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Abstract
There is a long-standing interest in the relationship between the rise of early Metazoans

and changes in the redox structure of the oceans. As such, there is a need for reliable

geochemical proxy archives that record palaeo-redox. Before we can use proxies in

deep time we must understand their application in modern environments, and ensure

pristine seawater signals can be extracted effectively. We investigate the sulfur cycle

in the modern ocean, using new data from minor sulfur isotopes to constrain the

proportional pyrite burial flux - a key control on atmospheric oxygen regulation through

time - to between 20 and 35%. Ce anomalies in rare earth element patterns record

redox information, and we develop the leaching methods for extracting pristine signals

from carbonates. We suggest that a partial leach in nitric acid reduces the risk of

contamination.

We apply multiple redox proxies (Fe-speciation, TOC, carbon isotopes, CAS-pyr

paired sulfur isotopes and Ce anomalies) to terminal Ediacaran carbonates from the

Nama Group, Namibia, to reconstruct the redox structure of the Nama Group and its

relationship to the distribution of biomineralising Metazoans. We generate a holistic

redox model that distinguishes between anoxic, intermediate and fully oxygenated

waters, including identification of manganous conditions using novel observations of

positive Ce anomalies. We distinguish between spatial and temporal variability in redox

using nine sections from variable relative water depths. Dynamic redox conditions

are associated with small, monospecific communities of Metazoans in short-lived

horizons. Metazoans are largely absent from low oxygen manganous waters, whereas

fully oxic waters host large, complex Metazoan communities. We suggest that redox

exerted an important control on the ecological structure of terminal Ediacaran Metazoan

communities.
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Glossary of common abbreviations

AVG Average
BIF Banded Iron formations
BSI Bell shaped index (with respect to REY patterns)
BSD Bacterial sulfur disproportionation
BSR Bacterial sulfate reduction
DIC Dissolved inorganic carbon
CAS Carbonate associated sulfate
Ce/Ce* Cerium anomaly
δ 13C Ratio of heavy (13C) to light (12C) stable carbon isotope
δ 34S Ratio of heavy (34S) to light (32S)stable sulfur isotope
∆34SSO4−pyr Difference in isotope composition of sulfate and coeval pyrite
Eu/Eu* Europium anomaly
FeHR Highly reactive iron pool
FeT Total iron content (wt%)
fpyr Fractional pyrite burial flux
Ga Billion years ago
GOE Great Oxidation Event
HREE Heavy rare earth elements
HST Highstand systems tract
ICP-MS Inductively coupled plasma mass spectrometry
ICP-OES Inductively coupled optical emission spectrometry
LREE Light rare earth elements
Ma Million years ago
MIF Mass independent fractionation
MFS Maximum flooding surface
mM millimolar
MREE Middle rare earth elements
Myrs Millions of years
NOE Neoproterozoic oxygenation event
OM Organic matter
OMZ Oxygen minimum zones
OS1 Lower Omkyk member
OS2 Upper Omkyk member
PAL Present atmospheric levels
REY Rare Earth elements and yttrium
SAS Secondary atmospheric sulfate
TST Transgressive systems tract
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CHAPTER 1. INTRODUCTION: LIFE AND OXYGEN

The abrupt appearance in the rock record of complex life forms has motivated some of the

biggest unanswered questions in Earth science. Early thinking speculated that the fossil record

was ‘woefully incomplete’ (Darwin, 1859), or that conditions were hostile to life before the

Cambrian (Daly, 1907). The apparent association between fossil appearances and geochemical

changes in the rock record has fueled speculation that early biological evolution was directed by

environmental change, with a commonly proposed trigger being oxygenation (see figure 1.1 for

summary of early evolutionary events and the rise of oxygen in the atmosphere and oceans). As

a result, there has been considerable interest in reconstructing redox gradients in ancient oceans.
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Figure 1.1: Major evolutionary events and the rise of oxygen in the atmosphere and oceans. The
focus of this study is on 550-541 Ma, coincident with the first biomineralising Metazoans and
infaunal bioturbation. The study area, the Nama Group, is highlighted by the red bar. Adapted
after Canfield et al. (2008).

It is widely assumed that low oxygen conditions are unfavourable, and sulfidic conditions lethal,

to the existence of large, complex animal life, although some exceptions are beginning to come

to light (Danovaro et al., 2010; Mills et al., 2014). Animals demand oxygen to sustain active

lifestyles and build hard body parts. Nursall (1959) postulated that the first Metazoan fossils
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CHAPTER 1. INTRODUCTION: LIFE AND OXYGEN

should be found above geochemical evidence for a rise in atmospheric oxygen, but we have not

yet been able to fully constrain the timing of either.

The rise of complex animal life was not as abrupt as early fossil hunters had been led to believe;

some Precambrian life forms existed but were rarely preserved. The precise timing for the

emergence of complex multicellular animals is contentious, but they appear as the Earth was

emerging from a series of severe glaciations, around a billion years after the evolution of the

eukaryotic cell. It was not until the twilight years of the Ediacaran that Metazoa began to move,

hunt and produce energy-intensive hard body parts (~551 Ma), and it was not until later, in the

Cambrian (~530 Ma), that most familiar animal phyla appeared and radiated.

This emanation of animal life was accompanied and possibly driven by major environmental

changes. The conventional view is that atmospheric oxygen rose in two major steps. An early

modest rise occurred ~2.3 Ga, during the Great Oxidation Event (Farquhar et al., 2000), followed

by a second rise in the Neoproterozoic, which was accompanied by the ventilation of the oceans

(Canfield et al., 2007; Och and Shields-Zhou, 2012; Sahoo et al., 2012). The Neoproterozoic

Oxygenation Event (NOE) was complex and occurred in stages between 750 and 520 Ma.

The oxygenation of the atmosphere may ultimately have been driven by increased productivity,

influenced by weathering processes, nutrient recycling and respiration. But the relationship is not

so straightforward - the evolution of animals, particularly filter-feeders and those with guts, will

have affected the geochemical cycles in the ocean and in turn produced feedbacks on atmospheric

oxygen. Controversies persist on this issue, with biologists challenging the geochemists that

simply assume rising oxygen permitted evolutionary advances. Ecological escalations may have

been the true driver, and the coincidence in the rock record of rising oxygen may be simply that

- a coincidence (Butterfield, 2009). Others have argued the inverse, that it was the evolution of

more complex animals that drove the oxygenation of the oceans (e.g. Boyle et al. 2014 or Lenton

et al. 2014).

Previous work has made broad characterisations on the redox state of the oceans during the NOE;

usually low-resolution studies spanning long timescales and relying on data from a single section

that may vary in lithology and relative water depth. The relationship with animal evolution

has also been only broadly characterised, usually with general statements about significant

global first appearance datums and their rough correspondence to a geochemical change in that

section. What has been lacking is a study that considers spatial as well as temporal change in

high-resolution, and relates the geochemistry directly to accompanying observations of fossil
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CHAPTER 1. INTRODUCTION: LIFE AND OXYGEN

distributions. Here, we explore in detail the relationship between the ecological distribution of

biominerals and motile animals and the oxygenation of the ocean using a combination of carbon

isotopes, Fe-speciation, TOC, cerium anomalies and sulfur isotopes across nine sections from

the Nama Basin, Namibia.

The progressive oxygenation of the ocean is recorded by a series of geochemical proxies. As

oxygen becomes depleted in the water column, the conditions transition through a large spectrum

of intermediate redox states (Canfield and Thamdrup, 2009). Each proxy has a unique response

to rising oxygen, and the combination of multiple redox proxies can provide a more detailed

picture of the progressive oxygenation of the Ediacaran ocean. Here, we use sulfidic-sensitive

sulfur isotopes, sulfidic and ferruginous-sensitive Fe-speciation and manganous-sensitive cerium

anomalies to provide a holistic view of redox across the Nama Basin, and improve our

understanding of how these proxies differ and overlap.

Reconstructing ocean chemistry around half a billion years ago based on the sediments that

remain preserved at the Earth surface is not without its difficulties. We explore the methods used

to extract chemical signals from rocks to identify optimal methods for isolating a seawater rare

earth elements signal. Development of proxies is essential before we can confidently apply them

in deep time.

We also look at biogeochemical cycles in the modern ocean, and use novel methods to constrain

global fluxes in the sulfur cycle. Pyrite burial represents an important source of oxygen to

the atmosphere over Earth history (Berner, 1987), but the proportional burial flux in modern

marine sediments has been a subject of recent debate (Canfield, 2013; Halevy et al., 2012). We

use a novel approach, based on box models of multiple sulfur isotopes and constraints from

experimental work on sulfate reducing bacteria, to place new limits on the modern pyrite burial

flux. Using geochemical proxies to understand modern day cycles is an essential precedent to

applying these proxies in deep time.
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CHAPTER 1. INTRODUCTION: LIFE AND OXYGEN

1.1 The emergence of complex life

Life probably originated around 3.7-3.5 Ga (Buick et al., 1981; Orgel, 1998; Schidlowski, 1988),

and for billions of years was limited to a simple bacterial slime that lived in anoxic oceans.

Anoxygenic photosynthetic organisms populated the surface ocean, and the organic carbon pump

was based on the cycling of iron and sulfur. Estimates of the timing of the first appearance of

oxygen producing cyanobacteria range over a billion years: from 2.3 Ga (Kirschvink and Kopp,

2008; Kopp et al., 2005), to 3.7 Ga (Rosing and Frei, 2004), but more recent estimates suggest

an origin closer to 3 Ga (Planavsky et al., 2014a). Oxygenic cyanobacteria, coupling abundant

water to carbon dioxide, were able to produce oxygen in significant quantities for the first time.

More controversially, it has been proposed that multicellularity was present from as early as 2.1

Ga (El Albani et al., 2010), but the oceans were likely devoid of complex life at this time.

The appearance of the first life into the oceans was followed by a long period of little innovation,

dubbed the ‘boring billion’ (Holland, 2006). During this period, stretching from the GOE (~2.3

Ga) through to the Cryogenian glaciations (~800 Ma), oxygen levels remained low, the climate

was relatively stable (no large global glaciations) and there was little evolutionary innovation

(Johnston et al., 2009; Kasting and Ono, 2006). This long stretch of Earth history has been

largely overlooked, but the discovery of large algae (Shixing and Huineng, 1995) and the early

diversification of eukaryotes (Javaux et al., 2013; Knoll, 1992; Knoll et al., 2006) suggest the

‘boring billion’ may deserve a re-evaluation.

The time period between the global glaciations and the Cambrian explosion (~500 Ma) witnessed

the evolution of complex body plans and Metazoans, accompanied by an increase in the diversity

of acritarchs and protistan morphotypes. Eukaryote diversification is pinned to shortly before the

global glaciations, after which eukaryotes supplanted cyanobacteria to dominate the biological

pump (Butterfield, 2000; Parfrey et al., 2011). Crown group members of some algae, heterokonts

and testate amoebae had all appeared by 750 Ma (Knoll et al., 2006), and must have survived

the subsequent global glaciations. It has long been assumed that global glaciations and the shut

down of the active hydrological cycle would have imposed a serious hurdle to life, particularly

eukaryotes. But life has been found to persist in harsh natural environments, including under

sea ice and at hydrothermal vents (Kashefi and Lovley, 2003). Some have proposed that life

sheltered in small melt water ponds within the glaciers (Hoffman and Schrag, 2002), or that

the glaciations were not as harsh, or global, as first assumed. More controversially, some recent

studies have argued that animal life evolved prior to the Cryogenian and withstood the glaciations
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CHAPTER 1. INTRODUCTION: LIFE AND OXYGEN

to persist into the Ediacaran where they began to thrive (Erwin et al., 2011). Molecular clock

evidence places the divergence of animals from sister groups at 800 Ma, and biomarker evidence

for sponges has been identified prior to the end of the Marinoan low latitude glaciation (Love

et al., 2009), but there is no convincing animal body fossil record prior to the glaciations.

Early animal evolution is thought to have occurred in two discrete steps, set apart by tens

of millions of years. In the Ediacaran simple, mostly soft-bodied cnidaria-grade organisms,

bilaterians and problematica (collectively referred to as the Ediacaran biota) first appeared,

followed by a second phase in the early Cambrian in which small shelly fossil invertebrates

appeared in the Fortunian stage and rapidly diversified during Stages II, III and IV (the Cambrian

explosion) (Grotzinger et al., 1995). A summary of the first appearances and forms of some

of the Ediacaran biota are shown in figure 1.2. Fossilized cnidarians, possible bilaterian eggs

and embyros preceding the Ediacaran radiation and other enigmatic macrofossils suggest that

the classic ‘Ediacaran biota’ does not represent the first appearance of animals but merely the

emergence of large and architecturally more complex organisms (Narbonne, 2005).

Body fossils of the Ediacaran biota are known from 575 Ma, found initially in deeper waters

and later in shallow marine settings (Martin et al., 2000; Narbonne and Gehling, 2003). The

Ediacaran soft-bodied organisms were composed of soft, flexible tissue and were most likely

immobile animals or animal grade organisms. The earliest Ediacaran communities exhibited

vertical and lateral subdivisions, similar to Phanerozoic and modern communities. Later

innovations include mobility (>555 Ma, Grazhdankin 2004; Liu et al. 2010; Martin et al. 2000)

and predation (>549 Ma, Bengtson and Morris 1992; Hua et al. 2003). The assessment of the

temporal distribution and range of the Ediacaran biota at a global scale has been aided by the use

of correlations between oscillations in the carbon isotope curve (Grotzinger et al., 1995).

Metazoan calcium carbonate biomineralisation appears in the fossil record for the first time in the

terminal Neoproterozoic, marking the beginning of a step-change in the carbon cycle. Although

some of these early tentative animals may have been biomineralising passively, biomineralisation

became fully established in the subsequent Cambrian Period. Biologically controlled carbonate

formation is a significant ecological innovation that demands large amounts of energy. The

trigger for its abrupt and global appearance in the fossil record at 553-550 Ma is not yet fully

understood. This innovation occurs against a backdrop of major perturbations to the iron and

sulfur cycles, suggesting an environmental change, such as a rise in oxygen concentrations

or a change in carbonate saturation, permitted the production of energy-intensive biominerals.
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CHAPTER 1. INTRODUCTION: LIFE AND OXYGEN

and have also been reported sporadically from deep-water
carbonates (Blueflower Formation in NW Canada: Narbonne
and Aitken, 1990, MacNaughton et al., 2000; Khatyspyt
Formation in Siberia: Grazhdankin et al., 2008), enhancing
global correlation based on megafossils and trace fossils.
Calcifiedmegafossils are common in latest Ediacaran shallow-
water carbonates worldwide, but Ediacara-type impressions
occur only rarely in these facies and this has severely hindered
correlation of megafossil zones into the microfossil-rich
phosphatic carbonates and shales of central Asia.

Available dates allow three broad assemblages
(Figure 18.2) to be recognized (Waggoner, 2003; Narbonne,
2005; Xiao and Laflamme, 2009). Each assemblage exhibits
a major evolutionary innovation in complex multicellularity,
segmentation, mobility, or calcification that is unknown from
previous assemblages and is inferred to represent a significant
development in the evolution of life. Use of these assem-
blages for biostratigraphy is complicated by obvious evidence

for both environmental (Grazhdankin, 2004) and taphonomic
(Narbonne, 2005; Gehling et al., 2005) influences on their
composition, but this problem is not unique to Ediacaran
megafossils and affects all fossil groups of all ages to varying
degrees.

The Avalon assemblage (579e559 Ma; Figures 18.2
and 18.3(g) is known only from deep-water deposits in
Newfoundland (Misra, 1969; Narbonne and Gehling, 2003;
Narbonne, 2004; Gehling and Narbonne, 2007; Hofmann
et al., 2008; Narbonne et al., 2009), England (Ford, 1958;
Boynton and Ford, 1995; Brasier and Antcliffe, 2009), and
the Sheepbed Formation of NW Canada (Narbonne and
Aitken, 1990, 1995). Grazhdankin et al. (2008) showed
that some long-ranging, cosmopolitan taxa of the Avalon
assemblage (such as Charnia andHiemalora) persist in deep-
water deposits to the end of the Ediacaran, but these younger
deep-water assemblages typically also contain Ediacaran
fossils typical of the younger Ediacaran assemblages
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Figure 1.2: Ediacaran megafossil zonation. After Xiao and Laflamme (2009).

Degens et al. (1985) proposed that the ability to control Ca2+ levels first evolved in order to

avoid the precipitation of calcium carbonate as oceans became oversaturated, with the ability

later adapted to encourage calcification when intracellular calcium levels became high enough

to require a metabolic detoxification process (Kirschvink and Hagadorn, 2000; Marin et al.,

1996; Simkiss, 1977). Calcium saturation itself may in part be controlled by rising oxygen

(Higgins et al., 2009). But the consequences of oxygenation may have been more direct; building

biominerals is energy intensive (Palmer, 1992), and a rise in oxygen levels may have permitted

this innovation around 550 Ma.

Alternately, there may have been an ecological trigger for the emergence of biomineralisation.

Control of buoyancy allowed access to the nutrient rich Proterozoic benthic zone and hence

new ecological opportunities (Cohen, 2005). The introduction of biomineralisation is also

coincident with the rise of motile predators, which suggests that biominerals are an armoured

response to predation. Recent work by Penny et al. (2014) (presented here as appendix A)

shows reef building activity and mutual cementation in Cloudina samples from the Nama Group,

consistent with more efficient feeding, competitive substrate strategies and anti-predation. These

observations support the view that early skeletonisation was promoted in carbonate environments

by the rise of substrate competitors and bilaterian predators (Bengston, 2004; Hua et al., 2003;
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Knoll, 2003a; Wood, 2011). Apparent predatory boreholes in some specimens support this view

(Bengtson and Morris, 1992; Hua et al., 2003).

