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Abstract

This work deals with the modelling of multiple and structured oscillatory phenom-

ena. The goal of the thesis is to show how stochastic oscillations can be modelled,

and define their elliptical structures as a special class of bivariate time-dependant

variation. The central part of the research is the introduction of new multivariate

elliptical models and the review of existing definitions. The findings are presented

in a table, where the classification is made based on whether the definitions are ran-

dom or deterministic and whether they are defined in time or frequency domains.

The previously introduced ellipse definitions for stochastic processes that have been

described in the literature are limited to the frequency domain only. The main

contribution of this work is in adding to existing time domain models by defining

the description of the autocovariance ellipse and the forecast ellipse. Both of these

definitions are non-random. The ellipses are defined from either the autocovariance

or the forecast functions of the process as one moves forward in lag-time or forecast-

time. In order to illustrate these theoretical concepts and show the usefulness of

the new definition we investigate these concepts using a parametric model. Univari-

ate and bivariate, real-valued and complex-valued models are considered, and their

representation discussed. The richest model proposed is that of a complex-valued

bivariate autoregressive process of order one and this is based on modelling using

affine transformation matrices. This model results in a stochastic oscillation and the

elliptical definitions proposed are explored in this context. The actual behaviour of

the proposed stochastic process is also illustrated on simulated data. Some limita-

tions of this approach are discussed and extensions of this model are presented.
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Chapter 1

Introduction

This thesis introduces new time series models in the realm of multiple stochastic

oscillations. We shall unify understanding of such processes from the fields of statis-

tics, signal processing and optics. We will propose new models and develop new

understanding of these models that describe the notion of an elliptical oscillation.

Therefore the new contributions are: (1) clarifying and summarising the existing

elliptical representations; (2) creating a superstructure for describing multivariate

elliptical structure, in particular by introducing two new elliptical representations;

and (3) introducing a bivariate complex-valued vector autoregressive CVAR(1) model

and studying its properties in the time and frequency domains.

The classical notion of a time series model is as an aggregation of components.

According to Harvey [19] a structural time series model (STSM) is defined as a simple

additive model of various components, most notably a trend component, a cyclical

component and a seasonal component and can be adapted for both univariate or

multivariate data. Such models have been proposed by many authors especially in

the field of econometrics and finance (e.g. [19, 21, 54]), but similar models can be

found in other applications as well, for example oceanography [13].

One example of such models is defined as an addition of four vector components:

the trend component µt, the seasonal component γt, and the cyclical component

ψt, and the noise component εt ∼ i.i.d.N(0,Σε). As such, it is in its multivariate

form defined for a vector of n time series, Xt = [X (1)

1 , . . . , X (n)

t ]T. The general form

of an STSM for multiple time series is [19]

Xt = µt + γt +ψt + εt, t = 1, . . . , T. (1.0.1)
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Generally, it is hard to specify the difference between the seasonal and cyclical

components as both are periodic. In this research we understand the seasonal com-

ponent to have a period governed by the law of nature (e.g. days in a week, months

or quarters in a year, etc.), whereas the periodicity of the cyclical component is

not constrained to any value. However, in this thesis we are mainly interested in

investigating the cyclical component, ψt, and aim to explain how to model this as a

stochastic oscillation. For example, the cyclical component modelling is widely used

for modelling of econometric data sets, where one is interested in economic business

cycles (e.g. [22, 54, 26]), or in oceanography for the analysis of the oscillatory force

of the oceans (e.g. [13]).

We are not only interested in how these cycles move univariately, but how they

move together in relation to each other in a multivariate case. This clearly shows

the need and logical extension to bivariate and multivariate models, as it allows us

to model two or more oscillations in the same model. We wish to describe their

cyclical commonality (i.e. frequency of oscillation) and understand the relation

between them, whether one is leading the other and what is the phase difference

between them.

Elliptical time series is a special class of bivariate time dependent structure and

has been used in the physical sciences to understand problems in geophysics and

oceanography [6, 13]. Recent developments have formalized this class of signals in

the frequency domain [53, 59], advocating the joint analysis using a complex-valued

representation of the signal. However, the temporal understanding of such signals is

lagging far behind the frequency domain understanding. Here we aim to clarify what

an elliptical time series corresponds to, determine its time domain properties and

introduce a new family of parametric time series where this structure is important

and interpretable.

Correlated bivariate time series are ubiquitous in physical applications. Recent

years have seen the development of methods that are based on modelling bivariate

time series as univariate complex-valued time series. Several scientific communities

use such models to understand oscillations and elliptical signals, especially for in-

ference methods. We can find oscillatory data sets in various applications, such as

electromagnetic radiation [71], seismology [55], oceanography [29], econometrics [19]

and blood flow [39]. There are also different types of oscillations, the ones with time-

varying period are fundamental in neuroscience [58], the physical sciences [13, 30],

and econometrics [19, 54]. There are two important classes of models, the time-
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varying deterministic oscillation in noise [9] and the stochastic oscillation, such as

an autoregressive model AR(2) with complex roots [49].

Many would argue that most of the quantities observed in applications are real-

valued and question the need for developing models for complex-valued time series.

We argue that complex-valued data are naturally occurring and can be found in

many data acquisition settings. It is worth mentioning that in this thesis we are

dealing with complex-valued time series, which are not to be understood in the same

way as the complex-valued random vectors (RVs). Complex-valued time series are

not just a concatenated version of complex-valued RVs, because in the case of time

series we are interested in their time evolution and relationship between time points.

For time series the direction of this evolution is also important and needs to be kept

in consideration, as the natural time flows in one direction.

One of the main advantages of using complex-valued time series is that the

relationship between the two series is preserved and analysed when modelled as

complex-valued data by using the real and imaginary components. It means that

we can convert a bivariate real-valued quantity into a univariate complex-valued

quantity, which simplifies mathematical calculations while still preserving the insight

into the relationships between the components of the data [62]. This is especially

convenient if the quantities come in pairs. In other words, if they are naturally two-

dimensional quantities that lie in the plane as orthogonal components, e.g. north-

south and east-west components in case of oceanographic data (see [29, 30, 68]). In

many sciences, such as electro-magnetics, oceanography and atmospheric science,

pairs of real-valued signals coexist together and the researcher is interested in their

trajectories in a plane. In the electromagnetic theory the time-varying position of

the electric field vector can be viewed as a complex-valued signal in the (u, v)-plane

[62, p. 6]. Another way to obtain complex-valued time series is to artificially create

them from real-valued data by creating complex analytical signals using the Hilbert

transforms.

The simplest way to think about an elliptical signal is to imagine an elliptical

trajectory mapped out by the signal over time. Several authors have been analysing

elliptical signals and aiming to define what is the ‘ellipse’ of a signal. Early develop-

ments have been made for deterministic signals in the optics community where light

is observed as two parts of a signal that together map a trajectory of an ellipse [6].

More recent work on the elliptical structure of stochastic processes has been done

in the signal processing community [61] as well as the statistical community [52].
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In the case of stochastic processes time trajectories are random, so the frequency

domain representations have been used to define the elliptical structure. To add to

the variety of available definitions, there are also other concepts such as modulated

elliptical signals [30], multivariate oscillations [31] and polarisation [24, 56]. Some

of these concepts are defined in the time domain of the signals, some in frequency

domain, but there is no effective summary or relating the different definitions.

The engineering and signal processing communities are more familiar with analysing

a signal in the frequency domain, whereas the statistics and econometrics commu-

nities prefer to operate in the time domain. We aim to unify the two viewpoints

and clearly define how an elliptical time series can be viewed in both domains. One

of the ways to achieve this is by defining the ellipse of a stochastic process in time

domain rather than frequency domain. The contribution of our work is the view on

an elliptical process through the so-called forecast ellipse and autocovariance ellipse,

as they will be defined. Due to the properties of these two qualities the ellipses will

be defined in time domain and will be deterministic representations of a stochastic

process.

In Chapter 5 of this thesis we aim to summarise the different approaches to defin-

ing the ellipse in one coherent framework and propose two new elliptical definitions.

However, we start by reviewing the fundamentals of complex-valued random vectors

and random processes in Chapter 2, and general theory about time series in Chap-

ter 3. The initial literature review is intended to clarify and emphasize the main

concepts needed to understand the differences when dealing with complex-valued

signals and processes, and to be able to easily understand the application of these

concepts.

In order to illustrate the concepts developed we will present some parametric

elliptical models in Chapter 6. On one hand these models should serve as tools to

understand the concepts developed in the previous chapters and on the other hand,

as general parametric models that can be used to model stochastic oscillations. Para-

metric models are in general very useful, because they can be easily estimated and

have parameters that are interpretable. We start the parametric models chapter by

looking at a univariate complex-valued CAR(1) and continue by defining a bivariate

complex-valued CVAR(1) that will be our main focus. At the end we also explore

extensions to the bivariate model by introducing a stretching factor. The paramet-

ric models are illustrated with simulated examples, which we also use to show the

concepts of ellipses developed theoretically.
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Chapter 2

Complex random vectors and

processes

We shall start by presenting some background theory and main concepts about

complex-valued random vectors (RV) and random processes (RP). In many aspects

and modelling structure they are no different from real-valued ones, but there is an

additional level of complexity that needs to be clear to the reader. In this chapter we

introduce complex-valued random vectors and processes and discuss their properties.

This description is important, because these concepts will be widely used in the rest

of our work and most of us are more used to deal with real-valued random vectors

and processes. Since all our work is based on complex-valued processes, it is very

important that these concepts are clarified at the beginning.

Mathematically the complex-valued random vector could always be analysed as

a pair of real vectors. Although using complex RVs compared to a pair of real RVs

has several advantages, mainly because the derivations are simpler and at the same

time preserving the physical sense related to the nature of the data [3]. Authors

have been arguing whether complex RVs are special or not and whether they can

be equally well analysed with bi-variate real random vectors (see for example the

discussion in [23, 43]).

2.1 Complex-valued random vectors

In general, complex-valued random-vectors (RVs) can be seen as two real-valued

RVs, we provide the definition below. The mathematical theory of complex numbers
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will be needed. A complex number can be expressed as a + bi, where a is the real

part and b is the imaginary part. The imaginary part is multiplied by the imaginary

unit i, such that i2 = −1.

Definition 2.1.1 (Complex-valued random vector [3])

The n-dimensional complex-valued RV, U ∈ Cn, is composed of two real-valued

RVs, X ∈ Rn and Y ∈ Rn, in the following way, U = X + iY.

In other words, X = <{U} and Y = ={U}, where “<” denotes the real part

and “=” denotes the imaginary part. The complex conjugate of the RV is denoted

as U∗ = X − iY. It is worth clarifying the notation at this point, we are using

capital letters (e.g. U) for random quantities, whereas non-random vectors (such as

realisations) will be denoted with small letters, for example u = x + iy.

Composite and augmented vecotrs For the purposes of analysis of complex

RVs we need to define additional concepts. Based on various literature (e.g. [2, 44,

61]) we define two concepts: (1) the real composite vector V, a vector composed

of the real and imaginary parts of a complex RV as two real-valued RVs, V =

[XT,YT]T ∈ R2n; and (2) the complex augmented vector W, a vector composed of

the complex RV and its complex conjugate, W = [UT,UH]T ∈ C2n. The superscript
T denotes vector transpose and superscript H denotes conjugate transpose. The

algebraic relationships between these sets of vectors are outlined below, along with

some useful matrices and concepts that will be used in the continuation. These

concepts are needed for the complete picture about complex-valued RVs we need to

analyse both the vector itself and its complex conjugate.

Real-to-complex transformation To transform vectors from real composite to

complex augmented ones it is useful to introduce a 2n × 2n real-to-complex trans-

formation matrix denoted Tn [61], as

Tn =

[
In iIn

In −iIn

]
. (2.1.1)

The transformation matrix has the following property, TnTH
n = TH

nTn = 2I2n, where

In is the n × n identity matrix. This matrix is useful as it transforms the real

composite vector of two real-valued RVs into a complex augmented vector of a
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single complex-valued RV, whose real and imaginary parts will be the entries of the

initial composite RV. Hence, by using the real-to-complex transformation matrix

and the composite and augmented vectors mentioned above, we can compose a

complex-valued RV U from two real-valued RVs X and Y, as follows

W =

[
U

U∗

]
=

[
X + iY

X− iY

]
= Tn

[
X

Y

]
= TnV. (2.1.2)

Rotation matrix We introduce the rotation matrix, which will be used in vector

valued time series. The rotation matrix Rθ rotates the vector by angle θ in the

clockwise direction (CW). It is defined as

Rθ =

[
cos θ sin θ

− sin θ cos θ

]
, (2.1.3)

and as such is an orthogonal matrix, RT
θ = R−1

θ and RθR
T
θ = I2, with the following

properties det{Rθ} = 1 and RθRλ = Rθ+λ.

Phase shift matrix A complex-valued phase shift matrix acts as a unitary trans-

formation that shifts the phase of the entries of the vector it operates on by δ in the

opposite directions. It can be specified as

Kδ =

[
eiδ 0

0 e−iδ

]
, (2.1.4)

where KδK
H
δ = I2 and KδKν = Kδ+ν . For example, in time domain it shifts the

components of the signal out of phase by 2δ. The effect of a phase shift matrix can

be illustrated with an arbitrary complex-valued vector expressed in polar form. The

matrix that acts on the vector creates a phase shifted vector as[
eiδ 0

0 e−iδ

][
r1e

iφ1

r2eiφ2

]
=

[
r1e

i(φ1+δ)

r2ei(φ2−δ)

]
. (2.1.5)

The distribution of complex random vectors

There are many different views on how to understand the distribution of complex

RVs and what is needed for the complete specification of their distribution. Picin-

bono [44] emphasizes that a complex RV, U ∈ Cn, can be simply seen as a com-
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bination of two real RVs, X and Y, and as such analysed as two real RVs in R2n.

In case of normal distribution, he claims that the complex RV, U, will be normally

distributed, if the real and imaginary parts will be jointly normally distributed. He

as well concludes that if two complex normal RVs are uncorrelated, they are not

necessarily independent, as it would be the case of real random variables.

Whereas, Amblard et al. [3] identify that one must consider both U and U∗ in

order to capture all statistical information contained in the PDF. This is disputed

by Olhede [40] as U∗ is only the complex-conjugate of the complex RV, and so it

has similar mathematical properties. Two related density functions are possible,

but only one can have a proper meaning of a density. The second one just explains

the role played by the complex conjugate, which is what has created the most

disagreement between the authors in the literature.

Dependence between complex random variables

For the analysis of the dependence between complex RVs, the concepts used for

real-valued RVs cannot be directly applied, as one needs to take into consideration

the covariances between the real and imaginary parts. In the contrary, the complete

second-order statistical information would not be captured. Many authors have

recently looked at the definitions of the covariance matrix for complex-valued RVs

and have identified that special care needs to be taken (typical examples of such

developments include [37, 38, 44, 60, 61]).

The covariance matrix of zero-mean real-valued random vector, X, is usually

specified as ΓX = cov(X,X) = E[XXT]. The covariance matrix for complex-valued

RV, U, can be similarly specified as ΓU = cov(U,U) = E[UUH], and is referred to as

Hermitian covariance. As per Schreier and Scharf [61] in case of complex-valued RVs,

if the RV U and its complex conjugate U∗ are correlated, then the covariance matrix

as shown above does not describe all the second-order properties of the complex-

valued RV. We additionally need to introduce the complimentary covariance matrix

Γ̃U = cov(U,U∗) = E[UUT] (it is also known by other names as pseudo-covariance,

conjugate covariance matrix or relation matrix). Both the Hermitian covariance

matrix and the complimentary covariance matrix together describe the complete

second-order properties of a complex-valued RV U. For simplicity we introduce the
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composite covariance matrix ΓV of a real composite vector V [61] as

ΓV = E[VVT] =

[
ΓX ΓXY

ΓY X ΓY

]
∈ R2n×2n, (2.1.6)

and the augmented covariance matrix ΓW of the complex augmented vector W as

ΓW = E[WWH] = TΓVTH =

[
ΓU Γ̃U

Γ̃∗U Γ∗U

]
∈ C2n×2n. (2.1.7)

2.1.1 Propriety and circularity

We aim to clarify the propriety and circularity as concepts inherent to complex RVs.

Many authors mix these two terms and incorrectly assume they are interchangeable,

We aim to make the distinction clear and illustrate the differences. In general,

propriety of a RV means that there is no relation between the real and imaginary

part of the RV. That can be desirable because proper complex-valued RVs can be

treated in the same way as real-valued RVs. The inference of such RVs is no different

to real-valued RVs and the same concepts apply.

Definition 2.1.2 (Propriety [62, p. 35])

A complex-valued zero-mean RV, U ∈ Cn, is called proper, if its complimentary

covariance matrix is zero, Γ̃U = 0, otherwise its known as improper.

Additionally for a set of two complex-valued RVs, U and Z ∈ Cn, if the compli-

mentary cross-correlation matrix between them is zero, Γ̃UZ = E{UZT} = 0, then

we say they are cross-proper. Whereas, U and Z are jointly proper, if Γ̃U = 0,

Γ̃UZ = 0 and Γ̃Z = 0 [60]. Moreover, if U is proper complex RV then any complex

RV Z obtained from U by a linear or affine transformation will still be proper [38].

As well as any linear combination of two RVs Z = a1U1 + a2U2 will be proper, only

if both U1 and U2 are proper.

Definition 2.1.3 (Circularity [43])

A complex random vector is circular, if for all α ∈ R, U and eiαU will have the same

probability density functions, that is to say its probability distribution is rotationally

invariant.

Circularity is important, because such models have fewer parameters, and so by
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the principle of parsimony we should chose simpler model to avid over-fitting. Ac-

cording to Adali et al. [2] for a RV to be proper all the second moments have to be

rotationally invariant, whereas for a RV to be circular all the moments have to be ro-

tationally invariant. Thus, it is evident that circularity is a much stronger condition,

and implies propriety, but not vice versa. At the level of second-order statistics, the

condition for rotational invariance poses all the restrictions on the complimentary

covariance matrix only, the Hermitian covariance matrix is unrestricted, as shown

below

ΓU = E{UUH} = E{eiαUUHe−iα} = ΓU ,

Γ̃U = E{UUT} = E{eiαUUTeiα} = ei2αΓ̃U .

From this we can see that the only case when propriety and circularity are the

same is when the complex RV is Gaussian and zero-mean, because the Gaussian

distribution is completely defined by its first and second order moments.

2.1.2 Affine transformations of complex random vectors

Pre-multiplication of vectors by a matrix leads to a transformation of the vector.

One of the most general classes of transformations is the affine transformation, which

is composed of several operations. Here we introduce the general topic of widely-

linear affine transformations. This will be useful later as we think of our parametric

time series models as an affine transformation of the time series vector at every time

point.

Definition 2.1.4 (Affine transformation [64, p. 29])

Affine transformation is a general form of linear transformation Rp → Rp, which has

the form of x′ → Tx + a, where T is a p× p matrix and x and a are p× 1 column

vectors. This can be extended to a widely-linear affine transformation of the form

x′ → Tx + T′x∗ + a, where T′ is a different transformation matrix that acts on the

complex conjugate of the vector x∗.

Affine transformations can include any combination of rotation, scaling and/or

translation. In a 2-dimensional case we can interpret an affine transformation as
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composed of multiple sequential transformations [66][
x′

y′

]
= B A Rθ

[
x

y

]
+

[
x0

y0

]
,

where A =

[
±1 0

0 ∓1

]
and B =

[
kx kxy

kyx ky

]
.

(2.1.8)

In the above from, matrix Rθ rotates the original axes by angle θ while preserv-

ing the orientation (det{Rθ} = 1). Matrix A produces a line-reflection that reverses

the orientation (det{A} = −1), if the signs are different, or point-reflection preserv-

ing orientation, if both signs are negative. Matrix B causes scaling, stretching or

shear transformation of the axes [66]. The scaling factors, k·, control the grade of

transformation so that the size is changed, but the parallel lines are preserved. If

kx = ky we have ‘isotopic dilatation’ preserving shape and angles, if kx 6= ky we get

a distorted transformation, and if kxy, kyx 6= 0 the transformation is a shear that

changes angles and shape.

2.2 Complex-valued stochastic processes

Natural forces are influenced by many factors and as such are random, in addition

to making a measurement error which adds to the randomness of the data collected.

Stochastic processes exhibit uncertainty and we cannot exactly predict the value of

the process at each time point. The possible values of the process have a probability

distribution describing their occurrence. In this thesis we will refer to determinis-

tic functions of time as signals, whereas to denote stochastic processes we use the

term processes or time series. However, our interest is to mainly research random

processes.

In addition, we will mainly focus on complex-valued random processes. Ac-

cording to Olhede and Walden [41] a complex-valued signals or processes can arise

in three different ways: (1) from two unrelated signals; (2) as two components of

polarised motion that are closely related (such as for example north-south and east-

west velocity components in oceanography [29, 68]); and (3) from a complex-valued

recording (e.g. in quadrature Doppler ultrasound [14, p. 89]). The main advantage

of complex processes is that the relationship between the two time series or two

components of a single series is preserved and analysed in a univariate time series,

which is composed of complex-valued quantities with real and imaginary parts. In
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this chapter we will present complex-valued stochastic processes and talk about their

main properties. Just for simplicity we will talk about univariate processes, but the

extension to multivariate processes is very simple and natural.

