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The dissection of the Drosophila auditory system has revealed

multiple parallels between fly and vertebrate hearing. Recent

studies have analyzed the operation of auditory sensory cells

and the processing of sound in the fly’s brain. Neuronal

responses to sound have been characterized, and novel

classes of auditory neurons have been defined; transient

receptor potential (TRP) channels were implicated in auditory

transduction, and genetic and environmental causes of

auditory dysfunctions have been identified. This review

discusses the implications of these recent advances on our

understanding of how hearing happens in the fly.
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Introduction
Hearing in Drosophila melanogaster serves the detection of

the courtship songs male flies produce by fanning one of

their wings [1]. These close-range songs, the spectral

composition of which matches the flies’ range of hearing

(ca. 100–300 Hz), drive female mating decisions [2] and

stimulate other males to court and sing [1,3]. Both sexes

detect sounds with Johnston’s organ (JO) (Figure 1) — an

array of ca. 500 chordotonal stretch-receptor neurons

(JONs) in the pedicel of the fly’s antenna [4,5]

(Figure 1a). It is currently not known if there are any

sexual dimorphisms in JO. Each JON bears a single

ciliated dendrite, which transduces stimulus-induced an-

tennal displacements into electrical currents [6], and an

axon that propagates the resulting action potentials to the

antennal mechanosensory motor center (AMMC) in the

deuterocerebrum of the fly’s brain [7��] (Figures 2b

and 3). This review discusses recent advances in our
www.sciencedirect.com 
understanding of JON function and the central auditory

circuitry downstream of JONs.

Mechanically evoked JON responses
On the basis of their axonal target regions in the AMMC,

the fly’s ca. 500 JONs can be categorized into five classes,

labeled A–E [7��]. Whereas the ca. 200 JONs of classes A

and B mainly respond to sound-induced antennal vibra-

tions and are required for hearing, the ca. 250 JONs of

classes C and E preferentially respond to maintained

antennal deflections and serve the detection of gravity

and wind [8��,9��]. By analyzing population calcium

responses, Matsuo et al. [10] have recently reported that

the ca. 50 class D JONs respond to both vibrations and

deflections of the antenna; the neurobiological relevance of

this dual response behavior, however, is still unclear.

Recent reports implicating JONs in Drosophila flight con-

trol [11,12] might suggest that the flies use class D JONs to

monitor both wind and wing-beat sounds generated during

flight. Such proprioceptive role would explain why vibra-

tion and deflection amplitudes of several micrometers

seem required to activate these neurons [10], whereas

vibrations of 50 nm suffice to elicit responses of the audi-

tory JONs of classes A and B [13]. Antennal vibrations

exceeding 200 nm also activate the JONs of classes C and

E, which, in addition to detecting wind and gravity, might

contribute to hearing when sounds are intense [13].

JON classes also differ in their direction-sensitivities,

reflecting their perpendicular connection to the opposing

sides of the antenna (Figure 1b). Connecting to the

antenna’s posterior side, JONs of class E are stretch-

activated when the antennal is deflected backwards,

whereas forward deflections stretch-activate class C and

D JONs that mostly seem to connect to the antenna’s

anterior side [8��,9��,10]. Both forward and backward

movements of the antenna are expected to equally

stretch-activate the auditory JONs of classes A and B,

which — as judged by the positions of their somata —

might connect medially to the antenna [14–16]. Testing

for such bidirectional activation will require measure-

ments of single cell responses and more detailed infor-

mation about their antennal connection sites: these sites

cannot be inferred from somata positions because JONs

are tethered to the antenna by curved terminal threads

[17] (Figure 1b).