Towards the end of the Ediacaran and into the Cambrian bioturbation became increasingly

prevalent. Bioturbation is a sign of motility and more complex active feeding structures, and

would have altered the dynamics of the sediment-water interface. Although simple trace fossils

may have appeared with the ~579–559 Ma Avalon Assemblage (Liu et al., 2010), and were

certainly preserved in the ~558–550 Ma White Sea Assemblage (Jensen et al., 2006), more

complex feeding patterns emerged during the terminal Ediacaran, as highlighted by the spreiten

forms reported in the Nama assemblage (Macdonald et al., 2014) and in the Khatyspyt Formation

of Siberia (Rogov et al., 2012). Recent reports of bioturbation in late Ediacaran strata (e.g.

Carbone and Narbonne 2014; Rogov et al. 2012) suggest that extensive infaunal activity preceded

the ‘Cambrian Explosion’ but post-dated the Shuram carbon isotope excursion (Grotzinger et al.,

2011). Bioturbation is likely to have become more intensive, and penetrated deeper into the

sediments, in the Cambrian Period.

The Ediacaran biota, including skeletal forms, undergo extinction at the Precambrian/Cambrian

boundary, which is defined by the appearance of the complex trace fossil Treptichnus pedum

(Narbonne et al., 1987) at 541±1 Ma (Amthor et al., 2003; Gradstein et al., 2004; Grotzinger

et al., 1995; Maloof et al., 2010). It remains unclear whether the end-Ediacaran extinction was

a global event or a step-wise replacement of an old biota with a new one, but the Ediacaran

forms disappear from the fossil record (Amthor et al., 2003). Several possible triggers have been

proposed for the extinction, including a salinity crisis or the upward expansion of anoxic water

masses (Kimura and Watanabe, 2001). Methane release has also been invoked, supported by

a large, sharp, negative carbon isotope excursion, coincident with the boundary (Amthor et al.,

2003). However, because microbial mats, critical for the preservation of Ediacaran type biota

(Gehling, 1999), decreased in abundance due to the rapid evolution of grazing and burrowing

organisms during the Cambrian explosion, the scarcity of Ediacaran survivors in the Cambrian

could be taphonomic rather than evolutionary (Jensen et al., 1998). Because the affinities of the

Ediacaran biota are debated, the apparent wide separation in time of the Ediacaran biota from the

Cambrian evolutionary pulse has long been used to support phylogenetic arguments that these

creatures are not simple precursors to later forms, but instead represent a failed lineage, perhaps

unrelated to the animal kingdom (Grotzinger et al., 1995; Seilacher, 2007).

A wide range of plausible triggers have been proposed as the cause of both the Ediacaran
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radiation and the subsequent Cambrian explosion. These include developmental explanations,

such as the evolution of Hox genes, and ecological explanations concerning new trophic

capacities such as a predation arms race or new ecological niches (e.g. Boyle et al. 2007;

Butterfield 2009). Environmental explanations, based on the concept of ‘permissive evolution’,

include, among others, the extreme greenhouse conditions following ‘Snowball Earth’ (Hoffman

et al., 1998), the Acraman meteorite impact, repeated methane release, a dramatic shift in

terrestrial weathering processes (Kennedy et al., 2006) and changes in continental sedimentation

during supercontinent amalgamation. The environmental explanation that has received the most

attention, however, is a rise in atmospheric oxygen.
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1.2 Redox state of the Earth through time

1.2.1 Redox transitions and respiration

The oxidation state describes the charge that an element would have in a compound if all

bonds with other atoms were 100% ionic. Reactions involving the transfer of electrons between

elements can result in loss of electrons, known as oxidation, or the gain of electrons, known as

reduction. Most elements have more than one possible oxidation state. Carbon, for example, can

bond with four hydrogen atoms to form methane, where it resides in the -4 oxidation state, or

two oxygen atoms to form carbon dioxide, where it resides in the +4 oxidation state.

A change in oxidation state is accompanied by a change in Gibbs free energy, ∆G, which can

be exploited by living organisms. During aerobic respiration, oxygen gas acts as an electron

acceptor to oxidize organic matter, producing carbon dioxide and water vapour. This reaction is

accompanied by the release of a large amount of energy, explaining why aerobic respiration

is used exclusively among active, energy-sapping animals and by some microorganisms.

Eukaryotes are mostly dependent on oxygen, but archaea and bacteria show a wide range of

anaerobic metabolic states, and in some cases multiple metabolic states can be expressed in a

single organism. As a result, microorganisms are found living in almost all environments at the

Earth surface and are able to break down organic matter to extract energy even in the absence of

oxygen.

Electron acceptors other than oxygen, such as sulfate, iron, manganese or nitrate, can be respired

in anaerobic conditions. The order in which these anions will be respired depends on the

Gibbs free energy released. In general, more favourable electron acceptors will be respired

in preference to subsequent alternative electron acceptors. But an electron acceptor does not

have to be depleted to exhaustion before the onset of the subsequent metabolic pathway. Many

metabolic pathways may be operating in tandem, but with different rates that result in different

geochemical signatures which reflect the dominant pathway. For example, Canfield et al. (2010)

identify active sulfur cycling in modern oxygen minimum zones, but the turnover is minimal

and does not result in measureable sulfur isotope variability (Johnston et al., 2014). Anaerobic

respiration is principally used by prokaryotes, most of which are obligate anaerobes that would

die in the presence of oxygen.

The redox state of the ocean refers to the dominant metabolism operating in the water column,
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but does not necessarily require that the electron acceptor is present in high concentrations.

These zones can overlap and sometimes co-occur with low levels of dissolved oxygen. Studies

of anoxia have tended to focus on the extreme case of euxinia (anoxic and sulfidic) where sulfate

reduction occurs and free sulfide builds up in the water column. However, the redox state of

the ocean can vary widely, both spatially and temporally, from oxic, to low levels of oxygen,

through anoxic and non-sulfidic, to the extreme state of euxinia (figure 1.3). Intermediate redox

states include ferruginous conditions, where ferrous iron builds up in the water column, and less

commonly manganous or nitrogenous conditions. In or below the nitrogenous zone, dissolved

Mn typically accumulates as a product of Mn reduction. The upper bound of the manganous

zone is defined by removal of Mn by O2 or possibly nitrite, and the manganous zone can extend

deep into anoxic environments, where its removal is governed mostly by carbonate saturation

and precipitation (Canfield and Thamdrup, 2009). Dissolved Fe2+ accumulates as a result of

biological and abiological iron oxide reduction. In nature, Fe2+ accumulate in the absence

of oxygen and typically below the zones of nitrate and Mn reduction. The term ‘suboxic’

is often used in the literature to describe the manganous and nitrogenous zones as well as

oxygen minimum zones. Ferruginous and sulfidic conditions are often described as ‘anoxic’,

but manganous and nitrogenous zones may also occur in the absence of oxygen. Each of these

zones may also overlap in the upper and lower bounds. Variability in redox state is complex, and

the broad categories or ‘anoxic’, ‘suboxic’ are misleading and confusing; redox should really

be described using the chemical zone based on the dominant electron acceptor (Canfield and

Thamdrup, 2009).

Natural anoxic systems are often poised close to a switching point between ferruginous and

euxinic conditions. On a geological timescale, the nature of anoxia is controlled by the relative

budgets of sulfate and reactive iron (Poulton and Canfield, 2011). If the sulfide flux exceeds the

highly reactive iron flux by a factor of 2 (the stoichiometric ratio of pyrite, FeS2), then sulfide

should accumulate, resulting in anoxic and sulfidic conditions (Raiswell and Canfield, 2012).

Low sulfate concentrations, common in lakes but also in Precambrian oceans, limit the biological

production of sulfide, and so encourage ferruginous conditions. The delivery of sulfate to the

oceans depends on the inventory of sulfur in continental rocks and volcanic outgassing, as well

as oxidative pyrite weathering. The availability of highly reactive iron in the oceans depends on

the flux of iron from riverine and hydrothermal sources, the magnitude of which have changed

significantly through time. The delivery of sulfate to the oceans scales with atmospheric oxygen

concentrations, but only at the low end of the oxygen concentration range. Oxidative weathering
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Figure 1.3: On the left, a cartoon representing the depth distribution of common electron
acceptors in the environment and the names used to represent the zones where these different
electron acceptors are used. This is an abstraction of the real system and not necessarily an
accurate representation of how these profiles would look in nature. On the right, a cartoon
reflecting the chemical zonations, which typically accompany the respiration processes on the
left. Note that there is considerable overlap between some of these chemical zones and that they
do not necessarily reflect the depth distribution of the accompanying respiration process. From
Canfield and Thamdrup (2009).

of pyrite is complete at oxygen levels as low as 10−5 to 10−3 PAL. This means that counter

intuitively, higher atmospheric oxygen concentrations are required to drive anoxic oceans into the

more extreme euxinic state. Although the oceans have become locally sulfidic throughout Earth

history, ferruginous conditions are thought to have dominated Precambrian oceans (Poulton and

Canfield, 2011).

1.2.2 Redox in modern environments

The modern atmosphere is oxygen-rich, at 21%, and the Earth surface environment is broadly

oxidized. The ocean is well oxygenated, with oxic conditions persisting to depth. Surface ocean

waters generally have oxygen concentrations close to equilibrium with the Earth’s atmosphere

(20mg/L). As this water moves out of the mixed layer into the thermocline it is exposed to a
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rain of organic matter from the productive photic zone above. Aerobic bacteria feed on this

organic matter, progressively lowering the oxygen concentration. The downward flux of organic

matter decreases sharply with depth, with 80-90% being consumed in the top 1000m. Oxygen

minimum zones (OMZs), where oxygen saturation in seawater is at its lowest, occur between

200m and 1000m, depending on local circumstances. Oxygen is replenished in the deep ocean

from the supply of cold, oxygen-rich deep waters from the polar regions.

OMZs, where the oxygen concentration can reach zero, occur in coastal upwelling zones, such

as off the coast of Peru and Namibia. Within OMZs anaerobic respiration may be occurring in

the open ocean; predominantly nitrate reduction, but sulfur cycling may also occur (Canfield

et al. 2010, but see Johnston et al. 2014 for a contrasting view). High productivity off the coast

of Namibia today results in oxygen depletion and the production of sulfide, and when this anoxic

water body upwells it can result in widespread death of larger animals (fish stocks).

Anoxic conditions occur beneath the sediment water interface when the rate of oxidation of

organic matter overwhelms the supply of dissolved oxygen. In lakes and coastal marine

sediments, oxygen can drop to zero a few millimeters beneath the surface. Organic matter then

continues to be broken down via other metabolic pathways. Nitrate respiration follows oxygen

as the next largest energy yield, but nitrate is in short supply and so this zone can be short-

lived, and similarly with manganous conditions. Iron reduction follows, and eventually sulfate

reduction and methanogenesis. Sulfate is the second most abundant ion in modern seawater and

so bacterial sulfate reduction is a major pathway of respiration in marine sediments. Sulfate

reduction produces sulfide, which may react with iron to form pyrite. This is a major flux

of sulfur removal in the modern ocean (Canfield, 2013; Garrels and Lerman, 1984; Tostevin

et al., 2014). Some organic matter may be buried in the sediments if organic matter supply is

particularly high, or organic matter is in a biologically unavailable form.

Rare isolated lakes and basins show anoxic conditions in modern environments. The Black Sea

is anoxic due to density stratification, and is often used as an analog for Precambrian conditions

when anoxia was widespread. In the Black Sea, strict zonations occur within the water column as

each electron acceptor is sequentially depleted in order of reactivity, terminating in sulfidic deep

waters (Lewis and Landing, 1991). The manganous zone in the Black Sea is distinct from the

ferruginous zone and persists from 70 to 90m depth. Lake Vanda (Antarctica) and the Cariaco

trench also show distinct anoxic zones at depth, including manganous, ferruginous and sulfidic

zones. The Golfo Dulce, near the coast of Costa Rica, is a modern nitrogenous setting (den
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Camp et al., 2006). Acton Lake and Lake Matano are some of the few modern environments

where ferruginous conditions can be observed. The large flux of highly reactive iron overwhelms

the small freshwater sulfate reservoir, preventing ferrous iron from being titrated out by sulfide

accumulation. Many redox proxies that are applied in deep time have been calibrated in modern

sediments to define the thresholds and values that characterize oxic and anoxic environments.

Figure 1.4: Chemical data and redox zones from the Black Sea. Listed are the depth distribution
of chemical zones and respiration processes deduced from the chemical data, from Canfield and
Thamdrup (2009). Colour scheme consistent with cartoon depiction in figure 1.3

Research in modern ocean systems has focussed on constraining the major fluxes and controls on

the biogeochemical cycles of C, Fe and S, as well as the behaviour or trace nutrients in the marine

system. Despite over fifty years of research on the subject, the magnitude of some major fluxes

is still disputed. One of the major pathways of sulfur removal from the ocean, as buried pyrite,

ranges in estimates from 10 to 90% of the total sulfur removal flux from the oceans (Canfield,

2013; Halevy et al., 2012).

The anaerobic microorganisms that thrived in Precambrian oceans still play a critical role in

modern ecosystems, but they have retreated from the oceans into the sediments and locally

anoxic water bodies. The microorganisms that use or tolerate oxygen, alongside larger complex

Metazoa, have come to dominate the oxygenated open ocean. Life has also migrated out of the

oceans onto dry land, altering weathering patterns and nutrient delivery to the ocean (e.g. Lenton

et al. 2012).

Although our understanding of conditions and the response of redox proxies is founded on
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modern studies, using them to understand the past requires a major assumption that the processes

that we observe happening today have operated in the same manner throughout Earth history.

There are major differences in the geochemical cycles of the surface environment between the

modern day and the Precambrian. The unidirectional and escalating evolution of life over the

past 580 Ma has altered the surface of the planet. Major innovations include the evolution of

marine calcifying plankton in the Jurassic, which shifted the locus of carbonate precipitation

from shallow shelves to the deep ocean. The introduction of biominerals to the carbonate record

in the terminal Ediacaran coupled the inorganic and organic carbon pumps for the first time.

The evolution of land plants changed continental weathering patterns, and bioturbation altered

the dynamics of the sediment water interface. The evolution of guts produced fast sinking

fecal pellets that changed the dynamics of geochemical recycling in the water column. The

modern ocean does not operate within the same system bounds as in the geological past - and

our assumptions face greater challenges the older the sediments.

1.2.3 A history of oxygen on Earth

Oxygenation of the Earth’s surface environment probably occurred in two major episodes,

the first; the Great Oxidation Event (~2400-2200 Ma) (Bekker et al., 2004), and the second;

the Neoproterozoic Oxygenation Event (~800-540 Ma) (Och and Shields-Zhou, 2012). The

latter event is implicated in the evolution of animals and other complex organisms during the

Neoproterozoic (Canfield et al., 2007). However, oxygenation was not a simple one-way process

(e.g. Lenton et al. 2014) and the details of the timing and mechanism of marine oxygenation

remain poorly understood.

The surface of the early Earth was reducing, with no or little oxygen in the atmosphere or oceans.

Following the evolution of oxygenic photosynthesis, around 3 Ga (Planavsky et al., 2014a),

oxygen production began in small environmental pockets, but photosynthesis is tightly coupled

with respiration, and early oxygen production was closely matched by consumption. Although

a small amount of organic matter escaped unoxidised to the sediments, liberating some of the

photosynthetic oxygen, excess oxygen was likely removed through reaction with reduced gases

from volcanoes or existing pools of reduced chemical species on the Earth’s surface. Crowe et al.

(2013) suggest that some oxidative weathering was occurring as early as 3 Ga, but it is thought

that oxygen began to build up in the atmosphere around half a billion years after the beginning of

oxygenic photosynthesis, during the Great Oxidation Event (GOE) (figure 1.5). Oxygen build-up
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may finally have been permitted by a global reduction in the production of volcanic gases as the

Earth’s interior cooled (Dobson and Brodholt, 2005; Holland, 2002). Alternately, the abundant

Archean atmospheric methane may have been destroyed by UV, generating light hydrogen that

could escape the Earth’s atmosphere, clearing the way for oxygen build-up (Catling et al., 2001).

The GOE (2.4 Ga) played out over hundreds of millions of years, gradually crossing the threshold

for pyrite oxidation by 2.5 Ga, and resulting in the cessation of mass-independent fractionation

of multiple sulfur isotopes 2.4 Ga (Farquhar et al., 2000) – potentially reaching 1% PAL by 2

Ga. However, recent work by Planavsky et al. (2014b), suggests atmospheric oxygen remained

low (<0.1%PAL) until as late as 800 Ma.

GOE$ NOE$

Archaean$ Proterozoic$ Phanerozoic$

Figure 1.5: Bottom: Evolution of Earth’s atmospheric oxygen content through time. The faded
red curve shows a ‘classical, two-step’ view of atmospheric evolution, while the blue curve
shows the emerging model. Arrows denote possible ‘whiffs’ of O2 late in the Archaean; their
duration and magnitude are poorly understood. Data are from Berner and Canfield (1989) and
Bergman et al. (2004). Top: summary of carbon (black) and multiple sulphur (red and grey)
isotope data through Earth’s history. Multiple sulfur isotopes provided the original clinching
evidence for early atmospheric oxygenation (Farquhar et al., 2000). Notable features include
the large range of ∆33S values during Archaean time, the large δ 13C excursion during the early
Proterozoic, relative stasis in δ 13C during the mid-Proterozoic, and the large negative δ 13C
excursions during the late Proterozoic. Data compiled from references within Reinhard et al.
(2013) and Planavsky et al. (2012). Figure compiled from Lyons et al. (2014).