Definition 2.2.1 (Complex-valued stochastic process [35, p. 31])

Let {X(t, ω) | t ∈ T} and {Y (t, ω) | t ∈ T} be two real-valued stochastic processes

defined on the same probability space P = (Ω,F , P ), where T usually denotes

an interval or set of positive integers. Then we have a complex-valued stochastic

process {U(t, ω) | t ∈ T} defined on the same probability space P with U(t, ω) =

X(t, ω) + iY (t, ω), so that the real and imaginary parts are P -measurable functions

on P for all t ∈ T .

In the rest of the text, for simplicity, we drop the dependence on ω. We use

the notation {U(t)} to talk about continuous time stochastic process, and {Ut} for

discrete time process where t denotes discrete sampling parameter and ∆t is the

sampling period, such that Ut = U(t∆t). Since in time series analysis herein we

mainly deal with discretely sampled finite realisations of a time series process, we

will mainly use the notation {Ut} and reserve the notation ·(t) to denote a parameter

as a function of time t. In other words the data we talk about are mostly discretely

sampled from a continuous processes, since usually it is not possible to observe

continuous data directly.

For the purposes of this thesis we establish the notation for discrete complex-

valued stochastic time series as {Ut} ∈ C for t = 1, . . . , T , that is composed from two

real-valued time series {Xt} and {Yt} in the usual form, Ut = Xt+iYt. For simplicity,

we assume that the process is zero-mean, E[Ut] = 0,∀t. In contrast to the stochastic

process, a deterministic signal is denoted with small letters, such as ut = xt + iyt.

We continue to use the notation of the real composite vector Vt = [Xt, Yt]
T ∈ R2

and the complex augmented vector Wt = [Ut, U
∗
t ]T ∈ C2, for t = 1, . . . , T in the

same way as already introduced earlier in Chapter 2.1.

2.2.1 Autocovariance and propriety

In the case of random processes we are not only interested in the dependence at

every time point, but also in the dependence between different points in time. This

relationship is captured by the autocovariance function that tells us the dependence

of the time series with itself between two points in time. In addition to the usual
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autocovariance function we also have to express the complimentary autocovariance

function, because we are dealing with complex-valued processes.

Definition 2.2.2 (Autocovariance function [35])

The autocovariance function (ACVF) of a complex-valued, zero-mean process {Ut},
is defined as γU(t, r) = cov(Ut, Ur) = E[UtU

∗
r ] and the complimentary autocovariance

function (C-ACVF) as γ̃U(t, r) = cov(Ut, U
∗
r ) = E[UtUr], for all t, r ∈ T .

If the process {Ut} is stationary then the ACVF and C-ACVF do not depend on

the time t, but only on the difference between the two time points t−r, which we will

call lag and denote τ . So the ACVF can be expressed as γU(τ) = cov(Ut+τ , Ut) =

E[Ut+τU
∗
t ] and the C-ACVF as γ̃U(τ) = cov(Ut+τ , U

∗
t ) = E[Ut+τUt]. The properties

of ACVF in case of complex-valued process are [8, p. 115]: (1) γU(0) ≥ 0; (2)

|γU(τ)| ≤ γU(0); (3) γU(τ) = γ∗U(−τ), i.e. ACVF is a Hermitian function; and

(4) non-negative definite. By using the Definition 2.1.2 in Chapter 2.1.1 we can say

that a complex stochastic process will be proper, if its complimentary autocovariance

function γ̃U(τ) will vanish [38].

For simplicity and in order to capture the full second-order structure we introduce

the composite ACV matrix ΓV (τ) and the augmented ACV matrix ΓW (τ) for a

univariate process {Ut} by using the real composite and complex augmented vectors

Vt and Wt. These matrices can be expressed as

ΓV (τ) = E[Vt+τV
T

t ] =

[
γX(τ) γXY (τ)

γY X(τ) γY (τ)

]
, (2.2.1)

ΓW (τ) = E[Wt+τW
H

t ] =

[
γU(τ) γ̃U(τ)

γ̃∗U(τ) γ∗U(τ)

]
, (2.2.2)

where γU(τ) = γ∗U(−τ) and γ̃U(τ) = γ̃U(−τ). The composite and augmented ACV

matrices are useful because they capture the full second-order structure in one ma-

trix, which can be further used for analysis. These two matrices are also related by

a simple algebraic relationship using the real-to-complex transformation matrix in

Equation (2.1.1), as ΓW (τ) = TΓV (τ)TH.
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2.2.2 Stationarity and ergodicity

Here we introduce both the concept of stationarity and ergodicity. The first one is

important for general simplicity of analysis and the latter one is more of a generally

assumed property of processes.

Definition 2.2.3 (Strict & weak stationarity [8, p. 12])

A real-valued time series {Xt} is strictly stationary when the joint distributions of

[Xt1 , . . . , Xtk ]
T and [Xt1+τ , . . . , Xtk+τ ]

T are the same for all positive integers k and for

all t1, . . . , tk, τ ∈ Z. Weak stationarity, however, means that the first two moments

exist and are invariant under the shift of time. In other words E[Xt] = µ for all

t ∈ Z and cov[Xr, Xs] = cov[Xr+t, Xs+t] for all r, s, t ∈ Z.

In the rest of our research we will consider mainly Gaussian processes as defined

by Doob [12], for which strict stationarity is implied by weak stationarity, since the

Gaussian distribution is completely defined by the first two moments. Stationary

processes are key in time series analysis and most of the theory has been developed

for stationary processes. They are especially important to give a meaningful inter-

pretation to the first and second orders of the time series. In the case of complex-

valued random processes we need to consider wide-sense stationarity (WSS). It is

equal in definition to weak stationarity, but in this case we need to consider both

the (Hermitian) covariance matrix and the complimentary covariance matrix, with

the exception of proper signals. In order to satisfy wide sense stationarity both γ(τ)

and γ̃(τ) need to be independent of t [62, p. 55].

Definition 2.2.4 (Ergodicity [18, p. 46])

We say that the process is ergodic, if the time sample moments converge in proba-

bility to the ensemble moments as T →∞. For example, in case of the first order, if

the sample average X = 1
T

∑T
t=1Xt will converge in probability to the expectation

E[Xt].

We observe several time points of one realisation of a time series process, but

nevertheless we would like to calculate its sample moments, such as for example the

sample mean, which shoud be taken accross all possible realisations. Unfortunately,

from one observation we can only calculate the time moments and not the ensemble

moments. That is why the ergodic property is important as it allows us to obtain the

ensemble moments by calculating the time moments of a realisation. Most common
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is the sample mean, which we calculate as the time average from a realisation. The

ergodicity ensures that the time average, X = (1/T )
∑
Xt, will eventually converge

to the ensemble first moment, E[Xt]. In general, it is very difficult to check if the

ergodicity is satisfied. One such way is by using the property that a process whose

autocovariance function γ(τ) goes to zero quickly enough as τ becomes large will be

ergodic [18, p. 46-47]. Such a process will satisfy the condition

∞∑
τ=0

|γ(τ)| <∞. (2.2.3)

2.2.3 Spectral analysis of complex processes

The idea of spectral analysis is to see the stochastic process as a distribution of

energy on a whole range of frequencies. This view is widely used especially in the

signal processing and engineering communities. In this chapter we give a quick

overview of the spectral analysis theory important for discrete time stochastic pro-

cesses with continuous frequencies. In order to do that we need to start with the

spectral representation theorem.

Definition 2.2.5 (Spectral representation [8, p. 117])

Every stationary and zero-mean process can be written in terms of its spectral

representation as a stochastic integral, or as

Ut =

∫ 1/2

−1/2

ei2πftdZU(f), (2.2.4)

which is defined for frequencies f ∈ [−1/2, 1/2) and where {dZU(f)} is an orthogonal

increment process as described below in Definition 2.2.6.

By Hergoltz theorem [8, p. 118], γU(τ) ∈ C will be the autocovariance function

of a stationary process {Ut}, if and only if it will be (1) non-negative definite, e.g.∑n
i,j=1 aiγU(i− j)a∗j ≥ 0, and (2) will have the following representation

γU(τ) =

∫ 1/2

−1/2

ei2πfτdSU(f). (2.2.5)

In the above equation the integration is with respect to a right-continuous, non-

decreasing and bounded on (−π, π] function S(·) called spectral distribution func-
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tion, such that S(−π) = 0. If this function is differentiable, as S(f) =
∫ 1/2

−1/2
S(f)df ,

then S(f) is the spectral density and dS = S(f)df . Using this property and Equa-

tion (2.2.5) and if γU(τ) is absolutely summable
∑∞

n=−∞ |γU(τ)| <∞ [8, p. 120], we

can derive its inverse as

SU(f) =
∞∑

τ=−∞

e−i2πfτγU(τ) for all f ∈ [−1
2
, 1

2
) and τ ∈ N. (2.2.6)

Definition 2.2.6 (Orthogonal increment process [8, p. 138])

Define a right-continuous complex-valued process {Z(f)} on interval [−1/2, 1/2] to

be orthogonal increment process if it satisfies the following properties:

i E[Z(f)] = 0 for −1/2 ≤ f ≤ 1/2,

ii E|Z(f)|2 <∞ for −1/2 ≤ f ≤ 1/2,

iii E[(Z(f4)− Z(f3))(Z(f2)− Z(f1))∗] = 0 for (f1, f2] ∩ [f3, f4) = ∅.

The orthogonal increment process is used to give meaning to the stochastic in-

tegral in (2.2.4) of the spectral representation in Definition 2.2.5. It has a unique

distribution function Z(·) with the following properties: (1) Z(f) = 0 for f ≤ −1/2;

(2) Z(f) = Z(1/2) for f ≥ 1/2; and (3) Z(f2) − Z(f1) = E|Z(f2) − Z(f1)|2 for

−1/2 ≤ f1 ≤ f2 ≤ 1/2 [8, p. 139].

The spectral density function (SDF), SU(f), and complimentary spectral density

function (C-SDF), S̃U(f), of a complex-valued stochastic process {Ut} are defined

through the spectral process with orthogonal increments {dZU(f)} [53] as

var[dZU(f)] = E[dZU(f)dZ∗U(ν)] =

SU(f)df if f = ν,

0 if f 6= ν; and
(2.2.7)

cov[dZU(f), dZ∗U(−f)] = E[dZU(f)dZU(ν)] =

S̃U(f)df if f = −ν,

0 if f 6= −ν.
(2.2.8)

In the case of a real-valued process {Xt} the SDF, SX(f), is symmetric, non-negative

and has a finite integral on the interval over [−1/2, 1/2]. For a complex-valued

process {Ut} the SDF, SU(f), is still non-negative and has a finite integral on the

interval over [−1/2, 1/2], but is no longer symmetric, whereas the C-SDF S̃U(f) is

due to stationarity symmetric, but generally complex-valued [45].
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Similarly to the composite vector Vt and the augmented vector Wt that we have

previously introduced, we can also construct the composite vector of the orthogonal

processes as dZV (f) = [dZX(f), dZY (f)]T and the complex augmented vector of the

orthogonal process as dZW (f) = [dZU(f), dZ∗U(−f)]T. These two vectors allow us to

specify the composite SDF matrix SV (f) and the augmented SDF matrix SW (f) as

follows

E[dZV (f)dZT

V (f)] =

[
SX(f) SXY (f)

SY X(f) SY (f)

]
df = SV (f)df, (2.2.9)

E[dZW (f)dZH

W (f)] =

[
SU(f) S̃U(f)

S̃∗U(f) SU(−f)

]
df = SW (f)df. (2.2.10)

The two composite and augmented vectors of the orthogonal increment process

can be related by using the real-to-complex transformation matrix, as dZW (f) =

TdZV (f). In the same way we can also relate the composite and augmented SDF

matrices, as SW (f) = TSV (f)TH.

Both the augmented and the composite SDF matrices have to be positive semi-

definite. In the first case this condition will be satisfied if (1) the SDF is always

non-negative SU(f) ≥ 0, (2) the property of the complimentary SDF is satisfies

the following S̃U(f) = S̃U(−f), and (3) in relation to each other they satisfy the

following property |S̃U(f)|2 ≤ SU(f)SU(−f) [62, p. 198]. In the second case the (1)

both SDFs have to be non-negative SX(f) ≥ 0 and SY (f) ≥ 0, (2) the cross SDF

satisfies SXY (−f) = SY X(f) = S∗XY (f), (3) and together they satisfy |S̃XY (f)|2 ≤
SX(f)SY (−f) [5, p. 213].

2.3 Analytic signals

The idea behind analytic signals is to construct a complex-valued signal from a real-

valued signal, such that the original real signal would be equal to the the real part

of the analytic signal and maintain the same spectral decomposition [15]. In other

words we wish to construct a complex-valued signals that has the same frequency

decomposition as the original real-valued signal. This is very useful because we can

easily switch between real-valued and complex-valued signals without changing any

information the signal carries.

Analytic signals are constructed from any real-valued time series by using the



2.3. ANALYTIC SIGNALS 26

Hilbert transform. The inverse process is very simple, one obtains the original real-

valued time series just by taking the real part of the analytic signal. Since the

SDF of real-valued signals is symmetric the negative frequencies are redundant and

can be discarded, which is exactly the property that the analytic signal exploits to

construct a signal with proportional spectral representation.

Definition 2.3.1 (Analytic signal Gabor [15])

Analytic signal of a real-valued signal {xt} is defined as

x+,t = xt + iH{xt} = ax(t)e
iφx(t), (2.3.1)

where H{xt} is the Hilbert transform of {xt}. The amplitude of the signal is ax(t) =

|x+,t| and the phase is φx(t) = arctan
(
={x+,t}
<{x+,t}

)
.

The Discrete Hilbert Transform (DHT) for a real-valued signal {x(t)} is defined

by Kak [25] as

H{xt} =


2
π

∑
n odd

xu
t−u if t is even,

2
π

∑
n even

xu
t−u if t is odd.

(2.3.2)

Whereas, the continuous version of the Hilbert transform for a real-valued signal

{x(t)} is defined by Cohen [9, p. 31] as

H{x(t)} = x(t) ∗ (πt)−1 = 1
π

∫ ∞
−∞

x(u)

t− u
du, (2.3.3)

where “∗” denotes convolution. The Hilbert transform is a convolution between

{x(t)} and (πt)−1, and the above integral is defined as the Cauchy principal value,

in order to ensure that the integral is defined also when t = u.

The analytic signal is a well known representation of a univariate and real-valued

signal viewed as an amplitude/frequency modulated signal. We can see, from the

above Equation (2.3.1), that an analytic signal can always be represented in the

polar form, which gives us the natural link to the phase, instantaneous frequency

and amplitude of a signal [9]. The concept of analytic signals enables us to calculate

the envelope of the signal. As we introduced earlier in many cases we may prefer

to use complex-valued time series models over real-valued ones. The analytic signal

theory gives us the tool to create a complex-valued process for a observed real-valued
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time series that will have the same spectrum as the original process.

We would like to point out two useful properties of the analytic signals. The first

being that the original real-valued signal is obtained simply by taking the real part

of the analytic signal, xt = <{xt,+}. The second one, is that the Fourier transform

(or the spectrum) of the analytic signal on the positive frequencies is the same shape

as the one of the original real-valued time series. The frequency contributions for all

the positive frequencies are doubled, but the frequency contributions of the negative

frequencies are zero [30]

Sx+(f) = H(f)Sx(f), H(f) =


2 if f > 0,

1 if f = 0,

0 if f < 0;

(2.3.4)

where H(f) is the ‘unit step function’ [1, p. 1020].

The analytic signals are very useful, for example, in radio communications, where

complex baseband information signal is modulated and only the real part is trans-

mitted. The receiver reconstitutes the original signal by forming an analytic signal

and demodulating [47]. There are also other practical uses in signal processing and

time series analysis, where one creates a complex valued signal from real valued

data, e.g. speech analysis [67].
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Chapter 3

Time series analysis

The main aim of this chapter is to link the complex-valued random vectors and

processes as described in the previous chapter to time series analysis. We provide

the basic time series theory and talk about time series models. We also introduce

the concept of pseudo-periodic behaviour that we will use in the modelling part of

our work. In this thesis we focus only on stationary processes, because stationarity

is important for many of the concepts we rely on. Additionally, this chapter also

summarises the literature on multivariate time series, which we will use later on for

the construction of multivariate time series models.

Time series analysis can be viewed as analysis of sequential data [13, p. 371]. In

time series analysis one is not only concerned with the multivariate dependence, but

also temporal relationships between data points. This brings us to the argument

that time series data have a specific direction. In other words time evolves only

forward, so the direction of the data cannot be freely interchanged, as it can in the

case of a random vector. Because we are interested in the relationship between the

data points evolution through time, the standard random vector theory will not be

sufficient for the analysis of time series data.

One of the most studied processes and the basic building block of time series

analysis is the autoregressive moving average model (ARMA). Many authors have

analysed it and many new models are based on and derived from ARMA models

(see [7, 8, 18]). Most of this chapter is derived in terms of a complex-valued process

{Ut}, but in some parts where we talk about real-valued process, {Xt}. However,

this theory equally applies to both a real and complex-valued process.
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Definition 3.0.2 (ARMA [8, p. 78])

An autoregressive moving average processes ARMA(p,q) is defined using linear dif-

ference equations with constant coefficients, in the different forms, as

Ut − ϕ1Ut−1 − . . .− ϕpUt−p = εt + θ1εt−1 + . . .+ θqεt−q,

Ut −
p∑

k=1

ϕkUt−k =

q∑
l=0

θlεt−l,

Φ(B)Ut = Θ(B)εt,

(3.0.1)

where B is the lag operator and {εt} ∼ N(0, σ2) is a white noise process.

In the above definition, Φ(B) and Θ(B) are called characteristic polynomials

and are evaluated in the lag operator B. By Brockwell and Davis [8, p. 84-88]

any ARMA process whose polynomials Φ(·) and Θ(·) have no common zeros is (1)

stationary and causal, if and only if, all the zeros of Φ(z) lie outside the unit circle,

i.e. Φ(z) 6= 0 for all z ∈ C such that |z| ≤ 1; and (2) invertible, if and only if, all the

zeros of Θ(z) lie outside the unit circle, i.e. Θ(z) 6= 0 for all z ∈ C such that |z| ≤ 1.

Stationarity of the process is a desirable property, because then the process

characteristics, such as the mean and the variance, are constant over time. Whereas,

causality means that the process depends only on its past values and not the future

values, and as such can be expressed as an infinite sum of past innovation terms.

Invertibility means that the process can be inverted and expressed as an infinite

sum of the past values. Any stationary and invertible ARMA, as defined above, can

be represented with polynomials Ψ(·) and Π(·), respectively

Ut =
Θ(B)

Φ(B)
εt = Ψ(B)εt =

∞∑
j=0

ψjεt−j, (3.0.2)

εt =
Φ(B)

Θ(B)
Ut = Π(B)Ut =

∞∑
j=0

πjUt−j. (3.0.3)

Time invariant linear filters Time invariant filters are generally, due to their

many uses, very important in time series analysis. By applying a linear filter to a

signal we can obtain a new signal with certain desired characteristics. For example,

in spectral analysis of time series they help us keep or suppress certain frequen-

cies from a source signal and obtain a time series with desired shape of spectral
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distribution function.

Based on Brockwell and Davis [8, p. 153], if a time-invariant linear filter H =

{hi, i = 0,±1, . . .}, that does not depend on time and is absolutely summable∑∞
n=−∞ |hn| <∞, is applied to series {Ut} we obtain time series {Yt}, in the follow-

ing way

Yt =
∞∑

k=−∞

hkUt−k. (3.0.4)

The linear filter H is causal, if the new process {Yt} can be expressed only with past

values of the process {Ut} , i.e. hk = 0 for all k < 0. Additionally, if the process

{Ut} has spectral representation as defined in (2.2.4) and the filter H converges∑∞
j=−∞ hje

−ij· = h(e−ij·) in L2, then we can write the spectral distribution function

and the spectral representation of process {Yt} in the following way

SY (f) =

∫ 1/2

−1/2

|h(e−i2πf )|2dSU(f), (3.0.5)

Yt =

∫ 1/2

−1/2

ei2πfth(e−i2πf )dZU(f). (3.0.6)

This relationship is important for any stationary ARMA time series as it simplifies

the way to obtain its spectral density function. We notice that the polynomial Ψ(·)
in Equation (3.0.2) acts as a linear filter of the random noise εt. We also know that

the spectral density of the white noise process εt ∼ N(0, σ2
ε ) is just its variance,

Sε(f) = σ2
ε . Thus, by using the concept of linear filters we can obtain the spectral

density function of an ARMA model just by knowing its parameters and the noise

variance. We can use this relationship in Equation (3.0.5) to obtain the spectral

density function of an ARMA model [8, p. 123], as

SU(f) =
σ2
ε |Θ(e−i2πf )|2

|Φ(e−i2πf )|2
. (3.0.7)

3.1 Autoregressive time series models

In this chapter we will look more in detail on the autoregressive time series models

of general order p, AR(p). This class of models is a restricted version of the above

ARMA(p,q) model, such that q = 0 or Θ(z) = 1. A general AR(p) process can be
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described by the equation

Ut =

p∑
j=1

ϕjUt−j + εt, (3.1.1)

which holds for both real- and complex-valued AR(p) time series [8, p. 79]. When

process {Ut} is complex-valued, the ϕj are complex and εt is complex white noise.

Moreover, a stationary discrete-time CAR(p) model can also be viewed as an output

of an CAR(p) filter with the input being a discrete-time (complex-valued) white

noise [46].

