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Abstract 

Organ-confined prostate cancer represents a commonly diagnosed cancer among men 

rendering an early diagnosis and screening a necessity. The prostate laparoscopic surgery 

using the da Vinci system is a minimally invasive, computer assisted and image-guided 

surgery application that provides surgeons with (i) navigational assistance by displaying 

targeting lesions of the intraoperative prostate anatomy onto aligned preoperative high-field 

magnetic resonance imaging (𝑀𝑅𝐼) scans of the pelvis; and (ii) an effective clinical 

management of intra-abdominal cancers in real time. Such an image guidance system can 

improve both functional and oncological outcomes as well as augment the learning curve of 

the process increasing simultaneously the eligibility of patients for surgical resection. 

By segmenting 𝑀𝑅𝐼 scans into 3𝐷 models of intraprostatic anatomy preoperatively, and 

overlaying them onto 3𝐷 stereoendoscopic images acquired intraoperatively using the da 

Vinci surgical system, a graphical representation of intraoperative anatomy can be provided 

for surgical navigation. The preoperative 𝑀𝑅𝐼 surfaces are full 3𝐷 models and the 

stereoendoscopic images represent partial 3𝐷 views of the prostate due to occlusion. Hence 

achieving an accurate non-rigid image registration of full prostate surfaces onto occluded 

ones in real time becomes of critical importance, especially for use intraoperatively with the 

stereoendoscopic and 𝑀𝑅𝐼 imaging modalities.    

This work exploits the registration accuracy that can be achieved from the application of 

selected state-of-the-art non-rigid registration algorithms and in doing so identifies the most 

accurate technique(s) for registration of full prostate surfaces onto occluded ones; a series of 

rigorous computational registration experiments is performed on synthetic target prostate 

data, which are aligned manually onto the 𝑀𝑅𝐼 prostate models before registration is 

initiated. This effort extends to using real target prostate data leading to visually acceptable 

non-rigid registration results. A great deal of emphasis is placed on examining the capacity of 

the selected non-rigid algorithms to recover the deformation of the intraoperative prostate 

surfaces; the deformation of prostate can become pronounced during the surgical intervention 

due to surgical-induced anatomical deformities and pathological or other factors.   

The warping accuracy of the non-rigid registration algorithms is measured within the space of 

common overlap (established between the full 𝑀𝑅𝐼 model and the target scene) and beyond. 
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From the results of the registrations to occluded and deformed prostate surfaces (in the space 

beyond common overlap) it is concluded that the modified versions of the Kernel 

Correlation/Thin-plane Spline (𝐾𝐶/𝑇𝑃𝑆) and Gaussian Mixture Model/Thin-plane Spline 

(𝐺𝑀𝑀/𝑇𝑃𝑆) methodologies can provide the clinical accuracy required for image-guided 

prostate surgery procedures (performed by the da Vinci system) as long as the size of the 

target scene is greater than ca. 30% of the full 𝑀𝑅𝐼 surface.  

For the modified 𝐾𝐶/𝑇𝑃𝑆 and G𝑀𝑀/𝑇𝑃𝑆 non-rigid registration techniques to be clinically 

acceptable when the measurement noise is also included in the simulations: (i) the size of the 

target model must be greater than ca. 38% of the full 𝑀𝑅𝐼 surface; (ii) the standard deviation 

𝜎 of the contributing Gaussian noise must be less than 0.345 for 𝜇 = 0; and (iii) the observed 

deformation must not be characterized by excessively increased complexity. Otherwise the 

contribution of Gaussian noise must be explicitly parameterized in the objective cost 

functions of these non-rigid algorithms. 

The Expectation Maximization/Thin-plane Spline (𝐸𝑀/𝑇𝑃𝑆) non-rigid registration 

algorithm cannot recover the prostate surface deformation accurately in full-model-to-

occluded-model registrations due to the way that the correspondences are estimated. 

However, 𝐸𝑀/𝑇𝑃𝑆 is more accurate than 𝐾𝐶 + 𝑇𝑃𝑆 and 𝐺𝑀𝑀 + 𝑇𝑃𝑆 in recovering the 

deformation of the prostate surface in full-model-to-full-model registrations.    
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Chapter 1 

Introduction 

    

1.1 Why is this work important from a clinical perspective?   

Prostate cancer has become one of the most common cancers among men in the UK and the 

United States [1, 2] with an increasing incidence due to an aging population [1]. Radical 

prostatectomy, an already established technique for cancer treatment, contributes the most in 

increasing the survival rates [3].  

Radical prostatectomy can be performed by open surgery (retropubic or perineal) and by 

minimally invasive approaches (laparoscopic and robot-assisted laparoscopic techniques) [4, 

5]. The former ones result in increased blood loss and longer hospital stay. The laparoscopic 

methods are constrained by a 2𝐷 visualization of the surgery scene, reduced instrument 

motion and lack of haptic feedback [6]. The robotic-assisted laparoscopic techniques, 

especially those performed with the aid of the da Vinci Surgical System (see Figure 1.1), 

which has superior stereo-vision capabilities and can provide high-resolution digital video 

endoscopy, exhibit competitive advantages, i.e., they provide: (i) motion-scaling and tremor 

loss, a wider range of motion for surgical instruments as well as advanced ergonomics; and 

(ii) 3𝐷 vision [6]. While all surgical modalities may cause nerve damage and other functional 

injuries [6], the potential of robotic-assisted technologies hasn’t yet been fully exploited [7]. 
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Figure 1.1: The Intuitive Surgical's da Vinci
®

 Surgical System (Intuitive Surgical, 

Sunnyvale, California). From left to right: main console where the surgeon 

operates from; four interactive robotic arms; a widescreen high-definition 

monitor view of the operating surgical field; a view of the main surgeon 

console from a different angle. Taken from Ref. 8. 

 

Reduced depth perception and limited field of view are typical operative drawbacks of 

minimally invasive surgery. They can be addressed by computer-assisted technologies such 

as Augmented Reality (𝐴𝑅) systems [9, 10]: (i) segmented 3𝐷 medical image models 

[ultrasound (𝑈𝑆), computed tomography (𝐶𝑇) or 𝑀𝑅𝐼] are first constructed to serve as 

virtual representations of anatomical structures and pathological features; and then (ii) they 

are projected onto corresponding 3𝐷 data views of patient structures with the aid of (manual 

or automatic) image registration. In doing so the hidden part of the anatomical structures 

below the exposed tissue surface (as displayed in the camera view, see Figure 1.2) is 

(virtually) revealed. Processes (i) and (ii) can effectively enhance the intraoperative 

navigation during surgery.    

This work focuses on non-rigid image registration of prostate surfaces and on providing a 

reliable 3𝐷 𝐴𝑅 environment for image guidance in robot-assisted (via the da Vinci System) 

minimally invasive prostate laparoscopic surgical interventions such as prostatectomy and 

prostate cancer management [11] (see Figure 1.2). The 3𝐷 𝑀𝑅𝐼 imaging has been chosen as 

the preoperative imaging modality. The mechanism of 3𝐷 measurement in the da Vinci 

System is based on 3𝐷 surface (stereo-vision) reconstruction of intraoperatively acquired 

(left and right) video images of prostate surface; this leads to a 3𝐷 intraoperative point-cloud 

representation of the prostate.   

Soft prostate tissue movement and deformation due to patient position, tumour growth or 

other physiological aspects, breathing, heartbeat as well as surgical instrument mobilization 
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of prostate make it a challenging task to achieve a clinically accurate real-time 𝐴𝑅 

registration in the operating theatre. One of the main objectives of this thesis is to exploit 

extensively the impact of the deformation of the prostate surface on the non-rigid registration 

accuracy by simulating all possible clinical case scenarios.    
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Figure 1.2: Preoperatively constructed 3𝐷 𝑀𝑅𝐼 models overlaid onto 3𝐷 

stereoendoscopic camera views in robot-assisted image-guided prostate 

surgical treatment procedures. Such 𝑀𝑅𝐼 superimpositions enhance 

considerably the visualization and identification of relevant subsurface 

structures as well as intraprostatic and periprostatic anatomies, improving the 

precision of surgical interventions: (a) Dorsal-vein ligation; (b) Dissection of 

the lymph node; (c) Dissection of the bladder neck; (d) Dissection of the 

seminal vesicle; (e) Posterior dissection of Denonvilliers' fascia; (f) Nerve-

sparing prostatectomy; and (g) Prostate mobilization. Taken from Ref. 11.    

 

Preoperative 𝑀𝑅𝐼 imaging is preferred over other imaging modalities for image-guided 

surgery. 𝑀𝑅 imaging of the prostate produces an optimal image representation and accurate 

definition of the gland, its margins, cancerous foci and adjacent structures as well as its 

substructure (central gland and peripheral zone) (see Refs. 1, 12-14 and Figure 1.3 for an 

example 𝑀𝑅𝐼 scan). It is routinely performed by an 𝑀𝑅𝐼 radiologist as part of surgical 

planning. 𝑀𝑅 imaging exceeds in quality 𝐶𝑇 imaging as the latter technique fails to provide 
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adequate accuracy in defining prostate substructure as well as the inferior and superior 

borders of the prostate [15, 16].  
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Figure 1.3: A conventional 3𝑇 𝐶𝑈𝐵𝐸 𝑀𝑅𝐼 scan. The anatomical boundaries of the 

prostate and adjacent anatomical structure can be identified. Taken from Ref. 

1.  

 

The principal objective of this work is to enhance the surgical accuracy and oncological cure 

of prostate cancer tumour performed by the da Vinci surgical system. As a robotic-assisted 

image guidance system, it can display the complicated environment of the pelvic anatomy in 

real time, and has the potential to perform an accurate macroscopic excision of the visible 

growth (reducing positive cancer margins). In doing so, injuries of the external sphincter and 

of the neurovascular bundle (see Figures 1.4 and 1.5) can be avoided, guidance for bladder 

neck dissection can be provided and a reduction of rectal injuries [1, 17] can be achieved. 
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                    Figure 1.4: The basic and postsurgical anatomies of prostate. 
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                        Figure 1.5: Intraprostatic and periprostatic anatomies. 
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1.2 Literature review on image registration 

Section 1.2.1 defines and provides some general information about image registration so that 

its uses in various medical contexts throughout the literature review can be comprehended. 

This section also gives an example of rigid-body registration, presents the four categories that 

the non-rigid image registration methods can be classified into, and highlights their 

applications in computer-aided surgery.      

As the available literature on the topic of non-rigid registration of prostate surfaces is sparse, 

the present review in Sections (1.2.2-1.2.5) has extended to include relevant work for other 

organs. While some of this material is not strictly linked to the stereo-vision endoscopic 

robotic surgery technique, which is the method of choice in the da Vinci System, it is still 

very useful as it provides further insight into the registration process itself, the clinical 

practices and the challenges encountered.  

Section 1.2.2 describes three representative 𝐴𝑅 image-guidance technologies where the 𝑀𝑅𝐼 

(or 𝐶𝑇) imaging modality is fused with intraoperative stereo viewing. The first two overlay 

systems are applied to radical prostatectomy and the last one to partial nephrectomy. The 

registrations are conducted without accounting for the non-linear deformation of the soft-

tissue structures.  

Section 1.2.3 outlines a non-rigid image surface matching registration scheme where a 

deformable model (constructed by preoperative 𝑀𝑅𝐼 images of the prostate) is non-linearly 

registered onto intraoperative 𝑀𝑅𝐼 volumetric images.  Another image-guided technique (for 

hepatic tumour resection) that also uses the 𝑀𝑅𝐼 (or 𝐶𝑇) imaging modality preoperatively is 

presented in this section. It is combined with the laser range scanning technology which is 

used to produce surface representations of the liver intraoperatively. The preoperative image 

volume is registered onto the target using both rigid and non-rigid registration methodologies.  

Section 1.2.4 describes an 𝐴𝑅 visualization system for radical prostatectomy which is used to 

superimpose a transrectal ultrasonography (𝑇𝑅𝑈𝑆) model of prostate anatomy onto 

stereoendoscopic video images. The process of registration is based upon a rigid spatial 

transformation scheme and is conducted with the aid of navigation aids. In another 𝐴𝑅 

image-guidance application (for partial nephrectomy) a preoperative 𝐶𝑇 image of the kidney 

is rigidly aligned onto stereoendoscopic video images.  
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In Section 1.2.5 details about a 𝑇𝑅𝑈𝑆 −guided biopsy system (for prostate cancer 

management) are given. It involves the application of 𝑇𝑅𝑈𝑆 − 𝑇𝑅𝑈𝑆 rigid surface- and 

image-based (or intensity-based) registration schemes to address prostate motion, and 

𝑇𝑅𝑈𝑆 − 𝑇𝑅𝑈𝑆 non-rigid surface- and image-based registration methods to treat both prostate 

motion and deformation effects. Section 1.2.6 provides a concluding summary of this review.  

1.2.1 General information about image registration  

Image registration can be defined as the process of geometric transformation or spatial 

mapping between two or more images (3𝐷 feature point datasets in this work) taken at 

different times from different viewpoints, and with usually different image sensors, which 

brings them into a common global 3𝐷 coordinate system and causes all intersecting sections 

to overlap completely.  

Image registration may be classified as: (i) multi-temporal where image data from the same 

patient (i.e., intrasubject) are registered using a single imaging modality but at different times 

(e.g., for monitoring tumour growth); and (ii) multi-modal where image data from the same 

patient are registered using various imaging modalities (e.g., 𝐶𝑇, 𝑀𝑅𝐼 and 𝑈𝑆 for structural 

analysis) as in the current study. Image data obtained from a single imaging modality but 

from different patients (i.e., intersubject) can be registered to produce an atlas which in turn 

can be used for image registration and image-guided surgery.  

Image registration was initially applied to 2𝐷 images and involved rigid (translation and/or 

rotation) or affine transformations (rigid plus shearing and/or scaling). Let’s take as an 

example the rigid-body 3𝐷 point-based image-to-patient registration which is one type of 

3𝐷-to-3𝐷 volume registration. The spatial motion observed in the rigid-body transformation 

can be fully modelled by combinations of linear transformations. The registration takes place 

between point-cloud representations of preoperative surfaces (the source model) and 

intraoperatively acquired patient surfaces (the target model) [18, 19].   