Despite the build up of oxygen in the atmosphere, there is a long delay before evidence of

oxygen is observed in marine sediments. The rarity of significant deviation from trivalent Ce

behaviour in Archean carbonates indicates that Ce oxidation was not prevalent, even on shallow

water carbonate platforms (Planavsky et al., 2010a), suggesting oxygen was not consistently

present in the oceans even at low (<5µM) levels. However, negative cerium anomalies in some

Archean carbonates suggest oxygen may have persisted in small oases in protected shallow water
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environments (Riding et al., 2014), but the oceans remained largely anoxic and dominated by Fe

cycling until much later (Canfield, 1998; Poulton and Canfield, 2011). Oxygen could not build

up in the oceans while they still contained a high concentration of reducing elements (such

as Fe). The link between rising atmospheric oxygen levels and the ventilation of the ocean

is not solely dependent on thermohaline circulation and diffusion, but depends partly on the

strength of the biological pump and the ventilating actions of eukaryotes and animals. Under

modern conditions, box models suggest that atmospheric oxygen levels would need to drop to

as low as 0.5-0.7 PAL (Canfield, 1998) to induce widespread anoxic conditions in the oceans.

However, if the supply of phosphorous (the limiting nutrient in modern oceans) was present in

higher concentrations and less severely restrictive of primary production in the Precambrian,

then widespread anoxia could be maintained at higher atmospheric oxygen concentrations.

Banded iron formations deposited throughout the Archean and late Palaeoproterozoic hint at

dominantly anoxic and ferruginous conditions with low sulfate concentrations. BIF deposition

occurred in pulses, and evidence for ferruginous conditions in the gaping time gaps between

these pulses is sparse. BIF deposition, save some extreme climatic events later in the

Neoproterozoic, ceased completely 1.8 Ga. Positive cerium anomalies preserved in iron

formations in the late Palaeoproterozoic (<1.8 Ga) preserve evidence of a manganese shuttle

between shallow oxic and deeper anoxic waters (Planavsky et al., 2010a).

As oxygen levels built up in the atmosphere, oxidative weathering began to increase sulfate

supply to the ocean, encouraging sulfate reduction to occur in the open ocean. One suggestion

for the termination of BIF deposition is the spread of sulfidic conditions, as free sulfide would

titrate dissolved iron out of the water column (as pyrite). Sulfidic conditions create a strong

sink for Fe(II), resulting in a crash in Fe(II) concentrations in the ocean. Sulfidic oceans were

once thought to be widespread. An increase in the sulfur isotope fractionation between sulfate

and sulfide (preserved as pyrite) was attributed to an increase in bacterial sulfate reduction,

reducing the fresh influx of riverine sulfate to produce sulfide in marine environments (Canfield,

1998). The termination of BIF deposition, around 1.8 Ga, has been studied in detail by Poulton

et al. (2004, 2010), where they showed that sulfidic conditions were restricted to continental

margins at the time of the last BIF deposition. More recent evidence suggests that the deep

oceans remained dominantly ferruginous throughout most of the Neoproterozoic, with sulfidic

conditions restricted to a wedge on the outer shelf, comparable to modern day oxygen minimum

zones (Li et al., 2010; Poulton and Canfield, 2011). Sulfidic conditions would have been

concentrated near shore, where higher organic carbon fluxes drove sulfate reduction to exceed
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the delivery flux of highly reactive iron phases (FeHR) from settling particles and upwelling

deeper waters. Models of molybdenum isotopes suggest that sulfidic waters may have made

up between 2 to 4 % of the Proterozoic seafloor (Dahl et al., 2011), in contrast to today where

sulfidic waters do not occur in the open ocean save for extreme circumstances (Schunck et al.,

2013).

The increased weathering of the land surface that is postulated to have cooled the climate into the

Cryogenian glaciations should be accompanied by increased phosphorous delivery to the oceans

and associated rise in productivity and atmospheric oxygen (Lenton and Watson, 2004) (figure

1.5). The weathering of large igneous provinces would have produced phosphorous pulses to

the oceans, driving intermediate waters euxinic. The Chuar Group preserves evidence for a short

lived flip from ferruginous to euxinic conditions, and enhanced Mo drawdown suggests there was

some, albeit restricted, sulfidic waters (Dahl et al., 2011). Euxinic continental margins appear to

be very sparse in the Neoproterozoic, in contrast to the Mesoproterozoic (Raiswell and Canfield,

2012). Neoproterozoic seawater is characterized by unusually high δ 13C, averaging +5‰ before

the glaciations, indicating that the proportion of carbon buried as organic matter was elevated

from 850 Ma until 720 Ma. This has been linked to a general diversification of eukaryotic

plankton, which altered the dynamics of organic matter production and decomposition (Knoll,

2003b), alongside enhanced OM burial on the margins of a rupturing supercontinent. Because

organic matter burial allows oxygen produced during photosynthesis to collect in the atmosphere,

this has been used to argue for an early rise in oxygen before the first known animal fossils.

However, the strontium isotope record suggests much lower rates of continental erosion at this

time (Derry et al., 1992), so although the proportion of organic carbon burial was higher, the

absolute burial flux would have been lower. Instead, the elevated carbon isotope values may

result from the burial of inorganic light authigenic carbonate (Schrag et al., 2013). As such,

there is no clear driver for rising atmospheric oxygen in the early Neoproterozoic.

The second oxygenation event, in the Neoproterozoic (NOE), occurred in several stages between

the end of the global glaciations and the Cambrian explosion. The progressive oxygenation of the

ocean has been reconstructed using a combination of different geochemical systems, including

the Fe, C and S cycles, rare earth elements and redox sensitive trace elements. Each proxy

provides a unique perspective on the NOE, and in combination they show that oxygenation was

incremental and spatially heterogeneous.

The ocean became increasingly oxygenated following the Marinoan glaciation (Sahoo et al.,
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2012). The melt back of the global glaciers left behind a land surface coated in fine powder,

which was swept into the ocean in the warm wet environment following the end of the

glaciations (Lenton et al., 2014; Planavsky et al., 2010b). On short timescales (<104years), the

increased phosphorous delivery would have simulated production and increased oxygen demand,

spreading ocean anoxia, but over longer timescales (>106 years) the burst in productivity

would have led to higher OM burial rates and oxygen production. In the ~25 Myr following

the Marinoan global glaciation the sulfate concentration of the ocean rose, inferred from an

increase in the isotopic difference between sulfate and pyrite (Canfield, 1998). Increased [SO4]

probably correlates with increased oxygen availability in the oceans. But the signal of ocean

oxygenation from Mo, V and U analyses is short-lived, at least in the restricted basin studied by

Sahoo et al. (2012), suggesting the ocean was briefly oxygenated before returning to pre-glacial

conditions. Global compilations of Fe-speciation data suggest that although surface waters were

well oxygenated, bottom waters remained anoxic and ferruginous at least until the Gaskiers

glaciation (580 Ma) (Canfield et al., 2007) (figure 1.6).

The first compelling evidence for the oxygenation of the deep ocean coincides with the Gaskiers

glaciation (635-580Ma), but this oxygenation was not global in extent. Parts of the ocean may

have remained anoxic and ferruginous until as late as the Palaeozoic. Similar explanations

to the Cryogenian glacially-driven phosphorous burst and subsequent productivity induced

oxygenation have been invoked for the Gaskiers glaciation, but unlike the Sturtian and Marinoan,

the Gaskiers is not thought to have been global in extent. The glacial grinding and weathering

would have been reduced, and the meltback would not have been followed by a wet warm period

of high nutrient delivery to the oceans. Some have suggested that a shift in terrestrial weathering

due to the colonisation of land could instead be responsible for a phosphorous pulse (Shields-

Zhou and Och, 2011). Although this idea is supported by increased 87Sr/86Sr, there is no direct

evidence for colonisation of land at this time. Instead, the ocean may have been oxygenated by

a shift in ocean ecology, with the rise to dominance of filter feeders and eukaryotes clearing the

water column of organic carbon, and drawing the focus of oxygen demand deeper into the water

column (Lenton et al., 2014).

The carbon isotope record has also been interpreted as evidence for changing redox conditions

across the Neoproterozoic. Where organic carbon (Corg) oxidation rates are exceptionally low,

due to the absence of free O2 and inhibited bacterial sulfate reduction, and the lack of an

effective ballasting mechanism, it is feasible that a large dissolved organic carbon pool might

have accumulated over tens of millions of years prior to the NOE (Och and Shields-Zhou,
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Figure 1.6: Fe-speciation compilation shows that ferruginous conditions dominated
Neoproterozoic oceans (A) FeHR/FeT is shown. FeHR/FeT>0.38 (dashed line) indicated
anoxic conditions. The proportion of FeHR bound as FeS2, FeP/FeHR, is shown in (B). Only
samples deposited below the mean storm wave base where anoxic deposition is indicated are
plotted. Fepy/FeHR >0.8 (dashed line) indicates deposition from a sulfidic water body, and
ratios <0.7 are consistent with deposition from ferruginous waters. Sulfidic conditions are
restricted to the Chuar group and the Cambrian-Ediacaran boundary (vertical dotted line) on the
Yangtze Platform. Figure taken from Canfield et al. (2008), data included within supplementary
information of Canfield et al. (2008).

2012; Logan et al., 1995). This is supported by the carbon isotope record, where invariant

δ 13C in organic carbon occurs alongside large changes in the δ 13C of carbonate minerals,

suggesting the organic and inorganic carbon pools were decoupled. This could result from

a large, isotopically light organic carbon pool that overwhelmed changes in δ 13Corg resulting

from biological fractionation. In contrast, the small inorganic carbon pool would have been

susceptible to large swings associated with organic carbon remineralization (Rothman et al.,

2003).

The Neoproterozoic inorganic carbon isotope record is punctuated with negative excursions

(Burns and Matter, 1993; Halverson et al., 2005), the largest of which reached values as low

as -12‰ (considerably lighter than the input and output fluxes commonly used to constrain
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isotope mass balance) (figure 1.7). This excursion, dubbed the Shuram/Wonoka anomaly, began

580 Ma, and was followed by a recovery period lasting 50Myr (Le Guerroué, 2010). The

Shuram/Wonoka excursion has been identified globally (Calver, 2000; Condon et al., 2005; Fike

et al., 2006; Grotzinger et al., 1995; Kaufman et al., 1991; Narbonne et al., 1994), suggesting it

records a primary oceanic event (figure 1.8). If primary, the excursion is extraordinary because

its magnitude and duration require explanations that differ from the modern carbon cycle, and it

indicates a major perturbation to the carbon cycle and an increase in the redox potential of the

ocean during the evolution of early macroscopic animal life.
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Figure 1.7: Summary of secular variation in the carbon isotope composition of marine
carbonates through the Neoproterozoic. Note the Shuram/Wonoka negative excursion in the
Ediacaran, where values are more negative than can be constrained by standard carbon isotope
mass balance. Red box highlights this study area (Nama Group). Data taken from Lenton et al.
(2014).

Reducing the fraction of organic carbon burial to zero can reduce carbon isotope values to as

low as -6‰ (mantle values); to reach below this requires input of a light source of carbon.

It is possible that the Shuram/Wonoka anomaly resulted from a global oxidation event that

remineralised part of a proposed large organic matter pool (Fike et al., 2006; Rothman et al.,

2003). The exhaustion of the organic matter pool may have been driven by an oxidising source,

such as increased riverine sulfate delivery. Although at first this oxidant would work to remove

the accumulated organic carbon pool, resulting in the negative excursion, as the pool became

36



CHAPTER 1. INTRODUCTION: LIFE AND OXYGEN

depleted this oxidising source could drive an oxygenation event culminating at ~550 Ma. But it is

unclear how this oxidation event would be triggered, and the large isotope excursions seemingly

require more oxidant than can be supplied by the atmosphere and ocean system (Bristow

and Kennedy, 2008), and thus the excursion may not represent a global oxygenation event.

Bjerrum and Canfield (2011) propose that the Shuram-Wonoka anomaly, and the associated

isotopic signatures, were generated by the massive release of methane from clathrate hydrates.

Alternately the phenomena could be a result of meteoric diagenesis (Knauth and Kennedy,

2009) or contamination by detrital organic carbon (Derry, 2010). δ 13Corg invariance stopped

at the Shuram-Wonoka anomaly; possibly as the large organic carbon pool was removed by the

radiation of benthic suspension feeders.

Figure 1.8: Correlation of Doushantuo Formation (Yangtze Platform) with the Nama Group
(Nama Basin) and Nafun/Ara Groups (Oman) successions, showing the global nature of the
Shuram/Wonoka negative carbon isotope excursion. Figure from Condon et al. (2005)

The constancy of ∆34SSO4−pyr during the Shuram/Wonoka excursion indicates that, despite

these changes, bacterial sulfate reduction under sulfate replete condition remained the dominant

pathway for sulfur cycling in the ocean. However, towards the tail end of the Shuram excursion,
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close to 550 Ma, an increase in ∆34SSO4−pyr to ~50‰ indicates a change in metabolisms

involved in marine sulfur cycling (Fike et al., 2006). The maximum fractionation observed

in both laboratory and field studies during bacterial sulfate reduction is 46‰, with typical

fractionations much smaller (Detmers et al., 2001). However, when BSR is combined with

bacterial sulfur disproportionation (BSD), a pathway which utilises intermediate valence sulfur

species, fractionations can approach ~70‰. Multiple sulfur isotope data suggests that BSD

evolved as early as the Mesoproterozoic (Zerkle et al., 2009), but there are no reports of

∆34SSO4−pyr of more than 46‰ prior to the terminal Ediacaran. The expansion in ∆34SSO4−pyr

following recovery from the Shuram/Wonoka excursion indicates that the oxidative side of the

sulfur cycle must have been active, and demonstrates additional oxidation of the Ediacaran ocean

and the third and final stage of the Neoproterozoic oxygenation event. Total sulfur and S/Corg

ratios support an increase in S burial in the terminal Ediacaran and suggests rising oxygen levels

at the Earth surface (Och et al., 2011; Och and Shields-Zhou, 2012). Alternately, this increase in

∆34SSO4−pyr may reflect an increase in the complexity of the sedimentary sulfur cycle caused

by bioturbating animals (Canfield and Farquhar, 2009). Paradoxically, several studies have

found superheavy pyrite in terminal Proterozoic sections (Bottomley et al., 1992; Ries et al.,

2009; Strauss et al., 1992; Liu et al., 2006), where the sulfur isotope composition of pyrite

approached, or even exceeded, coeval sulfate. This indicates, at least locally, a return to low

sulfate concentrations and the reappearance of ferruginous conditions in the Late Neoproterozoic

ocean (Canfield et al., 2008), and intense aerobic oxidation.

Ling et al. (2013) identify increasingly negative cerium anomalies towards the Cambrian

boundary, which they interpret as evidence for localised progressive oxygenation on the South

China Craton. Further evidence for rising atmospheric oxygen levels comes from positive

δ 53Cr values up to 4.9‰, indicating a rise to modern atmospheric oxygen levels at the

Precambrian/Cambrian boundary (Frei et al., 2011) (but see Planavsky et al. 2014b, suggesting

that chromium isotopes identify an earlier rise in atmospheric oxygen, 800 Ma). Enrichment of

Mo and V in black shales between 663 and 551 Ma further supports a rise in atmospheric oxygen

(Och et al., 2011).

In the final few million years of the Ediacaran Period, fossil evidence suggests that motility

and bioturbation began to influence the sediment-water interface (Jensen et al., 2006; Liu

et al., 2010; Macdonald et al., 2014; Rogov et al., 2012). Oxygenation of the upper

sediments through bioturbation would have added sulfate to the ocean, lessening the role of

methanogensis in OM respiration, and additionally, would have removed phosphorous. The
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resulting reduction in phosphate concentrations and organic carbon burial would ultimately have

decreased atmospheric oxygen (Boyle et al., 2014). This may explain the widespread return to

ferruginous conditions in the early Palaeozoic, when bioturbation became widespread.

Extremely negative carbon isotope values and large amplitude swings ceased once the modern

marine ecosystem became established 520 Ma. A negative excursion of 6-7‰ in δ 13C of

carbonates occurs coincident with the Ediacaran-Cambrian boundary, where there is evidence

for an anoxic event and accompanying extinction horizon (Amthor et al., 2003). Once the deep

ocean had undergone its irreversible oxygenation (except for episodic ocean anoxic events),

the build up of sulfate levels ensured that the effects of future carbon cycle perturbations on

atmospheric oxygen could be buffered by an ocean sulfate capacitor.

The Neoproterozoic oxygenation event may represent a significant rise in atmospheric oxygen

levels, but it is likely they remained lower than the present day, perhaps as low as 20% PAL, and

may not have reached comparable levels to the present day until the mid-Palaeozoic (Berry and

Wilde, 1978; Dahl et al., 2010). There are even reports of widespread sulfidic conditions during

the Late Cambrian SPICE event (Gill et al., 2011). Although Phanerozoic oceans were broadly

oxygenated, there has been some considerable variation in atmospheric oxygen concentrations.

Oxygen concentrations as high as 150% PAL in the late Carboniferous coincide with gigantism

in the fossil record, and oxygen concentrations reached as low as 60% PAL in the early Jurassic.

Oceanographic processes have occasionally produced widespread marine anoxia during the

Phanerozoic, such as the Cretaceous ocean anoxic events (Jenkyns, 2010), which may have

contributed to episodes of mass extinctions of marine animals.
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1.3 Life and oxygen

Life and the planet have coevolved through Earth history, with changes in the environment

permitting and restricting evolution, and novel evolutionary traits altering the environment. Of

these complex relationships, few are more durable, or more complex, than that between life and

oxygen. Most fundamentally, oxygen levels of at least 0.002 bar are necessary to form an ozone

layer capable of absorbing UV radiation that is potentially harmful to life – a threshold that was

surpassed during the Great Oxidation Event. Low levels of oxygen are required for biosynthetic

reactions in all eukaryotes; without it complex life on Earth would likely be impossible. Complex

animals rely on the high energy yield of aerobic metabolisms to support energetic lifestyles. For

physiologically simple aerobic organisms, the diffusion of oxygen into the body limits their

size. More advanced organisms that are motile or produce biominerals demand even higher

oxygen concentrations, and their evolution throughout the Ediacaran and Phanerozoic shows

broad correlations with rising atmospheric oxygen concentrations.