Especially interesting is the first order autoregressive model, AR(1), because it

is dependant only on one time step in the past. That is to say, the process at time t

depends only on time (t− 1) [48, p. 116]. This type of models exhibits the Markov

property, because the conditional distribution depends only on values one step back

in time, p(Ut | Ut−1, Ut−2, Ut−3, . . .) = p(Ut | Ut−1).

Here we are interested in an CAR(1) that satisfies the difference equation, Ut =

ϕUt−1 + εt. The properties of such models are easy to define and mathematically

simple to deal with. The stationarity of this model will be easily achieved simply by

restricting the values of the parameter to |ϕ| < 1. Under stationarity and normal

distribution of the error term, εt ∼ N(0, σ2
ε ), the process will also be zero-mean

E[Ut] = 0, and its ACVF will be given by γ(τ) = ϕ|τ | σ2
ε

1−|ϕ|2 [48, p. 116]. More-

over, another nice property is that this model is relatively easy to extend to the

multivariate case.

3.1.1 Spectral density function of autoregressive models

Based on the theory introduced in Chapter 2.2.3 and the general formula for the

spectral density function of an ARMA(p,q) in Equation (3.0.7), the SDF of an AR(p)

process is easy to write as

SU(f) =
σ2
ε

|Φ(e−i2πf )|2
, for− 1/2 ≤ f ≤ 1/2. (3.1.2)

In the above equation Φ(e−i2πft) denotes the characteristic polynomial of the AR(p)

process with the lag operator B changed for e−i2πft and σ2
ε the variance of the white
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noise process. In case of an AR(1) the above simplifies to

SU(f) =
σ2
ε

|1− ϕe−i2πf |2
=

σ2
ε

1− 2ϕ cos(2πf) + ϕ2
, for− 1/2 ≤ f ≤ 1/2. (3.1.3)

3.1.2 Pseudo-periodic behaviour

According to Priestley [48, p. 131] pseudo-periodic behaviour can be observed for

real-valued processes {Xt} both in their realisation and the autocovariance function

(ACVF). The same pseudo-periodic behaviour can also be modelled with certain

AR(2) models, i.e. Xt+ϕ1Xt−1+ϕ2Xt−2 = εt, if both of the roots of the characteristic

polynomial Φ(B) are complex-valued. The easiest way to understand why this

happens for these type of models is through the behaviour of the ACVF. In the

extreme case when the ACVF is an exactly periodic function, which happens when

ϕ2 → 1, we can conclude that the process {Xt} will also be exactly periodic. In the

same way, if the ACVF function will be pseudo-periodic, damped periodic function,

the process will also be periodic to some extent, some sort of ‘distorted periodicity’.

The intuition behind this lies in looking at the continuous time equivalent of

AR(2) family models. The analogue of a second-order difference equation is the

second-order differential equation in the form Ẍ(t) + αẊ(t) + βX(t) = ε(t). This

equation represents a well known harmonic motion, with α being the ‘damping

factor’ and {ε(t)} the ‘driving force’ which sustains the motion of the harmonic

oscillator. From this we can conclude that the pseudo-periodic behaviour of AR(2)

is the definition of a stochastic oscillation.

Similar to the differential equation theory where we can transform a second-order

differential equation to a system of first-order differential equations, we will be able

to transform a real-valued AR(2) to a bivariate VAR(1) model and in some cases also

to a univariate CAR(1). This means that we can achieve the same pseudo-periodic

behaviour with bivariate VAR(1) instead. We will exploit this property later on to

propose multivariate models for stochastic oscillations.

3.1.3 Vector autoregressive models

The multivariate equivalent of an AR(p) model is the vector autoregressive model

denoted as VAR(p). For most of the concepts introduced previously, general char-

acteristics and properties are preserved. In the multivariate case one needs to
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create a vector of time series processes, multiple time series, U (1)

t , U (2)

t , . . . , U (n)

t ,

will be stacked up into a vector of dimension n to form the vector time series

Ut = [U (1)

t , U (2)

t , . . . , U (n)

t ]T, which will be used in the analysis.

In this case our multivariate time series are vector-valued so the parameters of

the model need to be matrices. This, in turn, increases the number of parameters

needed to be estimated. Based on Reinsel [51, p. 27] an n-dimensional time series

VAR(p) model satisfies the following equation

Ut −
p∑
j=1

ΦjUt−j = εt, or Φ(B)Ut = εt. (3.1.4)

In the above equation Φ(B) = In−Φ1B−. . .−ΦpB
p is the characteristic polynomial,

the Φj are n× n dimensional matrices, and εt = [ε(1)t , . . . , ε
(n)

t ]T is an n-dimensional

vector white noise process with E[εt] = 0 and E[εtε
H
t ] = Σε,∀t.

The stationarity condition for VAR(p) models is defined in terms of its charac-

teristic polynomial. The process will be stationary if the roots of det{Φ(B)} = 0

are greater than one in absolute value [51, p. 27]. The autocovariance function will

be an n × n ACV matrix denoted ΓU(τ) = E[Ut+τUt]. The SDF will be an n × n
spectral matrix that can be expressed as

SU(f) = H(e−i2πf )ΣεH
H(e−i2πf ), (3.1.5)

where H(e−i2πf ) is the transfer function matrix calculated as the inverse of the

characteristic polynomial H(B) = Φ(B)−1 by substituting B with e−i2πf [48, p. 688].

3.2 Forecasting of time series

Hamilton [18, p. 73] defines the forecast for one period in the future, Ût(1), as the

conditional expectation of the value of the time series in that period conditioned on

the values of time series today and in the past Ût(1) = E[Ut+1 | Ut, Ut−1, Ut−2, . . .].

He also proves that this is the best estimate of Ut+1 in respect of minimizing the

mean squared error, mse{Ût(1)} = E[Ut+1 − Ût(1)]2. We can generalise this result

to any l-step ahead forecast, where l is a positive integer, l ∈ Z+. The forecast of

the value of the time series Ut l-periods in the future will then be

Ût(l) = E[Ut+l | Ut, Ut−1, Ut−2, . . .]. (3.2.1)
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The intuitive interpretation of this forecast is that it is the mean of the different

values Ut+l can take, based on the time series generated by the particular realisation

we have observed in the past [48, p. 728]. In order to evaluate the conditional

expectation we need to know the joint PDF, so for the prediction to be optimal

we usually assume multivariate normal structure. By doing this the expectation in

Equation (3.2.1) becomes a linear function of the past values of {Ut}.
The expression of the forecast function of an AR(1), of the form Ut = ϕUt−1+εt, is

relatively simple due to the Markov property. The l-step ahead forecast will depend

only on the today’s value of the time series and the coefficient of the AR(1) model

as

Ût(l) = E[Ut+l | Ut, Ut−1, Ut−2, . . .]

= E[ϕUt+l−1 + εt | Ut, Ut−1, Ut−2, . . .]

= ϕÛt+l−1 = . . . = ϕlUt.

(3.2.2)

The same property applies to both univariate and multivariate AR(1) models. This

means that we can easily forecast the values of any AR(1) if we know its todays

value and its parametric form - the model coefficient. We will exploit this useful

property in the continuation to propose a definition of an elliptical model.
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Chapter 4

Introduction to elliptical models

In this chapter we introduce elliptical models by reviewing the literature on elliptical

signals, presenting the elliptical representations and specifying the various param-

eters of an ellipse. We start by defining multivariate oscillations. This chapter

is intended to provide background understanding of elliptical models, which will

be further elaborated in the following chapter. Since oscillations can be found in

many natural phenomena, it is possible to establish a link between these models and

applied research in other fields.

4.1 Oscillations

Periodic phenomena are present in everyday life, such as for example the rotation of

earth around its axis or around the sun. Many such phenomena are deterministic,

which means that the we exactly know the period and we are also able to predict its

value in the future. On the other hand some natural phenomena, such as for example

the velocity and movements of ocean currents, are random. They are influenced by

other stochastic forces and we are not able to exactly predict their period in the

future. The realisations of these processes will still be periodic (oscillatory), but

their period will not be exact and the trajectories will not follow nice and smooth

curves.

It is worth noting that in our work we use the term signals for deterministic

functions of time, such as a simple sinusoid, but we use the term time series or

process for a stochastic process with a certain distribution. Let us also clarify that

because we usually observe only one realisation of the time series, we assume it is a

discrete processes or a discrete sample of a continuous random process.
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Let us begin by motivating oscillations from the physics literature. The usual

way to motivate oscillations is with a simple harmonic motion [16, sec. 6.2]. Let

us imagine a particle that rotates on the circumference of a circle with a certain

angular velocity ω. At any point in time t, this particle will have a perpendicular

projection onto the x-axis denoted as A, in a system where the intersection of the

x and y axes is in the centre of the circle O. As the particle rotates on the circle,

point A will move left and right on the x-axis. The distance between the origin of

the coordinate system O and the projection of the particle A will be given by the

function x = a cos(ωt), where a is the radius of the circle. Another projection we

can observe is the projection of the particle onto the y-axis, denoted as B. Now the

distance from the origin of the system O to the point B will be given by y = a sin(ωt).

Together these movements define the oscillatory movement and can be described by

the differential equation of a harmonic oscillator

d2x

dt2
+ ω2x = 0, (4.1.1)

with a general solution to the differential equation x = A sin(ωt) + B cos(ωt) [16,

p. 6.5].

The sinusoid is the most common periodic function and is also the solution to

the differential equation of a simple harmonic oscillator as seen above. In general

terms we can write a possible equation for a sinusoid curve as

xt = A cos(ωt+ ϕ), (4.1.2)

where A is the amplitude, ω the angular frequency and ϕ the phase shift. The period

of the above sinusoid is 2π/ω. In the above equation we can see that the frequency

and amplitude are constant. This means that, if we were to observe a plot of this

function in time t, we could easily spot the exact frequency and amplitude just by

observing it. Contrary to that we can allow the frequency and/or the amplitude to

be smooth functions of time, which we denote as ω(t) and A(t). This means that

the sinusoid will have a time-varying amplitude and/or frequency, and the change

will be visible on the plot of the signal over time.

It is worth mentioning at the beginning that most of the theory that we introduce

here is based on discrete time signals, but can be extended to continuous time

processes as well. We decided to talk about the general theory in discrete time
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only, because it follows naturally into the time series analysis. Time series is usually

seen as a discrete sample of a continuous process x(t) at regular time intervals

∆t, such that xt = g(t∆t). Hence our notation follows the standard convention

of xt for discrete time signals and x(t) for continuous time signals. However, both

continuous time signals (e.g. x(t)) and time-varying parameters (e.g. A(t)), both

will have arguments (t) and the context will clarify whether we refer to a signal or

a parameter. But nevertheless, we will rarely talk about continuous time signals, so

this notation will be mainly used for time-varying parameters.

In some instances we can allow to have more than one frequency and/or ampli-

tude present in the signal. We can extend the simple oscillation in Equation (4.1.2)

to allow a multicomponent oscillation [70]. Such models mix more than one sinusoid

curves, each with one, potentially different, frequency and/or amplitude. This can

be generalised to [48, p. 147]

xt = µ+
r∑
j=1

A(j) cos(ω(j)t+ ϕ(j)), (4.1.3)

where r ∈ N is the number of sinusoidal terms present and (j) refers to the amplitude,

frequency or phase of the j-th term. In a multicomponent model with various

different sinusoids, it becomes very difficult to identify the various frequencies and

amplitudes present just by looking at the trajectories of such a signal.

Fourier theory is very useful to identify the individual frequency components of a

multicomponent signals. Signals, such as the ones in (4.1.3), are composed of several

different sinusoids, each with a different frequency and amplitude. The Fourier

transform of a signal decomposes this signal into its constituent sinusoids. That

helps us to understand each sinusoid with its respective frequency and amplitude

present in the signal. The Fourier theory entails all combinations of discrete or

continuous time and frequency (for more detail see [42, p. 87]), here we will talk

only about the case of discrete time and continuous frequency. Based on Percival &

Walden [42, p. 87] we can write the Fourier transform x̃(f) of a deterministic signal

{xt}, as

x̃(f) = ∆t
∞∑

t=−∞

xte
−i2πft∆t, (4.1.4)
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and the inverse Fourier transform as

xt =

∫ 1/(2∆t)

−1/(2∆t)

x̃(f)ei2πft∆tdf. (4.1.5)

The above class of multicomponent models in (4.1.3) were one of the first models

to be studied in time series analysis [48, p. 148]. Initially these models for {xt} were

treated as deterministic functions of t, and as such not a very interesting non-

stationary process for time series analysis. To change the deterministic sinusoidal

signal into a stochastic process one has two options: (1) let the phase ϕ(j) be treated

as a random variable, usually as uniformly distributed on the interval (−π, π); or (2)

add a random noise εt with a distribution, for example εt ∼ N(0, σ2) [49, p. 5]. The

latter is more useful for modelling real applications, where we usually include the

noise also due to measurements error. Such extensions apply to both the simpler one

component signals in (4.1.2) and the multicomponent models in (4.1.3), as shown

below

Xt = A cos(ωt+ ϕ) + εt, (4.1.6)

Xt =
r∑
j=1

A(j) cos(ω(j)t+ ϕ(j)) + εt. (4.1.7)

The above mentioned stochastic oscillations are basically deterministic oscilla-

tory functions that have some of their parameters random or a noise term added.

In time series, however, it would be more common to look at stochastic oscillations

in terms of random time series models. In the former case, the trajectory would be

a sinusoidal curve with noise, which would distort the smoothness of the function

depending on its variance. Whereas in the latter case, the trajectory would not re-

semble a sinusoid function and we would not be able to see the period just by looking

at its plot. As described already in Chapter 3.1.2 an AR(2) model with complex

roots will have pseudo-periodic properties. We can construct such an AR(2) model

that will always exhibit stochastic oscillations, such as for example

Xt = 2
cos(ζ)

α
Xt−1 −

1

α
Xt−2 + εt, (4.1.8)

where εt is white noise and ζ, α > 0 (and for stationary processes |α| > 1). The

AR(2) in the above equation will have complex roots and thus observe pseudo-
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periodic behaviour for any value of α and any ζ on the interval (−π/2, π/2).

There are many examples of use of both deterministic and stochastic oscillations

in natural and social sciences. Oscillations are very useful models because of their

mean reverting properties. We can observe them in many applications, such as

electromagnetic radiation [71], seismology [55], oceanography [29], econometrics [19],

bloodflow [39], etc. For example in macroeconomic phenomena we find periodic time

series, such as the business cycles. They tend to move together and models which

use stochastic cycles can be used to model cyclical dynamics [54]. Such multivariate

time series models are used to detect phase shifts among the cycles, i.e. the lead

and lag indicators of each individual cycle.

4.2 Elliptical signals

One of the aims of our research is to observe the movement and orientation of oscilla-

tions, which in general can be elliptical, circular or linear. The elliptical polarisation

as shown in Figure 4.1. We can see two components, the upper one (dotted) and

lower one (dashed), which can either represent two elements of a bivariate vector or

the real and imaginary parts of a complex-valued signal. Their common evolution

is represented by the black thick line along the horizontal axis, which maps out

an ellipse in the x − y plane on the left-hand side of the figure. In other words

waves that oscillate with more than one orientation trace a trajectory of an ellipse,

which is called the polarisation of the wave. Under certain conditions the elliptical

polarisation degenerates to either a circle or a straight line.

Figure 4.1: Elliptical polarisation
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We are mainly interested in the mapped ellipse, which is the ellipse mapped

out by the trajectory of the signal as we progress through the natural time of the

signal. By the natural time of the signal (usually denoted t) we mean the time that

the signal has been sampled in. The study of the ellipse trajectory has become an

important research field also in signal processing and time series analysis, because

it represents a simple parametrisation of a signal. Most of this research has been

conducted for deterministic signals. In Figure 4.2 we show a sketch of a mapped

ellipse as a geometric object with its parameters that can be seen from a geometric

representation. In the continuation we will discuss similar ellipses and define their

parameters. We mainly aim to define the mapped ellipse for stochastic time series,

that is to say the intrinsic ellipse parametrization of the time series as such, but we

will not explore complex geometry in detail.

Figure 4.2: The ellipse and its parameters

Researchers in physics and optics fields have been studying deterministic waves

for a long time. The easiest way to describe a mapped ellipse is, as the object

mapped out by the trajectory of a monochromatic (single-frequency) deterministic

signal. This signal is a non-random smooth function of time, and has an oscillation

at only one specified frequency, e.g. a sinusoid with frequency ω of the form cos(ωt)

is a monochromatic deterministic signal. On one hand bivariate real-valued elliptical

signals are such that, as we move through time the trajectory that this signal maps

out in the x − y plane has the shape of an ellipse as a geometric object (as shown
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above in Figure 4.2). On the other hand a univariate complex-valued elliptical

signal also maps out a trajectory of an ellipse, but in the complex plane, where

the x-axis represents the real part and y-axis the imaginary part of the signal.

A possible extension of the deterministic elliptical signals are modulated elliptical

signals, whose ellipse parameters change with time (e.g. [29]). The trajectory of

a modulated elliptical signal in time is not a perfect ellipse, because its properties

change over time. Such signals have to be seen as ellipses that are frozen in time at

every time step, which means that we cannot observe them in the ‘global’ time, see

e.g. [30].

In case of stochastic processes, one cannot observe an ellipse mapped out by

the trajectory of a stochastic time series, which is due to the randomness of the

process and the fact that they are zero-mean. In order to define the ellipse of a

stochastic signal authors have resorted to the frequency domain (see e.g. [53], [59]).

In the frequency domain it is possible to define a random ellipse of the process at

every frequency. The downside of this approach is that the frequency domain is less

intuitive then the time domain for researchers and users in statistics, who prefer to

look at time series in the time domain rather than the frequency domain.

Based on the above we can summarise that it is possible to define ellipses in

both time and frequency domains [59]. Ellipses have been defined in time domain

for deterministic signals and in frequency domain for both deterministic signals and

stochastic processes. After reviewing the available literature and the ellipses that

have already been defined, we see an advantage in proposing new definitions of non-

random ellipses for stochastic processes in the time domain. In continuation we

will first, for clarity, define what we mean by the object of ellipse and define all

its parameters. In the main part of our work will present the various definitions of

ellipses, the ones that exist in the literature and the ones we propose. First we will

look through the ellipse definitions for deterministic signals and then through the

ellipse definitions for stochastic time series, proposing two new concepts.

4.2.1 Ellipse representation

In this chapter we aim to provide a general representation of a modulated ellipse

mainly with the intention of illustrating its geometric properties. According to Lilly

[28] a particle ϕ on the interval [−π, π] in 2-dimensions can be seen to circle an
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ellipse (or its degenerations), if it can be represented in a parametric form in R2 as

xt(ϕ) = Rθ(tε)

[
A(tε) 0

0 B(tε)

]
Rφ(t)

[
cosϕ

sinϕ

]
. (4.2.1)

In the above equation R� is a rotation matrix as described in Equation (2.1.3), and

the parameters A(tε), B(tε) and θ(tε) are time-varying, where ε controls the rate

of modulation. Usually ε is chosen to be small, ε� 1, to ensure the smoothness of

the modulated oscillation.

In order to assign a unique set of ellipse parameters to the above 2-dimensional

real-valued signal we construct a complex-valued analytic signal x+(t) (see Chap-

ter 2.3), where the original signal is the real part of the analytic signal, xt = <{x+,t}.
The ellipse parameters are then given by the ‘normal form’ ([27] and [28]), as

x+,t = eiφ(t)RT
θ(tε)

[
A(tε)

−iB(tε)

]
, (4.2.2)

where A(tε) and B(tε) are the semi-major and semi-minor of the modulated ellipse,

θ(tε) is the orientation (the angle between the semi-major and the x-axis), and the

ε controls the rate of modulation. If ε = 0 it means that A, B and θ do not depend

on t and so the ellipse is non-modulated. The only movement is the rotation around

the trajectory of the ellipse with frequency ω(t) = φ′(t). In the continuation of this

chapter we will look at ellipses with fixed parameters (non-modulated ellipses with

ε = 0), so we will drop the t from the arguments where not needed, apart from in

the argument φ(t) where the time t makes the motion of mapping out the ellipse.

4.2.2 Parameters and measures of ellipticity

We use the above representation from (4.2.2) and the notation introduced in Fig-

ure 4.2 to discuss the parameters and measures of the ellipse. The aim is to present a

comprehensive list of possible parameters and measures that can be observed for an

elliptical signal. Parameters are geometric representations of the ellipse. Whereas

measures define the size of the ellipse and its ellipticity, that is to say they help

us distinguish the difference between an ellipse and its degenerate forms (circle and

straight line). Table 4.1 summarises all the geometric parameters and measures,

which are split into measures of size and ellipticity.

All of the geometric parameters can also be represented on a sketch. We can
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Geometric

A semi-major axis A = κ
√

1 + |λ|

B semi-minor axis |B| = κ
√

1− |λ|

θ orientation angle (or azimuth) −π/2 ≤ θ ≤ π/2

χ ellipticity angle −π/4 ≤ χ ≤ π/4

Size

- area ABπ

κ root-mean-square amplitude κ =
√

A2+B2

2

A amplitude A =
√
A2 +B2 = κ/

√
2

Ellipticity

E eccentricity E = ±
√

1− B2

A2

λ ellipse parameter λ = ±A2−B2

A2+B2 = ± E2
2−E2

AR signed aspect ratio AR = sgn{B}B
A

Table 4.1: Parameters and measures of an ellipse

see a sketch of an ellipse in Figure 4.2. The geometric parameters are very intuitive

quantities to describe an ellipse and can be seen in the sketch. The lengths of the

semi-major A and semi-minor B axes are directly linked to the size and shape of the

ellipse. They will also provide an intuition into the shape of the ellipse, for example,

if the lengths of the major and minor will be equal we will have a circle versus if the

lengths are very different we will most likely have an ellipse. The orientation angle θ

tells us the angle between the x-axis and the major axis of the ellipse. The ellipticity

angle χ is very useful in distinguishing the ellipse form its degenerate cases of circle

and straight line. It characterizes scale-invariant shape of the ellipse characterised

by its values presented in Table 4.2.

