H.4 Monitor Page 

 
Figure H.5 Selecting Channels to Monitor 

A monitor page dialog box as in Figure H.4 will pop up after the layout is set. 

The next step it to configure channels to the page. Select Channels from the menu bar 

in the monitor configuration window to show a select channel to monitor dialog box 

(Figure H.5). From the drop down list of this box, all channels that have been 

configured in the previous step can be found. Copy the selected channel, and paste it 

to the cell in the monitor page. The number and the description of the channel will be 
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shown in the cell. When the configuration is finished, choose File and Save from the 

menu bar, and then Exit. 

 
 Logger configuration 

A logger is the computer file where all the monitored sensor readings are 

recorded. To configure the logger, click Configure from the menu bar in the main 

window and selecte Logger. The configure logger window is shown in Figure H.6 

 
Figure H.6 Logger configuration window 

Unclick the Disabled box from the upper left corner to active the logger. The 

Log Channel Range section allows the user to choose the channels to be recorded. 

The sampling interval can be adjusted in the Log Frequency section. Choose Manual 

to let the log start when Dalite starts to monitor the sensors.  