Oxygen is produced by cyanobacteria in the surface ocean, and is depleted during respiration of

organic matter throughout the water column and sediments. In this regard, oxygen distribution is

fundamentally controlled by the biological pump. In the modern ocean, oxygen minimum zones

occur at mid-depths where oxygen demand from sinking organic matter is highest. The euxinic

wedge postulated for much of the Neoproterozoic oceans occurred in a similar position, where

sinking cyanobacteria created the highest oxygen demand. High latitude deep waters would have

been relatively easy to oxygenate, with the most stubbornly anoxic zones occurring in areas of

upwelling where high nutrient supply resulted in rain down of organic matter and high oxygen

demand at mid-depths.

In Palaeo- and Meso- Proterozoic oceans, where cyanobacteria dominated the biological pump,

the slow movement of organic matter may have allowed oxygen to build up in the deep ocean,

but these zones would been biological deserts due to the absence of metabolisable organic matter

(Raiswell and Canfield, 2012). The diversification of eukaryotes prior to the global glaciations

was accompanied by their coup of cyanobacteria as they came to dominate the biological pump.

The larger cell size, along with ballasting from tests and scales and a tendency to form particulate

aggregates, means eukaryotes sink faster through the water column. Eukaryotes accelerated the

biological pump, spreading oxygen demand into deeper waters. Lenton et al. (2014) suggest

that this transfer of oxygen demand to the deep ocean would have increased the efficiency of

phosphate removal into the sediments, further limiting nutrient supply and causing a drop in

40



CHAPTER 1. INTRODUCTION: LIFE AND OXYGEN

global productivity which in turn would lower oxygen demand. All eukaryotes require oxygen

at some stage in their life cycle, even if only to build the membrane-stiffening sterols found in

all eukaryote membranes. Metazoans additionally require oxygen to build collagen proteins.

The earliest stages of Metazoan evolution are constrained to an early period of global cold,

with tentative pre-glacial evidence for animals, but no hard body fossil evidence until shortly

after the final glaciation, 575 Ma. Planavsky et al. (2014b) suggest that a rise in atmospheric

oxygen 800 Ma can be linked directly to the first appearance of animals. There is limited

evidence for increased organic carbon burial (and therefore preglacial marine oxygenation), but

the return to ferruginous conditions by 750 Ma suggests that any oxygenation was reversible.

Spiny acritarchs, found only prior to the Shuram/Wonaka anomaly, are interpreted by some as

the diapause egg cysts of primitive Metazoans (Yin et al., 2007), creating the possibility that

Metazoans evolved in the presence of oxygen stress. The enzymes used in the facultatively

anaerobic mitochondria of Metazoans are nearly identical across all animal lineages, indicating

a common and early origin. The ability to withstand anoxia, whilst still benefiting from the

energy yield of an aerobic metabolism, is hardwired into all 6 major eukaryote lineages and may

have existed near the base of the Metazoan family tree (Müller et al., 2012). It is possible the first

animals emerged into spreading anoxia rather than an abundance of oxygen, raising the question

of whether early animals were, like their modern counterparts, obligate anaerobes.

These early animals were likely sponge-grade organisms; sponges are the sister group to all other

animals and so may provide our closest living analog to ancestral life. Modern sponges grown in

laboratory conditions are able to tolerate oxygen levels as low as 0.5% PAL, a condition likely to

have characterized surface oceans long before the Ediacaran (Mills et al., 2014). Sponges have

no special adaptations to low oxygen conditions, but can survive by virtue of their simple body

plan, whereby every cell is in contact with surrounding seawater (Knoll and Sperling, 2014).

Sponges can actively generate a water current through their aquiferous system, a mechanism

adapted for both feeding and breathing. And so the modest oxygen requirements of sponges

suggest that low oxygen concentrations would not have presented an impediment to the origin

of multicellularity.

High oxygen levels are demonstrably important in maintaining high levels of Metazoan diversity

and ecosystem complexity, but the mere existence of simple Metazoans does not necessarily

require high oxygen levels. The oxygen levels below which Metazoans are unsupported remain

unquantified. Until this threshold is defined, it is difficult to fully determine whether the ancient
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Earth was capable of supporting Metazoans. It is possible that there has been sufficient oxygen

to meet the requirements of simple Metazoans in local surface environments in direct contact

with the atmosphere since the GOE.

In contrast, larger, more complex organisms have higher energy demands, and likely require

oxygen to meet this demand. The lower energy yield of anaerobic reactions means that when

compared with an aerobic organism of similar size, an anaerobic organism would require high

concentrations of the electron acceptor, exhibit a much lower metabolic rate, or have a lower

volume:area ratio (Payne et al., 2011). Depending on an organisms size, shape and physiology,

minimum requirements for oxygen can be inferred for aerobic organisms. The transport of

electron acceptors into the body can present a severe limitation, and so maintaining the flux of

oxygen to the mitochondria, the cell organelle carrying out aerobic respiration, limits the size of

an organism according to the ambient oxygen availability. A disk is the most efficient shape for

maximising diffusion, a shape employed by the Ediacaran biota Dickinsonia (Runnegar, 1991)

and Aspidella (Gehling et al., 2000). Rising oxygen can raise the maximum size of a ball of cells

that lack a circulatory system (i.e. stop the diffusion-limited cells in the interior from becoming

oxygen starved).

Larger Cambrian animals used respiratory and circulatory systems, making quantification of

the relationship between pO2 and maximum size more challenging. Experimental work has

shown that reduced body size under hypoxia results from developmental plasticity, whereas

size increase following hyperoxia is evolutionary and only appears after multiple generations

(Klok and Harrison, 2009). However, Butterfield (2009) suggests that it may in fact have

been rapidly metabolising small animals that are most challenged by low O2, and that body

size divergence is likely forced by evolutionary interactions and evolutionary wedging than

‘permissive’ conditions. Oxygen requirements reflect size, transport mechanisms within tissues,

and metabolic demand. A rise in oxygen may be necessary, but is not necassarily sufficient, to

explain increased complexity of animals.

Some natural environments in the modern ocean mimic Precambrian conditions. Oxygen

minimum zones provide a natural environmental oxygen gradient that has proven to be a useful

natural laboratory, but difficulties in isolating the effect of decreasing oxygen from increasing

food supply have not been resolved (Levin and Whitfield, 1994). Animals in modern dysoxic

waters tend to be tiny (Gibson and Atkinson, 2003). Megafauna such as echinoids and large

gastropods are reported from OMZs down to low oxygen concentrations (<0.25ml/l), but are
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typically absent from the most oxygen starved settings (<0.1ml/l), which tend to be dominated

by protists and invertebrate animals <1mm (Payne et al., 2011). But many extant animals are

facultative anaerobes and are not wholly dependent on oxygen (Budd, 2008); parasite worms and

the common mussel can live without oxygen. Some Loriciferans can even withstand free sulfide

(Danovaro et al., 2010), which is toxic to all other known Metazoans. If modern Metazoans can

exist in anoxic or very low oxygen conditions, this challenges the widespread assumption that

oxygenation led directly to the evolution of animals.

Metazoans demand oxygen to support aerobic metabolisms and build hard body parts, and so

it has been presumed that a rise in oxygen, perhaps incrementally, facilitated this evolution

of complexity (Fike et al., 2006; Canfield et al., 2007; McFadden et al., 2008; Scott et al.,

2008). A broad correlation between rising atmospheric oxygen levels and animal evolution

has been observed in the rock record (Knoll and Sperling, 2014). The evolution of animals

occurred in a three-stage process whereby metabolically versatile, multicellular heterotrophs

initially evolved during a period of climatic and environmental extremes as part of a wide

diversification of eukaryotes, that may have followed a modest rise in atmospheric oxygen

(Planavsky et al., 2014b). Mobility and macroscopic size were attained in a second stage

during ocean ventilation in the Ediacaran period. Irreversible, stable atmospheric oxygenation

by the end of the Precambrian may have paved the way for the emergence of modern animal

phyla. Periods of anoxia in the Phanerozoic have been implicated in prominent episodes of mass

extinction (Meyer et al., 2008), and Mesozoic ocean anoxic events have been linked to rapid

radiation and turnover of marine phytoplankton (Leckie et al., 2002).

If the Shuram/Wonoka anomaly does represent the exhaustion of a vast organic carbon pool,

its culmination ~551 Ma could correspond to a rise in atmospheric oxygen just prior to the late

Ediacaran-Cambrian emergence of modern animal phyla. Although the Cambrian explosion

was undoubtedly escalated through an ecological arms race to evolve predatory and protective

features, it seems likely that oxygenation permitted additional opportunities to evolve energy-

sapping musculature and biominerals. Furthermore, rising oxygen levels in the atmosphere could

have had an indirect effect on the course of evolution by increasing the availability of bioessential

trace elements (Anbar and Knoll, 2002) and altering alkalinity (Higgins et al., 2009).

Early thinking on the coevolution of animals and the oxygenation of the planet was based on

limited knowledge of animal physiology and the fossil record, as well as a broad-brush approach

to oxygenation. We now know that oxygenation was not a simple step change, but protracted and
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complex. The oxygen distribution in the ocean does not relate simply to atmospheric oxygen,

but will vary locally depending on nutrient supply and productivity. Experiments on animals

in low oxygen environments in both the laboratory and modern natural environments show that

multicellular animal life does not necessarily demand high oxygen concentrations (Knoll and

Sperling, 2014; Mills et al., 2014), but this does not undermine the close relationship between

animals and oxygen. Although simple animals such as sponges may be able to tolerate low

oxygen conditions, they may be sensitive to fluctuating anoxia, and smaller forms may tolerate

low oxygen more easily than larger forms. So instead of a search for the first complex animal

above evidence for an oxygenated ocean, we need to redirect our search to look for evidence of

larger, more complex animals under more stable oxygenated conditions.

The relationship between animals and oxygen is not necessarily one way. Although modestly

rising oxygen levels may have facilitated the evolution of animals in the Ediacaran and Cambrian,

oxygenation may in part have been a consequence of animal evolution. In this view, filter-feeding

animals cleared surface oceans of dense bacterial populations, while planktonic bilaterians

accelerated export from surface waters via rapidly sinking fecal pellets, shifting oxygen demand

from the surface ocean to the deep ocean and promoting oxygen enrichment (Lenton et al.,

2014). The filter feeding of basal Metazoa such as sponges clear the water of dissolved

organic carbon and picoplankton, reducing turbidity and shifting oxygen demand deeper into the

sediments. Sponges would also have removed phosphorous into the sediments, easing oxygen

demand in shallow waters and further promoting oxygenation. The evolution of more complex

feeding patterns and associated bioturbation likely had an impact on remineralization rates in

marine sediments (e.g., Boyle et al. 2014; Canfield and Farquhar 2009), releasing sulfate and

phosphorous. Sediment mixing by Metazoan infaunal activity can affect both redox zonation

in the sediment column and the cycling of organic matter by supplying oxidants to otherwise

anoxic pore waters (Aller, 1990). The burgeoning record of complex Ediacaran trace fossils

has important implications for mixing at the sediment-water interface prior to the Cambrian

Period (Chen et al., 2014). For example, in modern settings, bioturbation can affect sediment

column redox zonation and the localized recycling of organic matter (Aller, 1994; Meysman

et al., 2006). It has long been recognized that the transition from firm-ground substrates of the

Proterozoic to the more soupy, well-mixed upper sedimentary layers of the Phanerozoic had

critical biogeochemical and ecological impacts (Canfield and Farquhar 2009; Droser et al. 2002;

McIlroy and Logan 1999, but see Mángano and Buatois 2014 and Tarhan and Droser 2014 for a

contrasting view).
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The timespan from the late Mesoproterozoic to the Cambrian witnessed major clade divergence

within the eukaryotes and an overall increase in organism size and complexity. How these

events precisely relate to the NOE is currently still under debate and is most probably a result of

combined feedback mechanisms and direct and indirect environmental triggers involving both

climatic and tectonic changes.
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1.4 Redox proxies

Our understanding of the history of oxygen through time (section 1.2.3) comes from geochemical

proxies that record changing ocean redox conditions. There are a multitude of different proxies,

some more traditional and robust, others new and still being tested. Each proxy has a unique

response to anoxia, determined by its biogeochemical behaviour, reduction potential and ocean

residence time. The signal of rising oxygen should be detected first in the most redox-sensitive

elements. Some proxies record global conditions (e.g. Mo isotopes), whereas others are sensitive

to local conditions (e.g. cerium anomalies). Our understanding of palaeo-redox is built up of

information from multiple different proxies.

The ‘redox state’ of the ocean cannot be categorised as simply anoxic or oxic, but is a continuous

progression under oxygen deplete conditions through the redox potentials of different redox

sensitive elements, and each proxy will be sensitive to different stages in this transition. Sulfur

isotopes respond to sulfide production through bacterial sulfate reduction, and so are sensitive

to euxinic conditions (Canfield, 1998; Chambers and Trudinger, 1979), whereas Fe-speciation

allows the differentiation between euxinia and the less extreme ferruginous anoxic state. Cerium

anomalies may respond to the even milder manganese redox boundary. Carbon isotopes and

TOC are controlled by the other side of the respiration equation, the supply and demand of

organic matter, and provide a broad indicator of redox conditions.

Neoproterozoic ocean redox has so far been predominantly constrained through shale

geochemistry using Fe-speciation, trace metals, rare earth element and several isotope systems.

However, using shales to reconstruct redox presents a number of complications (Hood and

Wallace, 2014). It is often difficult to distinguish between water-mass chemistry and pore-water

chemistry, and even more difficult to constrain chemical depth gradients (Piper and Calvert,

2009). Furthermore, deciphering seawater signatures from detrital contamination is problematic

(Hood and Wallace, 2014). Marine carbonates, which record the chemistry of the parent seawater

via trace element incorporation during precipitation, offer a potentially more direct way of

determining ancient ocean chemistry (Kamber and Webb, 2001, 2007; Nothdurft et al., 2004;

Webb and Kamber, 2000). Carbonates represent shallow marine environments and often host

biomineral fossils. Here, we introduce a range of redox proxies and their application in carbonate

settings.
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1.4.1 Total organic carbon

Marine sediments are the primary long-term repository for organic matter. Because roughly one

mole of molecular oxygen is generated for every mole of carbon fixed during photosynthesis,

burial of organic matter (OM) can maintain high atmospheric oxygen concentrations. In a perfect

balance between respiration and photosynthesis, no oxygen would accumulate. However, the

burial of organic carbon in sediments allows oxygen to accumulate in the atmosphere. The

preservation of OM is controlled by the productivity of photosynthesizers in the photic zone,

and the availability of electron acceptors to break down matter in the water column and the

sediment, such as O2 and SO4
2−. On short time-scales, the burial of OM may serve as an

indicator of palaeo-oceanographic conditions.

Organic matter in marine sediments may be of either terrestrial or marine origin. Terrestrial

OM that enters the oceans through rivers is dominated by OM from eroded shales, as well as

recent plant debris and older soil humus. Most riverine OM is deposited near shore (Degens,

1969). Coastal regions have higher rates of photosynthesis than offshore regions, but most

photosynthetic production (50x1015 g C yr−1) occurs in the open ocean. A fraction of this

organic carbon is then released in dissolved form, and consumed by bacteria and protozoans.

The remainder is eaten by zooplankton and transferred up the food chain, or settles intact

through the water column. The vertical flux of particulate organic carbon is predominantly in the

form of large fecal pellets and amorphous aggregates (marine snow). Because of regenerative

mechanisms in the surface ocean, the global flux of particulate organic carbon that escapes the

surface ocean (<100m) is estimated to be around 10-20% of total production (Bishop, 2009;

Martin et al., 1987). The OM that escapes the surface is subject to further degradation in the

deep ocean and at the sediment-water interface. As a result, the proportion of organic carbon

that reaches the sediments is around, on average, 1% of total primary production, but can reach

as high as 50% in some near shore environments. Romankevich (1984) demonstrated that 80-

90% of global organic carbon burial (0.06*1015 g C yr−1) occurs within the continental margin,

because of the relatively high carbon contents and high sedimentation rates characteristic of this

zone, and lower rates of remineralisation in the surface ocean (Platt and Harrison, 1985).

The distribution of organic carbon that is preserved in sediments is controlled by two things:

the availability of electron donors and subsequent transport processes (Canfield, 1994). The

amount of OM in the mixed layer should be linearly proportional to the particulate flux of OM

to the sediments. Different forms of organic carbon will be reoxidised at differing rates. OM
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degradation may precede faster in the presence of oxygen, than via denitrification or Mn, Fe

or SO4 reduction, and indeed particular biomolecules cannot be broken down in the absence

of oxygen. A correlation has been shown between OM content of the sediment and oxygen

concentration where oxygen levels in bottom waters become low (Richards and Redfield, 1954).

We would expect, therefore, that in times of widespread bottom water anoxia, the proportion of

OM that is preserved in the sedimentary record will increase.

The concentration of OM in sediments has been used to infer changes in productivity of the

ocean through time (e.g. Sarnthein et al. 1987). This is complicated by the variety of outside

factors that can enrich or dilute the localised concentration of OM. TOC may also vary with

redox changes. Although not sufficient as a redox proxy alone, TOC can provide supporting and

complementary data to redox studies. TOC is also helpful in interpretation of Fe-speciation data,

discussed in 1.4.3. Here, we measure TOC on carbonates from nine sections across the Nama

Basin to provide supporting redox information where FeT is too low for effective Fe-speciation

analyses.