The measures of size and ellipticity give us a more relative and comparable

measure. Among the parameters of size we are interested in the area of the ellipse,
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Shape χ
CW polarised circle χ = −π/4
CW (right-handed) polarised ellipse −π/4 < χ < 0
Linearly polarised (straight line) χ = 0
CCW (left-handed) polarised ellipse 0 < χ < π/4
CCW polarised circle χ = π/4

Table 4.2: Shape of the ellipse based on values of the ellipticity angle χ

which can be calculated as ABπ. We can use the root-mean-square amplitude κ

to compare between ellipses [30], which provides a convenient simplification. The

amplitude A is one of the size parameters that is also visible in a sketch of an ellipse

(Figure 4.2) and its square is sometimes also referred to as intensity [53]. Both κ and

A will give us information about the size, the bigger the value of these parameters

the larger the oscillation will be.

We can use the parameters of the ellipse to characterise what type of elliptical

signal we are dealing with, an ellipse, a circle or a straight line. It is clear that the

circle will be a special kind of ellipse such that the semi-major and semi-minor are

equal, A = B. Whereas, the ellipse will degenerate to a straight line if the semi-

minor will be infinitely small. Nevertheless, it is useful to have concrete measures

that will tell us the ellipticity of a signal and will also provide the direction of

circulation, i.e. clockwise (CW) or counter-clockwise (CCW). In the above table we

listed the eccentricity, E [27], and the ellipse parameter, λ [29], both measure the

deviation from circularity. If they are equal to zero (0) we have a purely circularly

polarised signal and if they are equal to 1 the signal is linearly polarised. Moreover,

we can also define the signed aspect ratio [53], which is positive (+) for counter-

clockwise (CCW) rotation and negative (-) for clockwise (CW) rotation.

4.2.3 The complex-valued vector as an ellipse

Above we have been focusing on the mapped ellipse, or in other words, an ellipse that

is being mapped by the trajectory of a signal through time. Nevertheless, because

we are working with complex-valued vectors and processes, we need to point out

that there also exists another concept of ellipse. This ellipse is mainly present in

the physics literature, and follows from the inherent properties of complex-valued

vectors. We mention it here only for completeness purposes and to highlight the

difference between such ellipses. Whereas in the remaining text we will be dealing
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only with the mapped ellipse.

As per Lindell [32] any complex-valued vector u has a one-to-one correspondence

with time-harmonic vectors F(t′), as u↔ F(t′) = <{ueiωt′} = F1 cosωt′+F2 sinωt′,

where <{u} = F1 and ={u} = −F2. The time-harmonic vector traces a trajectory

of an ellipse, which degenerates to a line or a circle under certain conditions. The

vector is linearly polarised, if F1 and F2 are parallel or at least one of them is null

(F1 × F2 = 0), and circularly polarised, if F2
1 = F2

2. In any other combination it

is elliptically polarised, which means that every complex-valued vector u can be

represented as an ellipse so that the real part <{u} defines the time origin value

and the imaginary part ={u} defines the direction of the rotation.

From the above we can see that every complex-valued vector is represented as

an ellipse in n-dimensional space that is defined by vectors of its real and imaginary

parts. The ellipse trajectory in this sense is mapped out in time t′ in the above

definition, but we are not interested in this time, which does not have physical

interpretation for the purposes of our analysis. Based on this any vector-valued

complex time series has a an ellipse representation in this sense at every time point.

However, these ellipses are unrelated and are just an instantaneous representation

of the time series at every time point. In our work we are not interested in this

instantaneous representations, but rather in time evolution of the time series which

is represented by the mapped ellipses as introduced earlier. As already mentioned

this particular way of looking on any complex-valued vector is not the subject of

our research and will not be explored any further.
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Chapter 5

Definitions of elliptical models

In this chapter we describe the definition of elliptical models already existing in the

literature, and propose new ones. The chapter is divided into deterministic signals

and stochastic processes and for each of these we look at the elliptical definitions in

the time or frequency domains. This chapter includes our theoretical contribution

to the research theory, by adding the definitions of the autocovariance ellipse and

the forecast ellipse. We also provide a synthesis of the ellipse definitions at the end

of this chapter, which we have not been able to find in any other literature.

5.1 Deterministic elliptical signals

5.1.1 Time domain definition

We need to understand the notion of a deterministic elliptical oscillations first and

then we move to models for stochastic oscillations. One possible understanding

of the deterministic elliptical oscillation is that such a signal maps out an ellipse

in time, and we shall investigate how this concept extends to stochastic processes.

These types of signals have been studied by different authors [6, 29, 59], and we will

summarize our understanding of existing models in a single framework. We start by

formalizing the notion of an elliptical trajectory.

Definition 5.1.1 (Elliptical trajectory [6])

The elliptical trajectory over time points t ∈ {0, . . . , T} is the set of points {(xt, yt)t}
satisfying the equation [

xt
yt

]
=

[
Ax cos(ωt+ ϕx)

Ay cos(ωt+ ϕy)

]
, (5.1.1)
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and the set {(xt, yt)t} maps out an ellipse in the x− y plane.

The above is a general definition of a deterministic signal that exhibits an el-

liptical trajectory as it evolves through time. The size and axes of the ellipse will

be determined by the parameters Ax and Ay and the orientation will be set by the

phase angles ϕx and ϕy. This signal will map out an ellipse in the x−y plane, called

the mapped ellipse. By eliminating the component t in the above Equation (5.1.1)

one can obtain the equation of an ellipse as a geometric object

x2
t

A2
x

+
y2
t

A2
y

− 2
xtyt
AxAy

cosϕ = sin2 ϕ, (5.1.2)

where ϕ = ϕy − ϕx. The above equation is a constrained relationship between xt

and yt that is time homogeneous, unless ϕ, Ax and/or Ay change in time.

Here we need to distinguish between the terms elliptical trajectory and mapped

ellipse. Elliptical trajectory is the trajectory of a signal through time that maps out

an ellipse (as per Definition 5.1.1), whereas a mapped ellipse is an ellipse in x − y
plane that is mapped by the signal through time. The distinction can be nicely

seen in Figure 4.1, where the elliptical trajectory is the trajectory of the signal as

it evolves through time, the thick black curve. Whereas the mapped ellipse is the

ellipse mapped by this signal onto the shaded 2-dimensional plane on the left-hand

side.

We prefer to represent the bivariate real-valued signal as a univariate complex-

valued signal. This yields a parametrisation (see below) that is similar to the one

given in Equation (5.1.1), but the complex parametrisation simplifies the analysis.

This parametrisation is in terms of the so-called rotary components, which rotate in

the opposite directions and together map out an ellipse in the complex plane [59].

The parametric model that we will use can be easily obtained from Equation (5.1.1)



5.1. DETERMINISTIC ELLIPTICAL SIGNALS 48

as

ut = xt + iyt

= Ax cos(ωt+ ϕx)︸ ︷︷ ︸
xt

+i Ay cos(ωt+ ϕy)︸ ︷︷ ︸
yt

= 1
2
(Axe

iϕx + iAye
iϕy)︸ ︷︷ ︸

A+e
iθ+

eiωt + 1
2
(Axe

−iϕx + iAye
−iϕy)︸ ︷︷ ︸

A−e
−iθ−

e−iωt

= A+e
iθ+eiωt︸ ︷︷ ︸
u+,t

+A−e
−iθ−e−iωt︸ ︷︷ ︸
u−,t

= u+,t + u−,t,

(5.1.3)

which is a sum of a counterclockwise (CCW) u+,t (analytic) and a clockwise (CW)

u−,t (anti-analytic) rotating phasors. Phasors or rotary components are two counter

rotating elliptical motions, where each has its amplitude A+ and A− and phase

θ+ and θ− [36]. The rotary component corresponding to positive frequencies has

counterclockwise motion, and the one corresponding to negative frequencies has a

clockwise motion. We will use the above parametric representation of an elliptical

signal also to show that a certain signal has elliptical polarisation.

Parameters of the ellipse From the above parametrisations in both (5.1.1)

and (5.1.3) we can easily obtain the main parameters of the ellipse and establish

relationships between both of the parametrisations introduced. The equations of the

axes and expressions for parameters are listed in Table 5.1. The semi-major axis A

and the semi-minor axis B are defined in Equations (5.1.4) and (5.1.5), respectively.

The equations relating both parametrisations are presented in Equations (5.1.6)

to (5.1.9), together with some relationships between them in (5.1.10) and (5.1.11)

[29]. Equation (5.1.12) denotes the amplitude, which together with the ellipticity

angle (defined in Equation (5.1.15)) characterise the semi-major and semi-minor as

shown in Equation (5.1.13). Further derivations of additional measures of size and

ellipticity as described in Chapter 4.2.2 are shown in the Appendix B.

Table 5.2 outlines the main angles of the ellipse and the relationships between

both parametrisations. The angle between the x-axis and the major axis is called the

orientation or the azimuth of the ellipse, denoted as θ on the interval (−π/2, π/2].

It can be easily obtained from any of the two parametrisations as shown in Equa-

tion (5.1.14). The ellipticity angle χ ∈ (−π/4, π/4], which is very useful in helping



CHAPTER 5. DEFINITIONS OF ELLIPTICAL MODELS 49

Axes

A = A+ + A− (5.1.4)

B = |A+ − A−| (5.1.5)

Relations between the different parametrisations

A2
x = (A2

+ + A2
− + 2A+A− cos 2θ) (5.1.6)

A2
y = (A2

+ + A2
− − 2A+A− cos 2θ) (5.1.7)

A2
+ = ||A+e

iθ+ ||2 = 1
4
(A2

x + A2
y + 2AxAy sinϕ) (5.1.8)

A2
− = ||A−eiθ− ||2 = 1

4
(A2

x + A2
y − 2AxAy sinϕ) (5.1.9)

A2
+ + A2

− =
A2
x + A2

y

2
=
A2 +B2

2
(5.1.10)

A2
+ − A2

− = AxAy sinϕ = ±AB (5.1.11)

Amplitude

A =
√
A2
x + A2

y =
√

2A2
+ + 2A2

− (5.1.12)

A = A cosχ and B = A sinχ (5.1.13)

Table 5.1: Definition of ellipse axes and their relationships

us to understand the polarisation and the direction of rotation of the ellipse, can be

calculated as shown in Equation (5.1.15) [62]. Both of the above angles and expres-

sions can be further simplified by introducing an auxiliary angle α ∈ (−π/2, π/2]

[10], which does not have physical interpretation, but is useful for the analytic sim-

plicity in Equation (5.1.16). For the purposes of practical calculations of the ellipse

parameters and measures from any complex-valued signal we introduce the phase

angle φ (Equation (5.1.17)), the average phase angle φa and the difference phase

angle φd (both in Equation (5.1.18)). By doing this we can express the relationships

between the phases defined in Equations (5.1.19) and (5.1.20) [29].
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Orientation

2θ = θ+ − θ− = arctan
I{A+e

iθ+}
R{A+eiθ+}

+ arctan
I{A−e−iθ−}
R{A−e−iθ−}

= arctan

(
2AxAy
A2
x − A2

y

cosϕ

)
= arcsin

(
A2

+ − A2
−

2A+A−
cotϕ

)
(5.1.14)

Ellipticity angle

2χ = ± arctan
B

A
= ± arcsin

2AB

A2 +B2
= arcsin

2AxAy sinϕ

A2
x + A2

y

= arcsin
A2

+ − A2
−

A2
+ + A2

−

(5.1.15)

tanα =
Ay
Ax

so that

tan 2θ = (tan 2α) cosϕ

sin 2χ = (sin 2α) sinϕ

(5.1.16)

Other angles and their relationships

φ = (θ+ + θ−)/2

(5.1.17)

φa = (ϕx + ϕy + π/2)/2 and φd = (ϕx − ϕy − π/2)/2

(5.1.18)

ϕx = φ+ ={A+e
iθ + A−e

−iθ} and ϕy = φ+ ={A+e
iθ − A−e−iθ} − π/2

(5.1.19)

θ+ = φa + ={ln(Axe
iφd + Aye

−iφd)} and θ− = φa + ={ln(Axe
iφd − Aye−iφd)}

(5.1.20)

Table 5.2: Definition of ellipse angles and their relationships

In Table 5.3 we present a concise way to calculate the parameters of an arbi-

trary elliptical signal. With this schematic representation we aim to facilitate the

understanding and follow-up.
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1. Take complex-valued signal ut = xt + iyt, by using the Hilbert transform
calculate analytic signals of its real xt and imaginary yt parts to obtain x+,t

and y+,t (see Chapter 2.3).

2. Calculate the magnitudes (Ax and Ay) and phase angles (ϕx and ϕy) of the an-
alytic signals x+,t and y+,t, then using Equations (5.1.18) calculate the average
phase φa and difference phase φd angles.

3. Calculate θ+ and θ− using Equations (5.1.20) in order to obtain the ellipse
orientation as θ = (θ+ − θ−)/2.

4. Calculate A+ and A− using Equations (5.1.8) and (5.1.9) in order to obtain
the axes A = A+ + A− and B = |A+ − A−|.

5. The remaining ellipse measures κ and λ (and other) can be obtained using
above mentioned equations in Table 4.1.

Table 5.3: Procedure to calculate ellipse parameters from an arbitrary complex-
valued signal [28]

Polarisation states In this chapter we talk about the ‘shape’ polarisation only

(see definition of polarisation and discussion in Chapter 5.2.4). The trajectory of

any signal defined by either of the parametrisations above, (5.1.1) and (5.1.3), will

generally be an ellipse. There are three polarization states, and the most general

corresponds to the elliptical polarization. Other states derived from the general

are the linear and the circular (right or left) polarisation states, which can also be

viewed as degenerate states of the elliptical polarisation. In Figure 4.1 we can see

an elliptical polarisation, but we can easily imagine how can the ellipse become a

straight line or a circle. Different combinations of the above mentioned parameters

will result in the three different polarisation states. The polarisation will be linear

(straight line), if the ellipticity angle is χ = 0. The straight line will be horizontal

if Ay = 0, vertical line if Ax = 0, or a 45◦ line if Ax = Ay and ϕ = {0, π}. In terms

of the parametrisation in (5.1.3) we will obtain a linear polarisation if A+ = A−.

The signal will be circularly polarised when the ellipticity angle is χ = ±π/4. The

direction of the polarisation will be left circular (CCW), if ϕ > 0, and right circular

(CW), if ϕ < 0. In terms of parameters in (5.1.1) we need the constraint Ax = Ay

and ϕ = ±π/2, whereas in terms of parametrisation in (5.1.3) the parameters need

to be A+ = 0 or A− = 0 in order to have circular polarisation state. In all other cases
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the polarisation will be elliptical as the most general polarisation state. Elliptical

polarisation can be left elliptical (CCW), if ϕ > 0, and right elliptical (CW), if

ϕ < 0.

5.1.2 Frequency domain definition

We can also define the ellipse of a deterministic signal through its frequency repre-

sentation, more precisely through the power and cross-power of the spectral matrix

[6, 59]. For the definition of the ellipse of deterministic signals in the frequency do-

main we use the definitions of the composite and augmented SDF matrices (Equa-

tions (2.2.9) and (2.2.10)), and the parametrisation of the signal in (5.1.3). Since

the signal is monochromatic (single-frequency) and deterministic the spectral den-

sity matrix will be non-zero only for f equal to frequency of oscillation ω and will

sometimes be referred to as the coherency matrix ([6, 62]),

Sv(λ) =

[
Sxx(λ) Sxy(λ)

S∗yx(λ) Syy(λ)

]
δ(λ− f) =

1

4

[
A2
x AxAye

iϕ

AxAye
−iϕ A2

y

]
, (5.1.21)

Sw(λ) =

[
Ss(λ) S̃s(λ)

S̃∗s (λ) Ss(−λ)

]
δ(λ− f) =

[
A2

+ A+A−e
i2θ

A+A−e
−i2θ A2

−

]
. (5.1.22)

The above tells us that in the case of monochromatic deterministic signals we can

find the parameters of the mapped ellipse the signal traces in time, in its spectral

density matrix at the frequency of its single oscillation. In other words the ellipse is

defined by its spectral density matrix at the frequency of oscillation and it is a non-

random representation, which means that its parameters (A, B and θ) are constant.

This is an interesting direct link between the time and the frequency domains, as

these signals have the same ellipses in both domains. Unfortunately, as we will see

later, this only holds in the case of deterministic signals.

5.1.3 Example

For illustration purposes we provide an example of an elliptical signal {st} as defined

by the parametrisation in (5.1.1) with parameters: f = 50, Ax = 4, Ay = 3, ϕx =

π/3 ≈ 1.05 and ϕy = π/6 ≈ 0.52. These parameters are equivalent to the complex

representation, the parametrisation in (5.1.3), with the following parameters: A+ =

3.04, A− = 1.80, θ+ = 1.49 and θ− = 0.24. Such signal will have an elliptical
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(b) Fourier transform of the signal

Figure 5.1: Plots of the trajectory and the spectral density of a deterministic ellip-
tical signal

trajectory and will trace a mapped ellipse with parameters: semi-major A = 4.84,

semi-minor B = 1.24, orientation angle θ = 0.623 and ellipticity angle χ = 0.25

(indicating CCW polarisation). Its measures of size and ellipticity will be: root-

mean-square amplitude κ = 3.54, amplitude A = 5, Area = 18.85, ellipse parameter

λ = 0.88, ellipticity E = 0.97, aspect ratio AR = 0.26. The mapped ellipse traced

by the signal trajectory is plotted in Figure 5.1a.

Fourier transform of the above simulated signal {st} is shown in Figure 5.1b.

The coherency matrix of the composite vector vt is calculated based on the Equa-

tion (5.1.21). The coherency matrix of the augmented vector wt is calculated based

on the Equation (5.1.22)). Both have a direct relationship to the parametrisation

in (5.1.3) and are easily calculated using the parameters, if known, or otherwise

using the procedure described in Table 5.3. Both of the coherency matrices of the

simulated signal are shown below

Sv(λ) =

[
4.0 2.6 + 1.5i

2.6− 1.5i 2.25

]
, Sw(λ) =

[
9.25 1.75 + 5.2i

1.75− 5.2i 3.25

]
.

From these matrices we can clearly see that the ellipse parameters in the time

domain are the same as the parameters we can obtain from the frequency domain.
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This shows the direct link between the ellipse trajectory definition in the time do-

main and in the frequency domain ellipse definition of monochromatic deterministic

signals [62]. We can conclude that for a monochromatic deterministic signal the

relationship between the time domain mapped ellipse and the frequency domain

ellipse is perfect, mapping out the same ellipse. From time series perspective the

issue is that the elliptical trajectory is only visible for deterministic signals. For

their stochastic counterparts the trajectory of the ellipse is not visible, because of

the the fact that it is zero-mean and also because it is distorted at every step, due

to the effect of the innovation noise.

5.2 Stochastic stationary elliptical time series

5.2.1 Frequency domain ellipse

In the previous chapter we discussed deterministic elliptical signals, which proved to

be a useful parametrisation of the signal. The elliptical parametrisation of a signal

provides us with a convenient summary of deterministic signals, just by using a few

parameters. We would like to find such parametrisation also for random processes,

mainly for stationary complex-valued random processes denoted by {Ut}, where

t = 1, . . . , T . This will require extending the concept from deterministic signals to

stochastic processes. Unfortunately, in the case of stationary stochastic processes

the elliptical definition is not so straight forward as in the deterministic case.

We are dealing with time series data where the time sequence of the process

(trajectory) is important, but the trajectory of a zero-mean stochastic process will

in general be just a cloud of points (see Figure 6.2), as opposed to a ring of points or

any other structure. Two properties of the process, randomness and zero-mean, will

prevent any structure in the time evolution of the process. In other words, it is not

possible to describe an ellipse in the time trajectory of a stochastic process similar

to what we did in Definition 5.1.1 for deterministic signals. Hence most authors, so

far, have described the ellipse of stochastic processes in the frequency domain. The

downside of this approach is that it is a random ellipse representation and is less

intuitive [59, 53, 69].

In order to provide a definition of the ellipse for stochastic processes we need

to resort to the basic frequency domain theory, as already introduced in Chap-

ter 2.2.3. Every zero-mean stationary random processes can be written with its
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spectral representation, as established in Definition 2.2.5 and Equation (2.2.4). The

spectral representation of a stationary stochastic process is defined for frequencies

f ∈ [−1/2, 1/2) as

Ut =

∫ ∞
−∞

ei2πftdZU(f), (5.2.1)

where Zs(f) is a complex-valued spectral process of Ut with orthogonal increments

dZU(f) (see Chapter 2.2.3 for more details) [8, 42]. From this spectral representation

we can derive the frequency domain ellipse, as per Definition 5.2.1 below.

