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Abstract

Fault detection and diagnosis (FDD) is an important part to maintain the
performance, improve the reliability and prevent energy wastage of the refrigeration
systems. Binary ice systems, which have become more commonly employed in both
industry and domestic applications, are essentially refrigeration systems using
water-ice slurry mixture as a secondary refrigerant. The existence of the ice makes
binary ice systems different from conventional liquid chillers, leading to the
requirement of a specified FDD method. Therefore, the current research focuses on
developing a model based dynamic FDD approach that can capture the unique
features of binary ice systems in order to detect some pre-selected faults, including
binary ice flow restriction, cooling water flow restriction, incorrect solution

concentration, ice generator scraper fault and ice generator motor failure.

To provide fault free predictions for the FDD, a dynamic hybrid model of the
binary ice system was proposed. The model consisted of an analytical sub-model of
the scraped surface ice generator, which was an essential component of the binary
ice system that produced ice, and an artificial neural network (ANN) sub-model of
the primary refrigeration circuit. The two sub-models were coupled by using two of
the ANN model’s outputs as the inputs to the analytical model, namely the
evaporating temperature and the compressor power consumption, as well as sharing
some of the input parameters. The coupled model was validated with data from a

2.5kW laboratory binary ice test rig.

The FDD was carried out by monitoring the changes of the residuals of some
carefully chosen parameters, using CUmulative SUM (CUSUM) test. Two
parameters, namely cooling water temperature difference and evaporating
temperature, were monitored for fault detection purpose, and condenser outlet
temperature, cooling water temperature difference, discharge temperature and binary
ice outlet temperature were observed for fault diagnosis function. An ANN fault
classifier was developed to identify the type of the fault by analysing the
combinations of the fault diagnosis parameter variations. This FDD method was
found to be able to detect and diagnose successfully the pre-selected faults without
raising any false alarm, and in addition it was capable of diagnosing three pairs of
double fault.
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1. Introduction

Refrigeration and Air Conditioning (RAC) systems have become an essential
part of our daily lives, serving a wide range of domestic, commercial and industrial
applications. As in many other thermal and electro-mechanical systems, faults could
develop in the systems, causing system malfunction and leading to energy wastage,
poor temperature/capacity control, unsafe operation, and in some cases, even
catastrophic component failure (Stouppe and Lau 1989; Isermann 1997; Gertler 1998).
Over the years, various fault detection and diagnosis (FDD) techniques/methodologies
have been researched, developed, and implemented for RAC systems (Katipamula
and Brambley 2005) in particular vapour compression systems (Rossi 1995; Breuker
and Braun 1998b). Essentially, FDD is a process monitoring technique used for
detecting abnormal working conditions of a system and deducing the sources of the

faults by monitoring specific system parameters (Chiang et al. 2001).

Over the past two decades, RAC industry has been developing and applying
alternative refrigerants to replace the ozone depleting CFC/HCFC refrigerants (Sekiya
and Misaki 2000; Spatz and Yana Motta 2004). However, many of these alternatives
are still considered as threats to the environment or to human safety as they either
have high global warming potentials (GWPs), e.g. R507, R404A, or high
flammability/toxicity, e.g. R717 (Ammonia), R290 (Propane), R30 (methylene
chloride). Therefore it is important to ensure there is minimal or no escape of
refrigerant to the environment or into occupied space due to leakage which is a
typical/common fault in RAC systems. In addition, some of the alternative
refrigerants are also quite expensive, especially the synthetic ones (e.g. R507 is ten
times more expensive than R22, and R1234yf is around £160/kg), it would be sensible
to reduce total system refrigerant charge quantity and leakage possibility by

improving the design of the system.

One conventional approach employed to reduce the total refrigerant charge
quantity, the possibility of refrigerant leakage and the potential hazardous impact on
occupants is to confine the main refrigeration circuit, commonly referred as the
primary circuit, and the primary refrigerant in a plant room, and use a heat transfer

fluid (HTF) to distribute the cooling to the remote loads. The distribution system is
20



commonly referred as the secondary system (Arora 2010) and the heat transfer fluid
as the secondary refrigerant. For conventional secondary systems, single phase fluids
such as water are often employed as the secondary refrigerants (Riffat et al. 1997).
For sub-zero temperature applications, where the water cannot be used, other
secondary fluids such as brine or glycol solutions (Melinder 2007) are often employed
instead. However, their concentrations need to be increased to depress their freezing
point for lower temperature applications (Melinder 1997); this correspondingly

increases their viscosities significantly, resulting in rather high pumping costs.

Phase change slurries (PCSs)!, as a relatively new kind of secondary
refrigerant, benefit from the high latent heat absorbed during the melting the solid
phase (Egolf and Kauffeld 2005). The solid part of PCSs is generated as very small
particles, and when suspended in the liquid phase, becomes a pumpable binary
mixture. Among various PCSs, binary ice, also known as ice slurry, is receiving much
attention in recent years (Wang and Kusumoto 2001; Davies 2005; H&g 2005;
Tamasauskas et al. 2012; Yeo et al. 2012). As defined by Egolf and Kauffeld (2005),
binary ice is a homogenous mixture of aqueous solution and fine ice particles with
diameters smaller than 1mm. It possesses unique thermal-physical properties and flow
characteristics due to the presence of ice particles in the carrier fluid (Knodel et al.
2000). Its advantages include high cooling capacity per unit flow rate, small
temperature change, low pumping power requirement, etc. (Lee et al. 2006; Kauffeld
et al. 2010; Kumano et al. 2010b), when compared to traditional single phase
secondary fluids. The applications of binary ice include comfort cooling for
multi-function buildings, food processing and preservations, mining, fire-fighting, etc.
(Kauffeld et al. 2010).

Binary ice systems possess unique operation characteristics, which may mean
the existing FDD approaches are not applicable to binary ice refrigeration systems. In

this thesis, the development of a FDD approach for binary ice system is presented.

! Phase change slurry is a mixture of dispersed phase change particles and a continuous
carrier fluid.
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1.1 Fault detection and diagnosis (FDD)

1.1.1 FDD methods and procedures

Faults, which can be caused by design error, aging, incorrect operation setting,
human error, etc., result in system malfunction or/and performance degradation
(Chiang et al. 2001). Even small faults could lead to substantial energy wastage,
increase in maintenance cost and system down time (Isermann 2005). Some faults
could potentially cause a complete system breakdown. As a result, fault detection and
diagnosis techniques are introduced to detect the abnormal operation behaviour, so

that problems can be identified and rectified in an effectively and timely manner.

Figure 1.1 shows the typical structure of a FDD approach which essentially
consists of three main steps: fault detection, fault diagnosis and fault evaluation. The
first step, fault detection, is to determine whether a fault exists in the system or
whether everything is working correctly. It is carried out by comparing certain
measured (or derived) system parameters with fault-free data. The fault-free data can
be obtained from model predictions or from historical/log data (Schein and Bushby
2006). If the residual, which represents their difference, fails to fall within a
pre-defined ‘fault-free’ threshold, a fault is registered. The next step is to identify the

fault and isolate its source.

A

Fault-free data RAC System

Measurement
- +

Residual

Fault Detection

A 4
Fault Diagnosis

\ 4
Fault Evaluation

Figure 1.1 Flow chart of a typical FDD process
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Different faults have different influences/impacts on the system behaviours,
often referred to as fault signatures. For examples, condenser fouling will increase the
evaporating temperature (Cui and Wang 2005), while refrigerant leakage will reduce
it (Assawamartbunlue and Brandemuehl 2006). By analysing the combinations of the
changes of various selected system parameters, faulty component(s) or types of faults
can be isolated (Braun 1999). Their influences on system performance and operating
conditions, safety, environment, energy penalty and repair cost can then be evaluated

(Braun 2003); appropriate actions can then be taken accordingly.

The previous three steps are usually followed by decision making to decide
how to deal with the fault. If the fault may cause a severe problem, like damaging the
system or being related to safety issues, the system should be shut down immediately.
For less serious faults, the FDD system can choose whether to report the fault or to
tolerate it without stopping its operation, but the fault has to be continuously

monitored and eventually get rectified.

Many kinds of FDD modelling techniques have been developed or studied for
various systems including RACs. They can be put into three main groups: physical
model-based (also referred as white box models or analytical models) (Koury et al.
2001), process history based FDDs (i.e. black box models) (Swider et al. 2001; Ertunc
and Hosoz 2006) and a combination of the two which often called hybrid or grey box
models (Katipamula and Brambley 2005).

For the physical model-based methods, a mathematical model, which has been
properly validated, is to simulate the physical process of the system. This method is
based on establishing physical relationships which require a thorough understanding
of the physical process involved. The simulated outputs are then compared with the
measured values. Although it may be more computationally intensive, it is capable of
showing the transient state of a system in details and it can be utilised to simulate both
normal and faulty working conditions. However, physical models are relatively hard
to develop, especially for complicated systems, and sometimes when assumptions are
made to simplify the calculations, the simulation accuracies could be compromised,
which may generate unreliable FDD results (Chiang et al. 2001). In this case, extra
calibrations using experimental data are necessary, resulting in the formation of some
kind of grey box models (Ding et al. 2009).
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Models based on process history show advantages when sufficient amount of
historical data are available. The data, which can be divided into input and output data
groups, are employed to train the model (Yegnanarayana 2004). The training process
is to determine the correlations that can relate the inputs with the outputs, but they
unfortunately cannot reflect the physical relationships between the two groups
(Swider 2003). When applied to fault detection, the model uses a set of measured data
as model input to generate predicted output data which are then compared with
measured output data. This can be applied regardless of whether the physical
processes involved are clearly understood or not, making it easier to develop when
compared with the physical models. Artificial neural networks and regression
algorithms (Sreedharan and Haves 2001) are some of the commonly used history data
based FDD models.

A grey box model is a combination of the physical and process history models,
based on physical principles of the systems but with some of the modelling
parameters obtained by black box models (Gordon and Ng 2000; Saththasivam and
Ng 2008).

It is unlikely a single FDD modelling technique can deal with all types of
faults, as individual FDD technique has strengths and limitations in relation to the
nature of the system and the fault(s); a combination of various techniques may often
be used to achieve an effective and accurate detection for RAC systems
(Estrada-Flores et al. 2006).

1.1.2 Application of FDDs in RAC

The applications of FDDs can be seen in a wide range of industry, including
critical systems such as power plant (Gross et al. 1997; Tan and Lim 2004), aircraft
(Marcos et al. 2005; Lu et al. 2015) and emergency department (Harrou et al. 2015)
which generally involve advanced sensors and instrumentations, as compared to those

used in non-critical systems such as RAC systems.

FDDs for RAC systems are mainly employed to help reduce energy wastage
due to faulty operation, food spoilage due to faulty components, human discomfort
due to faulty controls, damage or excessive wear and tear of equipment due to

unfavourable operating conditions, etc. (Viser et al. 1999; Grace et al. 2005; Rueda et
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al. 2005). Compared to critical systems encountered in, say, the nuclear power
generation and aviation industry, the budgets available for incorporating FDDs in
RAC systems are much smaller, as faults in the latter are generally more tolerable and
are less likely to cause fatalities or catastrophic failures. Therefore, it is essential that
FDDs developed for the latter should use as few sensors and as simple measurements
as possible to detect the faults, therefore keeping the cost down as well as making it

simple to implement (Venkatasubramanian et al. 2003).

Over the years, many FDD methods had been developed for RAC systems,
although they are mainly oriented towards water chillers (Jia and Reddy 2003; Cui
and Wang 2005; Reddy 2007a) and air-conditioning systems (Viser et al. 1999; Kelso
and Wright 2005) for buildings; applications of FDDs in other systems such as
supermarket refrigerated display cabinets (Assawamartbunlue 2000) and heat pumps

(Kim et al. 2010) have also been looked at in recent years.

It appears that all the current FDD techniques are developed for single phase
secondary refrigerants, such as air or water, and no research had been done on the
development of FDD for two-phase binary ice systems. Although binary ice has its
unique characteristics, binary ice systems still share many similar features, including
certain faults, with conventional single phase liquid chillers. Therefore, some insights
into chiller faults and the detection methods will help to gain a better understanding of

the FDD development of binary ice systems.

Generally faults can be classified into two main groups: hard faults and soft
faults. A hard fault means that some physical components fail to function. These
include components failure, such as a broken belt or a stuck valve, electrical faults,
such as control box failure or burnt motor, and so on. On the other hand, soft faults
refer to degradation of the system/component performance such as refrigerant leakage
and heat exchanger fouling (Comstock et al. 2002b). A hard fault is relatively easy to
detect with simple measurements or observations but soft faults may not have
sufficient impact on system behaviours until certain severity levels are reached. Thus
most of the researches related to fault detection for RAC have been focussing on soft

faults.
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Various surveys on common faults in RAC equipment were carried out by
previous researchers (Stouppe and Lau 1989; Breuker and Braun 1998a; Comstock et
al. 2002b), for both hard and soft faults. For example, Comstock et al. (2002b)
examined the service records of five domestic chiller manufacturers. Among all the
chiller faults, the most frequently occurred faults were in the control box (about 33%
of all faults), followed by refrigerant leakage (19%). Other less frequently occurring
faults were liquid line faults (5%) and condenser fouling (4% average). Their reviews
so far indicate almost all the FDD methods are developed based on certain
pre-defined faults that are considered important in terms of their influence on system

efficiency and operation.

FDD techniques had been studied/developed by various researchers, for water
chiller (Reddy 2007a) and for glycol systems (Rueda et al. 2005). Generally, those
methods are based on the measurements of flow temperature, pressure, flowrate, etc.
A more detailed review of those works will be given in Chapter 2. Though PCS
systems share many common faults with other indirect systems (e.g. refrigerant
leakage, heat transfer fluid flow restriction), some faults are only unique to them (e.g.
incorrect solution concentration and malfunction of the ice generator). A
representative number of faults will be studied in this project and attention will be

paid particularly to those that are unique to binary ice systems.

1.2 Binary ice and binary ice systems

1.2.1 Phase change slurries (PCSs)

For single phase fluids, such as glycol solution, ethanol solution, water and
brine, the energy absorbed, as sensible heat, increases the temperature of the fluid.
Though many of them have reasonably large values of specific heat capacity, their
temperature increases are still large when absorbing the thermal load, making the
component/system design relatively more complicated (Sharma et al. 2009). On the
contrary, PCSs can store and release large amount of latent heat during phase changes
and correspondingly they require smaller mass flow rates, less pumping power,
smaller chillers and pipe sizes, as well as smaller thermal storage units (if any) for a
given cooling capacity. They also experience much smaller temperature changes

across the heat exchangers when performing a cooling function.
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Many materials or mixtures can be potentially used as PCSs for refrigeration
applications. The freezing point is an important parameter to consider when selecting
a suitable PCS for a particular application, which depends on the type and
concentration of the material; it should match with the desired operational
temperature range (Sharma et al. 2009). Other selection criteria include the chemical
stability and low cost (Zalba et al. 2003; Sharma et al. 2009).

1.2.2 Binary ice properties and production

A water-ice binary solution is among some of the first used PCSs. It is cheap,
easy to obtain, safe and also with a very large latent heat. For sub-zero temperature
applications, a freezing point depressant (or additive) has to be added, glycol, ethyl,
ethanol and NaCl being some of the popular ones. By selecting an appropriate type of
additive/solute and using a suitable concentration, an aqueous solution-ice mixture,
also known as binary ice, can be generated when its temperature is reduced to below

the freezing point.

A number of ice generation methods have been developed. They can be
broadly divided into the following groups: mechanical-scraper type (Kauffeld et al.
1999; Stamatiou et al. 2005), vacuum type (Paul 1996), direct contact type (Byrd and
Mulligan 1986; Fukusako et al. 1999), fluidized-bed ice generator (Klaren and Van
Der Meer 1991), ice generators using sub-cooled water with different types of
nucleation initialization (Mito et al. 2000) and ice slurry generators with specialized
ice nucleating and ice repelling surfaces (Zwieg 2002). Among them,
mechanical-scrapers are the most commonly applied type in industry because the heat
transfer rate from the solution to the primary refrigerant can be greatly increased by
agitation, leading to energy and space savings (Kauffeld et al. 1999).

Scrape surface ice generator (SSIG) is one of the most popular
mechanical-scraper type ice generators. The SSIG is essentially a co-axial concentric
heat exchanger with the primary refrigerant flow in the annular space providing
cooling to the solution flowing in the inner cylinder. A very thin layer of ice forms on
the inner surface of the cylinder when the local solution temperature drops below its
freezing point, and is then removed by the rotating scrapers. During this process, both
the solution and ice concentrations increase, and the flow temperature decreases

gradually along the SSIG towards the exit; the actual decrease, typically between 2 to
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3 <C, depends on various parameters such as the length of the SSIG and initial

solution concentration.

To describe the states of binary ice, three independent variables are needed,
namely solution and ice temperature (usually assumed to be the same (Kauffeld et al.
2005)), carrier fluid concentration and ice concentration. When the binary ice is

generated in a solution with a known initial concentration, only two of the variables

are needed.
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Figure 1.2 Phase diagram of a binary ice mixture

Figure 1.2 shows part of a typical phase change diagram of a hypo-eutectic
solution (Ge and Wang 2009) at different temperatures (Y-axis) and solution
concentrations (by mass?, X-axis). The freezing point curve (assumed under standard
atmospheric pressure) gives the freezing temperature at a certain solution
concentration, which decreases when the solution concentration increases. Above the
freezing point curve, the solution is a single-phase liquid, whereas below the curve, a

mixture of ice particles suspended in solution can be formed.

Take a solution with an initial concentration, C,, at temperature 0<C (point A)
as an example. When being cooled, solution remains as liquid until its temperature
drops (assuming it is being cooled by an external medium) to its freezing point Tt
(point B). At this point, part of the water begins to freeze. If the solution is cooled
further down to a lower temperature T and the water is taken out during this freezing

process, the solution concentration increases, moving from point B towards point C

2 Concentration by mass = mass of solute/total solution mass
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(with the corresponding solution concentration changing from C, to C.) along the
freezing point curve. At the same time, more and more ice is produced, and at point C,
the corresponding ice concentration (Cic) can be calculated by:

Co

Ciee =1 &= 1.1

where C is the concentration of the carrier fluid at point C.

An important property of binary ice related to the pumping power is the
viscosity which increases with the solution concentration and ice concentration
(Kumano et al. 2010a). Comparing a binary ice mixture (Point E in Figure 1.2) to a
solution with a concentration of C. (Point C), both at the same temperature, the
viscosity is larger at point E when there are ice particles in the mixture. However if
the initial solution concentration is increased to C’ (Point D), its viscosity at the same
temperature will be significantly higher than that of Point C, leading to potentially a

lower viscosity at Point E than at Point D.

Due to the presence of ice particles in the carrier fluid, the rheological
behaviour of ice slurries is much more complex than a single phase fluid (Egolf and
Kauffeld 2005). When the ice concentration is low, ice slurry flow behaves like
Newtonian fluid; for suspensions containing a large amount of ice particles,
non-Newtonian behaviours resulted (Darbouret et al. 2005). It has been observed that
the transition of Newtonian fluid to non-Newtonian fluid happens at ice
concentrations by mass between 6% and 15% (Ayel et al. 2003) which are lower than
that commonly encountered in SSIGs (typically around 20% in practical applications)

where binary ice are often treated as non-Newtonian.

One of the non-Newtonian models that can be applied to describe the
behaviour of binary ice is Bingham flow (Frei and Egolf 2000). Figure 1.3 tells the
difference between a Newtonian fluid and a Bingham fluid. Bingham fluid (Bingham
1917) behaves like rigid body when shear stress is lower than the yield stress zp. Once
the shear stress overcomes the yield stress, the suspensions become viscous fluid,

which is pumpable.
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Figure 1.3 Rheogram for Newtonian and Bingham fluid
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The relationship between the shear stress zg and shear rate d—; for Bingham
fluid is:

dv
TB=T0+qu—y 1.2

while the same relationship for Newtonian flow is

N = ,uNZ—; 1.3
where & and p, shown as the gradients of the lines in Figure 1.3 are the dynamic
viscosities for Bingham fluid and Newtonian fluid respectively. The pumping power
to enable the Bingham fluid to start moving from quiescent state should be large
enough to overcome 7. The ice particles build some kind of internal structure when
no stress is applied (Kauffeld et al. 2005). Once the yield stress is exceeded, the
structure collapses, and the fluid begins to move.

From the figure, it can be deduced that when the flowrate in a given pipe
increases, the shear rate and the corresponding shear stress both increase. When the
flowrates are small, the required shear stress for a Bingham fluid is always larger than
that for a Newtonian fluid. However, for the case shown in Figure 1.3, the viscosity of
the Bingham fluid is smaller as indicated by the gradients. When the flow rate
increases, the required pumping power for the Bingham fluid will eventually be
smaller than that of the Newtonian fluid, thus saving pumping power at higher flow

rates.
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Therefore, there are two main reasons that using binary ice as secondary
refrigerant will reduce pumping power consumption. First, for a given cooling
capacity, the required flowrate of binary ice is much smaller than a pure liquid due to
the involvement of latent heat when the ice particles melt. Second, for a binary ice
mixture, its viscosity could be potentially smaller than the single phase solution of a

higher concentration at the same temperature.

The relevant thermal-physical properties of binary ice such as viscosity,
specific heat, specific enthalpy, density and thermal conductivity can be determined
by combining the properties of the carrier fluid and ice at a given temperature once
the ice concentration has been determined. The equations and calculation details can
be found in Handbook on Ice Slurries (Kauffeld et al. 2005) and will be included in
Appendix A and B.

1.2.3 Binary ice systems and their operations

The application of binary ice started from early 1990s (Paul 1992; Snoek 1993)
and nowadays, they are widely employed. One of the most important application
domains is the comfort cooling for large buildings (Wang and Kusumoto 2001).
Using binary ice as the secondary refrigerant instead of chilled water can decrease the
air distribution temperature and significantly reduce the air flowrate needed for a
certain cooling capacity, meaning smaller equipment and less fan power for air

distribution will be required.

Japan has the most binary ice air conditioning systems installed in the world,
for over 400 buildings; while Europe has approximately 150 systems in 2009 (Rivet
2009). Examples include the Capcom Building (Bellas and Tassou 2005) which saved
4% of overall building running cost due to the reduced fan power and Herbis building
in Osaka (Wang and Kusumoto 2001), where about 1/3 of the peak system load was
reduced by using thermal storage involving binary ice.

Food preservation and processing is another large application area for binary
ice. Ice slurry can be used as direct contact cooling agent for fast cooling of food such
as fish (Wang et al. 1999), or as indirect coolant in heat exchangers during food
processing for industries such as dairy production (Gladis 1997) and breweries
(Kauffeld et al. 2010). It can also be used in large kitchens (Campos et al. 2005) and
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supermarket display cabinets (Lueders 1999; Davies and Lowes 2002). Other possible
applications include mine cooling (Kidd 1995), medical cooling (Brooker et al. 1997;
Becker et al. 2000; Laven et al. 2007), firefighting (Lowes 2002), etc.

There are different strategies for the implimentation of a binary ice cooling
system. Figure 1.4 displays a typical layout of a binary ice system for central air
conditioning for buidings. Ice is generated by a vapour compression refrigeration. The
ice and its carrier solution are then stored in a fully agitated tank before being pumped
to the terminal units. Depending on the cooling demand, the fluid can return
with/without ice to the tank. Under some circumstances, the storage tanks are not
agitated. The concentrated ice at the top can be used for immersed cooling for food
processing or medical use, while the pure liquid at the bottom can be pumped to the
cooler for general comfort cooling (Guilpart et al. 2005).
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Figure 1.4 General binary ice system diagrams

In summary, the properties of binary ice and the operation characteristics of
binary ice cooling systems are quite different from those of the conventional
secondary refrigeration systems. The existing FDDs developed for the latter are not
expected as being capable of handling the faults in binary ice systems. Therefore in

this report, a new method is proposed.
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1.3 Outline of thesis

Chapter 1 brings out the general concepts of FDD and binary ice systems. The
unique features of binary ice systems have been introduced. It is necessary to develop

a new FDD approach for binary ice systems as no existing method is applicable.

The literature review (Chapter 2) looks into the development of FDD for
conventional liquid chillers as they share some common features with binary ice
systems. Observations have been made and based on which the methodology of this
study is proposed.

The FDD method is designed based on a particular binary ice test rig available
in the laboratory. In Chapter 3, the experimental setup of this test rig is described. A
prebuilt ice generator is coupled with a tank equipped with immersion heaters which
simulates the cooling load. This test rig is monitored by various sensors to provide

normal/faulty data for the studies.

For a model based FDD, a simulation model of the system is needed to
provide fault free benchmark for the fault detections. As reviewed in Chapter 2, a
single type of model may not be able to serve the FDD purpose well. Therefore in this
study, a hybrid model, which consists of a dynamic analytical mode for the ice
generator and a dynamic ANN model for the rest of the system, is applied. Chapter 4
looks at the process of ice forming in detail and the development of the associated

mathematical formulations of the analytical model.

For the ANN model, its basic concept and the configuration method is
presented in Chapter 5. The analytical model and the ANN model are calibrated and
trained respectively, and validated with the data collected from the test rig. The

coupled hybrid model and its validation is also covered in Chapter 5.

Based on the hybrid model, Chapter 6 focuses on the development of the
actual FDD approach. The influences of the selected faults on various
measured/derived parameters are investigated. The parameters for the detection and
the diagnosis are selected respectively based on the above influence. To handle the
dynamic feature of the system, a unique method called CUSUM test has been used to
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speed up the detection and reduce false alarm. In addition, the diagnosis of some

double faults is also addressed.

The results and discussions are presented in Chapter 7, where the results of the

FDD approach are evaluated. Last, the whole project is concluded in Chapter 8.
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2. Literature review

As pointed out previously, binary ice systems are similar to single phase liquid
chillers in many ways. Therefore, the development of a FDD approach for a binary ice
system can start from gaining a better understanding and analysing the existing FDD
methods for single phase systems. In this chapter, previous researches related to FDD
of RAC systems, in particular the vapour compression liquid chillers, are reviewed.
The first part of the review focuses on the methods to obtain fault-free prediction data
for fault detection in RAC applications. The development of analytical, black box and
grey box models are examined here. The second part surveys the work on applying
the modelling results together with the real system measurements for FDDs, including
the selection of parameters and thresholds, and the development of diagnosis
approaches. This is followed by a look into the evaluation of the FDDs performance
by previous researchers, in terms of detection/diagnosis accuracy, speed, false alarm
rate, etc. The motivation and objective of this project, and the overall research
plan/methodology are then provided, based on the observations made from the

previous work.

2.1 Vapour compression liquid chiller models

The implementation of FDDs is based on the comparisons of fault-free data
and the measured data. In general, there are two ways to obtain fault free data: via
historical data log or via model predictions (Chiang et al. 2001). Historical records are
usually taken under specific working conditions at the specific time and therefore it
may be difficult to apply them for general FDD purpose, as the data base can be too
small to cover all the possible situations when faults are encountered. On the other
hand, the development of a prediction model requires much less data points, and the
models can produce simulated results over a wide range of conditions; this makes
prediction models a preferred option to produce faults free data (Katipamula and
Brambley 2005).
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To develop a suitable model for a FDD, there are some general considerations.

e Accuracy

A reliable prediction model should be an accurate reflection of the actual
system. The accuracy of the model has a great influence on the reliability of the FDD,
in terms of detection accuracy, rate and speed (Reddy 2006). If a model has small
predictions errors, the thresholds for fault detection(s) can be reduced, and for FDD
applications, this would enable an earlier detection of a fault and reduce the false

alarm rate (Sreedharan and Haves 2001).

e Data requirement

Prediction models often require data for validation, training or/and calibration,
depending on the types of the model (Katipamula and Brambley 2005). Two main
issues need to be addressed: 1) the number and type of the model input parameters
and 2) the amount of data points required. The monitoring of the system parameters
requires specific instrumentation and costs money; some parameters may not be
acquired easily due to system constrains, such as acquiring the internal wall
temperature of a ready built heat exchanger. Thus it is desirable to build a model
which would require fewer input parameters that should also be cheap/easy to
measure, in order to improve applicability and to save the cost of FDD. As for the
second issue, generally speaking, making available a large amount of data points for
model training and calibration would increase the accuracy of a model. However, data
recording is both time consuming and expensive. A model should be developed in a
way that it requires a smaller amount of data points while maintaining an acceptable
level of accuracy.

e Physical relevance of the modelling parameters

Particularly for analytical/mathematical models, the parameters involved must
have physical meanings and they should be, as far as practically possible, directly
related to key operating characteristics or/and certain types of fault, making their

detection relatively straight forward.

As mentioned in Section 1.1.1, three types of models have been developed for
FDDs, namely analytical model, black box model and grey box model. Some previous

studies are surveyed below.
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2.1.1 Analytical model

To build an analytical model for a refrigeration system, a deep understanding
of the associated physical principles that govern the system behaviour and operational
characteristics is needed. The models are usually built from component level before
system integration (Koury et al. 2001). For transient analytical models, the key to
describe the dynamic behaviour of chillers is to capture the transient characteristics of
the heat exchangers (evaporator and condenser), because they hold most of the
refrigerant charges of the system. The expansion valve and the compressor can be
treated as steady state all the time as their condition changes are much faster

compared with the heat exchangers.

For instance, sub-models of evaporator and condenser usually consist of a set
of time-space partial differential equations representing heat, mass and momentum
balances within the heat exchangers, which can be solved to determine local heat
transfer, temperature and pressure at any specific time (Katipamula and Brambley
2005). For compressors and expansion devices, as their thermal inertia are quite small
(Bendapudi et al. 2002b), quasi-steady state assumptions are often applied. The
component models are then coupled together with the thermodynamic states of
refrigerant and mass continuity. The enthalpies, mass flowrates and properties of
refrigerant at the outlet of one component become the inlet to the next coupled

component.

Detailed mathematical models are difficult to construct and require relatively
huge computational time; to reduce the complexity of the modelling and simulation,
assumptions are often made. Common assumptions from literatures include using the
idealised refrigeration cycle, constant refrigerant charge level (Mclintosh et al. 2000),
1-D refrigerant flow in heat exchangers (Nyers and Stoyan 1994; He et al. 1997), etc.
Assumptions vary with modelling approaches and they may affect the accuracy of the
model and hence the reliability of the FDDs. Many of the assumptions may also be
valid for the binary ice system involved in this study. By analysing the application
and viability of the common assumptions for various RAC systems, it may help

identifying the appropriate ones for the current study.

Many analytical models have been built but they are mainly developed for

system or component designs, not many of them have been used for FDDs. Some
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examples of mathematical models for general vapour compression system simulation
are given below. Attention will be paid to the type of system, the selection of

modelling parameters and the model’s potential of being employed for FDD purpose.

Browne and Bansal (2002) built a detailed dynamic model for a packaged
liquid chiller. For individual system components, correlations of heat and mass
transfers were developed. System geometrical parameters, such as size of the heat
exchangers, total mass of chilled and cooling water, total amount of refrigerant and
the assumed/estimated distribution within individual system components were needed
as modelling parameters. The required input variables included chilled water and
cooling water temperatures and mass flowrates, wall temperatures of condenser and
evaporator, ambient temperature, as well as the estimated building load and the set
point temperatures of the evaporator water outlet and condenser water inlet. Empirical
regression had been used for the compressor sub-model, to improve the overall model
accuracy. The simulation could be applied to calculate the cooling capacity,
compressor input work and refrigerant temperatures of condenser and evaporator. The
model provided good results for the transient period during system start-up. When the
system was operating under steady state, the modelling accuracy was 90%; the errors
were due to the omission of the control system in the model, though physically it was
incorporated in the system. The model may not be suitable for general FDD
applications as the distribution of the refrigerant cannot be easily measured in

practical situations, as well as the wall surface temperatures of the heat exchangers.

He et al. (1997) developed a model for describing the dynamics of vapour
compression cycles. In particular, the dynamics associated with the evaporator and the
condensers were modelled based on a moving-interface approach in which the
position of the two-phase/single-phase interface inside a one-dimensional heat
exchanger could be properly predicted. Two sets of lumped parameters were applied
in this model for the two-phase and the single phase zones separately. However, it is
believed the lumped parameter models would not be suitable for binary ice system in
which the properties of the binary ice change significantly inside the heat exchanger

even under a small temperature variation.

In modelling a variable speed chiller system, Koury et al. (2001) developed a
transient distributed model for the condenser and the evaporator, in which the heat
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exchanger was divided into small elements. Conservation equations and local heat
transfer coefficients were applied for individual elements. A steady state assumption
was employed for calculating the refrigerant mass flowrate through the compressor
and the expansion valve. The model could predict system behaviour during start-up,
compressor speed and TEV valve flow area variations. The use of finite element
method helped increase the reliability of the model. Moreover, the ability of
predicting system behaviours during dynamic change made it possible for dynamic

fault detections.

In general, it is difficult to apply and adapt a particular model to other chillers
as each has a unique set of heat transfer coefficients depending on the type of heat
exchanger employed and flow conditions encountered. However, with the help of
calibration variables and/or experimental data, it is possible to modify a detailed
physical model, developed for a system, and adapt it for another similar system.
Mclintosh et al. (2000) modified a detailed model from Braun (1988), which was
originally developed for a 5500-ton centrifugal chiller, to be applied to a laboratory
2000-ton centrifugal chiller. This calibration method could in fact be also used to

improve modelling accuracies of a given system.

Bendapudi et al. (2002a) developed an analytical model of a centrifugal chiller
which they claimed to be potentially suitable for FDD purpose. Unlike all the
dynamic models they have reviewed and presented in an earlier report (Bendapudi et
al. 2002b), which were not able to predict accurately the dynamic behaviours of
centrifugal liquid chillers, this model considered refrigerant re-distribution between
components as part of the dynamic features. The influences of the control feedback
were also included in the modelling. The model was capable of predicting the

compressor start-up and load changes.

Although some previous efforts had been made to applying analytical models
to FDDs, full analytical models are still considered not common for FDD applications.
The correlations, e.g. He et al. (1997), relating the relevant parameters are difficult to
develop and computationally intensive to solve even after simplifying assumptions
have been made. Browne and Bansal (2002) showed that the poor accuracy
encountered in some of the pure analytical models could be improved by empirical
calibrations. In addition, some common essential input parameters such as internal
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heat exchanger wall temperature and the refrigerant distribution in individual

components are difficult to determine in real applications.

2.1.2 Black box model

Black box model, as the name suggests, does not show the internal physical
relationships between its input and output parameters. The model links the inputs to
the outputs by developing its own set of mathematical correlations. There are two
main kinds of black box model: Artificial neural networks (ANN) (Kubat 1999) and
regression models (Sen and Srivastava 1990).

e ANN model

Artificial neural networks, which simulate the biological neural structures in
human brain (Bar-Yam 2003), have the ability of machine learning and pattern
recognition (Bishop 2006). An ANN model consists of interactive artificial neurons,
which are considered as computational units. The neurons are grouped into an input
layer, an output layer and hidden layer(s). Figure 2.1 shows a simple example of an
ANN with only one hidden layer. This network has m inputs (X1, X2...Xm), k hidden

neurons (fy, f,...fx) and a single output (y).