1.4.2 Carbon isotopes

On geological timescales, the CO2 emitted from volcanoes and the weathering of sedimentary

rocks departs the fluid Earth in two primary sinks – carbonate minerals, and organic

carbon; the burial of organic carbon can be linked stoichiometrically to fluxes of O2 to the

atmosphere (Grotzinger et al., 2011). Owing to biases intrinsic to the sedimentary record,

direct measurements of the amount of organic carbon buried as a function of time provide

ambiguous information. Instead, we use carbon isotope ratios in carbonate rocks to constrain

the proportional organic carbon burial flux.

The ratio of the two stable isotopes of carbon in seawater (12C and 13C) varies as a function of

changes in the input flux of carbon and subsequent partitioning between organic and inorganic

carbon. The fractionation is reported in delta notation (equation 1.1), and using units of part per

thousand (permil, ‰). The following notation is standard for reporting stable isotope ratios, as

demonstrated here for δ 13C:

δ
13C =

[
(13C/12Csample)

(13C/12Cstandard)
−1

]
∗1000 (1.1)
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Preferential uptake of the lighter isotope during CO2 fixation by autotrophic organisms enriches

dissolved inorganic carbon in 13C. Carbon fixation during oxygenic photosynthesis uses the

RuBisCo enzyme, and produces a δ 13C fractionation of around -28‰. Larger fractionations

occur during methanogenesis, up to -78‰ (Botz et al., 1996). This photosynthetic isotope effect

drives δ 13C depth gradients in the modern ocean. Shallower water is depleted in the lighter

isotope, and deeper waters, where organic carbon is released via respiration, are enriched in 12C.

The majority of organic carbon produced in the surface ocean is reoxidised in the water column

or within the sediment pile – larger isotope fractionations can only occur when organic carbon

is removed more permanently through burial. Burial of organic carbon occurs when the flux of

organic carbon overwhelms the oxidising capacity of electron donors, or when organic carbon is

in a form that is inaccessible to microbes. Organic carbon burial, and enrichment of the carbon

isotope composition of dissolved inorganic carbon (δ 13CSW ), is therefore increased during

times of excess productivity, perhaps driven by an increased nutrient flux, or during periods

of widespread anoxia. High carbon isotope values indicate that the rate of organic matter burial

exceeds that of oxidative weathering, reflecting high rates of net oxygen production. Swings

to lower carbon isotope values indicate excess oxidation over burial and atmospheric oxygen

depletion. However, the carbon isotope composition of the oceans can also be influenced by

anomalous input fluxes, such as methane release, the oxidation of a large organic matter pool or

weathering perturbations (Kasemann et al., 2010; Lenton et al., 2012). Over long timescales, the

input flux is controlled by volcanic carbon input, with a value of -6‰ (figure 1.9). This standard

approach to carbon isotopes may be challenged when reconstructing peculiar events in Earth

history, but it has been widely applied to carbon isotope interpretation through Earth history.

Inorganic calcium carbonate acquires the δ 13C of the coeval dissolved inorganic carbon pool.

Thus, the carbon isotopic ratio of ancient seawater can be reconstructed using the δ 13C of

limestones, provided they have not experienced alteration through extensive dolomitisation or

deep burial recrystallisation. Limestones may record an integrated signal that partly reflects

inorganic authigenic carbonate, precipitated in situ (Schrag et al., 2013). Diagenetic reactions,

such as pyrite precipitation, are a source of alkalinity that encourages the precipitation of

authigenic carbonate, and so authigenic carbonate may have had a significant influence on the

carbon isotope record derived from limestones when O2 is low. This complicates the relationship

between carbon isotopes and the redox budget of the Earth surface. δ 13CSW varies through

Earth history, and has been widely be used to reconstruct the global carbon cycle. δ 13CSW

should be globally homogeneous, and so large carbon isotope excursions have been used for
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Figure 1.9: Variability in carbon isotopes is controlled by the input flux of carbon and the
fraction of organic matter burial. Larger fractional burial rates of organic carbon drive higher
δ 13C in carbonates. The mantle input value of carbon is -6‰. The fractionation associated with
carbon fixation by autotrophic bacteria (shown here) is 28‰ – this fractionation is larger for
methanotrophic reduction. Today the fraction of carbon buried as organic matter, as opposed to
in limestones, is around 20%, and so carbon isotope values in limestones are elevated compared
with mantle input.

chemostratigraphic correlation between sections. Here, we measure δ 13C on carbonates from

Zebra River, the Nama Group, to identify recovery from the Shuram-Wonoka excursion and

explore its relationship to other redox information.

1.4.3 Iron redox proxies

Iron can reside in multiple oxidation states under ambient conditions, with the reduction of ferric

(III) iron to ferrous (II) iron occurring with an E◦ = +0.77V. Ferruginous conditions occur when

Fe reduction is active and Fe(II) has titrated all H2S available, enabling Fe to build up in the

water column. Anoxic sediments become enriched in Fe through the addition of shelf sources

of highly reactive Fe that are decoupled from siliciclastic sources. Where Fe is transported into

anoxic sulfidic waters and precipitated as sulfide minerals, sediments will contain enrichments

in the proportion of Fe deposited as pyrite (e.g. Canfield et al. 1996). Under anoxic ferruginous

conditions, other highly reactive Fe minerals (FeHR) may also form, resulting in FeHR and FeT

enrichments (e.g. Zegeye et al. 2012). Precambrian ferruginous sediments can result from Fe

added by hydrothermal activity, upwelling of deep Fe rich waters or Fe released from sediment

porewaters. The FeT/Al and Fe-speciation proxies have been developed over several decades to

detect ferruginous and euxinic conditions in ancient siliciclastic, and more recently carbonate
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rich, sediments (Clarkson et al., 2014; Poulton and Canfield, 2005; Raiswell et al., 1988).

Iron speciation

Iron speciation is a widely utilized proxy for determining palaeo-redox conditions. It can clearly

distinguish oxic from anoxic conditions using experimentally determined threshold values, but

does not record progressive oxygenation. It has the unique ability to distinguish anoxic and

ferruginous states from the more extreme anoxic and sulfidic state. Fe-speciation responds

to regional water column conditions, unlike some other redox proxies (e.g. Mo isotopes) that

provide a globally integrated signal. However, Fe (oxyhydr)oxide enrichments can also occur

under oxic conditions, where Fe(II) is transported in anoxic waters into an oxic setting. This

may occur during upwelling of anoxic deep waters onto the shallow shelf or where hydrothermal

vents input reduced Fe directly into oxic waters. In this case, enrichments in Fe (oxyhydr)oxides

imply that the adjacent deeper water column was anoxic, rather than the water column directly

overlying the site of Fe enrichment. These ‘false anoxic’ signals should be identifiable through

careful consideration of the geological context and a closer look at the distribution of FeHR

phases extracted (Clarkson et al., 2014).

Fe-speciation includes a sequential chemical extraction technique that considers three iron pools:

highly reactive Fe, poorly reactive Fe and total Fe. Highly reactive iron (FeHR) includes

carbonate-associated Fe (Fecarb; e.g., ankerite and siderite), ferric (oxyhydr)oxides (Feox;

e.g., goethite and hematite), magnetite Fe (Femag), separated using a chemical extraction

technique, as well as Fe sulfide minerals (Fepy; e.g. pyrite) and acid volatile sulfur (AVS;

e.g. mackinawite), separated using distillation techniques (Canfield et al., 1986). Together, these

iron minerals form an iron pool that is considered biogeochemically available, or highly reactive

towards biological and abiological reduction under anoxic conditions. The total iron pool (FeT)

additionally includes a largely unreactive silicate iron pool, originating from detrital weathering

fluxes. The proportion of total iron that is highly reactive (FeHR/FeT) is the basis of the Fe-

speciation method and can be used to define thresholds for anoxic and oxic conditions (figure

1.10).

Sediments may be enriched in FeHR under anoxic marine conditions due to either the export of

remobilized Fe(aq) from the oxic shelf (Raiswell and Anderson, 2005; Severmann et al., 2010;

Duan et al., 2010) or under more widespread anoxia, due to upwelling of deep water Fe(aq)

(Poulton and Canfield, 2011). Precipitation of this mobilized water column Fe is then potentially

51



CHAPTER 1. INTRODUCTION: LIFE AND OXYGEN

Figure 1.10: Threshold values for determining anoxic vs oxic (top) and ferruginous vs euxinic
(bottom) conditions in sediments. Oxic conditions are identified by sediments with an FeHR/FeT
ratio below 0.22, with an equivocal zone between 0.22 and 0.38. Anoxia is identified by
sediments with a FeHR/FeT ratio greater than 0.38. Within anoxic sediments, an Fepy/FeHR
ratio greater than 0.8 indicates euxinic conditions, with ratios below 0.7 indicating ferruginous
conditions. From Poulton and Canfield (2011).

induced through a variety of processes, for example through Fe sulfide (pyrite) formation if the

Fe encounters water column sulfide, or through Fe (oxyhydr)oxide precipitation due to oxidation

at the oxycline (Canfield et al., 1996; Raiswell and Canfield, 1998; Crowe et al., 2008; Zegeye

et al., 2014). These processes have the consequence that FeHR/FeT ratios provide a particularly

sensitive means to determine whether a depositional setting was oxic or anoxic. Calibration

in modern and ancient marine environments suggests that FeHR/FeT <0.22 provides a robust

indication of oxic conditions, while FeHR/FeT >0.38 suggests deposition from an anoxic water

column (Poulton and Canfield, 2011; Raiswell and Canfield, 1998; Poulton and Raiswell, 2002).

Values between 0.22-0.38, however, are somewhat equivocal, and care needs to be taken to

determine if such values are a consequence of masking of the additional anoxic water column
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flux of FeHR, either due to rapid sedimentation (Raiswell and Canfield, 1998; Poulton et al.,

2004) or due to post-depositional transformation of unsulfidized FeHR minerals to less reactive

sheet silicate minerals (Poulton et al., 2004, 2010).

In the presence of sulfide, Fe(II) will be titrated from the water column to form pyrite. Examining

of the Fe speciation Fepy/FeHR has the unique advantage in that it allows the separation of

anoxic settings into euxinic (sulfidic) environments (Fepy/FeHR >0.7-0.8) and non-sulfidic (Fe-

rich; ferruginous) environments (Fepy/FeHR <0.7) (Poulton and Canfield, 2011). Here, we

use Fe-speciation on carbonates and siliciclastics from Zebra River, Nama Group, to explore

oxygenation of the Nama Basin and its relation to fossil distribution.

Calibration in carbonates

The Fe-speciation proxy was originally calibrated in iron rich fine-grained shales, normally

deposited in deeper water settings, but recently Clarkson et al. (2014) have demonstrated the

utility of Fe-speciation in carbonates. The primary concerns for the application of Fe-speciation

in carbonates are related to the decreased detrital components, and hence low FeHR and FeT.

This can increase the sensitivity of the proxy to additional FeHR inputs. The impact of this

process is significant at FeT values <0.5 wt% (Clarkson et al., 2014). At FeT >0.5wt% it has

been demonstrated that carbonates behave consistently to siliciclastics and that Fe-speciation

data can be applied to accurately identify anoxic depositional settings in limestones, albeit with

different threshold values.

Clarkson et al. (2014) explore the role of late stage dolomitization on Fe-speciation data.

Comparison between contemporaneous limestones and dolomites demonstrate a general increase

in FeT within the dolomites, predominantly present as Fecarb and consistent with the idea of late

stage alteration due to a through-flowing Fe-rich dolomitizing fluid. This process, however, is

laterally heterogeneous creating highly variable results. Thus there is good evidence to avoid

sampling late stage dolomites.

Deposition of carbonate-rich samples under oxic water column conditions leads to FeHR/FeT

ratios <0.38 at any concentration of organic carbon (providing FeT>0.5wt%). Carbonate-rich

sediments deposited under anoxic water column conditions give FeHR/FeT ratios >0.38 for any

FeT concentrations (providing organic carbon content >0.5wt %). The equivocal zone, 0.22-

0.38, defined for shales is not applicable to carbonates, with a single straight cut-off at 0.38. The
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inclusion of TOC data alongside Fe-speciation can strengthen the use of the proxy in carbonates,

and provide additional supporting redox information (see section 1.4.1).

Under oxygenated conditions there is no Fe enrichment mechanism and limestone therefore

records primary low FeT values. Clarkson et al. (2014) suggest that carbonate-rich rocks

containing <0.5wt% FeT and <0.5wt% TOC may indicate oxic depositional conditions,

particularly when both are very low (<0.1wt%). These constraints appear valid as long as the

sediments are from calci-turbidites (where rapid sedimentation could dilute the Fe supply) and

have not undergone demonstrable Fe addition during deep burial dolomitization.

FeT/Al ratios

The FeT/Al proxy provides a bulk measurement of the enrichment of Fe over redox insensitive

Al that can be applied to both siliciclastic and carbonate rich sediments (Lyons et al., 2003;

Lyons and Severmann, 2006; Raiswell et al., 2008). FeT/Al ratios are expected to fall close

to 0.53±0.11 in normal marine siliciclastic as well as carbonate sediments, and as such this

value acts as a baseline to identify oxic conditions. Sediments deposited from an anoxic water

column show enrichments above this value (FeT/Al>0.64) (Clarkson et al., 2014; Raiswell et al.,

2008). The FeT/Al ratio is unlikely to exceed 2, except where Al<0.5% (Raiswell et al., 2011).

Both FeT and Al reduce with increasing %CaCO3, highlighting the anticipated dilution of major

elements by carbonate. In very pure carbonates both FeT and Al contents are very low. Despite

this dependence of Fe and Al concentrations on carbonate content, FeT/Al ratios are consistent

across the full range of %CaCO3 contents, and so the proxy behaves consistently even in pure

carbonates with low FeT. Although anomalous Al concentrations at the low end of the scale may

result in false indications of anoxia, oxic signals at low FeT and Al should be robust. This means

that FeT/Al can provide some useful redox information in carbonate rich samples that contain

insufficient iron for Fe-speciation (Clarkson, personal communication).

An advantage of the FeT/Al proxy is that it does not suffer from post-depositional transformation

of unsulfidised iron minerals from highly reactive phases to unreactive forms that may affect

FeHR/FeT ratios. The FeT/Al ratio should also be unaffected by deep burial dolomitisation or

metamorphism. However, the FeT/Al ratio cannot distinguish euxinic from ferruginous anoxic

conditions. FeT/Al combined with Fe-speciation provides a particularly powerful means to

evaluate redox conditions with respect the reduction potential of Fe. Here, we have measured

FeT/Al ratios for Zebra River, alongside Fe-speciation and TOC data.
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1.4.4 Sulfur isotopes

Sulfate is the second most abundant anion in the oceans and has a modern residence time of

10-20 million years, which far exceeds the mixing time of the ocean (Paytan et al., 2004). As

a result, its sulfur isotope composition should provide a globally integrated archive of sulfur

cycle dynamics over long timescales at modern sulfate concentrations, but this is increasingly

less likely as sulfate concentrations decrease. Sulfur can reside in multiple oxidation states,

and is critical for maintaining the alkalinity balance of the oceans. Sulfate is respired during

dissimilatory sulfate reduction by sulfate reducing microbes in anoxic environments (Jørgensen,

1982). Two key fluxes regulating [SO4] are riverine sulfate derived from pyrite oxidation, and

marine reduction of sulfate to sulfide. Because these fluxes both depend directly on oxygen

concentrations, increased [SO4] probably correlates with increased oxygen availability. Pyrite

burial represents an important source of oxygen to the atmosphere over long timescales.

The ratio of the two most common stable isotopes of sulfur, 32S and 34S, can be used to trace

changes in the biogeochemical cycling of sulfur through time. The lighter sulfur isotope is

preferentially partitioned into reduced sulfur by sulfate reducing bacteria. This lighter sulfur

can be removed more permanently through pyrite burial (figure 1.11), leaving marine sulfate

elevated in 34S. Paired sulfate-pyrite sulfur isotope studies over long timescales show step

changes relating to major changes in sulfur cycling in Earth history, which relate closely to

redox changes (Canfield, 1998). Throughout the Precambrian and into the early Phanerozoic,

the proportional pyrite burial flux dropped and there was a shift towards evaporites burial as

the dominant pathway for sulfur loss from the oceans (Canfield, 2004). Marine sulfate is

commonly preserved in phosphorite, barite and evaporite deposits, but in the Precambrian the

most commonly available reliable archive is carbonate associated sulfate (CAS).

δ 34S fractionations predominantly occur via microbial metabolic processes: dissimilatory

sulfate reduction and sulfide oxidation. Bacterial sulfate reduction (BSR) is the respiration of

sulfate in the absence of oxygen to break down organic matter and produce hydrogen sulfide.

The sulfide produced during this sulfate reduction can either be buried as pyrite and enter the

geologic record or be returned to the marine sulfate pool via abiotic or biotic sulfide oxidation.

Pyrite should be depleted in heavy 34S compared with coeval sulfate. BSR can produce

fractionations as large as 46‰ when sulfate concentrations are high (Kaplan and Rittenberg,

1964). Sulfate reducing bacteria are widely distributed in anoxic environments containing sulfate

and have a broad ecological tolerance. Larger sulfur isotope fractionations are possible when the
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oxidative side of the sulfur cycle is active, cycling sulfur species through the multiple oxidation

states. This cycling occurs predominantly via sulfide oxidizing bacteria (SOB), but also sulfur

disproportionating bacteria and other bacterial metabolisms. More recent experiments also

report large sulfur isotope fractionations in natural environments where sulfate reducing bacteria

alone are operating (Sim et al., 2011). During times of widespread sulfidic conditions in parts of

the water column, the fractionation during BSR is maximised, the pyrite burial flux is enhanced,

and the δ 34S of coeval sulfate increases accordingly.