Vibration-sensitive JON classes further differ in their

frequency-characteristics [8��,9��,10], pointing to cell-in-

trinsic tuning mechanisms, in addition to the frequency

filtering that is provided by the antenna’s resonant me-

chanics. The latter antennal mechanics was shown to be
Current Opinion in Neurobiology 2015, 34:79–85
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Figure 1
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Drosophila hearing organ and direction sensitivities of JONs. (a) Frontal view of the Drosophila antenna. When acoustically stimulated, the arista

and the funiculus sympathetically vibrate about the longitudinal axis, thereby activating JONs in the pedicel of the antenna. (b) Cross-sections

through the pedicel-funiculus joint (top: overviews, bottom: zoom-ins), depicting the funicular connection sites of JONs. Deflecting the antenna

posteriorly stretch-activates (depolarizes) deflection-sensitive JONs that connect to the posterior side of the funiculus (left) but inactivates

(hyperpolarizes) JONs connecting to its anterior side. For posterior deflections of the antenna, the signs of activation are inversed. Auditory JONs

might be equally activated by anterior and posterior antennal movements; judging from their somata positions, they might connect medially to the

funiculus with their terminal threads.

Modified from Ref. [16].
actively modulated by motile responses of JONs, which

match the antenna’s resonance to the courtship song

frequencies by actively augmenting the antennal vibra-

tions in frequency-dependent and intensity-dependent

ways [18–21]. Targeted cell ablations revealed that this

active mechanical amplification requires the auditory class

A and B neurons, but not the gravity/wind-sensitive JONs

of classes C and E [13]. Testing whether all the auditory

JONs exert mechanical amplification will require single

cell approaches as there might be a certain degree of

functional heterogeneity even within one class of JONs.

Mechano-electrical transduction and
amplification
Antennal displacements are coupled via the terminal

threads to the mechanosensory cilia of JONs, where they

gate mechano-electrical transduction (MET) channels

[22]. This gating introduces a nonlinear compliance into

the fly’s antennal mechanics that, conforming to the

gating spring model of vertebrate auditory transduction

[23], suggests that the MET channels are directly gated

by pull of gating springs. The interplay between this

mechanogating and associated motor movements quanti-

tatively explains mechanical amplification in Drosophila
hearing [19], indicating that the same transducer-based

mechanism that drives active hair bundle movements in

vertebrate hair cells [24] also promotes the motility of
Current Opinion in Neurobiology 2015, 34:79–85 
JONs. The mechanistic link between transduction and

amplification by JONs was recently put into question

because ‘active amplification is observable for intensities

below the threshold for antennal field potential

responses’ [15��] (Figure 2a). Neither field potentials

nor channel gating, however, possess thresholds, and a

transduction-based model well captures the intensity-

dependence of amplification in the fly’s ear [19]

(Figure 2a).

Recent studies have supported TRP channels as the

candidate MET channels of JONs, and two transduction

models were proposed [13,15��,25��,26,27] (Figure 2c):

The ‘NOMPC model’ posits that the NOMPC

(=TRPN1) channel mediates transduction in the auditory

JONs, participating in mechanical amplification and me-

diating sensitive hearing [25��,26,27]. Gravity/wind-sen-

sitive JONs are assumed to harbor a second, less sensitive

MET channel whose mechanogating is independent of

NOMPC. Downstream of the MET channels, electrical

signals are amplified by the two TRPV channels Nan and

Iav, which are required for electrical signaling by JONs

and localize downstream of NOMPC in JON cilia

(Figure 2b), presumably forming Nan–Iav heteromers

[28–31]. The ‘Nan–Iav model’ [15��,26] posits that trans-

duction is mediated by Nan–Iav. In this scenario,

NOMPC acts as a mechanical pre-amplifier in auditory
www.sciencedirect.com
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Figure 2
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Transduction and amplification. (a) Left: mechanical sensitivity of the antenna (measured as antennal vibration velocity (m/s) normalized to the sound

particle velocity (m/s)) as a function of the sound particle velocity (top), and corresponding relative amplitude of the sound-evoked antennal nerve

potentials (bottom). Mechanical amplification by JONs maximally enhances the antenna’s sensitivity to faint sounds (arrow, top) that, by themselves,

would be too weak to evoke nerve potentials (arrow, bottom) (adopted from Ref. [15��]). Right: maximum sensitivity to faint sounds is also seen when

the antenna’s mechanical sensitivity is measured as the ratio between antennal displacement (nm) and the force (pN) that, during sound stimulation, is

experienced by the antenna (Top). This mechanical behavior and also the amplitude characteristics of the nerve response (bottom) are reproduced by

an active version of the gating spring model (orange circles) that links mechanical amplification by JONs to the open probability of MET channels