Definition 5.2.1 (Frequency domain ellipse [53, 59])

Spectral representation can simply be rewritten in terms of non-negative frequencies

f ≥ 0 only, which will result in representation as follows

Ut =

∫ ∞
0

(
dZU(f)ei2πft + dZU(−f)e−i2πft

)
. (5.2.2)

The above equation can be seen as a superposition of ellipses, or in other words,

the summation of two opposite rotating phasors (ei2πft and e−i2πft) with poten-

tially different amplitudes (dZU(f) and dZU(−f)). At each frequency, f ≥ 0, the

contribution to {Ut} can then be expressed as

Ut(f) = dZU(f)ei2πft + dZU(−f)e−i2πft

= |dZU(f)|ei arg{dZU (f)}ei2πft︸ ︷︷ ︸
Ut(f+)

+ |dZU(−f)|ei arg{dZU (−f)}e−i2πft︸ ︷︷ ︸
Ut(f−)

. (5.2.3)

This shows that at every frequency there is a random ellipse defined by the orthog-

onal increment process through the rotating phasors. The orthogonal increment

process at positive frequency {dZU(f)} defines the CCW phasor, and the orthog-

onal increment process at negative frequency {dZU(−f)} defines the CW phasor.

Since there is an ellipse for each frequency, f ≥ 0, the whole set of ellipses across all

frequencies yields a family of curves.

We can easily see the similarity between the parametric elliptical model for de-

terministic signals in Equation (5.1.3) and the frequency domain ellipse in (5.2.3).

The random amplitude |dZU(f)| has a similar interpretation to the deterministic

A+ (|dZU(f)| similar to A−), and the random phase arg{dZU(f)} has a similar in-

terpretation to the deterministic orientation of the signal θ+ (arg{dZU(f)} similar
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to θ−). Taking parallels with the deterministic signal in the previous chapter we

can write the random parameters of the ellipse at each frequency f ≥ 0 in terms

of the orthogonal increment process, which clearly shows the random nature of the

representation [53]:

• the random semi-major axis A(f) = |dZU(f)|+ |dZU(−f)|,

• the random semi-minor axis B(f) = ||dZU(f)| − |dZU(−f)||,

• the random area of the ellipse A(f)B(f)π = ||dZU(f)|2 − |dZU(−f)|2|π, and

• the random angle between the major axis and the x-direction (orientation)

θ(f) = arg{dZU(f)dZU(−f)}/2.

The above shows that the phase and orientation, and so the geometrical prop-

erties of the ellipse, vary at each frequency and are random. The frequency domain

ellipse needs to be understood in terms of a family of ellipses, because there is a

different curve at each frequency. Whereas in the case of the deterministic monochro-

matic process in previous chapter, the spectral (coherency) matrix in (5.1.22) was

non-zero only at the single frequency. That gave constant quantities that described

the mapped ellipse of the signal and so it was non-random.

5.2.2 Forecast ellipse

The above definition of the frequency domain ellipse (Definition 5.2.1), varies across

frequencies and is random in itself. Both of these characteristics are limitations to

the usefulness of such representation. Such quantity needs to be estimated, as it is

based on the orthogonal increment process of which we cannot obtain samples [65].

Thus, we would prefer to define an ellipse as a deterministic representation.

In order to achieve that, we look at the forecast of the stochastic process. As

introduced in Chapter 3.2, the forecast can be defined as the conditional expectation

of the future values knowing the present and all past values. Using the forecast

we will define what we call forecast ellipse for some models, such as first-order

autoregressive AR(1) models. The forecast ellipse is the elliptical trajectory of the

forecast, as a function of l forecast-time steps ahead in the future, which maps out

an ellipse. The basic intuition behind the forecast ellipse is the expected trajectory

of the process in the future. In other words, in the future we expect the trajectory

of the process to map out an ellipse, but due to randomness this trajectory will be
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distorted. For some models we will be able to observe an elliptical trajectory of the

forecast function so that the expected trajectory of the process in the future will

trace a mapped ellipse.

Definition 5.2.2 (Forecast ellipse)

The forecast ellipse is the set of points {(xl, yl)l} over forecast-time l ∈ {0, . . . , L}
that will exhibit an elliptical trajectory (Definition 5.1.1). Where xl and yl are the

real and imaginary parts of the forecast function Ût(l) (or of one entry of the forecast

vector in multivariate case) defined in Equations (3.2.1) and (3.2.2), as

Ût(l) = E[Ut+l | Ut, Ut−1, Ut−2, . . .]

= E[φUt+l−1 + εt | Ut, Ut−1, Ut−2, . . .]

= φÛt+l−1 = φlUt.

(5.2.4)

The set {(xl, yl)} maps out an ellipse in the complex plane for the forecast function

of the time series, or for every entry of the forecast vector in multivariate case.

The above forecast ellipse definition of a process can be seen as the elliptical

trajectory of the forecast function {Ût+l} that traces a mapped ellipse as we move

through forecast-time l, with non-random parameters. This means that as we ad-

vance through forecast-time l the trajectory that the forecast functions maps is of

elliptical shape. For complex-valued multivariate processes we have a forecast ellipse

in the complex-plane for every entry of the forecast vector separately. The forecast

is a deterministic quantity, because it is observed after expectation has been taken.

That means that also the trajectory of the forecast function in non-random. In

other words, the forecast is a deterministic function of time that is determined by

the parameters of the process. Some, but not all, stochastic processes will have a

forecast ellipse, as not all the forecast functions of every process will map out an

ellipse. Moreover, the forecast function is not easy to express in a nice form for all

stochastic processes. We need a parametric model for that and the easiest way is to

express it for an AR(1) model. Later we will illustrate this with a concrete example

of a parametric model that will exhibit these properties.
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5.2.3 Autocovariance ellipse

Similar to the forecast ellipse above, we can define the autocovariance ellipse by

observing the autocovariance function (ACVF) of a process as a function of lag τ .

In some cases the ACVF will exhibit an elliptical trajectory that traces a mapped

ellipse in the complex plane. In this definition we will observe the trajectory of each

entry of the autocovariance matrix as a function of lag τ . For complex-valued process

the autocovariance function is defined in Definition 2.2.2 and the autocovariance

matrix in Equation (2.2.1). The autocovariance ellipse means that the separate

entries of the autocovariance matrix will exhibit elliptical trajectories as we move

forward through lag τ . Again, this is the characteristic only of certain models, and

is most conveniently shown with a parametric model.

Definition 5.2.3 (Autocovariance ellipse)

The autocovariance ellipse is the set of points {(xτ , yτ )τ} over lag-time τ ∈ {0, . . . , T}
that will exhibit an elliptical trajectory (Definition 5.1.1). Where xτ and yτ are the

real and imaginary parts of one entry of the autocovariance matrix ΓW (τ), as defined

in Equation (2.2.1). The set {(xτ , yτ )} maps out an ellipse in the complex plane for

every entry of the autocovariance matrix.

For illustration we take a univariate complex-valued time series {Ut} and use the

augmented vector Wt = [Ut, U
∗
t ]T to define the autocovariance matrix as,

ΓW (τ) = E[Wt+τW
H

t ] =

[
γU(τ) γ̃U(τ)

γ̃∗U(τ) γ∗U(τ)

]
. (5.2.5)

In this matrix the autocovariance ellipse will be represented by the elliptical tra-

jectory that traces a mapped ellipse in the complex plane, defined by the real and

imaginary parts for every entry of the autocovariance matrix. This means that each

entry of this matrix (e.g. γU(τ), γ̃U(τ), etc.) yields an autocovariance ellipse. These

ellipses are parametrised by the process parameters and tell us the evolution of the

dependence as we move through lags τ .

The two main advantages of both Definitions 5.2.2 and 5.2.3 of ellipses of a

stochastic time series processes is that they are deterministic quantities and are

defined in time domain. On one hand, they have a very simple and intuitive in-

terpretation and are very useful in the estimation or analysis of a process. On the
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other hand, the disadvantage is that these definitions are specific to certain para-

metric models and not all processes will exhibit the forecast and/or autocovariance

ellipse. The forecast or autocovariance will have an elliptical structure only for cer-

tain stationary stochastic processes. Since both, the forecast and the autocovariance

ellipses, are derived from the shape of the trajectory of the forecast function or the

ACVF, it is evident that not all such functions we will be able to parametrise in the

form of an ellipse as in Equation (5.1.3). Thus in order to present this and visualise

we need to develop a parametric model that will exhibit these properties.

5.2.4 Polarisation and coherence

The last way of looking at elliptical processes is through determining the polarisation

of a wave [57]. Based on Collett [10] the definition of polarization comes from optics

and physics, where it has been defined for light. Light consists of two oppositely

polarised rays with opposite behaviour of intensity, in other words that the two

rays of light are polarised. The polarisation of any wave field can be determined by

examining its spectral matrix [24], which tells us the degree of polarisation.

Here we should point out that there are (at least) two uses of the term polarisa-

tion. Based on the discussion by Schreier & Scharf [62, p. 211] one use refers to the

definition of polarisation itself and the other to the ‘shape polarisation’. The latter

characterises the shape of ellipse we observe, whereas a polarised wave as defined

below in Definition 5.2.4 does not need to have a shape of an ellipse.

Definition 5.2.4 (Polarisation ellipse [34, 62])

The polarisation ellipse is defined as the degree of polarisation by comparing the

power of the completely polarised part to the total power of the process. The

degree of polarisation is defined from the augmented spectral matrix SW (f) (Equa-

tion (2.2.10)) for a complex-valued process {Ut}, or composite spectral matrix SV (f)

(Equation (2.2.9)) for a bivariate real-valued process Vt = [Xt, Yt]
T, as

P(f) =
λ1(f)− λ2(f)

λ1(f) + λ2(f)
, (5.2.6)

where λ1(f) and λ2(f) are the two eigenvalues of the augmented spectral matrix.

The degree of polarization is defined on 0 ≤ P(f) ≤ 1, where P(f) = 0 means

that the signal is unpolarised. P(f) = 1 means that it is completely polarised
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(pure state) at frequency f , and so the spectral matrix will have only one non-zero

eigenvalue [57]. Elliptical polarisation occurs when the off-diagonal elements of the

spectral matrix are complex-valued (={S̃U(f)} 6= 0), whereas circular polarisation

occurs if additionally the diagonal elements are equal (SU(f) = SU(−f)) [34].

Coherence, is similar to a correlation coefficient and should not be confused with

the degree of polarisation. In general the coherence is defined for multivariate signals

and can be seen as a correlation coefficient in the frequency domain. In this case of

polarisation analysis it also tells us the relationship between the counter-clockwise

and clockwise phasors [62, p. 211] and is defined as

C2(f) =
|S̃U(f)|2

SU(f)SU(−f)
, or C2(f) =

|SXY (f)|2

SX(f)SY (f)
. (5.2.7)

Coherence is bounded by C2(f) ≤ 1, and is defined to be equal to 1, if either

SU(f) = 0 or SU(−f) = 0 (or SX(f) = 0 or SY (f) = 0). If the signal is completely

polarised, the coherence will be same to the polarisation C2(f) = 1, as |S̃U(f)|2 =

SU(f)SU(−f) (or |SXY (f)|2 = SX(f)SY (f)). The difference between polarisation

and coherence is that the degree of polarisation separates the spectral matrix into

the polarised and unpolarised part, whereas coherence separates is onto coherent

and incoherent parts [24]. The relationship is of the form P2(f) ≥ C2(f), where the

equality holds if SU(f) = SU(−f).

5.3 Summary of ellipse definitions

We have seen several different definitions of ‘the ellipse’. Table 5.4 summarises the

possible ellipse definitions characterising both deterministic signals and stochastic

processes. Some of them were presented form the literature and some of them were

proposed in this thesis, i.e. the forecast and the autocovariance ellipse. The table

presents a view on one hand based on whether the definitions are in the time or

frequency domain, and on the other hand if the ellipse definitions are deterministic

or random. The distinction is made based on the nature of the ellipse representa-

tion, rather than the nature of the signal. So it does not provide the distinction

between deterministic signals and random process. Certain concepts apply only to

deterministic signals or stochastic processes, or to both.

In general a deterministic ellipse definition is more useful, as the parameters

of such a representation are non-random. Time domain definitions are generally
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more natural compared to definitions in the frequency domain. For this reason the

non-random elliptical trajectory in time domain is most probably the most intuitive

definition of an elliptical signal out of all the definitions analysed. Unfortunately,

only deterministic signals will exhibit a deterministic elliptical trajectory. Stochastic

processes will have trajectories that do not map out ellipses. In other words time

trajectories of stochastic process will be a cloud of points and will not have an

elliptical structure in time.

The frequency domain ellipse, that is to say, the representation through orthog-

onal increments, is random in itself, because it is based on a random orthogonal

increment process {dZU(f)}. It gives us a view on a process through a family of

random ellipses, where the random process is an aggregation of all the ellipses at

each frequency. Such definition is not that practical and easy to understand. On the

other hand among the spectral definitions we also have the definition of polarisation

and coherence. The polarization ellipse tells us about the degree of polarization of

the spectral matrix, but not about the ‘shape’ polarization of the process. By the

shape polarisation we mean that the process exhibits an elliptical trajectory in ei-

ther its time trajectory or some other function of the process. Thus, the polarization

ellipse is less useful, because what we are interested in is the shape polarisation of

a process.

From this discussion we can see the benefit of proposing two new, non-random

time domain definitions, the forecast ellipse and the autocovariance ellipse. Both

are deterministic representations, since they are functions of the process after the

expectation has been taken. They are as well defined in time domain and have a very

intuitive interpretation. The forecast ellipse is the expected elliptical trajectory of

the process as we move forward in forecast-time into the future. The autocovariance

ellipse is the elliptical trajectory of the autocovariance function as we move through

lags τ . In other words, it tells us about the elliptical structure of the dependence

in time. Both of these ellipses are functions of forecast-time or lag-time, and will

depend on the parametrisation of the model, which means that not all such functions

will exhibit an elliptical trajectory. That is to say, we need certain parametric model

that will produce a function with elliptical trajectory in its ACVF and forecast

function.

We conclude that the definition of ‘the ellipse’ of a process is not completely

trivial and that there is not a single concept that would fit best with the notion

of recovering the elliptical properties of the time series. We have presented several



5.3. SUMMARY OF ELLIPSE DEFINITIONS 62

definitions and each tells a different story. We have also seen that the distinction

between deterministic signals and stochastic processes is very important. The ellipse

for deterministic signals is relatively easy to define, whereas the ellipse for stochastic

processes is much more intricate.

Ellipse

represen-

tation vs.

domain

Deterministic Random

Time

• Elliptical trajectory

(Definition 5.1.1)

• Forecast ellipse (Defini-

tion 5.2.1)

• Autocovariance ellipse

(Definition 5.2.3)

Random trajectories which

do not map ellipses due to

stochasticity and zero-mean

(Figure 6.2)

Frequency
Polarization ellipse (Defini-

tion 5.2.4)

Frequency domain ellipse (Def-

inition 5.2.1)

Table 5.4: Summary of ellipse definitions
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Chapter 6

Stochastic elliptical parametric

models

In this chapter we will talk about different parametric time series models for mod-

elling stochastic oscillations. We will look at models that model the cyclical compo-

nent part of a structural time series model (STSM), which is used to model stochastic

oscillations. We also aim to illustrate the concepts developed in the previous chap-

ter. The main scope of this chapter is to construct stationary stochastic oscillation

models and to illustrate the definitions of ellipses proposed in the previous chapter.

We propose a bivariate complex-valued vector autoregressive model that will fully

illustrate the concepts of autocovariance and forecast ellipses.

6.1 Introduction to stochastic oscillation models

We can model stochastic oscillations by using the pseudo-periodic behaviour of time

series models described in Chapter 3.1.2. As described, the usual way to do that is

by using an AR(2) process with complex roots. The downside of AR(2) models is

that the concepts such as the ACVF, SDF and forecast are more intricate to work

with and harder to extend to higher dimensions, compared to AR(1) models. Hence,

we will explore opportunities to obtain an oscillation with a simpler structure. One

possible alternative is to construct a bivariate model (e.g. [20, 54]). A VAR(1)

model will exhibit an oscillation, if the coefficient matrix is composed of a rotation

matrix, such as Rθ from Equation (2.1.3). Such model has been, for example,

developed by Harvey and Koopman [20] and presented below in Equation (6.1.1).
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The nice property of a stochastic oscillation defined in this way is that the peak of

the spectral density will be at the angular frequency same to the rotation angle used

in the coefficient matrix of the VAR(1) model.

Harvey [19] and Harvey & Koopman [20] have developed a way to model cyclical

time series and Rünstler [54] has further expanded the model to take into account

the shifts among stochastic cycles. The model is a bivariate real-valued VAR(1) for

n-dimensional vertor, as[
ψ(j)

t

ψ̆(j)

t

]
= ρ(j)

[
cos(λ(j)) sin(λ(j))

− sin(λ(j)) cos(λ(j))

] [
ψ(j)

t−1

ψ̆(j)

t−1

]
+

[
κ(j)

t

κ̆(j)

t

]
, (6.1.1)

where 0 < ρ(j) < 1 is the damping factor in R, 0 < λ(j) < π is the frequency in R for

series j = 1, . . . n, and the innovations κ(j)

t = [κ(j)

t , κ̆
(j)

t ]T are i.i.d. N(0, σ
(j)2
κ I2). Only

the damping factor ρ(j) influences the stationarity of the model in (6.1.1), because

the determinant of the rotation matrix is equal to zero. So we limit the damping

factor to the interval (0, 1), which ensures stationarity.

In the framework proposed by Harvey and Rünstler this model is not meant to be

used for bivariate data, because the element {ψ̆(j)

t } is just as an auxiliary process. It

is introduced as a way to make the model bivariate, VAR(1), and so obtain pseudo-

periodic behaviour for {ψ(j)

t }. That is to say, the process of interest is only the first

element of the bivariate series {ψ(j)

t }, which means that for every process of interest

j one needs to model a bivariate system.

The second aim of this chapter is to illustrate and support the theoretical ellipti-

cal definitions from the previous chapter with a parametric model. We aim to show

how one can observe the forecast ellipse (Definition 5.2.2) and the autocovariance

ellipse (Definition 5.2.3) in a parametric representation of a time series model. We

also believe that the complex-valued family of models allow for more flexibility, so we

will attempt to look at defining stochastic oscillations with complex-valued models.

We will begin by looking at univariate complex-valued CAR(1) models that ex-

hibit a single non-zero frequency peak and demonstrably possess oscillatory struc-

ture. Later we will extend the model into a bivariate complex-valued CVAR(1),
which exhibits two peaks in its SDF. This model is more flexible in terms of the be-

haviour of its SDF, ACVF and forecast functions, as well as exhibits some interesting

elliptical representations that we will discuss later. Additional possible extension

that we will explore is to introduce stretching or an anisotropic transformation of
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the coefficient matrix of the CVAR(1). In this case the model is unevenly rotated

at every step, which introduces some additional structure into the SDF, ACVF and

forecast, but unfortunately becomes mathematically very complex. In this case the

ACVF and forecast will not exist in closed form solution, which makes these models

hard to work with.

All the models below are interconnected and we should see them as extended

or restricted version of each other. Our main model that we propose is the the

bivariate CVAR(1) model in Chapter 6.3. The most general model described here

is the CVAR(1) with the stretching factor in Chapter 6.4.1, which is an extension

of our bivariate CVAR(1), by adding the extension factor. The real-valued models

described here are both restrictions of the previous complex-valued models, such that

they accommodate only real-valued time points. The bivariate real-valued VAR(1)

in Chapter 6.4.2 is a restriction of the CVAR(1) with the stretching factor, whereas

the model in Equation (6.1.1) above is a restriction of the general bivariate CVAR(1)
model.

6.2 Univariate CAR(1)

As said earlier in order to obtain periodic behaviour and a stochastic oscillation

model, the roots of the characteristic polynomial need to be complex-valued. In

real-valued models we can obtain complex-roots only with an AR(2), but in case of

complex-valued models we can have one complex-valued root of the characteristic

polynomial already with an CAR(1) model. The difference is that the real-valued

AR(2) has two complex roots that are conjugate pairs, but the CAR(1) can only

have one complex root. This is the reason that its SDF has only one peak at one

side of the frequency spectrum.

We write a simple CAR(1) model as

ψt = ϕλψt−1 + εt, (6.2.1)

where ψt, εt and ϕλ ∈ C,∀t, and the characteristic polynomial is Φ(B) = (1−ϕλB).

In order for the model to exhibit an oscillation at frequency λ, we propose the

coefficient to be ϕλ = ρ1 cosλ + iρ2 sinλ, where ρ1 and ρ2 are so called damping

factors. For the process to be stationary we need to ensure that |ϕλ| < 1. This form

of the coefficient ϕλ allows us to control the frequency peak through the parameter
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λ, which is very convenient. Since the characteristic polynomial has only one root,

the frequency peak will be only on one, at positive or negative frequency range.

6.2.1 Autocovariance function of univariate CAR(1)

We are mainly interested to see if the behaviour of the ACVF is same to the one

described in the definition of the autocovariance ellipse (Definition 5.2.3). For that

reason we first analyse the form of the ACVF as a function of lag τ . We can write

the ACVF of the CAR(1) time series model in (6.2.1) for positive and negative τ as

τ ≥ 0 : γψ(τ) = E{ψt+τψ∗t } = ϕτλ
σ2
ε

1− |ϕλ|2
, (6.2.2)

τ < 0 : γψ(τ) = γ∗ψ(|τ |) = ϕ∗λ
|τ | σ2

ε

1− |ϕλ|2
. (6.2.3)

Remark 6.2.1. We want to understand how the ACVF, γψ(τ), behaves as a function

of lag-time τ (in light of the Definition 5.2.3). W.l.o.g. we look only at the case

where τ ≥ 0. In general, we see that τ is in the power of the complex parameter ϕλ.