The patient surfaces may be obtained via laser range scanning or stereo-vision reconstruction 

methods. During the surgical planning step, intrinsic anatomical structures and features, 

extrinsic fiducial markers (i.e., implanted fixed external landmarks) attached near anatomical 

regions of interest or security margins around tumours, surgical trajectories, etc…, are 

identified in preoperative 3𝐷 image (𝐶𝑇 and/or 𝑀𝑅𝐼) segmentations of the relatively rigid 

structures.  
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The 3𝐷 point positions of the distinct intrinsic features or extrinsic fiducial markers of the 

preoperative images are matched against their correspondences in the intraoperative patient 

volumetric images. The geometric transformation parameters required to rigidly register the 

source model onto the target model can be computed directly as their 3𝐷 point 

correspondences are already known. Closed-form analytical solutions have been developed 

for point-based rigid registrations [20]. The intrinsic and extrinsic landmarks can be used as 

navigation aids [19, 20] as they can be easily tracked by external tracking devices 

intraoperatively and in real-time [21, 22].  

While a rigid-body registration can accurately describe a shift of an “undeformable” organ, a 

non-rigid (elastic) body transformation would be more suitable for soft-tissue structures (e.g., 

prostate, kidney, liver) as the imaged target anatomy involves non-linear organ deformations 

between image acquisitions. Patient position or routine tissue manipulation such as incision 

of organs and clamping of vessels can cause a change in the shape of an unconstrained organ 

or on the constellation of neighbouring organs [23]. Organ shifts may simultaneously take 

place due to cardiac motion, respiration or laparoscopic insufflation [24].  

To describe the complex (periodic and non-periodic) motion of the organ, one approach could 

be to first apply a rigid-body registration and then include all residual errors (i.e., corrections 

due to spatial distortion) arising from the non-linear organ deformation [25, 26]. A more 

rigorous approach would be to warp 3𝐷 preoperative images to match 3𝐷 intraoperatively 

acquired patient images in real time [27].  

The available navigational systems and technologies are not always accurate in the 

registration of deformable organs (often obtaining clinically unacceptable values of 

registration accuracy) which in turn highlights the inherent difficulties of combining 

preoperative with intraoperative imaging modalities in a non-rigid registration scheme [28]. 

As it is computationally expensive to conduct rigorous and exact simulations of soft-tissue 

behaviour (despite the advantage of achieving an accurate registration), only simplified 

registration frameworks can be considered for surgical intervention and navigation [29]. 

However the use of such approximations leads to important registration errors [28, 30].       

The non-rigid registration process between two medical images is formulated by: (i) the 

identification of correspondences between the images; (ii) the non-linear transformation 

function which maps the source model onto the target model so that anatomically 

homologous locations of the two feature datasets can be overlapped completely. Due to the 
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high dimensionality introduced by (i) and (ii) in 3𝐷, the non-rigid registration becomes a 

difficult problem especially in the presence of outliers and noise. 

During the non-rigid registration the deformation takes place with constraints (i.e., the 

deformation is regularized) while a distance metric is simultaneously minimized. The non-

linear transformation functions used can recover local deformations in contrast to rigid or 

affine transformations which can operate only globally.  

The non-rigid medical image registration methods can be grouped in four categories: (i) 

point-based; (ii) surface-based; (iii) intensity-based; and (iv) model-based.  

The non-rigid-body point-based registration methods (similar to rigid-body point-based 

registrations) involve the (manual or semi-automatic) identification of a set of homologous 

landmarks between the images that are registered. These must be identifiable by the imaging 

modality used and can be (i) intrinsic features of the patient’s imaged organ anatomy which 

can be extracted directly from the imaging data; or (ii) extrinsic markers which can further be 

classified into internal fiducial markers (i.e., surgically inserted coils prior to imaging) and 

external fiducial markers (i.e., objects attached to a rigid structure). Hence the point-based 

methods can be categorised into intrinsic and extrinsic ones [31]. Their main advantage over 

the surface- and intensity-based registration approaches is in speed as the number of 

landmark pairs required is smaller in comparison to the number of pixels or voxels in the 

imaging data, which expedites the calculation of the transformation function.      

The surface-based registration methods involve the segmentation of surfaces from raw 

imaging data followed by the extraction of equivalent surfaces from the segmented medical 

images [22]. Consequently, the accuracy of the surface segmentation has an impact on the 

accuracy of registration. Surface-based registration is usually combined with other techniques 

such as point-based registration [31]. Some comparative studies have highlighted the 

superiority of intensity-based registration techniques over surface-based methods [32, 33]. 

Surface-based registration is more suitable than point-based registration for some well-

defined anatomical structures [34].  

The intensity- or voxel-based registration methods operate directly on the grey values of the 

whole images bypassing any geometrical features of the anatomical structures. Of the most 

popular intensity-based non-rigid registration methods are those that incorporate mutual 

information as a measurement of image similarity [35-38]. In some studies the image 
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similarity measure was combined with regularization of deformation and the optimization of 

the transformation function was conducted in such a way that the similarity metric could 

obtain a true global maximum [39].     

The model-based registration methods depend upon models of deformation fields which in 

turn are based on the physical characteristics of the tissues or organs of interest. These 

techniques are more computationally expensive than other registration methods due to the 

non-parametric nature of the involved transformations (i.e., the deformation of each voxel is 

computed directly). Simplified approximations of the physical system are usually used 

instead to expedite the process of registration, which however, reduces the registration 

accuracy.  

The finite element model (𝐹𝐸𝑀) technique is an example of a model-based registration 

approach. The area of interest is divided into an interconnected collection of elements each of 

which is characterised by a distinct set of physical properties. Deformations are described by 

displacement of nodes produced by exerting an external influence onto the system. They are 

modelled subject to a constraint imposed by an energy function which depends on the 

properties of each node. The 𝐹𝐸𝑀 technique has been applied to image registration [40, 41] 

and to the validation of other medical image registration methods [42].   

Non-rigid registration covers a wide range of applications such as (i) surgical planning and 

training where multi-modal medical images can be registered and visualized as part of 

operation planning or for educational purposes; and (ii) surgical navigation, image-guided 

surgery and treatment where image registration between preoperative and intraoperative 

images is critical for an accurate guidance of surgical instruments and tools.   

1.2.2 Registration of preoperatively acquired MRI (or CT) image volumes 

of prostate (or other organ) surfaces onto stereoscopic video images 

Cohen et al. [1] exploited the usefulness and applicability of an 𝐴𝑅 image guidance system 

for minimally-invasive laparoscopic prostatectomy using the da Vinci system. Three-tesla 

𝑀𝑅𝐼 imaging of the pelvis was used as the preoperative imaging modality. The 𝑀𝑅𝐼 scans 

were segmented into a 3𝐷 image of the pelvic anatomy, which was calibrated and scaled to 

adjust to the magnification observed intraoperatively. The segmented image was manually 

registered onto stereoendoscopic still images of a recorded robot-assisted surgery, in a post 

processing operative mode, for retrospective evaluation by the surgeon (see Figures 1.6-1.9).   
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Fusing the 3𝐷 𝑀𝑅𝐼 preoperative imaging modality with 3𝐷 intraoperative stereo viewing is a 

relatively new image-overlay technology which can provide visualization and identification 

of intraprostatic and periprostatic subsurface structures and anatomies (see also Figure 1.2).    
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            Figure 1.6: 3𝐷 laparoscopic operative view of the surgeon. Taken from Ref. 1.    

This work aimed more at determining the clinical efficacy of an image guidance system for 

robotic-assisted prostatectomy. The prostate tissue deformation due to pneumoperitoneum 

and surgical mobilisation of the prostate was not accounted for by the transformation 

function. Reconstruction, registration and tracking were done manually designating an early 

stage of development for the proposed image-guidance technology. 
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Figure 1.7: An overlay of the pelvic anatomy. The structure is colour coded based on the 

following scheme: prostate (green), seminal vesicles (pink), left-sided 

neurovascular bundle (yellow) and pelvic bony structure (white/gray). The 

anatomical structures that are important to identify at key stages of 

prostatectomy are: prostate, bladder, urethra, vas deferens, seminal vesicles, 

rectum, neurovascular bundles and ureters. Taken from Ref. 1.    
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Figure 1.8: Operative view of the dorsal vein complex before ligation. Taken from Ref. 1.   
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Figure 1.9: 𝐴𝑅 overlay including the dorsal vein complex. The overlaid pelvic anatomy is 

colour coded based on the following scheme: prostate (green), seminal 

vesicles (pink), left-sided neurovascular bundle (yellow) and pelvic bony 

structure (white/gray). (See also Figure 1.7.) Aside from the bony pelvis the 

structures are not accurately aligned due to pneumoperitoneum. The 

neurovascular bundle is clearly defined in the 𝐴𝑅 overlay but not on the video 

screenshot. Taken from Ref. 1.    
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The latest work on robot-assisted radical prostatectomy involved the design of 𝐴𝑅 image-

guidance systems for abdominal laparoscopic surgery in real time [43]. Simple 𝑇2 − 

weighted 𝑀𝑅𝐼 2𝐷 slices of the prostate anatomy (such as those shown in Figure 1.10; see 

also Ref. 44) were used as preoperative images. The prostate, the tumour location, and the 

neurovascular bundles were identified on the 𝑀𝑅𝐼 images by a radiologist. The preoperative 

images were then overlaid onto the stereoendoscopic intraoperative camera view.  
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Figure 1.10: On the left: operative view of the surgeon. On the right: preoperative 2𝐷 𝑇2 − 

weighted 𝑀𝑅𝐼 images overlaid onto the surgical view. Taken from Ref. 43. 

 

The registration was conducted using two methods: (i) by manually (visually) aligning an 

ordered set of points selected from the inner surface of the pubic arch and identified in the 2𝐷 

𝑀𝑅𝐼 image scan onto the surgical scene (see Figure 1.11); and (ii) by incorporating a 

𝐵 −mode 𝑈𝑆 probe which could percutaneously image the pelvic bone throughout the 

surgery.  

The selected wireframe data structure in (i) could only be observed in the surgical scene 

during the last stages of the surgery. Ultrasonography, in (ii), despite its accuracy, introduced 

significant computational complexity in the registration. 

Both methods used: (i) the pelvic bone structure as a reference for minimizing registration 

errors as the prostate is near its centroid plus it is visible intraoperatively and in 𝑀𝑅𝐼 images; 

and (ii) an optical tracking system to track the laparoscope camera lens which, however, 

reduced system accuracy in determining anatomical prostate points. Both methods involved 

large registration errors: the first one amounted to ca. 20 mm and the 𝑈𝑆 −based technique to 
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7 mm due to the fact that neither of these methods accounted for the non-linear deformation 

of the prostate tissue.        
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Figure 1.11: On the left: a misaligned overlay of a wireframe of selected points over the 

surgical scene. On the right: a (manually) registered wireframe overlaid onto 

the surgical scene. The wireframe data structure was created by an ordered set 

of 42 points selected from the inner surface of the pubic arch and manually 

identified in the 2𝐷 𝑀𝑅𝐼 image scan. Taken from Ref. 43. 

 

Pratt et al. [45] introduced a manual registration interface for image-guided intraoperative 

robotic (da Vinci Intuitive Surgical System robot) partial nephrectomy where live 𝐴𝑅 models 

could be overlaid onto 2𝐷 endoscope video in real time. The system architecture for image 

guidance was based on the 𝑁𝑉𝐼𝐷𝐼𝐴 Quadro Digital Video Pipeline (see Figure 1.12).  

𝐶𝑇 and 𝑀𝑅𝐼 scans of kidneys were segmented and the produced meshes were subsequently 

smoothed. A distinct feature (i.e., a landmark on the target model surface) was located in the 

left stereo capture image, its stereo correspondence was tracked manually, and via relevant 

ray intersections the same feature was (manually) located on the surface of the 3𝐷 source 

mesh geometry. For the rigid registration of these two 3𝐷 correspondence points the source 

model was translated to the target image feature and the rotational degrees of freedom were 

manually adjusted.  
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Figure 1.12: System architecture for image guidance using the 𝑁𝑉𝐼𝐷𝐼𝐴 Quadro Digital 

Video Pipeline. The stereo video feed originating in the da Vinci stack is split 

via a distribution amplifier into two identical stereo video streams (blue and 

green in the figure). The primary inputs of a pair of auto-standby video 

switches receive a video stream directly from the distribution amplifier; this is 

further fed into the da Vinci console as raw stereo video signal. Their 

secondary inputs receive the augmented stereo feed produced by the digital 

video pipeline; this can also be displayed on the da Vinci console. Taken from 

Ref. 45. 

 

Despite the successful implementation of live 𝐴𝑅 overlay systems for image guidance, 

visualization of tumour and adjacent anatomy as well as hilar vessel localisation, the 

proposed registration method is based upon a rigid spatial transformation scheme. Hence it 

cannot account for soft tissue deformation: the average registration error was as high as 4.76 

mm, a level of accuracy that is not acceptable for clinical applications.  
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1.2.3 Registration of preoperatively acquired MRI (or CT) image volumes 

of prostate (or other organ) surfaces onto images recorded using 

other imaging modalities 

Bharatha et al. [14] used rigid and non-rigid image registration techniques to match 

(𝑀𝑅𝐼 −guided brachytherapy) preoperative 1.5 tesla (𝑇) 𝑇2 −weighted endorectal coil 𝑀𝑅 

images of the prostate with 0.5 𝑇 𝑀𝑅 𝑇2 −weighted intraoperative image data. Their goal 

was to enhance the accuracy of intraprocedure navigation under real-time guidance. As 

Figure 1.13 depicts, the central gland and peripheral zone of the preoperative images and the 

total gland of the intraoperative images of the prostate were manually segmented.  
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Figure 1.13: Rigid and non-rigid registration processes between preoperative 1.5 𝑇 𝑀𝑅𝐼 

image data and intraoperative 0.5 𝑇 𝑀𝑅𝐼 image data in prostate 

brachytherapy. Taken from Ref. 14.  
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A rigid registration step (involving translation only) that roughly aligned the pre- and 

intraoperatively segmented total gland 3𝐷 models was followed by a rigorous non-rigid 

image matching registration scheme (described extensively in Refs. 46 and 47).  

