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Informed Scheduling by Stochastic Residual Belief Propagation
in Distributed Wireless Networks

Panagiotis-Agis Oikonomou-Filandras, Kai-Kit Wong, and Yangyang Zhang

Abstract—This letter devises a novel algorithm for cooperative
spectrum sensing based on belief propagation (BP) for distributed
wireless networks. The algorithm, called stochastic residual belief
propagation (SR-BP), extends the use of residual belief propaga-
tion (R-BP) to distributed networks, improving the accuracy, con-
vergence rate, and communication cost for cooperative spectrum
sensing. We demonstrate that SR-BP converges to a unique fixed
point under conditions similar to those ensuring convergence of
asynchronous BP. Then, we develop a way to derive a probability
distribution from the residual of each message. Finally, we provide
numerical results to showcase the improvements in convergence
speed, message overhead and detection accuracy of SR-BP.

Index Terms—Cooperative spectrum sensing, distributed infer-
ence, message passing, residual belief propagation.

I. INTRODUCTION

OGNITIVE radio promises a more efficacious use of

spectrum as licensed bands can be used by opportunistic
users, namely secondary users (SUs), when the primary users
(PUs) are idle. There has been a large body of work addressing
the problem of spectrum sensing and one prominent technique
is cooperation between SUs to improve channel detection.

In particular, probabilistic graphical models (PGMs) [1], a
highly successful tool for reasoning coherently from limited
and noisy observations, have recently gained great attention
for cooperative spectrum sensing. For example, factor graphs
were utilized in [2] to model the cooperative spectrum sensing
problem. In addition, belief propagation (BP) was adopted for
cooperative spectrum sensing in heterogeneous cognitive radio
networks [3]. Earlier in [4], a hidden Markov field model was
recommended. Then both central using a fusion center [5] and
distributed detection algorithms [6] have been proposed.

Despite the widespread use of BP, several non-trivial prob-
lems remain. Problematically, in PGMs with loops, BP often
diverges and beliefs can become overpowered. For spectrum
sensing where both the capacity for overhead communication
and the time the SUs have to decide on transmission are
limited and expensive, improving the above can greatly enhance
the opportunistic communication. A lot of research has been
carried out to address these issues and provide some insight into
the dynamics and convergence properties of BP.
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In particular, Yedidia et al. in [7] demonstrated that BP can
be interpreted as performing a constrained minimization of
the so-called Bethe free energy. Convergence conditions were
proposed in [8]-[10]. Moreover, algorithms that ameliorate the
effects of cycles by weighting messages have been proposed in
[11], [12]. Remarkably, the importance of message scheduling
in BP has also been recognized, and residual BP (R-BP) has
hence been proposed as an algorithm implementing a greedy
informed schedule for message passing [13]. This gave rise to a
number of variants of BP in LDPC decoding that provide more
elaborate informed schedules for R-BP, e.g., [14].

Distributed wireless networks, such as in the application of
cooperative spectrum sensing, however, pose new challenges
for BP as there is practically no central entity to manage global
information, hence making algorithms like tree reweighing BP
(TR-BP) [11] and R-BP unusable in the distributed case. In
[15], [16], Wymeersch et al. devised a distributed variant of
TR-BP, called uniformly reweighed BP (URW-BP), but did not
study the use of informed scheduling for distributed networks.

This letter proposes a novel R-BP algorithm for cooperative
spectrum sensing that employs a stochastic message scheduler
based on the residuals at each node. This will result in faster
convergence, less overhead, and improved results, but also can
be integrated with enhancing algorithms such as URW-BP for
further performance gain. Our contributions are as follows:

* We devise for the first time to our knowledge, a general
informed scheduling framework for distributed sensors.

e Based on the framework, we then present a stochastic
R-BP (SR-BP) technique as a practical alternative to per-
form R-BP for distributed inference.

* We prove that when BP converges, given similar condi-
tions to R-BP, SR-BP will also converge.

* A probability density function (pdf) parametrized by the
residuals is proposed for an efficient message schedule.

e Simulation results illustrate that for cooperative spectrum
sensing SR-BP greatly outperforms BP and can be used in
conjunction with other BP variants like URW-BP.!

