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a b s t r a c t

Atlas-based analysis methods rely on the morphological similarity between the atlas and target images, and

on the availability of labelled images. Problems can arise when the deformations introduced by pathologies

affect the similarity between the atlas and a patient’s image. The aim of this work is to exploit the morpho-

logical dissimilarities between atlas databases and pathological images to diagnose the underlying clinical

condition, while avoiding the dependence on labelled images. We propose a voxelwise atlas rating approach

(VoxAR) relying on multiple atlas databases, each representing a particular condition. Using a local image

similarity measure to assess the morphological similarity between the atlas and target images, a rating map

displaying for each voxel the condition of the atlases most similar to the target is defined. The final diagnosis

is established by assigning the condition of the database the most represented in the rating map.

We applied the method to diagnose three different conditions associated with dextro-transposition of the

great arteries, a congenital heart disease. The proposed approach outperforms other state-of-the-art methods

using annotated images, with an accuracy of 97.3% when evaluated on a set of 60 whole heart MR images

containing healthy and pathological subjects using cross validation.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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. Introduction

In the last years, atlas-based techniques (Rohlfing et al., 2004)

ave become a well established method for medical image segmen-

ation. In this approach, intensity images within an atlas database

re first registered to an unseen or target image. The obtained trans-

ormations are used to map the set of atlases into the target image

pace and, once transformed, the label images from each atlas are

ombined into a final consensus segmentation by applying a fusion

riterion.

Despite its widespread use, atlas-based segmentation remains to

ave two major drawbacks. First, the morphological similarity be-

ween the atlases and the target image must be guaranteed. When

his condition is not satisfied, the deformations induced by the mor-

hological dissimilarities may affect the atlas registrations, leading

o unrepresentative segmentations. This situation is common when
∗ Corresponding author. Tel.: +44 (0)203 549 5530.; fax: +44 (0)20 7679 0255.

E-mail address: maria.zuluaga@ucl.ac.uk (M.A. Zuluaga).
1 Joint first authorship.
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athologies introduce morphological alterations in the affected or-

ans. Second, atlas-based segmentation relies on the availability and

uality of labelled images. In a clinical scenario or research project

ith limited resources, gathering a sufficient amount of good quality

nnotated images of pathology-specific, or even healthy subjects, is a

hallenge.

Recent research has tried to address the problem of morpholog-

cal dissimilarity in several ways. Based on the segmentation stage

hat they tackle, we classify existing methods into four categories:

tlas construction, atlas or model selection, image registration and

egmentation analysis. A common characteristic of all these families

f methods is that they do not solve the dependence on labelled

mages.

Methods that fall into the atlas construction category try to min-

mise the errors produced by image dissimilarity by optimally con-

tructing a single atlas, from the set of atlases, that is the most rep-

esentative of the population (Fischl et al., 2002; Guimond et al.,

000; Joshi et al., 2004). To account for the variations introduced

y pathologies, the constructed atlas can include probabilistic map

Lorenzo-Valdes et al., 2004) to provide spatially and temporally

arying a priori information.
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Model selection techniques aim to select an on-the-fly atlas subset

that fits best the target image, and remove potential outliers that af-

fect the final segmentation. Results have shown that it performs bet-

ter than single atlases in different applications (Hammers et al., 2003;

van Rikxoort et al., 2010; Zuluaga et al., 2013). As a consequence,

model selection approaches have gained popularity and several re-

search groups have explored automatic model selection techniques.

Typically, these techniques address atlas selection by performing an

atlas ranking via a global (Aljabar et al., 2009; Leung et al., 2010), a lo-

cal criterion (Cardoso et al., 2013; Išgum et al., 2009) or a combination

of both (van Rikxoort et al., 2010).

More recently, a novel method has been proposed in which the

problem of morphological dissimilarity is addressed at the image reg-

istration stage. The proposed approach makes use of low-rank im-

age decomposition to formulate a registration framework capable of

handling images containing large pathologies and large deformations

(Liu et al., 2014). Although this is a promising alternative, the method

still needs to be better evaluated on datasets with ground truth tissue

labels (Liu et al., 2014).

The last family of algorithms, denoted here as segmentation anal-

ysis methods, analyses the results obtained through the use of differ-

ent atlases to improve the accuracy of the final segmentation (Hanna

et al., 2011; Kutra et al., 2012) or to exploit the information obtained

from the analysis within the context of computer-aided diagnosis

(CAD) (Zuluaga et al., 2014).

In this work, instead of trying to minimise the errors induced by

morphological dissimilarities, we exploit the variations introduced

by pathologies. Following the principle developed by Zuluaga et al.

(2014) that an unrepresentative atlas is more likely to lead to a poor

segmentation, we assume that an atlas will be morphologically more

similar to the target when both share the same clinical condition. The

method, called voxelwise atlas rating (VoxAR), exploits morphologi-

cal dissimilarities between atlas and target images at the local scale.