The ACVF can be expressed in the following way

γψ(τ) = (ρ1 cosλ+ iρ2 sinλ)τγψ(0)

=
(√

ρ2
1 cos2 λ+ ρ2

2 sin2 λ
)τ
eiχτγψ(0)

= |ϕλ|τeiχτγψ(0),

(6.2.4)

where χ = tan−1
{
ρ2 sinλ
ρ1 cosλ

}
= tan−1

{
ρ2
ρ1

tanλ
}

. The above shows that the autocovari-

ance ellipse will always trace the shape of a damped circle as we move through the

lags. The eiχτ part generates the motion of moving around a circle, this means that

the angle χ indicates where the circle starts, but does not influence the trajectory of

the ACVF in respect of the movement through lags. The |ϕλ|τ part, for stationary

processes ( |ϕλ| < 1), causes the damping of the circle. It means that the circle is

damped proportionally to the magnitude of the coefficient of the CAR(1) process,

|ϕλ|. If |ϕλ| close to the unity then the damping is slower and the dependence is

more persistent, whereas if |ϕλ| is close to zero then the circle dampens very quickly

and the dependence disappears quickly as we move in lag-time τ .
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6.2.2 Forecast function of univariate CAR(1)

We will perform a similar analysis also by looking at the l-step ahead forecast {ψ̂t(l)}
of the time series {ψt} in Equation (6.2.1). We want to analyse the behaviour of the

forecast and are interested, if this process exhibits a forecast ellipse. We define the

1-step ahead forecast as the conditional expectation of the process by knowing the

past values until present as defined in Chapter 3.2, which is similarly extended for

any l-steps ahead. The forecast function of the CAR(1) time series model in (6.2.1)

for l ∈ N, is

ψ̂t(l) = E[ψt+l | ψt, ψt−1, ψt−2, . . .] = ϕlλψt. (6.2.5)

Remark 6.2.2. We want to understand the trajectory of the forecast function as

we move through forecast-time in the future (in light of the Definition 5.2.2). We

look at the forecast function ψ̂t(l) in (6.2.5) for l ∈ N steps ahead as a function of

the l-steps

ψ̂t(l) = ϕlλψt = |ϕλ|lei arg{ϕλ}lψt. (6.2.6)

From the above equation we can see that the forecast as a function of l will map a

trajectory of a damped circle, similar to the ACVF analysed earlier in Remark 6.2.1.

The difference between Equations (6.2.4) and (6.2.6) is only in the constants (γψ(0)

vs ψt), which influence the initial radius of the circle. The coefficient |ϕλ|l makes the

circle to be damped, if the magnitude is restricted to be smaller than one as is the

case in the stationary case, |ϕλ| < 1. The exponential ei arg{ϕλ}l causes the circular

movement. In other words we can conclude that the forecast ellipse is a damped

circle in the case of the CAR(1) time series in Equation (6.2.1).

6.2.3 Spectral analysis of univariate CAR(1)

The spectral density function of a complex-valued CAR(1) time series can be easily

obtained using the spectral theory introduced in Chapter 3.1.1. The SDF of the

time series model in (6.2.1) with complex-valued parameter ϕλ can be, by using the

Equation (3.1.2), expressed as

S(f) =
σ2
ε

|1− ϕλe−i2πf |2
=

σ2
ε

1− 2ρ1 cos(2πf)− 2ρ2 sin(2πf) + |ϕλ|2
, (6.2.7)
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where ϕλ = ρ1 cosλ + iρ2 sinλ, with ρ1 and ρ2 are such that |ϕλ| < 1 to satisfy

stationarity of the model, and f ∈ [−1/2, 1/2].

We can find the frequency at which the SDF above will achieve its maximum so

that we differentiate the denominator with respect to the frequency f and set it to

zero, to obtain

f =
1

2π
arctan

{ρ2

ρ1

tanλ
}
. (6.2.8)

This shows that there will only be one peak in SDF for such a process. If ρ1 = ρ2

Equation (6.2.8) gives us the expected relationship between frequency and angular

frequency, f = λ/2π.

The analysis of the SDF reinforces our previous findings. There is only one

peak in the SDF, which indicated that the process structure is circular rather than

elliptical. This was also seen previously in both the autocovariance and forecast

structures, which were circular and not elliptical. The circle is just a degenerative

form of an ellipse, or in other form a restricted version, where the axes are of equal

lengths. So in order to achieve an elliptical structure in the time series parametric

model we would need to observe two frequency peaks, on positive and negative

frequencies. This can be achieved both by extending the complex-valued model

into a widely linear model, or extending it into a bivariate model. In later parts of

our research we will analyse the extension of this CAR(1) to the bivariate CVAR(1)
model, because it is more interesting and simpler to parametrise.

6.2.4 Simulated example of univariate CAR(1)

In order to illustrate the above discussion we present a simulated example. We

simulate one realization of length 1000 from the specified time series model {ψt}
in (6.2.1), by using the following values of parameters f = 0.1, λ = 2πf = 0.6283,

ρ1 = 0.9, ρ2 = 0.5 and εt ∼ N(0, 1). In Figure 6.1a we can see the trajectory

of the simulated time series {ψt} through time in the complex plane. As we can

see, the trajectory of {ψt} is a cloud of points without any structure, which is due

to randomness and zero-mean. In Figure 6.1b we can see the periodogram (blue

solid line) and the theoretical SDF (red solid line), which has a peak at frequency

fmax = 0.0611 (angular frequency λmax = 2πfmax = 0.3836), corresponding to the

calculation in Equation (6.2.8).
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Figure 6.1: Plots for the simulated CAR(1) time series: (a) process trajectory over
time; (b) periodogram and the theoretical spectral density (SDF); (c) non-damped
and damped ACVF as a function of lag τ ; and (d) non-damped and damped forecast
function as a function of forecast-time l.

In Figure 6.1c we can see the plot of the theoretical ACVF in its original form,

damped with the τ power of the parameter ϕλ, and a non-damped form. For the

non-damped form we divide the ACVF with the τ power of the parameter ϕλ. We

plot the non-damped one just because it is easer to see that it maps out a trajectory

of a circle, which is rather difficult to see in the trajectory of the ACVF itself,

because of the damping effect. Similar picture can be seen in Figure 6.1d where we

plot the forecast function as it evolves through forecast-time l in its original form,

damped with the l power of the parameter |ϕλ|, and a non-damped form, where we

divide the forecast with the l power of the parameter |ϕλ|. Also in this case we can
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nicely see that the non-damped forecast maps out a trajectory of a circle, whereas

in the original version it is harder to see that we are dealing with a damped circle

as opposed a damped ellipse. In other words, we process the functions to remove

the damping only with the aim to see its trajectory more clearly.

6.3 Bivariate CVAR(1)

In the previous chapter we defined our initial stochastic oscillation model in the

form of a univariate CAR(1). We have seen that it exhibits only one frequency

peak at a desired frequency, either on the positive or the negative range. Moreover,

also the autocovariance and forecast ellipses will always be circular. This means

that the CAR(1) is a constrained version of a general elliptical model. We want to

explore possibilities for a more general parametric model that would allow for a less

constrained structure. In order to achieve a more general structure, we shall extend

the simple complex univariate model to a bivariate complex-valued autoregressive

model, which we will call a CVAR(1) model. In this chapter we will propose a

general bivariate stochastic oscillation model that will produce an oscillation at the

desired frequency and will at the same time be very useful to illustrate the concepts

developed in the previous chapters.

The CVAR(1) is defined for a bivariate vector of time series elements, ψt =

[ψt, ηt]
T. In order to produce a stochastic oscillation CVAR(1) model and induce the

frequency of oscillation at a desired value we use the rotation matrixRλ as described

in Equation (2.1.3). As a basis to construct such a model we take the cyclical

model as proposed by Harvey and Koopman [20] and introduced in Equation (6.1.1).

However, we adapt their model to make the parameter complex-valued and express

it in the following way

ψt = ρMδ,λψt−1 + εt = ρKδRλK
H

δ︸ ︷︷ ︸
Mδ,λ

ψt−1 + εt (6.3.1)

[
ψt
ηt

]
= ρ

[
eiδ 0

0 e−iδ

][
cos(λ) sin(λ)

− sin(λ) cos(λ)

][
e−iδ 0

0 eiδ

] [
ψt−1

ηt−1

]
+

[
ε(1)t
ε(2)t

]

= ρ

[
cos(λ) sin(λ)ei2δ

− sin(λ)e−i2δ cos(λ)

] [
ψt−1

ηt−1

]
+

[
ε(1)t
ε(2)t

]
. (6.3.2)

This model belongs to the class of CVAR(1) models [33, p. 13], but not every
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CVAR(1) model can be written in the form of (6.3.1), because of the parameter

matrix that needs to be expressed as Mδ,λ = KδRλK
H
δ . The phase-shift matrix Kδ

is introduced in Equation (2.1.4) and the rotation matrix Rλ in Equation (2.1.3)

both in Chapter 2.1. Also here will use the complex augmented vectors and express

the model in its augmented form. The complex augmented vectors of bivariate

vectors will now become 4× 1 vectors

ψ
t

= [ψT

t ,ψ
H

t ]T = [ψt, ηt, ψ
∗
t , η
∗
t ]

T, (6.3.3)

and for the innovation processes

εt = [εTt , ε
H

t ]T = [ε(1)t , ε
(2)

t , ε
(1)∗
t , ε(2)∗t ]T. (6.3.4)

Using these vectors we can express the time series model in (6.3.1) in its augmented

form, which will be useful for estimation with the maximum likelihood method or

direct definition of the autocovariance function, as

ψ
t

= ρM δ,λψt−1
+ εt, where M δ,λ =

[
Mδ,λ 0

0 M ∗
δ,λ

]
. (6.3.5)

Parameters As we can see the coefficient of the model is composed of several

elements. The matrix Mδ,λ can be uniquely expressed as a product of phase shift

and rotation matrices as KδRλK
H
δ . The following list provides explanation and

intuition for the parameters used in our model:

• ρ is the damping factor in R; in order to maintain stationarity of the model it

is restricted to values |ρ| < 1.

• λ ∈ (0, π) is the frequency in R, which is associated with the clockwise rotation

matrixRλ, and makes the model exhibit a SDF peak at the specified frequency,

f = λ/2π.

• δ ∈ [−π/2, π/2] is the phase shift factor in R, which is associated with the

complex phase shift matrix Kδ, and makes the coefficient complex-valued.

• The random noise εt ∼ N(0,Σε) is bivariate and complex-valued, εt ∈ C2,

sometimes called “doubly white noise” [52]. It can either be correlated or

uncorrelated, and equally proper or improper. Direct observation verifies that
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assuming a covariance between the elements of εt, comparing to cov(ε(1)t , ε
(2)

t′ ) =

Σεδt,t′ , directly modifies the process {ψt} non-trivially, such that the height of

the SDF frequency is altered. Incorporating such events allows us to reach a

larger set of processes.

• Without loss of generality we are assuming a zero-mean process, such that

E[ψt] = 0.

Interpretation We can interpret the above bivariate model as an affine transfor-

mation of the time series vector from the previous time point, ψt−1. There are three

deterministic transformations: rotation, complex-phase shift forward and backward

and damping; and one stochastic transformation: translation (for more on affine

transformations see Chapter 2.1.2 and [66, 64]). The complex-phase shift matrix

shifts the phase of the two components of the time series angle by δ apart before

rotation and back after rotation. This creates a “mixing effect” between the two

components of the time series. Scaling could also be introduced as a possible exten-

sion, but that will be dealt with separately at a later point. The rotation of the axes,

complex-phase shift and damping, in the absence of the noise εt, would produce a

damped elliptical trajectory through time, where the damping depends on factor ρ.

Due to the stochastic noise the values of the time series are at each step translated,

which causes that the trajectory of the model not to be an ellipse any longer. This

means that in the plot of the trajectory of the time series through time we can only

see a scattered cloud of points without any pattern, see Figure 6.3 for example.

The bivariate model in (6.3.1) is in general defined for complex-valued time series

vector ψt = [ψt, ηt]
T ∈ C2,∀t and its coefficient matrix is generally complex-valued.

Nevertheless, if the phase shift factor takes values as δ ∈ {0,±π/2}, then the model

coefficient will be real-valued and so the whole model will not be much different to

the model described in Equation (6.1.1). In order for them to be equivalent, also

the innovations vector would need to be real-valued εt = [ε(1)t , ε
(2)

t ]T ∈ R2,∀t. We can

say that the real-valued case is a constrained version of the general model in (6.3.1).

Normality assumption In this parametric model we assume that the innovation

term is Gaussian, εt ∼ N(0,Σε). For many applications this might be a reasonable

assumption and in many cases there is no need to doubt normality. In addition,

normality is very useful since both the conditional and marginal distributions of the
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general model in Equation (6.3.1) will be normal, see Section 6.3.2 below for more

on distributions of this proposed model.

However, we might want to consider cases when normality cannot be assumed

or the assumed distribution changed to a more flexible one. To relax Guassianity

we can either specify a different innovation distribution εt ∼ p(m,θ), and marginal

or conditional distributions of Ut. However, by doing this we will rarely have the

same marginal, conditional or innovation distributions, or even, in some cases some

of them may not be available analytically.

The simplest way is to specify a broad class of models, so called innovation

class models, Ut = φUt−1 + εt where εt ∼ p(m,θ). Hence U ∼ p(m,θ) will be

a random variable with distribution p, which has mean m and other parameters

characterizing the distributions in vector θ [17]. Several authors have proposed

AR(1) models with different innovation distributions, for example, using univariate

distribution [4], logistic distribution [63], hyperbolic secant [50], or Laplace [11], etc.

The change of distribution of the innovation noise, in our model in Equation (6.3.1),

would mainly impact the estimation of its parameters. If the conditional distribu-

tion is known, then the model can be estimated using maximum likelihood method.

However, depending on the density function, the likelihood function might be dis-

continuous or not robust enough for estimation. On the other hand, it would not

impact the analysis of the ACVF of forecast ellipses as presented below.

6.3.1 Innovation process of bivariate CVAR(1)

We find it beneficial to spend a little of time talking about the innovation process.

Here we are dealing with a bivariate CVAR(1) model so the definition of the “doubly

white noise” is not that straight-forward. In general the innovation process, {εt}, will

be complex-valued vector white noise with multivariate complex normal distribution

that is independent across time. As with the analysis of second-order properties of

any complex-valued process, also here we need to take into consideration all the

relationships, including the one between real and imaginary parts.

Each of the elements of the random innovation vector at each time point is a

complex-valued random number, such as ε(1)t = xt + iyt and ε(2)t = ut + ivt. This

indicates the need to analyse correlations between the real parts (xt with ut), imag-

inary parts (yt with vt), and the cross-correlation between terms combining real and

imaginary parts of the vector (xt with vt and yt with ut). We analyse the com-
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plex innovation process through its complex augmented vector, which will have four

terms, εt = [εTt , ε
H
t ]T = [ε(1)t , ε

(2)

t , ε
(1)∗
t , ε(2)∗t ]T. The augmented covariance matrix can

thus be written as

Σε = E[εtε
H

t ] = E


ε(1)t ε

(1)∗
t ε(1)t ε

(2)∗
t ε(1)t ε

(1)

t ε(1)t ε
(2)

t

ε(2)t ε
(1)∗
t ε(2)∗t ε(2)∗t ε(2)t ε

(1)

t ε(2)t ε
(2)

t

ε(1)∗t ε(1)∗t ε(1)∗t ε(2)∗t ε(1)∗t ε(1)t ε(1)∗t ε(2)t

ε(2)∗t ε(1)∗t ε(2)∗t ε(2)∗t ε(2)∗t ε(1)t ε(2)∗t ε(2)t

 =

[
Σε Σ̃ε

Σ̃∗ε Σ∗ε

]
. (6.3.6)

We can see that the augmented covariance matrix above can, by symmetry, be

split into two matrices and their complex conjugates. That simplifies the analysis

to be able to deal with two 2 × 2 matrices only. The covariance matrix Σε and

the complimentary covariance matrix Σ̃ε can be expressed in terms of the complex

innovation processes ε(1)t = xt + iyt and ε(2)t = ut + ivt, as

Σε = E[εtε
H

t ] =

[
σ2
x + σ2

y + i(ρyx − ρxy) ρxu + ρyv + i(ρyu − ρxv)
ρux + ρvy − i(ρuy − ρvx) σ2

u + σ2
v + i(ρvu − ρuv)

]
,

Σ̃ε = E[εtε
T

t ] =

[
σ2
x − σ2

y + i(ρxy + ρyx) ρxu − ρyv + i(ρxv + ρyu)

ρux − ρvy + i(ρvx + ρuy) σ2
u − σ2

v + i(ρuv + ρvu)

]
,

(6.3.7)

where σ2
x = var(xt), ρxy = cov(xt, yt), etc.

6.3.2 Likelihood estimation and identifiability of bivariate CVAR(1)

In this section we discuss the maximum likelihood technique for estimating the

parameters of the model in Equation (6.3.1) as one of the most used estimation

techniques in time series analysis. To estimate the parameters of a CAR(p) model,

we use the concept of conditional likelihood, where we condition the likelihood on

the past values of the time series [7, p. 226].

For the above general time series model the conditional distribution of its aug-

mented vector ψ
t

can be expressed as

ψ
t
| ψ

t−1
,ψ

t−2
, . . . ∼ N(ρM δ,λψt−1

,Σε). (6.3.8)

Due to the Markov property of first-order autoregressive models, the value at

time t will depend only on the value at time t− 1, and so we can express the above
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conditional distribution with values at t− 1 only

ψ
t
| ψ

t−1
∼ N(ρM δ,λψt−1

,Σε), (6.3.9)

We assume Gaussianity and use the general PDF of a complex normal RV U ∈
Cn, which can be written by using its complex augmented vector W = [UT,UH]T

[2], as

p(U) =
1

πn|ΓW |1/2
exp
{
− 1

2
(W − µW )HΓ−1

W (W − µW )
}
, (6.3.10)

where |ΓW | denotes the matrix determinant of the augmented covariance matrix,

ΓW = E[(W − µW )(W − µW )H]. Together with the above conditional distribution

of the CVAR(1) model in (6.3.9) we can write the conditional PDF of our time series

model, as

p(ψ
t
| ψ

t−1
;θ) =

1

πn|Σε|1/2
exp
{
− 1

2
(ψ

t
− ρM δ,λψt−1

)HΣε
−1(ψ

t
− ρM δ,λψt−1

)
}
.

(6.3.11)

In the above conditional PDF, θ is a vector of parameters of interest, which in

pur case of the CVAR(1) model is θ = [ρ, δ, λ]T. From the above the conditional

likelihood L(θ), we derive the log-likelihood of our time series model as

l(θ) =
T∑
t=2

log p(ψ
t
| ψ

t−1
;θ)

= −T − 1

2
log |Σε| −

1

2

T∑
t=2

{
(ψ

t
− ρM δ,λψt−1

)HΣε
−1(ψ

t
− ρM δ,λψt−1

)
}

+ C.

(6.3.12)

To estimate the parameters in θ we maximise the log-likelihood as a function of

the parameters θ.

6.3.3 Autocovariance function of bivariate CVAR(1)

The autocovariance function (ACVF) of the bivariate CVAR(1) time series model in

Equation (6.3.1) is derived by using the complex augmented vectorψ
t

= [ψT
t ,ψ

H
t ]T =

[ψt, ηt, ψ
∗
t , η
∗
t ]

T. Since the process is zero-mean, we can write the augmented auto-
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covariance (ACV) matrix as

Γψ(τ) = E[ψ
t+τ
ψH

t
]

=


γψψ(τ) γψη(τ) γ̃ψψ(τ) γ̃ψη(τ)

γηψ(τ) γηη(τ) γ̃ηψ(τ) γ̃ηη(τ)

γ̃∗ψψ(τ) γ̃∗ψη(τ) γ∗ψψ(τ) γ∗ψη(τ)

γ̃∗ηψ(τ) γ̃∗ηη(τ) γ∗ηψ(τ) γ∗ηη(τ)

 =

[
Γψ(τ) Γ̃ψ(τ)

Γ̃∗ψ(τ) Γ∗ψ(τ)

]
,

(6.3.13)

where are the bottom two blocks (Γ̃∗ψ(τ) and Γ∗ψ(τ)) just conjugates of the two

blocks on the top (Γψ(τ) and Γ̃ψ(τ)). This simplifies the analysis and we can focus

only on the Hermitian ACV matrix Γψ(τ) = E[ψt+τψ
H
t ], and the complimentary

autocovariance (C-ACV) matrix, Γ̃ψ(τ) = E[ψt+τψ
T
t ].

The easiest way to obtain the ACVF is to use the Yule-Walker equations [51].

In order to obtain the expression for the Hermitian ACV matrix we iteratively solve

the Yule-Walker equation for different values of τ

Γψ(τ) = E[ψt+τψ
H

t ] = E[(ρMδ,λψt+τ−1 + εt)ψ
H

t ]. (6.3.14)

The ACV matrix, for different values of τ , then becomes

Γψ(τ) =


ρ2Mδ,λΓψ(0)MH

δ,λ + Σε for τ = 0,

ρτKδRλτK
H
δ Γψ(0) for τ > 0,

ρ|τ |Γψ(0)KδR
T

λ|τ |K
H
δ for τ < 0.