II. COOPERATIVE SPECTRUM SENSING AS
DISTRIBUTED HYPOTHESIS TESTING

We consider a cognitive radio network where N SUs are
distributed within a certain region. A PU transmits in the same
area with a probability Pr(X) in which X € {0,1} is a binary
variable representing the state of the channel, i.e., X = 0 is
idle and X =1 is busy, respectively. We assume a frequency-
flat fading channel between the PU and the SUs. Let 1/T;

'As SR-BP only affects the schedule of the transmitted messages, it can be
readily applied to all distributed BP variants designed for cooperative spectrum
sensing, as well as more general distributed inference algorithms that use
message passing, assuming that a residual can be calculated for the messages.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/



OIKONOMOU-FILANDRAS et al.: INFORMED SCHEDULING BY STOCHASTIC RESIDUAL BELIEF PROPAGATION 91

be the sampling rate for all the SUs and N; be the number
of observations (samples) obtained by each SU. Each node
s observes the signal vector y, = [ys[1],...,ys[N;], where the

received signal y;[n] 4 vs(nTy) is given by

CN(0,p2 +062),
ysln] ~ {ew(o %),

if the channel is busy,
if the channel is idle,

ey

in which the notation CN(a,b) denotes the complex Gaussian
distribution with mean a and variance b.

Lety=[y,,...yy] denote? the observation of all the SUs, and
X, be the state of the channel inferred by SU s. The aim of SU
s is to find the maximum a posteriori probability (MAP):

xs_argmaxPr( =x]Y =y), fors=1,...N, (2)
where cooperation between the SUs is implied in the condition.
For simplicity, we assume that all correlations between the SUs
are pairwise.> Hence, the joint pdf is written as

Pr(X|Y =y °<H<1> XYy =y) []®sr(X:. %), 3)
sEr

in which @; is the local potential function, and @y, is the
compatibility potential function [1]. We define the univariate
potentials d; ( 5) A Pr(X;|Y;
D, (X5, Xr) = exp(?»s A(Xs = X;)), with A, the correlation
factor between nodes s and r which is sampled uniformly
between [0.2,4] as in [16], and I(-) is the indicator function.
Such a factorization as in (3) can be conveniently expressed
as a graphical model such that factors are mapped to nodes,
referred to as clusters, and edges connect clusters with common
variables. To compute the marginals in (2) efficiently avoiding
calculation on the joint pdf (3), BP is used.

BP calculates approximations of the marginals Pr(X;|Y),
called beliefs, bs(Xy) [11]. Once the graphical model of (3) is
created, messages are passed between the clusters through the
edges, until convergence or a specific number of iterations has
passed.

In sum-product BP, the belief of each cluster (i.e., an approx-
imation to the true marginal) at each iteration ¢ is calculated as

b (X)) = @) TT (X0, @)
JENS

=y,) and the pairwise potentials

where the messages are calculated by

(t=1)
§) o< Z‘P b)i(xl) 5)
,Us%r (Xr,s)
where W, (X,) could be either ®,(X,) or @,(X,,X;), depending
upon the type of factor in the node. The notation N denotes
the set of neighboring clusters for cluster s. In addition, X,
represents the common variables between r and s, which in this
case simplifies to X;. The practical aspects of implementation
can be found in [16] from where they are followed precisely.*

,Ur—>s

2Uppercase letters are used to represent random variables, while lowercase
letters represent observed values of the respective variables.

3This assumption is suitable for this application but does not limit the
generality of SR-BP to only pairwise interactions.

4Since each message can be represented by only a single digit, we consider
that the exchange of such information is free of collisions.

III. BP AS AN OPTIMIZATION PROBLEM

To devise SR-BP, we first describe BP as an iterative method.
For completeness and clarity, we will present all the necessary
definitions as presented in [13]. Specifically, each message can
be viewed as residing in some message space R C (RT)¢, where
d denotes the dimension of the messages.> Hence, the set of
messages, M, in a cluster graph is a subset of RM|.® Let m and
n denote the index of individual messages, v,, and v, denote
the mth and nth message respectively, and v = [v,...,v,] €
RIMI denote a joint assignment of a subset of the messages.
The update (4) can be understood as a mapping function f, :
RIMI — R that defines the mth message as a function of a subset
of the messages. Then we can define an iterative method for
each message m:

= fu(@). (6)
Assuming convergence, we have the fixed point
fm(V*) = v;’;y (7

Finally, we consider the global update functions that contain
the iterative methods for all messages. The messages can be
updated synchronously (i.e., all together simultaneously at each
iteration), or asynchronously (i.e., only a subset gets updated at
each iteration). The equations for the two schemes are:

= (f] (V),... ,f‘M‘(V)) y (8)
(V17...,fm(v),...,V|M‘). (9)

In the asynchronous case, we assume that there is a set of
times 7 = {0,1,2,...} at which one or more components v,,
are updated. Also let T, be the set of times v,, is updated. Then
for the asynchronous case we adopt [13, Assumption 3.1].