This method relies on multiple atlas databases representing different

conditions and does not require labelled images. VoxAR uses a local

image similarity measure to assess the morphological similarity be-

tween atlas and target images. A rating map displaying for each voxel

the condition of the atlas most similar to the target is then defined. As

in Zuluaga et al. (2014), the proposed method is used within the con-

text of CAD and, more specifically, CAD of congenital heart diseases.

For this purpose, a diagnosis is established by assigning the condition

of the database with the highest number of occurrences in the rating

map.

This paper is organised as follows: Section 2 provides an overview

of CAD methods for cardiovascular diseases, motivates the selection

of an atlas-based approach for this task and describes the data to be

used. The proposed method, VoxAR, is detailed in Section 3. Section 4

describes the experiments that were performed and the obtained re-

sults. Section 5 discusses the results and, finally, Section 6 presents

the conclusions.

2. Clinical context

2.1. Computer-aided diagnosis in cardiovascular diseases

The use of computer aided diagnosis in cardiovascular diseases

has not been as widely used as in other areas (Chen et al., 2011;

Drukker et al., 2005; Summers et al., 2000). As in other domains,

pathology must be defined in how it deviates from normality. Meth-

ods can be classified into two groups based on how differences are

detected: those which represent images as a set of extracted features

(Teßmann et al., 2009; Zuluaga et al., 2011a, 2011b), and those which

compare them to a model or atlas built using a healthy population

(Lorenzo-Valdes et al., 2004; Zhang et al., 2010; Duchateau et al.,

2011; Lombaert et al., 2012). The first group of methods has been

applied mainly to the diagnosis of ischemic heart disease, whereas
he second has been used to identify abnormalities in ventricular

olumes (Lorenzo-Valdes et al., 2004), cardiac motion (Duchateau

t al., 2011), myocardial fibre orientation (Lombaert et al., 2012) and

ongenital heart disease (Zhang et al., 2010). A common limitation

n both groups is that methods can only differentiate between nor-

al and abnormal, without providing further information on the

athology.

Atlas-based methods have been successful in cardiac CAD due to

he morphological alterations that pathologies introduce in the heart.

hese cause registration errors that can be exploited to provide in-

ight into how a pathology deviates from normality. This concept was

rst used by van Rikxoort et al. (2010) in a segmentation framework

apable of selecting the atlas closest to the target image under the

ationale that the most similar atlas to the target image is expected

o provide the best segmentation. Zuluaga et al. (2014) extended this

dea in the context of cardiac CAD. Where atlas sets with different

orphologies are available, it is possible to segment an image with

he different sets and then use the measured quality of the obtained

egmentations to determine which of them provides the best fit. It is

ssumed that the best fitting atlas share the same clinical condition

s the target.

.2. Dextro-transposition of the great arteries

Congenital heart disease (CHD) is a broad term which refers to

bnormalities of the cardiac structure and function caused by abnor-

al or disordered heart development before birth (Zhang, 2007). Al-

hough a lifetime follow-up is usually required, it has been shown

hat not enough physicians have a specialised training for the num-

er of adult CHD patients (Gurvitz et al., 2005). For this reason, it is

ommon that patients are lost to follow-up, and can be examined by

linicians who have no experience of imaging CHD. Under such sce-

ario, semi or fully automated methods that can assist non-experts

n diagnosis are highly desired. The morphological alterations caused

y the abnormal heart development make suitable the usage of atlas-

ased methods for their diagnosis.

The clinical focus of this study is the diagnosis of dextro-

ransposition of the great arteries (d-TGA). This condition is a congen-

tal heart defect in which the two major vessels that carry blood away

rom the heart, i.e. the aorta and the pulmonary artery, are switched.

eonates born with d-TGA require surgery immediately after birth.

here are two different procedures to repair d-TGA at birth: arterial

witch (ASO) and atrial switch operation (Senning or Mustard proce-

ure). In ASO, which is the most common procedure, the arteries are

witched to their usual positions, i.e. the pulmonary artery arising

rom the right ventricle and the aorta from the left ventricle, and the

oronary arteries are reattached to the aorta. In atrial switch opera-

ion, the arteries are left in place, but a baffle is created between the

op chambers of the heart, allowing oxygen-poor blood to move from

he right atrium to the left ventricle and out the pulmonary artery

o the lungs. Returning oxygen-rich blood moves through the baffle

rom the left atrium to the right ventricle and out the aorta (Fig. 1).

As it is common with CHDs, a characteristic of both ASO and atrial

witch is that the “normal” morphology of the heart is not recovered.

onitoring of the patient across their lifetime is crucial as infants

ho have these surgeries are not cured and might have lifelong com-

lications.