Input layer  Hidden layer  Output layer

Figure 2.1 A typical structure of an ANN model
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Each individual neuron in the input and output layer represents a parameter of
the model, and each neuron of the hidden layer contains an activation function. The
arrows between the input and the hidden layer are referred to as a m X k weight
matrix w, while the arrows between the hidden and output layer forma k x 1 weight
matrix w’. The input values are multiplied by the weight matrix first and then added
together before passing to the activation function in the hidden neurons. For instant,

the input (I;) to the jth (j = 1 to k) activation function can be calculated by
lj = Z{il Wi,jxi + b] 2.1

where w;; is the weight (usually a number between 0 and 1) and b; is the bias (taken as
between -1 and +1). The outputs of the activation functions are then weighted and

summed again to generate the final model output(s), which can be expressed by,
y = Zfawifi () 22

The number and type of activation function are chosen by the users (Swider
2003), depending on the amount of training data available and the desired accuracy.
In practice, the same activation function is selected for all the hidden neurons in an
ANN network. Step function, Gaussian function and sigmoid function are three
typical activation functions (Halm-Owoo and Suen 2002). ANN training is to match
the calculated model outputs with measured training data pattern by adjusting the
weight and bias matrixes to keep the errors between the calculated and measured data
to a minimal level (Yegnanarayana 2009). One of the most common training

techniques is the back propagation algorithm (Hu et al. 2007).

Among various ANN types, multilayer perceptron (MLP) and radial basis
function (RBF) are most often applied for chiller fault detection modelling (Swider et
al. 2001; Rueda et al. 2005; Navarro-Esbruet al. 2007). For MLP, the activation
functions are usually chosen as a tanh function (which is a kind of sigmoid function
(Ertunc and Hosoz 2006)) and the network shown in Figure 2.1 is a typical MLP.
RBFs commonly use Gaussian distribution (Albrecht et al. 2000) as an activation
function, and instead of using the weight matrix w and bias b as shown in Equations
2.1 and 2.2 for MLP, the centre 4 and the standard deviation ¢ are adjusted to match

the network output with the training data.
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MLP and RBF can both provide highly accurate predictions, while the
accuracy of MLP is even higher (Swider 2003). However, it was reported that when
compared to MLP, RBF is less computationally intensive and needs less training time
(Swider et al. 2001).

Some examples of application of ANN models for chillers are presented below.
An ANN model using the RBF network was reported by Swider et al. (2001). Model
inputs were chosen from parameters which could be easily measured or derived,
including cooling capacity, evaporator chilled water outlet and condenser cooling
water inlet temperatures. The model was implemented by Matlab and tested with data
from a single screw chiller and from a twin-circuited chiller under steady state
conditions. Two steps were involved in the network training, 1) optimise the centre of
the Gaussian functions and this was carried out by using K-means algorithm
(MacQueen 1967) and 2) adjust the standard deviations of the Gaussian functions to
be the same as the distance between the Gaussian functions, which is a common
practice. The accuracy of the predicted chilled water inlet and cooling water outlet
temperatures were within 0.5%. For COP and electrical power consumption of the
compressor, prediction accuracies were within 5%. The author concluded that a RBF
network can be applied to provide accurate predictions for vapour compression liquid

chillers.

Navarro-Esbriet al. (2007) developed a RBF model for a variable-speed
vapour compression glycol chiller. The key features of this model were its low data
requirement for training and it had also been validated outside the range of the
training data. In order to obtain a good accuracy using limited numbers of input
variables and training data, the number of neurons needed to be increased gradually
until the pre-set training goal was achieved. It took the return water/glycol
temperature to the evaporator, the condensing water inlet temperature, the evaporator
refrigerant outlet temperature and the compressor rotation speed as inputs to predict
the cooling capacity, compressor power consumption and chilled fluid outlet
temperature. Eight steady state tests were undertaken with various cooling loads and
condensing conditions; 6 of them were applied for model training and validation and
the other 2 were for testing the ability of the model. The model was validated with
data from both inside the training data range and outside the range. The validations
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showed that the prediction accuracies for both ranges were very good, although the

former was slightly better.

Rueda et al. (2005) built a set of ten MLP ANN models to detect refrigerant
leakage based on ten system output parameters which were the secondary fluid outlet
temperatures for both condenser and evaporator, the refrigerant temperatures at both
inlet and outlet of condenser and the evaporator and compressor suction and discharge
pressures. It took two secondary fluid flow inlet temperatures as inputs, one from the
condenser and another from the evaporator. A tanh activation function and conjugate
training (Barnard and Cole 1989) were employed. The model provided high

coefficient of variance of around 0.99.

The black box model has shown certain advantages, when compared to
analytical approach, especially in modelling complicated systems. Ertunc and Hosoz
(2006) developed a MLP ANN model of a refrigeration system. Their work was
complicated by the fact that an evaporative condenser was used in the system.
Compared with air- or water-cooled condenser, its operation related to both dry bulb
and wet bulb temperatures, which made it relatively harder to be modelled physically.
The input parameters were cooling load, air mass flowrate to the condenser, and the
air dry and wet bulb temperature at the condenser inlet. Output parameters included
condenser heat rejection rate, refrigerant mass flowrate, compressor power,
compressor motor electric power and COP. Weights of the neurons were adjusted by a
back propagation algorithm (Bryson and Ho 1975). This model had a good prediction

performance with errors of around 2% ~ 4%.

Static ANN networks can also be adapted to simulate dynamic system
behaviours based on the same network structures (e.g. MLP or RBF) (Yoon and Lee
2010). The inputs and outputs of a dynamic ANN are time series data. The value of an
output at a particular moment is usually determined by the inputs at the previous
moment(s) as well as the previous value(s) of the output itself. These inputs can be
taken at one (known as one step delay) or more previous time steps (Chetouani 2008).
The detailed structure of dynamic ANNs employed in this project will be described in
Chapter 5.
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Many dynamic ANNSs of refrigeration systems have been built by previous
researchers. One was developed by Bechtler et al. (2001) using a RBF network to
simulate the start-up and transient fluctuations of chiller based on three outputs (i.e.
compressor power consumption, COP and chilled water inlet temperature) and three
inputs (i.e. cooling water inlet temperature, chilled water outlet temperature and
evaporator capacity). It was found that when sudden change occurred to the system,
the model generally provided a much smoother prediction than the actual variation
creating larger errors. This was thought to be caused by the lack of training data and
the use of a large sampling interval (30s). Only previous values of one time step were

used.

Yoon and Lee (2010) designed a dynamic RBF network with a one-step delay
to predict the refrigerant temperatures at five different positions within the primary
circuit. As the temperature of refrigerant at a particular position was influenced by
what happened upstream of the flow, in order to predict the temperature at this
location, the previous value of an upstream position was also used as an network input
together with the previous values of the inputs and output of the current position.
However, the selection of the time step must be careful and precise to ensure the
upstream influence was captured. The authors also compared their network with two
MLP networks trained by different methods, and concluded that the RBF had the best
accuracy, though other paper (Swider 2003) pointed out that MLP structures had

better accuracies when training time was not an issue.

Hu et al. (2007) developed a dynamic ANN model for an air handling unit
based on an MLP network. The inputs included the mass flow rates of both chilled
water and the supply air, as well as the inlet temperatures of the chilled water and the
air flow. The outputs were the outlet temperatures of the chilled water and the supply
air. Having been trained by 410 data patterns, the errors for more than 90% of the
model predictions were smaller than 5%. It could be used as a prediction model for
FDD purposes.
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e Regression model

A regression model is another kind of black box model and it has a general

form as:
t=pT-X+¢ 2.3

where vector t is the model output parameter matrix, X represents the experimental
independent variables, g represents a transpose matrix of the fitted coefficients,
which has no physical meaning, and ¢ is the remained error. The process of regression
is to find a suitable parameter matrix g that best matches the input vector X into
output vector t. Fitting can be done by minimizing the sum of least squares error
(LSQ) (Bjarck 1996), the negative log likelihood (LLH) (Platt 1999) or ordinary least
square (OLS) method (Bj&ck 1996).

Linear regression is one of the simplest regression methods. A bi-linear
regression model was presented by Stylianou (1997), using the evaporator and
condenser water inlet temperatures as the independent variables. The regression

equation was:

y = .BO + .BlTe,in + .BZTc,in + & 2.4

where y was the dependent output variable of the model (e.g. COP), fo, 1 and j, were
regression coefficients and ¢ was the error that needed to be minimized by adjusting

the regression coefficients.

After training, this model could provide predictions with frictions of variance
(Everitt and Skrondal 2002) higher than 99%. This linear regression model, which
was very easy to develop and only required relatively a small amount of training data,
had advantages when the target system was relatively simple. However, when a more
complicated system, such as twin-circuited chillers were evolved, the accuracies of

prediction dropped significantly (Swider 2003).

A non-linear polynomial regression method was applied to predict the
performance indexes in Cui and Wang’s work (2005). All the indexes were
considered functions of cooling load Q, chilled water supply temperature T, and
condenser water entering temperature T ;.. The regression model took the following

form:
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y = ﬁo + ﬁlTe,in + ﬁZTc,in + ﬁ3Q + ﬁ4Te,inTc,in +
BSTe,inQ + ,86Tc,inQ + ﬁ7Q2 +e€ 25

The output variable y could be the performance indexes: COP, LMTD.,
LMTD,, motor efficiency, isentropic efficiency and refrigerant mass flowrate. Eight
regression coefficients were employed. The model was validated with steady state
fault free field data by OLS method. The coefficients of determination (Steel and
Torrie 1960) for all model outputs were higher than 90%.

Regression models can be applied for transient simulations as well. Similar to
the dynamic ANN models, dynamic regression models also involve a delay line using
the current and previous value(s) of both the input and output as the model input to

predict the future value(s) of the output.

Riemer et al. (2002) proposed an auto regressive moving average (ARMA)
model. For an auto-correlated time series X, the value at a certain time step could be
determined by using the previous values of the same time series, as demonstrated

below.
Xe = Q1 Xpq + UXe_p + o+ AQpXep + 2 + 1Zi1 + PrzZep + o
+BqZt—q 2.6

where z; = x; — x,_, was the difference term of x between time steps; a,, a,...a,
and By, B,...Bq were the regression coefficients; p and g were chosen by the user,
based on the nature of the time series x. This model could be applied to predict chilled

water flowrate, chilled water supply temperature and the evaporating temperature.

In general, black box models, including ANN and regression models, show
great advantages when modelling complex nonlinear systems compared to analytical
models that are based on first principle. Both ANN and regression models are capable
of handling dynamic system simulations and of producing relatively good accuracies
when large amount of measured training data are needed, which could be regarded as

a disadvantage.
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2.1.3 Grey box model

To minimise the drawbacks of analytical models and black box models,
grey-box models are developed. There are various ways of formulating a grey-box
model, e.g. a serial approach or a parallel approach (Estrada-Flores et al. 2006). A
serial approach means an output of the black box model can be used as an input to the
white box model (or vice versa). On the other hand, for the parallel approach, the
same input data are sent to both the black and white box models at the same time. The
model outputs were first calculated by the white box model, while the black box
model compared the analytical results with the real fault free measurements and

generated a correction signal to improve the overall accuracy.

The serial approach is often applied in the modelling of refrigeration systems
(Estrada-Flores et al. 2006). When building up a component level physical model for
a system, a black box sub-model can be applied for the complex components such as
the compressor (Browne and Bansal 2002). Other examples of serial approach
grey-box models for FDD applications include the thermodynamic models
Gordon and Ng (2000), Lee (2004), Ng (2008), and the characteristic models of Jia
and Reddy (2003).

The thermodynamic grey-box model of Gordon and Ng (2000), developed for
centrifugal and reciprocating chillers, was based on the First and Second Laws of
Thermodynamics, describing the energy and entropy balances of the chillers, as given

below:

Te,in Tcin—Te,in RXQe 1
inAS, + iy D (g4 —) 2.7
Qe t Qleak T¢inXQe T¢in cop

where the internal entropy generation rate in the chiller due to internal irreversibility
(4St, kKWI/K), the equivalent heat loss from the chiller (Qeax, KW) and the thermal
resistance of the heat exchangers (R, K/kW) were the regression coefficients all of
which had physical meanings, and they were obtained using a regression model. All
the other parameters in the equation could be obtained from measurement. The
training of this model was to use a set of the above measured parameters under fault
free condition to determine 45T, Qieak and R by multiple linear regressions. The model
could then be used to predict system COP. In this case, 4St Qe and R were the

model parameters of a first principle model that cannot be measured directly. The
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model was first transformed into a regression function to obtain the above three
coefficients. Then they could be applied as constant inputs to Equation 2.7 to

calculate the model output.

One advantage of this kind of grey-box model is that as the regression
coefficients of the grey-box models are physically meaningful and it is possible to
carry out fault detection and diagnosis by examining their variations during faulty
conditions. Saththasivam and Ng (2008) applied the above model for faults detection.
Instead of relying upon the model output COP for FDD, they claimed that the values
of A4St and R could be used to indicate the health of the chillers. A4St could be linked
to the operation of the compressor and the expansion valve (e.g. an increased A4St may
suggest excessive oil in the compressor), whereas the thermal resistance R was related
to heat transfer rates in the evaporator and condenser (e.g. an increased R could
indicate reduced cooling water flow or condenser fouling). For a given chiller system,

those coefficients were considered as constants under normal operating conditions.

Equivalent heat loss Qiax Was less likely to be influenced by operation
conditions when compared with the other two, hence less useful as a FDD detection
parameter. During the fault detection process, 12 fault free data sets from a 90-ton
centrifugal chiller were applied to determine A4St and R by the regression method.
Input parameters based on measured values included: cooling load, secondary fluid
inlet temperatures for the condenser and evaporator and COP, and model outputs were

AStand R, and they were compared with the constant values for FDD.

Another example of a serial hybrid model was the characteristic model
developed by Jia and Reddy (2003). It combined refrigeration cycle analysis with
regression correlations. Simplified lumped physical models were developed first to
calculate the characteristic parameters of the components, that describe the
performance of the components and were linked to certain types of faults (e.g. motor
efficiency and polytrophic efficiency for the compressor, overall heat conductance (i.e.
UA values) of the evaporator and condenser, the product of the fluid friction
coefficient (a function of refrigerant velocity) and the cross-sectional area of the

orifice for the expansion valve, and COP for the overall system performance).
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When using the models for FDDs, the above characteristic parameters were
first calculated by using a set of fault free measured data under different working
conditions, and then they were fitted into regression functions taking cooling water
inlet, chilled water inlet and chilled water outlet temperatures as inputs. The fitted
regression functions were then used as baseline models for fault detection. This
method was considered as an inversed serial grey-box model because the using of

white box model is prior to the regression model.

The three main types of refrigeration system models each have their strengths
and limitations. Comparisons of different models, mainly based on the accuracy, data
requirement and computational requirement, had been done by various researches
(Peitsman and Bakker 1996; Sreedharan and Haves 2001; Swider 2003). Swider
(2003) compared four regression models, including a grey box model, and two ANN
models when applying them to a single-circuit centrifugal chiller and a twin-circuit
twin-screw chiller. The four regression methods included linear regression,
bi-quadratic (Yik and Lam 1998) regression, multivariable regression and the Gordon
and Ng’s (2000) thermodynamic grey box model; the two ANN models were a RBF
model from Swider et al. (2001) and a MLP model using tanh activation function. All,
except the bi-quadratic model, used the same three input variables: cooling capacity,
condenser water and evaporator water inlet temperatures; the bi-quadratic model only
needed the first two, and they all were trained with the same set of data. The output of
all the models was COP.

In terms of modelling accuracy, all the above models provided accurate
predictions for the centrifugal chiller, but the Gordon and Ng’s thermodynamic model
had the advantage of requiring less training data due to its physical meaningful
equations. However, for the more complicated twin-screw twin-circuit chiller, only
the two ANN models could produce acceptable predictions, the four regression
models could only provide accurate predictions when they were improved by setting
up separate models for each circuit, hence reducing the system complexity in
modelling sense. Generally speaking, when there were enough training data, the ANN
models gave the highest accuracy, followed by the three regression models, and the
thermodynamic model was the least accurate. The results also showed that although
MLP gave slightly better prediction results than RBF, they required longer training
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time. The thermodynamic model showed its advantage when the training data were

highly limited.

In conclusion, the selection of a prediction model for FDD should consider the
complexity of the target system and the selected faults, the availability of the

measurements and the accuracy of the prediction.

2.2 FDD approaches

The fault detection and diagnosis can be separated as two steps (Cui and Wang
2005) or be integrated as one single step (Bailey and Kreider 2003; Rueda et al. 2005).
In this review, the common approaches for detection and diagnosis will be presented

separately.

2.2.1 Fault detection

Most FDDs are performed by comparing model predictions with real data. The
development of fault detection approach involves selecting suitable detection
parameters, determining the status (static or dynamic) of the system and calculating

the appropriate thresholds.

» Selection of fault detection parameter

A large number of parameters, including measured and derived, are available
to describe system behaviours. Under faulty conditions, some of these parameters
need to be identified as they are more sensitive to the fault(s) and thus will produce
relatively larger residuals while others will not be affected much. Table 2.1 lists the
measurements used in some FDD studies; temperature, pressure, flowrate and
electrical power were the main data group. Temperature measurements include the
refrigerant temperatures around the system circuit, and the condenser/evaporator
secondary fluid temperatures, usually taken at the inlet and outlet of the heat
exchangers. Refrigerant pressures are normally measured at inlet and outlet of major
components. Flowrate measurements are required for condenser and evaporator HTFs
and sometimes the refrigerant flowrate is acquired as well. Electrical power
consumption of compressor is often regarded as an important measurement
(Comstock et al. 2002a). In some FDD development, oil pressure and temperatures

were also used (Rueda et al. 2005).
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Table 2.1 Measurements and derived parameters used for previous FDD development

oo o " | B | (| T |
Teom v v v v v v v v
T ein v v v v v v
T e out v v v v v v v
Trxv,in v v v v v
T cout v v v v v v v
Tein v v v v v v v
Teout v v v v v v v
Ten v v v v v v v v
Teout v v v v v v v v
m, v v v
M, sec v v v v v v v
M, sec v v v v v v
Pe v v v v
Pe v v v v
Pdis v v v v v
Psuc v v v v v
PTXV,in v v v
Prxv,out v v v
w v v v v v
Q. v v
Qc v
N v
TO V4
PO v

It can be seen some researchers considered relatively more parameters than the
others, though not all their parameters were eventually used for FDD. The selection of
FDD parameters depended on the numbers and the types of faults involved and their
sensitivity towards the chosen faults and the cost of implementing the measurements,
which resulted in some parameters being common to almost all the works. The

refrigerant discharge temperature and secondary flow temperatures/flowrates were

51



measured/used in nearly every test, as they are both easy to obtain and are sensitive to
many kinds of faults. In general, temperature and pressure can be measured with
inexpensive sensors, while flow meters and power meters are relatively more
expensive. To achieve a cost effective and reliable FDD method, the measurement
points and sensor types need to be carefully selected to ensure that accurate detection

can be obtained with minimum number of sensors.

» Dynamic VS steady state

It is generally acknowledged that chillers operate for most of the times under
unsteady conditions (Yoon and Lee 2010). Any changes of operation conditions, e.g.
start-up, load fluctuations, feedback controls, climatic change, etc. can result in
transient operations, where system parameters keep varying, making it difficult to
detect the faults. On the other hand, most of the existing FDD methods aim at fault
detection under steady state and they are applicable in transient systems provided

certain quasi-steady criteria/conditions are satisfied.

The criteria of steady state detection vary with individual systems, with a
variety of techniques available from published literature. The simplest method is to
assume that steady state condition is reached after a specified period of time following
a change in operation. However, this period is hard to specify accurately and it varies
with equipment type, cooling load, ambient temperature, etc. A more reliable steady
state detection algorithm is to check, based on sensor measurements, whether the

operating system is meeting certain steady state criteria.

Rueda et al. (2005) developed a two-part steady state detector in which both
parts need to be satisfied. The first part was to detect whether this system was on or
off by measuring the pressure ratio. In the second part, the present and the previous
values of the parameter that had the slowest response to condition variation were
compared, which was identified as the compressor discharge temperature in their case.
If the temperature change was less than 1 K in 10 minutes, the operation was

considered as steady.

Castro (2002) developed another steady state detector based on the calculation
of the exponentially weighted moving average. For each measurement, more than 7

points were taken for calculating a moving average. If the ratio of the standard
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derivation of the 7 measurements to the moving average was smaller than a certain

specified tolerance, a steady state condition was declared.

There are also some dynamic FDDs aiming at detecting faults without the

need of a steady state detector and they will be reviewed later.

» Threshold selection

Fault detections are carried out by comparing residuals between fault free data
and actual measurements with pre-determined fault free thresholds. Residuals
normally increase with the severity levels of the fault and they exist even under
faulty-free conditions due to natural data variations as well as the modelling and
measurement errors/uncertainties. Thresholds are set up benchmarks for residuals to
distinguish faulty and normal operations. The setting of threshold is a trade-off

between detection sensitivity and false alarm rate (Reddy 2007a).

FDD methods with small thresholds can detect a fault at an earlier stage, but
the residuals should be big enough to accommodate the modelling error and

measurement uncertainties to avoid false alarm.

Using fixed thresholds is the most common practice in FDDs. It can be applied
for both static (Salsbury and Diamond 2001; Rueda et al. 2005) and dynamic (Chen
and Lan 2009) FDDs. The values of the thresholds are usually determined by errors of
modelling and measurements. Mean standard errors (Everitt and Skrondal 2002) have
been applied to regulate the thresholds (Ng 2008). When using 1-mean standard error
as a threshold, the false alarm rate was about 32%, but when using a 2-mean standard
error, the false alarm rate dropped to 5%. T-value thresholds (Reddy 2007a) have also
been used to reduce false alarm rate. It was essentially a trial-and-improve process.
The threshold was tested with fault free data and if the false alarm rate was higher

than anticipated, a larger threshold would then be chosen.

However, the errors/uncertainties vary with operational conditions. One fixed
value is not ideal for detecting faults under various conditions. Therefore some
adaptable threshold estimation methods have been developed (Cui and Wang 2005;
Navarro-Esbr 1et al. 2006; Reddy 2007a) for FDD development for chillers.
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Cui and Wang (2005) included an online threshold estimation scheme that
could adapt thresholds according to the measurement error and modelling error. The
thresholds were functions of cooling load, condenser flow inlet and evaporator water
flow outlet temperatures. It was stated that smaller thresholds should be selected
under larger cooling load and when encountering lower condenser flow inlet
temperature because the parameters were more sensitive to faults under those
conditions. This matched with the results from Comstock et al. (2002a), i.e. the
sensitivity of a measured parameter to a fault (defined as the ratio of the measured
residual under a certain fault level to the maximum experimental uncertainty of the
parameter) increases with cooling load and decreases with condenser flow inlet

temperature.

Navarro-Esbr et al. (2006) designed an algorithm to determine thresholds for
dynamic fault detections. The threshold at a certain time was calculated using the
quadratic error between the measurement and prediction as well as the standard
deviation of the modelling error at the previous time step. This method was able to
reduce false alarm rate when the cooling load was changed.

Under dynamic operations, the residual may go beyond the threshold for a
very short period of time due to fluctuation or measurement error even when no fault
Is presented in the system. In this case, a rule is needed to define an actual ‘exceeding
of the threshold’ condition to avoid false alarm. A CUSUM (cumulative sum)
(Hinkley 1971; Basseville 1986) test can be applied to monitor the changes of a time
series. The test aims to detect small changes of the mean of the data sequence. It
assumes that under fault free condition, the residual sequence is normal distributed
with a mean value of zero, while the presents of a fault will change its mean
(Basseville and Nikiforov 1993). By using this method, the random isolated residual
points that go beyond the threshold but do not change the mean of the time series;

thus it won’t be identified as a fault and hence the chance of false alarm is reduced.

The adaptable threshold methods are able to reduce the false alarms caused by a
sudden change of the working condition in a system, while the CUSUM test can
significantly reduce the false alarms caused by random measurement errors or
fluctuations. In general, the adaptable threshold methods require a full understanding
of a specified system and involve complicated mathematic formulations. The author
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considers CUSUM test a better approach as it has a standard procedure that can be
simply adjusted for different systems. In addition, comparing with the dynamic

threshold method the calculation process of CUSUM test is much simpler.

2.2.2 Fault diagnosis

Having detected an abnormal operation condition, the fault itself needs to be
identified. Compared with fault detection, fault diagnosis is more difficult. In this
section, the influence of various faults on different parameters will be reviewed. The

methods to develop fault diagnosis algorithms are also discussed.

Variations in normal operation conditions due to fluctuations of load or
ambient temperature may influence system outputs which are similar to those created
by certain faults (Navarro-Esbr iet al. 2006). In addition, control feedback may try to
correct the faulty outputs or multi-faults may cancel out the influence of each other;

all these make diagnosis harder to perform (Wang and Cui 2005).

Fault diagnosis requires a full understanding of how faults influence individual
system outputs. Comstock et al. (2002a) carried out a comprehensive review on the
responses of chiller parameters to some common faults. They analysed the deviations
of some key parameters under different chiller loads with different fault types and
severity levels. As expected, all the deviations increased with rising fault severities. It
also revealed that the system parameters were more sensitive to faults when the chiller
loads were large. Some parameters were particularly sensitive to certain types of fault
because those faults could only influence part of the system. They introduced a
concept of fault sensitivity for certain measurements, using a ratio of the residual at
the largest fault level to the maximum measurement uncertainty. The larger the ratio,
the more sensitive the measured parameter towards certain faults would be. For
example, in their study, considering the condenser flow restriction, the flow
temperature difference between inlet and outlet was the best indicator for the presence
of the fault.

Table 2.2 shows how various faults influence the operating characteristics of
the evaporator, including evaporating temperature and pressure T, and pe, secondary
fluid flow temperature difference AT, discharge and suction superheat temperature

Tshais and Tg,, evaporator approach temperature difference Te,, over all heat
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conductivity UA, and the log-mean temperature difference LMTD,. In the table, 1
represents an increase of a parameter when a fault is encountered, | for a decrease and
- means it remains unchanged. It is noticeable that for flow restriction in evaporator,
contradictory observations were reported, due to the differences in the equipment
types and working conditions. Relevant parameters for the condenser are shown in
Table 2.3.

Table 2.4 shows the trends for the compressor as well as for the whole system.
Isentropic efficiency #isen, cOmpressor discharge temperature Tcom and electrical work
input (W) to the compressor are the common indicators for the compressor. System
COP, chiller efficiency #cniner and refrigerant mass flowrate, m;, are often used for
monitoring the performance for the entire system. The information in these tables was
collated from a number of published papers (Rossi and Braun 1997; Mcintosh et al.
2000; Castro 2002; Comstock et al. 2002a; Cui and Wang 2005; Reddy 2007a;
Saththasivam and Ng 2008).

Table 2.2 Variations of measurements in evaporator
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Table 2.3 Variations of measurements in condenser
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Refrigerant leak
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Liquid line restriction
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Tca: condenser approach temperature difference (= Tc- Teout)
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Table 2.4 Variations of measurements in compressor and at system level

Compressor System

Faults isen Teom W | COP Tchiller m,

Refrigerant leak - ) | !

Refrigerant overcharge - 1 -
Liquid line restriction - -

Condenser fouling -

Evaporator fouling -

Condenser flow restriction -

Evaporator flow restriction -

V> >
1

— [ [— |« |« |1

L e e S L e S N e O

Non-condensables 1

nenitier: Chiller efficiency (= cooling capacity/total electrical work input)

It can be seen from Table 2.2 to Table 2.4 that some faults have a larger
impact on certain components than the others, e.g. evaporator performance is not too
sensitive to non-condensable gas which is mainly trapped in the condenser. In
addition, some faults are known to produce similar fault signatures at component
levels, e.g. liquid line restriction and refrigerant leakage will have the same influences
on the evaporator behaviour. To isolate the source of the faults, parameters need to be
carefully examined and selected so that each individual fault can be represented by a
unique pattern of variations of the parameters.

Rule based methods are also commonly used for fault diagnosis. A set of fault
diagnosis rules is developed according to the changes of selected parameters under
various faulty conditions. The residuals between measured and predicted parameters
are used as inputs to the method and conclusion are drawn after searching through the

whole rule space (Katipamula and Brambley 2005).

Cui and Wang (2005) developed a rule based diagnosis method using
performance indexes. They claimed, when compared to direct sensor measurements,
performance indexes were able to provide a more complete description of the system
health. Six performance indexes were used, including LMTD of the condenser and
evaporator, mass flowrate of refrigerant, compressor isentropic efficiency, motor
efficiency and coefficient of performance. A fault diagnosis classifier based on the
impact of certain faults on individual indexes was applied to distinguish certain
pre-defined faults. However, their approach had only achieved a successful diagnosis
rate of 16% for the reduced evaporator flow. The corresponding rates for refrigerant
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leakage, condenser fouling, non-condensable and excess oil were 25%, 27%, 54% and

95% respectively.

A rule based system was also employed by Castro for a two-stage chiller
(Castro 2002). The faults considered included condenser/evaporator fouling, liquid
line restriction, refrigerant under- and over-charge. To develop an appropriate fault
classification rules, for individual specified faults, residuals of 12 parameters were
calculated. For each fault, two parameters with the largest normalized residuals were
picked out for fault diagnosis. If the use of two parameters were not able to identify a
fault, the parameter with the next largest residual should also be included, until a fault
could be diagnosed. This method could diagnose most of the faults with good
accuracy, except for liquid line restriction which had around 75% mis-diagnosis at a
30% restriction level. They suggested one possible reason for the low diagnosis
accuracy could be due vapour flashing in the pipe creating similar symptoms as liquid
line restriction. Their rules of selecting parameters could be modified and applied to

the development of other fault diagnosis methods.

Reddy (2007a) applied Characteristic Features (CFs) for fault diagnosis.
Examples of the CF employed included the UA value of the condenser and the
condenser water temperature difference. He observed that some CFs had a linear
relationship with chiller load. Under faulty conditions (e.g. reduced condenser water

flow and refrigerant leakage), the y-intercept and/or the gradient would change.

When the fault detection rules are simple, they can be implemented manually;
otherwise, certain pattern recognition programme would be needed. ANN fault
classifier, whose output is the identified fault type, is a widely applied pattern
recognition method. There are two common kinds of ANN fault classifier: (i) the
residuals of the selected fault diagnosis parameters are transferred to simple pattern of
-1, 0 and 1, representing the direction of variation of the parameters. The simplified
patterns are used as input to the ANN classifier (e.g. Cho et al. (2005)), and (ii) the
residuals are taken directly as inputs to train an ANN to generate the type of the fault

as its output.

In general, rule based diagnosis methods exhibit low accuracies in detection of

faults with low severity levels. To improve accuracy, Stylianou (1997) developed a
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fault classifier based on a statistical pattern recognition algorithm (SPRA). Residuals
of discharge temperature, sub-cooled temperature, evaporator temperature, suction
line temperature, condenser and evaporator flow outlet temperatures, discharge and
suction pressures were calculated. The statistical properties of the residuals, including
the mean, minimum value, maximum value, standard derivation, skewness and
kurtosis (Groeneveld and Meeden 1984), were the inputs to the fault classification
algorithm. The algorithm calculated the chance of a certain residual belonging to each

type of faults, and the residual with largest possibility helps to pinpoint the fault.

Most of the fault diagnosis methods are aiming at single fault. However, the
co-occurrence of two or more faults is possible in many real systems. Cho et al. (2005)
summarized that the interference between two faults could be grouped into three
categories: 1) the magnitude of residuals of the single faults were similar with the
double fault’s combined residuals, 2) the combined residuals were the sum of both of
the single fault and 3) the two individual faults influence different system parameters.
When the ANN classifier taking simplified residual patterns develop for single fault
was applied when multiple fault exist, it might not be able to tell the difference
whether a single or a multiple fault existed as they may had the same input to the
system. To solve this problem, they proposed a residual ratio method. This method
compared the residual of two selected parameters and used the range of the ratios to
differentiate between a single fault and a double fault when they had the same fault

pattern.

In addition to the above reviewed quantitative model-based FDDs, qualitative
model can also be used for FDD. Instead of using numerical inputs and outputs,
qualitative parameters are used instead (e.g. temperature can be described as ‘hot” or
‘cold’). Expert systems (Kaldorf and Gruber 2002; Soyguder and Alli 2009) and
decision trees (Katipamula et al. 2003) both fall into this category. The qualitative
model based FDDs are usually very specific to a particular system and they are highly
dependent on the knowledge of the developer. They are not widely applied in
commercial systems (Katipamula and Brambley 2005); therefore in this study,

qualitative model based FDD is not considered.
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2.3 Evaluation of FDD performance

A good FDD technique should be able to provide fast and reliable results with
minimum costs. In general, the following aspects are needed to be considered when

evaluating a FDD.
1. High detection accuracy

An accurate method has a better chance to detect and diagnose a fault

successfully. It can find out a fault and its location when the fault occurs.
2. High detection speed

A fast detection method will detect a fault at a very early stage, before it

causes more energy wastage and damages to the system.
3. Low false alarm rate

False alarm rate needs to be balance with detection speed. A smaller threshold

can increase sensitivity while also increase the false alarm rate.
4. Cost effective

Unlike other critical systems, the budgets for FDDs of RAC systems are
usually very limited. The initial installation costs as well as the running and
maintenance cost should be kept low.

5. Easy to use

The method should be easy to implement, provide straight forward result and

solutions for the targeted faults.

Reddy (2007b) proposed a FDD evaluation method. Two indexes were used to
rank the fault detection capability and the combined capability of fault detection and
diagnosis separately. The fault detection index was calculated based on the false
negative rate, the opportunity of occurrence and the energy penalty for each type of
the fault. On the other hand, regarding the second index, referred as the diagnosis
evaluation index, they considered the rates of four diagnosis results, namely correct

and unique, correct but non-unique, incorrect and unable to diagnosis, combining
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them each with a weight factor which is related to the time and cost taken to diagnose,
evaluate and repair the fault. The two indexes were numbers between 0 and 1, while a
larger number indicates the FDD being evaluated generates a better result. This
method could be applied to compare the performance of different FDDs. The false
alarm rate was not involved in the index calculation, as they were fixed to the same

number by adjusting the thresholds.

2.4 Summary of observations

Based on the literature review, some observations on the development of FDD

techniques for RAC systems can be made:

¢ Large numbers of faults have been reported but only a few selected ones have
been researched extensively for FDD development and most studies have been
focussing on faults that would lead to performance degradations, examples
include: refrigerant leakage or over-charge, cooling water or HTF flow restriction
and heat exchanger fouling.

¢ For model based approaches, there are two main types of FDD models, namely
analytical (white box) model and data-driven (black box) model, each with their
relative advantages and weaknesses. A popular approach is in fact to combine the
two, forming a hybrid (grey box) model which aims at eliminating some of the
limitations of the previous two model types. There are two ways to form a hybrid
model: serial approach and parallel approach. They can be combined in some
cases.

¢ Within each model types, different techniques of FDD can be employed
depending on a large number of factors, such as the accuracy or the data required.

¢ Many analytical models have been developed, for mainly analysing system
behaviour under varying operation conditions, and they are able to predict both
steady and transient behaviour. However they are not specifically developed for
FDD purposes and they may not be applicable or adaptable for FDD purposes.

¢ Most models require experimental data for calibration (white box models),
training (black and grey box models) and/or validation (all models).

¢ Large numbers of measured parameters are usually involved in FDD

development and application; some can be used directly in diagnosis rules (e.g.
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condenser/evaporator HTF inlet/outlet temperatures, condensing and evaporating
temperatures/pressures, HTF flowrates in condenser/evaporator, compressor
power consumption) but others are used indirectly for deriving performance
index or CF, such as COP, UA and LMTD for fault classification.

When a RAC system incorporates a control system, it is usually more difficult for
the FDD to diagnose the faults as the controls may try to correct or compensate
the faults by adjusting certain parameters.

Most existing FDD techniques can only detect faults under steady state conditions
and therefore a steady state detector (an algorithm) is needed. Some methods
have been observed to be able to detect and diagnose faults under transient
conditions.