(6.3.15)

These equations cannot determine the covariance matrix at τ = 0, as the term

Γψ(0) appears on both sides of the equal sign, Γψ(0) = ρ2Mδ,λΓψ(0)MH
δ,λ + Σε.

According to Lütkepohl [33, p. 27] we can use the vec operator1 to rearrange the

terms of (6.3.15) when τ = 0. By doing this we obtain an expression where the

1The vec operator, denoted as vec{·} transforms an m × n matrix by stacking its columns
into an mn × 1 vector. The property of the vec operator used in this derivation is vec{ABC} =
(CT ⊗ A)vec{B}, where A,B and C are matrices with appropriate dimensions and ⊗ denotes
Kronecker product.
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elements of the variance matrix of the model are all stacked up in a 4× 1 vector

vec{Γψ(0)} = ρ2vec{Mδ,λΓψ(0)MH

δ,λ}+ vec{Σε}

= ρ2[(MH

δ,λ)
T ⊗Mδ,λ]vec{Γψ(0)}+ vec{Σε}

= [I4 − ρ2((MH

δ,λ)
T ⊗Mδ,λ)]

−1vec{Σε}.

(6.3.16)

Similarly as above, in order to obtain the expressions for the C-ACV matrix we

use the Yule-Walker equation Γ̃ψ(τ) = E[ψt+τψ
T
t ] = E[(ρMδ,λψt+τ−1 + εt)ψ

T
t ] and

solve it iteratively for different values of τ . The expression for the C-ACV matrix

for the different values of τ is

Γ̃ψ(τ) =


ρ2Mδ,λΓ̃ψ(0)MT

δ,λ + Σ̃ε for τ = 0,

ρτKδRλτK
H
δ Γ̃ψ(0) for τ > 0,

ρ|τ |Γ̃H
ψ(0)KδR

T

λ|τ |K
H
δ for τ < 0.

(6.3.17)

Due to the same issue, the above cannot be used to solve for the complimentary

covariance matrix. We use the same property of the vec operator to yield an expres-

sion for the complimentary covariance matrix Γ̃ψ(0) with its elements all stacked

up in a 4× 1 vector

vec{Γ̃ψ(0)} = [I4 − ρ2(Mδ,λ ⊗Mδ,λ)]
−1vec{Σ̃ε}. (6.3.18)

ACVF as a function of lag τ We are interested in analysing the behaviour of the

ACVF as a function of lag-time τ in order to see if this parametric model exhibits

an autocovariance ellipse (as per Definition 5.2.3). We look at the trajectory of each

of the elements of the ACVF as we progress through lags τ and observe their shape.

In other words, we plot the trajectory of the ACVF in the complex plane. For

simplicity we will analyse only the hermitian ACV matrix Γψ(τ), but the analysis

would be the same for the C-ACV matrix, mutatis mutandis. Same applies to the

positive and negative values of τ . We will look only at the case when τ ≥ 0, because

for τ < 0 the ACVF is just its conjugate transpose, Γψ(τ) = ΓH
ψ(−τ).

Remark 6.3.1. We analyse the autocovariance function of this time series model

in (6.3.1) as function of lag τ . From such analysis we can see that each entry of

the ACV matrix will represent a damped ellipse, based on the univariate parametric
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representation in (5.1.3),

Γψ(τ) = ρτM τ
δ,λΓψ(0) = ρτKδRλτK

H

δ Γψ(0)

= ρτ

[
cos(λτ) sin(λτ)ei2δ

− sin(λτ)e−i2δ cos(λτ)

]
Γψ(0)

= ρτ

[
cos(λτ) sin(λτ)ei2δ

− sin(λτ)e−i2δ cos(λτ)

][
γ1 γ2

γ∗2 γ4

]

=
ρτ

2

[
α1e

iλτ + α2e
−iλτ −iei2δ(α3e

iλτ − α4e
−iλτ )

ie−i2δ(α1e
iλτ − α2e

−iλτ ) α3e
iλτ + α4e

−iλτ

]
;

where

α1 = γ1 − iγ∗2ei2δ, α3 = γ4 + iγ2e
−i2δ,

α2 = γ1 + iγ∗2e
i2δ, α4 = γ4 − iγ2e

−i2δ.

(6.3.19)

From Remark 6.3.1 we can clearly see that each entry of the autocovariance

matrix follows a parametric model of an elliptical trajectory as discussed earlier in

Equation (5.1.3). This proves that the elements of the autocovariance matrix will

exhibit elliptical trajectories and in some instances one of the degenerate cases (circle

or line). For example, if we compare the first entry of the matrix in (6.3.19) to the

parametric ellipse representation from (5.1.3), we can see that α1 acts as A+e
iθ+ and

α2 acts as A−e
−iθ− , which define the amplitude and phase of the rotating phasors.

As a result the autocovariance function of this model produces four autocovariance

ellipses through lag-time τ . These ellipses are damped with exponential decay due

to the stationarity condition, ρ < 1. The theoretical ACVF can be divided by ρτ to

achieve a constant (non-damped) mapped ellipse for every entry of the matrix. The

first and fourth one have orientation angle of zero, because the variance at lag zero

is real-valued.

Moreover, we see the root-mean-square amplitude is the same between ellipses

in the columns. They are pairwise proportionately same in size, but with different

orientations. This indicates that we therefore need to study only two of these four

entries.

κΓψ(τ) = ρτ

[√
(γ2

1 + |γ2|2)/2
√

(γ2
4 + |γ2|2)/2√

(γ2
1 + |γ2|2)/2

√
(γ2

4 + |γ2|2)/2

]
(6.3.20)
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6.3.4 Forecast of bivariate CVAR(1)

In Remark 6.3.1 we saw that the bivariate CVAR(1) model in (6.3.1) exhibits an

autocovariance ellipse. We now want to perform the same analysis on the forecast

of the model and analyse its behaviour. The forecast function of time series was

introduced in Chapter 3.2 and expressed for AR(1) models in Equation (3.2.2). The

forecast ellipse per Definition 5.2.2 is interpreted as: if we know the value of the

process today and in the past, we will be able to make our best estimate for its

future based on the elliptical trajectory of the forecast function. The main aim is

to understand what kind of trajectory of the signal we can expect in the future

conditionally to knowing the present and past values.

Remark 6.3.2. The forecast ellipse of the model in (6.3.1) can be viewed as a set of

points (real and imaginary parts) of each entry of the forecast vector that will map

an elliptical trajectory in the complex plane as we progress through forecast-time l.

We represent this by deriving the forecast function of the model and expressing it

in a parametric form of an ellipse as

ψ̂t(l) =

[
ψ̂t(l)

η̂t(l)

]
= E[ψt+l | ψt,ψt−1, . . .]

= ρMδ,λψ̂t(l − 1) = . . . = ρlM l
δ,λψt

= ρlKδRλlK
H

δ ψt

= ρl

[
cos(λl) sin(λl)ei2δ

− sin(λl)e−i2δ cos(λl)

] [
ψt
ηt

]
= ρl

[
ψt cos(lλ) + ηte

i2δ sin(lλ)

−ψte−i2δ sin(lλ) + ηt cos(lλ)

]
= ρl

[ 1
2
(ψt − iηtei2δ)eiλl + 1

2
(ψt + iηte

i2δ)e−iλl

1
2
(ηt + iψte−i2δ)eiλl + 1

2
(ηt − iψte−i2δ)e−iλl

]
.

(6.3.21)

From Remark 6.3.2 we see that each of the elements of the forecast function of

the model will map a trajectory of a damped ellipse as we move through forecast-

time l forward with an exponential decay. If we are dealing with multivariate time

series, each of the entries of the forecast vector in (6.3.21) is in a parametric form

that will map an ellipse in the complex plane, similar to the signal in (5.1.3). On the

contrary, not all forecast functions will result in a function that would map an ellipse

as we move through the forecast-time l. This also means that not every parametric
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model will exhibit a forecast ellipse, but it depends on the parametrisation itself.

Moreover, we can show that the two 2-dimensional ellipses analysed through the

forecast vector are same in magnitude. The root-mean-square amplitude κ is same

for both ellipses

κ =
√

(|ψt|2 + |ηt|2)/2. (6.3.22)

6.3.5 Spectral analysis of bivariate CVAR(1)

Here we analyse the time series model in (6.3.1) in terms of the spectral analysis

as discussed in Chapter 2.2.3. In order to express the spectral density function of

the model we need to define the spectral processes {Zψ(f)} and {Zη(f)} for each

of the parts of our process ψt = [ψt, ηt]
T, with the respective orthogonal increments

{dZψ(f} and {dZη(f)}. For convenience and comprehensive analysis we stack the

orthogonal increment processes into a complex augmented vector as

dZψ(f) = [dZT

ψ(f), dZH

ψ(−f)]T = [dZψ(f), dZη(f), dZ∗ψ(−f), dZ∗η(−f)]T. (6.3.23)

Using the augmented vector of the orthogonal increment process we can derive

the augmented spectral density (SDF) matrix using the Equation (2.2.10), as

Sψ(f) = E[dZψ(f)dZψ
H(f)]

=


Sψψ(f) Sψη(f) S̃ψψ(f) S̃ψη(f)

Sηψ(f) Sηη(f) S̃ηψ(f) S̃ηη(f)

S̃∗ψψ(f) S̃∗ψη(f) S∗ψψ(−f) S∗ψη(−f)

S̃∗ηψ(f) S̃∗ηη(f) S∗ηψ(−f) S∗ηη(−f)

 =

[
Sψ(f) S̃ψ(f)

S̃∗ψ(f) Sψ(−f)

]
.

(6.3.24)

The above equation is composed of four block matrices, but only two are essential for

our analysis. Those two are the spectral matrix (SDF), Sψ(f) = E[dZψ(f)dZH
ψ(f)]

and the complimentary spectral matrix (C-SDF), S̃ψ(f) = E[dZψ(f)dZT
ψ(−f)].

To derive the augmented spectral matrix of the parametric CVAR(1) model we

can use the Equation (3.1.5) presented in Chapter 3.1.3. We need to take into

consideration the complex-valued property of our model and so need to use the

augmented version of our model {ψ
t
} as per Equation (6.3.5). So the augmented

spectral matrix can be expressed in the following way

Sψ(f) = H(e−i2πf )ΣεH
H(e−i2πf ), (6.3.25)
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where H(e−i2πf ) is the augmented transfer function matrix calculated as the inverse

of the characteristic polynomial H(B) = Φ(B)−1 = [I2−ρMδ,λB]−1, by substituting

the lag operator B with e−i2πf . Unfortunately the above matrix multiplication and

the inversion of the characteristic polynomial is not a simple operation and so we

are not able to express the spectral matrix in closed form.

From the equation above we can see that the spectral matrix will depend on the

parameters of the frequency λ, damping factor ρ and scaling factor δ. Nevertheless,

using data simulation from our model, we observe the SDF and notice that we

are able to control the peaks of the oscillation with a single parameter, λ. The

parameter λ places the peaks of the spectral density at the angular frequencies of

−λ and λ on the interval [−π, π], or in terms of frequencies at f = λ/(2π) on the

interval [−1/2, 1/2]. The angular frequencies ω = λ and the frequencies f are the

same concept and have a straight forward relationship ω = 2πf . The damping

factor ρ has a dispersion effect on the shape of the spectral density. The phase-shift

parameter δ also influences the shape of the curve and heights of the peaks, but not

the location of the peaks. The height of the SDF will also be influenced by the noise

term, if the innovation process is uncorrelated the peaks will be of same heights,

whereas if it is correlated across terms the peaks will have different heights.

6.3.6 Simulated example of bivariate CVAR(1)

We continue with presenting a simulated example from our time series model in (6.3.1).

On one hand we use this example to present how does the stochastic oscillation

model work and on the other to illustrate the concepts of the autocovariance and

forecast ellipse developed earlier. We have simulated time series realisation of length

1000 with parameter values: ρ = 0.8, δ = π/5 and λ = 0.6283 (corresponding to

f = 0.1). For the generation of values we used the recursive model Equation (6.3.1)

initiated at a random value generated from the same distribution as the random

noise. The innovation process used are bivariate complex-valued and improper in-

dependent normally distributed RVs, such that εt ∼ N(0,Σε), where the ACV and

C-ACV matrices are chosen to be

Σε =

[
1.4 0.6

0.6 1.1

]
, and Σ̃ε =

[
0.2 + 0.8i 0.2i

0.2i 0.1 + 0.6i

]
. (6.3.26)

Figure 6.2 shows the time trajectory of the bivariate time series {ψt} separately
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for the real and imaginary parts, whereas Figure 6.3 shows the trajectory of both

entries of the time series vector in the complex plane. As we can see these trajectories

are just a cloud of points without any structure, mainly due to randomness and zero-

mean of the process. In Figure 6.4 we show the periodograms of the two components

of the simulated time series and their theoretical SDF (red solid line). Figure 6.5

shows the plots of the autocovariance ellipses of each of the four entries of the ACVF

of our simulated model, and Figure 6.6 shows the plots of the forecast ellipses of

each of the two entries of the forecast vector of the simulated model.
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Figure 6.2: Plots of the simulated CVAR(1) time series trajectory in time for the
real (left) and the imaginary (right) parts of the two components, ψt (above) and ηt
(below)
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Figure 6.3: Plots of the simulated CVAR(1) time series trajectory in the complex
plane of the two components, ψt (left) and ηt (right)
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Figure 6.4: Periodograms and the SDF of the simulated CVAR(1) time series ψt
(left) and ηt (right)
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Figure 6.5: Plots of the autocovariance ellipse of the simulated CVAR(1) time series,
showing the damped and non-damped ellipses from each of the entries of the ACV
matrix through lags τ
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Figure 6.6: Plots of the forecast ellipses of the simulated CVAR(1) time series,
showing the damped and non-damped ellipses from each of the the entries of the
forecast vector through forecast-time l

Identifiability of the general model To assess the usability of the model we

want to investigate if the parameters are uniquely identifiable. We use the simu-

lated data to fit the model parameters using the conditional likelihood from Equa-

tion (6.3.12), in order to observe the behaviour of the likelihood function and analyse

the identifiability of the parameters. Below in Figure 6.7 we show the surface plot

of the log-likelihood in 3-dimensions for estimated parameters ρ and δ.

The main observation is that the surface plot has a clear maximum and is locally

convex at the true values of the parameters. Since we used simulated data we know

the true values of the parameters and see that they were correctly estimated. We can

conclude that the likelihood is well behaved and that the parameters are uniquely

identifiable in the parameter space. Figure 6.8 shows the log-likelihood function for

a single parameter at the true value of the other one. As we can see the likelihood

function has a unique maximum for both parameters.
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Figure 6.7: Surface plot of the likelihood function of the simulated CVAR(1) time
series for parameters ρ and δ
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Figure 6.8: Section of above surface plot of the likelihood function for true param-
eters δ = π/5 (left) and ρ = 0.8 (right)

Model estimation example We show also the estimation of the parameters using

maximum likelihood method using the same simulated data. We the conditional

log-likelihood defined in Equation (6.3.12) to estimate the parameters from data

generated in this example. Since we use the simulated data we know the true values

of the parameters are ρ = 0.8, δ = π/5 and λ = 0.6283. We use the log-likelihood

function to iteratively estimate the parameters, with starting values that are in the

space of possible values for each parameter. The estimation method gave us the

following estimates: ρ̂ = 0.7946, δ̂ = 0.5333 and λ̂ = 0.6364, which are very close to

the true values.

6.4 Extensions of the parametric time series models

In continuation, we explore further extensions and variations of the parametric time

series model developed in the previous chapter. As the basis we will use the bivariate

VAR(1) model in (6.3.1) to which we will add a stretching factor. We saw that this

model features the desired qualities, so we are interested in how can it be further

extended and what do such changes mean for the model and its behaviour. We will
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look at both real- and complex-valued models. In this research we just mention

these models as a possible extension, but we will not develop them further, mainly

because they are mathematically a bit more complex and not easy to work with.

6.4.1 CVAR(1) with stretching factor

First, we take the time series model from the previous chapter in (6.3.1) and add a

stretching factor α to it. This is done by multiplying the model coefficient by the

stretching matrix Vα. The stretching introduces an additional asymmetry between

the components of the bivariate time series vector. In other words, the axes of the

coordinate system are unevenly stretched, if α 6= 1. Whereas if α = 1 then we have

the same model as before in (6.3.1), which means that our original model is nested

in this more general class.

The CVAR(1) with stretching factor will have the parametric form as follows

ψt = ρMα,δ,λψt−1 + εt = ρ 1√
α
KδRλK

H

δ Vα︸ ︷︷ ︸
Mα,δ,λ

ψt−1 + εt; (6.4.1)

[
ψt
ηt

]
=

ρ√
α

[
eiδ 0

0 e−iδ

][
cos(λ) sin(λ)

− sin(λ) cos(λ)

][
e−iδ 0

0 eiδ

][
α 0

0 1

] [
ψt−1

ηt−1

]
+

[
ε

(1)
t

ε
(2)
t

]

=
ρ√
α

[
α cos(λ) sin(λ)ei2δ

−α sin(λ)e−i2δ cos(λ)

] [
ψt−1

ηt−1

]
+

[
ε(1)t
ε(2)t

]
; (6.4.2)

where the additional parameter is the stretching factor α ∈ R and its stretching

matrix Vα. This represents an affine transformation of stretching of the axes (if

α 6= 1 then the stretching is non-uniform). Additionally we also divide by factor
√
α in order to make the determinant of Mα,δ,λ equal to one.

The matrix Vα causes a non-uniform (anisotropic) scaling transformation, if

α 6= 1. Since the other scaling factor is 1, this represents a directional scaling or

stretching. This means that the time series vector at t− 1, ψt−1, is stretched in one

direction and the shape of the object is changed. More general discussion on affine

transformation is in Chapter 2.1.2.

Stationarity For a general CVAR(1) model the stationarity condition is satisfied,

if the roots of det{Φ(B)} = 0 are greater than one in absolute value [51], where

Φ(B) is the characteristic polynomial. For this model this translates to a condition
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that will not only depend on the damping factor ρ, but also the scaling factor α

and frequency λ. The characteristic polynomial for this process is Φ(B) = I2 −
ρMα,δ,λB = I2 − ρ√

α
KδRλK

H
δ VαB. Finding the roots of the determinant of the

characteristic polynomial gives us the condition for stationarity for this models as

∣∣∣∣∣
α+1√
α

cosλ±
√

(α+1)2

α
cos2 λ− 4

2ρ

∣∣∣∣∣ > 1. (6.4.3)

Autocovariance function Using the Yule-Walker equations (as introduced in

Equation (6.3.14)) we express the ACV matrix of this model as

Γψ(τ) =


ρ2Mα,δ,λΓψ(0)MH

α,δ,λ + Σε for τ = 0,(
ρ√
α

)τ
Kδ

[
RλVα

]τ
KH

δ Γψ(0) for τ > 0,(
ρ√
α

)|τ |
Γψ(0)Kδ

[
VαR

T
λ

]|τ |
KH

δ for τ < 0;

(6.4.4)

and the C-ACV matrix as

Γ̃ψ(τ) =


ρ2Mα,δ,λΓ̃ψ(0)MT

α,δ,λ + Σ̃ε for τ = 0,(
ρ√
α

)τ
Kδ

[
RλVα

]τ
KH

δ Γ̃ψ(0) for τ > 0,(
ρ√
α

)|τ |
Γ̃ψ(0)KH

δ

[
VαR

T
λ

]|τ |
Kδ for τ < 0.

(6.4.5)

Remark 6.4.1. We analyse the expression for the ACV as function of τ and try

to see its behaviour. We look only at the case when τ ≥ 0. Unfortunately, the

expression does not have a clear closed form solution in τ

Γψ(τ) = ρτM τ
α,δ,λΓψ(0)

=
[ ρ√

α
KδRλK

H

δ Vα

]τ
Γψ(0)

=
( ρ√

α

)τ
Kδ

[
RλVα

]τ
KH

δ Γψ(0)

=

(
ρ√
α

[
α cos(λ) sin(λ)ei2δ

−α sin(λ)e−i2δ cos(λ)

])τ
Γψ(0).

(6.4.6)

From the above Remark 6.4.1 we can notice that for every τ the covariance matrix

Γψ(0), which does not depend on lag τ , is multiplied by an affine transformation

matrix ρMα,δ,λ. For every τ the covariance matrix is scaled (using the scaling factor
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α), rotated (using the frequency λ) and damped (by the damping factor ρ). From

this we can conclude that the trajectory of the ACVF matrix as a function of τ will

follow an ellipse, although we are not able to show that in closed form as previously.

Remark 6.4.2. We now perform a similar analysis for the forecast function to

observe its behaviour. In this case the l-step ahead forecast of the model in (6.4.1)

is

ψ̂t(l) =

[
ψ̂t(l)

η̂t(l)

]
= E[ψt+l | ψt,ψt−1, . . .]

= ρMα,δ,λψ̂t(l − 1) = . . . = ρlM l
α,δ,λψt

=
[ ρ√

α
KδRλK

H
δ Vα

]l
ψt

=
( ρ√

α

)l
Kδ

[
RλVα

]l
KH

δ ψt

=

(
ρ√
α

[
α cos(λ) sin(λ)ei2δ

−α sin(λ)e−i2δ cos(λ)

])l[
ψt
ηt

]
(6.4.7)

which, similar to the analysis of the ACVF before, does not have a nice closed form

solution in forecast-time l.

From the above remark we see that the forecast vector ψ̂t(l) will be at every

l-step forecast scaled, phase-shifted, rotated, phase-shifted backwards and damped.