This scheme involves the following steps: (i) a 3𝐷 mesh representation of an 𝐹𝐸𝑀 is 

constructed using the 1.5 𝑇 preoperatively segmented images of the peripheral zone and the 

central gland; (ii) as these structures can be distinguished in the tetrahedral mesh model 

distinct material properties can be assigned in each region (see Figure 1.14). The total gland 

surface of the preoperative image is considered an elastic membrane; (iii) an active image 

surface matching algorithm [48] is incorporated to non-linearly register (automatically) the 

deformable model of (ii) onto the prostate boundary surface of the segmented 0.5 𝑇 

intraoperative total gland model; (iv) a volumetric deformation field is computed from the 

surface deformation displacements of the preoperative total gland image surface in (iii). The 

deformation field serves as a boundary condition in these calculations; and (v) the computed 

volumetric deformation field from (iv) may be applied to the original segmented (or 

grayscale) preoperative 𝑀𝑅 image to produce deformed preoperative prostate label images of 

the total gland.       

The 𝐹𝐸𝑀 was constructed assuming a linearly elastic material and an isotropic framework 

[46]. To describe the deformation, a distinct pair of elastic properties (namely, Poisson’s ratio 

and Young’s elastic modulus) was attributed to the segmented images of the central gland 

and peripheral zone. By registering the preoperative total gland image onto the lower 

resolution intraoperative image the central gland, the peripheral zone and their boundary were 

revealed and their relative positions were defined.   
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Figure 1.14: 3𝐷 𝐹𝐸𝑀 of the central gland (in red) and peripheral zone (in dark blue) of the 

prostate. It was constructed using original 1.5 𝑇 𝑀𝑅 imaging data. Additional 

structure of pelvic anatomy is included: bladder and ureter (in blue); vas 

deferens and seminal vesicles (in yellow); endorectal coil (in black) and 

rectum (in brown). Taken from Ref. 14.  

 

Whether the prostate tissue exhibits an isotropic behaviour or not is not certain. An elastic 

model would become more appropriate in the limit of diminishing prostate surface 

deformations. The best values for the elastic properties of each of the two model materials 

were chosen on the basis of an image match quality (i.e., best anatomic resemblance) 

between the intraoperatively segmented structure and the registered preoperative image, after 

a number of experimental trial registrations. No in vivo studies were conducted to determine 

biomechanical prostate tissue properties. The experimental parameters cannot represent the 

microscopic properties of the prostate tissue. For a rigorous analysis further validation would 

be required incorporating higher resolution imaging and enhanced image contrast.       

Figures 1.15 and 1.16 outline the non-rigid registration process. Figure 1.15 highlights the 

method’s contribution, i.e., the ability to accurately overlay the central gland/peripheral zone 

(and their boundary) segmentation interface onto the target prostate surface. Figure 1.16 

displays original and deformed preoperative grayscale images and intraoperative ones 

demonstrating the good match of image surface contours after registration.     

Non-negligible segmentation errors were incurred due to the variability in the segmentation 

of preoperative and intraoperative image data, which led to important registration errors. The 

rigid registration was restricted to translation and matching the centres of mass of the 
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segmented total gland structures of the intraoperative and preoperative datasets. Any rotation 

that wasn’t visually apparent was treated as deformation.    

 

 

 

 

                                            Third party copyright image removed 

 

 

 

 

 

Figure 1.15: (a) Segmented preoperative 1.5 𝑇 image data before deformation. The central 

glad is depicted by gray and the peripheral zone by white; (b) segmented 

intraoperative 0.5 𝑇 image data. The data shown in (b) and the data shown in 

(a) are viewed across an axial slice plane; (c) deformed 1.5 𝑇 image data. Note 

the additional structure (central gland, peripheral zone and their boundary) 

inferred due to the interpolation of the computed volumetric deformation field; 

(d) same as (b). The (manually) segmented structure of the central gland, the 

peripheral zone and their boundary are overlaid onto the intraoperative image 

data of (b) (done independently by a human observer and can be considered as 

the ground truth. See also Figure 1.16). Taken from Ref. 14. 
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Figure 1.16: (a) Original preoperative 1.5 𝑇 grayscale image. The segmentation of Figure 

1.15(a) was derived from these image data; (b) deformed preoperative 1.5 𝑇 

grayscale image computed using the 𝐹𝐸𝑀 volumetric deformation map. The 

deformed structure of Figure 1.15(c) was derived from these data; (c) original 

intraoperative 0.5 𝑇 grayscale image. The segmentations of Figures 1.15(b) 

and (d) were derived from these data. (d) - (f) represent another series of 

preoperative and intraoperative images for a different patient. They are ranked 

in correspondence to (a) - (c). The anatomical boundary between the central 

gland and the peripheral zone cannot be delineated in the intraoperative image 

data of (f) due to poorer spatial resolution and soft tissue contrast. However, 

the total gland, central gland, peripheral zone contours and tumour foil can be 

identified by incorporating preoperative 1.5 𝑇 𝑇2 −weighted endorectal-coil 

𝑀𝑅 imaging. Taken from Ref. 14.    
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Cash et al. [49] examined the feasibility of image-guided (open abdominal) hepatic tumour 

resection procedures. Preoperative 𝐶𝑇 (or 𝑀𝑅 imaging) volumes were manually segmented 

to produce 3𝐷 surface source models. These were further refined to provide smoother 

anatomical representations of the liver surface.  

Intraoperative dense surface representations of liver were obtained using the laser range 

scanning technology. By capturing 3𝐷 surface points (using optical triangulation) and 

combining this input with the video image of the scene, a 3𝐷 texture-mapped point cloud can 

be produced. The preoperative tomographic image volume was then registered onto the so 

produced target feature dataset using the iterative closest point (𝐼𝐶𝑃) surface matching 

algorithm.  

When the range scanner captures (near) planar regions, multiple registrations may become 

equally valid which in turn can lead to false 𝐼𝐶𝑃 registration matches. To overcome these 

problems, the 𝐼𝐶𝑃 registration was performed with respect to anatomical landmarks and 

geometrically unique features that were identified by the surgeon.  

The surface 𝐼𝐶𝑃 registration error fell within the range between 2 and 6 mm. This variation 

was attributed to the intraoperative soft-tissue deformation, the liver motion due to 

respiration, the quality of intraoperative surface data, the size of the exposed surface region 

acquired by the range scanner, and surgery-induced deformities.  

An 𝐹𝐸𝑀 of the liver was also constructed: (i) the rigidly registered preoperative volumetric 

mesh served as a reference model; and (ii) the incurred intraoperative deformation was 

represented by a set of displacements from this reference structure, and was simulated by 

solving a system of partial differential equations subject to boundary conditions.  

A better alignment between the preoperative image surface and intraoperative data was 

achieved when the 𝐹𝐸𝑀’ s corrections were included as these captured much of the observed 

intraoperative deformation. The requirement for a large exposure of the organ’s surface is, 

however, a major disadvantage of the laser range scanning technology.   
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1.2.4 Registration of preoperatively acquired image volumes (using other 

imaging modalities) of prostate (or other organ) surfaces onto 

stereoendoscopic images 

Simpfendörfer et al. [50] implemented an 𝐴𝑅 visualization and navigation system that could 

superimpose a virtual model of prostate anatomy onto laparoscopic video images during 

radical prostatectomy and in real time (see Figure 1.17). Navigation needles were inserted 

into the prostate and a segmented 3𝐷 𝑇𝑅𝑈𝑆 model of the prostate was obtained. The 

navigation aids served as points of real-time registration between these two imaging 

modalities.   

The (rigid) manual registration itself, referred to as “inside-out tracking” or “2𝐷-3𝐷 camera 

pose estimation”, was calculated from the (dimensional) correspondence between the 2𝐷 

projections of the 3𝐷 𝑈𝑆 image navigation aids and the 2𝐷 laparoscopic video image ones. 

The target visualization error (𝑇𝑉𝐸), defined as the average offset between the back-

projected registered 2𝐷 image points (redefined in the 3𝐷 domain) and the manually defined 

ones in the 𝑇𝑅𝑈𝑆 3𝐷 volume, was found as low as (0.55 ± 0.28) mm.  

While this 𝐴𝑅 visualization approach overcomes the problem of tissue shift, it cannot 

compensate for organ deformation, especially when an extended change in the prostate 

morphology is involved. Aside from being invasive, this technique is heavily dependent upon 

the use of navigation aids. By inserting them in the target surgical area the target registration 

error (𝑇𝑅𝐸) is reduced. However, the removal of cancer foci becomes problematic due to the 

introduced needle occlusion.   
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Figure 1.17: Endoscopic view of the prostate: [A] without 𝐴𝑅 visualization. Five needle-

shaped navigation aids with coloured heads are shown; [B] with 𝐴𝑅 

visualization. The 3𝐷 𝑇𝑅𝑈𝑆 image is superimposed. The neurovascular 

bundles are depicted by blue, the virtual navigation aids by yellow and the 

green colour designates the border of the prostate. The virtual navigation aids 

are superimposed onto the real ones. The tissue deformation was 

approximated by the changes in the spatial configuration of the navigation 

aids. Taken from Ref. 50.    

 

Another study [51] on robot-assisted laparoscopic partial nephrectomy used 𝐴𝑅 overlays of 

preoperative 3𝐷 kidney models for surgical guidance. 𝐶𝑇 images were manually segmented 

leading to a 3𝐷 surface model of the kidney and tumour (or stone) (see Figure 1.18). After 

calibration of segments of the recorded stereoendoscopic video (done in a post processing 

mode), the preoperative 3𝐷 segmented kidney model was overlaid and manually aligned onto 

the stereoscopic view.  

This manual registration was further refined using an automatic surface-based registration 

algorithm. Selected points (by the operating surgeon) of the kidney surface served as fixed 
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reference points. By estimating their 3𝐷 positions via stereo triangulation and stereo 

reconstruction the orientation and position of the 3𝐷 mesh overlay could be determined. The 

automatic registration could by further augmented by means of a 3𝐷-to-3𝐷 𝐼𝐶𝑃 registration. 

Due to occlusion of the kidney, only part of the 3𝐷 preoperative kidney model could 

participate in the 𝐼𝐶𝑃 registration. 

While an accurate 3𝐷-to-3𝐷 registration presupposes an accurate segmentation of the 

preoperative 𝐶𝑇 image of the kidney and no major errors due to stereo reconstruction, it is 

largely affected by anatomical deformations during the surgery. These were not addressed in 

this work.     
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Figure 1.18: Process flow chart describing the registration process undergone to align a 

preoperative 𝐶𝑇 image onto stereoendoscopic video. Taken from Ref. 51. 

 

 

 

 



44 
 

1.2.5 Registration of preoperatively acquired image volumes (using other 

imaging modalities) of prostate (or other organ) surfaces onto images 

recorded from other intraoperative techniques 

A 3𝐷 𝑇𝑅𝑈𝑆-guided biopsy system was developed [52] that can record and display the 3𝐷 

locations of biopsy cores. The transducer probe can acquire a 3𝐷 image of the prostate in real 

time by reconstruction of 180 2𝐷 𝑇𝑅𝑈𝑆 images. The segmented prebiopsy 3𝐷 image (see 

Figure 1.19) can then be used for needle guidance. By registering the prebiopsied image to 

real-time 3𝐷 images the correspondences for the segmented biopsy targets can be maintained 

throughout the biopsy procedure. 

The prostate segmentation, as Figure 1.19 shows, was performed semiautomatically: an initial 

segmented contour of a prostate cross section (2𝐷 transverse prostate image) was generated 

and used as a dynamically deformable model. This model would radially propagate slice by 

slice through 180 degrees to provide the initial platform for segmentation of adjacent slices 

matching the boundaries of the prostate throughout the process.  

3𝐷-𝑇𝑅𝑈𝑆-to-3𝐷-𝑇𝑅𝑈𝑆 rigid surface- and image-based registration schemes were used to 

address prostate motion. 3𝐷-𝑇𝑅𝑈𝑆-to-3𝐷-𝑇𝑅𝑈𝑆 non-rigid surface- and image-based 

registration methods were also applied to treat both prostate motion and deformation. The 

rigid surface-based registration was performed with the 𝐼𝐶𝑃 algorithm while the non-rigid 

one incorporated the thin-plane spline (𝑇𝑃𝑆) deformation model.  

The prostate source and target 3𝐷 surfaces were represented by triangle meshes in the 𝑇𝑃𝑆 

registration. Their initial rigid alignment (using 𝐼𝐶𝑃) was followed by an equal ray angle 

parameterization of the target 3𝐷 prostate surface. The 3𝐷 intersection points between each 

ray and each one of the two prostate surfaces defined the correspondences between the source 

and target images. The 3𝐷 source image was registered to the target image by interpolation. 

See also Section 2.1 for more details about the 𝑇𝑃𝑆 deformation model.     

The rigid image-based (or intensity-based) registration algorithm is dependent upon the 

intensity information contained in the images. It is driven by a block matching approach 

where each source image block (rectangular region) is matched against each target image 

block according to a regularized vector field that is specifically constructed to perform this 

transformation. This process aims at the optimization of an image-to-image metric. It is 
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iterated reducing the block size each time to obtain a finer image resolution registration 

between the source and target images according to a multi-resolution-image-pyramid 

approach.  

The image-based non-rigid registration is also built upon an image-to-image metric concept. 

A 3𝐷 grid of 𝐵 −spline control points was used to describe the observed prostate 

deformation of the moving image: an optimizer was used to estimate an optimal set of 

𝐵 −spline parameters that can yield the best match between the moving image and the fixed 

image. These parameters are used to describe the prostate deformation, which is encoded in 

the spatial configuration of the 𝐵 −spline grid control points.  