(bottom) (adopted from Ref. [19]). (b) Localization of NOMPC and Nan–Iav in JON cilia (see also Refs. [28–30]). (c) Transduction models. According to

the ‘NOMPC model’ (left), auditory JONs use NOMPC to transduce and mechanically amplify vibrations, and gravity/wind-sensitive JONs transduce

antennal deflections with a second, unknown channel (‘X’). Downstream of transduction, electrical signals are amplified by Nan–Iav. The Nan–Iav

model (bottom) posits that Nan–Iav mediates transduction in auditory and gravity/wind-sensitive JONs. NOMPC acts as a mechanical pre-amplifier in

auditory JONs that, together with motor proteins, augments vibrations prior to transduction (see also Ref. [26]).
JONs that enhances auditory sensitivity by enhancing

vibrations before they are transduced in auditory JONs.

Both models can explain why loud sounds still evoke

residual antennal nerve potentials in nompC null mutants

[13]. According to the ‘NOMPC model’, loss of NOMPC

abolishes sensitive sound-transduction in auditory JONs,

but louder sounds still activate the less sensitive MET

channels in gravity/wind-sensitive JONs [22,26]. In the
www.sciencedirect.com 
Nan–Iav model, transduction persists in both sound-sen-

sitive and gravity/wind-sensitive JONs, and it is the loss of

mechanical amplification that explains the drop in audi-

tory sensitivity [15��].

NOMPC was recently established as a bona fide MET

channel that can be gated directly by mechanical stimuli

in vitro and confer cellular mechanosensitivity in vivo
[32��,33�]. Nan and Iav can be reportedly activated by
Current Opinion in Neurobiology 2015, 34:79–85
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Figure 3
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The main auditory circuit in Drosophila. Hearing starts with JONs, the

first order auditory neurons in the pedicel of the antenna. Two classes

of JONs, JON-A and JON-B, have been specifically linked to auditory

transduction and sound-induced behavior. JON-A and JON-B target

second-order auditory neurons in different zones of the antennal

mechanosensory motor center (AMMC-A and AMMC-B, respectively),

the ventral nerve cord (VNC) and the thoracic ganglia (TG); partly, they

also make contact with the giant fiber network (GFN) via electric

synapses (predominantly JON-A). The second-order auditory neurons

in the AMMC either form auditory local neurons (aLNs), which arborize

exclusively within the AMMC without projecting to other brain regions

(omitted here for the sake of clarity) or auditory projection neurons

(aPNs). Some aPNs (AMMC-A1 and AMMC-B1) target third-order

auditory neurons in the wedge (WED) and the posterior protocerebrum

(PP), others (AMMC-A2 and AMMC-B2) send commissural projections

to the respective contralateral AMMC zone. Please note that, in the

interest of clarity, projections from only one hemisphere are shown

(left side of diagram). Based on Refs. [7,8,10,39,41,42,44��].
hypertonicity [28,29], indicating that they are mechan-

osensitive. Testing whether mechanically stimuli directly

activate Nan and Iav will require further experimenta-

tion, and so does the activation mechanism of the putative

Nan–Iav heteromers. If the ‘Nan–Iav model’ were cor-

rect, one would expect that mechanical stimuli directly

activate Nan–Iav, whereas in line with the ‘NOMPC

model’ one would expect Nan–Iav to be voltage-gated

because signaling from NOMPC to Nan–Iav seems to too

fast to allow for diffusible messengers [15��,26]. Apart

from NOMPC and Nan–Iav, also other MET channels

need to be considered, including for example the Dro-
sophila Piezo channel that seems present in some JONs

[34��].