.3. Data

The identification of the anatomical variations caused by the cor-

ecting procedures is a complex task which requires high clinical

xpertise. Although echocardiography tends to be the modality of

hoice in CHD diagnosis, it has shown limited value for the assess-

ent of the great vessels (Fenchel et al., 2006). Cardiovascular MR

CMR) has proven to provide a reliable and accurate assessment of
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Fig. 1. (a) Schematic drawing of Arterial Switch operation showing Le Compte manoeuvre with the translocation of aortic and pulmonary arteries. (b) Schematic drawing of an

atrial switch (Mustard/Senning) for transposition of the great arteries. Systemic (blue) blood is directed from the superior caval vein and inferior caval vein into the left atrium, then

via the mitral valve to the left ventricle and then to the pulmonary artery. Pulmonary (red blood) is directed from the pulmonary veins to the right atrium, then via the tricuspid

valve to the aorta. Images produced with permission from Gemma Price. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)
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2 http://sourceforge.net/projects/niftyreg/ .
HD (Hirsch et al., 1994; Fenchel et al., 2006). Nevertheless, diagnosis

emains challenging, especially in children and young adults (Fenchel

t al., 2006), and it is often missed during screening.

We acquired 3D, electrocardiography- and respiratory-gated CMR

mages from 60 cases – 20 anatomically normal hearts and 40 pa-

ients with d-TGA who had undergone either an ASO (20), or an atrial

witch operation (20). All imaging was done as part of routine clinical

ractice. The study had institutional approval, and all patients (and/or

heir parents or guardian) gave informed consent for the use of their

ata for research purposes.

CMR imaging was performed using a 3D whole-heart MR angiog-

aphy sequence. The images, covering the entire heart, were obtained

n a sagittal orientation by using a magnetisation-prepared, 3D bal-

nced, steady-state free precession sequence (TR 3.0 ms, TE 1.5 ms,

ip angle 90°, number of lines per segment acquired per cardiac cycle

0−40, sensitivity-encoding factor 2.0, bandwidth per pixel 590 Hz,

eld of view 280 × 280 × 120 mm3, acquisition matrix 192 × 192 ×
0 and iso-volumetric voxel size 1.5 × 1.5 × 1.5 mm3). In all cases, 3D

hole-heart imaging was performed 5–10 min after the administra-

ion of routine gadolinium contrast agent.

. Method

Atlas-based methods involving a registration step are sensitive

o morphological differences between the atlas and target subjects.

ather than trying to reduce the errors created by these dissimi-

arities, the proposed method exploits the variations introduced by

athologies and assumes that an atlas will be more similar to the

atient’s image when both atlas and target share the same clinical

ondition. The developed methodology makes use of pre-acquired

atabases of images, each database comprising subjects presenting

defined pathology. The morphological similarity between atlas and

arget images is assessed by computing a local similarity measure.

Here, instead of considering the databases separately, as done in

uluaga et al. (2015), we directly compare the atlases from all the

atabases to the target. We then define a rating map displaying for

ach voxel the condition of the atlases the most similar to the target.

he final diagnosis is established by assigning the condition of the

atabase the most represented in the rating map. A diagram illustrat-

ng our voxel atlas rating approach (VoxAR) is shown in Fig. 2
.1. Preprocessing: mask definition and inter-subject mapping

Given a set of clinical conditions �, an atlas database Dω =
Jωn , Mω

n }Nω
n=1

is defined as the paired set of Nω MR images sharing

ondition ω ∈ �, Jωn , and associated image masks Mω
n containing the

eart. As opposed to standard atlas-based methods, these masks are

ot required to be highly precise. They can therefore be obtained

hrough simple segmentation techniques and morphological opera-

ions. More particularly, they are obtained via Otsu thresholding, con-

ected component analysis and a set of morphological operations.

Let I be the target image to be diagnosed. The proposed method

equires the alignment of the Nω MR images from each atlas database

ω to the target. Registration of cardiac images is challenging due to

he structures surrounding the heart (e.g. ribs, liver) that tend to bias

he registration. To avoid such problem, we divide the registration

nto two stages. At the first stage, we seek to define a region of in-

erest (ROI) that encloses the heart in I and removes the surrounding

tructures. The registration restricted to the defined ROI comes as a

econd stage.

The first step to obtain the registration ROI for the unseen image

s to affinely register (Ourselin et al., 2001) I to the intensity images of

ach atlas database. The obtained transformations are applied to the

ask images of each database, which are then fused using a simple

ajority voting criterion. As a result, a binary mask roughly englobing

he heart of the target image is obtained as an output.

After the affine alignment step, a non-rigid free form deforma-

ion registration (Modat et al., 2010; Rueckert et al., 1999) using nor-

alised mutual information (Studholme et al., 1999) is applied to

lign the atlases with the unseen image. To avoid the bias that sur-

ounding structures can produce in the registration, the unseen im-

ge is masked using the binary mask obtained during the affine stage.

This inter-subject mapping setup had been previously validated

sing the Niftyreg package (Zuluaga et al., 2013). A list of the param-

ters used is summarised in Table 1. The Niftyreg documentation fur-

her details the parameters configured in the registration package2.