The selection of inputs and outputs to the model is depending on the FDD method.
An input can even become an output for the same model when using different
FDD methods.

Some faults exert more influence on certain parameters than others; the
sensitivities of individual parameters vary with the types of fault as well as the
system types.

If more than one fault occurs in a system, they may interact with each other
resulting in more difficult diagnosis. The detection of double fault is similar to
that of a single fault, but the diagnosis method usually differs. Residual ratio
method is one of the approaches that can diagnose double fault. No work related

to triple or more co-occurrence fault had been observed.

2.5 Research objectives and originality

From the above, it can be seen that existing FDDs may not be suitable for

binary ice systems and it appears that a new FDD approach needs to be developed,

especially looking at some faults that are unique to binary ice systems. Therefore, the

objectives of this research are as follow:

1. To fully understand the operation (both steady and dynamic) and control

characteristics of a binary ice system as well as the scraped surface ice generator,

under both faulty and fault-free conditions.
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2. To build a dynamic hybrid model to predict the behaviour of binary ice system by
coupling an analytical model of the ice generator and a system level ANN model.

3. To develop a FDD approach that can be employed to detect several pre-defined
faults in a binary ice system. The approach should be capable of detecting the
faults without a steady state detector, i.e. under transient conditions, and of

identifying some pre-defined double faults.

Attention is paid to establish how the types/numbers of the faults and the
systems types influence the choice and the number of the parameters to be measured
or derived. Parameters that have been identified include condenser cooling water inlet
and outlet temperatures and flowrate, pressures and temperatures of the primary
refrigerant at inlet and outlet of individual main components, temperatures of binary
ice at the inlet and outlet of the SSIG (for deducing the solution and ice
concentrations), power consumption of the compressor and binary ice flow velocity.
The final selections of parameters applied in the FDD technique will be decided based

on the analysis of the experimental data.

2.5.1 Selection of faults

The main research aim is to develop a simple, effective and accurate FDD
method to detect and diagnose several pre-defined faults in an on-off controlled
binary ice system. The faults cover both conventional chiller faults and specific faults
for binary ice systems. It is worth noting that although refrigerant over-/under- charge
is recognised as one of the most common faults in refrigeration systems, it has already
been extensively studied by various researchers (Grace et al. 2005;
Assawamartbunlue and Brandemuehl 2006; Navarro-Esbr fet al. 2006). Therefore it is
not included in this project. As far as the author is aware, no FDD specifically
developed for binary ice systems has been constructed. Detailed experimental data is
collected from a dedicated test facility and this will enable a full understanding of the
operating characteristics of a binary system be obtained, under both fault-free and

faulty conditions.

This project will be based on a laboratory binary ice system (further details
given in Chapter 3) using an ethanol-water solution as the heat transfer fluid. The
primary circuit consists of a vapour compression refrigeration system with a 3kW
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(power rating) semi-hermetic reciprocating compressor, a water-cooled shell-and-tube
condenser, an evaporator (providing around 2.5kW of cooling capacity at T, of around
-30 <€) and a thermostatic expansion valve (TXV). The secondary circuit consists of
a scraped surface ice generator, a circulating pump and a storage tank equipped with
immersion heaters, in steps of 2, 3 and 4kW, etc. to simulate the load. The capacity
regulation is effected by using an on-off thermostat control for the compressor with a
temperature sensor monitoring the outlet temperature of the binary ice from the ice

generator.

The faults chosen in this study include both some common chiller faults as

well as faults that are unique to binary ice systems, as listed below.

Condensing water flow reduction
Binary ice flow reduction
Incorrect solution concentration (increase and decrease)

Ice generator broken blade

*® & & o o

Ice generator blade motor failure

2.5.2 Methodologies

A pre-used binary ice test rig was re-commissioned to incorporate all the
necessary instrumentation and to provide all the necessary data. A measurement
matrix was implemented in order to acquire a full set of operation data at various
loads and temperature set-points for the binary ice flow temperature and condenser
inlet water temperatures. The pre-selected faults were introduced artificially to the
system. The sensitivities of various parameters with respect to any adjustments or

changes were thoroughly assessed.

For model based FDD techniques, the measured data from the test rig were
compared with fault free model predictions. Then the residuals between the two were
used as input to the detection and diagnosis rules to check whether a fault exists and
identify the fault. As a result, there were two main tasks in FDD construction: 1) to

develop a model providing fault free data and 2) to identify the rules for diagnosis.

To help analyse the behaviour of the ice generator, a mathematical model
based on heat and mass balances was constructed. It was used to establish the
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relationships between ice production rate, the flow temperature, the initial solution
concentration and temperature, evaporating temperature, etc. Some of the data

obtained from the experiment was used to validate the model.

Different to the above analytical model for the ice generator, the model used
for the primary circuit of the system was an ANN model. Its structure (the number of
the hidden layers and the type of the activation function for ANN) were determined
first. Next, the input/output parameters were selected based on the nature of the
system and chosen faults. The input parameters were controllable by the user, such as
the flowrates and inlet temperatures of the condenser water and binary ice, and initial
solution concentration of binary ice, while the outputs were chosen from the
parameters that were determined by the inputs, i.e. binary ice outlet temperature and
ice concentration, evaporating and condensing temperature, power consumptions of
compressor and system COP. Fault free data obtained from the test rig were divided
into two groups: part of the data was applied for model training, with the help of
Matlab to calculate the modelling coefficients, and others was used for model

validation.

The analytical model and the ANN model were then coupled together to form
a hybrid model to provide fault free benchmark for the FDD application, It was
necessary to use the hybrid model instead of a pure analytical or a pure ANN model
because the development of an accurate analytical model for the entire binary ice
system would be very difficult and a pure ANN model was not able to predict some
parameters such as the ice concentration and cooling load. The model coupling was
carried out by sending some of the ANN outputs, such as T, to the analytical model
as inputs. The two models also share some measured parameters as inputs, making the
overall model both serial and parallel in nature - a unique feature of the proposed

model.

The main task for developing fault diagnosis method was to establish the
suitable thresholds of the residuals for the selected output parameters that can indicate
the existence of a fault. The thresholds should be neither too small (to reduce false

alarm) nor too large (to detect a fault at an early stage).
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Fault diagnosis was carried out by analysing the combinations of the
parameter variations (increase or decrease) during faulty conditions. Diagnosis rules
were formed by a set of unique patterns of parameter variations that could represent
each of the pre-selected fault. Ideally the rules should include as few parameters as
possible. To set up the rules, different faults were introduced to the test rig and the
faulty data were compared with fault free data. A full list of the residuals of all the
output parameters was built up. By carefully selecting the parameters, a unique

pattern for each fault was found.

The performances of the FDD approach was evaluated at different fault
severity levels. The relationships between threshold and detection and diagnosis

accuracy were examined.
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3. Experimental setup

3.1 Introduction

A scraped surface binary ice system, originally built by the company called
SRC as a pilot test rig to investigate the feasibility of binary ice application in
supermarket refrigeration, was given to the RAC Research Group for this research
project. It was re-commissioned and reconfigured to provide the necessary test data
for the development of the FDD model.

In addition to allowing the author to appreciate and understand more
thoroughly the operating behaviour of a scraped surface binary ice system, the test rig
was to serve two main purposes: (1) to obtain fault-free data for training, calibrating
and validating both the analytical SSIG model and the grey-box system model and (2)
to obtain data for various experimentally simulated pre-specified faults for the

development of FDD algorithm as presented in Chapter 6.

The test rig, as shown in Figure 3.1, consisted of two circuits, the primary
refrigerant circuit and the secondary binary ice circuit, which were coupled to each
other by the binary ice generator. A detailed description of the two circuits and the
associated components of the test rig are given in the next section.
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Figure 3.1 Test rig, (a) and (b): primary and secondary circuit, (c): chiller unit for the condenser cooling

water.

3.2 Experimental Setup

3.2.1 Primary circuit

The primary circuit is shown schematically in Figure 3.2. The specifications

for some of the main components and descriptions of various safety and operational

controls are given below.
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primary circuit

The compressor (Bitzer 2DL-2.2) was a 3-phase, fan-cooled, semi-hermetic

reciprocating compressor (displacement rate: 13.3m%h, nominal speed of 1450 rpm at

50Hz) with an estimated cooling duty of 3 kW at evaporating temperature of -20 <C,

condensing temperature of 30 <C and a discharge temperature of around 45 <C when

run with R507. The cooling fan was mounted above the cylinder head.

The compressor was protected by a built-in current overload protector, as well

as a HP/LP pressure switch (11, Danfoss KP 17) which was connected to the

discharge and the suction lines of the compressor; when a certain pre-set current or

pressure values were exceeded, the compressor motor would shut down. The
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compressor was also equipped with a crankcase heater. The crankcase heater was
automatically switched on when the system was stopped to prevent the refrigerant

from dissolving into the oil (or foaming).

Ice generator/evaporator (2)

A FLO-ICE Generator DWT 3/4TR from Integral Technology was installed
for ice production. Details of the dimensions were given in Chapter 4. Ice particles
were scraped off by a two-blade scraper rotating at a speed of 168 rpm. The scrapers
were driven by a 3 phase motor (SEW EURODRIVE WAF20) mounted at the top of
the ice generator driving the scraper via a reduction gearbox. Based on an initial
solution concentration of 15%, a binary ice outlet temperature of -7 <C with a
temperature drop of 2 <C across the ice generator (assuming ice particles present at
both inlet and outlet of the ice generator) and a binary ice flowrate of 0.1 kg/s, the

rated capacity is about 2.5 kW.
Condenser (3)

The condenser was a Bizter (K122H) shell-and-tube water-cooled condenser
with a nominal duty of 5.8 kW (based on 0.14 |I/s water, 3-pass, with 10K temperature
increase). The refrigerant vapour entered the shell side of the condenser which
received cooling water from a process water chiller (FLOWCOOL SCW 10/S, Figure
3.1c¢), which in turn rejected its heat via a rooftop cooling tower. A temperature
controller (CAREL pC?) was employed to provide control of the flow temperature set

point and the on/off differential for the process chiller (Appendix C).
Expansion valve (4)

A Danfoss TES 2 expansion valve with a rated capacity of 4.9 kW at an
evaporating temperature of -20 <C was used; the valve was also equipped with an
external equalizer. The expansion valve modulated the refrigerant flow rate, hence the
capacity, by approximately maintaining a specified degree of superheat at the
evaporator outlet. The sensing bulb was attached to the refrigerant outlet of the ice
generator and the superheat was normally set to around 3 <C.
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Pipe line and liquid/vapour heat exchanger

1/4>” (for liquid line), 5/8°> and 7/8” (for vapour line) copper tubes were used
in the primary circuit. The suction line and the liquid line were installed side by side
and a thermal conductive paste was applied to enhance thermal contact between them,
thus to facilitating the heat transfer from the relatively warm liquid exiting the
condenser to the relatively cold vapour exiting the evaporator. Wherever appropriate,

insulations were applied to minimise heat gains/ losses from/to the ambient.
Refrigerant

The system was originally designed for using R22. Due to supply issues of
HCFC, it was decided to replace R22 with R507 which was a popular retrofit
refrigerant for R22. R507 (also known as R507A) was an azeotropic mixture of
HFC-125 and HFC-143a (50% wt./50% wt.) which was suitable for medium to low
temperature applications. A Bizter software was used to verify there were only little
changes in capacity and refrigerant mass flow rate when switching from R22 to R507
for the compressor. Accordingly, the old oil was flushed out and replaced, so was the

filter drier too. The thermodynamic properties of R507 can be dound in Appendix D

Other auxiliary components of primary circuit are listed in Table 3.1.

Table 3.1 Auxiliary components for the primary circuit

Component Type Description

Qil Emkarate RL 32H ~23L

Non-return valve Danfoss NRV Preventing back flow

(5)

Filter dryer (6) Danfoss DML 052 Removing dirt and moisture from
refrigerant

Sight Danfoss SGI 6 Indicating moisture level in system

glass/Moisture Giving a visual indication of the flow

indicator (7) circulation. Assisting detection of flash
gas and refrigerant charging

Solenoid valve (8) | Danfoss BML Stopping refrigerant flow according to
control signal

Suction line AC&R Components | Preventing liquid refrigerant going into

accumulator (10) S-7061 the compressor
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Control of the primary circuit

The primary circuit was controlled by a control box designed with over load
protections for both the compressor and the ice generator motor. When the system
was switched on, the scraper of the ice generator would start first, in order to avoid
blade damage. The compressor, along with its cooling fan, would start about a minute

after the scraper.

The binary ice temperature at the outlet of the SSIG was monitored and
controlled by a PTCS 1.5M -50/140 Silicon thermocouple and a thermostat (Elliwell,
Appendix E), in association with a liquid line solenoid valve (8), which was used to
implement an on/off control of the compressor for regulating the system capacity.
When the temperature dropped below a pre-set value (with a band width of 2K), the
thermostat would trigger a cut out of the refrigerant flow by closing the solenoid valve.
As a result, the evaporating pressure would drop and the compressor would be cut off
by the LP switch. As the temperature of binary ice rose above the upper band limit,
the thermostat would signal the opening of the solenoid valve so that the refrigerant
was allowed to enter the evaporator causing its pressure to rise, signalling the
compressor to start again when the evaporating pressure reached approximately 3 bar.
One shortcoming of this type of capacity control was that the number of starts/stop
per hour for the compressor was limited; this could also result in a large flow
temperature variation of the secondary flow, especially when the cooling capacity was

small. Thus a too small band width setting was not recommended.

3.2.2 Secondary circuit

The secondary circuit, Figure 3.3, was for thermally simulating the
consumption of binary ice by providing an artificial heat load using various
immersion heaters (15) installed in a solution tank (14). It had a centrifugal pump to
circulate the binary ice through the tank and a hand valve (16) to adjust the flowrate

of binary ice.
Pump (13)

A Wilo TOP-S 30/7 centrifugal pump, capable of operating at temperatures as

low as -20 <C, was used. A bypass connection with a ball valve (17) was incorporated
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to ensure steady operation of the pump under small flowrates. A drain tap was

installed at the pump discharge line for maintenance purpose.
Solution tank (14) and heaters (15)

A 68 litre fibreglass insulated tank from Drayton Tank was equipped with five
immersion heaters (15) (two 1 kW, two 2 kW and one 3 kW) to provide the thermal
loads to the refrigeration circuit. The heaters could be turned on and off separately to
provide step variations of the load. One of the 2kW heaters was controlled separately
by a PID temperature controller to provide fine tuning of the temperature. A shutdown
valve (18) was installed to isolate the tank from the pump if necessary. The tank was
also equipped with a mechanical stirrer driven by a low speed electrical drill to

promote even temperature distribution within the bulk of the solution.

Stirrer To primary

circuit
TRa| UK | B3, TBZ/J\
Air vent (P
~D®:]$ Heaters (15) e 1

(18) y ' TB1 Ice generator (2)

Solution tank (14) D
—-—M >
V1 Handvalve j/
T (16)

‘ From primary
an circuit

| P

L
Drain tap Thermocouple

Pump (13)

Figure 3.3 Schematic diagram of the secondary circuit

Secondary solution

The fluid used to generate binary ice was aqueous ethanol solution. The initial

design ethanol concentration was 15% by weight.
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Pipeline

20mm PVC pipes were installed throughout the secondary circuit, all of which

were insulated.

3.3 Instrumentation

3.3.1 Sensors

The test rig was equipped with various sensors to monitor the system
behaviours and a data logging system to record the data. The measured parameters

included temperature, flowrate, pressure and power consumption.

¢+ Thermocouple

Temperatures of refrigerant, secondary fluid and the cooling water at different
locations of the circuits were all measured by type T thermocouples
(copper-constantan, welded tip, glass fibre insulated). The sensitivity and
uncertainty/accuracy of type T thermocouples are approximately 43v/°C and +0.5
°C respectively. For the refrigerant temperature measurements, the thermocouple were
attached on the outer surface of the copper refrigerant tube and insulated from the
surrounding environment. Thermocouples used to measure the secondary fluid and
cooling water temperatures were dipped into the liquid directly (with the exceptions
of the thermocouples at the entrance and exit of the ice generator TB1 and TB2,
which were attached on the outer surface of the tube). All the thermocouples were
calibrated and when tested for the same temperatures none of them deviated more
than 0.5 <C from the others. Any two thermocouples that exhibit the closest readings
with each other were paired together to measure temperatures at the inlet and outlet of

the same component.

% Pressure transducers
Two Cole-Parmer Ashcroft G2 Pressure Transducers with a range of 0-500
psig (0 to 34.5 bar) and a corresponding analogue output of 4 to 20 mA were installed.
The high-pressure side transducer P1 was installed at the refrigerant inlet of the
condenser while the low-pressure side transducer P2 was installed at the evaporator
outlet, monitoring respectively the evaporating and condensing pressures. The
pressure transducers provided an accuracy of #1% full scale which was considered

adequate for this type of work.
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s Power meter
The compressor power consumption measurement was carried out with a
Multitek M100-WA2 power transducer which took the line current of one phase and
the line voltage for all three phases. It was configured to measure three-phase
three-wire balanced load power up to 5 kW and the maximum working current it can
take was 7 A. The output is 0 - 20 mA current, corresponding to 0 - 5 kW. The wiring

diagram is presented in Appendix F.

s Flowmeter

Two flowmeters were used in the tests. An Omega FPR302 Low-Flow Meter
with a measuring range between 0.38 - 37.9 litre/min was employed to determine the
flowrate of the binary ice in the secondary circuit (V1 in Figure 3.3). This turbine type
flowmeter measured the volume of the flow passing through it by a turbine wheel
which turned with a fix number of rotations for a given volume of fluid flow. The
meter generated a current pulse for each rotation. A ratemeter (Omega DPF75-A) was
used to read the pulse rate (number of pulses/min) and convert it into flowrate using a
K-factor (expressed as the number of pulses per litre) given by the manufacturer. This
flowmeter’s accuracy was £+ 1% of full scale. A detailed operation procedure of the

flowmeter and the ratemeter can be found in Appendix G.

Essentially, the flowrate (litre/min) could be calculated as below,

Pulse rate

Flowrate = —— 3.1
K

where K was a unique factor for each flowmeter. For the one employed in the tests, K
was 164.8 pulse/litre as stated by the manufacturer.

A calibration of the Omega FPR302 flowmeter was carried out to verify the
accuracy of the K value for the range of flow rates likely to be encountered in the tests.
This was done by first comparing the actual flow rates, determined by measuring
known volumes water through the flowmeter over specified periods of time, with the
nominal flowrates based on the pulse rates and the manufacturer’s stated K-factor. It
can be seen in Figure 3.4 that although all the measurements fell within the 1% FS
range, some of the data at low flow rates were outside the £20% error band, resulting
in larger relative errors at low flowrates if the same K-factor was applied for the entire

range.
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# Flowrate

+1% Full Scale

--------- +10% error

- = =+20%error

Nominal Flowrate (litre/min)

0 1 2 3 4 5 6 7 8 9 10

Actual Flowrate (litre/min)

Figure 3.4 Omega FPR302 flowmeter calibration

Therefore, to increase the measurement accuracy, the K-factor was calibrated

for different ranges as shown below.

Flowratenonimal XKnominal 3.2
Flowratesctual |

Kactual =

Variation of actual K-factors with the flow rates are shown in Figure 3.5.
When the flow rate was less than 4 litre/min, there were significant deviations
between the actual K-factor and the manufacturer’s value. A correction was
implemented through the data logging software using the following equation obtained
by data fitting.

164.8u
0.1836+u

K alibrated = 3.3

where u is the nominal volume flowrate (litre/min) from the meter. The Kcajibrated Was

then used in Equation 3.1 to determine the actual flowrate.
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Figure 3.5 Variations of actual K-factor with flow rate

Table 3.2 presents the results of the flowmeter calibration. Each data point
represents an average value of several repeated measurements. It can be seen that the
calibrated readings provided significantly improved accuracies at the low flow rate

within the 3L/min range.

Table 3.2 Flowmeter calibration results

Actual Flowmetre reading Discrepancy | Flowmetre reading Discrepancy
flowrate without calibration, (%) with calibration, i.e. | (%)
(L/min) i.e. using the based on calibrated
manufacturer’s K K values (L/min)
value (L/min)
111 0.95 14.64 1.13 1.93
1.16 1.02 11.87 1.20 4.00
1.17 1.03 11.52 1.22 4.22
1.84 1.72 6.05 191 3.95
191 1.76 7.24 1.96 2.35
2.76 2.63 4.68 2.81 1.98
3.09 2.94 4.85 3.12 1.09

The cooling water flowrate was measured by an Omega FV102 Vortex
Shedding Flowmeter (V2). It could handle flowrate between 4.5 and 45.4 litre/min
with an accuracy of £5% full scale and provided a 4 mA (corresponding to zero
litre/min) to 20 mA (at 45.4 litre/min) output signal to the data acquisition system.

This flowmeter was checked against the previously calibrated flowmeter Omega
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FPR302. A good accuracy of about 6% was noted within the designed cooling water
flowrate range, which was considered adequate for this study.
++ Solution concentration

The concentration of the ethanol solution may change overtime due to
evaporation, condensation, etc. and therefore it was required to check regularly to
ensure it is within the specified concentration tolerance of + 0.5% of the initial
concentration. This was done by using a set of hydrometers which can measure
specific gravity between 0.65 and 1.10, and with a resolution of 0.0005. Figure 3.6
shows the density (or specific gravity) of the solution and its temperature for a range
of concentrations (Melinder 1997); tables and equations are also available to provide

the solution density as a function of temperature and concentration.

Specific gravity was measured on a regular basis according to the following
procedures. A 3kW heater and the solution pump were turn on (to ensure through
mixing), but the refrigeration unit remained switched off. The heater was then turned
off when the solution temperature reached around 22 <C. The solution was allowed to
cool down gradually, with the pump still running, and a measurement of the specific
gravity of the solution in the storage tank was taken manually when the temperature
dropped to 20 <C, and the measurement was checked against the published data. The
solution level in the tank was also noted each time. If necessary, water or ethanol
would be added.
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Figure 3.6 Relationships between the ethanol density and its concentration and temperature (Melinder 1997)
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In summary, Table 3.3 presents all the sensor types, their locations in the test

rig as well as their measurement uncertainties.

Table 3.3 Sensor measurement points and measurement uncertainties

Temperature Uncertainty | Pressure Uncertainty
TR1: Ice generator +05°C P1: Compressor 1% full
refrigerant inlet discharge pressure scale
TR2: Ice generator +05°C P2: Ice generator 1% full
refrigerant outlet refrigerant outlet scale
TR3: Accumulator inlet +05°C

TR4: Compressor inlet +05°C Flowrate

TR5: Compressor discharge | 0.5 °C V1: Binary ice +5%
TR6: Condenser refrigerant | 0.5 °C V2: Condenser cooling +6%
outlet water

TR7: Condenser outlet +05°C

before suction line heat

exchanger

TR8: TEV inlet +0.5°C Power meter

TW1: Condenser water +05°C W: Compressor +10%
inlet

TW2: Condenser water +05°C

outlet

TBL1: Ice generator binary | £0.5°C

ice inlet

TB2: Ice generator binary | £0.5°C

ice outlet

TB3: Tank inlet +05°C

TB4: Tank outlet +05°C

3.3.2 Data acquisition

The outputs of all the sensors were fed into a PC via a data logger (Datascan
Module 7320 and 7020) and a PS232 link (Figure 3.7). Module 7320 was a
measurement processor and 7020 was its expansion module. Each module had 16
input channels and 3 poles for each channel. The data logger accepted DC voltage,
thermocouples or current as inputs. Each individual channel, with a maximum
allowable sampling rate of 1Hz, was connected with a sensor and was configured
according to the type of the signal from the sensor using a data acquisition software

package Dalite, storing the data in the txt format on the computer.
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Figure 3.7 The data logging system

Two types of output signal were involved in the test, namely thermocouple
and 4-20mA current. The connection methods for both types are shown below.

» Thermocouple

The data logger was capable of taking the voltages generated by the
thermocouples and converted them into temperatures according to the type of the
thermocouple. Thermocouples were connected to the data logger using 2 core

compensating cables, as shown in Figure 3.8.
)
< ¢ OH
)
( Ot
G

Figure 3.8 Thermocouple wiring diagram using 2 core compensating cable

» 4-20 mA current output

Sensor with 4-20mA current output could provide a fixed current representing
its reading at a specific moment when a closed circuit was formed by connecting a
resistor across its output terminals. A voltage was generated across the resister, which
was picked up by the data logger and converted into current according to the resistor

value. The pressure transducers, flowmeters and the power meter all belonged to this
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type. 62 Q resisters were used in all the connections as specified by the data logger.

Figure 3.9 shows the wiring diagram.

4 to 20 mA
Power * H
Supply 62 ohm
Unit _ L

I =5

Figure 3.9 sensors with 4-20mA outputs wiring diagram

3.4 Experimental procedures and results

In this section, the operation procedure of the test rig was described. Some test
results were also presented here, in order to confirm that the system was functioning
as expected and to illustrate the operation characteristic of the binary ice system. Both
standard pressure and vacuum testing had been carried out before the refrigerant was
charged into the primary circuit to ensure that no leakage existed. The system was
first charged with nitrogen to a pressure of 30 bars and kept for 48 hours. The
pressure held well, the variations were purely due to the daily changes in the ambient
temperature. Then the primary circuit was evacuated down to 250 micron to remove
the moistures and kept for overnight. After the test rig had passed both tests, about 2.7
kg of R507 was charged into the system through the suction line service valve until

there was no visible bubble in the liquid line sight glass when the system was running.

Figure 3.10 to Figure 3.13 illustrate a set of data recorded during a 3-hour test
during which the binary ice flow rate was adjusted. A 10-second sampling interval
and a 15% wt ethanol solution were used in this test. The components were started

from off cycle according to the following sequence:

1) Time step 10 (i.e. 100 seconds from start), binary ice tank stirrer starts
2) Time step 17, the secondary circuit pump starts

3) Time step 28, process chiller and cooling water pump start

4) Time step 40, ice generator scraper motor starts

5) Time step 46, compressor and fan switched on
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Flowrate (litre/min)

6) Followed by the heater (2kW) being switched on when the solution’s

temperature got closer to the freezing point.
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Figure 3.10 Binary ice and cooling water flow variations

+ V2 (cooling
water flowrate)

™ =" m V1 (binary ice

flowrate)

Figure 3.10 shows both the flowrate of the binary ice (V1) and of the

cooling water (V2). Initially, binary ice flowrate was set at 11.6 litre/min, then it was
manually adjusted to 9.0, 7.5, 6.3 and 5.2 litre/min at time step 393, 574, 764 and 962

respectively. Each time when the flow rate was adjusted, it took about 10 minutes (~ 1

cycle) to acquire a stable cycle pattern. The system was allowed to run for two further

cycles (~20 minutes) before the flowrate was changed again. In total, data for 15

cycles were captured. The cooling water flowrate was kept constant at 10.8 litre/min

during the whole 3-hour test, though some occasional minor fluctuations were noted.
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Figure 3.11 Condensing and evaporating pressures

Figure 3.11 shows the variations of the condensing (P1) and evaporating (P2)
pressures when the binary ice flow rate was reduced. The initial decrease of the
condensing pressure at around 28" time step was caused by the starting of the process
chiller. When the compressor started at around 46" time step, both pressures
increased rapidly. At the 210" time step, the compressor was turned off as the binary
ice temperature reached its set point; then both pressures dropped. The cyclic
variations of the pressures followed the compressor on/off cycle. The decreased
binary ice flowrate resulted in a slightly lower evaporating pressure during the on
cycle while the pressure remained the same during the off cycle. The average
condensing pressure during on-cycle did not vary much; this was attributed to the fact
that the heaters input was kept constant during the tests, so were the temperature and
the flow rate of the cooling water. The noted changes in the profile shape with both
the on and off period were believed to be caused by the cyclic variation in the cooling

water temperature (also see Figure 3.12).
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The tank inlet (TB3) and outlet (TB4) temperatures of the binary ice, and the
condenser cooling water inlet (TW1) and outlet (TW2) temperatures are shown in
Figure 3.12 which also plots the corresponding differences between the in- and outlet
temperatures, i.e. (TB4-TB3) and (TW2-TW1) respectively. Initially, both the binary
ice temperatures and their difference decreased steadily until the outlet temperature
(TB4) reached its set point and the compressor was cut off at around 210" time step.
After that, cooling water temperature differences (TW2-TW1) decreased almost
linearly with time within individual compressor on-cycles, and naturally had very

small values when the compressor was off.

A decrease in binary ice flowrate appeared to increase the binary ice
temperature difference (TB4-TB3) slightly and resulted in small temperature
differences even during compressor off cycle which were not present previously. The
change of binary ice flowrate had negligible influences on the (TW2-TW1) values
throughout the 15 cycles. It was worth noting that the last three cycles of TW1 and
TW2 showed different profiles compared with others. This is because the on-off
timings of the compressor and the process chiller varied with respect to each other.

The unique change of profile must not be interpreted as a fault.
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Figure 3.13 displays the variations of refrigerant temperature at various
locations of the primary circuit. As expected, the outlet temperature (TR2,
superheated vapour) of the evaporator was slightly higher than the inlet saturation
temperature (TR1), representing typically 2 to 3 <C superheat. Both temperatures
increased rapidly during the compressor off-cycle periods, but there was an initial
small decrease in TR1 following the shutdown of the solenoid valve, causing the
saturation pressure in the evaporator to drop before the compressor stopped
completely. When the compressor was back on again, both temperatures decreased,
though once again TR1 momentary dropped (for ~20 seconds) sharply, before their
differences returned to around 2~3 <C. Both TR1 and TR2 were observed to decrease

due to the temperature drop of the binary ice when its flow rate was decreased.

Qualitatively, the profile of the refrigerant temperature at the compressor inlet
(TR4) was very similar to TR1 and TR2, but with higher values due to the heat gained
in the suction line heat exchanger. Due to the drop in TR2, the discharge temperature
(TRS5) also increased during the compressor on-periods when the binary ice flow rate

was decreased.

During on-cycle periods, the temperature at the inlet to the expansion valve
(TR8) is lower than TR6 at the condenser outlet; this was due to the heat released to
the suction line vapour. When the compressor stopped, the drop in TR8 was
significantly larger than that of TR6, as the former’s location was closer to the
evaporator which had a much lower temperature, but the latter was kept high by the
condenser cooling water. When the compressor restarted, the profiles of these two
temperatures were qualitatively similar to that of TW2 and the binary ice flowrate
appeared to have little influences on the maximum and minimum of these two

temperatures.
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Figure 3.14 Compressor power consumption

The power consumption of the compressor is shown in Figure 3.14. During the
initial system start-up stage, the compressor remained on for a longer duration (up to
around 210 time steps) trying to pull down the solution from the relatively high room
temperature; the corresponding power consumption for this stage was higher
compared with the cyclic variations of the power consumption during the rest of the
on-off cycles. During the on cycles, the typical average power consumption was about
2.5 KW regardless the decrease of the binary ice flowrate, while the consumption
maintained at a relatively constant value of 0.5kW during off cycles under the
stand-by mode. A typical cycle will have a compressor on-off time ratio of 6:4, and

the ratio will increase slightly when the binary ice flowrate decreased.

A quick energy balance was carried out for a typical cycle to assess whether
overall the measurements were accurate and reliable, and the results showed that a
very satisfactory match was obtained taking into account of some heat and energy loss
such as compressor heat lost to and the heat gained by the solution from the
environment. Calculations show that for 370 seconds over an on-cycle period, the
average power consumption of the compressor was 2.5kW. The cooling capacity of
the ice generator calculated based on the properties and temperature difference of the
binary ice was 3.6 kW. The condenser capacity calculated based on the cooling water
flowrate and temperature difference was about 5.8 kW. It can be seen that the energy
picked up from the cooling duty plus the work input from the compressor matched
with the energy released to the cooling water, to within 5%. When considering the

secondary circuit, the heater used to simulate the load was 2kW and was kept on all
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the time for both on (370 seconds) and off cycle (240 seconds), providing a heat input
of 1220 kJ in total. The 3.6 kW ice generator operated for 370 seconds during the on
cycle, therefore the heat absorbed from the binary ice is 1332 kJ. The two matched
within 10% of each other; the difference heat could be due to the heat picked up from

the environment.

3.5 Fault simulations

The following system parameters were varied to provide data under both fault
free and experimentally simulated faulty working conditions. The design (fault free)

operation conditions were:

Cooling water flowrate: 10.6 litre/min
Initial binary ice solution concentration: 15% by weight
Binary ice flowrate: 9 litre/min at -7 <C

As the study mainly was aiming at single fault detection, for each set of test,
only one fault would be generated.

¢  Cooling water flow restriction

Cooling water flow restriction was simulated by throttling the valve (12) at the
condenser water inlet. The fault was generated at 3 severity levels: 9.6, 8.1 and 7.0

litre/min.

¢ Binary ice flow restriction
The binary ice flowrate was controlled by the hand valve (16). Again, 3 levels
of fault were introduced by reducing the flowrate to 7.5, 6.3 and 5.2 litre/min.

¢ Incorrect solution concentration

Ethanol solution concentrations of 10%, 12.5%, 17.5% and 20% were
employed as faulty concentrations. Tests started with a small concentration and then
certain amount of pure ethanol was added gradually. The total amount of the volume
was kept the same by taking the extra solution out after the desired concentration was

obtained.
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¢ Broken SSIG scraper
A broken blade in the ice generator was simulated by switching off-on the
scraper motor for a specific time profile. The validity and limitations of this idea will

be discussed in Chapter 6.

¢ Ice generator motor failure

The ice generator motor failure was a hard fault. It could be simulated by
simply switching off the motor resulting in no binary ice being produced. The
secondary fluid leaving the ice generator would contain no ice and with a higher
solution concentration than its original value. Further discussion will be covered in
Chapter 6.

Table 3.4 Parameter variations during faulty conditions in conventional chillers and the current binary ice

system
Fault Chiller Binary ice system
Cooling water flow increase P., T., TCA, | increase T, TCA, P,
restriction Pe, Teoms W Teom, W

decrease Te Teey UA., | decrease Te Tee, UA,

COP, T4, COP
Secondary fluid flow increase Te, LMTD,, | increase LMTD,,
restriction Teom, W, Teom
ATSGC
decrease UA,, T, decrease UA,, COP,
COoP Te

Table 3.4 compares the influence of the first two main faults on conventional
chillers as noted from the literature with those observed from the current binary ice
system. Some key differences and similarities were noted. For examples, for the first
fault, most of the system parameters were noted to vary with similar patterns between
the two system types, except P, and Tg, were found not to vary by any noticeable
extent in the binary ice system. On the other hand, for the second fault, the two
systems shared variations in 5 common parameters, namely LMTDe, Tcom, UAe, Te and
COP when the secondary flow rate was reduced, though some had different directions
of changes. In addition, it appeared that the compressor power consumption W was

not sensitive to the second fault in the binary ice system but increased in the chillers
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fault. Furthermore, another unique difference was that 47 was not involved in the
current binary ice system as temperature change of the binary fluid was found to be

insensitive to faults; in contrary, 47 was often used as an indicator for chiller faults.

¢ Double faults
Three sets of double faults are also covered, including:

1. Binary ice flow reduction + solution concentration increase
(BR+SCI)

2. Cooling water flow reduction + solution concentration increase
(CR+SCI)

3. Binary ice flow reduction + broken blade (BR+BB)

The double faults were simulated by adding two single faults together, both at
their highest severity level. For example, a BR+SCI fault was created by reducing the
binary ice flowrate to 5.2 I/min, while increasing the concentration of the original

ethanol solution to 20%.
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4. Modelling of scraped surface ice generator

In this chapter, the construction of a mathematical model of the binary ice
generator is presented. The model represents a component level sub-model of the
scraped surface ice generator, which was used for analysing the effects of various
operation conditions on the ice generation process. More importantly, the model was
also used to obtain some of the parameters which were not directly measurable but
could potentially be used for FDD; examples included internal wall surface

temperature and ice concentration.