Organizing JON cilia and axonal wiring
The proper localization of NOMPC and Nan–Iav in JON

cilia was recently found to require the Tubby-like protein

(TULP) family member dTulp [35�], whose mouse ho-

mologue is implicated in cilium organization [36] and

cochlear integrity [37]. Disrupting Drosophila dTulp abol-

ished the ciliary localization of Nan–Iav and mislocalized

NOMPC to the proximal ciliary region [35�]. Loss of

Nan–Iav in JON cilia was also observed in mutants

lacking the forkhead transcription factor Fd3F, which,

together with the transcription factor RFX, organizes the

expression of mechanosensory relevant ciliary proteins in

the cilia of JONs [38�]. Another transcription factor, the

homeodomain transcription factor Engrailed (EN), was

found to be involved in the wiring of JONs to downstream

neurons in the AMMC [39�]. EN is expressed in a subset

of auditory JONs that form electrical synapses with the

giant-fiber neuron (GFN). Misexpressing En in En-neg-

ative gravity/wind-sensitive JONs induced ectopic chem-

ical and electrical synapses with the GFN, whereas

RNAi-mediated knockdown of En in En-positive JONs

reduced the strengths of their synaptic connections with

the GFN. Intriguingly, EN organizes the patterning of

retinal axon terminals in the vertebrate midbrain [40],

similar to its role in auditory JONs.

Central circuitries and sound processing
JONs of classes A–E target different zones in the AMMC

where they synapse onto different second-order neurons

(Figure 3). Five classes of interneurons were identified

that receive input from the auditory JONs of classes A and

B [8��,41,42��]: firstly, the GFN, which conveys auditory

information to the thoracic ganglia and the inferior ven-

trolateral protocerebrum (IVLP; also referred to as wedge
or WED [43]); secondly, the AMMC-A1 and thirdly, the

AMMC-B1 neurons, which connect the JONs of classes A

and B to the IVLP/WED, respectively; fourthly, the

AMMC-A2 and lastly, AMMC-B2 neurons, which seem

to connect the respective AMMC-zones between both

hemispheres. A recent large-scale anatomical screen

[44��] confirmed these projection patterns and reported

distinct groups of candidate auditory projection neurons
Current Opinion in Neurobiology 2015, 34:79–85 
(aPNs), which either, firstly, arborize within AMMC zone

A sending projections to the posterior protocerebrum (PP)

or, secondly, arborize within AMMC zone A sending

projections to the ventral nerve cord (VNC) or, thirdly,
www.sciencedirect.com
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arborize within AMMC zones A and B sending projec-

tions to the VNC or, lastly, arborize within AMMC zone B

sending bilateral projections to the IVLP/WED. The

same screen also identified classes of candidate auditory

local neurons (aLNs) that arborize within either, firstly,

AMMC zone A, secondly, AMMC zone B or thirdly,

AMMC zone A and B. Only two classes of interneurons,

aPN1 (AMMC-B1 from Ref. [8��]) and aLN(al), both of

which receive their dendritic inputs exclusively from

AMMC zone B, were found to be necessary for behavioral

responses to courtship songs in both females and males.

Class D JONs, which might also contribute to hearing,

were found to target AMMC-D1 neurons as well as local

interneurons that are confined to the AMMC [10]. The

AMMC-D1 neurons arborize within the AMMC and send

projections into the thoracic ganglia [10].

Functional studies have begun to uncover the response

characteristics of these second-order auditory interneur-

ons [41,42��,44��]. Many of the neurons were reported to

be non-spiking [41], and AMMC-B1 neurons, for exam-

ple, could be classified into four subtypes that differ in

their sensitivities and frequency characteristics [42��].
Progress has also been made with respect to next stage

of neuronal sound processing. Within the VLP, first third-

order auditory neurons were identified that connect the

IVLP/WED to the posterior part of the VLP [42��]. This

posterior part of the VLP displays glomerular structures

and, receiving also visual and gustatory input, might

integrate multimodal stimuli [42��].