‘Superheavy pyrite’, the phenomena whereby pyrite is isotopically enriched compared with

coeval sulfate, has been reported in from isolated basins, including the Nama Basin (Ries et al.,

2009). The primary explanation for this phenomena is the repeated oxidative cycling of sulfur

under sulfate replete conditions. In this instance, the fractionation during BSR would be small,

and may be masked by a negative fractionation upon reoxidation, generating sulfate which is

isotopically lighter than the starting sulfate. The presence of superheavy pyrite is enigmatic,

and may result from ocean stratification, sulfate limitation (Ries et al., 2009; Liu et al., 2006) or

contamination of the sulfate isotopic signal (Peng et al., 2014).

CO2 + H2O CH2O + O2 Oxic Water Column

99% - Respired

95% Re-oxidised

1% - Enters sediment

Bacterial respiration 
of sulphate

Anoxic pore waters

5% - long term burial

SO4 (2-) + CH2O H2S + CO2

Fe(II) Pyrite

Figure 1.11: Schematic representation of organic matter breakdown through bacterial sulfate
reduction in the modern ocean, including rough estimates of the magnitude of different
remineralisation fluxes.

The inclusion of minor sulfur isotopes, 33S and 36S, can be used to provide information about

the bacterial metabolisms operating in the oceans (Johnston et al., 2005; Zerkle et al., 2009), but

there is a dearth of multiple sulfur isotope data in previous studies due to the time consuming

analysis required to detect the less abundant isotopes (Rees, 1978). Much larger fractionations

in ∆33S, caused by symmetry effects in the absence of an ozone, have been used to constrain an
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early rise of atmospheric oxygen ~2.3 Ga (Farquhar et al., 2000).

Sulfur isotopes are often used in conjunction with other redox proxies to investigate the link

between carbon, oxygen, iron and sulfur cycles. Sulfur isotopes can be used as supporting

evidence for euxinic conditions, but the same S isotope signatures can result from different

redox conditions through variation in sulphate concentrations, the extent of pyritisation, or

the biological controls on isotope fractionation. δ 34Spy analyses are often used to support

Fe-speciation data. This is important for distinguishing ferruginous from euxinic conditions,

as pyrite is readily oxidised and quickly weathers to form iron oxides, altering the ratio of

Fepy/FeHR.

Here, we measure multiple sulfur isotopes in modern marine sulfate to constrain the pyrite burial

flux through a simple box model. We also measure sulfur isotopes in CAS and coeval pyrite from

Nama Group carbonates to constrain sulfur cycle dynamics in the terminal Ediacaran.

1.4.5 Ce anomalies

The rare earth elements and yttrium (REY) are a coherent group of elements that are present in

low concentrations in seawater. Experimental studies and investigations of natural environments

show that REY are partitioned between solids and solution, producing distinctive REY patterns

with characteristic anomalies. REY patterns may be faithfully preserved in authigenic minerals

such as carbonate, phosphate and chert. Cerium (Ce) is the only REE that undergoes redox

transformations under ambient ocean conditions, offering an opportunity to use REY patterns in

carbonates as a palaeo-redox proxy.

The REY distribution represents the exchange equilibrium between REY (III) solution

complexes (in seawater mostly mono- and di- carbonate complexes, and possibly siderophore,

silicate or sulfate complexes) and REY surface complexes (hydroxide complexes such as

REYOH2+ on the surface of Fe-Mn oxides and hydroxides, clays or organic matter).

Experimental work suggests this exchange equilibrium is attained fast, i.e. seconds to minutes

(Byrne and Kim, 1990; Koeppenkastrop and De Carlo, 1993; Bau and Dulski, 1999). This is

supported by observations in natural systems where REY flux from rivers and hydrothermal

vents rapidly attain a seawater distribution pattern (German and Elderfield, 1990; Mitra et al.,

1994; Sherrell et al., 1999).

The preferential removal of REY onto particles in the upper part of the water column is balanced
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by their release at depth from the labile fraction of the organic and oxide coatings on detrital

particles. The extent of fractionation between seawater and suspended particles is similar

throughout the modern ocean, suggesting globally consistent controls on the scavenging process

(Bertram and Elderfield, 1993; Sholkovitz et al., 1994). The short residence times of fast sinking

particles leads to little fractionation between particles and seawater, whereas small, slow sinking

particles accommodate extensive fractionation of REY (Fowler et al., 1992; Koeppenkastrop

and De Carlo, 1993; Koeppenkastrop et al., 1991). The precipitation rate and size of particles,

as well as overall sedimentation rates, could affect the exposure time of particles to solution, and

so affect REY scavenging.

Cerium is the only REY that can undergo redox transformations under ambient marine

conditions (German and Elderfield, 1990). In the presence of oxygen, Ce(III) is partially

oxidised to Ce(IV) on the surface of Fe-Mn (oxyhydr)oxides, either abiotically (Bau, 1999;

Koeppenkastrop and De Carlo, 1992) or via microbial mediation (Moffett, 1990), where it ceases

to participate in exchange reactions between REY(III) solution and surface complexes. Hence, a

certain fraction of the scavenged Ce remains as Ce(IV) on the solid surface. With time, Fe-

Mn (oxyhydr)oxides preferentially accumulate Ce over the other REY, resulting in positive

Ce anomalies in the solid phase, and corresponding negative Ce anomalies in solution. The

fractionation of Ce relative to the other trivalent REY only occurs under oxic conditions and can

be used to constrain palaeo-redox (e.g. Bodin et al. 2013; Ling et al. 2013; Meyer et al. 2012;

Schroder and Grotzinger 2007).

The redox cycling of Ce is controlled primarily by its selective removal onto Fe-Mn

(oxyhydr)oxides. Fe-Mn (oxhydr)oxide precipitates are categorised as hydrothermal deposits,

hydrogenetic crusts, hydrogenous nodules and diagenetic nodules, based on the type of aqueous

fluid from which they precipitate (Bau et al., 2014) (figure 1.12). Hydrogenous crusts and

nodules precipitate from seawater initially as colloidal particles within the water column, at the

surface of solid substrates such as seamounts (crusts) or by accretion around a nucleus on soft

sediment (nodules). They are characterized by very slow growth rates (mm/Myr), and catalyse

the oxidation of Ce under oxic conditions, resulting in large Ce enrichments. Hydrothermal

Fe and Mn (oxyhydr)oxides precipitate from marine medium to low temperature hydrothermal

fluids when these mix with cold seawater. Their rapid formation results in low ∑REY and

REY patterns similar to those of seawater, but Ce continues to accumulate as long as surfaces

remain exposed to seawater due to restrictive desorption of tetravalent Ce (Bau and Koschinsky,

2009). Diagenetic nodules form from metal ions in suboxic pore waters close to the sediment-
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water interface, and show negative cerium anomalies, low ∑REY and Y/Ho ratios close to unity.

The negative Ce anomalies of diagenetic nodules suggests that in contrast to redox insensitive

REY(III), Ce is not quantitatively mobilised as pore waters are not able to reduce or transport

Ce4+.
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Figure 1.12: Examples of typical REY distribution patterns for different fluxes and mineral
phases in marine environments, adapted from Bau et al. (2014).
Left: Marine hydrogenetic Fe-Mn crusts (Bau and Dulski, 1996), diagenetic Fe-Mn nodules and
hydrothermal Fe crusts, (Bau et al., 2014).
Right: high-temperature hydrothermal (black-smoker) fluids Bau and Dulski (1996), seawater
(James et al., 1995) and marine porewater (Soyol-Erdene and Huh, 2013).

The redox cycling of Ce is widely assumed to be more closely tied to the formation of Mn

than to Fe (oxyhydr)oxides. Some have suggested the Fe oxides record REY patterns of the

water column from which they precipitated qualitatively, in contrast to Mn oxides that scavenge

Ce and LREE preferentially, and exclude Y (Bau, 1999; De Carlo, 2000; Ohta and Kawabe,

2001). Sholkovitz et al. (1994) found that the development of Ce anomalies in the coatings of

particulate matter coincides with the in-situ formation of Mn-oxide rich particles. Particles from

Mn poor hydrothermal pools record a seawater pattern (Edmonds and German, 2004). However,

sequential leaching of seafloor nodules has produced conflicting data, suggesting that Fe oxides

play a more important role in the fractionation of REY during scavenging (Bau and Koschinsky,

2009). It is not clear if the close relationship between Ce and Mn arises due to oxidation of Ce

on Mn oxides or because the distribution of both elements are controlled by common processes.

The redox sensitive fractionation of Ce should impart a positive Ce anomaly onto detrital

particles and a negative Ce anomaly in residual seawater REY. In general, oxygenated modern
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marine settings display a strong negative Ce anomaly due to scavenging onto particles, while

suboxic and anoxic waters lack negative Ce anomalies due to reductive dissolution of settling

particles (figure 1.13) (Byrne et al., 1996; German et al., 1991). The release of Ce can occur

via reductive dissolution of metal oxides, and the release of all REY including Ce, or via the

reductive dissolution and release of cerium oxides and hydroxides from the particle surface. The

reduction potential of cerium is intermediate between Mn and Fe.

Figure 1.13: Depth profiles of Ce anomaly and concentrations of oxygen, sulfide, dissolved-
and particulate-Mn, for the Black Sea BS3-6 station, emulated after Slack et al. (2007) and from
Ling et al. (2013). Data sources: Ce/Ce* values from German et al. (1991), concentrations of
dissolved Mn and particulate Mn from Lewis and Landing (1991), and concentrations of O2 and
sulfide from Luther III et al. (1991).

The magnitude of the negative Ce anomaly in seawater should develop progressively with depth,

and may offer the potential to quantify the extent of oxygenation and the depth of the oxic

surface waters. The Ce anomaly develops along with increases in the concentration of particulate

Mn(IV)O2 and returns to unity as Mn is reduced and the excess Ce is released into the water

column. These processes become important between 100 and 200m depth in the modern ocean,

in concert with the in-situ oxidation of dissolved Mn(II) to particulate Mn(IV) oxides (Sholkovitz

et al., 1994). This pattern is also observed in the redox stratified Black sea, where negative

Ce anomaly in the water column peaks at 75m water depth, coincident with the depletion of

dissolved oxygen (figure 1.13). Ce anomalies then returns to values close to unity by 150m. The
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Ce anomaly is eroded most rapidly in the ‘suboxic’ zone, where Mn reduction is occurring, but

before the onset of Fe reduction. In many redox stratified basins the Ce anomaly, along with

the HREE/LREE ratio and Y/Ho ratio returns to shale composite values beneath the Mn and

Fe redox boundaries. In some basins, however, positive Ce anomalies and LREE enrichment

develop in anoxic and suboxic zones of the water column, linked directly to Mn cycling in the

suboxic zone (Bau et al., 1997; De Baar et al., 1988; De Carlo and Green, 2002; German et al.,

1991).

Ce frequently displays concentration maxima in surface waters, in contrast to the other trivalent

lanthanides and many other trace elements (Moffett, 1990). Aeolian deposition cannot account

for the maxima as Ce is not enriched in continentally derived dust. The unique maxima for

Ce must involve its redox chemistry. Microbial Mn-oxidation is photo-inhibited (Sunda and

Huntsman, 1988), and this may also be the case for Ce. Lower oxidation rates in the upper

photic zone would lead to longer residence times, possibly resulting in a surface maxima.

Photoreduction of Ce(IV) may also be a factor.

Ce anomalies provide a spatially and temporally sensitive means to trace redox cycling in natural

environments. To be of use as a palaeo-redox proxy, Ce anomalies must be faithfully preserved

in authigenic minerals. Non-biogenic carbonates are thought to provide a reliable archive of

seawater REY that should be largely unaffected by diagenesis or even dolomitisation (Webb

et al., 2009; Banner et al., 1988). The methods used to extract a pristine seawater REY signal

from carbonate phases are poorly defined and can give ambiguous results. The development of

the carbonate leaching method forms a major part of this thesis, discussed in chapter 3.
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1.5 The Nama Group

This study focuses on carbonate samples from the Nama Group, southern Namibia. The Nama

Group preserves key changes in the terminal Ediacaran fossil record, including the introduction

of biominerals and the beginnings of bioturbation, as well as preserving the Ediacaran biota.

The Nama Group is unmetamorphosed, well exposed and covers large geographical areas -

making it an ideal place to study temporal and spatial variation in redox at high resolution.

The sedimentology and stratigraphy are well described from previous work (e.g. Saylor et al.

1998). Samples from nine shelf to basin sections have been collected as part of this study, as

well as on previous field trips.

1.5.1 Geological Setting

The Nama Group is a major lithostratigraphic unit that crops out in southern Namibia and

NW South Africa, and is one of the world’s best preserved terminal Proterozoic carbonate and

siliciclastic sequences (Germs, 1983). The Nama group was deposited approximately 550 to

543 Ma in the foreland basin of the Kalahari craton, which developed during the assembly of

Gondwanaland (Germs, 1983, 1974; Stanistreet et al., 1991). The lower Nama Group (Omkyk

and Hoogland members mainly) is coincident with the appearance of early biomineralizing

Metazoa, such as Cloudina, Namacalathus and Namapoikia.

The Group was deposited in two sub-basins – the Zaris sub-basin in the north and the Witputs

sub-basin in the south – which were separated by a palaeohigh, the Osis Arch (figure 1.14 and

1.15). The Kuibis Subgroup is thickest near the Damara and Gariep fold belts and thins until

the Subgroup completely disappears over the Osis Ridge (Germs, 1983, 1995). The Kuibis

and Schwarzrand Subgroups were deposited in settings ranging from upper shoreline/tidal flats

to below-wave-base lower shoreface (Germs, 1995; Grotzinger and Miller, 2008; Saylor et al.,

1995, 1998).

The age of the upper Nama Group is relatively well-constrained from the U-Pb dating of three

ash beds within the group, including one at 548.8 ± 1 Ma in the Hoogland Member (Grotzinger

et al., 1995) revised to 547.32 ± 0.31 Ma by Narbonne et al. (2012) (Kuibis Subgroup, Zaris

sub-basin). The age of the base of the Nama Group is around 550 Ma (Ries et al., 2009). The

Proterozoic-Cambrian boundary is represented by a regionally extensive erosional unconformity
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Figure 1.14: A cross section through the two sub-basins of the Nama Group, adapted from
Germs (1983) by James Lyne and Fred Bowyer.

near the top of the Schwarzrand Subgroup in the southern sub-basin (Germs, 1983; Saylor et al.,

1995; Narbonne et al., 2012; Grotzinger et al., 1995), which is overlain by incised-valley fill

dated (U-Pb on an ashbed) at 539 ± 1 Ma (Grotzinger et al., 1995). Therefore, the Nama Group

section spans at least 10 Myr and extends to within 1 Myr of the Proterozoic-Cambrian transition

(Saylor et al., 1998; Ries et al., 2009).

The Nama Group contains of a series of shallowing upwards cycles, influenced by oscillations in

sea levels superimposed on local basement deepening. Cycles contain facies changes from distal,

medial and inner ramp conditions, occasionally reaching peritidal (Saylor et al., 1998). Distal

ramp facies are characterised by interbedded shales, marls, fine sandstones, limestone laminites

and rare thin beds of calcarenites, often associated with rythmites, suggesting deposition in an

offshore, low energy environment. The transition to slope environments is indicated by thin-

bedded limestones, with occasional breccia flows and turbidites. Medial ramp facies contain

calcisiltite, heterolithic interbeds and thin-bedded limestones with thrombolite or stromatolite

columns. Hummocky cross-stratification, intraclast conglomerates and coarse-grained ripples

are common. The tops of the cycles are dominated by cross-stratified grainstones and irregularly

laminated fine dolostone, deposited in shallow shelf environments. Isolated bioherms or laterally

extensive biostromes are common with skeletal and micrite debris fill. Several shoaling cycles
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Figure 1.15: Stratigraphy, sequence boundaries, and dated ash beds of the Zaris and Witputs
sub-Basins Nama Group, Namibia. Labels K1, K2, S1, S2, S3, S4 and S5 represent sequence
boundaries that can be traced across both sub-basins. (from Wood et al. 2015, modified after
Grotzinger and Miller 2008; Hall et al. 2013; Saylor et al. 1995, 1998).

contain evidence for deposition in supra- to intra- tidal conditions, subjected to exposure and

evaporation. These are characterised by breccia beds, microbially laminated structures, planar

and ripple lamination, desiccation cracks and intraclasts.

1.5.2 Ecological setting

The terminal ten million years of the Ediacaran Period witnessed a remarkable pulse in animal

evolution, with the beginnings of predation and biomineralisation (Bengtson and Morris, 1992;

Hua et al., 2003; Germs, 1972). The Nama Group hosts skeletal biota, Ediacaran biota and

towards the upper Nama, evidence for bioturbation. Well developed thrombolite-stromatolite

reefs also occur throughout the lower Nama group. The assessment of ecological changes

throughout the Nama Basin is necessary to test the hypothesis that redox controlled later

Ediacaran ecosystems. The distribution of biological evidence within the sampled sections has

64



CHAPTER 1. INTRODUCTION: LIFE AND OXYGEN

been recorded to accompany geochemical data.

Microbialites

Microbes are the workhorses in most biogeochemical cycles. Microbial mats are efficient at

element cycling and once developed only require light to function. As a result, they may form

in a diverse range of settings throughout the water column and sediment pile, including anoxic

environments. Although microbial mats are rare on the seafloor today, they were widespread in

the Precambrian. Microbial communities are often composed of many species that recycle each

others waste chemicals, including six key functional groups of microbes:

1. Oxygenic phototrophs (cyanobacteria) couple light energy to CO2 fixation

2. Anoxygenic phototrophs (purple and green bacteria) use HS− as an electron donor for
photosynthesis

3. Aerobic heterotrophs gain energy from respiration of O2 and organic carbon

4. Fermenters use organic carbon or sulphur as the electron donor and acceptor.

5. Anaerobic heterotrophs (sulfate reducers) respire organic carbon with SO2−
4 , producing

HS− .