The registration errors were determined from anatomical-feature misalignments between the 

registered source and target images. The 𝑇𝑅𝐸 was determined by computing the squared 

Euclidean distances between the 3𝐷 positions of prostate calcifications (see Figure 1.20) in 

the transformed source image and their correspondences in the target image and averaging 

the resulting values. The specific anatomical features were used only for registration 

evaluation purposes (as target points of reference) and not for the registration process per se 

due to the increased time required to accurately locate them in the image pairs.  

The 𝐹𝐿𝐸 and the impact of segmentation variability on registration accuracy were also 

estimated. The 𝐹𝐿𝐸 is linked to the statistically defined variability (variance) in locating the 

3𝐷 position of a fiducial marker. The variability of prostate segmentation caused variability 

of 𝑇𝑅𝐸 values. Their standard deviation was used to measure the variability in registration 

due to variability in segmentation. This test was conducted for various volumes of 3𝐷 

prostate 𝑇𝑅𝑈𝑆 images. 
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Figure 1.19: (a) Initial outlined contour of a 2𝐷 transverse prostate image; (b) the initial 

contour of (a) is used as input contour for the adjacent prostate slice, and is 

dynamically deformed to match its boundaries. This process is repeated 

radially slice by slice through 180 degrees. This figure shows multiple 

contours that have been segmented in this way. Their projections appear onto 

the faces of a cube; (c) complete prostate segmentation. Taken from Ref. 52.   
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Figure 1.20: Three calcifications in a 2𝐷 cross section of a 3𝐷 𝑇𝑅𝑈𝑆 prostate image. 

Taken from Ref. 52. 
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The rigid image-based registration produced a smaller average 𝑇𝑅𝐸 (by 0.39 mm) compared 

to the one generated by the rigid surface-based registration. The non-rigid image-based 

average 𝑇𝑅𝐸 turned out to be smaller (by 0.59 mm) than the non-rigid surface-based average 

𝑇𝑅𝐸. The average 𝑇𝑅𝐸𝑠 produced by the rigid and non-rigid surface- and image-based 

registrations were less than 3 mm, which can be considered as an acceptable upper bound 

value of accuracy for clinical applications.  

An improvement of only 0.24 mm in registration accuracy (measured by average 𝑇𝑅𝐸𝑠) was 

achieved in going from rigid (1.74 ± 0.84 mm) to non-rigid image-based registration (1.50 ± 

0.83 mm). An improvement by 0.04 mm was achieved in going from rigid (2.13 ± 0.80 mm) 

to non-rigid surface-based registration (2.09 ± 0.77 mm). The computed 𝐹𝐿𝐸 was so small 

that had no critical impact on the overall 𝑇𝑅𝐸.  

The impact of segmentation variability on the computed 𝑇𝑅𝐸 in surface-based registration 

was found substantial leading to pronounced errors: poor image quality led to erroneous 

segmentations and large prostate sizes introduced shadowing effects. It was concluded that 

image-based registration could yield more accurate results within a shorter timeframe, and 

that performing rigid registration in near-real time may be sufficient for the 3𝐷 

𝑇𝑅𝑈𝑆 −guided prostate biopsy procedures. 

1.2.6 Summary 

An extended range of image registration techniques and technologies for prostate and other 

organs, and in different operating theatre settings, has been used in much of the previous 

work. For an accurately performed image-guided prostatectomy or prostate cancer 

management, the preoperative 3𝐷 image must closely mimic the observed intraoperative 

prostate tissue deformations. This in turn necessitates the need of using accurate non-rigid 

registration frameworks and suitable deformation models that can achieve clinically 

acceptable registration accuracies for the prostate surfaces. Definitive progress along these 

lines has not yet taken place with regards to prostate cancer research.   

1.3 Identifying state-of-the-art candidate algorithms for prostate surface 

non-rigid registration  

The surface of the prostate is in general smooth and featureless containing no convoluted 

topologies. It may become subject to complex and pronounced deformations. Therefore the 



48 
 

search for unambiguous correspondences becomes more difficult especially in the presence 

of noise and outliers or missing data. A reliable mechanism for prostate surface registration 

would also rely on a suitable regularization mechanism to control the deformation process.  

In the following a number of non-rigid registration algorithms are reviewed with the express 

purpose of selecting the best candidates for registration of prostate surfaces. This review is 

also useful in terms of providing ideas for enhancing existing algorithms or possible 

algorithmic reformulations of promising registration frameworks.    

Jian and Vemuri [53, 54] implemented a non-rigid point-set registration method for 

unstructured data addressing the presence of outliers and noise in the target point cloud. 

There are no explicitly defined prior point-to-point correspondences for such data. Source 

and target point sets are represented by Gaussian Mixture Models (𝒢ℳℳ) where each 

mixture component corresponds to each point of the point set (see Section 2.2). The idea of 

using 𝒢ℳℳ𝑠 has been extensively applied and widely studied in the literature [53-60]. 

Point-set registration is formulated as the process of aligning two 𝒢ℳℳ densities by 

minimizing the 𝐿2 distance between them. The 𝐿2 distance is minimized based on a robust 

parametric estimation algorithm, namely, the 𝐿2𝐸 [61].  

The 𝑇𝑃𝑆 and Gaussian-radial-basis-function (𝐺𝑅𝐵𝐹) deformation models were considered in 

this study. The 𝑇𝑃𝑆 transformation may be decoupled into a linear affine motion and a 

nonlinear part which is characterized by a set of 𝑇𝑃𝑆 warping coefficients. The regularization 

term of the objective cost function is related to the bending energy of the 𝑇𝑃𝑆 function. 

In another study [62], which extended the work by Jian and Vemuri, the 𝐿2𝐸 estimator was 

adapted by explicitly parameterizing the contribution of noise using a Gaussian normal 

distribution with zero mean and σ standard deviation. The transformation model was defined 

in the Reproducing Kernel Hilbert Space (𝑅𝐾𝐻𝑆). The transformation was expressed as an 

expansion of kernel representations over a set of control points with the size of their 

neighbourhoods determining the width of the range of interactions between the source points.  

As 𝐿2𝐸 is differentiable with respect to the coefficients of expansion, the transformation can 

be estimated via numerical optimization techniques, and the overall computational 

complexity becomes linear in the number of correspondences.   

Tsin and Kanade [55] formulated point-set registration as the process of maximizing the 

Kernel correlation (𝒦𝒞) configuration of the two point sets that are registered for any choice 
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of deformation model (see Section 2.3). While this straightforward methodology has often 

been utilized in the literature [53, 55, 63-65], its performance as a registration technique has 

not been sufficiently measured on clinical data. Due to its multiply-linked as well as 

“smoothing” (i.e., when Gaussian kernels are used) mechanism, it may prove to be a robust 

technique in addressing noise and outliers especially for prostate surfaces.      

Chui and Rangarajan in a pioneering work [57] formulated the registration problem as an 

expectation maximization (ℰℳ) process using 𝒢ℳℳ𝑠. The proposed algorithm is capable 

of jointly solving for the correspondences and the geometric (rigid or non-rigid) 

transformation within a deterministic annealing scheme (see Section 2.4). Its performance has 

been tested on 2𝐷 and 3𝐷 data leading to satisfactory results even in the presence of noise 

and outliers, which makes this algorithm a good candidate for prostate surface registration.    

Amberg et al. [66], following an approach similar to the one taken in [67], extended the 𝐼𝐶𝑃 

framework to nonrigid registration by incorporating a regularization term that involved both 

linear and nonlinear deformation. The registration was parameterized by assigning one affine 

transformation matrix per source template vertex.  

The objective cost function was expressed as the weighted sum of: (i) a distance term which 

minimizes the distance between the deformed source template and the target (both models 

defined in 3𝐷 mesh representations); (ii) a local affine stiffness term which regularizes the 

local deformation isotropically by penalizing weighted differences between the affine 

transformation matrices assigned to neighbouring source vertices (in doing so the rotational 

and skew parts of the deformation are balanced against the translational part); and (iii) an 

optional landmark term which resembles the distance term of (i) and can be used to initialize 

the registration for a given set of landmarks.  

As the cost function is expressed in a quadratic form it can be solved directly and exactly; 

however it involves 12m variables where m corresponds to the number of points in the source 

model. The optimization becomes more costly as the number of source point that participate 

in the registration approaches m. 

The registration loops over a series of 𝐼𝐶𝑃 cycles. In each cycle preliminary correspondences 

are first estimated from a nearest-point search and then an optimal deformation of the 

template is computed based upon the stiffness term. 
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The weight of the stiffness term is successively decreasing after each 𝐼𝐶𝑃 cycle. As the 

stiffness weight determines the amount of acceptable deformation, it can incrementally 

recover the whole range of deformations in going from a strongly regularized one, where a 

global rigid alignment takes place, to lower stiffness weights, where more localized 

(nonlinear) deformations can be described, even when significant shape variations are 

involved.   

Missing parts of the target surface can be recovered due to the stiffness term which 

incorporates the geometric information encoded in the source template mesh to propagate a 

regularized deformation into regions without correspondence.  

The non-rigid registration algorithms proposed by (i) Jian and Vemuri; (ii) Tsin and Kanade; 

and (iii) Chui and Rangarajan are based on superior techniques for establishing point-to-point 

correspondences and can be combined with any 𝑅𝐵𝐹 model for the description of 

deformation. Their C++ implementations are publicly available [68].  

From some computational registration experiments that were conducted on 2𝐷 and 3𝐷 

synthetic and real clinical data, one can deduce clear merits for these techniques in terms of 

registration accuracy and capacity to recover nonrigidly deformed surfaces. Such capabilities 

make them strong candidates for application to prostate which may undergo a large variation 

in shape in the presence of important amounts of noise and outliers. 

These algorithms were, however, developed for registration between full 3𝐷 models. To 

make them applicable for full-model-to-partial-model registration, which is central to this 

thesis, some of the concepts used in the work by Amberg et al. will be implemented, after 

adjustments, having in mind that further modifications of these algorithms may also become 

necessary in the process, depending on the level of registration accuracy achieved, such as: (i) 

the need to explicitly parameterize the contribution of noise [62]; or (ii) modify the objective 

cost function by substituting constituent terms with more accurate mathematical expressions 

or by adding more relevant terms. The ultimate goal (set within a restricted timeframe) is to 

reformulate these state-of-the-art non-rigid algorithms to make them applicable and more 

accurate for non-rigid prostate surface registration as well as extend them to accurately 

recover deformation in occluded target scenes.   
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1.4 Estimating the accuracy of registration  

Section 1.4.1 outlines the general methods that are conventionally used to measure the image 

registration accuracy in fiducial-based rigid-body registrations. Within this context, the 

fiducial localization error, the fiducial registration error and the target registration error are 

defined and their relationship is discussed using explicit analytical expressions from the 

literature. Methods for measuring the accuracy of non-rigid-body registrations are briefly 

summarized focusing on the mean-squares similarity metric as well as on the target 

registration error and its caveats as defined within the context of non-rigid registrations in the 

present study. Section 1.4.2 details the methodology used to evaluate the image registration 

accuracy achieved in the numerical simulations of Chapter 3. 

1.4.1 General methods for measuring the image registration accuracy 

The point-based rigid-body registration (as described in Section 1.2.1) is guided by the 

geometrical positions of fiducial markers which are commonly termed fiducial points and are 

established by some fiducial localization process. Point-based registration for rigid structures 

aims at identifying that rigid-body transformation that can bring the localized fiducial points 

in a clinically acceptable alignment. However, this process is subject to registration errors 

which determine the level of image registration accuracy that can be obtained in the 

registration system. The accuracy of point-based rigid registration methods can be measured 

[69] by the fiducial localization error, the fiducial registration error and the target registration 

error.     

The fiducial registration error (𝐹𝑅𝐸) is defined as the root-mean-square (𝑅𝑀𝑆) distance 

between homologous fiducial points after rigid-body point-based registration. 𝐹𝑅𝐸 can be 

expressed [70] by 

𝐹𝑅𝐸2 =
1

𝑁
∑‖𝑅𝑥𝑖 + 𝑡 − 𝑦𝑖‖

2

𝑁

𝑖=1

 

where 𝑡 and 𝑅 designate, in respect, the 3𝐷 translation and rotation required to rigidly align a 

set of 𝑁 fiducial points {𝑥𝑖, 𝑖 = 1,… ,𝑁} (localized in the preoperatively prepared patient 

volumetric image) with their correspondences in the set {𝑦𝑖, 𝑖 = 1,… ,𝑁} (identified in the 

intraoperatively acquired patient image) such that the 𝑅𝑀𝑆 of the displacements across all 
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correspondence pairs is minimized. However the process of fiducial localization incurs an 

error.  

The fiducial localization error (𝐹𝐿𝐸) is defined in the literature [70] as the displacement of a 

localized fiducial point from its true fiducial position measured before registration. 𝐹𝐿𝐸 can 

be rigorously determined via experimental measurements with phantoms for the given 

imaging modality. 

The registration error in the fiducial point-based rigid-body alignment is determined by the 

number of fiducial points and by the 𝐹𝐿𝐸𝑠 incurred in the localization of the exact positions 

of the fiducial points. This has been shown in a past study [71]:  

〈𝐹𝑅𝐸2〉 = (1 −
2

𝑁
) 〈𝐹𝐿𝐸2〉 

where the expected squared 𝐹𝑅𝐸, represented by 〈𝐹𝑅𝐸2〉, designates a measure of overall 

fiducial alignment and 〈𝐹𝐿𝐸2〉 is the expected squared value of the 𝐹𝐿𝐸 for a set of 𝑁 

fiducial points and in 3𝐷. The geometrical positions of the fiducials (termed fiducial 

configuration) have no effect on the value of the 𝐹𝑅𝐸. The 𝐹𝑅𝐸 is also independent of the 

particular rigid object that is being registered. Due to the 𝐹𝐿𝐸𝑠, the value of the 𝐹𝑅𝐸 can 

never be zero.  