Auditory dysfunctions and novel proteins for
hearing
Within the past years, multiple causes of JON dysfunc-

tions have been identified, including genetic ones and

acoustic noise. Evidence for noise-induced hearing loss

has been reported by Christie et al. [45��], who exposed

flies for one day to very intense tones at a frequency of

250 Hz. Immediately after exposure, sound-evoked nerve

potentials displayed longer latencies and reduced ampli-

tudes. Normal response latencies and amplitudes reap-

peared within one week, yet then JON mitochondria had

become smaller, which is indicative of metabolic stress

[45��]. Collectively, these noise effects are reminiscent of

noise-induced hearing loss in vertebrates [46], and they

were exaggerated in flies that lack one copy of the

nervana3 (nrv3) gene [45��]. nrv3 was recently shown

to encode a Na+/K+-ATPase b subunit, Nrv3, that, to-

gether with the a subunit ATPa, occurs in JONs [46].

Another Na+/K+-ATPase b subunit, Nrv2, was found in

JO supporting cells that enclose the cilia of JONs in a K+-

rich lymphatic space [47]. Nrv3, ATPa, and Nrv2 all

turned out to be essential for JON function, and knock-

down of ATPa or Nrv2 led to the accumulation of orga-

nelles in the lymphatic space [47]. Apparently, alterations

in ion homeostasis render JONs less prone to acoustic

overstimulation. Alterations in ion homeostasis were also
www.sciencedirect.com 
reported to increase the susceptibility to noise-induced

hearing loss in mice [48].

Apart from transcription factors [38�,39�] and ion pumps

[47], various other auditory relevant Drosophila proteins

were recently defined. Using transcriptome analyses,

Senthilan et al. [49��] identified 274 genes that are

enriched in JO, and mutations in 27 of 47 selected genes

were found to affect hearing in the fly. Two of the

respective proteins, the zinc-finger protein ZMYND10

and the tetratricopeptide repeat domain protein

DYX1C1, were recently identified as conserved cilium

proteins that are required for axonemal dynein arm as-

sembly and implicated in primary ciliary dyskinesia in

humans [50,51]. Other auditory relevant proteins includ-

ed the two major visual Opsins Rh5 and Rh6, which

turned out to be expressed in JONs where they facilitate

mechanical amplification and mechanical ion channel

gating [49��]; the mechanistic basis of this Opsin function,

however, is still unclear. Mechanical amplification by

JONs was further reported to be independent of Prestin

[52], which promotes mechanical amplification in the ears

of mammals and birds [24,53]. Instead, mutations in

axonemal dynein genes seem to affect this amplification

in fly hearing [49��], yet unequivocal genetic evidence

linking amplification to axonemal dyneins has not been

reported yet. Recent studies also suggest that signaling

from JO and other chordotonal organs might affect the

fly’s circadian clock: proteins that also occur in JO were

implicated in the entrainment of this clock by mechanical

and thermal stimuli [54–56], and a TRP channel that

seems implicated in cold sensation, Brivido1, was

detected in some JONs [57]. Future studies must show

whether JONs are thermo-sensitive and, if so, how ther-

mal stimuli are encoded by these mechanosensory cells.

Conclusions
Recent studies have documented the functional diversity

of Drosophila JONs and auditory interneurons in the

Drosophila brain. The AMMC and the IVLP/WED were

supported as primary and secondary auditory centers, and

JONs have emerged as cellular paradigms for dissecting

mechano-electrical signal transduction, sensory neuron

wiring, and sensory cilium function and formation. The

stage has been set for using Drosophila to study noise-

induce hearing impairments, and JONs turned out to use

visual opsins for sound detection, and it seems that JONs

might be also thermo-sensitive. Obviously, the fly’s au-

ditory system is still holding many secrets, leaving much

room for discovery.
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