After non-rigidly transforming the atlases to the unseen im-

ge space, the obtained transformations are used to map the Nω

RI/mask pairs of each atlas database Dω to the target image. A

http://sourceforge.net/projects/niftyreg/
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Fig. 2. VoxAR: voxelwise atlas rating for computer-aided diagnosis. All the atlases from each database presenting a clinical condition (red, green, and blue) are registered to the

target image. A local image similarity measure is computed between the mapped atlases and the target image and then ranked across all atlases and databases. The diagnosis

corresponds to the condition the most represented in the rating map, which displays for each voxel the condition of the atlases the most similar to the target. Finally, the rating

histogram displays the percentage of occurrences of each condition. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

Table 1

Registration settings for the pre-processing step. The registration is performed in two

stages: an affine step (rigid followed by affine) and a non-rigid registration.

Reg. stage Type Parameters

1 Rigid Coarse-to-fine levels: 3

Max. iterations: 5

1 Affine Coarse-to-fine levels: 3

Max. iterations: 8

2 Non-rigid Coarse-to-fine levels: 3

Max. iterations: 300

Bending energy: 0.005
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refined location of the heart is achieved by fusing the Nω mapped

masks of an atlas database Dω and thresholding the probabilistic out-

put of majority voting (threshold of 0.8). The resulting mask for the

condition ω is denoted Mω .

Finally, to assure that the different atlas databases contain the

same amount of information, we define for each target subject a ROI

M, which corresponds to the intersection of each database mask

M =
⋂
ω∈�

Mω. (1)

In the following, the processing steps are restricted to this ROI.

3.2. Previous work: Image Synthesis Approach (ISA)

We first formulate our previous work, called Image Synthesis Ap-

proach (ISA) (Zuluaga et al., 2015) as a reference method in CAD us-

ing a global measurement to exploit the differences in morphology

induced by different pathologies. Similarly to Burgos et al. (2014), the

ISA consists of fusing the mapped atlases according to their morpho-

logical similarity to the target in order to create a synthetic image for

each condition represented in the databases. The final diagnosis is es-

tablished by assigning the condition whose synthetic image is most

similar to the true image as measured by a global similarity measure.
.2.1. Image/morphological similarity

The morphological similarity between the target image and the

et of registered atlases is assessed using a local image similarity

easure, the local normalised correlation coefficient (LNCC). This

easure evaluates the quality of alignment between two images

y calculating the correlation between the signals. The convolution-

ased LNCC, as implemented by Cachier et al. (2003), between the

arget image I and the nth mapped image of atlas database Dω , Jωn , at

oxel x, is given by:

NCCω
n (x) = 〈I(x), Jωn (x)〉

σ(I(x)) σ ( Jωn (x))
. (2)

he means and standard deviations at voxel x are calculated using a

aussian kernel GσG
, with standard deviation σG = 2 voxels, through

onvolution:

I(x) = GσG
∗ I(x), σ (I(x)) =

√
I(x)2 − I(x)

2
,

I(x), J(x)〉 = I(x) · J(x) − I(x) · J(x),

here ∗ denotes the convolution operator. We chose a smaller Gaus-

ian kernel than the one used by Burgos et al. (2014) (σG = 3 voxels)

o capture smaller differences between the images.

.2.2. Intensity fusion

The LNCC at each voxel is ranked across all atlas images in the

atabase Dω and the ranks, noted as rωn (x), are converted to weights

y applying an exponential decay function:

ω
n (x) = e−βrω

n (x) (3)

ith αω
n (x) being the weight associated with the nth atlas image at

oxel x and β = 0.5 (Burgos et al., 2014).

As suggested by Cardoso et al. (2012), the final synthetic MR image

s obtained by a spatially varying weighted averaging process. As the

RI intensity scale is not standardised, the images are normalised

rior to the fusion step. We used a standard score normalisation:

(x)norm = I(x) − IM

σ(I )
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Table 2

Confusion matrix using VoxAR (top) and ISA (bottom). Evaluation was performed using

a leave-one-out approach for a total of 20 experiments for each method.

ASO Atrial Normal

ASO 1 0 0

Atrial 0.10 0.90 0

Normal 0.05 0 0.95

ASO Atrial Normal

ASO 1 0 0

Atrial 0.25 0.75 0

Normal 0.05 0 0.95
here the mean and standard deviation are computed within M

Eq. (1)).

The weights αω
n (x) are used to reconstruct the synthetic MR image

ω at voxel x ∈ M as follows:

ω(x) =
∑Nω

n=1 αω
n (x) · Jωn (x)∑Nω

n=1 αω
n (x)

. (4)

.2.3. Global ranking and final diagnosis

Synthetic images are generated for each pathology represented in

he databases. Each synthetic image Iω is then compared to the target

mage I using the global normalised correlation coefficient

CCω = 〈I, Iω〉
σ(I) σ (Iω)

. (5)

Following the idea that morphological similarity can be measured

hrough image similarity, the synthetic images are ranked based on

he NCC score. A final diagnosis is established by assigning the condi-

ion ω of the top-ranked synthetic image Iω to the target image.