The SSIG model was a quasi-steady state distributed model. It was capable of
predicting various key parameters, such as binary ice outlet temperature, the outlet ice
concentration and the cooling capacity of the ice generator. The model was validated

and calibrated, in terms of heat transfer coefficient, using experimental data.

4.1 The development of an analytical model of the SSIG

4.1.1 Scraped surface ice generator

Figure 4.1 shows the schematic configuration of a binary ice generation
system, which is essentially a vapour compression refrigeration system with its

evaporator functioning as an ice generator.

{><} >

Expansion
Cooling Valve > |
ter in
wa Condenser  |ce Load
Cooling generator
‘_
water out
Compressor

i Pump

Figure 4.1 Schematic arrangement of a binary ice system
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Figure 4.2 presents the internal details of the ice generator which is of a
mechanical scraped surface type (Stamatiou et al. 2005).The SSIG contains two
concentric cylinders, with scraper blades attached to a centrally rotating shaft which is
driven by an electric motor. The numbers of blades vary with design (in this case, two
blades are mounted) and the blades are spring loaded to maintain sufficient scrapping
contact with the inner surface of the inner cylinder. The whole heat exchanger is
insulated to prevent heat gain from the surroundings. The primary refrigerant flows in
the annular gap between the two cylinders; it evaporates and absorbs heat from the
secondary fluid that flows in the inner cylinder. Ice particles form as the evaporating
temperature of primary refrigerant is sufficiently below the freezing point of the

secondary fluid (Schwartzberg and Liu 1990).

Refrigerant Refrigerant

Binary ice
Tl?‘Tl:ﬁ:ﬁ T “Tl“ﬁ Outer tube
oo Eehait iy
N N AN %/Scraper
15 i:i:g/%
o X
RO 2 R
R e
3 %“‘H ’?ZH N Inner tube
T 'E ) wall
B T T B Top view
Inlet solution

Figure 4.2 Structure of a scraped surface heat exchanger

Contrary to a conventional single-phase secondary system, at outlet of the ice
generator, the secondary fluid is an ice-liquid mixture and its thermo-physical

properties are functions of solution concentration, ice concentration as well as the
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flow temperature (Kauffeld et al. 2005); all these parameters will have to be

incorporated in the present model.

The performance of the ice generator is usually characterized by its ice
production rate which needs to be controlled and matched with the load characteristics.
Too much ice built up on the surface between two scraping actions would increase the
required scraping power (Qin et al. 2006), also potentially cause damage to the
scrapers and freeze-up/blockage in the heat exchanger. On the other hand, a low ice
production rate reflects poor system efficiency, resulting in possible single phase
operation and unable to benefit from the latent heat of ice. The mean diameter of the
ice particles is generally approximated to be the thickness of the ice layer when it is
scraped off from the surface, and this is determined by the growth rate of the ice layer
and the rotating speed of the scraper. Binary ice with smaller particle sizes, having a
larger surface area to volume ratio, usually provides a better heat transfer
characteristics (Kauffeld et al. 2005).

The ice production rate can be determined by the following parameters:
evaporating temperature of the refrigerant, mass flow rate and properties of the
secondary fluid, scraping speed, number of the blades, fluid inlet temperature. As
previously reviewed, faults such as refrigerant leakage and over-charge will influence
evaporating temperature/pressure; flow restriction will decrease the mass flowrate of
binary ice; mechanical damage of the scraper motor or the blade leads to incomplete
or slow ice removal from heat exchanger surface, creating a similar effect to heat
exchanger fouling. For a given SSIG, all of the above faults will affect heat transfer as
well as ice production rates, influencing the properties/conditions (temperature,
carrier fluid solution concentration and ice concentration) of the binary mixture at the
heat exchanger outlet. These properties can be either directly measured or deduced

from other measurements.

The SSIG model takes initial solution concentration, evaporation temperature,
inlet solution temperature, solution mass flowrate and scraper rotating speed (rev/s) as
input parameters. The dimensions of SSIG and the refrigerant side heat transfer
coefficient h,, a function of refrigerant Re and properties, etc., are also needed as
input modelling parameters. The model outputs include: outlet flow temperature, ice
concentration or ice production rate, cooling capacity and COP.
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4.1.2 Modelling approach and formulation

The modelling of SSIGs had been carried out by previous researchers.
Examples include heat transfer models of SSIG for making ice creams (Bongers 2006)
and for freezing aqueous solutions (Qin et al. 2006). The above two models were both
designed to simulate a fixed amount of fluid being cooled and frozen inside the heat
exchanger with no flow, thus they are not entirely applicable for the current study.
The model being built here is based on a transient freezing model for forced flow
inside a convectively cooled tube (Seeniraj and Hari 2008). The original model used
water as secondary fluid and no scraper was involved. Therefore two major
modifications were carried out: (i) replace the water by ethanol solution and (ii)

incorporate the rotating scraper blades.

Figure 4.3 illustrates the ice generation process inside a SSIG, with the
corresponding physical and operation parameters given in Table 4.1. r and z represent
respectively the radial and axial coordinate, with z = 0 defined as the inlet of the ice

generator and z is positive upward.

Refrigerant

T h l
e, o

Ice

layer |L

dz
Section Il T _v
Section | l '—.

T 1

fluid,in, mﬂuid

Figure 4.3 Ice layer on the inner surface of SSIG (blades not shown)
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Table 4.1 Physical and operation parameters of the SSIG

ri Inside radius of inner cylinder [m] Co initial solution concentration [kg/kg]
rsafe | Radius of the rotating shaft [m] Truigin | Inlet solution temperature [°C]

I Radial distance of the ice front [m] Miid Mass flowrate of the solution [kg/s]

ro Outside radius of inner cylinder [m] L Total length of the heat exchanger [m]

To simplify the simulation, assumptions were made but some of them could be
removed if necessary. On the primary refrigerant side, evaporating temperature T,
(which was sufficiently lower than the local solution freezing point) and the
convective heat transfer coefficient h, were both assumed to be constant along the
entire length of the SSIG. The adoption of assuming a constant h, along the heat
exchanger length was noted in many other researchers (Admiraal and Bullard 1993;
Dehghan et al. 2015) to simplify the calculations. In addition, the constant h, was also
used in all simulations. This was considered justified/valid for the following reasons.
First the test ranges were relative small and thus h, was not expected to vary much.
Second, the simulations were verified by comparing the calculated binary ice
temperatures with the measured ones, and a good agreement was observed. The
thermal resistance of the wall was initially assumed negligible (Lakhdar et al. 2005).
Due to the agitating action of the scraper blades, no temperature gradient in radial
direction in bulk fluid was assumed; in other words, the ice particles scraped off from
the surface and carrier fluid were mixed instantaneously to form a homogeneous
mixture. The temperature of the suspended ice particles was assumed to acquire
approximately the same as the bulk flow temperature at the same axial coordinate,
with no heat conduction in axial direction in the ice layer (Seeniraj and Hari 2008).
The fluid boundary layer was assumed to be renewed immediately with bulk fluid

after the scrapping action (Rao and Hartel 2006).

In the model, the flow region could be divided into two sections along the
axial direction. Solution with an initial concentration of C, and temperature Tsyigin
entered from the bottom end of the cylinder. In the first section, sensible heat was
absorbed by the evaporating refrigerant on the other side of the cylinder. The solution
temperature gradually decreased, along the positive z direction, approaching the
freezing point of the solution and signifying the end of Section I in which no ice was
being produced. The length of Section | was determined by the difference between the
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fluid inlet temperature and its freezing point, the flowrate, the refrigerant temperature

and the overall heat transfer coefficient.

When the flow temperature gradually dropped to its freezing point, ice crystals
started building up on the inner surface, signifying the start of Section Il. Due to the
agitation of the rotating blades, the bulk flow temperature at this stage could be
assumed as the local freezing temperature (Qin et al. 2003). As water was taken out,
solution concentration of the flow increases and the solution freezing point decreased
along the positive z direction. As T, was assumed to be constant at this stage, the
difference between T, and the local freezing point of the fluid decreased along z
direction, causing it harder to form ice and thus the ice thickness decreased as well.
The ice layer grew rapidly from zero to its maximum value at the beginning of
Section II. This increase was difficult to be model accurately; therefore it was
assumed to be a step jump. If the ice generator were long enough, it was possible that
the ice layer thickness eventually reduces to zero and an ice free section 111 would

form near the end of the ice generator.

> Heat transfer without phase change (Section I)

As the thermal resistance of the cylinder wall is neglected, there is no
temperature gradient across the wall. Taking a small section of the cylinder (dz) as a
control volume, the heat removed from the flow to the wall (second term of Equation

4.1) balances the energy absorbed by the refrigerant (3" term).
dQ = hvo(Te - Twall) = hIAi(Twall - 7_1ﬂuid) 4.1

where

_ Nuik;
2(Tr{—Tshaft)

hy 4.2

and h, and h, are the convective heat transfer coefficients of the refrigerant and the
solution respectively, A, and A; are the outer and inner heat transfer areas of the
cylindrical section, Tyay is the wall temperature, Tpyq iS the average bulk flow
temperature in the control volume, k; is bulk thermal conductivity of solution, Nu, is
the Nusselt number for Section I. According to (Stamatiou et al. 2005), the Nusselt
number of a laminar or transition flow inside the heat exchanger without phase

change can be expressed as:
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2 (2Nrip|Cp1B 0.5
Nuy = —(—’ ) 4.
W= K 3

where N is the rotational speed of the scrapers (rev/s), piis the density and C, is the
specific heat capacity of the fluid, and B is the number of blades per 360 degrees. As
expected, the higher the rotational speed or the larger the blade number, the higher

would be the heat transfer coefficient.

Initially, the value of heat transfer coefficient ho, is chosen as 3000 W/(m?K)
according to previous researches for similar conditions (Greco and Vanoli 2005) for

R507. It is then calibrated according to the measured data.

Based on energy conservation, heat transfer rate dQ can also be equated to the

heat loss of secondary flow, Equation 4.4.
dQ = CpMmauiaATfuid 4.4

where mgyig IS the mass flowrate of the solution and ATgyiq IS the temperature change

of the solution across the control volume in the z direction.

If the outlet fluid temperature of a control volume drops below the freezing
point, this control volume will be assumed as the last element of Section I. The total
heat transfer rate from the solution to the refrigerant in Section | can be obtained by

summing up the heat transfer rate of individual control volumes.

Qtotal = Z dQ 4.5

» Heat transfer with phase change (Section I1)

In Section 11, ice builds up on the cylinder surface. The heat absorbed by
refrigerant represents partly the latent heat released due to solidification and partly the
enthalpy drop of the solution across the control volume. The energy paths are shown
in Figure 4.4a. Under quasi-steady state, the temperatures of the solution entering and
exiting the control volume dz can be considered constant. With no scrapping action
taking place, at any time t, the thickness of ice layer is rice = (ri — r¢) and it will
increase by (orf) over a period of At. The corresponding temperature profile between

the fluids, the cylinder wall and the ice layer is shown in Figure 4.4b.
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Figure 4.4 Ice layer building up on the inner surface of a SSIG, (a) heat transfer within a control
volume and (b) temperature profile at the cross section

The evaporating temperature stays relatively constant at T, outside the heat
exchanger wall, and increases at the boundary layer near the wall. As the wall is
assumed to have no thermal resistance, temperature remains the same inside it. The
temperature was assumed to have a linear profile inside the ice layer (Seeniraj and
Hari 2008), when the influence of the temperature to the thermal resistance of the ice
is ignored. There is a sharp temperature increase in the boundary layer of the fluid
near the inside surface of the ice layer, until temperature reaches the freezing point of

the fluid, which is also regarded as the local fluid temperature.

Across the control volume in the z direction, the enthalpy drop (4H) of the
bulk fluid (i.e. the sensible heat component), represented by the middle term of
Equation 4.6, is equal to the convective heat from the bulk flow to the ice layer (i.e.

the last term of the equation).

aT ui
fluid dz = _hHAi(Tﬂuid - Tice|T=Tf) 4.6

AH = mayiaCp1—,,

where Tic|=rfiS the temperature of ice at the solid/fluid interface, hy, is the localised

heat transfer coefficient of binary mixture in Section Il, Tqyiq is the bulk temperature
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of the fluid, which is assumed to be equal to the local freezing temperature of flow at

Section II.

At the ice/solution interface (r = ry), the heat conduction through the ice layer,
left hand side of Equation 4.7, is equal to the total amount of convective heat from the
solution to ice layer (4H), i.e. the first term on the right, and the latent heat released

by ice formation (Qaent), represented by the second term on the right.

OTice 2
_kice( or )r=rfAf = hIIAf(Tﬂuid - Tice|r=rf) - a_rtfpiceLiceAf 4.7
where
hy = Nupikfuid 48

2(ri—Tshaft)

and Ay is the surface area of ice layer when r = ry, ki is the thermal conductivity of
ice, Knuig 1S the thermal conductivity of binary ice, pic is the density and Lic is the
specific latent heat of the ice. Under quasi steady state, Tguig is @ function of axial

coordinate z.

Equation 4.9 indicates that at the boundary between the two sections, the

temperature of the fluid is at its freezing point.

Tauia(z = Ly) = T¢(C,) 4.9

where L,, is the length of Section I. For a given solute, the freezing temperature, Ty, is
a function of solution concentration, and its calculation procedure is given in the

Appendix A.

The radial distance of the freezing ice front rs is a function of time t, axial
coordinate z, as well as the angular position within the cylinder with respect to the
blade position; the distance between r¢ and r;represents the local ice thickness. Figure
4.5 shows the profile of the ice layer when the cylinder wall is unwrapped to

approximate a flat surface for an element in Section II. B is the number of the blades
per 360 degrees and 2;" is the angular distance (in radians) between two blades. After
each scraping at a given angular position, ice gradually accumulates on the surface,

until being scraped off by the next blade.
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Figure 4.5 Ice layer profile on the unwrapped SSIG surface
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Figure 4.6 r¢ as a function of time at a given axial position

Figure 4.6 illustrates schematically the periodical variation of ice front
position r; with time (solid line in Figure 4.6) at a fixed angular position, say 6; ﬁ

represents the time interval between two scrapings and the sequential scrapping off of
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ice at this location occurs at time t = % where n = 1, 2, 3, etc. When the rotational

speed or the number of blade increases, the time interval between two scraping
actions will decrease as well as the maximum ice thickness (r;-rg) or ice particle sizes,

but the ice concentration will increase as illustrated in later predictions.

Lakhdar et al. (2005) developed an empirical correlation for calculating the
Nusselt number for ethanol-water solution in a SSIG with phase change, and it can be
applied for Section Il. The conditions of use are compatible to current SSIG

configuration and operation.
Nuy = 4.47Re,**" Re, %8¢, "8 4.10

where Re, is axial Reynolds number and Re, is rotational Reynolds number, defined

as.
Re, = 2ppiu(rf—Tshaft) 411
Ubi
4ppi NT¢?
Re, = ~2oiTTt 4.12
Kbi

where u is the axial bulk velocity of solution, py; is the density and u, is the dynamic
viscosity of the binary ice. The calculation procedures for various properties of binary
ice mixture, including thermal conductivity, density and dynamic viscosity can be
found in the Appendix A and B, and they are all based on the local solution

temperature and concentration.

All the released latent and sensible heat from the control volume is absorbed
by refrigerant, i.e. the right hand term of the equation 4.13, on the other side of the
cylinder, assuming the steel cylinder has not thermal resistance.

. aTice
ice” 5, rery

k

Aj = ho[Tice(t, z,17) — TelA, 4.13

The heat conduction in the ice layer at a given z location can be expressed by

quasi- steady state 1-D heat conduction equation for a cylinder.

2 (rZe=) = 0 4.14

ror or
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4.1.3 Numerical solutions

Calculations involved in Section | are mainly for determining the position of
the boundary between Sections | and I1. All the fluid properties in Section | can be
assumed constant as their variations with temperature are quite minimal. Equations
4.1 and 4.4 are applied to determine the outlet flow temperature of each successive
control element, which is then compared with the freezing point temperature at initial
concentration C,. Sections Il starts when the flow temperature drops below this

freezing point. The length of Section I is

Li=axdz 4.15
where a is the number of control volume in Section | to achieve the freezing condition;
typically dz is set at 5mm. It is possible to have L, reached the full length of the ice
generator; this represents the condition that no ice is being produced and the ice
generator is essentially functioning as a chiller, i.e. no ice in and no ice out.

For section Il, fluid bulk temperature Tsqug (z) and radial distance of the

freezing front r¢(t,z) can be determined by solving equations 4.6, 4.7, 4.13 and 4.14

simultaneously.
The differential equation 4.14 has a general solution in the form of:
Tice = C1 lnT' + CZ 416

Combining it with Equation 4.13, C; and C, can be obtained

C _ ho(Te_Tice|r=Tf)
L7 hoIn(ri/ro)+kice/Ti

and

Inreh, (Te_Tice |r=rf)

€= Ticelr:rf " holIn(ri/r)+kice/Ti 417
Then equation 4.16 becomes
O0Tice _ ho(Te_Tice|r=rf) 4.18

ar  (hoIn(ri/rp+kice/TDT
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Substituting Equation 4.18 into Equation 4.13 yields

a
hi(Tfluid - Ticelr:rf) - ﬁpiceLice 4.19

t

—kiceho (Te_Tice |r=rf) _
(ho In(ri/Te)+kice/Ti)Tt

The differential equations, Equations 4.6 and 4.19, are solved to get two
unknowns, namely the Tguig and rs in Section 11 by using the predictor-corrector Euler
method (Butcher and Wiley 2008). For each control volume dz, the inlet temperature,
solution and ice concentration of binary mixture at any time are known from the
outputs of the previous control volume; (the inlet ice concentration of the first control
volume in Section Il is taken as zero). By using a guessed temperature at the
solid/liquid interface (Ticelr=rf), Triiig and r¢ can be found according to equations 4.6
and 4.19. A new interface temperature Tie|=rf Can then be calculated and
compared with the guessed value. If the difference between them is within a pre-set
tolerance, the calculations can be considered completed, then the calculation proceeds
to the next control volume; if not, the new interface temperature should be used

instead of the guessed value until the calculation converges.

When the dynamic response of a system is much faster than the change of its
operation conditions, it can be assumed that the system is operating under
quasi-steady state. The assumption had been successfully applied in many transient
heat transfer models including both liquid chillers (Browne and Bansal 2000; Wang et
al. 2000) and binary ice system (Knodel et al. 2000). In this study, the system is also
assumed to operate under quasi-steady state for the purpose of modelling and

simulation.

To simulate transient operations, the input time variables, including the
measured inlet fluid and evaporating temperatures, were discretised into time steps
first. The SSIG model predicted a new set of outputs, such as the outlet of the fluid
temperature, for each time step under the specified inlet variables. Then the procedure
was repeated for the next time step. The final outputs of the model captured both the
temporal and spatial variations of the variables, describing the status of the fluid
inside the SSIG. Essentially, a quasi-steady state SSIG model was composed by a

series of steady state predictions.
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Figure 4.7 shows the flow chart of the simulation process at any given instant.
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In addition, as an on/off control was used in the system, the model
incorporated a detector taking the power consumption of the compressor as an input
to detect whether the compressor was running. The simulation process of the SSIG
was kept unchanged when the compressor is off-cycle, but the heat transfer
coefficient of the refrigerant was artificially set to a very low value, as the refrigerant

flow had been cut off.

4.2 Model validation and results

The fluid used to generate ice is ethanol-water solution. The dimensions of the

SSIG were estimated based on the laboratory unit:

Table 4.2 Dimensions of the SSIG

ri Inside radius of inner cylinder [m] 0.10
ro Outside radius of inner cylinder [m] 0.11
Fshaft Radius of the rotating shaft [m] 0.02
L Total length of the heat exchanger [m] | 0.46
B Number of blade per 360 2

N Scraper rotation speed [rpm] 168

4.2.1 The validation of the model

The verification of the code was done by testing the code against some set
scenarios as well as some manual calculations to ensure the algorithm and the
calculation steps were correctly implemented to produce the expected results. As for
validations, the simulation results were compared with the experimental data obtained
from the test rig described in Chapter 3. These were based on the data from several
complete on/off cycles under different conditions, though only one set of
representative data was presented here. The initial ethanol mass concentration was
15%. The inlet binary ice temperature and the refrigerant evaporating temperature
were measured and used as the model inputs. The flow rate of binary ice was set at 9
litres/min and remained constant during the test. The set point of the binary ice
temperature at the inlet of the SSIG was -5 <C with a differential of +2 <C. All the
data was taken with a 10 second interval (i.e. each time step corresponds to 10

seconds).
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Figure 4.8 Comparison of measured and calculated binary outlet temperature
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Figure 4.9 Comparison of derived and calculated ice concentration at the SSIG outlet

Figure 4.8 and Figure 4.9 show validation results of binary ice temperature
and ice concentration (the ice concentration was derived from measured binary ice
temperature based on the initial solution concentration) at the SSIG outlet. Within the
first 24 time steps, the compressor was cycled off by the thermostat and thus no ice
was produced. During this period, the binary ice outlet temperature increased
gradually. At around the 25" time step, the compressor was turned on. The
temperature dropped rapidly while the ice concentration (calculated based on

predicted and measured temperatures) rose to a value of about 7%.

More than 90% of the temperature and ice concentration predictions fell
respectively within the 20.5 <C and #10% band of the measured or derived values.
The derived ice concentrations (based on measurement) in the first 25 time steps were
zero as all the measured solution temperatures were found to be above the freezing

point during this period so no ice was formed. Potentially, there could be some
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measurement errors leading to a positive concentrations, but it was not possible to
have negative concentration. Therefore, no error band was included for this part of the
data. Large discrepancies mainly occurred when sudden changes of the system
operation happened (i.e. during compressor off/on switching). It can be seen from
Figure 4.8 that the model under-predicted the binary ice outlet temperature when the
compressor was not running, while the prediction became much more accurate during
the compressor running (within 0.2 <C error band). The coefficient of determination
(R?) for the binary ice outlet temperature prediction 0.85. In Figure 4.9, much larger
discrepancies between the derived and predicted values were observed during the
compressor on-cycle suggesting that even small error in the temperature prediction
could result in large difference in the ice concentration. When the compressor was not
running, as long as the predicted binary ice temperature was above the freezing point,
the ice concentration would stay at zero. The R? for the ice concentration prediction is
0.90.

4.2.2  Simulated behaviour of the SSIG

Having validated the model, it can be used to simulate and understand the
general behaviours of the SSIG. Another main advantage of having an analytical
model is its ability of calculating some immeasurable parameters such as the ice
particle size and the axial variation of the fluid temperature within the SSIG. In this
section, the validated model is used to generate data to demonstrate some operating

characteristics of the binary ice system.
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Figure 4.10 Variations of binary ice temperature along the SSIG for the three modes of operation
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Figure 4.10 shows the simulated axial temperature profiles of the fluid along
the SSIG under different loads when the compressor is running; the left hand side

represents the inlet to the SSIG. In general, 3 different modes can be expected.

Mode 1: No ice is produce in the SSIG. The SSIG inlet liquid temperature is
high enough that the liquid cannot be cooled down to its freezing
point in the ice generator. Therefore the SSIG essentially operates as
an ordinary liquid chiller with a significant difference between inlet

and outlet temperatures.

Mode 2: Initial part of the scraped heat exchanger acts as a liquid chiller
bringing the fluid temperature down towards its freezing point,
while the rest produces ice. The profile can be divided into two
sections as discussed previously. The temperature gradient of the
first section is much larger than the second section and the boundary

between the two sections moves with the load conditions.

Mode 3: Ice is generated along the entire length of the SSIG. In this case, the
fluid going into the ice generator already contains some ice in it. The
temperature of the fluid drops slightly along the SSIG.

Among the three operation modes, mode 2, particularly with a small length of
Section 1, is the most desirable one. In Mode 1, no ice can be produced, suggesting the
cooling capacity is too small when compared to the required load. It should be
avoided through proper design and sizing of the equipment. Binary ice systems
normally incorporate with control mechanisms (Guilpart et al. 2005) to ensure the
appropriate amount of ice is generated to avoid ice blockage. When the load is too
low (Mode 3), the system will be cycled-off by the control monitoring the inlet

temperature. Therefore, in practice, Mode 2 is the most likely to occur.
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Figure 4.11 Local fluid temperature and ice concentration along the SSIG

Figure 4.11 illustrates the binary ice temperature and ice concentration profiles
along the SSIG under Mode 2 with a fixed evaporating temperature. It can be seen
that there are two distinct gradients of temperature profile along the length of the
SSIG, with relatively much larger temperature drop in Section I; in fact, over 70% of
the overall temperature drop takes place in the first 20% of the length in Figure 4.11a.
As expected, Section Il experiences a much smaller temperature drop (no more than
1 <C), due to involvement of the latent heat. The ice concentration increases steadily
in a slightly non-linear manner to ~6.3%.

As the load changes, both the gradients and the lengths of the two sections will

change accordingly. Figure 4.11b demonstrates the binary ice temperature and ice
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concentration with a higher inlet temperature but with all other working conditions
remained unchanged. Section | becomes longer when the difference between the inlet
temperature and the freezing point is larger. At the outlet of the ice generator, the ice
concentration (~5.4%) is smaller thus less ice is produced when compared to Figure
4.11a. Unless the length of the SSIG exceeds an estimated length of 2.3m based on
the design working conditions of the test rig, it is rather unlikely that Section 111 will

occur.

Figure 4.12 shows the maximum thickness of the ice layer between two
scraping actions along the SSIG, which is thicker at the initial part of Section II,
suggesting the predicted ice particle sizes are between 6 to 8 pum. The reason is that
when water is taken out from the solution, solution concentration goes up and the
freezing point of the remained liquid decreases, and this leads to a smaller difference
between the solution freezing point and the wall surface temperature, assuming the
evaporating temperature remains constant; the generated ice layer becomes thinner. A
limitation of the model is that it can only predict a sudden jump of ice thickness
between section | and Il; however as in reality, the thickness increases from zero

thickness over a short distance.
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Figure 4.12 Maximum ice layer thickness between two scrapings along the SSIG

To make full use of the SSIG, the length of Section | should be kept as short as
possible during operation. The length is determined by the many parameters such as
the fluid inlet temperature, the flowrate, the solution freezing point and the
evaporation temperature. In practice, if the same solution concentration is used, then

the freezing point is a fixed value. The evaporation temperature cannot be controlled
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directly. Therefore only the influences of the first two parameters are addressed here.
The length of Section | against the inlet fluid temperature Tguiq in under three different
flowrates is shown in Figure 4.13 Apparently, when the inlet temperature is higher (i.e.
a higher load), more heat needs to be taken out from the solution in order get to the
freezing point. This leads to a longer section without producing ice. A larger flowrate

also increases the length of section I.
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Figure 4.13 Variation of the length of Section | against the inlet fluid temperature Tgyign Under
three different flowrates

The following figures (Figure 4.14 - Figure 4.16) present the variations of
some of the model outputs due to changes in working conditions that could be caused
by occurrence of a fault. Y-coordinate on the right is the temperature of binary ice at
the SSIG outlet and the left hand is the cooling capacity of the SSIG, for a range of
evaporating temperatures, flowrates and initial solution concentrations, while the inlet
temperature is kept constant at -5 <C. Depending on the combination of various
parameters, individual data points can fall into one of the three possible operation

modes described earlier.
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The effects of evaporating temperature are shown in Figure 4.14. A lower
evaporating temperature increases the temperature difference between the binary ice
and the refrigerant under the same initial solution concentration and the inlet
temperature, resulting in a lower flow temperature at the outlet and a higher cooling
capacity. It is worth noting that, in a system, one would normally expect the cooling
capacity increases with increasing Te, as the refrigerant mass flow rate increases due
to higher suction vapour densities at higher T.. However, the presented results are for
the SSIG alone in which the refrigerant mass flow rate is assumed constant. Therefore
the capacity decreases as the T increases. Faults such as binary ice flow reduction and

cooling water flow reduction would change the evaporating temperature.
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Figure 4.15 Variations of outlet flow temperature and cooling capacity with flowrate (design
flowrate = 9 Litre/min, design T, = -20 <C, initial solution concentration at 15% by mass)
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Flowrate could decrease due to flow restriction, which is a common fault in
secondary system. Figure 4.15 indicates that a lower solution flowrate would lead to a
lower outlet flow temperature. Though this results in a higher ice concentration, the
cooling capacity reduces due to the reduced flow rate.

The output parameters will deviate from the expected values when an
incorrect solution concentration is assumed in the model, which can be interpreted as
a fault. Figure 4.16 shows that both cooling capacity and outlet temperature drop
when the initial solution concentration is increased. A fluid with a higher solution
concentration has a lower freezing point. Although the fluids enter the heat exchanger
at the same temperature, the temperatures at the end of Section | (or at the beginning
of Section IlI) are at the freezing points corresponding to individual initial
concentrations. For a fluid with a lower freezing point (i.e. with a higher initial
solution concentration), its temperature difference with the refrigerant is smaller (as
observed from the measurements), resulting in a lower cooling capacity. In addition, a
higher initial solution concentration also leads to a decrease in the length of Section II.
As the cooling capacity is much higher in Section Il than in Section | due to the

involvement of latent, a shorter Section Il will reduce the overall cooling capacity too.
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Figure 4.16 Outlet binary ice temperature and cooling capacity against initial solution
concentration (weight of ethanol/total solution weight) (design flowrate =9 Litre/min, design T, =
-20 <C, design solution concentration at 15% by mass)
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5. Development of the overall hybrid model

This chapter presents the establishment of the overall system level model for
the entire binary ice system. The ANN modelling of the primary circuit are described
in the following two sub-sections; Section 5.1 introduces the basic concept and the
modelling tools for the chosen ANN model, followed by the presentation of the
training procedures in Section 5.2. Section 5.3 describes the hybrid coupling of the
physical model of the scrape surface ice generator in the secondary circuit with the
ANN model of the primary circuit. The results of the overall model are then discussed
in relation to why a hybrid coupling approach to create the overall system model is

needed as well as the associated advantages.

5.1 Establishment of the ANN model

Refrigeration systems are known to be non-linear and of dynamic nature
(Haves and Khalsa 2000); binary ice systems are of no exceptions. It is very difficult
to set up physical meaningful equations to represent accurately the correlations among
all the inter-dependant parameters involved in the system components, in particular
the compressor. According to Rasmussen and Jakobsen (2000), the development of a
pure analytical compressor model could be impossible. Many existing first principle
compressor models (He et al. 1997; Koury et al. 2001) are mainly for design and
general control purpose instead of operation monitoring which usually requires much
higher accuracy as in fault diagnosis. Therefore it is not practical to develop a pure
analytical model for the primary circuit for FDD purpose. As an alternative to the
analytical model, black box method based on ANN was employed in this study to
simulate the system parameters/indexes of the primary circuit. The model was
constructed within the Matlab environment using its neural network toolbox (The
MathWorks 2010).

To construct an ANN model, the following steps need to be followed:

1. Data collection
2. Create the ANN network

3. Configure the network
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4. Train the network including initialization of the weights and biases
5. Validate the network

The data is collected via experiment measurements, which has been discussed
in Chapter 3. For Step 2, whether a steady state or a dynamic ANN model should be
used will be decided within which further choices are available (e.g. MLP and RBF
under steady state, NARX and Auto-Regressive Moving Average under the dynamic
category). In addition, the type of the activation function should be chosen;
possibilities include Gaussian function, sigmoid function, etc. In this step, various
parameters should be examined for their use as input or output parameters, depending
on the data availability and the purpose of the simulation. In general, the control
variables (e.g. condenser cooling water flowrate) are chosen as inputs and the
parameters that are sensitive to faults chosen as outputs for FDD purpose. However,
the combinations must be assessed carefully in relation to specific system types and
study objectives. The next step is to set up the structure of network, including the
number of hidden layers, the number of the neutrons in the hidden layer and the
number of the delay steps; the last parameter is needed for dynamic modelling which

will be explained later.

Steps 4 and 5 are automatically performed by Matlab, though certain default
settings can be changed by the users, to achieve for instance a better training time or
accuracy. During network training (Step 4), the experimental data are fed into the
network to help it adjust the weights in order to match the model output data to the
desired values (i.e. the measured outputs). The outcome of the training is validated in
Step 5. The network can be trained repeatedly until a user specified accuracy is
achieved, and the fully trained model can then be employed to simulate the operation

of the system.

5.1.1 Model structure

This section provides more details of Step 2 as how various decisions are
made. Chapter 2 reviewed some of the ANN models used by previous researchers for
chillers. Two types of ANN model architectures are popular and commonly applied,
namely RBF and MLP. The pros and cons of the two types have been discussed also
in Chapter 2. On their own, these two architectures are only for static/steady state

predictions. However, for the test rig employed in this project, an on/off thermostat
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was used to control the compressor capacity, which made it impossible to acquire a
real steady state. Therefore a static model based on the averaged value of the data

could not fully characterise the system behaviour.

To establish a reliable dynamic model, the Nonlinear Auto-Regressive model
with eXogenous input (NARX) (Billings 2013) is widely used to reproduce the
process dynamics under various operating conditions because of its high accuracy

(Ingrassia and Morlini 2007).

NARX dynamic neural networks have an input vector that contains both
lagged input and output values of the dynamic system. The model can be used to
predict the current value of a time series data using the past value of the driving
(exogenous) time series, as well as the past value of same series that being predicted
(Chetouani 2008). It can be defined by the following function f:

y() = £ (y(t = 0,0t = 2), .., y(¢ = ny), ult = 1, ut = 2), ..., ut -

n,)) 5.1

where the current value of the dependent output y(t) is regressed on previous ny values
of the output y and previous n, values of the independent (exogenous) driving input u.
In some cases, multiple independent driving data sets can be involved. For example,
to predict the binary ice outlet temperature (y) of the SSIG, the driving input(s) u
could be chosen from the binary ice inlet temperature, its flowrate, the evaporating
temperature, etc. The NARX model can provide good predictions, because it uses the

additional information contained in the previous values of y.

The NARX model can be implemented by using a feed-forward neural
network (i.e. MLP network) to approximate the function f. The term ‘feed-forward’
means that the connections between nodes only allows signals to be sent in one
direction to the next layer of nodes and not back to the previous layer, as illustrated in
Chapter 2.

The MLP neural network itself is a static system. When combined with an
input structure known as the Tapped-delay-line (TDL), the dynamic characteristics

can be incorporated into the system; the overall architecture is referred previously as
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NARX. Figure 5.1 shows that the input time series u passes through a TDL with n,
delays. At a certain time t, the output of the TDL is u(t-1), u(t-2)...u(t-ny).

u
D
T u(1)
D
h— u(t-2)
Lo
D
- M(f-n”)

Figure 5.1 Tapped delay line

There are two ways to implement a NARX dynamic network, either as a
parallel architecture or a series-parallel architecture as shown in Figure 5.2. The
parallel architecture is a recurrent dynamic network where the predicted output of the
network is fed back to the input layer, while the series-parallel architecture uses the
true measured past output from the system to form part of the input vector of the

network instead of feeding back the predicted value.
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Figure 5.2 Dynamic network structures

For the current study, the series-parallel architecture is chosen because the
measured outputs of the system are available. It also has a major benefit over the
parallel architecture, i.e. the measured outputs y(t) which are expected to be more
accurate than the predicted output in the parallel architecture are available to be fed
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into the TDL, resulting in a more accurate final prediction of y(t). Thus the parallel

architecture should only be considered when the measured output is not available.