Assumption I11.1: For every message m, there is a finite time
T, so that for any time ¢ > 0, the update v := f(v) is executed
at least once in the time interval [t,7 + T,,].

Practically, this means that as long as the algorithm has not
converged, every message will keep being updated iteratively.

The main tool in convergence analysis is contraction. For a
finite dimensional vector space V that has a vector norm || - ||,
define a mapping F : V — V to be a || - ||-contraction if

1F(v)

If F(-) is a || - ||-contraction, then a unique fixed point v*
guaranteed to exist, and applying F(-) iteratively,

Yt — (vm)

F* (V],...
F,Z(vl,...

Vi)
7V|M\) =

—F(w)|| <da|lv—w||, for some 0<a<1,v,weV. (10)

Y

is guaranteed to converge to v*, for all possible initial vectors
v € V. In the message space R we define a message norm
lvim — win|| that measures the distances between individual
messages and a global norm that measures distances between
points in RIM|. Following the analysis in [13], we also use the
max norm || - || for the global norm defined as

A
[Ilv—wl|le = max |[vy, —wpl|- (12)
me|M|

SFor convenience all messages are assumed to have the same dimension d.
6|M| is twice the number of edges € in the graph.
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Given that convergence is guaranteed for the synchronous
BP, i.e., F*isal|-||-- contraction, Elidan ez al. revealed that the
asynchronous BP will also converge if there is a propagation
schedule that guarantees that every message will be updated
until convergence, i.e., Assumption III.1 [13]. The above is
described in following theorem [13, Theorem 3.2], which we
will use to analyze the convergence of SR-BP:

Theorem II1.2: If F* is a max-norm contraction, then
any asynchronous propagation schedule that satisfies
Assumption III.1 will converge to a unique fixed point [13].

Moreover, [13] suggested that in an asynchronous message
passing scheme, the messages that “carry” more information be
propagated first as they will help the algorithm converge faster,
and they defined the residual of a message as

A
(V) = [[ fin(v) = V- (13)
This has led to the proposal of R-BP (residual BP) message
passing, where at iteration ¢, all residuals are calculated and the
message with the largest residual is propagated. That is,

1+1)

ml ) = argmaxry, (v(’)) ) (14)

R-BP typically converges more often and with less messages
than both synchronous and asynchronous BP schemes, which
have led to a variety of R-BP variants in the LDPC decoding
application. Unfortunately, R-BP requires a centralized entity
to compare all the residuals, making it unsuitable for BP in
distributed networks. In this letter, we solve this by SR-BP.

IV. SR-BP

At every iteration of BP each node can transmit its location
belief eq. (4). Consequently, each node has to decide if its mes-
sage is “important” enough to transmit. Following the intuition,
we propose a stochastic message passing schedule, in which
each node transmits its belief at time slot # with the probability

Pr (V)(rtl)) = 1—|—exp1<—r,(,i)), (15)

which is the sigmoid function of the residual.

Theorem IV.1: Assuming that the PGM already satisfies the
max-norm contraction condition for the synchronous BP case,
SR-BP will converge to a unique fixed point.

Proof: We only need to prove that SR-BP satisfies

Assumption III.1. By definition, we have r,(,tl) >0, Vv, €M
and thus

Pr (rf,?) >0.5. (16)

Consequently, there will always be a positive probability that
message m will be transmitted. Hence, there will be a T,
so that for any time ¢ > 0, message m will be updated and
Assumption III.1 is satisfied. This completes the proof. (]

It should be noted that by always having a positive transmis-
sion probability the silent node issue discovered in [14] is also
resolved, as all nodes will get a chance to transmit.
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TABLE 1
RESULTS FOR THE ISING MODEL
Conv. % | Avrg. Conv. Iterations | Avrg. Messages | KLD
BP 83% 78.5 8634 0.255
ABP 88% 63.2 6905 0.257
R-BP 100% 21.5 315 0.369
SR-BP 94.5% 28.4 393 0.365
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Fig. 1. Cumulative convergence % for the 11 x 11-node Ising grid.