.3. Voxelwise atlas rating (VoxAR)

Similarly to the Image Synthesis Approach, VoxAR assumes that

he atlases which share the same condition as the patient being diag-

osed will be morphologically more similar to the target image than

he atlases presenting another pathology. In this approach, the local

imilarity measure is directly exploited to establish the diagnosis.

Once mapped to the target subject, the atlas images are rated ac-

ording to their morphological similarity when compared to the tar-

et. To assess this similarity, the LNCC is computed between all the

tlases from each database and the target.

.3.1. Rating map construction

Instead of considering the databases independently as in the ISA

pproach, the atlases most similar to the target are obtained by rank-

ng the LNCC across the atlas images from all the databases. The ranks

re then used to define a rating map R.

Given Lω
n (x), a binary variable equal to 1 if the rank rωn (x) is among

he T-top atlases at voxel x, the number of atlases from a particular

ondition ω which are among the T-top ranked can be expressed as

ω(x) =
∣∣{rω

n (x) · Lω
n (x)

}Nω

n=1

∣∣, (6)

here | · | denotes the cardinality operator. T controls the number

f atlases to be evaluated for the construction of R. Using Aω(x), the

ating map R at x is equal to the condition of the atlas most present

mong the T-top most similar to the target

(x) =
{

arg maxω∈� (Aω(x)), if Aω∗
(x) ≥

⌈
T
2

+ 1
⌉
.

∞, otherwise.
(7)

ith ω∗ = arg max� (Aω(x)). The condition Aω∗
(x) ≥ � T

2 + 1	 guar-

ntees that only the atlas condition that represents the absolute ma-

ority among the T-top ranked will be assigned to R(x).

.3.2. Final diagnosis

From the rating map, we define a rating histogram by computing

he percentage of occurrences of each condition ω within R. Only the

oxels with a non-infinite value are considered to compute the his-

ogram. The diagnosis corresponds to the pathology of the database

ith the highest number of occurrences. The rating histogram can

lso be used as a measure of confidence by assessing the separation

etween each bin.
. Evaluation and analysis

In order to assess the clinical utility of the proposed CAD system,

e tested its capability to identify the surgical procedure used to treat

congenital heart disease, the d-TGA (Section 2). Three groups of im-

ges were used as atlas databases Dω , ω ∈ � = {ASO, Atrial, Normal},

ach database counting Nω = 20 subjects. The number of atlases con-

idered when constructing the rating map was set to T = 7.

.1. Comparison with other methods

At a first instance, we compared the performance of VoxAR with

wo other approaches. First, we considered the Image Synthesis Ap-

roach (ISA) (Zuluaga et al., 2015), which is the seminal idea behind

he formulation of VoxAR but, through the use of a global measure.

fterwards, we analysed the performance of our proposed framework

.r.t. a state-of-the-art segmentation-based approach (SBA) (Zuluaga

t al., 2014). For a fair comparison with both methods, we have fol-

owed the evaluation protocols described in the original publications

Zuluaga et al., 2014; 2015). In the following, further details are pro-

ided for each of them.

.1.1. VoxAR vs. ISA

We first compared VoxAR with ISA (Zuluaga et al., 2015), in or-

er to discover if a local similarity measure (VoxAR) would provide

more reliable diagnosis than a global one (ISA). The comparison

as performed using the maximum possible of atlases per database

ithin a leave-one-out cross validation scheme. The obtained con-

usion matrices are displayed in Table 2, and examples of diagnosed

mages through both approaches are shown in Fig. 3.

Results show that both VoxAR and ISA have a 100% sensitivity

or d-TGA, as they are capable of discriminating pathological from

ealthy subjects: no pathological cases were diagnosed as healthy.

owever, VoxAR appears to have a higher accuracy when identifying

he specific underlying pathology. It has a higher precision (90% in-

tead of 75%) when identifying the atrial condition. The overall error

ate of VoxAR (5%) is lower than that one of ISA (10%), indicating the

etter performance of the local-based similarity measure.

For further analysis, we plotted the percentage of voxels originat-

ng from each database for ASO, Atrial and Normal target images, and

he NCC computed between every target image and the respective

ynthetic images (Fig. 4). The displayed results show that, for VoxAR,

he distributions for a measure (pertaining to a single database) for

ach condition are well separated, as are the distributions for each

easure across subjects of single condition. This is not the case for

he NCC measures.