Consequently the forecast vector will trace a trajectory of a damped ellipse as a

function of the l-step ahead forecast. As we have already seen above in the case of

the autocovariance ellipse we cannot show this in closed form.

Simulated example Also in this case, we simulate an example from the model

with stretching factor in Equation (6.4.1). To be abel to compare the plots with

the simulated example of the general model in Chapter 6.3.6, we use the same

parameters as above and add the stretching factor, α = 2.

Figure 6.9 shows the plots of the autocovariance ellipses of each of the four entries

of the ACVF of the simulated model with stretching factor, and Figure 6.10 shows

the plots of the forecast ellipses of each of the two entries of the forecast vector of

the simulated model with stretching factor.
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Figure 6.9: Plots of the autocovariance ellipse of the simulated CVAR(1) time series
model with stretching factor in Equation (6.4.1), showing the damped and non-
damped ellipses from each of the entries of the ACV matrix through lags τ
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Figure 6.10: Plots of the forecast ellipses of the simulated CVAR(1) time series model
with stretching factor in Equation (6.4.1), showing the damped and non-damped
ellipses from each of the the entries of the forecast vector through forecast-time l

We compare the simulated trajectories of the autocovariance and forecast el-

lipses between the general class model and the model with the stretching factor. In

both cases the trajectories trace a mapped ellipse in the complex plane. The main

difference for the autocovariance ellipses of the model with the stretching factor is

that each of the four entries of the ACV matrix has different parameters of the

ellipses. Both size and orientation are different, compared to the model without

the stretching factor where the ellipses were same in size. We can observe similar

differences for the forecast ellipse. In the case of the model with the stretching factor

the orientation and size of the forecast ellipses are different, whereas in the case of

the model without the stretching factor only the orientation was different.

6.4.2 Bivariate real-valued VAR(1) with stretching factor

Now we look at a similar parametric model as above with the main difference that it

will be real-valued VAR(1). This is an extension to the model described in (6.1.1) and

at the same time a constrained complex-valued model defined in Equation (6.4.1).

We need to restrict the CVAR(1) model parameter ρMα,δ,λ to be real-valued, which
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we do by setting the phase shift factor to be δ = 0 and making sure the noise term εt

is real-valued as well. By applying these restrictions we obtain the following model

ψt = ρMα,λψt−1 + εt = ρ
1√
α
RλVα︸ ︷︷ ︸
Mα,λ

ψt−1 + εt,

[
ψt
ηt

]
=

ρ√
α

[
α cos(λ) sin(λ)

−α sin(λ) cos(λ)

][
ψt−1

ηt−1

]
+

[
ε(1)t
ε(2)t

]
,

(6.4.8)

where {εt} ∈ R2. The stationarity of the model will also depend on the ρ, α and λ,

where the condition will be the same as for the previous model in Equation (6.4.3).

The model parameter ρMα,λ = ρ√
α
RλVα can be viewed as a linear transformation

(a restricted case of an affine transformation). Due to the transformation of the

matrix Vα the vector ψt−1 is stretched in one direction, so the shape of the object

is changed. Based on the transformation sequence composed of non-uniform scaling

(stretching) and rotation of the vector ψt−1, we can conclude that the transformation

causes the vector to trace a trajectory of an ellipse.

Complex composition To simplify the analysis of this process we construct a

univariate complex-valued process {ξt} from the entries of the bivariate real VAR(1)

as ξt = ψt + iηt. We also need to write the augmented vector as ξt = [ξt, ξ
∗
t ]

T ∈
C2, which can also be obtained as ξt = T2ψt. The complex-valued error term is

constructed as ζt = ε(1)t + iε(2)t , with its augmented vector ζt = [ζt, ζ
∗
t ]T ∈ C2. Using

this notation and the model in (6.4.8) it follows that the complex-valued time series

model {ξt} can be expressed with its real-valued components in the following way

ξt = ψt + iηt = ρ
α√
α
e−iλψt−1 + iρ

1√
α
e−iληt−1 + ζt

=
ρ√
α
e−iλ(αψt−1 + iηt−1) + ζt

=
ρ

2
√
α
e−iλ[α(ξt−1 + ξ∗t−1) + (ξt−1 − ξ∗t−1)] + ζt

=
ρ

2
√
α
e−iλ[(α + 1)ξt−1 + (α− 1)ξ∗t−1] + ζt,

(6.4.9)

which in case if α = 1, simplifies to ξt = ρe−iλ(ψt−1 + iηt−1) + ζt = ρe−iλξt−1 + ζt.
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Autocovariance function The ACV matrix of the model can be obtained by

using the Yule-Walker equations (as introduced in Equation (6.3.14)) in the following

way

Γψ(τ) =


ρ2

α
RλVαΓψ(0)VαR

T
λ + Σε for τ = 0,(

ρ√
α

)τ[
RλVα

]τ
Γψ(0) for τ > 0,(

ρ√
α

)|τ |
Γψ(0)

[
VαR

T
λ

]|τ |
for τ < 0.

(6.4.10)

We want to investigate how does the ACVF of the bivariate VAR(1) process

evolve as we move through lags τ . Since the model is real-valued its ACV matrix

will also be real-valued, so in order to observe the autocovariance ellipse, as per

Definition 5.2.3, we look at pairs of its entries in the x − y plane. Other option

is to look at the ACVF of the complex composition signal {ξt}. If we look at the

ACV matrix as function of lag τ we can notice that for every τ the ACVF is scaled,

rotated and damped. Since the operation of scaling is non-uniform, or in other words

directional, we can deduct that the shape of the ACVF through τ will be deformed.

The ACV matrix for the augmented vector of the complex composition {ξt} of

our time series {ψt} can easily be obtained by using the real-to-complex transfor-

mation matrix T2 as

Γξ(τ) = T2Γψ(τ)TH

2 =
( ρ√

α

)τ
T2

[
RλVα

]τ
Γψ(0)TH

2 . (6.4.11)

The stretching and rotation will make the ACVF trace out an elliptical trajectory

that will be damped, with exponential decay, by the factor ρ < 1. Unfortunately, as

we have seen in the previous chapter, due to the stretching factor α none of these

expressions will have a simplified closed form solution.

In the special case when the VAR(1) is without the stretching (α = 1), same as

in the model introduced at the beginning of our discussion about parametric models

in (6.1.1), the model parameter becomes just a rotation matrix Rλ. Now the ACVF

and the complementary ACVF of the complex composition {ξt} in lag-domain traces
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out a trajectory of a circle in the complex plane, as shown below

γξ(τ) = γψψ(τ) + γηη(τ) + i(γηψ(τ)− γψη(τ))

= ρτ [γψψ(0) + γηη(0) + i(γηψ(0)− γψη(0))]eiτλ

= ρτγξ(0)eiτλ;

γ̃ξ(τ) = γψψ(τ)− γηη(τ) + i(γηψ(τ) + γψη(τ))

= ρτ [γψψ(0)− γηη(0) + i(γηψ(0) + γψη(0))]eiτλ

= ρτ γ̃ξ(0)e−iτλ.

(6.4.12)

Forecast The l-step ahead forecast for the time series model in (6.4.8) is expressed

in the following way

ψ̂t(l) =

[
ψ̂t(l)

η̂t(l)

]
= E[ψt+l | ψt,ψt−1,ψt−2, . . .]

=
ρ√
α
RλVαψ̂t(l − 1) = . . .

=
( ρ√

α
RλVα

)l
ψt

=

(
ρ√
α

[
α cos(λ) sin(λ)

−α sin(λ) cos(λ)

])l[
ψt
ηt

]
,

(6.4.13)

which shows that the forecast vector {ψ̂t(l)}, will, at every l-step forecast, be

stretched, rotated and damped. Here we aim at describing the forecast ellipse for

this time series model in light of the Definition 5.2.2. Similar to above we can con-

clude that the forecast vector will also trace a trajectory of a damped ellipse in the

x − y plane as a function of the forecast-time l, but unfortunately this cannot be

shown in a closed form solution.

In the special case when the VAR(1) is without the stretching (α = 1), same as

in the model introduced at the beginning of our discussion about parametric models

in (6.1.1), the l-step ahead forecast will simplify to

ψ̂t(l) =

[
ψ̂t(l)

η̂t(l)

]
= ρl

[
ψt cos(lλ) + ηt sin(lλ)

ηt cos(lλ)− ψt sin(lλ)

]
, (6.4.14)
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which can be analysed using the complex composition ξt as

ξ̂t(l) = ψ̂t + iη̂t = ρl[ψte
−ilλ + iηte

−ilλ] = ρl[ψt + iηt]e
−ilλ. (6.4.15)

This clearly shows that conditionally on knowing the present and the past, we expect

the trajectory of the time series model will follow a circular shape.
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Chapter 7

Conclusion and discussion

The contribution of our research is that we have provided a synthesis of the existing

elliptical definitions, introduced two new definitions of the ellipse and proposed

a bivariate parametric model for the modelling of stochastic oscillations. In this

thesis we have first reviewed literature and provided background theory for a holistic

understanding of the research topic. Since, our research is centred around complex-

valued stochastic processes, we provided background theory about complex-valued

random vectors and random processes. We also provided some basic theory about

time series analysis as defined for complex-valued time points. All this background

theory was intended to facilitate the understanding of complex-valued oscillatory

models and elliptical structure in the rest of our work.

After the initial background theory we provided an introduction to elliptical

models and oscillations. This introduced the reader to general processes as elliptical

structures. The central part of our research were the definitions of the elliptical

models. We identified and outlined several definitions from literature. The existing

definitions are very intuitive in the case of deterministic signals both in time and

frequency domains. As noticed, for stochastic processes the approach of how to

define the ellipse is a bit more challenging. Most of these definitions are in the

frequency domain, which we think, is less intuitive and less useful due to the inherent

randomness of frequency domain definitions. Our aim was to identify a non-random

time domain definition of stochastic processes. That is why we proposed two new

elliptical definitions, the autocovariance ellipse and the forecast ellipse. Both of these

definitions are in time domain and are deterministic representations. Due to these

two properties of the representations we think they are a useful contribution to the
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research in this field. Moreover, we believe this field of research is partially unclear

because theree is no synthesis of the different ellipse definitions in the literature.

Thus, our aim was to introduce clarity by providing a summary and illustrate all the

definitions at the same place. We believe this is also a very important contribution

of our work.

To complete the theoretic research and the definitions of ellipses, we also pro-

posed parametric models for modelling of stochastic oscillations. We proposed a

bivariate complex-valued model that is equipped to accommodate complex-valued

time points. Its parameters control the shape and form of the oscillation and the

spectral density function. This model also illustrated the concepts developed theo-

retically, and showd how the elliptical definitions work in practice. The development

of this parametric model was based on affine transformations. We used the different

affine transformations to create the stochastic oscillation and to control its shape.

Apart from having proposed and analysed the bivariate complex-valued model, we

also looked at the restrictions and extensions of that model that stems from affine

transformation theory. We explored restrictions in the direction of real-valued pro-

cesses, whereas extensions can be made by introducing additional parameters. We

based ourselves in the context of affine transformations for the purpose of building

the stochastic oscillation models.

We believe, that the two new elliptical definitions we added to the theory in this

field of research, are very intuitive and add many possible ways to analysing stochas-

tic oscillations. They can be used in statistical research and in signal processing.

There are several applied fields that use the idea of elliptical models to understand

and model natural behaviour, such as oceanography, econometrics, seismology, etc.

The fact that we have also proposed a parametric model gives additional usefulness

to the definitions. This model is bivariate and complex-valued, which is very useful

in applications where we have coupled phenomena that come in bivariate series.

Such as, for example, in oceanography, where we model the north-south and east-

west components of ocean currents or surface winds. The proposed model is also

useful because it is relatively easy to non-parametrically estimate the autocovariance

function of a time series and observe its behaviour. Like that we can easily observe

the elliptical properties of the natural phenomena in light of the autocovariance

ellipse.

Nevertheless, we also have to be aware that the proposed definitions and the

parametric models have limitations. The limitation of the theoretical definitions
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we proposed, is that the autocovariance and/or the forecast function of the model

need to be defined. Ideally we should find such a model that allows for a closed

form solution of these two functions. The limitation of our research is that we do

not provide insight into inference of these models and we do not provide a practical

application. At this point of research we have decided to illustrate the examples

and the proposed models with simulated data only. We believe that this provides

enough insight into how the models work. In the future an applied example would

be very illustrative.

Last but not least, by proposing the two new theoretical definitions we created

space for new research opportunities and further exploration in this direction of time

series analysis. The immediate extensions for future work in this area are both in

the theoretical and modelling work. On one hand, we would be interested to extend

these definitions to non-stationary elliptical models. Since the autocovariance or the

forecast functions of a non-stationary process change over time, it would require a

local time extension of the above definitions. On the other hand, for the modelling

part the immediate extension would be to increase the dimensionality of the models.

We started with bivariate models, which are the initial step from univariate analysis.

For the future we would be interested to define n- dimensional stochastic oscillation

models.

7.1 Discussion on feasibility of the multivariate extension

The increase of dimensionality for these models would mean we would need to break

away form the natural bivariate structure introduced above. There are several

considerations of a multivariate extension, such as how to construct an intuitive

parametric model, how to make sure such model would not suffer from too many

parameters to estimate, and how do we understand an ellipse in higher-dimensions.

The main challenge for multivariate extensions is that such models suffer the

‘curse of dimensionality’. In other words, the higher-dimensional the structure is the

more parameters are needed to estimate. This causes that the identifiability of the

parameters needed becomes a serious issue. If such models were to be proposed the

identifiability would need to be researched more in detail and possibly a simplified

structure proposed.

Apart from the identifiability also the intuitiveness and applicability of higher-

dimensional models becomes an issue. To construct higher-dimensional models we
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would need to break the simple bivariate structure of the affine transformation

matrices. These matrices have an intuitive explanation, as well as they also create

the oscillation needed to model cyclical behaviour. A different structure with similar

properties would need to be proposed to recreate higher-dimensional structures that

would replicate the same effect.

Finally, understanding oscillations and consequently ellipses in higher dimensions

is also a challenge. Bivariate structure is very natural and is inherent in our complex-

valued models. Higher-dimensional ellipses are not easily pictured in a plot, hence

it would be more difficult to see that the structure is following an n-dimensional

ellipse.

Based on this multivariate extension might either be very complex or not possible

at all, either due to lack of identifiability or the perspective of recreating the desired

structure. Usefulness of such extension might also be questionable. Hence, at this

point we propose for one to divide the observations in pairwise problems and use

the bivariate models to analyse higher dimensional models.

7.2 Discussion on non-stationary extension

Stationary models are desirable in time series analysis as already outlined in the

thesis above (see 2.2.2). However, if we cannot assume stationarity it means that

the model properties change over time. In order to model this in a parametric model

we would need to introduce a local time extension of the models proposed above.

To illustrate the local expansion, we analyse a univariate ACVF that can be

easily linked to the above parametric models. Local time expansion of the ACVF

can be represented with a series of deviations from a set of constant-amplitude

oscillations evolving with some common instantaneous frequency ω(τ). Following

the approach taken in [31] let us represent the ACVF of the process of interest ψt

in the neighbourhood of lag τ with deviations from a set of sinusoids with common

time-varying frequency ω(τ).

Assuming the ACVF is continuous in lag τ ∈ R we are interested in analysing

the ACVF in the vicinity offset by h. We start by expressing the ACVF γ(τ) shifted

by ‘local lag’ in the form

γ(τ + h) = eiω(τ)h[e−iω(τ)hγ(τ + h)].
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Next we use Taylor expansion, as defined in [1, p. 880], on the term in the square

brackets above with respect to h = 0, to obtain the local modulation expansion

γ(τ + h) = eiω(τ)h
{
γ(τ) + hγ̄1(τ ;ω(t)) + 1

2
h2γ̄2(τ ;ω(t)) + ζ3(τ, h;ω(t))

}
(7.2.1)

The γ̄p(τ ;ω(t)) can be called a deviation factor and defined as

γ̄p(τ ;ω(t)) =
∂p

∂hp
[e−iω(τ)hγ(τ + h)]

∣∣∣
h=0

(7.2.2)

and the remainder term or inaccuracy follows the Lagrange form of remainder in

Taylor series for some unknown point u (0 < u < h), as

ζ3(τ ;ω(t)) =
1

6
h3 ∂

3

∂h3
[e−iω(τ)hγ(τ + h)]

∣∣∣
h=u

. (7.2.3)

The first derivative is usually referred to as the velocity and the second derivative

as the acceleration. In the above Equation (7.2.1) we can think of the γ̄1(τ ;ω(t)) as

the intrinsic ACVF velocity and the γ̄2(τ ;ω(t)) as the intrinsic ACVF acceleration.

Whereas the ζ3(τ, h;ω(t)) is the jerk, but since we assume smoothness of the func-

tion this remainder should be small and the function should not exhibit too much

jerkiness.

This analysis shows that in the non-stationary expansion the qualities related to

the models, such as the ACVF, would need to be examined on their behaviour in

the neighbourhood of each lag τ . This largely reduces the usefulness of such models

and introduces many additional factors to consider during the modelling.
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Appendix A

Notation and abbreviations

Notation

x denotes a real-valued non-random vector in Rn

u denotes a complex-valued non-random vector in Cn

X denotes a real-valued random vector in Rn

U denotes a complex-valued random vector in Cn

{ut} denotes a complex-valued deterministic signal, such as ut = xt + iyt

{Ut} denotes a complex-valued random time series, such as Ut = Xt + iYt

Vt denotes the real augmented vector, such as Vt = [XT
t ,Y

T
t ]T

Wt denotes the complex augmented vector composed of the complex vector

and its complex conjugate, such as Wt = [UT
t ,U

H
t ]T

In denotes the n× n identity matrix

det{·} determinant of a matrix

tr{·} trace of a matrix

var{·} variance operator

cov{·, ·} covariance operator

mse{·} mean square error

τ denotes lag in the auto-covariance function

B lag- (or back-) shift operator

Σε covariance matrix of the vector random noise ε

γU(τ) autocovariance function (ACVF) of univariate process {Ut} at lag τ

γ̃U(τ) complimentary autocovariance function (C-ACVF) of univariate process

{Ut} at lag τ
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ΓU(τ) autocovariance function (ACVF) matrix of a complex-valued process {Ut}
at lag τ

Γ̃U(τ) complimentary autocovariance function (C-ACVF) matrix of a complex-

valued process {Ut} at lag τ

ΓW (τ) augmented autocovariance matrix of a complex-valued process {Ut} de-

fined by using the augmented vector Wt at lag τ

ZU(f) spectral process for complex-valued random process {Ut} with orthogonal

increments dZU(f)

f frequency measured in cycles per unit, where f = ω/2π

ω angular frequency, where ω = 2πf

SU(f) spectral density function (SDF) of complex time series {Ut} at frequency

f

S̃U(f) complimentary spectral density function (C-SDF) of complex time series

{Ut} at frequency f

SW (f) augmented spectral matrix of the complex time series {Ut} defined by

using the augmented vector W at frequency f

SU(f) spectral distribution function of time series {Ut}
C spectral coherence

H{xt} discrete Hilbert transform of signal {xt}
x+,t analytic signal created from real vector signal {xt}
H(·) unit step function

{εt} n× 1 vector of innovation process (error term), usually i.i.d. N(0, Σε)

X̂t(l) l-step ahead forecast of vector time series {Xt}
x̂(f) discrete Fourier transform of signal {xt}
µt vector of trend components of a composite stochastic time series model

γt vector of seasonal components of a composite stochastic time series model

ψt vector of cyclical components of a composite stochastic time series model
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Abbreviations

RV random vector

CW clockwise

CCW counter-clockwise

PDF probability density function

ACV autocovariance

(C-)ACVF (complimentary) autocovariance function

ACVS autocovariance sequence

(C-)SDF (complimentary) spectral density function

WSS wide-sense stationary

AR(p) autoregressive process of order p

AR(p) complex-valued autoregressive process of order p

MA(q) moving average process of order q

ARMA(p,q) autoregressive moving average process of orders p and q

VAR(p) vector autoregressive process of order p

CAR(p) complex-valued vector autoregressive process of order p

STSM structural time series model

i.i.d. independent and identically distributed
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Appendix B

Measures of size and ellipticity

1. The area of ellipse:

Area = ABπ = (A+ + A−)|A+ − A−|π = |A2
+ − A2

−|π

= |AxAy sinϕ|π

= A2 cosχ sinχπ = 1
2
A2 sin(2χ)π

(B.0.1)

2. The root-mean-square amplitude:

κ =

√
A2 +B2

2
= A/

√
2

=

√
A2
x + A2

y

2

=
√
A2

+ + A2
−

(B.0.2)

3. The ellipse parameter:

λ = ±A
2 −B2

A2 +B2
= ± cos 2χ

= ± 2A+A−
A2

+ + A2
−

=
A2
x − A2

y

A2
x + A2

y

sec 2θ

(B.0.3)
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4. The eccentricity:

E = ±
√

1− B2

A2
= ±
√

cos 2χ

cos2 χ

= ±2
√
A+A−

A+ + A−

= ±

√
2|(A2

x − A2
y) sec 2θ|

(A2
x + A2

y + |(A2
x − A2

y) sec 2θ|

(B.0.4)

5. The (signed) aspect ratio is

AR = ±B
A

= tanχ

=
A+ − A−
A+ + A−

= ±

√
A2
x + A2

y − |(A2
x − A2

y) sec 2θ|
A2
x + A2

y + |(A2
x − A2

y) sec 2θ|

(B.0.5)
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