Having determined the basic structure of the network, as part of Step 2, the
input and output parameters are chosen carefully. The aim of FDD was to use fewer
sensor measurements to detect as many faults as possible. Therefore, a model
developed for FDD purpose should use parameters that are easy to obtain from direct
measurements and/or from simple calculations and it should keep the number of
inputs as small as practically possible. Based on the observations of the measurements
in Chapter 3, the parameters describe the condition of the condenser cooling water (i.e.
inlet temperature and flow rate) and the secondary circuit operation (i.e. the
temperature and the carrier fluid solution concentration of the binary ice at the outlet
of the ice generator and the corresponding flow rate) are taken as the inputs to the
NARX model.

Theoretically, any parameters can be used as model output due to the fact that
black box models discard any physical relationships among the parameters. In this
study, the independent variables that can be controlled directly are considered as
inputs as described above, while the dependent variables which are sensitive to
selected faults are to be taken as outputs, namely the condenser cooling water
temperature difference (4T,) which was chosen because it can be influenced by fault
such as the cooling water flow reduction. Also as observed in Chapter 3, other outputs
parameters that are seen to reflect both normal system behaviours and mal-function
operations include the evaporating temperature, compressor power, discharge
temperature, condensing temperature, etc. The values of the above parameters need to
be measured and used in the training of the ANN model. They may not be monitored

for FDD in the later stage.

5.1.2 The application of Matlab Neural Network Toolbox

The construction of the NARX model was implemented with Matlab Neural
Network Toolbox. The Toolbox offers a number of tools that make it possible to
configure (Step 3), train (Step 4) and validate (Step 5) the neural networks. Graphical
User Interface (GUI) and the command-line functions are two main tools for the

above tasks.
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The GUI provides a point-and-click control of the neural network toolbox,
allowing the users to setup the network structure with little knowledge of
programming language. With the help of GUI, the users can load the input/output data,
divide them into three groups respectively for training, validation and testing, and
change the proportions of the latter two, choose the number of neurons in the hidden
layer and number of delays in the TDL (i.e. the n, and ny). The default setting for the
training data proportion is set at 70%. GUI also allows users to visualize the training
results showing the network response (i.e. the network output) and error (discrepancy
between the output and the measured output). Furthermore, the GUI can automatically
generate MATLAB scripts (command lines) that allow the tasks to be modified and

improved if desired.

In addition, the command lines can be written manually using the
command-line function, which gives user more flexibility in terms of choosing certain
network parameters/functions such as the transfer function, training function,
performance function etc. To make the best use of these two tools, GUI is normally
used first to set up the network and automatically generate the scripts as a template,
and then the command-line function is used to manually modify the scripts to obtain

the desired network. For the current study, mainly GUI was used.
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Figure 5.3 Matlab Neural Network Toolbox GUI
(a) select the network structure, (b) select the input and output data
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Figure 5.3 Matlab Neural Network Toolbox GUI (continued)
(c) choose percentage for the validation and testing data and (d) choose the number of neurons and delays.
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Figure 5.3 a-d demonstrate the procedures of creating a NARX model using
the Matlab GUI. The first step is to choose the desired network structure, three
structures are available and NARX, as explained previously, is chosen for this study,
Figure 5.3(a). The time series of the measured and calculated data of various
parameters, originally stored in Excel files in a matrix format (time-step > number of
variables), need to be imported to the MatLab. As shown in Figure 5.3(b), they can be
specified and uploaded as either inputs or target outputs. The user also needs to
instruct the GUI whether the time-step is represented by the row or the column of the
matrix by selecting the time series format. Among all the data, 70% (by default) of
them will be used for model training, the split of the rest of 30% between validation
and testing can be varied as shown in Figure 5.3(c). Matlab will randomly divide the
data into the above three groups each time this process is repeated as requested by the
user. The number of neurons in the hidden layer and the number of delay for both y(t)
and u(t) in the TDL can then be specified by the user, Figure 5.3(d). The default

settings of Matlab for above two parameters are 10 neurons and 2 delays respectively.
A brief description on their setting is given below:

» Number of hidden neurons

The determination of the optimal number of the hidden neurons requires a
trail-and-error approach. The users can change the number and select the one
that creates the best performance, i.e. with a minimum difference between the
model output and the measured output. Adding additional neurons to the
hidden layer will generally increase accuracy but also increase the training
time, thus a trade-off is needed. Preliminarily observations suggested that the
Matlab default setting of 10 hidden neurons provided good accuracy for the
binary ice system under investigation. Increasing the number did not increase

the accuracy significantly.

> The number of delays

The number of delays is determined by the operating characteristics of the
system regarding the time response of the outputs to the variation of the inputs.
For binary ice systems, or in general refrigeration systems, the change of the

dependent parameters, such evaporating temperature, with respect to the
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variations of control parameters, such as cooling water flow rate is slow.
Therefore a larger sampling time At can be used, and accordingly only a small
delay number is needed, as suggested by (Yoon and Lee 2010). Once again,
preliminary observations indicated that 2 delays were sufficient to give good

accuracy when compared to 3 or 4 delays.

In addition, MatLab allows users to choose the transfer function between the
input and output layers. The default transfer functions, Tan-sigmoid function in the
hidden layer of a dynamic network, and the Linear transfer function in the output
layer, are used; as commented by Cybenko (1989) this combination can be used to

approximate any functional forms.

5.2 Model training and validation

Having set up the network architecture, the relevant data can be fed into the
network for training purpose. This section first explains the data processing and
training algorithm of the ANN. The control variables which are selected as inputs and
some of the possible outputs are listed. The results of the NARX model were

compared with the measured values.

5.2.1 Data pre-processing

Measured data are in different value range. When being used as network input,
large value will saturate sigmoid transfer function, resulting in a very slow training
progress (Glorot and Bengio 2010). Pre-processing essentially normalise the both
input and target output data to within [-1, 1] so to avoid saturation of the transfer
function (Chetouani 2008) thus improving the training efficiency of the network. Post
processing then transforms the normalised output back to the original data range after

model training stage to enable user carry out result comparison.

The data pre-processing is completed by MatLab function mapminmax. The

normalised value can be calculated as:

unor(i) — 2x[u(i)—umax] -1 5.2

Umax ~Umin

where u(i) is the i™ element of the original input/target time series, uyo (i) is its

normalised value, u,., IS the maximum value of the time series and up,;, IS the
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minima value. Both the pre- and post-processing are automatically completed by
Matlab toolbox.

5.2.2 Back-propagation training algorithm

The network training is the procedure of adjusting the weights and bias in
order to obtain good simulation accuracy. A performance function can be applied to
assess the network accuracy and the Mean square error (mse) is used in this study,

defined as:

mse = %Z?’zl(y(i) - a(i))2 5.3

where y(i) is the training target, a(i) is the network predicted output and N is the
number of time steps in target/output time series. Network training aims at
minimising the mse. The back-propagation training algorithm (Werbos 1974) is one
of the most commonly used training and learning mathematical procedure that
automatically adjusts the weights and biases of the network. Being a back-propagation
algorithm, the trainlm (Levenberg-Marquardt) algorithm (LMA) (Rumelhart et al.
1986) is provided as the default training function in Matlab. It is a very fast method,
suitable for small networks with less than thousands of weights, hence used for this

study.

Back-propagation training is an iterative procedure. The training is carried out

in steps as follows:

1. Initialized the weights. Some random numbers between [-1, 1] are
automatically generated by MatLab toolbox to start with.

2. The weighted input data are forward propagated through the network to the
output layer to obtain the network outputs.

3. The outputs are back propagated to the hidden layer to calculate the gradient
of the weights.

4. A new weight matrix can be generated by moving the original weights to
the opposite direction of the gradient.

5. Use the new weight matrix to replace the original one. Go back to step 2
and repeat the process.
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To stop the loop, certain criteria must be fulfilled: 1) the value of the
performance function is smaller than the pre-set goal, ii) the gradient of the weight is
smaller than a certain number or iii) the performance function fails to decrease in a
certain number of iterations. If one of the above criteria is achieved, the training is
stopped and the appropriate weights which can minimize the network error are

considered found.

5.2.3 Data management

Generally speaking, the system parameters can be divided into two groups: the
control variable and the internal state (dependent) variables. Control variables are the
independent parameters that can be changed by the user directly and are used as
inputs to the neural network. Table 5.1 provides a list of the variables and the ranges

used in the experiments.

Table 5.1 List of control variables in the binary ice experiments

Control | Physical Meaning Unit Range

Variable

Uice Binary ice volume flow rate L/min | 3.5~ 11.0 (5 settings)
Uw Cooling water volume flow rate L/min | 7.1 ~ 10.8 (4 settings)
Co Original ethanol solution concentration | %wt 10 ~ 20 (5 settings)
Tw.in Cooling water inlet temperature T 13.4~18

Tice, in Binary ice inlet temperature < -4~ -8

On the other hand, internal state variables which are dependent on the control
variables can be used as indicators to the system working conditions, representing the
outputs of the model. They are either directly measured parameters or derived
performance indexes. Some of the state variables are showed in Table 5.2 and a full

list will be presented and their relevance for FDD will be examined in Chapter 6.

Table 5.2 List of internal state variables as the model outputs

State Physical meaning Unit | Formulation
variable

T dis Compressor discharge temperature T | Measured
Te Evaporating temperature <T | Measured
W Electrical power consumption of the compressor | KW | Measured
ATy Cooling water temperature difference T | Twout - Twin
Qc Condenser capacity KW | uypwCpdTw
Te. out condenser refrigerant outlet temperature T | Measured
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The experimental data used in the network training were collected from the
test rig described in Chapter 3. All data were recorded with a 10 second interval.
Altogether about 100 patterns of fault free data were collected, involving 5 input
parameters and one output for each pattern; each network is designed to handle only
one output at a time. Typically, each pattern represents 3 on-off cycles of compressor
lasting about 30 minutes. Out of these 100 patterns, around 75 of them were sent into
the neural network toolbox for training, testing and validation, and the rest were
randomly reserved and applied for manual assessment of the model accuracy as
presented in Section 5.2.4. Majority of the 100 patterns were for “no ice-in but ice-out”
mode of operation, as previously described in Chapter 3. Any manual start-up and

shut down data were not used in the model training.

5.2.4 Results comparison

This section presents selective data from the primary circuit when applying
different cooling water and binary ice flow rate, keeping the temperature set points for
the cooling water and binary ice, as well as the load constant. The influences of the
variations of the several control parameters on the selected system outputs are
described. The recorded data are also compared with the NARX model predictions to

demonstrate the prediction accuracy.

During the tests, the original ethanol solution concentration remained
unchanged at 15%wt The temperature of the cooling water was controlled by an
external cooling unit that was not included in the NARX model, and was set at 15<C
with a +2<C differential, giving a corresponding actual inlet cooling water
temperature variation between 13.8 and 17.5 <C in a cyclic manner. The compressor
was controlled by a thermostat detecting the temperature of binary ice at the ice
generator inlet, which was set at -7<C with a +2<C differential, corresponding to a

temperature variation between -7.6 and -5 <C.
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Figure 5.4 Comparison of NARX model prediction with measurements

(b) comparison of predicted and measured

evaporating temperature

(a) variations of cooling water and binary ice flow rates,
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Figure 5.4 Comparison of NARX model prediction with measurements (continued)

(c) comparison of predicted and measured cooling water temperature difference and (d) comparison of
predicted and measured compressor power consumption

Figure 5.4a shows three patterns (each lasted about 200 time steps,
representing about three compressor on-off cycles) of the cooling water and the binary
ice flow rates which were adjusted. The initial part of the data representing the system
start-up period was not included. The time step 1 represents the moment when the
compressor was switched off by the thermostat. The flow rates were kept steady at the
beginning for around 200 time steps (10s per step), and the cooling water flow rate
was reduced for the next 200 time steps, followed by a reduction of the binary ice

flow rate for the last pattern.

Figure 5.4b, 5.4c and 5.4d compare the predicted parameters with the
experimental data and good prediction accuracies were obtained in general. Figure
5.4b shows the prediction of evaporating temperature T.. Regarding the accuracy of

model prediction, the coefficients of determination (R?) is 0.95. Errors mainly occur
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at the compressor restart point. The cooling water temperature difference AT, are
shown in Figure 5.4c. The predictions of AT, had the best accuracy among the three
parameters showed here, R? is 0.99. In Figure 5.4d compressor power W consumption
is displayed, showing a residual power rating of about 0.5 kW. The predicted W has a
R*value of 0.98.

Overall it can be shown that the ANN NARX for the primary circuit is capable
of predicting the transient data well with very good accuracy, except when the

moments when the compressor was cycled on or off.

5.3 Hybrid model coupling

As discussed in Chapter 2, both analytical models and black box models have
their limitations. The above black box model for the primary circuit is easy to setup
and can provide good simulation results. However, it can only predict the parameters
that are available from measurements or relatively simple calculations. Due to the
unavailability of certain measuring equipment in the current project, some parameters
that are important for FDD were not measured (e.g. refrigerant mass flow rate), and
due to the unique characteristic of binary ice system, some parameters cannot be
directly calculated through the measured data (e.g. ice concentration, carrier fluid

concentration and ice generator cooling capacity).

In practice it is also unlikely that a refrigeration system will have flow meter
to measure the refrigerant flow rate or will have a calibrated conductivity meter to
monitor the solution concentration in real time. These parameters are all related to
binary ice system performance/operation and can be potentially used as FDD
parameters. Therefore, a pure black box model to include both the primary and the
secondary circuits may not have sufficient numbers of output for FDD purpose, thus a
hybrid model coupling a black box model with an analytical model is proposed in this

study.
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Generally, when coupling two models together, it involves identifying the

following:

1. The models to be coupled
2. The coupling interface

3. The relevant control and dependent variables (i.e. the inputs and outputs
parameters respectively)

For the current project, the two models involved are an analytical SSIG model
and a NARX model for the primary refrigerant circuit of the system. The coupling
interface is taken as the physical interface where the primary and secondary
refrigerant circuits are linked, i.e. the entries to the ice generator for both the primary

refrigerant (T,) and the binary ice (Tic,in).

There are two ways to couple the two models. The first was by sharing their
inputs. The parameters describing binary ice status, which are the original solution
concentration C,, the inlet temperature Tic in and the volume flow rate uic, are fed into
both models as inputs, because they are linked to the operation of both primary and

secondary circuit directly.

The second way is to loop an output from one model to become an input of the
other. During the development of the SSIG model, an assumed evaporating
temperature was employed as a model input. However, T, is a function of the load for
a given system, and therefore it is an output parameter of the primary circuit. As a
result, the two models are coupled by using the T, from the ANN of the primary
circuit as an input to the mathematical model of the SSIG.

Occasionally, the calculation of certain parameter requires outputs from both
of the models. For example, to calculate system COP, the evaporator capacity and the
compressor power consumption are needed. So W is also sent to the analytical model

as a coupling parameter. The coupled model is shown in Figure 5.5.

The main benefits of adopting the loop approach are: 1. The model is now
capable of predicting some un-measurable variables, such as COP which could be an
index for FDD. 2. The robustness and performance of the resulting FDD technique
can be improved, as some of the SSIG model inputs are taken from the ANN model

instead of from the sensors, such as T. and W. This is because in order to obtain the
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fault free predictions for FDD, the inputs to the SSIG model need to be fault free as

well. When a fault occurs, if the SSIG model takes the measured faulty Toand W as

inputs, its outputs cannot be regarded as fault-free, thus they are not capable of being

applied as benchmarks for fault detection. Instead, the T, and W predicted by the

ANN model are fault-free even under faulty conditions. When they are fed into the

SSIG model, fault-free predictions can be made.

Therefore, combining the analytical SSIG model with the NARX black box

model is expected to give a better accuracy when compared to a full analytical model.
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Figure 5.5 The coupling of SSIG and ANN model
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Temperature (°C)

Ice concentration (%wt)

5.4 Results and discussion

The output data of the hybrid model could be divided into two groups, one

was directly from the ANN model (e.g. Te, Qc, Tais, €tc.) and the other group was from

the analytical model (e.g. Ticeout and Ciceout). The validations of the former were

discussed in Section 5.2.4 and this section only discussed the validation of the second

group.
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Figure 5.6 Hybrid model prediction validation, (a) comparison of predicted and measured binary ice outlet

temperature, (b) comparison of predicted and derived (from measurement) outlet ice concentration

Figure 5.6 presents sample results of the hybrid model. The data was taken

from the same tests described in Section 5.2.4. The predicted evaporating temperature

showed in Figure 5.4b was used as input to the analytical mode. Figure 5.6a displays

both predicted and measured temperatures of binary ice at the outlet of the ice

generator, Figure 5.6b presents the corresponding ice concentrations. When the

compressor was off, cooling capacity was very close to zero, therefore no ice was

produced. The binary ice outlet temperature increased significantly until it reached the

high setting of the thermostat and triggered on the compressor. Then the binary ice
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temperature dropped below its freezing point instantly. During the cooling process,
the ice concentration raised steadily, while the temperature decreased in a small range

along with the cooling capacity.

The coefficients of determination of the hybrid model outputs for the binary
ice outlet temperature and ice concentration were 0.82 and 0.83 respectively, which
were lower compared to the corresponding R?of the analytical model (0.85 and 0.90
respectively). However, when both models were validated using data taken from a
reduced cooling water flow tests, the R? values for the analytical model dropped to
0.78 and 0.75 (reasons as explained in Section 5.3), whereas the R2 values stayed the
same for the hybrid model. Therefore, it would appear reasonable and logical to use

the hybrid model to generate fault free predictions.
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6. Faults detection and diagnosis

This chapter will first analysis the influence of the selected faults on various
parameters of the binary ice system. This is followed by a discussion on how the
parameters, including several derived ones such as the cooling capacity of the SSIG,
are identified to allow comparisons between predicted and measured/derived values,
for the purpose of generating residuals. The sensitivity of the parameters to different

faults will be examined.

Next, appropriate thresholds of the residuals to distinguish a faulty condition
from a normal one are determined. A control chart algorithm, i.e. CUSUM test (Page
1954; Hinkley 1971; Basseville 1986; Schein and House 2003), is applied here for the
dynamic fault detection. A rule based algorithm is then set up for the fault diagnosis.
The latter aims at reducing the number of sensors needed to a practical minimum

while being able to diagnose faults in an efficient way.

Most existing FDD methods only focused on single fault detections. However
multiple faults could take place at the same time, and this makes FDD more
challenging. Some studies on multiple faults are to be included in this research to
highlight some of the technical challenges such as establishing whether more than one
fault exists. In addition to single fault analysis, three sets of double faults were
considered: a set which consists of two randomly chosen faults, a set in which two
faults appear to have opposite effects on certain parameters and a final set in which

the faults will have similar impacts on certain system parameters.

6.1 Faults and their influences on the binary ice system behaviour

In order to detect a fault, the impacts of the fault on the system
behaviour/performance must be examined systematically and carefully. Prior to
attempting a fault detection, there must be a clear definition of the ‘fault-free’
condition. Table 6.1 lists selected faults and the settings of the relevant control
variables used in the tests. When the system is running with the nominal design values,

the system is defined as fault-free, while all other combinations of values represent
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some kind of faults, except that both the load and the cooling water temperature were

fixed in the study.

The levels of the faults are differentiated by the degrees of deviation of the
actual values from the nominal ones; a larger deviation suggests a more severe fault
(i.e. a higher fault level, e.g. Level 3 for cooling water flowrate reduction). Three
levels of faults had been introduced for cooling water and binary ice flowrate
reduction, while two levels of faults had been simulated for either the solution
concentration increase or decrease. As for the scraper fault, both the scenarios of a
completely broken blade (i.e. only one blade left for providing the scraping action)

and the scraper motor failure were considered in this study.

Table 6.1 Values of the control variables under both fault-free and various levels of faulty conditions

Nominal Severity Level
. Value
Fault Control variable (normal
operation) 1 5 3

Cooling water flowrate Cooling water 10.8 I'm 9.6 I/m 81l/m | 7.01l/m

reduction flowrate V2

Binary ice flowrate Binary ice flowrate | 9 1/m 7.51/m 6.3l/m | 521l/m

reduction V1

Solution concentration Initial solution 15% wt. 17.5% 20% -

increase concentration C, wit. wit.

Solution concentration Initial solution 15% wit. 12.5% 10% -

decrease concentration C, wit. wit.

A broken SSIG scraper Experimentally motor Only one completely broken
simulated by always on blade is considered and was
switching on/off the simulated by 20/20 seconds
scraper motor at a on/off cycles.
fixed time intervals

Scraper motor failure Stop the motor Motor on Motor off

Figure 6.1 demonstrates the mechanism of residual generation. The nominal
values of the control variables in Table 6.1 are used as default parameters and
conditions of the hybrid model. The corresponding outputs represent the fault-free
predictions; the validations have already been shown in Chapter 5. They will then be
compared with either the direct measured parameters or the parameters derived from

the sensor measurements.
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Figure 6.1 The generation of residuals

Table 6.2 listed some of the derived parameters which have been commonly
applied by other researches in chiller FDDs. It is worth noting that only the ones that
can be determined by simple calculations are listed in the table. Other parameters such
as the solution concentration and ice concentration at the outlet of the SSIG need to be
obtained using the analytical model. Other direct measured parameters have already
been listed in Chapter 4. The table also includes the estimated errors/uncertainties of
the derived parameters, as calculated by the error propagation equation (Clifford
1973). Taking a derived parameter N = f(a, b, c, ...) for example, where a, b, c,... are

independent measurements, its absolute error |[AN| can be expressed in Eq. 6.1, as
_ |of of of
IAN| —|aa|Aa+|ab|Ab+|ac|Ac+ 6.1

where Aa, Ab and Ac are the absolute errors of the measurements a, b and c
respectively. These errors are needed for the calculation of the sensitivity factor in

Equation 6.2.
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Table 6.2 Errors of derived parameters

Parameter Equation Estimated Error

Degree of superheat (<T), 4T, TR2 - Saturation temperature £25°C
Binary ice temperature TB1-TB?2 +1°C
difference (<C), AT
Sigree of sub-cooling (<C), Saturation temperature - TR6 £25°C

SC
Degree of discharge super heat TR5 - Saturation temperature +£25°C
(), 4T gis
Condenser ~ cooling  water .
temperature  difference  (<C), TW2-TW1 £1°C
ATwater
Condenser capacity (kW), Q. V2p,Cpu(TW2-TW1) +0.9 kW

Table 6.3 Observed dynamic variations of evaporator and condenser parameters under faulty conditions
with the corresponding sensitivity factor in brackets

Fault | Binary ice Cooling Solution Solution A broken Scraper
d %’ water concentration concentration scraper t P
reLuc I(I)r3] reduction increase decrease (motor off ;nol or
(Level3) | evel3) | (@20% wi) (@12.5% wt) | time 50%) ailure
Parameter
nigg LOn | W12 | ICA9) | WE3) H(E43) | 183
L off | - 1L(56) | 1U(51) 1(:30)
=z On - 11(-0.3) - - 1(-0.2) 11(0.3)
= R <) 108 | 1(-08) 1(12) :
g On -0.2 -0.8 -0.7 - -0.7 -1.5
& | pe[bar] o il((-0.0g) ll(_ ) l(_ ) l(_ ) LU(-1.5)
Q. [KW] gpf ll(f)-3) . l((1-6) lll(_0-4) 11(0.2)
AT sh gis On 11(0.8) | 1112.4) 11(0.7) 11(3.6) 11(-1.1) 111(-4.6)
[T] Off - 1(0.9) - 11(1.9) -
To [T On 1(0.4) 1G5.7) 1(-1) 1(-0.4) 1(-1.0) 11(-5.3)
¢ out Off | [(-1.6) 1(2.9) 1(-3.3) 1(-2.2) i(-1-4)) )
o On - 11(0.3) - - 11(-0.2 1LIG-13
2 | T[Tl [~ - - 11(0.07) 1(0.3) -
g AT water On - 11(2.6) 1(-1.0) 1(-1.2) 1(-0.5) 11(-2.5)
O | [T] Off - 111(0.7) - 1(-0.1) -
p. [bar] On - 1(4.9) 1(-0.4) 1(-0.2) 1(-1.4) 11(-6.9)
¢ Off - 1(1.3) 1(0.4) 1(-0.4)
On - 1(-0.4) 1(-0.2) 1(0.02) 1(-0.3) 111(-1.0)
Qe [kW] Off | [1(-0.05) | 11(0.1) - -
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Table 6.4 Observed changes in the average values of compressor & system and ice generator parameters
under faulty conditions with corresponding sensitivity factor in brackets

Fault Bi . Cooling Solution Solution A broken s
I(;]ar%{ Ice water concentration concentration scraper Crtaper
reLuc '?g reduction increase decrease (motor off ;nol or
Parameter (Level3) | (fevel3) | (@20%wt) | (@12.5%wt) | time50%) | TaHdre
£ | Tl On | 11(0.8) | 11(19.0) 1(2.6) 1MA7.7) | -7.8) | [I(-34.9)
g | ™ Off - 1(7.5) - 1(8.6) 1(-1.6)
é W [KW] gpf . l(-?-7) l(-?-S) l(-1_5-6) ll(-?3-2) 11(-45.8)
§ cop On 1(0.3) 1(0.2) 1(0.5) 1(0.8) 11(1.3) 11(1.6)
g Ooff | 1(0.1) 1(0.2) 1(0.2) - - /
g o+ 00 [ 1 1 1 1 1 N/A
§ Duration off ; - . . - .
& N 1 1 1 0 :
Tiooul €I On | 1(-0.5) - 11(-3.6) 124 1(1.2) ma.m
tceout Off | |(-1.0) - 1(-0.8) 1(0.3) - -
5 | Tenl® [of : : : 1)
o AT T] On | 11(0.4) - 110.75) 11(-1.3) 11(-0.4) | [11(-2.0)
S i Off | 111(0.4) | 1(0.08) 111(0.4) ll(-0-2)) - ] - )
3 Oon | 1(0.4) - 1105.8) 110-3.3 1(-0.8 1(-0.8
Coul W 5gr T 1116.9) 119-3.1) ;
Cice, out On | 11(0.2) 11(0.6) 11(0.3) 111(-0.3) | [1](-0.3)
[Yowt] Off - - - - -

*Same durations are observed for all the parameters listed in Tables 6.3 and 6.4.

In Table 6.3 and Table 6.4 the changes in the average values during both the
compressor on- and off-cycle durations, as well as the sensitivity factors (in brackets)
of certain derived and measured parameters under the five specified faulty conditions
are presented. The parameters are separated into 4 groups, relating to the evaporator,
condenser, compressor & system level and the binary ice generator respectively. The
relative impacts on the parameters are illustrated qualitatively by the direction and the
number of the arrows, whilst a “-” represents no noticeable changes; essentially the
larger the numbers of arrows, the greater the percentage changes of the parameters

caused by the faults.

In general, parameters with large percentage changes are chosen to be employed
for fault detection. However, for certain parameters that have small absolute values, a
small change in their value would lead to a large percentage variation. These small
changes in certain occasions could be even smaller than the measurement
uncertainties/errors, making the detections of the associated faults difficult should

they be chosen as a possible detection parameter. Particularly in the current research,
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the value of the binary ice temperature difference (4Tic) is small (typically ~2 <C). A
residual (~ 0.4 <C) caused by a small fault could lead to a large percentage change (i.e.
3 arrows). With a measurement uncertainty of &1<C for ATic, this suggests that the
residual of AT is not significant enough to indicate a fault, and more importantly
percentage changes may not be an appropriate indication whether a parameter is

suitable or not to be used for FDD.

Instead of using the percentage changes, the sensitivity factor S (Comstock et
al. 2002a) is considered a more appropriate indication; it is essentially a

signal-to-noise ratio, as expressed:

Residual of a parameter at the highest fault level

S= 6.2

Maximum uncertainty/error of the parameter

The corresponding sensitivity factors are also presented in Tables 6.3 and 6.4.
The uncertainties needed in the calculations were taken from Table 3.3 in Chapter 3
and Table 6.2. A large sensitivity factor means that the given parameter is more
sensitive to the occurrence of the fault; therefore, it is more likely to be selected to
detect the fault.

The influences of the above listed parameters to individual selected faults are

examined below.

» The binary ice flowrate reduction

The temperature difference of the secondary fluid is one of the most common
parameters used in detecting a secondary flow reduction according to published
literatures. However, in the current study, the change of binary ice temperature
difference (4Tic), i.e. the residual, is very small (0.4 <C, even for the severity Level 3).
Combining with the uncertainty in the temperature measurement, the resulted small
sensitivity factor of 0.4 suggests indeed that it is not suitable for fault detection.
Contrary to the conventional chiller behaviour, most of the parameters do not seem to
have significant variations (sensitivity factor mainly ranging from -0.5 to +0.5) under
the reduced binary ice flowrate, with only three exceptions observed to have a
relativity large sensitive factors during the compressor on cycle; these are the
evaporating temperature (-1.2), the discharge super heat (0.8) and the discharge
temperature (0.8).
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» Cooling water flow reduction

A reduction in cooling water flow rate is known to have larger influences on
the parameters on the condenser side rather than on the evaporator side, regardless
whether it is a binary ice system or a chiller, suggesting similar FDD approaches
could be adopted. The experimental observations showed a good agreement with
other researchers in terms of response behaviour. It is noted that the cooling capacity
stays constant when the cooling water flowrate drops. This is because the condenser is
oversized; it is adequate to remove the heat absorbed by the evaporator even under a
reduced flowrate. Most of the condenser parameters are sensitive to the change of
cooling water flowrate, with sensitivity factors ranging from -5.7 to 19, suggesting it
has a large impact on the discharge temperature (Tgis) and the power consumption of
the compressor (W).

> Initial solution concentration increase or decrease

The change of initial solution concentration has influences on many
parameters of both the primary and the secondary side of the system, as shown in
Tables 6.3 and 6.4, respectively. In general, one would expect the influence on certain
parameters due to concentration increase is the opposite of that caused by a
concentration reduction, as reflected by the parameters associated with the ice
generator in Table 6.4. However, from a closer examination of Tables 6.3 and 6.4,
some of the parameters have the same directional changes at certain concentrations
both below and above the nominal concentration at 15% wt. For instant, the Tgis was
found to increase when the solution concentration is raised from 15% to 20% as well
as when the concentration is reduced from 15% to 12.5%. This could be explained by
the fact that when the solution concentration is increased up to a particular level, no
ice can be produced, assuming the set point remained unchanged; the SSIG essentially

behaves like a chiller. This obviously affects how certain parameters vary.

In addition, if the solution concentration drops too much, then for a given
temperature set point, the compressor will never cycle off and ice will be continuously
produced. Eventually, there will be an ice-in and ice-out mode of the SSIG operation
and the ice concentration will continue to increase and the flow to drop, leading
eventually to a flow stoppage. This is encountered when the solution concentration is
dropped to 12.5%wt. To avoid the flow stoppage, the measurements were made by
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resetting the set point from -5 <C to -3 <C, and this could result in some of the

variation patterns noted.

Furthermore, based on the sensitivity factor, it was also observed a parameter
suitable for detecting a concentration decrease may not be suitable to detecting an

increase, depending on the magnitudes of the concentration changes, e.g. 4T dis.

» Broken scraper and motor failure

The SSIG used in this study has two spring loaded blades 180<apart. There
are several possible cases regarding blade breakage/operation. 1) One blade is either
partially or totally broken, leaving part of the surface scraped with half of the scraping
frequency by the other blade. This is likely to occur at the outlet end of the SSIG as
the blades are subject to more mechanical wear and tear. 2) There could be problems
with the spring loading/setting which causes the blades to loss physical contacts with
the inner surface of the SSIG resulting in a permanent thin layer of ice between the
scraping blades and the surface. Binary ice can still be produced if the gap between
the blades and the inner surface is small. However, in an extreme condition, the gap
may become too large for the ice thickness to fill depending on the T, resulting in no
scraping action at all and the binary ice production ceases. 3) Both blades are
completely broken with no scraping action at all. This is expected to have, to a large
extent, a similar consequence as having a very large gap in the second case. 4)
Scraper motor failure in which the blades are not rotating; this is also expected to
produce similar results as Case 3, though in this case, the agitation caused by any
rotating elements within the SSIG would be completely absent.

Essentially all the above cases can be divided into two situations: one still has
binary ice production capability and the one without. As previously mentioned, only
two scenarios involving (i) a completely broken blade (i.e. only one blade left for
providing the scraping action) and (ii) the scraper motor failure are considered in this

study; the former represents a fault with binary ice production and the latter without.

In the present setup, it is practically difficult to take out any blades from the
SSIG, and thus an approach was “invented” to experimentally simulate scenario (i),
i.e. a completely broken blade, by switching the SSIG motor according to certain

on/off schedules, e.g. a complete breakage of one blade could be achieved by
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switching periodically half of the motor time off. The feasibility of this idea or the
validity of this logic could be assessed by first obtaining some analytical results
reflecting the above scenario, and comparing with measured results. Some

representative analytical results are presented in Figure 6.2 and Figure 6.3.
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Figure 6.3 Simulated binary ice outlet ice concentration under fault free and one broken blade conditions

The mathematical simulation of scenario (i) was performed under some initial
assumptions. First, both the evaporating temperature and the compressor cycle
duration remained unchanged, not influenced by the faults. In reality, the T, is
expected to be lower than the fault-free value due to the increased thermal resistance,
and the cycle duration is expected to increase due to reduced system capacity.
However, it is possible to refine/improve the simulation at a later stage by using the
measured values of T, and cycle duration. Second, no partial blade breakage is
encountered. In Figure 6.2 and Figure 6.3, the simulated outlet temperature and ice
concentration of the binary ice mixture over 3 cycles are presented for fault free and
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faulty operations. The faults were introduced at the start of the second cycle. The
same fault free measured parameters (i.e. evaporation temperature, initial solution

concentration and binary ice flowrate) are used as inputs for the simulation.

It can be seen that at the beginning of the second cycle when the compressor is
off (~time step 57 to 85), the fault has no influence on the outlet conditions of the
binary ice. When the compressor is re-started at time step of around 86, the fault
results in a higher temperature and a lower ice concentration respectively, relative to
the fault free condition. This is due to a thicker ice layer cumulating on the SSIG
inner surface, thus increasing the overall thermal resistance. The temperature

differences between faulty and fault free conditions are rather small (~ 0.2 <C).

For the comparison, four tests were carried out with different off/on schedules
of the blade motor including 10s/30s, 20/20, 10s/10s, and 30/30. The intervals are
chosen as a compromise between not too long to protect the blade and not too short to
protect the blade motor. The results of Test 1 and 2 are presented in Figure 6.4, as

they both have the same total motor off/on cycle duration of 40 seconds.
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Figure 6.4 Measured output of the faulty blade Tests 1 and 3. (a) binary ice temperature at the SSIG outlet,
(b)ice concentration at the SSIG outlet.

In Figure 6.4, three compressor cycles are shown. The first cycle is fault free,
with the blade motor rotating all the times. The second cycle is for Test 1 (i.e. 10s
on/30s off) and the third cycle is for Test 3 (i.e. 10s on/10s off). The periodic off/on
switching of the blade motor resulted in the oscillations of the binary ice outlet
temperature as well as the ice concentration. When the blade is stopped, no scraping
was taken place, the ice accumulated on the surface increased the thermal resistance.
In addition, the lack of agitation reduced the heat transfer coefficient significantly,
hence an increase in the outlet temperature of the binary ice due to reduced cooling
and a decrease in the ice concentration. As the blade stopped for a longer duration in
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test 3, the outlet temperature of binary ice is higher than in test 1, and as expected the

magnitudes of oscillations of the two parameters are much bigger too.