.2. VoxAR vs. SBA

The segmentation-based CAD framework proposed by Zuluaga

t al. (2014) builds on the hypothesis that well and poorly segmented
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Fig. 3. Diagnosis examples. For every target (first column), synthetic MR images (sMR) are obtained using three atlas databases, ASO, atrial and normal, with ISA. Arrows point to

areas where morphological differences between the atlas databases and the target are prone to produce anatomically inconsistent images. The fourth column displays the target

image with the rating map obtained through VoxAR, followed by the corresponding rating histogram.
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Fig. 4. Boxplots displaying the median, lower and upper quartiles, minimum and maximum of the percentage of voxels (top) originating from each database and the NCC (bottom)

for the ASO (left), atrial (centre) and normal (right) target conditions.
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e

images have different distributions in some representative feature

space, making it possible to discriminate them. As the use of an

unrepresentative atlas is likely to lead to a poor segmentation, this

discrimination tells about the morphological similarity between an

unseen image and an atlas database. The method extracts a set of
eatures describing the quality of a segmentation (obtained through

ulti-atlas segmentation), and introduces them into a logical deci-

ion tree that provides the final diagnosis.

For evaluation, we used the same atlases as reported by Zuluaga

t al. (2014). These databases consisted of a set of 5 annotated images
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Table 3

Sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV)

and accuracy of VoxAR, ISA and SBA.

VoxAR ISA SBA

Number of atlases 5 19 5 19 5

Sensitivity 90.0 100 52.5 100 100

Specificity 70.0 95.0 60.0 95.0 90.0

NPV 100 100 38.7 100 100

PPV 86.9 97.5 72.4 97.5 93.0

Accuracy 83.3 95.0 55.0 90.0 93.3
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or each clinical condition, acquired at the same centre, and contain-

ng labels of the four main chambers, the myocardium, the aorta and

he pulmonary artery.

Table 3 reports the sensitivity, specificity, positive predictive value

PPV) and negative predictive value (NPV) of VoxAR and SBA in

iscriminating pathological vs. non-pathological subjects. Accuracy

easures the capacity of both methods to identify each specific con-

ition. For the sake of completeness, ISA results are also reported.

hen only 5 atlases for each condition are available, SBA outperforms

oth ISA and VoxAR.

.3. Sensitivity to atlas database size

After assessing the better performance of VoxAR, we focused on

valuating how changes in the size of the atlas databases could ham-

er VoxAR’s performance. For this task, we used a cross validation

cheme that is a generalisation of balanced repeated K-fold cross val-

dation (see Appendix). Fig. 5 plots the mean accuracy of VoxAR as a

unction of the number of atlases in each database (L = 50 repeats for

ach experiment). Results show that the system’s performance im-

roves with databases size, reaching a maximum accuracy of 97.3%

hen Nω = 19. The CAD system failed to diagnose atrial condition in

nly 4 out of 50 trials, where the patients were flagged as ASO. How-

ver, it reports 100% sensitivity as it was able to identify all patients

ith a congenital heart disease condition. Normal condition was suc-

essfully diagnosed reporting a specificity of 100%.
1 5
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Fig. 5. Performance of VoxAR relative to the
.4. Sensitivity to unbalanced atlas database sizes

To further study the influence of the atlas databases on the pro-

osed method, we investigated its sensitivity to unbalanced database

izes.

The experiment consisted of studying two settings:

a) the size of the target pathology’s database is less than those of the

other pathologies; and

b) the size of the target pathology’s database is greater than those of

the other pathologies.

In the first setting, the number of atlases originating from the

tlas database corresponding to the target pathology, the “correct”

atabase, was fixed to 10. The size of the two remaining databases

as set to 15 and 15 (50% difference), 15 or 19 (70% difference), and

9 and 19 (90% difference). In the second scenario, the “correct” at-

as database consisted of 19 atlases and the size of the two remaining

atabases was set to 15 and 15 (50% difference), 15 or 10 (70% differ-

nce), and 10 and 10 (90% difference). For both settings, each experi-

ent was repeated 10 times (L = 10).

Results indicate that unbalanced atlases introduce a bias to-

ards the dominant database. As a consequence, when the num-

er of atlases in the “correct” database is less than the number of

tlases in the other databases, the diagnosis is biased towards the

ther databases (Fig. 6(a)) leading to poor accuracies. The diagno-

is accuracy for balanced databases of 10 atlases is of 91.3% (Fig. 5)

nd decreases to 10.0%, 1.7% and 3.3% when the distance to bal-

nce increases by 50%, 70% and 90%, respectively. Conversely, when

he number of atlases in the database corresponding to the tar-

et pathology is greater than the number of atlases in the other

atabases, the diagnosis is biased towards the “correct” database

Fig. 6(b)). We note that this bias appears when the difference is

arge (at least 70%). For balanced databases of 19 atlases, the diag-

osis accuracy is of 97.3% (Fig. 5). A moderate change (50%) only af-

ects the accuracy (96.7%) slightly. However, the accuracy increases

o 100% when the distance compared to balance goes to 70% and

0%.
10 15 19

ber of atlases

ASO
Atrial
Normal
All

number of atlases in each database.
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Fig. 6. Bar plots displaying the sensitivity of the proposed method to unbalanced atlas database sizes. (a) When the size of the database corresponding to the target pathology is

less than the size of the other databases, the diagnosis is biased towards the other databases. (b) When the size of the database corresponding to the target pathology is superior to

the size of the other databases, the diagnosis is biased towards the pathology of the target.
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4.5. Performance in the presence of missing pathologies