V. ISING AND COOPERATIVE SENSING RESULTS

Monte-Carlo simulations have been carried out to analyze
the convergence rate, the message overhead and the quality
of the marginals of SR-BP. Comparisons will be made with
synchronous BP (BP) and asynchronous BP (ABP). Moreover,
we compare SR-BP with the centralized R-BP as a benchmark.

A. Ising Model

We consider random grids parameterized by the Ising model
[1].7 A random grid with 11 x 11 nodes was created with uni-
variate potentials ®;(X;) sampled from U[0, 1] for each variable,
and pairwise potential @; ;(X;,X;) = *CIXX)=1) where A is
sampled uniformly from [—0.5,0.5] having some nodes to agree
and disagree with each other randomly. Finally C is an agree-
ment factor, where higher values impose stronger constraints on
the “negotiations” between nodes, making convergence harder.
In the simulations, 200 independent realizations were run for
the network with 11 nodes and C = 10 and the algorithms were
allowed to run until convergence or 300 iterations had passed.
The results are summarized in Table I.

First, as expected, R-BP achieves convergence every time in
the given scenario, requiring 73% less iterations on average
and almost 96% less messages. Also, SR-BP performs pretty
close to R-BP achieving only slightly worse convergence rate,
and requiring 64% less iterations than BP, and around 95% less
messages, hence a huge decrease in complexity and overhead.
Finally, the KL divergence is almost identical between R-BP
and SR-BP. Fig. 1 shows the cumulative percentage of conver-
gence of all the algorithms as a function of iterations passed.
Again, please note that even though SR-BP converges less than
the centralized R-BP, it converges much faster if it does.

TThe Ising model provides a systematic way to analyze iterative algorithms,
e.g., [9], [12], [13].
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TABLE II
RESULTS FOR THE COOPERATIVE SPECTRUM SENSING MODEL

Conv. % | Avrg. Conv. Iterations | Avrg. Messages
BP 9.8% 256.1 2817.26
ABP 13.4% 259.1 2849.6
R-BP 19.5% 269.0 279.0
SR-BP 18.5% 267.9 804.7
o Spectrum Sensing ROC Curve
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Fig.2. ROC curves.

B. Cooperative Spectrum Sensing

In this subsection, we assess the performance of SR-BP in
the cooperative spectrum sensing scenario.

In the simulations, the SUs were deployed randomly in
a circular area with unit diameter, and we define R as the
maximum communication range between SUs, where R = 0.7.
A total of 100 simulations were run, and there were 100 time-
slots for each run, with maximum 300 iterations. Simulation
results are shown in Table II. In the setup, convergence is
much more difficult to achieve, due to the large number of
interconnections possible by their high communication range,
and the relatively large correlation factors {A; ;}. Still, the pro-
posed SR-BP manages to double the convergence percentage,
using only approximately 29% of the message propagations
required by BP. Therefore, in a real life application, SR-BP
will achieve better convergence, with a possible 71% decrease
in the required transmitted messages (i.e, both computational
complexity and overhead).

Note that it is hard to compute the exact marginals for the
spectrum sensing case. Instead we compute the ROC curves
for the algorithms, as provided in Fig. 2 [17]. As can be seen,
SR-BP has a better ROC curve than BP and ABP, achieving a
curve that almost matches the one by the centralized R-BP.

VI. CONCLUSION AND DISCUSSION

In this letter, we have presented a novel distributed message
scheduling algorithm for running inference algorithms using
BP in wireless networks and more specifically it was used for
cooperative spectrum sensing in a cognitive radio network. We
have proven that SR-BP message schedule will converge to a

fixed point if synchronous schedule converges, and showcased
the superiority of the proposed algorithm even in the more
general non-convergent cases, in which it consistently manages
to achieve higher convergence rates, better accuracy, as well as
lower overhead and computational cost (the important metrics
in cooperative spectrum sensing). It should be noted that this
work is far more general and can be used in a large number
of applications where distributed iterative algorithms are used.
Future work will involve experimentation with more compli-
cated discrete and continuous pdfs. Analysis of the contraction
rate of SR-BP and possible alternative distributions that could
be used to instigate message propagation. In conclusion, the
analysis of message schedules for distributed algorithms has
been quite overlooked by the research community despite all
the advantages a good message schedule clearly provides. We
hope that this work will trigger an increase in interest for this
interesting field, with a wide range of applications.
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