The measured (oscillating) results cannot be directly compared with the results
in Figure 6.2 and Figure 6.3, nor can they be used directly for fault detection, as they
are generated in a unique experimentally simulated condition. Therefore, an 8-point
average is used to obtain the “modified” measured results as the orange lines shown in
Figure 6.4a and Figure 6.4b; it is clear they share a very similar trends with the
previous mathematical simulations (Figure 6.2 and Figure 6.3) for a broken blade, i.e.
the average binary ice outlet temperatures are higher and the corresponding ice
concentration is lower than the fault free values. Therefore, one could argue that the
motor on/off switching method can be interpreted as an alternative way to
experimentally create a broken blade scenario, but it is necessary to establish an

appropriate off/on schedule as well as a suitable total duration.
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Figure 6.5 Measured output of the faulty blade Test 3, 4 and 2 a) binary ice temperature at the SSIG outlet,
b)ice concentration at the SSIG outlet

Figure 6.5 demonstrates the SSIG outlet binary ice temperature and the ice
concentration for again three compressor cycles (time step 1~73, 74~160 and
161~253). The SSIG blade motor off/on schedules (Test 3: 10s/10s; Test 4: 30s/30s;
Test 2: 20s/20s respectively) are all having the same 50% off/on proportion but with
different total cycle durations from 20s to 60s. It can be seen that the compressor stays
on for a longer time when the motor off/on switching is less frequent (i.e. Test 4), and
at the same time, the binary ice temperature rose and its ice concentration dropped
when compared to a more frequent off/on schedule (i.e. Test 3), as a result of the
increased thermal resistance. As expected, the magnitudes of the oscillations also
became larger when the motor overall cycle duration is increased. In general, it is
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observed that while keeping the same off/on proportion, an increase in total motor
off/on duration has a very similar effect as increasing the off duration proportion

while keeping the total cycle duration unchanged.

When choosing the appropriate blade motor off/on schedule, all the modified
test results are compared with the mathematical simulations in Figure 6.2 and Figure
6.3. The simulations shows that the increase in the binary ice temperature when the
one of the blades is broken is rather small, which should also be reflected closely by
the modified measured results. Among all the tests, the 10s/10s and 10s/30s motor
schedules appear to be suitable in terms of the magnitudes of changes. However, as
the motor switching was carried out manually, it is practically difficult to have
accurate switching timing when involving short switching intervals such as 10s,
causing irregular oscillation pattern as seen in the first cycle in Figure 6.5 and also
leading to rather unstable moving point averaging. As a result, the 20s/20s schedule
was chosen as a compromise between having a close match with simulated results and
avoiding irregular oscillations. When analysing the measured data in Figure 6.5, 2- to
12-point moving averages have been trialled and the best fitted curves are chosen for
individual off/on schedules. Therefore, in this study, a broken blade fault is to be
experimentally simulated by switching the blade motor with an off/on schedule of

20s/20s coupled with an 8-point moving averaging.

15
10 —> Blade motor failure

——Binary ice oulet temperature

—m-Evaperating temperature

. Temperature (°C)

Cooling water temperature difference

Time Step (10s)

Figure 6.6 Variation of some of the parameters in the binary ice system after a SSIG blade motor failure

148



For the blade motor failure (scenario ii), the hard fault can be experimentally
simulated by switching off the scraper motor thus stopping all scraping actions. (Note:
the motor must not be switched back on until all the ice has melted to avoid blade
damage!). During the test, the system was allowed to run for at least a complete
compressor cycle under fault-free condition before a scraper motor failure occurred
(by turning off the blade motor) in order to generate a set of fault free measurements
for comparison purpose. Figure 6.6 demonstrates the change of the binary ice outlet
temperature, evaporating temperature and the cooling water temperature difference,
before and after the motor failure which took place at time step 108, i.e. near the

middle of the second compressor on-cycle.

When the ice thickness gradually built up after the blades had been stopped,
the cooling capacity of the system momentarily dropped below the 2 kW heater load
inside the tank. Therefore the outlet solution temperature of the SSIG kept increasing,
though the rate of its increase is decreasing, and the compressor stayed on all the
times as it was not capable of bringing down the solution temperature in the tank to
the set point. The temperature difference between the evaporator and the solution
gradually increased to restore the thermal equilibrium between the load and capacity.
Therefore, the binary ice outlet temperature would eventually be stabilised at a higher
temperature (around 10 <C) and the ice thickness inside the SSIG would stop

increasing.

It appears that several parameters could be used to detect this fault. The
evaporating temperature decreased to below its normal operating temperature of
around -20 <€ to -27 €. The cooling water temperature difference also dropped by
about 5 <€, as less heat was rejected by the condenser under the reduced cooling
capacity. The variations of some other parameters under this fault are also included in
Table 6.3 and 6.4; as observed, many of them are very sensitive to this fault, so it

would be detected relatively easily.

It is clear from Table 6.3 and 6.4 that how individual faults influence the
system parameters differently. For binary ice flow reduction, the most sensitive
parameters are the discharge temperature and the evaporating temperature. For

reduced cooling water flow, its temperature difference between the condenser inlet
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and out let, as well as the capacity of the condenser, are the most influenced. As a

result, it is possible to find a unique pattern for each kind of fault.

6.2 Development of the fault detection approach

In order to detect a fault, three main tasks are involved, as presented in the
following sub-sections. First is to find out the suitable parameter(s) that can be
applied as the fault indicators. This step is closely related to the influences of the
faults on various system parameters discussed in the previous section and will be
described in Section 6.2.1. Second is to monitor the residuals of the chosen
parameters; a monitoring method called CUSUM test (Page 1954) is used for the
dynamic FDD of the binary ice system in this study, as presented in Sections 6.2.2
and 6.2.3. The final task (Section 6.2.4) is to determine the appropriate threshold that
triggers the fault alarm; a demonstration on the application of CUSUM test is also

given.

6.2.1 Selection of fault detection parameters

The selection of the parameters used for fault detection was based on Table
6.3 and Table 6.4. In an ideal situation, one would like to identify a single parameter
that is sensitive to all of the selected faults, thus reducing the complexity of the fault
detection process. In order to reduce the detection time, this parameter should also be
sensitive to the fault regardless whether the compressor is running or not. In reality,
one would try to employ as few as practically possible the number of parameters

needed.

Among all the parameters listed in Table 6.3 and Table 6.4, the evaporating
temperature T, is noted to be sensitive to all the specified faults, during the
compressor on-cycle. Additionally, the condenser cooling water temperature
difference AT, ar Was selected, due to the fact that most of the faults, except binary
ice flow reduction, were found to have an influence on it even during the compressor
off-cycle. Unlike some of the previous works where the temperature difference of the
secondary fluid was applied as fault indicator (Rueda et al. 2005; Ertunc and Hosoz
2006), the binary ice temperature difference in this study would not be suitable as
reflected by its low values of sensitivity factor for most of the faults. Therefore it is
not suitable to be selected as a fault detection parameter.
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Having identified the two parameters for fault detection (T, and AT yar), the
detection relies on the monitoring of their residuals as a function of time. Several
different kinds of methods for detecting changes have been developed by previous
researches, e.g. generalized likelihood ratio (Willsky and Jones 1976), statistical
process control (Oakland 2008), filtered derivatives detectors (Basseville and
Benveniste 1983), etc. Basseville and Benveniste (1983) compared some of the
techniques and concluded that the CUSUM test is one of the best for dealing with

noise/disturbance in the signal for the following reasons.

1. Optimality of minimizing the delay for detection for a fixed false alarm rate

2. Robustness to disturbance and noise, especially when the noise to signal ratio
increases

3. More efficient in tracking changes in the relevant parameters.

Other researchers including Box and Ramirez (1992) and Basseville and
Nikiforov (1993) had further improved the CUSUM test in terms of robustness and
fault detection speed. Chetouani (2008) had successfully demonstrated its application
in real-time process monitoring of a dynamic FDD system. Therefore, in this study
CUSUM test is applied.

6.2.2 CUSUM test

CUmulated SUM (CUSUM) test is a statistical quality control method applied
in sequential analysis (Chetouani 2008). It aims to detect the changes in the mean of a
time series prediction y(t), as in the case of dynamic system modelling. In fault
detection, it is often used as a part of the real time detection tool to track the changes
of the residuals (Schein and House 2003). The reasons that the CUSUM test was
involved in addition to directly employing the residuals are 1) to reduce false alarm
rate and 2) to enlarge the deviations between the measured and the predicted values

by accumulating their differences.

The residual between the measured and predicted parameters should be in
theory very small under fault free conditions. However, any noises, disturbances,
measurement and modelling errors may increase the residuals even under fault free
conditions and this would cause a false alarm depending on the threshold setting.

CUSUM test serves to reduce the frequency of the false alarm.
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In a fault detection scheme, the residual r(t) between the measured and the

predicted parameters is defined as:
r® =y® -3® 6.3

where y(t) is the measured parameter and 9(t) is the fault free prediction, r(t), y(t)

and y(t) are all time series. Meanwhile, the residual r(t) can also be expressed as
r(t) = u() + &(t) 6.4

where &(t) is the Gaussian noise with variances of o2and u(t) is the mean value
defined by

Yo ift<t-—-1

uy ift=>rt 6.5

k(=

A fault occurred in the system at the ™ time step. |bis the mean value of the
residual before the fault and |y is the mean value after the fault. It is assumed that
only the mean values of the residuals are changed due to the fault and the fault has
little influence on the noise levels. In practice, | is usually known from fault free

residual data analysis.

The method aims at detecting a possible jump of %4 on either side of the
mean value Ly, where ¢ is a pre-specified threshold, namely an increase to (ju+0/2) or
a decrease to (Jb-0/2), and two separate conditions for triggering the alarm can be
applied:

For an increase in the mean value of the residual,
~
UO = 0
8
— n — -
Un - thl (y(t) (.uO + 2)) 6.6

m, =min(U;) (1 < t<n)

Alarm when U,, —m, > 4
~
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and for a decrease in the mean value of the residual,

Va

Ty =0

R (y® - o -) 6.7

M, =max(T;) (1< t<n)

Alarm when M, — T, > A

~

where U, and T, are the cumulative sums for the increase or decrease of the mean
value and A is the statistical threshold. The selection of ¢ is usually related to the
standard deviation of the data set under fault free condition and A can be chosen based

on the desired detection speed and the false alarm rate (Chetouani 2008).

In order to understand the applications of CUSUM test and the interpretation
of the results from the current dynamic on-off cycles, some artificially predicted and
measured parameters are generated so that the exact characteristics of the residual

patterns can be studied and understood.

Six different cases are examined representing various combinations of fault
free and faulty conditions; each case, all having the same step function, consists of 6
cycles of a predicted parameter, say temperature values, i.e. 15 data points at 5 <C and
10 data points at 0 <C, to represent the on-off nature of the binary ice system, as
shown in Figure 6.7. The individual patterns of the measured values are described as
follow and it is believed that they cover all the likely combinations of possible
scenarios of residual variations. The corresponding average values of the residuals of

each case are shown in Table 6.5.
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Table 6.5 Average value of the residuals

Cycle Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
number On Ooff | On Ooff | On Off | On Off | On Off | On Off
Case 1 -0.02 | 0.02 | -0.01 | 0.09 | 0.00 | 0.00 | -0.07 | 0.02 | 0.03 | -0.03 | 0.06 | 0.05
Case 2 0.01 | -0.02 | 0.71 | 068 | 0.73 | 0.71 | 0.70 | 0.71 | 0.66 | 0.69 | 0.70 | 0.72
Case 3 0.00 | 0.03 | -0.72 | -0.73 | -0.68 | -0.70 | -0.71 | -0.67 | -1.02 | -1.03 | -0.98 | -1.00
Case 4 -0.02 | -0.01 | 0.56 | 0.01 | 0.62 | 0.01 | 0.73 | -0.03 | 0.98 | 0.01 | 0.97 | 0.03
Case 5 0.03 | 0.00 | 058 | -0.62 | 1.02 | -0.99 | 1.04 | -099 | 0.61 | -0.63 | 0.01 | 0.03
Case 6 0.02 | -0.02 | 0.13 | 023 | 0.39 | 061 | 0.74 | 0.87 | 1.11 | 1.21 | 1.31 | 154

Case 1: The measured values are artificially generated such that the residuals
are small. The average values of the residuals for individual on-off sections are very
close to zero, typically representing fault free conditions. Two random data points

were deliberately set to have a larger residual.

Case 2: The first cycle remains as fault free as in Case 1. Faulty conditions
are introduced from cycle 2, with similar positive residuals for all the on- and off-

sections for the rest of the 5 cycles.

Case 3: Negative residuals are introduced for cycle 2 to cycle 6, with a larger

magnitude for the last two cycles, equivalent to the fault getting more severe.

Case 4: The measured values are “generated” in such a way that they mimic
the situation when the fault only impact on the parameter during the compressor
on-period, as observed in the study. The residuals are increasing during on-cycle as
the fault becomes more severe, with an average of around 0.6 for cycles 2 and 3,
around 0.7 for cycle 4, and around 1.0 for the last two cycles, whereas the residuals

always remain small during off cycle periods.

Case 5: The on-cycles are set to have positive residuals whilst the off-cycles
are set to have negative ones with the same magnitude. The magnitude of residual is
increased from around 0.6 in Cycle 2 to around 1 in Cycles 3 and 4, then drops back
to around 0.6 in Cycle 5, and assuming the fault disappears in the last cycle. This may

be useful in detecting temporary faults.

Case 6: The residuals increase gradually and progressively for both the on-

and off- periods
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Figure 6.7 Fictitious generated model prediction and measured data under various fault-free and faulty

patterns.
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Figure 6.7 Fictitious generated model prediction and measured data under various fault-free and faulty
patterns (continued).

CUSUM tests are performed on the residuals data of the above cases. Average
value of the fault free residuals () should be close to zero. In the current analysis, |b
is chosen to be 0. For the CUSUM, /2 is set at 0.5. For each of the 6 Cases, two tests

(Up-mn, Tp-Mp) corresponding respectively to increasing (positive residuals) and
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decreasing (negative residuals) directions are carried out simultaneously. All the

CuSum results are shown in Figure 6.8.

In Case 1, two data points are deliberately set to fall outside the /2 of 0.5 (i.e.
data point 42 and 87 in Figure 6.7a). Two spikes have been detected as shown in
Figure 6.8a in the corresponding positions. These would appear as isolated incidences,
such as one off signal interference, and since majority of the residuals are close to
zero and the CUSUM test results were not accumulating, they should not be identified
as a fault, as expected for Case 1.

As the residuals in Case 2 stay at a positive constant value of around 0.7 in the
last 5 cycles for both on and off periods, the CUSUM output (U,-my) in the increase
direction rises steadily, implying the likelihood of a fault. As expected the output for
the decrease direction remains at zero since no negative residuals are present. In Case
3, as the residuals are having negative values, T,-M, increases gradually, also
implying the likelihood of a fault as similar to Case 2. An increase in the severities of
the fault in cycle 5 and 6 is introduced and hence a faster accumulating effect (or a

steeper gradient) is noted.

In Case 4, since only the on-cycle periods are set to have positive residuals
and the off-cycle periods are set to have close to zero residual, naturally T,-M, will
have only zero output. From the start of Cycle 2 (sample number 26), U,-m, starts to
increase due to positive residuals but starts to drop during off cycle period when very
small residuals are encountered; eventually U,-m, drops back to zero again. This
suggests that the fault can only be detected during on cycles. This pattern repeats for
the 3" cycle as they have the same residuals behaviour. As the fault severity increases,
a higher peak value of U,-m, is noticed in the 4™ cycle (sample number 76), resulting
in a longer time needed for it to drop back to zero value, when compared to the two
previous cycles. The last two cycles are set to have the same residual (~1) which are
larger than that of the previous 3 cycles, representing an even more severe fault.
U,-m, are found to reach such a high value in the 5 cycle that it is not able to return
to zero during off-cycle period and hence U,-m, increases further during the last cycle,

making the fault more detectable.
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In Case 5, the 2nd on-cycle has the same rising trend of U,-m, values as in the
2" on-cycle of Case 4, but as it has a negative residual for the off-cycle, it has a faster
drop of the U,-m, back to zero value. When the residuals are increased to 1 in the 3"
cycle, the U,-m, values achieve the same peak value as that of the 5™ cycle in Case 4
as they both have the same residuals. However, once again due to the negative
residuals during the off cycle part of the 3" cycle in Case 5, the U,-m, values are able
drop back to zero without further accumulating. This is different from the situation of
the last two cycles in Case 4 where the U,-m, values accumulate to a higher peak.
Essentially, that makes fault detection easier in Case 4 when there are no negative
residuals to cancel out the accumulating effect. In other words, once the U,-m, values
drop back to zero, they will not be able to assist the detection of the subsequent faults.
The pattern of T,-M, is similar to U,-m,, only the maximum values for individual

peaks are smaller, as only fewer data points are included in the off-cycle.

In Case 6, positive residuals appear during both on-cycle and off-cycle
periods, and their values increase steadily from the beginning of the 2™ cycle. The
CUSUM test however, only manages to show an increase in U,-m, at sample number
66, i.e. nearly at the middle of the 3" cycle. The delayed detection is due to the setting

of /2, suggesting the setting of an appropriate /2 is crucial for early detection.
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Figure 6.8 CUSUM test results for the artificially generated data.
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In general, when the data points exceed the pre-set limit of /2, a positive
output of the CUSUM test in the corresponding direction would result. If the
subsequent data points are still beyond this limit, the CUSUM outputs will
accumulate from the previous ones. On the other hand, when the subsequent data
points are within the limit or exceeding the limit in the opposite direction, the

corresponding CUSUM output would reduce.

The detection of a fault depends on the selection of the two thresholds; 35/2
determines when U,-m,or T,-M, will produce positive outputs and A decides when to
report the present of a fault. Figure 6.9 demonstrates the detection of a fault with

different setting of these two thresholds.
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Some artificially generated temperature residuals are shown in Figure 6.9a,
together with two pair of /2 lines (#0.2 °C and 0.5 °C). The first 30 residual data
points have an average value of around zero, hence regarded as a fault free period,
with a standard deviation of 0.2. A linear function is artificially generated to create
some faulty data from 31*' data point and to gradually increase the residual values,
reflecting increasing level of severity. The corresponding CUSUM test results for 6/2

= #).5 °C and 0.2 °C are plotted respectively in Figure 6.9b and 6.9c which also
show the two selected 4, i.e. 4 =0.5and 2.0.

When 6/2 is chosen to be #0.5 °C, only one point in the fault-free zone is
outside the boundaries so U,-m, only have one positive response (data point 24™). In
response to the fault function, the U,-m, begins to rise steadily from data point 40.
When 6/2 is reduced #0.2 °C, the steady increase of U,-m,starts earlier at data point
35. As expected, since the fault function is increasing in the positive direction, the
Tn-My values for both tests stay close to zero throughout. It is clear that the CUSUM
test responds to a fault earlier when a smaller 6/2 is chosen.

The second consideration is to choose an appropriate threshold for raising an
alarm A. Again, two settings (4 = 0.5 and 2) were tested. In Figure 6.9b, 6/2 = 0.5,
all the CUSUM outputs, including the 24" data point, stay within 4 = 0.5 in the fault
free period, i.e. no false alarm is detected. U,-m, first exceeds the threshold of 2 =0.5
at data point 44" and exceeds the large threshold setting of A = 2 with a further delay
at data point 59™. In Figure 6.9c, /2 = #0.2, U,-m, at data point 24" is now larger
than the 4 = 0.5, which resulted in a false alarm if this A value is chosen and the fault
is first detected at data point 35". If A is set at a higher value of 2.0, the detection is
achieved at a later time (data point 42”d) but with no false alarm. In general, the

detection speed is noted to increase when a smaller 4 is used for a given 6/2.

When comparing the above four combinations of the threshold settings, a

small A with a small /2 have a larger chance of creating false alarm, while a large 4
with a large 6/2 delays the detection significantly. In this illustration, both a large 4
with a small 6/2 or a small A with a large 6/2 managed to avoid a false alarm and to
trigger the alarm correctly at about the same time (at 42™ and 44™ data point
respectively). However, the former is considered to be a better option in the author’s
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opinion, because it has a better tolerance of the random noise signals going beyond
the +6/2 boundary in the fault free period. In Figure 6.5b, U,-m, at data point 24th is
too close to 4 = 0.5 when /2 is 0.5 <C, but the corresponding U,-m, has a larger
margin from 4 = 2 when ¢/2 is 0.2 <C (Figure 6.5c). Therefore, it is better to choose a
small 6/2 value (one standard deviation of the fault free residual data has been

suggested) with a large A.

The detection process is shown in Figure 6.10. Both of the parameters
selected, as discussed in Section 6.2.1, for fault detection need to go through the

CUSUM test separately. If the either of the test triggers the alarm, then a fault is

present.
4 Vv
Te Clig;tJM Fault(s)
U,-m>A4 or
Mn‘Tn>/I
ATwater CL{[SSLtJM N No fault
\§ J

Figure 6.10 Fault detection procedure

6.2.3 Residual pre-processing

This section illustrates how to prepare the residual data for the CUSUM test.
In relation to the fault of cooling water flowrate reduction, Figure 6.11 shows the
residuals of the cooling water temperature difference across the condenser, i.e. the
differences between the predicted values and the measured values of the temperature
differences. The first three compressor cycles (from time step 1 to around 189) were
under fault free condition; while the fault of cooling water flowrate reduction was
introduced at the 190 time step. It is evident that the residuals increase within the
on-cycle period under this fault, and during the last part of this on-cycle period it is
also clear that the residuals increased at a slower rate relative to those under the first

three fault free cycles. It is worth to point out that the residuals became much larger at
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the compressor starting-up and shutting-down moments even under fault free

conditions, reflecting poor accuracies of the prediction model for these periods.

3 Fault free

Residuals of cooling water temperature
difference (°C)
=

Time steps (10s)

Figure 6.11 The residuals of the cooling water temperature difference

The residuals caused by the modelling errors during the compressor on/off
moments are much larger than the residuals resulting from the actual fault.
Pre-processing of the residuals is therefore needed to avoid false alarm during these
moments, assuming the fault can be detected during other parts of the cycle operation.
Figure 6.12 illustrates the CUSUM test results following equations 6.6 and 6.7 based
on the original residuals of cooling water temperature difference (detailed CUSUM
test procedures are presented in next section). Both U, - m, and M, - T, have
increasing outputs in the first three fault free cycles. The bumps in Figure 6.12a for U,
- m,occurred when the compressor is being turned off while in figure 6.12b for M, -
Tn they occurred when the compressor is restarted. A larger and wider bump means
the local residuals are larger based on earlier observations of the 6 fictitious cases. In
the faulty zone, the U, - m,values due to the fault during the on-cycle period is much

smaller, making it impossible to detect the fault without creating any false alarm.
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Figure 6.13 Reset residuals of the cooling water temperature difference AT yqer
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In order to avoid the prediction errors being interpreted as a fault, a software
detector is created to detect the compressor on-off or off-on switching moment as
signalled by the compressor power meter. A certain number of data points with large
residuals near the switching moments were then set to zero. With the current sampling
interval of 10 seconds, three tests were carried out, namely 3, 5 and 7 residual data
points centred at the switching moment were respectively set to zero. The results are
shown in Figure 6.13. It appeared that a 5 point-resetting is sufficient to reduce the
maximum residual to less than 1 °C which is comparable to the faulty residual levels
in the faulty zone, and there were no noticeable differences between 5-point and
7-point resetting. Therefore the 5-point mode was chosen to reduce the influences
from the modelling error. When more than one parameter is involved in fault
detection, this resetting strategy needs to be applied to individual parameters
separately, each may require a different number of resetting points, depending on the

modelling accuracy of the parameter.

The proposed data chopping method is essentially the same as ignoring the
associated alarm within these switching periods, hoping the fault could be picked up
later, but it would delay the detection as seen later in Figure 6.14a that the genuine

peak representing the fault would be ignored near the switching periods.

6.2.4 Fault detection procedures

Having “pre-processed” the residual data set to reduce the influences of the
modelling error, the fault detection can be now implemented via the CUSUM test; 3

steps need to be followed.

1. Calculate the mean values |y of the residuals and this should have a value

of around zero during the fault free period.
2. Detecting a change in the mean values |y based on the selection of 0/2.

3. Determining as soon as possible the time when a fault occurs based on the
threshold, /.

The mean value | of the fault free residuals of ATy, €xcluding the
reset-to-zero data points, shown in Figure 6.13b is calculated to be 0.01 <C and the

corresponding standard deviation is 0.8 <C (before the residual resetting), over 3
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complete cycles. The outputs at various stages of the CUSUM test calculations from

Equations 6.1 and 6.2 are given in Table 6.6, which illustrates how the equations are

implemented. Due to space limitation, only three blocks of data of a time series

measurements of 4 complete cycles were presented. The first and second blocks are

both for fault free conditions, and a fault was introduced in the 3" block of residual

data.
Table 6.6 CUSUM test spreadsheet calculations
Time | AT yaer(t) Increase in mean Decrease in mean
S| e YO [Uy [ my | Up-mg | YO0 [Ty My | My-T,
1 0.00 -041| -041| -0.41 0.00 0.39 | 0.39| 0.39 0.00
2 0.00 -041| -0.82| -0.82 0.00 039 | 0.78| 0.78 0.00
3 0.00 -0.41 | -1.23| -1.23 0.00 039 117 | 117 0.00
4 0.00 -041| -164| -1.64 0.00 0.39| 156 | 1.56 0.00
5 0.00 -041| -2.05| -2.05 0.00 039 | 195| 1.95 0.00
6 0.38 -0.03 | -2.08| -2.08 0.00 037 | 272 | 272 0.00
7 0.30 -0.11| -2.20 | -2.20 0.00 0.29 | 3.40| 3.40 0.00
8 0.20 -0.21 | -2.40| -2.40 0.00 0.19 | 4.00 | 4.00 0.00
9 0.13 -0.28 | -2.69 | -2.69 0.00 012 | 451 | 451 0.00
10 0.09 -0.32| -3.01| -3.01 0.00 0.08 | 499 | 4.99 0.00
11 0.02 -0.39 | -3.39| -3.39 0.00 001 541 | 541 0.00
148 -0.01 -0.42 | -62.64 | -62.64 0.00 0.38 | 55.76 | 55.76 0.00
149 -0.83 -1.24 | -63.88 | -63.88 0.00 -0.44 | 55.32 | 55.76 0.44
150 0.00 -0.41 | -64.29 | -64.29 0.00 0.39 | 55.71 | 55.76 0.05
151 0.00 -0.41 | -64.70 | -64.70 0.00 0.39 | 56.10 | 56.10 0.00
152 0.00 -0.41 | -65.11 | -65.11 0.00 0.39 | 56.49 | 56.49 0.00
153 0.00 -0.41 | -65.52 | -65.52 0.00 0.39 | 56.88 | 56.88 0.00
154 0.00 -0.41 | -65.93 | -65.93 0.00 0.39 | 57.27 | 57.27 0.00
155 -0.42 -0.83 | -66.77 | -66.77 0.00 -0.03 | 57.23 | 57.27 0.03
190 1.22 0.81 | -83.99 | -84.81 0.81 1.21 | 68.01 | 68.01 0.00
191 0.75 0.34 | -83.65 | -84.81 1.16 0.74 | 69.15 | 69.15 0.00
192 0.75 0.34 | -83.32 | -84.81 1.49 0.74 | 70.28 | 70.28 0.00
193 0.67 0.26 | -83.05 | -84.81 1.76 0.66 | 71.35 | 71.35 0.00
194 0.50 0.09 | -82.96 | -84.81 1.85 0.49 | 72.24 | 72.24 0.00
195 0.18 -0.23 | -83.19 | -84.81 1.62 0.17 | 72.81 | 72.81 0.00
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The first block presents the fault free residuals from the beginning of the data
set when the compressor was switched off, noting that the first 5 residual points were
set at zero. It is common to set the ¢ in equation 6.1 as the same value as one standard
deviation (Chetouani 2008), i.e. 6/2 was thus set to be #0.4 <C and as all the data
points in the first block are within this range, therefore the CUSUM test results

(Up-my) and (T,-M,) are all zero.

For the second block, as before, the residuals for 5 data points were set to zero
during the switching moment. However, it is evident that relatively large prediction
errors (or residuals) were still encountered before (time step 149) and after (time step
155) the switching moment that were not reset to zero; both exceed a half 6 of 0.4 <C.
These residuals lead to a positive value of T,-M, in the CUSUM test at the
corresponding time steps, suggesting that a positive CUSUM output may not always

imply a fault (i.e. a false alarm).

The last block in Table 6.6 presents some of the residuals from time step 190
after a fault of flow reduction has been introduced. A series of positive (U,-m;) values
suggests that the mean values of the residuals are increasing from the original value of
0.01 <C. Meanwhile, (T,-M,) remains at zero as it can only have a value when the
residual is negative. Essentially, whenever a series of positive values of (U,-m,) or

(T-My) occur, potentially a fault could be present.
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The CUSUM test results (U,-my,) and (T,-M,) for the entire four cycles are
shown in Figure 6.14a and Figure 6.14b respectively. Since only 5 residual data points
were set to zero during the on-off/off-on switching moments, it is possible to have
some data points in the vicinity of these periods to exceed %6 due to modelling

errors resulting in some small positive test results (small spikes).

When the fault of the cooling water flowrate reduction occurred at time step
190 in the 4" cycle, the residuals of the AT, increased (as seen the faulty cycle in
Figure 6.13b). The CUSUM test output in the faulty zone of Figure 6.14a increased
sharply for a short period when compressor shut down and went back to zero (even
after the 5-point resetting, followed by a larger peak for a longer period of time when
the compressor was re-started at time step 221. The short section between the two
peaks suggested that the cooling water restriction had a very little influence on AT azer

when the compressor was not running.
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Figure 6.14 CUSUM test results of the AT, residuals after 5-point resetting, (a)U,-m,, and (b) M,-T,
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Figure 6.15 (a) The residuals of the evaporating temperature T, (b) The residuals of the T, after 5 data points
being reset

Figure 6.15a shows the residuals of the evaporating temperature for the same
four cycles. It was noticed the evaporating temperature also experienced larger
prediction errors at the compressor on-off moments though the prediction accuracy of
Te was much better during off-on moments; as a result, as shown in Figure 6.15b, two
data points were needed to be set to zero during switching-off moment but none were
set to zero during switching-on moment. It could also be seen that the model
prediction errors during the compressor off periods were larger than that of the on

periods.

From Table 6.3 (Section 6.1), it can be seen that the evaporating temperature
was not too sensitive to the cooling water flow reduction, which can also be noted
from Figure 6.13b when comparing the fault-free with the faulty cycles, both having
the similar patterns of Te residuals, thus suggesting that Te is not a suitable parameter
for detecting this fault.
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Figure 6.16 CUSUM test results for evaporating temperature residual

For the same fault, the CUSUM test procedures were performed for the
evaporating temperature of all the 4 cycles. The results are presented in Figure 6.16.
U, - m, remains at zero throughout as there are no large positive residuals and T, - M,
has large peaks each time corresponding to negative residuals during off-cycle periods.
The sizes of the peaks in both fault free and faulty zone are very similar, making it
difficult to select a suitable threshold that can detect the fault without causing a false
alarm, implying that the off-cycle residuals are not suitable to be used as a fault
indicator and the evaporating temperature is not an appropriate choice to detect a

cooling water flow restriction fault.

The final step in fault detection is to determine a suitable fault-free threshold 4
that can detect fault at a low severity level without causing too many false alarms. As
mentioned previously, it is better to choose a small 6/2 at one standard deviation of
the fault free residual and adjust the value of 1 accordingly. An easier way is to set the
threshold according to the CUSUM test results. In Figure 6.14, two thresholds, A = 0.4
and 0.8, are tested. The A = 0.4 threshold is able to tolerate the small jumps in Figure
6.14a and at the same time detect the fault at the 191 time step. In Figure 6.14b, using
the same 1 = 0.4, a false alarm is triggered at 149 time step. However, if the threshold
is set to 0.8, the possibility of the false alarm is eliminated. The drawback is that the

fault is detected 10s later than with the smaller threshold. In this case, because the
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delay in detection is rather small, it is more important to avoid the false alarm. Thus A

could be selected as 0.8.

The CuSum tests and the similar analysis had been carried out for all the other
specified faults. Table 6.7 shows the results of the threshold selection. The standard
deviation after the residual resetting of the fault free residuals is used as ¢ for both
ATwater and Te. 4 was selected manually to achieve the quickest detection speed while
avoiding any false alarm for individual faults. Therefore, 4.0 was chosen respectively
for ATaer and Te, i.e. the largest among all the possible 2 for individual faults.

In practice, at any instant only one of the two mentioned parameters is needed
to raise an alarm for each type of fault. A7, Was not sensitive to the binary ice flow
reduction fault and the broken scraper fault, therefore the two faults can only be
flagged by T.. Similarly, the solution concentration decrease fault could only be
flagged by AT,ar. For the rest three faults, as the sensitivity factors of T, were all

larger than those of AT, the alarms were triggered by the former in most cases.

Table 6.7 The selection of threshold for various faults

Faults AT water Te

0 [T] A 0[] A
Binary ice flow reduction | 0.01 4.0 0.07 4.0
Cooling water flow 0.01 3.8 0.07 4.0
reduction
Initial solution 0.01 3.8 0.07 3.7
concentration increase
Initial solution 0.01 4.0 0.07 4.0
concentration decrease
Broken scraper 0.01 4.0 0.07 3.8
Scraper motor failure 0.01 4.0 0.07 4.0

6.3 The development of the fault diagnosis approach

The procedures described in the previous section are capable of reporting the
existence of a fault. However, to determine the type and cause of the fault, a fault
diagnosis/classification is needed. The rule-based fault classification process involves
the use of the various variation patterns associated with a particular fault(s). Various
classifiers have been used previously, ranging from the use of diagnosis tables to
artificial neural network (ANN) classifiers (Wang et al. 1998; House et al. 1999). For
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this study, an ANN based pattern recognition strategy is used for automatic fault
classification (Cho et al. 2005). The development of the fault classifier will be
introduced first, followed by a demonstration of fault diagnosis example (a cooling
water flow reduction fault). Double fault diagnosis will also be addressed here.

6.3.1 Fault classifier

The fault diagnosis is carried out essentially by identifying the unique patterns
of variation of various parameters under certain faulty conditions. To enhance the
reliability of the fault diagnosis, a common practice is to use the fault sensitive factors
in Table 6.3 and 6.4. Depending on the sign and the magnitude of the numerical
values of the sensitivity factors, they are replaced by either -1, 0 or 1, representing
respectively a decrease (i.e. sensitivity factor < -1), normal (i.e. little &changes or no
changes) or an increase (i.e. sensitivity factor > 1) in the value of the selected
parameters. However, there is one exception for which the -1 and 1 boundaries of the
sensitivity factors are revised to #0.5 for the parameters when a binary ice flow

reduction fault is encountered, as explained previously.

Table 6.8 Fault diagnosis patterns

Diagnosis
Parameters
Tc, out ATwater Tdis Tice,out

Output Faults

1 Blnary_ ice 0 0 1 1
reduction

2 Coollr!g water 1 1 1 0
reduction

3 Solution
concentration -1 -1 1 -1
increase

4 Solution
concentration 0 -1 1 1
decrease

5 A broken 1 0 1 1
scraper

6 Sqraper motor 1 1 1 1
failure

7 | Unable to i i i )
determine

The number of the parameters should be kept as few as possible, in order to

keep the FDD method simple and cost effective. Therefore, if a parameter has the
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similar response under different faults, it is not useful for the diagnosis purpose, and if
several parameters have the same pattern of variation for the same faults, only the one
with the largest fault sensitive factor is employed. Having analysed all the variation
patterns of the chosen parameters in Tables 6.3 and 6.4, the final selected parameters
are listed in Table 6.8 together with the individual and unique fault recognition
patterns. If two faults share the same pattern, it implies that extra parameter(s) is

needed.