A potential drawback of the proposed CAD framework is its be-

haviour in the presence of missing or unknown pathologies, i.e.

pathologies that are not considered among the � conditions with an

associated atlas database Dω . To assess the behaviour of the method

when a missing pathology is to be diagnosed, we applied it to four

CMR images of patients with tetralogy of Fallot (TOF), another form of

congenital heart disease. The CAD system diagnosed all the evaluated

images as ASO. Naturally, the CAD system could not identify TOF as

it is absent from the atlas databases; however, all four patients were

correctly flagged as pathological.

To further analyse the response of our algorithm to unknown

pathologies, we have plotted the rating histograms, presenting the

percentage of voxels originating from each database, when diagnos-

ing the four patients (Fig. 7). The amounts of voxels originating from

each of the atlas databases are close to each other, although one of the

pathological databases does consistently dominate. This behaviour

shows that the CAD system is not as certain in its response as when a

known pathology is diagnosed.

5. Discussion

In order to avoid the use of labels within the diagnosis pipeline,

we have developed a computer-aided diagnosis framework, denoted

voxelwise atlas rating (VoxAR), based on multiple atlas databases that

uses the variations introduced by pathologies to identify the under-

lying clinical condition of a subject. The presented framework builds

over the hypothesis that an atlas will be morphologically more sim-

ilar to a target image when both share the same condition. VoxAR is

based on our previous approach, denoted ISA, in which synthetic im-

ages are regenerated from each atlas database trying to reproduce the

target. The diagnosis was established by comparing the synthetic im-

ages to the target through a global measure. Conversely to ISA, VoxAR

uses a local measure to assess the morphological similarity between

the atlases and target: a rating map in which each voxel contains in-

formation about the most similar condition at the specific location.

The diagnosis is established by constructing a histogram of the rat-

ing map and selecting the condition of the database with the highest

frequency.

The performance of the CAD framework was assessed and eval-

uated on a set of 60 whole heart MR images containing healthy and

pathological subjects with two variations of d-TGA, a congenital

heart disease. Using a leave-one-out cross validation, we first com-

pared VoxAR and ISA. We found that, if both methods have a 100%

sensitivity for d-TGA, VoxAR has a higher accuracy when identifying

the specific underlying pathology. The less accurate results obtained
sing ISA can be explained by the process used to generate the syn-

hetic images. Using a ranking scheme where larger weight is given to

he images better registered to the target image tends to compensate

or the registration inaccuracies (Yushkevich et al., 2010) and atten-

ates the differences introduced by pathologies. VoxAR, by directly

easuring the similarity between the target image and the registered

tlases in a voxel-wise manner, avoids this error compensation.

Using a generalisation of balanced repeated K-fold cross vali-

ation, we have evaluated the method’s sensitivity to changes in

he size of the atlas databases. Our results showed that the use of

arger databases is encouraged as it increases the CAD’s framework

erformance (Fig. 5). Although this finding is not particularly new,

t points out one of the advantages of VoxAR. While larger atlas

atabases are desirable, expanding the databases is not easily achiev-

ble when accurate labelling is needed. By not depending on la-

elled images, VoxAR (as well as ISA) reduces the costs of database

nlargement.

We also investigated the sensitivity of the method to unbal-

nced databases. We showed that when the number of atlases in

he database corresponding to the pathology of the target is smaller

han the number of atlases in the other databases, the diagnosis is

iased towards the other databases (Fig. 6(a)). Conversely, when the

ize of the database corresponding to the target pathology is larger

han the size of the other databases, the diagnosis tends to be in

avour of the “correct” database (Fig. 6(b)). Therefore, to avoid creat-

ng a bias towards a pathology, the atlas databases should be equally

alanced.

The obtained results and its reasonable computational time

25 min) suggest that, in clinical practice, the CAD system could be

sed to assign clinical labels to screening patients without an exist-

ng label. VoxAR has reported 100% sensitivity and specificity, which

mplies that all patients with congenital heart disease were correctly

dentified. This means that if the algorithm were to be used to detect

ransposition of the great arteries, neither would any patient have

issed the appropriate clinical management, nor any healthy subject

ave been referred for unnecessary further evaluation. The estimated

ccuracy (capability of identifying correctly the specific condition) of

7.3% is higher than the accuracies of other state-of-the-art methods

ollowing the same principle (Zuluaga et al., 2014) and of our seminal

ork using synthetic images (Zuluaga et al., 2015). Furthermore, the

roposed approach does not require the use of labelled images and

s not limited to the diagnosis of two conditions. It can be extended

o any number of conditions as long as there is an associated atlas

atabase available.