6. Chemolithoautotrophs (sulfide oxidising bacteria and methanotrophic bacteria) that
oxidise reduced sulphur with O2 while fixing CO2 .

Algal and bacterial processes can promote the precipitation of CaCO3 minerals and trap

sedimentary particles, resulting in microbial carbonates that are common in the rock record

(Dupraz and Visscher, 2005). Some microbialites incorporate sediment with sticky mucus,

others form by altering the alkalinity of their microenvironment and inducing the direct

precipitation of calcium carbonate (usually aragonite). Sulfate reducing bacteria could play

a critical role in the formation of CaCO3 in lithifying microbial mats through numerous

mechanisms: altering the local pH, increasing the availability of free calcium ions through the

removal of carboxylic acids that bind calcium, removing sulfate (an important kinetic inhibitor

for dolomite formation) and providing heterogeneous nucleation sites due to their large cell size

(Braissant et al., 2007). Sulfate reducing bacteria also produce EPS, the sticky substance that

binds together calcium carbonate, and that may account for the incorporation of metals into

carbonate minerals (Braissant et al., 2007). Microbialites may preserve a distinct, and in some
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cases more pristine, geochemistry compared with coeval abiotic carbonates (Ries et al., 2008;

Webb and Kamber, 2000).

In the Precambrian, before the advent of Metazoan biomineralisation, microbialites formed a

significant proportion of global carbonate precipitation. The abundance of microbialites has

declined since a peak 500Myr ago, but they are still present throughout the Phanerozoic and

in some modern environments (e.g. Lake Wallyungup) (Burns et al., 2004; Mcnamara, 1992).

Microbial mats may have provided a food resource for the Ediacaran biota, and the decline of

microbialites, and as a consequence the Ediacaran biota, may be linked to the rise of benthic

filter feeders in the later Cambrian.

Thrombolite and stromatolite reefs occur at several levels within the terminal Proterozoic Nama

group, on scales from 1m-1km, and as an integral facies within the transgressive systems tracts

(TST). Reefs nucleate during times of increased accommodation space, forming isolated patch

and pinnacle bioherms, transitioning to more sheet-like biostromes as accommodation space

decreases. Microbial reefs form over a wide range of length scales. Single reef build ups, such

as ‘Driedoornvlagte’, can reach 7Km long and 200m high within transgressive systems tracts.

Driedoornvlagte reef grew vertically upwards, perhaps nucleating off a topographic high on the

seafloor, and kept pace with rising relative sea level. Reef growth was eventually terminated

through drowning. Reefs at other localities, such as Zebra River, formed in more restricted

accommodation space. Bioherm reefs nucleate in the transgressive systems tract, often showing

mushroom growth morphology from a nucleation point at the base. Reef growth is terminated

by grainstone layers as accommodation space decreased. In places, the subsequent reef horizon

nucleates onto palaeo-highs left by the horizon below. Higher up within Zebra River section,

where accommodation space is more limited, reefs form sheet like biostromes with thinner,

more stromatolitic columns.

Thrombolites have a distinct clotted fabric, and are often considered to represent a complex,

mixed microbial-Metazoan ecosystem (Kennard and James, 1986). In the Nama Group,

thrombolites form closely spaced stacked columns separated by inter-column fills that contain

dolomitized mudstones and cross-bedded Cloudina - Namacalathus grainstones (figure 1.16).

Stromatolites comprise layers of detrital particles that were trapped and bound by microbial

communities, forming simple crenulated structures. Compared with thrombolites, stromatolites

are better developed in conditions of relatively low accommodation under higher current

velocity and sediment influx. In the Nama Group, thrombolite heads are often surrounded
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Figure 1.16: Photos of typical microbialite textures at Zebra River. Coin for scale.
a - Planar cross-sectional view of a thrombolite column with stromatolitic rim from OS2
b - Small individual stromatolite build-ups within the upper Hoogland member
c - Narrow stromatolite columns with fine-grained inter-column fill, from the base of the
Hoogland member
d - Wide thrombolite heads with coarse-grained cross-bedded inter-column fill, from OS2

by a stromatolitic rim (figure 1.16 a). Microbialite column width, spacing and height vary

systematically with the type of sediment being deposited; columns are generally wider and

more closely spaced during carbonate deposition and narrow and widely spaced during shale

deposition (Figure 1.16 c and d) (Johnson and Grotzinger, 2006). Both types of microbialites

are intimately associated with the first calcifying Metazoan organisms, which may have attached

themselves to the sediment surface or lived in sheltered depressions within the rough topography

created by ecologically complex mats (figure 1.18).
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Skeletal biota

Skeletal Metazoa appear globally and with apparent synchronicity in the rock record ~550

Ma. Metazoan hard-parts from late Ediacaran strata are represented by mineralized and non-

mineralized tubes (Grant, 1990), possible siliceous microfossils (Gehling and Rigby, 1996;

Kontorovich et al., 2008), and supportive calcareous skeletons (Grant, 1992; Grotzinger et al.,

2000a; Wood et al., 2002). Calcified taxa include Cloudina (Germs, 1972), Namacalathus

(Grotzinger et al., 2000b), Namapoikia (Wood et al., 2002) and some minor taxa (Zhuravlev

et al., 2012). These calcified taxa are of uncertain affinity, but were probably stem group

Eumetazoa, Cnidaria and Bilateria, or Cnidaria (Kruse et al., 1995; Bengtson and Morris, 1992).

All were sessile benthos and grew in equatorial, shallow marine carbonate settings. The shells

are weakly and some were possibly only passively mineralised. The forms exhibit remarkable

evolutionary stasis throughout their ten million year history before undergoing extinction at the

Precambrian/Cambrian boundary (Amthor et al., 2003).

All calcified Metazoans occur in carbonate facies, either along bedding planes of mudstones or

dolostones, in thin to thickly-bedded packstones and grainstones, or associated with thrombolite

reefs. These taxa have been described globally, from localities in Siberia, China, Oman, Brazil,

Spain, Paraguay and Namibia (Grant, 1990; Grotzinger et al., 2000a; Hua et al., 2005; Morris

et al., 1990; Wood et al., 2002; Warren et al., 2011; Zhuravlev et al., 2012). The Nama

Group hosts some of the best preserved specimens of early biomineralising Metazoa, including

Cloudina, Namacalathus and Namapoikia (Grotzinger et al., 2000a; Wood et al., 2002). Their

size and distribution varies systematically across the basin (see Penny et al. in review).

With the exception of Namapoikia, which is found within fissures in microbialite reefs (Wood

et al., 2002), Ediacaran skeletal forms have only generally constrained ecological preferences

(Grant, 1990; Grotzinger et al., 2000a; Kruse et al., 1995; Germs, 1972). Cloudina was

aggregating and gregarious. An aggregating habit in solitary organisms assists the acquisition

of favorable substrate for growth to maturity; affords protection from currents or high-

energy events; and reduces susceptibility to overgrowth from competitors, larval invasion and

infestation, and attack by predators (Jackson, 1983). The aggregating habit has also been noted

in the Ediacaran skeletal Namacalathus (Wood, 2011). Ecological preferences across the Nama

group vary between sites, with some sections hosting larger, thicker shells in high-density beds,

and others thin shells in flaggy beds.

68



CHAPTER 1. INTRODUCTION: LIFE AND OXYGEN

a b 

d c 

Thromboli)c+core+

e 

Figure 1.17: Biomineralising metazoa of the Nama Group.
A - Morphological reconstruction of Namacalathus, from Grotzinger et al. (2000b)
B - Namacalathus photographed in situ at Zebra River, Nama Group.
C - Large Cloudina photographed in situ at Driedoornvlagte reef complex
D - Reconstruction of Cloudina morphology, from Hua et al. (2003)
E - Namapoikia, photographed at Driedoornvlagte reef complex, from Wood et al. (2002).

Namacalathus, interpreted as a stem-group Eumetazoan, has a goblet-like shape, consisting of

a hollow stem that flares to form a ‘cup’. The cup has 6 or 7 openings in the side walls, and a

larger opening in the top whose edges curl inwards towards a central space (Grotzinger et al.,

2000b). Examples from the Nama Group range from 2 mm to 35 mm (Grotzinger et al., 2000b;

Wood, 2011). Individuals with the smallest cup diameters are found in high energy inner ramp

settings, with intermediate cup diameters in lagoonal settings (Penny et al., in review). The

largest individuals are found in mid-depth reef localities, with the largest forms (>35 mm)

attached to thrombolite heads (Wood, 2011). Stalks are up to ten times as long in lagoonal

than inner ramp settings (30 mm compared with 3 mm). Namacalathus growth is isometric

(Penny et al., in review), where growth size is proportional to either individual longevity or rate
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of growth and growth was restricted by the longevity of favourable conditions. The largest,

and so possibly most long-lived Namacalathus individuals occur in mid-ramp settings, and these

settings also show the greatest diversity of growth habits. The small sizes and small aggregations

of clonal forms found in high energy inner-ramp settings may indicate these communities were

short lived and opportunistic.

Cloudina, a genus characterized by stacked funnel-shaped elements which form a distinctive

cone-in-cone exoskeleton, was first described from the Nama Group (Grant, 1990; Cortijo

et al., 2010), and has subsequently been reported globally from late Ediacaran carbonates

(Grant, 1990). The oldest reported Cloudina is from the carbonate-dominated Mara Member

in the Witputs Basin (Germs, 1983), and occurs throughout the Kuibis and Schwarzrand

Subgroups. Cloudina may belong to a group of polychaete worm tubes, serpulid polychaetes

or cribricyathids, or it may not even be a Metazoa (Germs, 1995). Differential preservation

(dolomitic in Oman and Namibia, calcitic in Brazil, phosphatic in Spain and China) supports

claims that the original mineralogy was metastable, most likely aragonitic. This is consistent

with Porter (2007)’s suggestion that biomineralising Metazoa adopt a mineralogy to match the

coeval seawater stable state. Late Ediacaran seawater is poorly constrained from geochemical

evidence, such as ooids, but is projected to be aragonitic (Hardie, 2003).

Evidence of reef-building activity by Cloudina, described for the first time in Penny et al.

(2014) (see appendix A), is illustrated in figure 1.18. We observed multiple examples

of reef-building Cloudina in the mid-ramp Driedoornvlage reef complex. These Cloudina

reefs formed open frameworks without a microbial component but with mutual attachment

and cementation between individuals. Reef-building in Metazoans represents an important

ecological innovation whereby individuals collectively enhance feeding efficiency and gain

protection from competitors and predation, suggesting that biomineralisation in Cloudina may

have been a response to rising predation pressures. These observations push the advent

of Metazoan reef building back by twenty million years (Kruse et al., 1995), and indicate

that complex ecological pressures were in force before the Cambrian explosion. Ediacaran

reefs had been thought to be ecologically simple and of low biodiversity (Grotzinger et al.,

2000a; Wood and Woodward, 1999) but the presence of reef-building Cloudina, as well as

thrombolite-associated Cloudina and Namacalathus and fissure-dwelling Namapoikia, suggests

a differentiation of Metazoans into the distinct open surface and cryptic biotas that characterize

Phanerozoic and modern reefs.
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Figure 1.18: Reconstruction of a late Ediacaran reef system. 1. Thrombolite, 2. Neptunian
dyke, 3. Stromatolite, 4. Cloudina, 5. Namapoikia, 6. Namacalathus, 7. Cement botryoids, 8.
trapped Namacalathus, 9. Sediment. Copyright: J. Sibbick, produced for Penny et al. (2014).

Ediacaran biota

The Ediacaran biota are first recorded following the Gaskiers glaciation. Typical late Ediacaran

fossils, such as Ernietta, Pteridinium, Swartpuntia, Rangea (e.g. Narbonne et al. 1997), and

vendotaenids (Germs et al., 1986) have been described from both the Zaris and Witputs basins.

The oldest Ediacara-type fossils occur in the Mara Member of the Kuibis Subgroup in the

Witputs basin (Saylor et al., 1995), and the youngest, including Swartpuntia, are found 60m

below the Ediacaran – Cambrian unconformity in the more southerly portion of the Witputs

basin (Narbonne et al., 1997).

The Ediacaran trace fossil record is sparse, consisting mostly of small, bed-parallel burrows

(Jensen et al., 2006). Small, individual burrows are described from the base of the Schwarzrand

Subgroup, with more complex trace fossils appearing closer to the Cambrian boundary (figure

1.25). Trace fossils reported recently in Macdonald et al. (2014) from the Nama Group

(sandstone lenses within the upper Omkyk Member, close to Zebra River) show evidence for

sediment displacement in the form of U-shaped spreiten, from which Macdonald et al. (2014)

infer that a bilaterian responsible for the trace exhibited a specialized and complex behavior
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normally not seen until the Cambrian Period. Along with other recently reported forms (Chen

et al., 2013; Liu et al., 2010; Rogov et al., 2012), these trace fossils indicate that complex

behaviour, including motility and predation, may have been more widespread in the Ediacaran.

Figure 1.19: Example of a spreite trace fossil from the Omkyk member, from Macdonald et al.
(2014). Image of specimen is overlain by a schematic representation of the creation of a single
trace fossil. Small arrows show the direction of movement of the trace-maker to form one spreite.
Large arrow shows the serial progression of the trace-maker.

The Ediacaran biota disappeared at the Cambrian boundary, along with Ediacaran skeletal

forms, and their extinction was complete although not abrupt. More advanced early Cambrian

fauna replaced the Ediacaran biota due to increasing predator pressure as well as environmental

pressure, because vendobionts depended on declining microbial films.
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1.6 Sample Sites

A total of nine localities within both the Zaris and Witputs sub-basins have been sampled for

carbonates and shales (figure 1.20), along with detailed logs that note the presence of microbial

fabrics and bioclasts. These sites cover inner, mid and outer ramp sections from the Kuibis

Subgroup, as well as two sites from the Schwarzrand Subgroup (figure 1.21). This high

resolution sampling has enabled us to explore the relationship between redox conditions and

local ecology.

In the Zaris Basin, Zwartmodder (Omkyk to lower Hoogland Members) and Omkyk (Omkyk

Member) represent dominantly inner ramp settings; Zebra River (Omkyk and Hoogland

members) and Driedornvlagte (Upper Omkyk) are mid-ramp, and Brak (Kanies to Lower Omkyk

Members) is outer ramp. In the Witputs Basin, Arasab (Kanies to Mooifontein Members) and

Grens (Kanies to Aar Member) represent inner ramp, restricted settings. The Pinnacle Reefs are

mid-ramp (Feldshuhhorn to lower Spitzkopf Member), and Swartpunt is inner ramp (Spitzkopf

Member).

Table 1.1 gives the latitude and longitude of all sample sites. Mixed carbonate and shale samples

were taken over three field seasons (detailed below). Sampling was a collaborative effort

between geochemists, field geologists and palaeontologists, and some of the site descriptions

below are from the supplementary information of Wood et al. (2015). Fine grained, pristine

looking samples from a range of carbonate lithologies were collected at 1-10m intervals, noting

lithology and cyclic stratigraphy. Samples were trimmed of weathered edges and powdered to

flour grade using a Tema or micromill for geochemical analysis. Samples from Zebra River were

also drilled from thin section counterparts.

• Field trip 1 (June, 2010) Rachel Wood, Charlie Hoffman and Tony Prave collected

carbonates from Brak, Omkyk, Zwartmodder, Grens, Arasab and Swartpunt.

• Field trip 2 (December 2011) Rachel Wood and Andrew Curtis collected siliciclastics

from Brak, Omkyk and Zwartmodder.

• Field trip 3 (June 2012) Rosalie Tostevin spent 2 weeks in Zebra River canyon and

Driedoornvlagte sampling and describing reef morphology. Field assistance from Gerd

Winterleitner (Royal Holloway)

• Field trip 4 (December 2013) Rachel Wood, Rosalie Tostevin, Fred Bowyer, Amelia
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Penny and Andrew Curtis spent two weeks in Zaris and Witputs sub-basins. Collected

carbonates from Driedoornvlagte and pinnacle reefs, ecological samples, as well as

siliciclastic samples from Zebra River, Arasab and Swartpunt.

Table 1.1: Latitude and longitude of sample sites in the Nama Basin

Section Latitude Longitude location

Zaris sub-basin

Brak 23◦58’17.00”S 16◦8’6.50”E outer ramp
Driedoornvlagte 23◦52’43.58”S 16◦36’35.87”E mid ramp pinnacle reef

Zebra River 24◦31’9.54”S 16◦15’8.08”E mid ramp
Omkyk 24◦48’19.00”S 16◦13’45.00”E mid to inner ramp

Zwartmodder 24◦53’38.13”S 16◦19’30.97”E inner ramp

Witputs sub-basin

Grens 27◦10’34.48”S 16◦21’58.51”E inner ramp
Arasab 26◦53’16.93”S 16◦24’47.36”E inner ramp

Pinnacle Reefs 27◦27’35.46”S 16◦34’16.96”E mid ramp pinnacle reef
Swartpunt 27◦ 28’29.00”S 16◦41’33.00”E inner ramp
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Figure 1.20: Location of sample sites in Nama Basin, against a geological sketch map adapted
from Blanco et al. (2011) (left-hand side). Right-hand picture shows the same sample locations
against an aerial photograph, taken from Google Earth. The major geological units dominate the
landscape over large scales, bounded by the Kalahari desert to the east and the Namib desert to
the west. Black outline is political border of Namibia.
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Figure 1.21: Relative position on shelf to basin transect of different sampling sites, from Wood
et al. (2015). MSL = mean sea level, FWWB = fair weather wave base, SWB = storm wave base
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1.6.1 The Zaris sub-basin

The Kuibis Subgroup, at the base of the Nama Group, was deposited between 550-546.9 Ma

(Ries et al., 2009). Carbonate units in the Kuibis Subgroup are mostly contained within the

lower and upper Omkyk member (OS1 and OS2, respectively) and the Hoogland member and

are recognised across the northern Zaris sub-basin (Saylor et al., 1995, 1998; Germs, 1995).