An ANN classifier is employed to help the automatic recognition of the
patterns for the associated faults. The inputs to the ANN are unique -1, 0 and 1 code
combinations of the selected parameters and the output is the fault(s). The hidden
layer contains a single neuron and a linear transfer function. The network is trained
with the data in Table 6.8. The output of the ANN classifier contains 7 Codes (1,
2 ...7): 6 for each of the single faults and 1 for the situation when it is unable to
diagnose the fault. If an input pattern matches with any of the fault pattern in Table
6.8, the ANN output will indicate the fault type. Otherwise, Code 7 will be reported;
this could be due to modelling or measurement inaccuracies, poor design of the

diagnosis method, or the existence of unspecified faults.

6.3.2 The diagnosis of a cooling water reduction fault

In Section 6.2.4, a cooling water reduction fault was used as a demonstration
for the fault detection method; the same fault is used to illustrate the development of
the diagnosis procedure. For a specified threshold, the presence of a fault is flagged
up when the CUSUM test result is larger than the threshold for one of the two fault
detection parameters, i.e. ATyaerand T, as discussed in Section 6.2.1, followed by the
activation of the fault diagnosis classifier.

The first step for the fault diagnosis is to compare the measured/derived values
of the fault diagnosis parameters listed in Table 6.8 to the model predictions,
generating the corresponding time-series of the residuals which are tested again by the
CUSUM tests. For each of the parameters listed, an appropriate threshold has been
chosen, as discussed previously. A value of -1 or 1 is assigned when the CUSUM test
result is lower or higher than the lower and upper limits of 1. If the result stays within
the limits, a zero value is assigned. The next step is to compare the unique pattern of

-1, 0 and 1 for the 4 chosen parameters with those presented in the table to identify the
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individual fault. Since the pattern is of dynamic nature, the fault can be diagnosed at
any time after it has been detected, potentially making this FDD approach applicable

for real-time applications.

6.3.3 Double fault diagnosis

During the operation of the binary ice system, it may be possible that more
than one fault could develop at any given time. The fault diagnosis method in Section
6.3.1 was mainly developed to cope with a single fault, thus it is not expected to
diagnose a double fault. From the literature review presented in Chapter 2, it was
noted that very little previous work on chillers FDD looked into double fault. In this
section, a diagnosis strategy was developed to differentiate the occurrence of a single
and a double fault scenario. The work is unique in a sense that the diagnosis is
implemented using dynamic data, and the double faults being selected could have
opposite fault signatures making both detection and diagnosis difficult. In this study,

however it is also assumed that triple fault scenarios are excluded.

As previously mentioned, three sets of double faults are investigated. If two
faults have similar influence to the system behaviours, the residuals of some of the
parameters are expected to add up, usually making them easier to be detected, though
their diagnosis become more challenging when it is needed to differentiate it from a
single fault. When two simultaneous faults affect the parameters in the opposite
manners, they may cancel the some of the effects of each other, leading to harder
detection as well as diagnosis. In the third set, the two faults are affecting different
system parameters, thus creating a new fault signature. This could potentially be

mis-diagnosed as another single fault.

Based on the above, the system behaviours in Table 6.8 were examined and

accordingly, three pairs of faults are respectively selected.

1. Binary ice flow reduction + solution concentration increase (BR+SClI)

2. Cooling water flow reduction + solution concentration increase (CR+SCI)

3. Binary ice flow reduction + broken blade (BR+BB)

Following the similar procedures described in Section 6.1, experimental fault
simulations were carried out according to the selected double faults. To avoid

complications, the single faults involved were all kept at their maximum severity level,
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though the logics in developing the strategy remains unchanged regardless of the
severity levels. Observations on system behaviours under double faults were made
and the associated residuals are transformed into fault pattern, as presented in Table
6.9, which enables unique double faults to be diagnosed. It should also be noted that

no additional parameters were found to be necessary when these three double faults

are involved.
Table 6.9 Fault patterns for both single and double faults

ol Parameter | T o | ATwater | Tais | Tice, out
1 | Binary ice flow reduction (BR) 0 0 1|
2 | Cooling water flow reduction (CR) 1 1 1 0
3 | Solution concentration increase (SCI) 1 -1 1 -1
4 | Solution concentration decrease (SCD) | 0 1 1 1
5 | A broken scraper (BS) 1 0 1] 1
6 | Scraper motor failure 1 1 1 1
7 | Unable to determine
8 | BR+SCI T S |
9 | CR+SCI 1 1 1| -
10 [ BR+BS -1 0 1 1

It is noticed from Table 6.9 that both CR+SCI and BR+BS created their
distinct pattern different to all the other faults. They can be diagnosed using the
previously mentioned ANN fault classifier (Section 6.3.2) trained with additional fault
patterns. However, BR+SCI has the same pattern as SCI fault, necessitating additional
considerations. One initial thought is to use extra parameters other than those shown
in Table 6.9. However, having analysed the variations of all the available parameters
in Tables 6.3 and 6.4, none of them can be used to create a different pattern for either
the single (SCI) or the double fault (BR+SCI), due to the close similarity of their fault

influences.

To resolve this, the method proposed by Cho et al. (2005) was used. They
developed a residual ratio method for the diagnosis of a single and a double fault, in
an air handling unit, which have the same fault pattern; in their study, no extra
parameters were required when compared to those used for the single faults. The main
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principle is to use the magnitudes of the ratios between certain existing parameters to
differentiate between a single and a double fault which have the same fault pattern.

Their method is adapted and adopted for the current application.

From Table 6.9, it can be seen that BR and SCI have the same influences on a
group of two parameters (Tgis and Tice out) DUt different influences on the other group
of two parameters (T¢, out and 4 Twater). Assuming a SCI fault exists first and a BR fault
follows, the residuals of those in the first group are expected to become larger but
those in the latter group will not change much. Therefore it is possible to diagnose a
fault by analysing the ratio between two parameters, one from each group. The
parameter with the highest sensitivity factor in each group should be chosen and
accordingly, in this study 4Tyaterand Tgis are selected. The residual ratios (RR) for the
single fault SCI and the double fault BR+SCI can respectively be calculated, using the

average of the compressor on-cycle data, as:

|ATwater,norma1 _ATwater,faulty | sCI

=14 6.8

RRgcr =

|Tdis,norma1 _Tdis,faulty | sCI
and

|ATwater,norma1 _ATwater,faulty | BR+SCI

=0.8 6.9

RR =
BR+5CI |Tdis,normal_Tclis,faulty|BR+SCI

It is clear that based on the difference of RR magnitude (in absolute term), it
can be distinguished whether a single or a double fault occurs, knowing a double fault
will reduce the value of the ratio, due to the fact that the change in Tg;s will be added
up and hence a smaller RR. Having analysed different combinations of severity levels,
it can be concluded that if a residual ratio of larger than 1 represents a single SCI fault,
otherwise a double BR+SCI fault occurs. Though the use of only two parameters is
sufficient to diagnose a BR+SCI fault, further ratios based on other combinations of

parameters could be used if necessary.

In conclusion, to diagnose a possible double fault, the ANN classifier that has
been trained by the fault patterns in Table 6.9, will be applied first. The classifier has
8 output types excluding Code 7, 5 for single faults (Code 2 to Code 6), 2 for double
faults (Code 9 and Code 10) and 1 for SCI or SCI+BR (Code 1 same as Code 8). If
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the last one is encountered, a residual ratio calculator is activated, and the final step of

the diagnosis will be carried out by comparing the residual ratios.
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7. Results and discussion

This chapter starts with a summary review of the overall implementation of
the designed FDD. The performance of the fault detection and diagnosis are evaluated
and presented. The evaluation of the FDD results is carried out by analysing the
detection speed and accuracy, the false alarm rate and diagnosis accuracy, under
various severity levels. How the performance is affected by the number and the
selection of the parameters involved as well as the setting of the thresholds are also

examined and discussed.

7.1 Implementation of the FDD

The flow chart of the overall FDD implementation procedure is presented in
Figure 7.1, which consists of two main steps: a fault detection step and a fault
diagnosis step. The binary ice system and its hybrid model are running in parallel, and
the real time measurements are being input to the hybrid model from which the
chosen time dependent outputs are generated. As previously discussed, this stage only
involves the residuals of the cooling water temperature difference and the evaporating
temperature that are fed into the CUSUM test. Once either of the two test results
exceeds the pre-selected threshold, a fault is detected and declared. In the second step,
a set of chosen measured/calculated fault diagnosis parameters are compared to their
fault free model predictions. Once again the residuals of these parameters need to go
through the CUSUM test, and the test results are used to generate the fault diagnosis
patterns, as previously shown in Tables 6.8 and 6.9. The patterns are sent to the ANN
fault classifier (or the double fault classifier when a double fault is involved), which
based on the fault pattern, automatically generates the type of fault as its output. At

this point, either a fault is diagnosed or it is not possible to identify the fault.
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Figure 7.1 Overall FDD implementation procedure
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7.2 Results

Evaluations of the FDD performance and/or reliability had been carried by
previous researchers (e.g. (Comstock and Braun 1999; Reddy 2006). Reddy (2006)
evaluated the fault detection and diagnosis separately. He used four different rates to

assess the performance of the detection.

» False negative rate: the probability of diagnose a faulty process as
fault free, i.e. missed diagnose;
» Correct fault-free detection rate: the probability of detecting a fault
free process as fault free;
» False positive rate: the probability of detecting a fault-free process as
faulty, i.e. false alarm;
> Correct fault detection rate: the probability of correctly detecting a
fault.
The false negative rate can be in fact deduced from the correct fault detection
rate, while the correct fault-free detection rate can also be deduced from the false
alarm rate. The probabilities of each pair should add up to unity. Essentially, therefore

only two rates, namely false alarm rate and correct fault detection rate, are needed.
Furthermore, Reddy divided the results of the fault diagnosis into four groups:

» Correct and unique diagnosis: the fault is correctly and clearly
identified;
» Correct but non-unique: the diagnosis rules are unable to diagnose
between more than one possible faults;
» Unable to diagnose: the fault patterns do not match with any
predefined diagnosis rules;
» Incorrect diagnosis: a fault is wrongly diagnosed as another fault.
Correct and unique diagnosis is the desired results of a fault diagnosis
procedure. The number of correct and unique diagnosis against the total number of
diagnosis is used to measure the accuracy of the fault diagnosis method. For the
current study, the correct but non-unique diagnosis is not applicable, as the diagnosis
method is designed to identify a unique diagnosis pattern associated with each of the 5
chosen faults. The last two diagnosis results are both essentially non-correct diagnosis,
and their combined rate can be deduced from the correct and unique diagnosis rate, as

all the probabilities add up to unity.
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In addition, for dynamic FDDs, one further factor needs to be considered, i.e.
the speed of the detection. A faster or an earlier detection reduces the amount of time
when the system is running under faulty conditions, thus cutting energy wastage and

system downtime.

Therefore the overall performance analysis of the proposed FDD approach is
based on the following performance indicators: (i) the false alarm rate, (ii) the correct
fault detection rate, (iii) the fault detection speed, and (iv) the correct fault diagnosis
rate. The FDD method was tested with experimental data and was evaluated based on
the above four indicators. For each of the indicators of a particular fault, though data
from 3 cycles were used for the overall assessment, only data from one cycle were
presented for demonstration purpose, as shown in Figures 7.2 - 7.6. The overall
results for all the tests are summarised in Tables 7.1 and 7.3

7.2.1 False alarm rate

False alarm is defined as the report of a fault during fault free conditions.
Figure 7.2 and Figure 7.3 present the false alarm test results. The residuals of the fault
detection parameter Teand AT, taken from a fault free test are shown respectively
in Figures 7.2a and 7.3a. Five data points before and after the compressor on/off
switching moments have been set to zero to reduce the influences of the modelling
inaccuracy, as discussed in the previous chapter. The corresponding CUSUM test
results are presented in Figure 7.2b for T, and Figure 7.3b for AT yar. The thresholds
o are set to the standard deviation of the fault free residual sets, which are 0.07 and
0.01 for Te and AT, respectively and the dynamic threshold A is set to 4, as
previously stated. Though many residual data points fall outside the ranges of 0.035
and 0.005 respectively, none of the CUSUM test results goes beyond the pre-set A,

suggesting that there is no fault present during the assessment period.

184



0.25
0.2
0.15
0.1
0.05
-0.05 56
-0.1
-0.15 -
-0.2 - 4
-0.25 -

Temperature residual (°C)

Time steps (10s)

@

1.8 -
16 -
14 -
1.2 -
1.0 - —+—Un-mn
0.8 - ==—Tn-Mn
0.6 -
04 -
0.2 -
0.0 -

CUSUM test

1 6 11 16 21 26 31 36 41 46 51 56
Time steps (10s)

(b)

Figure 7.2 False alarm test under fault free condition for T, (a) residual of T, (b) CUSUM test for Residual of
Te.

185



Temperature residual (°C)

-0.3

Time steps (10s)
(@)

20
18
1.6
1.4
1.2 A

1.0 -
08 - —=—Tn-Mn

——Un-mn

0.6
0.4
0.2 -+
0.0 -

CUSUM test

1 6 11 16 21 26 31 36 41 46 51 56
Time steps (10s)

(b)

Figure 7.3 False alarm test under fault free condition for AT, ., () residual of AT, (b) CUSUM test for
the residuals of AT, e,

Further tests regarding the false alarm had been performed on 318 data points
from 5 different complete compressor cycles under fault free condition. No false
alarm was reported during all the tests. Therefore it can be concluded that the
procedure of setting the residual data points near the compressor switching moments
to zero and the application CUSUM test eliminated the false alarm effectively. Based
on the observation, it is possible to set a A value as small as 2 without raising a false

alarm, but to improve detection speed by approximately 1 to 3 minutes.

7.2.2 The correct fault detection rate and detection speed

The correct fault detection rate stands for the probability/percentage of a fault
being detected. The speed of the fault detection is measured by the time delay

between the occurrence of a fault and the detection of it. These two performance
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indicators are addressed together because the detection speed will only apply when a
fault is being detected. Figure 7.4 demonstrates the detection procedure of the binary
ice flowrate reduction. The residual data sets of T, and AT, In Figure 7.4a is taken
from a complete cycle when the binary ice flowrate reduction fault is at severity level
3. Figure 7.4b and 7.4c are the CUSUM test results for AT and Te respectively.
The thresholds are selected as specified in Chapter 6. In Figure 7.4b, the CUSUM
tests for ATt Stay within the limit throughout the test. However, the CUSUM test
Tn-M, for T, exceeds the threshold A at time step 47 (time step 1 is defined as the
beginning of the compressor off cycle), therefore a fault is detected and this case is

count as a valid fault detection.
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Figure 7.4 Fault detection test for binary ice flowrate reduction, (a) residuals of 4 T4 and T, (b) CUSUM
test for AT,,,r and () CUSUM test for T,

Similar tests were carried out for all the selected faults under all severity levels.
For each severity level of each fault, three sets of measured faulty data, each from a
compressor off/on cycle, were used. The testing results are shown in Table 7.1. The
correct detection is the number of times (out of 3) when the detection is successful.
The detection speed is regarded as the average time from the beginning of the
compressor off-cycle to when the fault is first reported by the CUSUM test.
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Table 7.1 The results of fault detection test.

Fault Cooling water | Binary ice flow | Concentration | Concentration | SSIG SSIG  blade

flow reduction reduction increase decrease faulty motor failure
blade

Level 1 /2 |3 |1 |2 |3 |1 2 1 2

Number of |2 |3 |3 (1 |2 |3 |3 |3 3 13 2 3

detection (out

of a total of

three)

Time step | 48 | 42 | 39 |52 |47 |41 | 43 35 42 37 40 18

when the

fault is first

reported

As expected, the numbers of detection increase with the increasing fault
severity level. Success rate is 100% for all the Level 3 faults, though at lower severity
levels the detection rates drop, especially for the binary ice flow reduction fault as the
present of the ice particle makes the changes of the parameters less obvious. The
detection speed also increases (i.e. a shorter detection time) with the severity level, as
the residuals become larger at higher fault severity levels. Once again, the detection
speed for the binary ice flow reduction fault is poorest. 5 out of the 6 specified faults
cannot be detected during the compressor off cycle because many of the parameters
tend to stay relatively unaffected by the fault when the compressor is not running.
However, the SSIG blade motor failure can be detected very early following the
occurrence of the fault, causing T. to increase rapidly, regardless whether the
compressor is running or not, though it a faster detection can be achieved when the

compressor is on.

7.2.3 The correct diagnosis accuracy

When a fault is detected, the fault diagnosis module is activated. The residuals
of the fault diagnosis parameters listed in Table 6.9 are presented in Figures 7.5 for
ATwaters Tice, outs Tc, outs Tdis, USING the same binary ice flow reduction data as used in
Figure 7.4. The CUSUM test results for these parameters reveal that Figures 7.6a-d.
ATwater (Figure 7.6a) and T, oyt (Figure 7.6¢) stay within the threshold of 4 all the time.
The Un-mn value of the discharge temperature (Figure 7.6d) and the Tn-Mn values for
Tice, out (Figure 7.6b) are higher than the thresholds. The CUSUM test results are then
converted into patterns as shown in Table 7.2. Essentially, an increase in Un-mn

above the threshold will return a +1 and an increase in Tn-Mn above the threshold
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will return an -1. By using the ANN fault classifier, the pattern in Table 7.2 is

identified as binary ice flow reduction fault.
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Figure 7.5 residuals of the fault diagnosis parameters.
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Table 7.2 fault diagnosis pattern for the parameters in Figure 7.5
Tc, out 4 Twater Tdis Tice, out
0 0 1 -1
Table 7.3 Fault diagnosis results
Fault Cooling water Binary ice Concentration | Concentration | SSIG faulty SSIG blade
flow - - motor
. flow reduction increase decrease blade -
reduction failure
Level 1123 1123 1 2 1 2
Correct | 12 |33 33|01 |1/2]|33]| 23 313 3/3 3/3 212 313
diagnose

Table 7.3 shows the number of correct diagnoses based on a successful

detection. The diagnosis of binary ice flow reduction once again has the poorest

191




accuracy. At the severity level 1, among the three faulty data sets, only one was
detected successfully, as shown in Table 7.1, but the FDD failed to diagnose it. For
level 2, only one of the two detected faults was correctly diagnosed. But as the fault
becoming more severe the diagnose method shows a better performance with a 100%

success rate.

Another two incorrect diagnoses are found in level 1 for cooling water flow
reduction (only one of the two detected faults was identified correctly) and level 1 for
concentration increase (with 66.6% success rate). In both cases the FDD was unable
to diagnose which should not be confused with mis-diagnosis. The last three faults in

Table 7.3 were found to have 100% diagnosis rate.

Tests for double fault FDD detection were also carried. Similar to the previous
tests, three data sets were applied, each contained one compressor off/on cycle. All
the faults were taken at their highest severity levels. As previously discussed, the fault
BR and SCI have a similar pattern, therefore the residuals of the FDD parameters
become larger, making the detection easier. All three data sets were correctly detected.
The detection speed was faster than both of the single fault detections. The detected
faults were also diagnosed correctly, suggesting the residual rate method (Chapter 6)
is capable of distinguishing between a double fault and a single fault with the same

pattern.

For the CR+SCI fault, as they cancel the effect of each other, the detection is
less accurate, only 2 of the 3 data sets were detected as faulty but both were diagnosed
correctly. The detection of the double fault is relatively slower than the individual

single faults, due to smaller residual involved.

The three sets of BR+BS faults were all detected and diagnosed successfully.
As the two faults did not have much influence on each other, the detection speed of
the double fault followed the faster one of the two single fault detections, which was
at time step 40 for BS.

Table 7.4 Double fault detection and diagnosis results

Fault BR+SCI | CR+SCI | BR+BS
Correct detection 3 2 3
Detection speed (time step) | 32 42 40
Correct diagnose 3 2 3
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7.3 Discussion

As the results of the hybrid model were discussed in Chapter 5, this discussion

mainly focusses on the performance of the FDD.

With the use of the hybrid prediction model, it can be seen from the results
that the proposed FDD approach is able to reliably detect and diagnosis most of the
pre-selected faults, including both the faults that common to many other refrigeration
systems and those unique to binary ice systems. The unique characterises of binary ice
and features of the binary ice system necessitate the careful selection of the FDD
parameters, especially the output parameters, also taking into consideration their
sensitivities to the selected fault as well as their ability to form unique patterns for

individual faults.

The binary ice test rig is incorporated a compressor on/off thermostat to
control the binary ice temperature at the outlet of the tank (i.e. the inlet of SSIG).
Though the hybrid model is capable of predicting the periodical variations of various
parameters, large modelling errors were encountered during the on/off switching
moments. It is possible to improve the accuracy by using more training data collected

from the measurements.

As stated in the beginning of this thesis, the existing FDD approaches for
conventional chillers are not suitable for binary ice system. This is proved later by
noting the secondary flow temperature difference (4Ti.) having a small sensitivity
factor, which was often used by the others for chillers faults. Therefore, new FDD
parameters are needed. Unlike many other FDD techniques which normally used the
same parameters for both fault detection and diagnosis, the proposed method uses two
separate groups of parameters. For the specified faults, two parameters (Teand A7 yater)
are found needed for the detection purposes and a minimum of 4 parameters (47 yater,

Tice, outs Tc, out, @Nd Tgis) are needed for the diagnosis.

As only two parameters, compared to usually 4 or 5 used by the others, are
needed for detection, accordingly there will be less chances of a false alarm, assuming

only one of two is needed to trigger an alarm for a given fault, with an additional
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benefit of having a reduced real-time monitoring resources requirement for the fault
detection. However, if the FDD is designed in such a way that more than one
parameter are needed simultaneously to trigger an alarm for the fault, then the false
alarm rate should reduce with increasing number of parameters involved. In addition,
the selected parameters only involved temperature measurements which are relatively

easy to implement.

Beside the selection of the parameters, the performance of the FDD is mainly
depended on the thresholds, in particular the value of A used in the CUSUM test. The
current setting of 1 is capable of detecting and diagnosing the majority of faults. In
this study, A is kept at 4, though as previously stated, detection could have been made
around 2 minutes early if a A of 2 were, as a 2 minute delay is considered insignificant
for binary ice system. The elimination of false alarm is considered more important.
Furthermore, the reduction of 1 do not help improve the accuracies of the detection or

diagnosis in the current study.

Another way of selecting the threshold for dynamic FDD is to use adaptable
threshold. The calculations of the adaptable threshold are usually complicated,
relating to some specified parameters in a particular system, such as the modelling
error and the heat load (Cui and Wang 2005; Estrada-Flores et al. 2006). It is difficult
to adapt the threshold calculation method of one system to another. On the contrary, a
CUSUM test is common to various systems and its application is much easier. As a

result, CUSUM test is selected for this project instead of adaptable threshold.

As shown in Table 7.1 and 7.3, there are both mis-detections and mis-
diagnosis. To improve the performance, one possibility is to incorporate additional
parameters. The fault with the lowest detection and diagnosis rate is the binary ice
flow reduction. It will be helpful if, say, the electrical conductivity of the solution is
monitored in real time, though it was unlikely to be implemented in practice due to

cost and maintenance issues.

Although all the mis-diagnosis encountered in the current study are reported as
unable to determine, it is also possible that one fault can be mis-diagnosed as another
one when the two faults shared a similar fault pattern. One example is the binary ice

flow reduction (Fault 1) and the solution concentration increase (Fault 3). It is noted
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from Table 6.9 that the two faults cause the same variations in two parameters (Tgjs
and Ticeout), and the other two parameters (T¢out and ATwater) decrease under the latter
fault but stay unchanged for the former. Also, the sensitivity factors of T¢q, and
ATwater in Table 6.3 for the Fault 3 during the compressor on cycle are relatively small
(both were -1). Therefore, it is likely that this fault can be mis-diagnosed as Fault 1,
especially when the fault severity level is low. In this situation, it might be necessary
to identify additional diagnosis parameters. However, when considering Fault 5 (the
broken scraper) and Fault 6 (scraper motor failure) which also have similar patterns,
and could only be separated by one parameter (4Tater), it IS believed that these two
faults are less likely to be confused during diagnosis because change of ATaer When

Fault 6 occurs is more prominent (sensitivity factor -2.5).

The proposed FDD approach at present is designed to tackle certain specified
faults, assuming no other types of fault will occur in the system at the same time.
However If a fault which is not considered in this study occurs in the system, it may

be mis-diagnosed as one of the six faults or reported as not able to diagnose.

As mentioned before, the SSIG can work in three modes, namely no ice in and
no ice out, no ice in but ice out, and no ice in and no ice out. The analytical SSIG
model has been shown to be able to differentiate the individual modes, thus the hybrid
model is also capable of FDD in any of the 3 modes. The results for second mode are
extensively presented in previous chapters. Not much data on first mode was collected
as it was very much similar to chiller operation. Again, no false alarm was flagged
during the tests. A detection rate of 100% for all selected fault and a diagnosis rate of
66% was obtained based on the same 6 parameters above. Only a very limited number
of tests were performed as it was considered unsafe to run the system with high ice

concentration which could potentially break the blades or overload the motor.

Strictly speaking, the duration of a fault free cycle differs from that of a faulty
cycle, and their differences vary with the type and severity of the fault. As the
proposed hybrid model is not capable of predicting the cycle durations, in the current
study, the fault free parameters predicted at a particular instant are calculated based on
the inputs (Ticeinand Twater in) Measured at the same time, not knowing if the inputs are
from a faulty or fault free condition. This is considered acceptable based on the
following observation. The deviations between the measured data from a fault free
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cycle and a faulty cycle (as seen in Tables 6.3 and 6.4) are compared to the deviations
between fault free predicted data and measured faulty data. Almost identical patterns

of variations are noted.

The proposed FDD method is able to diagnose three pairs of double fault. As
summarised by Cho et al. (2005), there are three types of interaction between two
faults. Their first type of interaction (i.e. the magnitude of residuals of the single
faults are similar with the double fault) is not applicable as such behaviour was not
seen in the current study. Instead, another type of interaction is noticed, where the
double faults have opposite influences on the system and their residuals cancel out

each other.
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8. Conclusions

An approach to detect and diagnose certain pre-specified faults in a binary ice
system has been proposed and developed. A number of single and double faults are
considered in the study; most of them are unique to the binary ice system though a
fault common to both conventional water-cooled chillers and binary ice system is also
included. The fault detection and diagnosis is based on comparing the measurements
from a re-commissioned test rig with the predictions from a simulation model
specifically developed for this study. Both binary ice and binary ice system have
unique and different characteristics when compared to convention secondary systems,
and thus existing FDD techniques are considered not applicable. As far as the author
is aware, this is the first time a FDD approach has been developed for a binary ice

system.

A hybrid approach is used to construct the dynamic simulation model that is
based on a novel coupling of an ANN model of the primary refrigeration circuit with
an analytical model of the scraped surface ice generator. The NARX ANN model is
essentially a neural network with a tapped-delay-line to simulate the dynamic
behaviour. On the other hand, the analytical model is a quasi-steady state distributed
model based on mass and energy balances.

Using a unique combination of three set-parameters (flowrates of the binary
ice and the condenser cooling water, and the initial solution concentration) and two
measured control variables (cooling water inlet temperate to the condenser and binary
ice inlet temperature to the SSIG), as well as looping two ANN outputs (evaporating
temperature and compressor power consumption) as inputs to the analytical model,
the coupled hybrid model is capable of predicting a range of fault free parameters
under transient conditions. Extensive validations have been carried out and it is found

in general, the measurements agree well with the predictions.

A huge amount of data has been collected from the test rig and generated by
the model. Observations based on the data enable the author to gain a better insight
and understanding (an objective of this study) into the operation behaviour of the

SSIG as well as the binary ice system as a whole, in particular how various
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parameters, including unmeasured ones, vary under both fault free and faulty

conditions.

Having carefully analysed the residuals of various parameters together with
their sensitivities towards the specified faults, it is concluded that only two parameters
are needed for detection. Unlike many conventional chiller FDDs that use the
temperature difference of the secondary fluid across the chiller as a detection
parameter, plus probably 3 or 4 more other parameters, the current approach only uses
the evaporating temperature and the temperature difference of the cooling water
instead; this again reflects the unique features of the binary system. No other
measurements such as pressure and flowrate need to be monitored for the fault
detection purpose; this should reduce instrumentation resources and simplify the

implementation of the proposed approach.

Based on the changes of the residuals of the parameters under various faults, it
is found that four parameters, namely the refrigerant temperature at the compressor
discharge and condenser outlet, the temperature difference of the cooling water across
the condenser and binary temperature at the SSIG outlet, are sufficient to identify all

the individual faults, each has a unique pattern of their residual variations.

CUSUM test is successfully applied to monitor the time-variations of residuals
of the selected parameters, enabling both detection and diagnosis be carried reliably at
any instant without the need to acquire any steady state status. The influence of the
thresholds are systematically examined and evaluated, and by carefully choosing an
appropriate combination of the thresholds needed in the CUSUM test, it has been
proved possible to eliminate any false alarm in the current study. A great deal of effort
is devoted to understand the application and implementation of CUSUM test to ensure

the transient results are interpreted correctly.

The FDD performances with respect to diagnosis accuracy are examined.
Though the overall FDD performance is considered satisfactory, the accuracies for the
diagnosis of the binary ice flow reduction fault are generally lower than other
specified faults due to the fact that the chosen parameters are relatively less sensitive
to this fault, suggesting that some additional parameters need to be identified to

improve accuracy.
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The developed FDD are used to diagnose 3 sets of specified double faults, i.e.
when two single faults occur simultaneously. The interactions between two faults are
examined in details and their fault patterns are analysed. In particular, when two
single fault patterns are similar to that of the associated double fault, the concept of
comparing the residual ratio of two chosen diagnosis parameters is used successfully
to differentiate the single and the double fault. The study also includes a case when
the two single faults have their influence cancelled out each other; to the author’s
knowledge this has not been done before by other researchers. However, there is one
type of previously reported interaction that is not seen in the current study of the
chosen faults, i.e. the magnitudes of residuals of the single faults are similar with the
double fault.

Various obstacles and limitations have been encountered, some are related to
the inherent characteristics of the test rig and some are related to the model’s
incapability to provide accurate predictions during compressor on-off moments.
Measures and ideas are devised and implemented to resolve the issues, including, say,
the generation of “artificial” data to “experimentally simulate” a broken blade, and
designing the FDD in such a way that the COP and Q. are not included as detection
and diagnosis parameters since the test rig has not got a refrigerant mass flowrate
meter. The idea of “removing” some of the residual data during compressor on-0ff
switching moments is also found to be effective in eliminating the false alarm caused

by the erroneous residuals.

Further works have been identified for improving the accuracy of the model

and to expand the scope of the work.

The developed approach is directly applicable for real time FDD. It will be
useful to see how the FDD performs for variable loads and ambient temperatures. The
FDD approach can be further developed to tackle other faults. It would be interesting
to see for example how the system behaviour evolves in transient manner under a
refrigerant leakage fault. They could enable early detection before a substantial

quantity of refrigerant is lost.

The analytical model can be improved by using a calculated heat transfer

coefficient h, based on the evaporating temperature and the refrigerant mass flowrate
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instead of the assumed constant value. As the changes of h, become more significant
when the temperature of the secondary fluid changes (i.e. under variable loads or
different initial solution concentrations), a pre-set h, value may not be valid. The
performance of the FDD could also be improved by using some additional sensors
and parameters. One possible parameter is the compressor power consumption, if a

better power transducer is available to provide more reliable readings.

In practice, it is not uncommon to see a thermal storage unit incorporated into
a binary system; it would be useful to expand the project to include this type of
secondary circuit. As various control mechanisms have been applied in HVAC
systems in addition to the on/off control in this study, (e.g. variable speed fans, direct
digital control, etc.) It would also be necessary to improve the FDD method so that it

can be used for binary ice systems with different kind of controls.
The project aims to achieve the following three main objectives:

(1 To fully understand the operation (both steady and dynamic) and control
characteristics of a binary ice system as well as the scraped surface ice
generator, under both faulty and fault-free conditions.

(i)  To build a dynamic hybrid model to predict the behaviour of binary ice
system by coupling an analytical model of the ice generator and a system
level ANN model.

(ili)  To develop a FDD approach that can be employed to detect several
pre-defined single faults in a binary ice system. The approach should be
capable of detecting the faults without a steady state detector, i.e. under

transient conditions, and of identifying some pre-defined double faults.