The registration error of any target at a spatial position 𝑟 [𝑇𝑅𝐸(𝑟)] is defined as the 

geometrical distance between 𝑟 and the position of its correspondence in the transforming 

image after rigid-body point-based registration (in others words, the 𝑇𝑅𝐸 corresponds to the 

distance between homologous points other than the fiducials) [70]. The 𝑇𝑅𝐸(𝑟) here is 

measured with respect to a known fiducial configuration comprised of 𝑁 fiducial markers, 

which already have accrued 𝐹𝐿𝐸𝑠 in the process of their geometrical identification.  

Errors in the registration of surgery targets such as tumours cannot be measured directly from 

the registration system in fiducial-based rigid-body registrations. They can only be 

statistically predicted incorporating the estimated 𝐹𝐿𝐸𝑠, the fiducial configuration and 

(relative to it) the geometrical position of the target itself. An analytical approximate 

expression for the 𝑇𝑅𝐸(𝑟) statistic has been derived in the study by Fitzpatrick et al. [70]:  

〈𝑇𝑅𝐸2(𝑟)〉 ≈ 〈𝐹𝐿𝐸2〉 (
1

𝑁
+ 𝒞) 
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where 〈𝑇𝑅𝐸2(𝑟)〉 corresponds to the expected value of the squared 𝑇𝑅𝐸(𝑟), 〈𝐹𝐿𝐸2〉 is the 

expected value of the squared 𝐹𝐿𝐸, N is the number of fiducial points, and the mathematical 

expression 𝒞 represents the fiducial configuration and its spatial relationship with a particular 

target. For a given fiducial configuration the optimal position 𝑟 for a target corresponds to the 

centroid of the configuration of fiducial points. (In rigid-body fiducial-based registration both 

statistics 〈𝐹𝑅𝐸2〉 and 〈𝑇𝑅𝐸2(𝑟)〉 depend on the 〈𝐹𝐿𝐸2〉.).      

The second most important expression that was derived in this study [70] is given by 

〈𝐹𝑅𝐸𝑖
2〉 = 〈𝐹𝐿𝐸2〉 − 〈𝑇𝑅𝐸𝑟𝑖

2 〉 

where 〈𝐹𝑅𝐸𝑖
2〉 represents the expected squared 𝐹𝑅𝐸 of an individual fiducial point 𝑖, 〈𝐹𝐿𝐸2〉 

is the expected value of the squared 𝐹𝐿𝐸 and 〈𝑇𝑅𝐸𝑟𝑖
2 〉 is the expected value of the squared 

𝑇𝑅𝐸(𝑟𝑖). This relationship highlights the significance of using the 𝑇𝑅𝐸 as a reliable measure 

of image registration accuracy in fiducial-based rigid-body transformations; this expression 

reveals counter-intuitive situations where small values of 𝐹𝑅𝐸𝑖𝑠 arise from poor registrations 

(caused by poor fiducial configurations) which are characterized by large values of 𝑇𝑅𝐸𝑟𝑖𝑠.  

The accuracy of non-rigid registration methods can be assessed using a variety of image 

similarity metrics [22, 36, 72-74] such as those of mutual information, normalised mutual 

information, correlation coefficient, mean squares (𝑀𝑆), etc…  

The 𝑀𝑆 metric, which is the metric of choice in this study, is defined as the mean squared 

difference between images 𝐴 and 𝐵  

𝑀𝑆(𝐴, 𝐵) =
1

𝑁
∑‖A𝑖 − 𝐵𝑖‖

2

𝑁

𝑖=1

 

where A𝑖, 𝐵𝑖 represent the position of the i-th point or intensity of the i-th voxel of 𝐴 and 𝐵, 

respectively, and 𝑁 is the number of points or voxels that are compared.  

In the present study the image registration accuracy is measured by the 𝑇𝑅𝐸 which evaluates 

the 𝑅𝑀𝑆 distances between homologous target points after registration (see Section 1.4.2) 

without, however, the aid of fiducial configurations as described in the fiducial-based rigid-

body registrations. For the non-rigid point-based registrations it is conjectured that the 

transformation function itself (emphasizing on its capacity to recover deformation accurately) 
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will also have an impact on the value of the computed 𝑇𝑅𝐸 aside from the number of targets 

and the 𝐹𝐿𝐸.  

This working hypothesis can be exploited by addressing the following questions in the 

numerical simulations of Chapter 3: (i) does the 𝑇𝑅𝐸 change significantly in going to higher 

numbers of (randomly chosen) target points of registration? Or does it show no major 

dependence on the number of targets? and (ii) in the computational experiments of Chapter 3 

a (large) set of (random) configurations of (a fixed number of) target points is produced and a 

𝑇𝑅𝐸 value is estimated for each element of this set (see Section 1.4.2). Is the computed 𝑇𝑅𝐸 

dependent upon the target configuration? The 𝐹𝐿𝐸𝑠 in localizing the target points of 

registration are by definition zero in the computational experiments of Chapter 3.     

1.4.2 Methodology for evaluating the non-rigid registration accuracy in the 

present study 

The evaluation protocol for assessing the accuracy of registration algorithms consists of the 

following three steps: (i) all necessary input parameters of the image registration technique 

being examined and associated experiment as well as relevant image data sets are specified; 

(ii) the registration output is compared with ground truth data. This comparison is based on 

defined evaluation metrics which measure the quality of registration in relation to the gold 

standard; and (iii) it is then determined whether the registration technique meets clinical 

requirements or not by ways of a statistical analysis process.     

The evaluation of image registration accuracy in this study follows, after some modifications, 

the approach taken by Guo et al. [75]: 

(i) The preoperative 3𝐷 𝑀𝑅𝐼 segmented prostate gland is the source model of 

registration. For the computational registration experiments of this work, the target 

model is represented by (a) synthetic prostate data in Chapter 3, which simulate the 

output from the surface reconstruction of stereo-endoscopically acquired images; and 

(b) real medical imaging data in Chapter 4. The intraoperative prostate images are 

collected in real time and reveal prostate shape deformations due to externally 

induced physical disturbances and/or intrinsic processes such as peristalsis. The target 

prostate surface usually involves more perturbations such as noise and outliers. 
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(ii) A number of points 𝑑 will be randomly selected from the source. These source points 

and their true correspondences in the target will not participate in the registration 

process. [Their positions in the registered source model will be computed from the 

estimated transformation function and will be compared to their (non-included in the 

registration but known) actual correspondences in the target model, which represent 

the ground truth.] The selected points from the source will be quoted as “target 

markers or points of registration”. 

(iii) The source will be (non-rigidly) registered to the (synthetic or real) target models 

using a non-rigid registration algorithm. The new (transformed) positions of the target 

markers will be calculated from the transformation function.  

(iv) The 𝑇𝑅𝐸 will then be computed after registration using 𝑇𝑅𝐸 = √𝑀𝑆. The 𝑅𝑀𝑆 

distances will be computed between the non-rigidly transformed target markers and 

their correspondences in the ground truth.  

(v) Steps (ii) - (iv) will be repeated each time for a different spatial configuration of 𝑑 

target markers. 

(vi) The mean and standard deviation of the 𝑇𝑅𝐸𝑠 will be calculated to determine the 

suitability of the examined registration algorithm for clinical applications. 

(vii) Steps (ii) - (vi) will be repeated each time for a different algorithm. The corresponding 

mean 𝑇𝑅𝐸𝑠 and standard deviations will be compared and the most accurate 

registration algorithm will be identified and proposed for clinical applications.                 

1.5 Problem statement: thesis objectives and challenges  

Objective of work: to exploit and propose medical image registration algorithms in 3𝐷 that 

can produce an accurate non-rigid registration (𝑇𝑅𝐸 < 3 mm) between a preoperatively 

constructed 𝑀𝑅𝐼 prostate surface model (the source) and an intraoperatively acquired (via the 

da Vinci Robot System) prostate surface model (the target) for 𝐴𝑅 image guidance and 

navigation in prostate surgery.   

 In particular state-of-the-art techniques will be tested to measure their sensitivity to 

prostate surface deformation and other effects and modified to account for occlusion 

and combined effects in the target model.  
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 Synthetic prostate data simulating a wide range of real medical imaging data will be 

designed and the algorithms’ behaviour under different inputs will be examined.  

 A series of validation mechanisms will be designed to determine registration 

accuracy.  

 The solution space for the most accurate algorithms will be defined by examining the 

impact of deformation, noise, outliers, occlusion and combined effects on warping 

accuracy.  

 The algorithm’s suitability in terms of required clinical accuracy for the 𝐴𝑅 

application in question will be determined.      

Of particular importance is to obtain an accurate spatial alignment of the prostate gland, its 

substructure (central gland and peripheral zone) and margins as well as cancer foci, as 

robustly identified on the source surface, onto the target. An accurate macroscopic excision 

of the visible growth (or prostatectomy) will then become possible with 𝐴𝑅 guidance to avoid 

injuries of the pelvic anatomy. While past work on robot-assisted prostate laparoscopic 

surgery also incorporated 𝐴𝑅 image guidance, it did not address prostate tissue deformation 

resulting in large registration errors.     

Challenges: (i) the target model corresponds to a deformed subset of the source and the 

region of overlap is not known a priori; (ii) the size and type of the deformation is not known 

a priori; (iii) no explicit point-to-point correspondences are provided before registration; and 

(iv) the target model may be subject to noise and/or may include outliers.  

1.6 List of contributions 

1. This thesis extended the state-of-the-art non-rigid registration algorithms 

introduced by (i) Jian and Vemuri; (ii) Tsin and Kanade; (iii) Chui and Rangarajan to 

address occlusion of 3𝐷 surfaces.   

2. These registration techniques were applied to synthetic prostate feature 

datasets and the best algorithms for the application system at hand were identified on 

the basis of best performance in registration accuracy. The performance of the best 

algorithms was further exploited (by visual inspection) using real medical imaging 

data.  
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3. A comprehensive series of algorithms were developed with the express 

purpose of designing and constructing suitable synthetic prostate test datasets for 

simulation of an extensive range of real case scenarios. Structured tests were 

developed that could evaluate all candidate algorithms under a wide range of input 

datasets and parameters designating in parallel each algorithm’s solution space.  

4. The importance of using rigorous validation schemes for assessing the 

warping accuracy of non-rigid point-set warping methods was demonstrated via an 

extensive series of computational experiments. 

5. Developed a software application that can be used for the manual initial 

alignment of the prostate surfaces before registration. 

6. The output from this work can be used as a reference guide for 

implementation of 𝐴𝑅 support systems for image guidance and navigation in prostate 

surgery, and future development of more advanced non-rigid registration 𝐴𝑅 

platforms.     

1.7 Organization of material 

This chapter has highlighted the importance of the work at hand from a clinical point of view. 

It gave some background information about rigid and non-rigid registration techniques, 

presented an overview of past work on registration of prostate and other organs’ surfaces, 

identified suitable candidates for application to prostate surfaces, outlined the general 

methodologies used to measure the image registration accuracy, and presented this work’s 

approach in evaluating the non-rigid prostate-surface registration accuracy. The remainder of 

this thesis is organized as follows: 

Chapter 2 gives a brief overview of radial basis functions focusing on the thin-plate splines 

in the context of non-rigid registration in 2𝐷 and 3𝐷. The theoretical methodologies and the 

modifications of the selected non-rigid algorithms are also described. 

Chapter 3 focuses on the design of synthetic test data and presents the computational results 

on registration accuracy of the non-rigid techniques described in Chapter 2 using these data. 

Chapter 4 presents the output of registration on real prostate imaging data.   
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Chapter 5 discusses the computational results of Chapter 3 and identifies the best 

registration algorithms for the application system at hand.   

Chapter 6 concludes this thesis with a summary of the work accomplished plus future work. 
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Chapter 2 

Theory 

  

2.1 Thin-plate splines: a class of radial-basis functions for non-rigid 

registration 

2.1.1 Introduction 

This section starts by providing a brief overview of the radial basis functions (𝑅𝐵𝐹) and their 

methodology emphasizing their usefulness for application to various systems including non-

rigid registration in 2𝐷 and 3𝐷. Section 2.1.1.2 applies the 𝑅𝐵𝐹 formalism in 2𝐷 using a 

special class of 𝑅𝐵𝐹𝑠 termed thin-plate splines. The deformation field of a 2𝐷 non-rigid 

registration is parametrically computed by using 𝑇𝑃𝑆 functions. The optimization problem 

within the context of the 2𝐷 𝑇𝑃𝑆 interpolation scheme is outlined. Section 2.1.1.2 introduces 

the definition of the bending energy of a thin metal plate in 2𝐷 which is further detailed and 

generalized in Section 2.1.1.3. In Section 2.1.2 the 𝑇𝑃𝑆 interpolation scheme is expanded to 

3𝐷. The conditions for an accurate and reliable 3𝐷 non-rigid registration are derived. Section 

2.1.3 presents a mathematical technique that will be extensively used in the present study to 

simplify the computational problem of Section 2.1.2. The notation used throughout Section 

2.1 is given in Appendix 𝓐.1.    

2.1.1.1 Radial basis functions 

Approximations of mathematical functions (termed approximants) are usually used instead of 

their exact mathematical form (approximands). This takes place mainly for functions that (i) 

are represented by an infinite expansion; (ii) may be too computationally expensive (or 

demanding in terms of computer memory and time) to evaluate; and (iii) are unknown or not 

completely known.  

Let’s assume a set 𝑋 of (𝐿 in number) discrete data 𝑥𝑖 defined in a space of 𝑁 > 0 

dimensions, i.e., 𝛸 = {𝑥1, … , 𝑥𝐿} ⊂ ℝ
𝑁. No assumption on the “shape” of 𝑋 is made which 

means that the data 𝑥𝑖 ∈ ℝ
𝑁 can be scattered. Assume also a set 𝐻 comprised of the 
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corresponding known “function values” of a multivariate real-valued function ℎ𝑥 = ℎ(𝑥) ∈

ℝ, i.e., 𝐻 = {ℎ𝑥1 , … , ℎ𝑥𝐿} ⊂ ℝ. The function ℎ is assumed to be defined ∀ 𝑥 ∈ ℝ𝑁 and its 

mathematical form is unknown. Aside from the explicit function values than are contained in 

𝐻 no other values are known. The objective is to find a suitable approximant 𝜗:ℝ𝑁 → ℝ  to 

approximate the unknown approximand ℎ:ℝ𝑁 → ℝ (which is different from finding an 

approximant 𝜗: 𝛸 → ℝ to ℎ: 𝛸 → ℝ).  