Two previous works have addressed problems in a similar fash-

on. Coupé et al. (2012) propose a method that simultaneously seg-

ents an image and generates a grading measure to estimate the
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Fig. 7. Rating histograms from each atlas database when diagnosing four patients with tetralogy of Fallot, a pathology not represented in the databases.
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imilarity of the patch surrounding the voxel under study with all

he patches present in a training population. As the training popu-

ation includes data from subjects in two different clinical states, it

s possible to measure the degree of closeness to one group or an-

ther for each voxel. Finally, an average grading value is computed

ver all the voxels of the segmented structure and thresholding is ap-

lied to provide a diagnosis. Although this method uses a principle

imilar to ours, it addresses a different clinical problem (Alzheimer’s

isease).

Within the context of cardiovascular image analysis, van Rikxoort

t al. (2010) have developed a multi-atlas segmentation framework

AMAS and ALMAS) that uses a similarity measure and a stopping

riterion to perform segmentation with only the set of atlas that

re closest to the target. Interestingly the method showed that,

hen segmenting brain images with an atlas database, only adult

atasets were used to segment adult scans, pediatrics were used for

ediatrics and elderly atlases for elderly target scans. This suggests

hat the AMAS & ALMAS framework could be used for diagnosis

urposes. For instance, their atlas selection and stopping criterion

ave a role similar to the rating histogram of our proposed approach.

hanks to the stopping criterion, this method has the advantage of

eing potentially faster than ours, particularly, in the scenario of

arge atlas databases. It remains to validate if the diagnosis feature

f AMAS and ALMAS could also be applied to pathological cardiac

mages.

One of the current limitations of the proposed framework is its

nability to identify a condition that is not represented in an at-

as database. To evaluate the behaviour of VoxAR when diagnosing

athologies not represented within the databases, we used four sub-

ects with tetralogy of Fallot. In every case, VoxAR flagged a clinical

ondition (e.g. ASO) which suggests that the method is capable of

ifferentiating pathological from non-pathological. Interestingly, the

btained rating histograms (Fig. 7) suggest that, in the presence of a

issing pathology, the frequencies of each condition are very close to

ach other. This can be interpreted as the system being less certain of

ts answer than it is when the condition is “known”. Such behaviour

an also occur in the presence of known pathologies (see Fig. 3, atrial

ase), especially when the image to be diagnosed is noisy. Based on

his behaviour, a natural extension of the proposed approach would

e to define a way to include the values of the rating histogram as

art of the diagnosis. In this way, the system would provide a diag-

osis and a confidence measure (such as posterior probability). How-

ver, these hypotheses should be validated using a larger number of

ubjects than the four cases currently used.

This paper has focused on congenital heart disease (CHD) diagno-

is and, more specifically, in the diagnosis of d-TGA. CHDs are an ideal

arget for the proposed method since they introduce morphological

hanges in the anatomy which the registration algorithms (associated

o an atlas-based framework) cannot cope with. While such morpho-

ogical changes are found mostly in the heart, the use of the global

ISA) or local (VoxAR) similarity measures could serve as an indica-
 b
or of the evolution of a pathology. Further experiments would be

equired to validate this hypothesis in other regions of the body.

. Conclusion

This paper presents a local approach for atlas-based computer-

ided diagnosis relying on multiple atlas databases, each represent-

ng a particular condition, which does not require annotated images.

local image similarity measure assessing the morphological simi-

arity between the atlas and target images is used to generate a rating

ap displaying for each voxel the condition of the atlas most similar

o the target. The diagnosis is established by assigning the condition

f the database the most represented in the rating map. The results

btained with the proposed approach outperform the state-of-the-

rt methods using annotated images, with an accuracy of 97.3% when

valuated on a set of 60 whole heart MR images containing healthy

nd pathological subjects using cross validation.
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ppendix: Validation scheme

When N = A − n subjects of each condition were to be used as at-

ases (per database) in L repeats, the n to be held out for testing were

andomly selected in the following way: each subject was given an

nteger counter, initially zero, representing the number of times they

ad been left out so far. To select the n of each condition at each re-

eat in sequence, as many subjects as possible (up to n) with the min-

mum counter value were drawn (randomly without replacement).

hen, if that number was less than n, subjects with the higher counter

alue were drawn. All subjects drawn had then their counters incre-

ented by one. In this way, only two counter values exist at any time.

ach subject has an average accuracy as measured by all the times

hey were included in the test set, and the accuracy in identifying a

ondition is given by the average of all the accuracies for all its sub-

ects. When Lq = A/n for integer q and L = A/n, this is equivalent to

alanced K-fold cross validation fully repeated q times.
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