The Omkyk Member consist of 10-20 meter-scale upward-coarsening, mid-inner ramp to

shoreface cycles. The upper Omkyk member, OS2, contains a series of microbial reef systems

terminating in grainstone dominated highstand sequence boundaries, representing sequential

shallowing up cycles (Adams et al., 2005; Grotzinger et al., 2005).

The Hoogland member consists primarily of heterolithic interbeds that record transgressive-

regressive depositional successions in mostly mid-inner ramp to middle shoreface settings,

on a storm dominated carbonate ramp. The ramp displays facies gradients involving up-

dip grainstones that pass down depositional dip into broad tracts of microbial laminites and

finely laminated mudstones from both above and below the storm wave base (Dibenedetto and

Grotzinger, 2005). The Hoogland member marks the final episode of significant carbonate

deposition within the northern Nama Basin as growth was terminated due to a high influx of

orogeny-derived clastics.

The Kuibis Subgroup was sampled at five localities from inner ramp to outer shelf in the Zaris

sub-basin, detailed below. The Schwarzrand Subgroup in the Zaris sub-basin contains coarse-

grained siliciclastics, and has not been sampled here.

1: Zwartmodder

Zwartmodder was deposited predominantly in shallow, proximal ramp settings. The section is

dominated by dolomites at the base, shallowing to mainly limestone laminates, packstones and

grainstones towards the top of the section. There are horizons of abundant calcified Metazoans,

including small representatives of Cloudina riemkeae and Namacalathus, in the Upper Omkyk

Member highstand systems tracts (HST) and lower Hoogland Member transgressive systems

tracts (TST), and minor thrombolites in the Upper Omkyk Member HST.
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2: Omkyk

Omkyk records a shallowing-up succession from outer-, to mid- to inner-ramp. At Omkyk,

the lower part of the succession is dominated by slope turbidites, slumps and storm-beds

and then shallows in the upper part to limestone grainstones showing tidal influence, together

with limited thrombolites and abundant calcified Metazoans, including small representatives of

Cloudina riemkeae and Namacalathus. Of note also is that large (up to 30 cm) horizontal burrow

systems with spreite have been found in clastic TST in the Omkyk Member (Macdonald et al.,

2014), suggesting formation by bilaterian organisms. Some shoaling cycles contain evidence for

deposition in supra- to inter- tidal conditions, which may have been subjected to exposure and

evaporitic conditions. There are horizons of abundant calcified Metazoans in the Upper Omkyk

Member late TST only.

3: Zebra River

Zebra River was deposited in a mid-ramp setting. At Zebra River the Kanies member is

a meter-scale package of coarse grained, cross-bedded sandstones and quartzites. OS1 is

dominated by grainstones. In the TST of the upper Omkyk member thrombolite-stromatolite

reefs nucleate, forming well defined and laterally continuous biostrome layers that can be traced

for kilometers (figure 1.22). Cloudina and Namacalathus up to a centimeter in diameter can

be found within thrombolite heads and lag beds within inter-reef shales. Localised clusters

of larger Namacalathus, <35 mm, are found associated with thrombolites in the top half of the

upper Omkyk member. Towards the top of the upper Omkyk the section shallows into grainstone

dominated facies with subordinate shale horizons, containing thinner, discontinuous biostrome

microbial reef systems. Shales flank individual bioherm reefs, forming inter-reef deposits, as

well as lateral subordinate shales between grainstone horizons in highstand systems tracts. The

Hoogland member contains storm dominated laminites and heterolithics, shallowing towards

grainstone-dominated facies. Carbonate filled neptunian dykes indicate early cementation. Rip-

up clasts, trough and hummocky cross-stratification, and association with inner shoreface facies

(grainstones) suggest high-energy, storm dominated conditions.
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1
2

3
4

Figure 1.22: Photo of typical section of OS1 and OS2 at Zebra River. Vertical scale is 160 m
1 - Laterally extensive orangy-brown microbial biostrome containing individual reef mounds,
separated by inter-reef shales and marls.
2 - Termination of reef growth and a sequence of grainstones and subordinate shales
3 - Grainstone horizons become more closely spaced towards top of OS2
4 - A dolomitised Metazoan-packstone marking the Omkyk to Hoogland member transition

4: Driedoornvlagte

Driedornvlagte pinnacle reef build-up accumulated in a mid-ramp setting, during the TST of

OS2. As the basement deepened the reef aggraded upwards to keep pace with relative sea level

rise, and eventually drowneded and was enveloped by shales. The reef is underlain by shelf

facies of Omkyk Sequence 1 (OS1), and consists of a lower unit dominated by stromatolitic

reefs, overlain by a capping unit of mostly thrombolitic reef. Stratigraphically younger shales

of the Urikos Member (Kuibis Subgroup) form the poorly-exposed plain south of the reef

(figure 1.23 A). The buildup is 7km wide and 200m high. This thickness reflects the incised

accommodation space associated with the deeper water setting compared to Zebra River reefs.

The buildup is composed predominantly of thrombolitic limestones and grainstones, with minor

dolomitisation. Calcified Metazoan fossils are abundant, particularly towards the top of the

section where Cloudina and Namapoikia are found associated with thrombolites (figure 1.23

C). Large Namacalathus (up to 3cm in diameter) are also abundant lower in the section (figure

1.23 B). Fissure-inhabiting Namapoikia, first described from this section in Wood et al. (2002),

are found towards the top of the section. Reef-building Cloudina (up to 8 mm diameter) are

described for the first time in Penny et al. (2014) (appendix A).

5: Brak

Brak represents a distal, deep ramp setting that shallowed-up through time. The Brak section is

dominated by fine-grained dolostones inter-bedded with thin sandstones, shales and quartzites

indicative of deeper, outer ramp conditions, with shallow subtidal grainstones present only
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Figure 1.23: Morphology and ecology of Driedoornvlagte pinnacle reef
A - Landsat image showing outcrop expression of Driedoornvlagte reef complex. Outcrop dips
40 degrees to the south. Reef is underlain by shelf facies of Omkyk Sequence 1 (OS1), and
consists of a lower unit dominated by stromatolitic reefs (SR), overlain by a capping unit of
mostly thrombolitic reef (TR). Stratigraphically younger shales of the Urikos Member (Kuibis
Subgroup) form the poorly-exposed plain south of the reef. The Namapoikia locality from Wood
et al. (2002) is marked. Figure from Penny et al. (2014)
B - Large Namacalathus in lenses on S face of reef
C - Cloudina forming coalescing thickets enclosing a primary reef cavity, from Penny et al.
(2014).

towards the very top of the section. There are no Metazoans or thrombolites present, but some

stromatolites in the Kanies Member.

1.6.2 The Witputs sub-basin

In the Witputs sub-basin, the Kanies Member is overlain by the carbonate-dominated Mara

Member. The upper Kuibis Subgroup is represented by siliciclastics of the Kliphoek Member

and the overlying carbonate Mooifontein Member of the Zaris Formation. The sandstones were

interpreted by Saylor et al. (1995) as upper-shoreface, delta- or tide-influenced deposits that

prograded across the underlying carbonate platform during sealevel lowstand and were trapped

during regional transgression of the craton. The upper part of the Kuibis Subgroup forms an

extensive carbonate platform that maintains a relatively constant thickness (30–40 m) over the

Witputs sub-basin, pinching out near the Osis Ridge. Saylor et al. (1998) commented that
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little change in the thickness of these facies suggests deposition across a broad region of low

relief during flooding of the craton. The Mooifontein Member is a a thin-bedded limestone

interpreted as storm reworking. South of the Osis Ridge, the Kuibis Subgroup is truncated

by an unconformity with deep canyon cutting into the Mooifontein Member and filled with

conglomerate.

The overlying Schwarzrand Subgroup of the Witputs sub-basin reaches a maximum thickness

of 1000m, and consists of clastic and carbonate in the lower part (Nudaus and overlying Nasep

Member of the Urusis Formation), a carbonate-dominated middle-part (comprising the Huns,

Feldschuhhorn and Spitzkopf Members) and an upper conglomeratic unit that infills incised

valleys (Nomtsas Formation). The top of the Huns member is a flooding surface, which may also

be coincident with a sequence boundary (Saylor et al., 1995), on which pinnacle reefs initiated

on distal parts of the platform. The reefs are enveloped within siltstones of the Feldschuhhorn

Member. Distal parts of the Spitzkopf Member are truncated and incised by valleys infilled with

the Nomtsas Formation.

The Kuibis Subgroup has been sampled at two localities in the Witputs sub-basin (Arasab and

Grens). The upper carbonate-dominated part of the Schwarzrand Subgroup has been sampled at

two further localities (Swartpunt and Pinnacle Reefs), detailed below.

6: Arasab

Arasab was deposited in shallow, proximal ramp settings. The base of the section is

predominantly composed of limestone units (often displaying evaporitic fabrics) punctuated

by thin shale interbeds, transitioning to thick quartzite beds of the lower Kliphoek Member,

followed by interbedded shale and limestone of the upper Kliphoek (/Aar) Member (figure 1.24

A). The section is capped by a thick limestone unit of the Mooifontein Member containing

distinct oolite bands in the lower reaches. Though the lower Kliphoek quartzite and Aar Member

units are known to contain abundant soft-bodied Metazoan fossils in other localities, none have

been noted in the Arasab section.

7: Grens

Grens includes all members of the Dabies Formation of the Kuibis Subgroup. Conglomerates,

sandstones and shales dominate the lowermost 20m, defining the Kanies Member at Grens, with
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overlying facies of the Mara Member predominantly composed of limestone with shale interbeds

clearly defining patterns of shoaling cyclicity (further evidence from evaporitic fabrics). The

Mara Member is markedly thicker at Grens than Arasab, indicative of increasing accommodation

space with distance south. Finally the Kliphoek Member is composed of limestone with small

layers of quartzite, and the capping Aar Member consists of shale, limestone, and dolo-cemented

quartzite. In-situ assemblages of the Ediacaran fossil Nemiana are abundant.

8: Pinnacle Reefs

The Pinnacle Reefs at Swartkloofberg Farm, southern Namibia, were deposited in a mid-ramp

setting. They initiated on the flooded surface of the Huns Platform. At the base the reef

carbonate interfingers with siltstones and shales, but the reefs then grew up to 40 m topographic

relief above the sea floor (figure 1.24 C). Thrombolites are associated with abundant in-situ

Namacalathus. After termination of reef growth, they were enveloped by the shales of the

Feldschuhorn Member, of which they now form a part.

9: Swartpunt

Swartpunt was deposited in an inner ramp setting within the Schwarzrand Subgroup, and

shallows up section (figure 1.24 B). The base of the section is dominated by laminated limestone

containing Namacalathus and other bioclastic material, as well as microbialites, some of which

have a ‘leopardskin’ texture. Distal turbidites contain intermittent and small burrows. Broken

fossil lags and rip-up clasts suggest an outer ramp setting above storm wave base. Two ash

beds also lie at this level within the succession. Overlying the limestones are beds of shale and

quartzite, containing burrows and soft-bodied fossils (Figure 1.25). These in turn give way to

more laminated limestones containing small (<5 mm) Cloudina and Namacalathus.
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A"

B"

C"

Figure 1.24: Outcrops from the Witputs sub-basin.
A Arasab section, part of the Kuibis sub-group.
B Swartpunt, part of the Schwartzrand Subgroup, taken from half way up outcrop looking NE.
Amelia for scale.
C Pinnacle Reefs of the Schwartzrand Subgroup. Taken from Swartpunt looking northwest.

Figure 1.25: Evidence for bioturbation at Swartpunt. Right hand photo shows complex trace
fossils from Treptichnus family
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1.7 Contributions

The sample collection described in section 1.6 and the Fe-speciation, TOC, carbon isotope data

presented within chapter 2 were collected as part of a wide collaborative effort led by Rachel

Wood. Data presented in chapter 2 focuses on Zebra River, as the sample collection and analyses

were all undertaken as part of this thesis. However, Zebra River can only be fully interpreted in

the context of the field observations and data from across the Nama Basin, and this was collected

partly for this study, but contains many contributions from others, listed below in table 1.2.

The method development work in chapter 3 was undertaken as part of this thesis. Samples used

for leaching experiments came partly from the Nama Basin, collected by those listed in 1.2, with

additional modern samples from Matthew Clarkson (see Clarkson et al. 2014 for details), and

from Dalian in North China, collected by Steven Robinson and Graham Shields.

The rare earth element data presented in chapter 4 was collected as part of this thesis, but using

samples from across the Nama Basin, collected by those listed in table 1.2, and the interpretation

relies on the accompanying Fe-speciation data that was also collected as part of a collaboration

with others.

The model and discussion in chapter 5 was developed as part of this thesis. However, the model

relies in part on previously unpublished multiple sulfur isotope data from modern marine sulfate.

The seawater samples were donated by Karen Casciotti and Jim K Bishop, and the analyses

were made, but not interpreted, during a 2010 Master’s thesis by R Tostevin at the University of

Cambridge.

The data in 6 was collected as part of this thesis. Samples used are from Zebra River and were

also collected as part of this thesis. The method used was developed by Tianchen He.

Relevant support, supervision and helpful conversations, as well as the above information, are

noted at the start of each chapter to clarify contributions. Images or text taken from the work of

others are acknowledged where appropriate.
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1.8 Thesis Aims

The aim of this thesis is to enhance our understanding of geochemical proxies through

method improvements, constraining major fluxes in modern geochemical cycles and inter-proxy

calibrations, and then to combine these proxies to reconstruct redox conditions in the terminal

Ediacaran during the emergence of complex animal life.

• Constrain the gross burial flux of pyrite in modern marine sediments worldwide.

• Improve the leaching method for extracting rare earth elements preserved in carbonates,

a proxy that has the potential to preserve high-resolution redox information in shallow

marine carbonate settings.

• Revisit reports of ‘superheavy pyrite’ in the Nama Group

• Compare and calibrate two distinct redox proxies, Fe-speciation and Ce anomalies, in

carbonate settings.

• Reconstruct redox conditions across nine sites of different water depths in the terminal

Ediacaran Nama Group using a multi-proxy high resolution approach, alongside

biological logs, to evaluate the hypothesis that redox exerted a control on late Precambrian

ecosystems.
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1.9 Thesis outline

The results within this thesis are presented as a series of chapters, some of which have been

submitted, or are due to be submitted, as publications.

Chapter 2 presents carbon isotope, total organic carbon and Fe-speciation data for carbonate

and shale samples from Zebra River, the Nama Group. The data from Zebra River is interpreted

in wider context alongside similar data from 8 other sections across the Nama Group, to present

a detailed temporal and spatial reconstruction of redox for the Nama Basin. Through the use of

traditional redox proxies we lay the ground work for understanding redox in this critical time

period of Earth history.

Forms part of an article published in Precambrian research: Wood, R. A., Poulton, S.W., Prave,

A.R., Hoffmann, K-H., Clarkson, M.O., Guilbaud, R., Lyne, J.W., Tostevin, R., Bowyer, F.,

Penny, A.M., Curtis, A., and Kasemann, S.A., Dynamic redox conditions control late Ediacaran

ecosystems in the Nama Group, Namibia

Chapter 3 tests the utility of cerium anomalies as a redox proxy in carbonates, through

the refinement of leaching procedures and calibration in modern samples. This investigation

recommends an optimal leaching procedure to be used for obtaining a pure seawater signal in

carbonates, and as such acts as the groundwork for chapter 4.

To submit as: Tostevin, R., Shields-Zhou, G. A., Tarbuck, G. M., He, T., and Clarkson, M.O

Effective use of Ce anomalies as a redox proxy in carbonate settings

Chapter 4 applies the method developed in chapter 3 to the Nama Group, to assess redox across

nine sites in the Nama Basin. We combine Ce anomaly and Fe-speciation data in carbonates for

the first time, and identify a progressive spectrum of redox environments across two sub-basins.

To submit as: Tostevin, R., Wood R. A., Shields-Zhou G. A., Poulton, S.W., Guilbaud, R.,

Bowyer, F., Penny, A.M., He, T., Curtis, A., Prave. A. R., Hoffmann, K-H., and Clarkson, M.O.

Manganous oceanic conditions limited the distribution of early animal life.

Chapter 5 uses sulfur isotope data from modern marine sulfate to explore the fraction of pyrite
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burial in modern sediments with a box-model.

Published in Earth and Planetary Science Letters as: Tostevin, R., Turchyn, A. V., Farquhar, J.,

Johnston D. T., Eldridge, D. L., Bishop, J. K. B., McIlvin, M., Multiple sulfur isotope constraints

on the modern sulfur cycle

Chapter 6 uses sulfur isotope data from paired sulfate-pyrite to explore the sulfate concentration

and sulfur cycling in the Nama Basin, and compare with redox information from chapters 2 and

4.

To submit to as: Tostevin, R., He, T., Shields-Zhou, G., Turchyn, A. V., Antler, G., The sulfur cycle

in the terminal Neoproterozoic - new insights from the Nama Group, Namibia

Chapter 7 is the synthesis of these individual investigations, and seeks to highlight the questions

raised in this thesis. Conclusions and concepts for further work are also included in this chapter.
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