One class of methods that are used for such functional approximations are based on radial-

basis-function (𝑅𝐵𝐹) approaches [76]: a suitable approximant 𝜗 can be derived by using 

interpolation, i.e., the function 𝜗 can be expressed as an interpolant over all elements of 𝑋 

where, according to the 𝑅𝐵𝐹 methodology, it is explicitly required that the interpolant 𝜗 is 

matching each ℎ𝑥𝑖, 𝑥𝑖 ∈ 𝑋 exactly. Within the context of 𝑅𝐵𝐹 approximations (or 

interpolations) the approximant 𝜗 can be expressed by a finite linear combination of ϕ(‖𝑥 −

𝑥𝑖‖) where ϕ represents a radially symmetric
1
 basis function and ‖𝑥 − 𝑥𝑖‖ is the Euclidean 

distance between 𝑥𝑖 ∈ 𝑋 and any 𝑥 ∈ ℝ𝑁:   

𝜗(𝑥) = 𝜇(𝑥) +∑𝛼𝑖

𝐿

𝑖=1

ϕ(‖𝑥 − 𝑥𝑖‖)                   (2.1).  

The term 𝜇(𝑥) in Equation (2.1) is polynomial and the 𝛼𝑖’s are real-valued coefficients. Note 

that the data 𝑥𝑖 ∈ ℝ
𝑁 play a twofold role in Equation (2.1): (i) these are the points where the 

function values of the interpolant 𝜗 and approximand ℎ must match exactly; and (ii) they 

form displacement vectors. [It is also possible to approximate a vector-valued approximand 

𝑣:ℝ𝑁 → ℝ𝐾, 𝐾 > 1, by taking a component-wise approach. See Section 2.1.1.2 for 𝑁 = 𝐾 =

2 and Section 2.1.2 for 𝑁 = 𝐾 = 3.]  

The 𝑅𝐵𝐹 methodology can be applied to different occasions (such as 2𝐷 and 3𝐷 image 

mappings, neural network learning processes, measurements of temperature or potential on 

the earth’s surface at scattered meteorological stations …) depending on ϕ(𝑟), which can take 

various forms: 

 The biharmonic spline: ϕ(𝑟) = 𝑟 

 The triharmonic spline: ϕ(𝑟) = 𝑟3 
                                                           
1 The basis function ϕ is by definition radially symmetric when its function value depends 

only on the Euclidean distance of the function’s argument from the origin (making it 

invariant to rotation).   
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 The thin-plate spline (in 2𝐷): ϕ(𝑟) =  𝑟2 log 𝑟 

 The Gaussian: ϕ(𝑟) = 𝑒−𝛽𝑟
2
 

 The multi-quadric: ϕ(𝑟) =  √𝑟2 + 𝑐2… 

In the above equations, 𝑟 represents Euclidean distance and 𝛽 and 𝑐 are positive parameters.  

2.1.1.2 Thin-plate splines in 𝟐𝑫 

The theoretical foundation for the thin-plate splines was set by Duchon [77], Meinguet [78, 

79] and Wahba [80]. Other applications can be found in Refs. 76, 81 and 82. As the 

smoothest interpolators [80, 82], the spline functions are usually invoked in the non-rigid 

registration of 2𝐷 medical imaging data.  

Let’s assume a source 2𝐷 surface and a deformed version of it which is termed the target. 

Assume a set 𝛱 of (𝑛 in number) discrete Cartesian 2𝐷 points 𝑃𝑖 = (𝑥𝑖, 𝑦𝑖), i.e., 𝛱 =

{𝑃1, … , 𝑃𝑛} ⊂ ℝ
2. Let’s also define the vector-valued multivariate function 𝑔𝑃 = 𝑔(𝑥, 𝑦) ∈

ℝ2 whose mathematical form is unknown. The function 𝑔𝑃 has known function values only 

for the 𝛱 set. These are contained in the set 𝒢 = {𝑔𝑃1 , … , 𝑔𝑃𝑛} ⊂ ℝ
2. Let the unknown 

𝑔(𝑥, 𝑦) be the function that models the deformation observed in the 2𝐷 target surface and the 

set 𝒢 be a collection of known (not necessarily regularly spaced) 2𝐷 points of the deformed 

target surface.   

The set 𝛱 can be selected to be any valid [76] reference grid of 𝑛 discrete 2𝐷 points such that 

 𝛱
𝑔
⇒𝒢. By letting the original source model act as reference 2𝐷 space and the set 𝛱 be 

comprised of the matching counterparts of the known 2𝐷 target (termed control) points onto 

the undeformed source dataset, the function 𝑔 becomes a transformation function describing 

the transition from the undeformed source model to the deformed target surface in 2𝐷 [83]. 

In general the set 𝒢 of target control points may consist of all points of the deformed surface 

or a subset of them (scattered or regularly spaced) as in the current case.    

The 𝑇𝑃𝑆 methodology can be used for encapsulating coordinate mappings and for modelling 

deformation of surfaces in 2𝐷 [83]. Let 𝐷 ⊂ ℝ2 be the domain of 𝑔. The vector-valued 

unknown approximand 𝑔:𝐷 → ℝ2 can be approximated by an approximant 𝑓: 𝐷 → ℝ2 

through a 𝑇𝑃𝑆 interpolation scheme [83] which is expressed by  
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𝑓(𝑥, 𝑦) = [𝑥′ 𝑦′] = [1 𝑥 𝑦] [

𝑡𝑥 𝑡𝑦
𝑟𝑥𝑥 𝑟𝑥𝑦
𝑟𝑦𝑥 𝑟𝑦𝑦

] +                                                                                      

[ϕ(‖(𝑥, 𝑦) − (𝑥1, 𝑦1)‖)   ⋯ ϕ(‖(𝑥, 𝑦) − (𝑥𝑛, 𝑦𝑛)‖)] [

𝛾𝑥1 𝛾𝑦1
⋮ ⋮
𝛾𝑥𝑛 𝛾𝑦𝑛

]                      (2.2)              

where the set of scalars {𝑡𝑥, 𝑡𝑦, 𝑟𝑥𝑥, 𝑟𝑥𝑦, 𝑟𝑦𝑥, 𝑟𝑦𝑦} represents the affine transformation 

(translation + rotation) coefficients, the set of real numbers {𝛾𝑥1 , 𝛾𝑦1 , 𝛾𝑥2 , 𝛾𝑦2 , … , 𝛾𝑥𝑛 , 𝛾𝑦𝑛} 

corresponds to the 𝑇𝑃𝑆 warping coefficients, ‖(𝑥, 𝑦) − (𝑥𝑖, 𝑦𝑖)‖ refers to the Euclidean 

distance between the point 𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖) from the set 𝛱 of the 𝑛 source (control) 2𝐷 points 

and any Cartesian point 𝑃 ∈ 𝐷. (Note that 𝐷 represents the set of all 2𝐷 Cartesian points of 

the undeformed source surface.) The 2𝐷 𝑇𝑃𝑆 basis function represents a generalization of the 

1𝐷 cubic spline |𝑥|3 [83]. The 𝑇𝑃𝑆 basis function in 2𝐷, as was mentioned in Section 2.1.1.1 

(see also Section 2.1.1.3 for more details), takes the following form:       

ϕ(𝑟) =  𝑟2 log 𝑟. 

Within the context of 𝑅𝐵𝐹 interpolations it is explicitly required that 𝑓𝑃𝑖 = 𝑔𝑃𝑖 ∀ 𝑃𝑖 ∈  𝛱. 

Only when this requirement is satisfied
2
 can the approximant 𝑓 of Equation (2.2) (based on 

an optimized set of affine and 𝑇𝑃𝑆 parameters) encapsulate accurately the 𝑇𝑃𝑆 (smooth) 

multivariate interpolation of the whole
3
 source surface (i.e., ∀ 𝑃 = (𝑥, 𝑦) ∈ 𝐷) over a fixed 

set of 𝑛 source control points (defined by the set 𝛱 = {𝑃1, … , 𝑃𝑛}) onto the deformed target 

surface (which can only then be approximated accurately by a corresponding set of 𝑓𝑃 =

(𝑥′ 𝑦′) values).   

Equation (2.2) defines a general class of 𝑇𝑃𝑆 interpolants 𝑓 in 2𝐷. Let 𝒳 be the space of 

such interpolants. Each of these forms of 𝑓 is differentiable ∀ 𝑃 = (𝑥, 𝑦) ∈ 𝐷 [80, 83] and is 

characterized by a distinct set of affine transformation and 𝑇𝑃𝑆 warping coefficients. 

                                                           
2
 These constrains lead to an optimized set of affine and 𝑇𝑃𝑆 parameters making the 

approximant 𝑓 of Equation (2.2) an accurate 2𝐷 𝑇𝑃𝑆 interpolator for the source-to-target 

transformation [83].  
3 Specifically, while the source control points are required to match the target control points 

exactly all other 2𝐷 source Cartesian points are mapped to their correspondences in the target 

by smooth 𝑇𝑃𝑆 interpolation.  
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Within the context of the 𝑇𝑃𝑆 formulation [76, 80, 82, 83] the bending energy of a thin metal 

plate at a point (𝑥, 𝑦) is proportional to the quantity  (
𝜕2𝑓

𝜕𝑥2
)
2

+ 2(
𝜕2𝑓

𝜕𝑥𝜕𝑦
)
2

+ (
𝜕2𝑓

𝜕𝑦2
)
2

 at that 

point in 2𝐷. The physical net bending energy of a thin metal plate 𝐼(𝑓) ∀ 𝑃 = (𝑥, 𝑦) ∈ 𝐷 is 

defined (see Section 2.1.1.3) by the space integral of the square of the second order partial 

derivatives of 𝑓 

𝐼(𝑓) = ∬((
𝜕2𝑓

𝜕𝑥2
)

2

+ 2(
𝜕2𝑓

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕2𝑓

𝜕𝑦2
)

2

)𝑑𝑥𝑑𝑦                              (2.3

 

ℝ2

). 

For a given source-to-target transition, only that form of 𝑓 ∈ 𝒳 that can minimize uniquely 

𝐼(𝑓): 𝐷 → ℝ can be considered an accurate spatial mapping solution. This takes place only 

when the set of interpolation conditions 𝑓𝑃𝑖 = 𝑔𝑃𝑖  ∀ 𝑃𝑖 ∈ 𝛱 are satisfied [83].   

However, satisfying such “constraints” is not always a straightforward task, i.e., when only 

the source control points are known and no prior point-to-point correspondences are assumed.  

The optimized form of 𝑓 for a given source-to-target transformation in this case will arise 

from identifying the most probable correspondences of the source control points in the target. 

Only when the true target correspondences are determined will the (measurable) energy 

functional 𝐼(𝑓) ∀ 𝑃 = (𝑥, 𝑦) ∈ 𝐷 be uniquely minimized. This optimization process 

presupposes a good initial alignment between the undeformed source model and the 

deformed target model.  

Summarizing, the optimization process within the context of the 2𝐷 𝑇𝑃𝑆 interpolation 

scheme can be outlined by the following: 

(1) For a given system of 2𝐷 source and target models assume that the set of source 2𝐷 

control points 𝛱 is known and the set of target 2𝐷 control points 𝒢 is unknown. No 

prior point-to-point correspondences are assumed.    

(2) Let the set 𝒲𝑓 represent the affine transformation and 𝑇𝑃𝑆 warping coefficients of the 

optimized form of 𝑓.   

(3) The bending functional 𝐼(𝑓) can be approximated by Equation (2.3).   

(4) The optimization takes places ∀ 𝑃 = (𝑥, 𝑦) ∈ 𝐷 where 𝐷 represents the domain of 𝑓. 

(5) A good initial alignment between the source and the target is assumed. 

The optimization problem is posed by:      argmin𝑓,𝒲𝑓
𝐼(𝑓)      𝑠. 𝑡.   𝑓𝑃𝑖 = 𝑔𝑃𝑖  ∀ 𝑃𝑖 ∈  𝛱.  
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2.1.1.3 Thin-plate bending functional 

A few words of explanation with regards to the definition of the bending functional 𝐼(𝑓) in 

Equation (2.3) are in order. Let 𝑑 designate the number of imaging dimensions and 𝑚 denote 

the total order of the partial derivatives of 𝑓 which obtain the form 
𝜕𝑚𝑓

𝜕𝜌1
𝛼1…𝜕𝜌𝑑

𝛼𝑑
 (𝛼1 +⋯+

𝛼𝑑 = 𝑚) with 𝛼𝑘 being positive integers [they become 
𝜕𝑚𝑓

𝜕𝑥𝛼1𝜕𝑦𝛼2
 (𝛼1 + 𝛼2 = 𝑚) for 𝑑 = 2]. 

The thin-plate penalty functional for 𝑑 = 2 and general 𝑚 is given [80] by   

𝐼𝑚(𝑓) =∑∬(
𝑚
𝑣
) (

𝜕𝑚𝑓

𝜕𝑥𝑣𝜕𝑦𝑚−𝑣
)

2

𝑑𝑥𝑑𝑦

 

ℝ2

𝑚

𝑣=0

                                                         (2.4) 

which obtains the form of Equation (2.3) for 𝑚 = 2. The thin-plate penalty functional for 

general 𝑑,𝑚 is given [80, 82] by 

𝐼𝑚
𝑑 (𝑓) = ∑

𝑚!

𝛼1! … 𝛼𝑑!
∫ …∫ (

𝜕𝑚𝑓

𝜕𝜌1
𝛼1 …𝜕𝜌𝑑

𝛼𝑑
)

2∞

−∞

∞

−∞𝛼1+⋯+𝛼𝑑=𝑚

∏𝑑𝜌𝑗
𝑗

          (2.5). 