Overall, it can be concluded that the set objectives are fulfilled satisfactory
and the study was considered unique and novel. Six faults in the binary ice system,
namely condensing water flow reduction, binary ice flow reduction, increase or
decrease of solution concentrations, ice generator broken blade and motor failure, can

be diagnosed reliably based on six temperature measurements.
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Appendix

A. Calculation of properties of ethanol solution

The properties of ethanol-water solution under different temperature and
concentration can be calculated by the following equation from Thermophysical
Properties of Liquid Secondary Refrigerant (Melinder 1997).

f= Coo + Cos(y-Ym) + Coo(y-Ym)’ + Coa(y-Ym)® +
+ C10(X-Xm) + C11(X-Xm) (Y-Ym) + C12(X-Xm) (}"ym)2 + C13(X-Xm) (Y-Ym)™+
+ Coo(X-Xm)” + Co1(X-Xm)(Y-Ym) + Coa(X-Xm)(Y-Ym)’ + Caa(X-Xm) (y-Ym)*+
+ Ca0(X-Xm)° + Car(X-Xm) (Y-Ym) + Ca2(X-Xm) (Y-Ym)” +
+ (:40()(')(m)4 + C41(X'Xm)4(y'ym) +
+ C50(X-Xm)5 Al

where f represents the properties that can be calculated including freezing point
temperature Ty, density p, specific heat capacity Cp thermal conductivity k and
dynamic viscosity u. For a given solution concentration (x, %) and fluid temperature
(y, C), the properties can be determined using the coefficients X, ym and Cj, all

determined by experiments, given below in Table A.1.
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Table A.1 Coefficients for property calculation of ethanol-water solution with known solution concentration
and temperature (Melinder 1997)

Xm = 38.9250, validity limits: 11% < x < 60%
Ym = -4.9038, validity limits: T<y <20 T

ilij T; p Cp k U

0|0 |-2.842e+001 9.544e+002 | 3.925e+003 | 3.545e-001 | 2.214e+000
0] 1]|9.753e-006 -6.416e-001 | 3.876e+000 | 4.421e-004 | -5.710e-002
02| -1.236e-005 -2.495e-003 | 2.300e-004 | -2.942e-007 | 4.679e-004
0| 3| 6.378e-007 1.729e-005 | 1.322e-005 | -1.115e-008 | -1.374e-006
1|0 -8.563e-001 -1.729e+000 | -2.795e+001 | -4.334e-003 | 8.025e-004
1|1 5.274e-005 -1.824e-002 | 1.773e-001 | -2.021e-005 | 2.618e-004
1|2 1.843e-006 3.116e-004 | 4.769e-005 | -4.865e-009 | -8.472e-006
1] 3] -1.428e-007 -6.425e-007 | 3.008e-006 | 2.972e-010 | 1.478e-007
2| 0| 4.050e-003 -2.193e-002 | -9.620e-002 | 3.021e-005 | -7.330e-004
2| 1| -3.058e-006 5.847e-004 | -3.908e-003 | 4.239e-007 | 7.056e-006
2| 2| -1.531e-007 -2.517e-006 | 1.951e-005 | 1.007e-009 | 2.473e-007
2 | 3| 5.543e-009 -2.875e-008 | 3.366e-008 | -7.325e-012 | -1.329e-008
310 |-1.179e-004 6.217e-004 | 7.580e-003 | 6.904e-007 | 4.285e-007
3| 1] -9.416e-008 4.208e-006 | 2.283e-005 | -3.203e-009 | 3.239e-007
3| 2| 4.676e-009 -3.460e-007 | -9.149e-007 | -1.439e-011 | -1.234e-008
410 | -1.992e-006 2.288e-006 | -1.213e-004 | -1.512e-008 | 4.313e-008
411 | 5.409e-009 -4.141e-007 | 2.545e-006 | -3.486e-010 | 8.582e-009
51 0| 2.951e-007 -6.412e-007 | 2.235e-007 | -1.012e-009 | 7.654e-009

On the other hand, when the solution temperature and its freezing point are
known, the above equation can be used to determine the solution concentration C,
density p, specific heat conductivity C,, thermal conductivity k and dynamic viscosity
w using the coefficients in Table A.2. Table A.1 and Table A.2 are used in Chapter 4
for the modelling of the SSIG
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Table A.2 Coefficients for solution concentration and property calculation of ethanol-water solution when
its temperature and freezing point are specified

X = T; (C); Xm = -27.8846, validity limits: -45°C < x < -5
y =T (C); ym = -4.9038, validity limits: x <y <20 °C

i |j C p Cp k p

0| 0| 3.830e+001 | 9.554e+002 | 3.940e+003 | 3.573e-001 | 2.211e+000
0]1]1.853e-004 | -6.281e-001 | 3.745e+000 | 4.570e-004 | -5.724e-002
0] 2] -6.849e-006 | -2.644e-003 | 8.054e-004 | -2.695e-007 | 4.705e-004
0] 3] 1.566e-007 | 1.597e-005 | -5.778e-006 | -1.221e-008 | -1.358e-006
1({0|-1.174e+000 | 1.988e+000 | 3.195e+001 | 5.161e-003 | -2.923e-003
1|1]-3.691e-005 | 2.195e-002 | -2.061e-001 | 2.287e-005 | -2.696e-004
1| 2] -2.130e-007 | -3.693e-004 | -3.060e-005 | 1.768e-009 | 9.900e-006
1| 3] 7.393e-008 | -4.714e-007 | 1.413e-006 | -5.937e-010 | -2.024e-007
2| 0| 5.947e-003 | -3.759e-002 | -2.548e-001 | 1.297e-005 | -9.079e-004
21| -4.386e-006 | 6.311e-004 | -3.510e-003 | 3.639e-007 | 9.402e-006
2| 2| -8.485e-008 | -5.612e-007 | 1.084e-005 | 1.651e-009 | 3.813e-007
2| 3| 4.058e-009 |-1.174e-007 | 4.766e-007 | -2.258e-011 | -2.138e-008
310 3.233e-004 | -1.040e-003 | -8.398e-003 | -3.327e-006 | 2.378e-005
31 1]8.389-008 |-1.117e-005 | -3.151e-005 | 8.246e-009 | -8.056e-007
3| 2| -6.145e-009 | 7.605e-007 | 5.825e-007 | 5.777e-011 | 2.577e-008
410 |-9.750e-007 | -2.033e-006 | -2.319e-004 | -1.514e-008 | -2.184e-007
41 1|9.984e-009 | -5.091e-007 | 2.082e-006 | -2.981e-010 | 2.584e-008
510 |-1.143e-006 | 2.597e-006 | 1.964e-006 | 8.600e-009 | -6.136e-008
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B. Binary ice property calculation

The thermo-physical properties of the binary ice at certain temperature T,
carrier fluid concentration Cs and ice concentration Ci, can be obtained by
combining the properties of the ice and the solution. The subscript bi represents the
properties for the binary ice, cf is for the carrier fluid and ice is for the properties of

ice. All calculations can be found in Handbook on Ice Slurries (Kauffeld et al. 2005)

» Specific Enthalpy

Specific enthalpy of binary ice at a given temperature T (<C) is determined by

hyi = hiceCice + hep(1 — Cice) B.1
where hi is the specific enthalpy of ice

Rice = —332.4 + T(2.12 + 0.008T) B.2
and h¢ is the specific enthalpy of the carrier fluid at the same temperature

hep = cpefT B.3

Cp.f 1S the specific heat of the carrier fluid which can be calculated by Equation A.1

and the coefficients in Table A.1

> Density

Density of binary ice is derived from the density of ice and carrier fluid as

well.
Pvi = PiceCice + pcf(l - Cice) B.4
Density of ice is a function of temperature T (<C)
Pice = 917 — 0.13T B.5
The ice concentration C;.. can be calculated by Equation 1.1 in Chapter 1.
> Viscosity
The correlation from Thomas (1965) will be applied to calculate the viscosity
of binary ice.
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ppi = thef(1+ 2.5C, jce + 10.05C,,;c0” + 0.00273¢160Cviice ) B.6

where C, ice IS the ice concentration by volume,

B.7

Cice
. +(1_Cice)/-’ice
ice pef

Cv,ice -

Equation B.7 is valid when the ice concentration by volume is smaller than 62.5%.

Thermal conductivity

The calculation of thermal conductivity is based on the equation from Jeffrey

(Jeffrey 1973).
kpi = ker (1 +3Cpice + 3Cyice” B2X) B.8
where
a = Kice/kes B.9
p= B.10
y=1+ g N %% B.11

and the thermal conductivity of ice at temperature T (<C) is obtained by the following
equation

Kice = 2.21 — 0.012T B.12
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C. Process chiller temperature controller

The control of the cooling water temperature to the condenser is carried out by
a CAREL pC2 controller. It takes analogue input from a Negative Temperature
Coefficient (NTC) temperature probe, which is installed inside the cooling water tank

inside the chiller.

Figure C.1 Control panel of CAREL pC2 controller

Adjusting the set point and the temperature differential:

1. Press and hold “Sel” button for 5 seconds, until ~ ~ = is displayed.

2. Press “ ¥ putton twice to select the control setting (r) parameter group, and
then press “Sel”.

3. Select parameter rO1 (cooling set point) by pressing “Sel”. Use “A” or “V¥”
to change its value. Press “Sel” to confirm the change.

4. Press “ V¥ and “Sel” to select parameter r02 (cooling differential). Use “A”
or “V¥” to change its value. Press “Sel” to confirm the change.

5. Press “Prg” repeatedly until returning to the main menu to save all the

changes.

Operation of the process chiller:

1. To start the cooling unit, switch on the main power supply. Then press and
hold “A”. The cooling water pump will start first, followed by the
COMpressor.

2 To stop the cooling unit, press and hold “A” when the compressor is not

running. Then switch off the main power.
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D. Thermodynamic properties of R507

Table D.1 R507 saturation properties - temperature

Temp Pressura (kPa) Density fkaim’) Vodume [m'ka) Enthalpy (kJ%gl Entropy (kNK-ka)
{"C) | Liquid Vapor | Liguid Vapor Liquid Vapor Liguid Latent ; Vapar Liquid : Vapor

—100 : a1 31 : 14710 0.215 0.0007 4,653 73 X258 " 331 04469 l' 1.7510
49 34 34 | 14690 0233 0.0007 4284 784 52 | 336 04533 | 17470
88 a7 A7 | WERO 0254 n.ooo7 3844 745 bl { anaz 04547 | 17430
= rj | d1 a1 i 14RA 0 nave 0NNy A RIS 7 P | nd R &R | 17340
46 | a4 44 | 14600 0.298 0.0007 3354 818 236 ] 305.4 04725 | 1.7350
45 | 44 48 i 1458.0 0323 0.0007 3.088 829 231 | 5.0 04738 | 17310
-84 | 52 52 i 1455.0 0348 0.0007 2865 B0 el 3 | 66 0.4851 | 1.7280
-4 57 57 | 1452.0 0.3ar? 0.0007 2652 B52 xza | 72 04314 | 1.7240
42 62 82 | 14490 n4n? 00007 2457 853 M5 { T B 04476 | 170
-1 I RT AT I 1447 0 n439 0oy 278 T4 M ] a4 I &039 I 17170
-40 | 72 72 i 1444.0 0473 0.0007 2.116 a6 X5 | .0 05101 | 1.7140
48 | 74 7B i 14410 0.509 0.0007 1.568 a7 2198 | 86 0.5163 | 1.7110
48 | a5 84 i 1435.0 0547 0.0007 1823 208 2195 | 3103 05224 | 1.70480
Bl a1 4.1 | 1436.0 nsav 0.0007 1.703 oo 2189 | 300 05286 { 1.7040
88 | a8 a4k | 14330 nA30 0.ooo7 1587 631 284 1 s 05347 | 1.7010
-85 ina 06 | 14300 NATS n.ono7 1481 fd3 Hys o 05408 16380
=Ad | 114 M4 i 1427 0 n7ea 0NNy 1 3R> Ghd 73 | 127 [T ] | 1 &8N
43 | 123 123 i 1424.0 0774 0.0007 1.282 ] 216.8 | 3133 0.5529 | 1.6830
—42 | 132 13.2 i 1422.0 0328 0.0007 1.208 .y 2162 | 3138 0.5530 | 1.6800
41 | 141 14.1 | 1419.0 0384 0.0007 113 633 257 1 345 0.5850 | 1.6870
40 152 152 i 1160 0944 0.0007 1.053 1030 251 | 3151 05710 | 1.6850
-7 162 B2 | a0 1.007 n.nooF 0883 1012 245 AT 05768 | 16820
TR i i74 i74 | 1410 0 1073 0NnnT a1 N3 HMd | 183 M &A29 i 1 FAON
-7 i 186 186 i 14070 1.143 0.0007 0875 103.5 2134 | 3680 0.58a8 | 1.6770
-76 | 199 198 | 1405.0 1.216 0.0007 a.ex2 1046 2130 ] MNTE 0.5347 | 1.6750
-75 | M2 212 i 1402.0 1.203 0.0007 0773 1058 2124 | 3182 06006 | 1.6720
-74 { 237 7 i 1399.0 1.374 0.0007 0.728 1070 218 | 3188 0.6065 | 1.6700
-73 | 242 2z i 1396.0 1.459 0.0007 0.685 1081 213 | 3184 06123 | 1.64880
-T2 | M7 T i 1393 0 1848 0NNy 0 FdR AN 3 *nT | 0 nata1 1 1 FARAN
- I 74 a4 I 13490 & 1642 0NNy iR 1105 N 1 AMAE N &30 l 1 #8830
L 292 2 i 1387.0 1.740 0.0007 0575 1m7 W95 { anz 0a2497 { 1.6510
68 1 Mo o i 1384.0 1842 0.0ooF 0543 1128 2090 { AMER 08355 { 1.8590
—68 1 el e i 1381.0 1.950 0.0007 0513 1140 285 { ans 06412 { 1.6570
-87 | 50 50 i 1374.0 2082 0.0007 0485 1152 78 | 3R 08470 | 1.8550
66 | a7 a7 | 1376.0 2174 0.0007 0453 1164 73 1 anzy 08527 | 1.6530
65 | 393 333 i 1373.0 2302 0.0007 0424 176 67 | 3243 06534 | 1.6520
-4 | a7 a1.7 i 13700 24320 0.0007 0412 118.7 2062 | 320 06840 | 1.6500
-3 | 441 44.1 i 1367.0 2563 0.0007 0.380 1128 2056 | 365 06647 | 1.6480
62 | 467 46.7 i 1364.0 2703 0.0007 0370 1211 2050 | 3mA 04753 | 1.6460
-1 | 494 434 | 1361.0 2848 0.0007 0.351 1223 2044 ] 3mT 06809 | 1.68450
-8 | frv i g B?2 i 1352 0 2009 0NNy nin 175 HAA 1 & i) 1 AARR 1 1 /430
5% | 551 ERA1 i 13550 3187 0nnny 317 1247 A { X0 N &3M 1 1&410
=58 I A2 LG ! 13520 33 0.0nnT 0.3 1254 H2T | X6 I RS77 | 1 &400
-7 614 a4 i 1349.0 3402 n.onoF 0285 1271 el | { Az 0.7033 { 1.6380
-£8 | A48 &R | 13460 ART0 00007 0273 1233 S ] AXER 0.70a8 | 1.8370
-£5 \ 683 &2 i 13430 3858 0.0007 0253 1285 2008 { 334 0.7143 { 1.6350
54 | Ak 718 i 1340.0 4.047 0.0008 0247 1307 2003 | Mo 07198 | 1.6340
-£3 | EL 757 i 1337.0 4,245 0.0008 0.235 1218 1997 | ANe 0.7253 | 1.6320
52 | 796 746 i 1334.0 4.453 0.0008 0.225 1331 1991 | a2 0.7308 | 1.6310
51 | 837 £7 i 13310 4,669 0.0008 0.214 1243 19885 { 3328 0.7363 { 1.6300
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Table D.1 R507 saturation properties - temperature (continued)

Temp Pressure (kPa} Density {kgim’) Volume (m'ikg) Enthalpy (k.Nkg} Entropy {kIHK-kg)

{°C) Liquid Vapor Liquid i Vapor Liquid Vapor Liguid : Latent Yapor Liguid Vapor
—E0 8a.0 B8.0 13280 | 4802 0.0008 0.204 135.6 : 1978 3334 a7 1.6280
—1% 424 w24 1325.0 5123 0.0008 0185 1368 | Wk 330 07472 18270
—48 470 w0 13220 5363 0.0008 0187 1380 | 1966 36 0.7526 16260
-7 1018 108 1319.0 GR12 0.0008 0178 1382 | 1960 3352 0.75a0 16250
—iA 106 R/ 8 & 1316 0 RATN 01.NNGA NAT 140 R I 195 3% ZIR R 0 Th3d 1 &30
—45 120 1120 13120 I 6137 0.0008 0183 141.7 i 1947 3364 0.7887 16220
—i4 nra 17.3 13090 | 6413 0.0008 0156 uxn o 19 370 07741 16210
—43 1228 1224 1306.0 6699 0.0008 0.14% Wil | 1aE 3376 0.7795 16200
—42 1287 1286 13030 6495 0.0008 0143 1454 192E 3382 0.7848 16180
-1 1346 146 13000 7.301 0.0008 0137 1466 | 1922 3388 07401 16180
—iiy 1408 140 8 12497 0 THIB 0.000A LIREL 1478 { 1915 3304 1854 16170
] 147 2 147 2 1230 I 7T 94R 1 NNCA NiM 144G 1 { 1900 A0 0 RNT 1 &18N0
-34 1538 153.8 12900 | 6283 0.0008 o1 1503 1903 306 0.8260 16150
-ar 1607 160.7 1287.0 8633 0.0008 0.116 1516 | 1886 3.2 08113 16140
-3 167.8 167.8 1284.0 8994 0.0008 o111 1528 | 1890 3408 08166 16130
-5 1752 1751 12810 9366 0.0008 0107 1541 | 1882 3423 i3 L] 16120
-1 182 4 1827 12770 a.751 00008 003 15854 | 1875 3428 08271 16110
-1 1 & 160 R 13740 1N 160 01 NNCA 0 N5 ARG R { 188 @ XMAR i1 A323 18110
-3z 184.7 188.6 1270 I 10.560 0.0008 0085 157.49 | 1862 3441 08375 16100
-3 2071 207.0 1268.0 i 10930 0.0008 0081 158.1 | 1856 347 0.8427 16030
-0 2157 2156 12640 | 1420 0.0008 0088 1604 | 1848 353 08474 16080
-3 246 225 2610 | 1.a70 0.0008 0.084 BLF 18 5.8 0.8531 1E070
-4 2338 28T 1258.0 I 12330 0.0008 0081 162.0 | 1834 6.4 0.8533 18070
=37 17 2431 1254 0 12 210 0 ANCA NnTA 1Rd 7 { 1A R 24T 0 i1 RA3A 1 &8N
—H 2RAn 2524 12510 13.3nn 1 NNGA DTS 1RE 5 | 1820 TR i1 BRAR 1 B0EN
—25 2631 2624 1240.0 13800 0.0008 onre W6EE | 1 3481 08738 160
—24 2734 27a 12440 14.330 0.0008 007 681 | 1806 3487 0.8734 16040
-3 2841 2834 12410 14.860 0.0008 0087 168.4 { 1788 3492 08840 18030
e 2951 2849 1237.0 16.420 0.0008 0065 LA R FE R 3498 0.8892 16020
-1 6.4 3062 1234.0 16.940 0.0008 0063 1720 | 1784 3504 0.8343 16020
—20 a0 378 1231.0 16.570 0.0008 0080 1733 | 1776 3500 0.8394 16010
—1% 3300 3XE 2270 | 17180 0.0008 0.058 746 | 1764 k1 B 0.8045 16010
-18 323 3421 12240 I 17.400 0.0008 0055 175.4 i 1761 3520 0.8096 16000
17 3540 3T 12200 | 18.430 0.0008 0.054 wiz | 1754 3526 0.8146 1.5530
16 BTH 3677 1217.0 i 19.090 0.0008 0.052 178.5 | 1746 3531 a.81a7 1.5830
—1& A1 3 RN THa0 19770 1 NNCA N n&Ed 1768 { 1734 AT 0 &MA 1 BGAN
-4 0650 304 2 12040 0 N d4RN . ANGA 0 N 1R11 { 1731 R4 2 [iR:riiE] 1 BGAN
-13 A1 408 A 1206 0 AT 0.NNNA a7y 1R2 R { 1723 AR A 0 G349 1 5670
-12 4236 4733 1202.0 21910 0.0n0a 06 LR T 3653 0.83949 15670
-1 4385 4382 199.0 22 RAN 0.0008 n.nda 1B5.1 | 707 AE5A 0.8450 15860
—10 4537 453.4 11950 23.440 0.0008 0043 1864 | 1700 564 0.8500 1.5860
& 4884 488.0 LAES N 24.230 0.0008 o0 1878 | 1681 3564 08550 1.5850
-4 4854 4851 133.0 25.050 0.0008 004 a1 | 1683 3574 0.8500 1.5850
-7 L e 501.5 1840 25.840 0.0008 0.03% 1805 | 1674 3ETA 0.8651 1.5840
-5 518.8 5184 11800 26.760 0.000% 0037 161.8 | 1667 3585 0.8701 1.5840
-5 £36.1 5IE.T 1760 I 27650 0.000% 0.025 182.2 i 165.8 3580 0.8751 1.5830
- 553.8 5624 11730 | 28580 0.0003 0035 w5 1850 3585 0.8801 1.5830
-3 E720 5T1.6 e | 20490 0.0003 0.024 1968 1641 360.0 0.8851 1.5830
-2 E806 580.2 11650 i 30460 0.000% 0.023 973 | 163k 3605 0.5300 1.5820
-1 AT ROG 2 a1 0 I A1 ddn 0 ANCEy 0 nar 1GR R | 1/ 4 RIN i GAN 1 542N
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Table D.1 R507 saturation properties - temperature (continued)

Temp Pressure (kPa) Density fkgim’) Volume [m’fha) i Enthalpy (kdfkal Entropy (kK-ka)
ey Liquid Vepor | Liquid Vaper Liquid : Vaper : Liguid Latent : Vapar Liquid : Vapor
0 629.3 5287 | M50 | 32460 oooos | 003 | 2000 1815 | 2615 10000 | 15810
1 £49.3 5487 | 11530 | 33500 0OD03 | 003 | 3014 1606 | 3620 10050 | 15910
2 [ REG1 iR EiN] METN 0.N00 1 [ | 202 8 15497 | a5 10100 ! 1 5840
3 £90.7 G001 | 11460 | 35670 0OD0Y | 0028 | 2041 1588 | 3630 10150 | 15900
4 7i2.1 715 | 11420 | 36.300 0.000% | Q027 | 2055 1579 | 3634 1.0200 | 1.5800
5 740 7334 | 11380 | 37950 00003 | 002 | 2069 1570 | 3638 10250 | 15850
6 7565 7EEE | 1330 | 39140 0oDOs | 0026 | 2083 1561 | 3814 10300 | 1.5850
7 779.4 7787 | 11290 | 40360 0oD0s | 0025 | 2097 1562 | 3649 10360 | 15880
3 RI2.9 BO22 | M50 | 41820 0ODOE | 002 | 213 1541 | 3653 10400 | 15880
a4 EMa | 1M1M 0 42 91n 0 Nty I [ X xxy I 2128 iR 3 I ARL R 10450 [ 1 GRAN
10 B51.4 BERE | 11170 | 44230 oooos | 002 | 2140 1522 | 362 10500 | 1.5670
1 8764 BTS6 | 11130 | 45580 oODOS | 002 | 2154 1513 | 3667 10560 | 15870
12 2.0 o1z | 11080 | 46980 oooos | 002 | 2169 w02 | 37 10600 | 1.5880
13 8282 873 | M40 | 841D oobos | 002 | 2133 192 | 3475 10640 | 15880
14 8540 8540 | 11000 | 49880 0.0009% | 0.020 | 2187 1433 | 3680 1.0690 | 1.5840
15 fA2 3 AR1 3 1045 0 51.30n0 0000 1 [i Xy k] | s v 147 2 | AEA A 10740 ! 1 BA&N
16 10100 | 10000 | 10810 | 52940 00008 | ee | 226 1962 | 3688 10790 | 15850
17 10390 | 10380 | 10860 | 54.540 DODDS | oM | 2241 1951 | 3692 10840 | 15840
18 10680 | 10670 | 10820 | 56170 0ooos | 00 | 2256 1940 | 36086 10800 | 1.5840
19 10970 | 10860 | 10770 | &7.850 0.0009 | 0017 | 2371 1429 | 3700 1.0840 | 1.5840
20 11270 1240 | 10730 | 59580 omoos | 0017 | 2285 1wa | a4 10000 | 1.5830
Fal 1158 0 1T N 1068.0 A1.3R0 0N 1 (1R | 23100 14n 8 | arna 11040 ! 1 5R30
22 1190.0 11830 | 10630 | 63190 00D03 | G016 | 235 197 | a2 11080 | 15820
23 12220 | 12210 | 10590 | 65.060 oooos | ems | 2330 1385 | NS 11080 | 1.5620
24 12550 | 12540 | 10540 | 66.990 0.0010 | 0015 | 2145 1374 | e 1.1190 | 1.5810
25 12830 | 12870 | 1049.0 | 68.980 oobie | o015 | 2360 182 | 222 11240 | 15610
2 13220 | 13210 | 10440 | 71.020 0mOie | e | 2376 1350 | 3726 11200 | 15600
27 13570 | 13560 | 10390 | 73120 omOIe | oM@ | 2391 1338 | 3728 11340 | 15600
28 12020 | 13910 | 10340 | 75280 0oRie | eI | 2406 16 | 32 11300 | 15750
2% 1429 0 1477 0 1024 0 FTERIN 0Nt I ani3 I 242 7 113 I o Y 1.144n l 1 5740
a0 WESD | 14BAD | 10240 | 79.800 oo | om3 | 2437 1wz | ams 11490 | 15740
M 15030 | 45020 | 10480 | &2.180 ompie | em2 | 2453 1248 | 3741 14540 | 15780
32 15410 | 1500 | 10130 | 84500 oo | oMz | 2469 1275 | a4 1150 | 15770
13 15800 | 15780 | 10080 | &7.080 oODIO | 001 | 2485 1262 | 3747 11640 | 15770
34 16200 | 16180 | 10020 | 89870 00010 | 0.011 | 250.0 1250 | 750 1.1690 | 1.5760
5 16600 | 16580 9965 | 92340 oooie | 0oM | 2517 1235 | 3752 14740 | 1.5750
% 17020 | 17000 9309 | 95000 ompio | oot | 2533 121 | 3754 14700 | 15750
37 17440 | 17420 9851 | 47420 oopie | 00l | 2549 M7 | e 11850 | 1.5740
38 17860 | 17850 9733 | 100.400 0ODIO | 0010 | 2565 194 | 3759 11900 | 15730
39 18300 | 18280 9733 | 103.400 0.0010 | Q010 | 2582 178 | aTe0 1.1850 | 1.5720
a0 18740 | 1E7D 9472 | 107.000 ooDiG | o003 | 2508 164 | 3762 12000 | 15720
a1 1919 0 19180 a8l 110.2nn 0 Nha 1 N | 2R 5 114 % | aTad 124050 ! 15710
a2 165 0 1084 0 a4 R 113 ANN 4R iR 1 o Nk i el e 1123 i ITa R 12100 i 1 5700
43 220 H10 adn 4 117100 [HELAR] 1 [Tk \ 264 4 M7 ¥ ATa R 126N ! 1 5880
a4 600 | 20580 9418 | 120700 0.0011 | 0.008 | 265 6 1001 | a7 12210 | 1.5880
45 24040 | 21070 9352 | 124.400 00011 | 0OD8 | 2683 1045 | 3788 12080 | 15670
46 | 21580 | 21580 9283 | 128.300 00011 | oo | 2704 1068 | 3780 12310 | 1.5680
47 | 22080 | 22080 9214 | 132300 00011 | oOD8 | 2B 1051 | 3788 12370 | 15850
48 | 22500 | 22580 9142 | 136.500 00011 | 0007 | Z73E 1033 | 3788 12420 | 15640
49 | 2320 | 23100 906.9 | 140.900 00011 | 0007 | 2754 105 | 3788 12480 | 15830
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E. Binary ice temperature control

The capacity control of the ice generator is implemented by monitoring the
binary ice temperature at the outlet of the tank (i.e. the inlet to the ice generator) with
a Positive Temperature Coefficient (PTC) 1.5M -50/140 Silicon thermocouple

connected to a EWPC 901/N temperature controller from Eliwell

The EWPC 901/N is an one-intervention point electronic temperature
controller specifically designed for refrigeration applications. It can cut off the
compressor at the set-point temperature and restart the compressor at the set-point

temperature plus a positive differential.

EWPC 901/N
1]12]3 I? |3 |9 |1D|
elivsel . | |J
AN <
Qm, =L | e
- POWER SUPPLY
(a) (b)

Figure E.1 (a) the front view of the EWPC 901/N control panel and (b) wiring diagram

Control setting of the binary ice temperature outlet of the load tank:

® Change of set-point
1. Press and release “Set” button to display the current set-point temperature.

2. The set-point can then be changed within 15 seconds with the “UP” or
“DOWN?” button and the new value is automatically stored after 15 seconds.

® Parameter programming
Programming is accessed by holding the “SET” button down for more than 5

seconds. Various parameters, including the positive temperature differential, can be
accessed with the “UP” and “DOWN?” button. Pressing the “SET” button will display
current setting of the parameter. The “UP” or “DOWN?” key allows this setting to be
changed; the new value is stored automatically when no further key is pressed within

15 seconds.
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F. Wiring diagram of Multitek M100-WAZ2 power transducer

3-phase
power

supply

Output to

data IogTer

5|8 15 | 16

Multitek M100-WA2 power
transducer

L1®

L2e
L3e

Figure F.1 Wiring diagram of Multitek M100-WAZ2 power transducer

Compressor
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G. Binary ice flow meter Omega FPR302 and the counter

The flowrate of the binary ice is measured by an Omega FPR302 Low-Flow
Meter. Its electrical current sinking pulse output is measured by an Omega DPF75-A
Rate Meter which needs to be programmed to display the corresponding flowrate in
litre/min. The rate meter has two input channels, A and B. The output of the

flowmeter is only connected to channel A, leaving Channel B empty.

Figure G.1 Omega FPR302 Low-Flow Meter,

"“LE OMEGA"

~§ojoialofg

ENTER LOCK PREA PREB VIEW PRGM

OFF ON
= RUN CAL.
| 4-20mA | 0-20mA
|

1
(I
(N RATE | COUNT
I RUN SET
@]
=

HOLIMS

(a)’ : (b)

Figure G.2 Omega DPF75-A Rate Meter (a) front view and (b) back view and the setup switches
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There are four setup switches on the back of the ratemeter as shown in Figure
E.2.
Switch 1: View or change set values (normally off)

® OFF: the rate meter is set to the run mode. The front display panel will
show the flowrate.

® ON: allow setting the "low" and/or "high" flowrate values corresponding
to the limits of output current.

Switch 2: Select output for rate or total (normally off)

® OFF: the pulse rate (1 pulse per rotation of the rotor) is displayed.
® ON: the total count of the pulse number.
Switch 3: Select output signal range (normally off).

® OFF: 4-20 mA
® ON:0-20 mA
Switch 4: Unit calibration (normally off)

The ratemeter is pre-calibrated by the manufacturer, thus Switch 4 should
always be left at the OFF position during the test.

The rate meter needs to be programmed so that the pulse rate can be converted
to flowrate accurately. This requires inputting the scaling factor, selecting the units for

the flowrate and matching the current output limits with the flowrate range.

1. Inputting Scaling factor.

» Press “PRGM”.

» Press “ENTER” to set the position of the decimal point for the scaling
factor of channel A. Press the arrow key under the digit where the decimal
is desired. To clear the decimal, press “PRGM”.

» Press “ENTER” to input the scaling factor of channel A. Press the arrow
key under the digits to change the number. The scaling factor which is the
K factor of the flowmeter, i.e. 164.8 pulses per litre provided by the
manufacturer of the flowmeter.

» Press “ENTER” repeatedly to save the setting and return to the run mode.

2. Selecting the units for the flowrate

» Press “PRGM” three times.

» Press “ENTER” to choose RPS (rate per second) or SCALE (RPM, RPH).
Press “PRGM” to select SCALE.

» Press “ENTER”. Press PRGM to choose =60 (RPM) or <3600 (RPH).

» Press “ENTER” repeatedly to save the setting and return to the run mode.

3. Turn Switch 1 to ON position.

4. Matching the current output limits with the flowrate range
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» LOW SETTING can be changed by pressing PRE A. Press buttons A
through E to step to the desired value and press ENTER, e.g. setting 0.5

I/min to correspond to 4mA output.

» HIGH SETTING can be changed by pressing PRE B. Press buttons A
through E to step to the desired value and press ENTER, e.g. setting 15
I/min to correspond to 20mA output.
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H. Data acquisition software Dalite
A software package Dalite for Windows is the used with the Datascan data

acquisition modules. It allows real time processing and display of the logged data. A

brief instruction of this software is given here.

€ Communication configuration

This step connects the Datascan modules to the computer. To specify the PC
communication port for the Datascan modules, choose the Communication from the
Configure menu, then select the correct baud rate and the communication port as
shown in Figure H.1.

Port Setup

Baud Rate -
" 300 1200 ¢ 2400
" 4800 19200 ¢ 23400
« & (7‘42 2 C0On &0
Com Port
& Nons ¢ Coml C Xon/Xoff
e 0dd " Com2 & RTS
= " Com3 2
" Com4
C0On & Off C On & 0O
Cancel

Figure H.1 Communication setup dialogue box
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€ Data scan module configuration

Next step is to configure the Datascan modules and their channels. Choose

Channels under the Configure menu. A Datascan module dialogue box will pop up as

shown in Figure H.2.

Datascan Module - 7320 - Label 1

- 333933 -
0000000 -

Copy Module ’ b

I

Channel Address
Range

‘ ol

|

Module Type
[~ Disabled

Label 1

Analog Input Processor

7320 1..16 Label 1 ~|

Delete Module
Channel Configuration
Advanced

ok |

Enter location description here!

Cancel

Figure H.2 Datascan module configuration dialogue box

First is to choose the module type from the drop down menu on the lower left
half of the box (Models 7320 and 7020 are used in this case). Then, match the module
address switches on the dialogue box with the switches on the actual Datascan module.

Next is to set the channel address range using the scroll bar on the right. Both

modules 7320 and 7020 are 16 channel-modules and their ranges are set to 1-16 and

17-32 respectively, though not all of them will be used during the study. To configure

any newly added modules, click Add Module button and repeat the above procedure.
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€ Data scan channel configuration

To configure each individual channel, click Channel Configuration button and
a dialog box as shown in Figure H.3 will appear. This box allows the user to select the
type of the sensor connected to the channel, the sensor output signal type and the
measured parameter range.

Channel Configuration - Label 1 B

Channel Number

Channel 1 I l 1 |
ey

Channel Type

[~ Disabled Range Resolution
. Auto v [16Bit ~|
ype

Enter notes on channel here!

Copy Channel l 3ste r l

T Type Thermocouple

|

Alarm Level

Calibration

[v Disabled

[v Disabled

[cooo ] [Looo |
[ (—
s —Conversion Law —

oK
Define
LCancel

Figure H.3 Analogue input channel configuration dialogue box
First is to select the channel number which the sensor connected to using the

scroll bar in the upper loft corner. Then choose the right channel type to match with

the sensor

€ Monitor page configuration

The monitor page provides the user real time readings of the sensors. After all
the sensors are configured, click Monitor from the configure menu, the monitor

configuration window will appear.

The frist step is to configure the layout of the monitor page. Click Grid in the
menu bar to show the grid adjust dialogue box. It allows the user to choose the

numbers of row and column for the monitor page.
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Monitor Page 1

Evap_in = <RESULT>

Evap_out = <RESULT>
3¢ Comp_in = <RESULT>
4< Comp_out = <RESULT>
5¢ Cond_out = <KRESULT>
6< TEV_in =<RESULT>
7< Ice_in = <RESULT>
8¢ Ice_out = <RESULT>
9¢ Tank_in = <RESULT>
10< Tank_out = <RESULT>
11< Water_in = <RESULT>
12¢< Water_ou = <RESULT>
13¢< Vice =<RESULT>
14< Vwater = <RESULT>
15¢ Pe = <RESULT>
16¢< Pc = <RESULT>
17< Power = <RESULT>
18< Evp_o_ab = <RESULT>
19<¢ Accu_in = <RESULT>
20< bf_hex_| = <KRESULT>
21< Troom =<RESULT>
22< bf_hex_v = <RESULT>

A A A A A A A A A A A A A A AN A A AN ANEa AN

Figure H.4 Monitor Page
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8< Ice_out

9< Tank_in

10< Tank_out
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12< Water_ou

13< Vice l
14< VYwater

15¢< Pe >

AAAAAAAAAAAAAAN

Figure H.5 Selecting Channels to Monitor

A monitor page dialog box as in Figure H.4 will pop up after the layout is set.
The next step it to configure channels to the page. Select Channels from the menu bar
in the monitor configuration window to show a select channel to monitor dialog box
(Figure H.5). From the drop down list of this box, all channels that have been
configured in the previous step can be found. Copy the selected channel, and paste it
to the cell in the monitor page. The number and the description of the channel will be
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shown in the cell. When the configuration is finished, choose File and Save from the
menu bar, and then Exit.

€ Logger configuration

A logger is the computer file where all the monitored sensor readings are
recorded. To configure the logger, click Configure from the menu bar in the main

window and selecte Logger. The configure logger window is shown in Figure H.6

Configure Logger 1 l
[~ Disabled [c:\progra~1\dalite\sensors.log |
Log Channel Range Log Frequency
From To Every
Channel 1 Channel 22 10 seconds
e w =e = A
Header Notes Field Delim
Log File Header Notes _‘ Comma ﬂ
Record Delim
CR/AF v
I + Manual
" Timed
" Triggered
" Alarm
—4_1 -_] [¥ Enable
! I Cancel I 0Ok |

Figure H.6 Logger configuration window
Unclick the Disabled box from the upper left corner to active the logger. The
Log Channel Range section allows the user to choose the channels to be recorded.

The sampling interval can be adjusted in the Log Frequency section. Choose Manual
to let the log start when Dalite starts to monitor the sensors.
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