When choosing 𝑚 and 𝑑, the condition 2𝑚 − 𝑑 > 0 must be satisfied [80, 82]. For 𝑑 =

3,𝑚 = 2 (i.e., 2𝑚 − 𝑑 = 1 > 0) the thin-plate penalty functional becomes  

𝐼2
3(𝑓) =∭((

𝜕2𝑓

𝜕𝑥2
)

2

+ (
𝜕2𝑓

𝜕𝑦2
)

2

+ (
𝜕2𝑓

𝜕𝑧2
)

2

+ 2(
𝜕2𝑓

𝜕𝑥𝜕𝑦
)

2

+ 2(
𝜕2𝑓

𝜕𝑥𝜕𝑧
)

2 

ℝ3

+ 2(
𝜕2𝑓

𝜕𝑦𝜕𝑧
)

2

)𝑑𝑥𝑑𝑦𝑑𝑧                                                            (2.6). 

The 𝑇𝑃𝑆 basis functions, as was mentioned in Section 2.1.1.2, are a special class of 𝑅𝐵𝐹𝑠. 

Their linear combinations are used to minimize the physical bending energy of a thin metal 

plate subject to interpolation conditions [76, 77, 82]. The 𝑇𝑃𝑆 basis functions depend solely 

upon the total order 𝑚 of the partial derivatives of 𝑓 in 𝐼𝑚
𝑑 (𝑓) and the number of imaging 

dimensions 𝑑 [See Ref. 80 pp. 31–32 and Ref. 82 pp. 193-195 for an explicit mathematical 

presentation.]. The (unique) solution of minimizing the functional in (2.5) is given in 

Appendix 𝓐.2 based on the mathematical work in Wahba [80] and Rohr [82].  

Table 2.1 lists the forms of the 𝑇𝑃𝑆 basis functions for various (𝑚, 𝑑) combinations. For 

𝑑 = 2,𝑚 = 2 and neglecting constants ϕ(𝑟) =  𝑟2 log 𝑟, which is the same form of 𝑇𝑃𝑆 basis 
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function that was used in Section 2.1.1.2. Linear combinations of such 𝑇𝑃𝑆𝑠 were used in 

that section to minimize the bending functional of Equation (2.3) (which was derived for 

𝑑 = 2,𝑚 = 2). Upon going to higher values of 𝑚 and for 𝑑 = 2 (𝑠. 𝑡. 2𝑚 − 𝑑 > 0) the 

bending functional 𝐼𝑚(𝑓) of Equation (2.4) obtains more accurate energy expressions which 

in turn require different forms of 𝑇𝑃𝑆𝑠 as shown in Table 2.1 (and could nominally lead to 

more accurate optimizations of the form described at the end of Section 2.1.1.2).  

The following section extends the 𝑇𝑃𝑆 formulation in 3𝐷 as this work involves 

transformations to deformed 3𝐷 prostate surfaces.  

 

 𝑑 = 1 𝑑 = 2 𝑑 = 3 𝑑 = 4 

𝑚 = 1 (−1 2⁄ )𝑟 
   

𝑚 = 2 (1 12⁄ )𝑟3 (1 8𝜋⁄ )𝑟2 log 𝑟 (−1 8𝜋⁄ )𝑟  

𝑚 = 3 (−1 240⁄ )𝑟5 (−1 128𝜋⁄ )𝑟4 log 𝑟 (1 96𝜋⁄ )𝑟3 (1 64𝜋2⁄ )𝑟2 log 𝑟 

𝑚 = 4 (1 10080⁄ )𝑟7 (1 4608𝜋⁄ )𝑟6 log 𝑟 (−1 2880𝜋⁄ )𝑟5 (−1 1536𝜋2⁄ )𝑟4 log 𝑟 

Table 2.1: 𝑇𝑃𝑆 basis functions ϕ(𝑟) across an increasing total order 𝑚 of the partial 

derivatives of 𝑓 in 𝐼𝑚
𝑑 (𝑓) [see Equation (2.5)] and an increasing number of 

imaging dimensions 𝑑. Taken from Ref. 82.    

 

2.1.2 Thin-plate splines in 𝟑𝑫 

Let’s assume an undeformed 3𝐷 source model 𝑀0 comprised of (𝑚 in number) 𝑞 = (𝑥, 𝑦, 𝑧) 

points, which in matrix form can be expressed by 𝑀0 = (𝑞1, … , 𝑞𝑚)
𝑇 ∈ ℝ𝑚×3. Suppose that 

the target model 𝑆 represents a deformed version of 𝑀0 such that 𝑆 = (𝑡1, … , 𝑡𝑚)
𝑇 ∈ ℝ𝑚×3 

where 𝑡 ∈ ℝ3 depicts a point of the deformed surface 𝑆. The set of (𝑛 in number) source 

control points is denoted by 𝛺 = {𝑃1, … , 𝑃𝑛} ⊆ {𝑞1, … , 𝑞𝑚} where 𝑃𝑖 = (𝑥𝑖
𝑃, 𝑦𝑖

𝑃, 𝑧𝑖
𝑃): 𝑖 ∈

{1, … , 𝑛} represents a source control point.     
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The vector-valued function 𝑔(𝑥, 𝑦, 𝑧) ∈ ℝ3 is the unknown transformation function that 

causes the 𝑀0 → 𝑆 transition. The domain
4
 of 𝑔 is defined by 𝐷 = {𝑞1, … , 𝑞𝑚} ⊂ ℝ

3. The set 

of 𝑛 target control points is denoted by 𝒢 = {𝑔𝑃1 , … , 𝑔𝑃𝑛} ⊆ 𝑆 where 𝑔𝑃𝑖 = 𝑔(𝑥𝑖
𝑃, 𝑦𝑖

𝑃, 𝑧𝑖
𝑃),

∀ 𝑃𝑖 ∈ 𝛺.  The elements of 𝒢 are the only known function values of 𝑔.  

The vector-valued unknown approximand 𝑔:𝐷 → ℝ3 can be approximated by an 

approximant 𝑓: 𝐷 → ℝ3 by way of 𝑇𝑃𝑆 interpolation in 3𝐷. The 3𝐷 non-rigid 𝑇𝑃𝑆 

coordinate mapping is encapsulated by  

𝑓(𝑥, 𝑦, 𝑧) = [𝑥′   𝑦′   𝑧′] =                                                                                                                          

= [1   𝑥   𝑦   𝑧]

[
 
 
 
𝛼𝑥 𝛼𝑦   𝛼𝑧
𝛽𝑥𝑥 𝛽𝑥𝑦 𝛽𝑥𝑧
𝛽𝑦𝑥 𝛽𝑦𝑦 𝛽𝑦𝑧
𝛽𝑧𝑥 𝛽𝑧𝑦 𝛽𝑧𝑧 ]

 
 
 

+ [𝑉1 … 𝑉𝑛]

[
 
 
 
 
 
𝜃𝑥1 𝜃𝑦1 𝜃𝑧1
𝜃𝑥2 𝜃𝑦2 𝜃𝑧2
𝜃𝑥3 𝜃𝑦3 𝜃𝑧3
⋮ ⋮ ⋮
𝜃𝑥𝑛 𝜃𝑦𝑛 𝜃𝑧𝑛]

 
 
 
 
 

                         (2.7)         

where 𝑉𝑖 = ϕ(‖𝑞 − 𝑃𝑖‖) = ϕ(‖(𝑥, 𝑦, 𝑧) − (𝑥𝑖
𝑃, 𝑦𝑖

𝑃, 𝑧𝑖
𝑃)‖), ∀ 𝑃𝑖 ∈ 𝛺 and for any 𝑞 ∈ 𝐷. The 

𝑇𝑃𝑆 basis function in 3𝐷 and for 𝑚 = 2 takes the form, neglecting the constant, ϕ(𝑟) =

𝑟 (see Table 2.1). The quantity ‖(𝑥, 𝑦, 𝑧) − (𝑥𝑖
𝑃, 𝑦𝑖

𝑃, 𝑧𝑖
𝑃)‖ is the Euclidean distance between 

the point 𝑃𝑖 = (𝑥𝑖
𝑃, 𝑦𝑖

𝑃, 𝑧𝑖
𝑃): 𝑖 ∈ {1, … , 𝑛} from the set 𝛺 of the 𝑛 source (control) 3𝐷 points  

and any point 𝑞 ∈ 𝐷. The global affine (linear) transformation component of 𝑓 in Equation 

(2.7) is described by the set of real-valued coefficients {𝛼𝑥, 𝛼𝑦,  𝛼𝑧 , 𝛽𝑥𝑥, 𝛽𝑥𝑦, … , 𝛽𝑧𝑥, 𝛽𝑧𝑦, 𝛽𝑧𝑧} 

and the local non-linear (non-rigid) deformation component is depicted by the set of scalars 

{𝜃𝑥1 , 𝜃𝑦1 , 𝜃𝑧1 , … , 𝜃𝑥𝑛 , 𝜃𝑦𝑛 , 𝜃𝑧𝑛} which correspond to the 𝑇𝑃𝑆 warping coefficients. See also 

Figure 2.1.     

Equation (2.7) can be rewritten ∀ 𝑞 ∈ {𝑞1, … , 𝑞𝑚} by 

𝑓(𝑀0) =

[
 
 
 
 
𝑥1
′ 𝑦1

′ 𝑧1
′

𝑥2
′ 𝑦2

′ 𝑧2
′

𝑥3
′ 𝑦3

′ 𝑧3
′

⋮ ⋮ ⋮
𝑥𝑚
′ 𝑦𝑚

′ 𝑧𝑚
′ ]
 
 
 
 

=

[
 
 
 
 
1 𝑥1 𝑦1 𝑧1
1 𝑥2 𝑦2 𝑧2
1 𝑥3 𝑦3 𝑧3
⋮ ⋮ ⋮ ⋮
1 𝑥𝑚 𝑦𝑚 𝑧𝑚]

 
 
 
 

[
 
 
 
𝛼𝑥 𝛼𝑦   𝛼𝑧
𝛽𝑥𝑥 𝛽𝑥𝑦 𝛽𝑥𝑧
𝛽𝑦𝑥 𝛽𝑦𝑦 𝛽𝑦𝑧
𝛽𝑧𝑥 𝛽𝑧𝑦 𝛽𝑧𝑧 ]

 
 
 

+                                             

                                                           
4
 In general the function 𝑔 may be defined ∀ (𝑥, 𝑦, 𝑧) ∈ ℝ3. In this section the mathematical 

formulation is tailored specifically to non-rigid registration between full 3𝐷 prostate surfaces. 
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[

𝑈11 𝑈12 𝑈13 ⋯ 𝑈1𝑛
𝑈21 ⋯ ⋯ ⋯ 𝑈2𝑛
⋮ ⋯ ⋯ ⋯ ⋮
𝑈𝑚1 𝑈𝑚2 𝑈𝑚3 ⋯ 𝑈𝑚𝑛

]

[
 
 
 
 
 
𝜃𝑥1 𝜃𝑦1 𝜃𝑧1
𝜃𝑥2 𝜃𝑦2 𝜃𝑧2
𝜃𝑥3 𝜃𝑦3 𝜃𝑧3
⋮ ⋮ ⋮
𝜃𝑥𝑛 𝜃𝑦𝑛 𝜃𝑧𝑛]

 
 
 
 
 

                                  (2.8) 

where  𝑈𝑖𝑗 = ϕ(‖𝑞𝑖 − 𝑃𝑗‖). A more compact form of Equation (2.8) can be given by 

                                    𝑓(𝑀0) = 𝑀 = [1|𝑀0]𝐸
𝑇 + 𝑈𝑄                                           (2.9) 

 

        

   Figure 2.1: The source model 𝑀0 and its deformed version, the target model 𝑆. The source 

control points are depicted by 𝑃𝑖 and the target control points by 𝑔𝑃𝑖(only four 

pairs of control points are shown. The general number of pairs of control 

points that is assumed in the text is 𝑛). The approximant 𝑓 encapsulates the 

𝑇𝑃𝑆 interpolation of the source surface 𝑀0 over a fixed set of source control 

points onto the deformed target surface 𝑆. Within the context of 𝑇𝑃𝑆 

interpolations it is explicitly required that 𝑓𝑃𝑖 = 𝑔𝑃𝑖 ∀ 𝑃𝑖 ∈  {𝑃1, … , 𝑃𝑛}. See 

text for details.  

 

where the 𝑚 × 3 matrix 𝑀 defined by  
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                                         𝑀 =

[
 
 
 
 
𝑥1
′ 𝑦1

′ 𝑧1
′

𝑥2
′ 𝑦2

′ 𝑧2
′

𝑥3
′ 𝑦3

′ 𝑧3
′

⋮ ⋮ ⋮
𝑥𝑚
′ 𝑦𝑚

′ 𝑧𝑚
′ ]
 
 
 
 

                                      (2.10) 

denotes an approximation of the target 3𝐷 model 𝑆 (it represents the transformed source 

model in non-rigid point set registration), the 𝑚 × 4 matrix [1|𝑀0] relates to 

                           [1|𝑀0] =

[
 
 
 
 
1 𝑥1 𝑦1 𝑧1
1 𝑥2 𝑦2 𝑧2
1 𝑥3 𝑦3 𝑧3
⋮ ⋮ ⋮ ⋮
1 𝑥𝑚 𝑦𝑚 𝑧𝑚]

 
 
 
 

                                  (2.11), 

the 3 × 4 matrix 𝐸 which represents the affine transformation coefficients 

[translation {𝛼𝑖} plus rotation {𝛽𝑖𝑗}] is associated with  

                                           𝐸 = [

𝛼𝑥 𝛽𝑥𝑥 𝛽𝑦𝑥 𝛽𝑧𝑥
𝛼𝑦 𝛽𝑥𝑦 𝛽𝑦𝑦 𝛽𝑧𝑦
𝛼𝑧 𝛽𝑥𝑧 𝛽𝑦𝑧 𝛽𝑧𝑧

]                               (2.12),              

the 𝑚 × 𝑛 matrix 𝑈 which is termed basis matrix corresponds to  

            𝑈 = [

𝑈11 𝑈12 𝑈13 ⋯ 𝑈1𝑛
𝑈21 ⋯ ⋯ ⋯ 𝑈2𝑛
⋮ ⋯ ⋯ ⋯ ⋮
𝑈𝑚1 𝑈𝑚2 𝑈𝑚3 ⋯ 𝑈𝑚𝑛

]                               (2.13) 

and the 𝑛 × 3 matrix 𝑄 which  contains the 𝑇𝑃𝑆 parameters is given by 

                         𝑄 =

[
 
 
 
 
 
𝜃𝑥1 𝜃𝑦1 𝜃𝑧1
𝜃𝑥2 𝜃𝑦2 𝜃𝑧2
𝜃𝑥3 𝜃𝑦3 𝜃𝑧3
⋮ ⋮ ⋮
𝜃𝑥𝑛 𝜃𝑦𝑛 𝜃𝑧𝑛]

 
 
 
 
 

                                          (2.14). 

The 3𝐷 𝑇𝑃𝑆 interpolation scheme of Equation (2.8) is subject to the constraints 𝑓𝑃𝑖 = 𝑔𝑃𝑖 

∀ 𝑃𝑖 ∈ 𝛺. Suppose that the affine transformation component of the 𝑇𝑃𝑆 energy function 𝑓 of 

Equation (2.8) is zero. Equation (2.8) then ∀ 𝑃𝑖 ∈ 𝛺 becomes       
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[
 
 
 
 
 
𝑔𝑃1
𝑔𝑃2
𝑔𝑃3
𝑔𝑃4
⋮
𝑔𝑃𝑛]
 
 
 
 
 

=

[
 
 
 
 
 𝑥1
𝑃′ 𝑦1

𝑃′ 𝑧1
𝑃′

𝑥2
𝑃′ 𝑦2

𝑃′ 𝑧2
𝑃′

𝑥3
𝑃′ 𝑦3

𝑃′ 𝑧3
𝑃′

⋮ ⋮ ⋮

𝑥𝑛
𝑃′ 𝑦𝑛

𝑃′ 𝑧𝑛
𝑃′]
 
 
 
 
 

=                                                                                                                                      

= [

0 ϕ(‖𝑃1 − 𝑃2‖) ϕ(‖𝑃1 − 𝑃3‖) ⋯ ϕ(‖𝑃1 − 𝑃𝑛‖)

ϕ(‖𝑃2 − 𝑃1‖) ⋯ ⋯ ⋯ ϕ(‖𝑃2 − 𝑃𝑛‖)
⋮ ⋯ ⋯ ⋯ ⋮

ϕ(‖𝑃𝑛 − 𝑃1‖) ϕ(‖𝑃𝑛 − 𝑃2‖) ϕ(‖𝑃𝑛 − 𝑃3‖) ⋯ 0

]

[
 
 
 
 
 
𝜃𝑥1 𝜃𝑦1 𝜃𝑧1
𝜃𝑥2 𝜃𝑦2 𝜃𝑧2
𝜃𝑥3 𝜃𝑦3 𝜃𝑧3
⋮ ⋮ ⋮
𝜃𝑥𝑛 𝜃𝑦𝑛 𝜃𝑧𝑛]

 
 
 
 
 

        (2.15).  

Equation (2.15) can be written in a more compact way by 

                                                            𝑇 = 𝛷𝑄                                                         (2.16)                  

where the 𝑛 × 3 matrix 𝑇 includes the coordinates of the target control points
5
 {𝑔𝑃𝑖} or 

{(𝑥𝑖
𝑃′, 𝑦𝑖

𝑃′, 𝑧𝑖
𝑃′) } ∀ 𝑖 ∈ {1,… , 𝑛} and is expressed by 

                        𝑇 =

[
 
 
 
 
 𝑥1
𝑃′ 𝑦1

𝑃′ 𝑧1
𝑃′

𝑥2
𝑃′ 𝑦2

𝑃′ 𝑧2
𝑃′

𝑥3
𝑃′ 𝑦3

𝑃′ 𝑧3
𝑃′

⋮ ⋮ ⋮

𝑥𝑛
𝑃′ 𝑦𝑛

𝑃′ 𝑧𝑛
𝑃′]
 
 
 
 
 

                                                (2.17), 

the matrix 𝑄 is given by Equation (2.14) and the matrix 𝛷 ∈ ℝ𝑛×𝑛 is defined by  

𝛷 = [

ϕ(𝑟11) ϕ(𝑟12) ϕ(𝑟13) ⋯ ϕ(𝑟1𝑛)

ϕ(𝑟21) ⋯ ⋯ ⋯ ϕ(𝑟2𝑛)
⋮ ⋯ ⋯ ⋯ ⋮

ϕ(𝑟𝑛1) ϕ(𝑟𝑛2) ϕ(𝑟𝑛3) ⋯ ϕ(𝑟𝑛𝑛)

]                              (2.18) 

where 𝛷𝑖𝑗 = 𝛷(𝑃𝑖 , 𝑃𝑗) = ϕ(𝑟𝑖𝑗) and  𝑟𝑖𝑗 = ‖𝑃𝑖 − 𝑃𝑗‖ = ‖(𝑥𝑖
𝑃, 𝑦𝑖

𝑃, 𝑧𝑖
𝑃) − (𝑥𝑗

𝑃 , 𝑦𝑗
𝑃 , 𝑧𝑗

𝑃)‖. Note 

that ϕ(𝑟11) = ⋯ = ϕ(𝑟𝑛𝑛) = 0 and ϕ(𝑟𝑖𝑗) = 𝑟𝑖𝑗. The matrix 𝛷 of Equation (2.18) is a 𝑇𝑃𝑆 

kernel matrix in 3𝐷 (symmetric, conditionally positive definite and hence invertible). 𝛷 

describes the internal structure of the source control point set.   

If the affine transformation component of the 𝑇𝑃𝑆 energy function 𝑓 of Equation (2.8) is 

zero, then the 𝑛 × 3 matrix 𝑄 of the 𝑇𝑃𝑆 parameters may be computed directly considering 

                                                           
5
 Note that 𝑔(𝑥𝑖

𝑃, 𝑦𝑖
𝑃, 𝑧𝑖

𝑃) = 𝑓(𝑥𝑖
𝑃, 𝑦𝑖

𝑃, 𝑧𝑖
𝑃) = (𝑥𝑖

𝑃′, 𝑦𝑖
𝑃′, 𝑧𝑖

𝑃′) ∀ 𝑃𝑖 ∈ 𝛺. 
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that 𝛷𝑄 = 𝑇 ⇒  𝑄 = 𝛷−1𝑇. If the affine part of 𝑓 is nonzero, then the 𝑛 × 4 matrix 𝐴 given 

by 

                                       𝐴 =

[
 
 
 
 
 
1 𝑥1

𝑃 𝑦1
𝑃 𝑧1

𝑃

1 𝑥2
𝑃 𝑦2

𝑃 𝑧2
𝑃

1 𝑥3
𝑃 𝑦3

𝑃 𝑧3
𝑃

⋮ ⋮ ⋮ ⋮
1 𝑥𝑛

𝑃 𝑦𝑛
𝑃 𝑧𝑛

𝑃]
 
 
 
 
 

= [1|𝑃]                                 (2.19) 

must be incorporated
6
. The 𝑛 × 3 matrix 𝑃 in (2.19) represents 𝑛 source control points. 

Specifically, let’s define [83] the (𝑛 + 4) × (𝑛 + 4) matrix 𝛹  

                               𝛹 = [
𝛷 𝐴
𝐴𝑇 0

]                                                        (2.20) 

where 0 represents a  4 × 4 zero matrix. The last four rows of 𝛹 make sure that the function 

𝑓 of Equation (2.8) is regularized at infinity, i.e., the affine subspace of the 𝑇𝑃𝑆 warping 

space vanishes at infinity separating from the non-affine subspace (see Ref. 83 and Section 

2.1.3). Let us also define the (𝑛 + 4) × 3 matrix 𝛥 by 

           𝛥 =

[
 
 
 
 
 
 
 
 
 
𝜃𝑥1 𝜃𝑦1 𝜃𝑧1
𝜃𝑥2 𝜃𝑦2 𝜃𝑧2
𝜃𝑥3 𝜃𝑦3 𝜃𝑧3
⋮ ⋮ ⋮
𝜃𝑥𝑛 𝜃𝑦𝑛 𝜃𝑧𝑛
𝛼𝑥 𝛼𝑦  𝛼𝑧
𝛽𝑥𝑥 𝛽𝑥𝑦 𝛽𝑥𝑧
𝛽𝑦𝑥 𝛽𝑦𝑦 𝛽𝑦𝑧
𝛽𝑧𝑥 𝛽𝑧𝑦 𝛽𝑧𝑧]

 
 
 
 
 
 
 
 
 

                                         (2.21) 

where the first 𝑛 rows of 𝛥 correspond to the matrix 𝑄 of Equation (2.14) while the 

remaining four rows are the affine transformation coefficients (translation plus rotation) as 

defined in matrix 𝐸 (specifically 𝐸𝑇 for an exact correspondence) of Equation (2.12).  Finally 

let the “augmented” form of 𝑇 of Equation (2.17) be defined [83] by the (𝑛 + 4) × 3 matrix 

𝛶 

                                                           
6
 Note that the set {𝑃𝑖} = {(𝑥𝑖

𝑃, 𝑦𝑖
𝑃, 𝑧𝑖

𝑃)}: ∀ 𝑖 ∈ {1,… , 𝑛} represents 𝑛 source control points.   
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       𝛶 = [
𝑇
0
] =

[
 
 
 
 
 
 
 
 𝑥1
𝑃′

𝑥2
𝑃′

⋮

𝑥𝑛
𝑃′

0
0
0
0

𝑦1
𝑃′

𝑦2
𝑃′

⋮

𝑦𝑛
𝑃′

0
0
0
0

𝑧1
𝑃′

𝑧2
𝑃′

⋮

𝑧𝑛
𝑃′

0
0
0
0 ]
 
 
 
 
 
 
 
 

                                       (2.22). 

Thus the following system of linear equations holds   

𝛹𝛥 = 𝛶 
𝐸𝑞𝑠.: (2.20),(2.21),(2.22)
⇒                  𝛥 = 𝛹−𝟏𝛶                (2.23). 

The (𝑛 + 4) × 3 matrix 𝛥 in (2.23), produced by solving the system of equations via standard 

routines, satisfies the set of constraints 𝑓𝑃𝑖 = 𝑔𝑃𝑖 ∀ 𝑃𝑖 ∈  𝛱 for the general case of a non-

vanishing affine component of 𝑓 of Equation (2.8). For these values of affine and 𝑇𝑃𝑆 

parameters the function 𝑓 is guaranteed to uniquely minimize the bending functional of 

Equation (2.6) where 𝑑 = 3 and 𝑚 = 2. 

2.1.3 𝑻𝑷𝑺 non-rigid transformation model in 𝟑𝑫 

Note that 𝐼2
3(𝑓) ∝ trace(𝑄𝑇𝛷𝑄) [83]. Note also that 𝛷 is a conditionally positive definite 

matrix [80], i.e., 𝜃𝑇𝛷𝜃 > 0 ∀ 𝜃𝜖𝐻𝑁 where 𝐻𝑁 = {𝜃𝜖ℝ𝑁 : ∑ 𝜃𝑖 = 0
𝑁
𝑖=1 }. By satisfying the 

boundary condition  

                                  𝐴𝑇𝑄 = 𝑄𝑇𝐴 = 𝑄𝑇[1|𝑃] = 0                (2.24)  

the affine subspace of the 𝑇𝑃𝑆 warping vanishes at infinity and 𝛷 is guaranteed to be 

conditionally positive definite (since, for the column vectors of 𝑄, it holds that ∑ 𝜃𝑥𝑖
𝑛
𝑖=1 =

∑ 𝜃𝑦𝑖
𝑛
𝑖=1 = ∑ 𝜃𝑧𝑖 = 0

𝑛
𝑖=1 ). To simplify the computational part of the problem the null space of 

𝐴𝑇, Null(𝐴𝑇), (or equivalently the left null space of 𝐴) must be found. The following 

approach is proposed in the literature: (i) separation of the 𝑇𝑃𝑆 warping space into its affine 

and non-affine subspaces: 

                                            𝑄 = 𝒩𝜓                   (2.25) 

where, for 𝑛 being the number of source control points, 𝜓 ∈ ℝ(𝑛−4)×3 relates to the non-

affine part and 𝒩 ∈ ℝ𝑛×(𝑛−4) represents the left null space of 𝐴 [ 𝒩𝑇𝐴 = 0] and is 
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associated with the affine subspace of the 𝑇𝑃𝑆 warping; followed by (ii) full rank 𝓠𝓡 

decomposition of the rectangular matrix 𝐴 [84]: 

𝐴 = 𝓠𝓡 = [𝓠𝟏|𝓠𝟐] [
𝓡𝟏
𝟎
] (= 𝓠𝟏𝓡𝟏)              (2.26) 

where 𝓠𝟏 ∈ ℝ
𝑛×4 contains the first four [= rank(𝐴)] columns of the orthogonal 𝑛 × 𝑛 matrix 

𝓠, 𝓠𝟐 ∈ ℝ
𝑛×(𝑛−4) corresponds to the last (𝑛 − 4) columns of 𝓠 and 𝓡 = [

𝓡𝟏
𝟎
] ∈ ℝ𝑛×4 

represents an upper triangular matrix with 𝓡𝟏 ∈ ℝ
4×4. Also 𝓠1

𝑇𝓠𝟏 = 𝓠𝟏𝓠1
𝑇 = 𝐼4 and 

𝓠2
𝑇𝓠𝟐 = 𝓠𝟐𝓠2

𝑇 = 𝐼𝑛−4. 

It follows, by theorem, that the (𝑛 − 4) columns of 𝓠𝟐 correspond to the left null space of 𝐴, 

i.e., (𝑖) ∧ (𝑖𝑖) ⇒ 𝒩 = 𝓠𝟐. The 𝑛 columns of  𝓠 make an orthonormal set of basis vectors for 

the column space of 𝐴, 𝐶(𝐴), and specifically those that are contained in 𝓠𝟐 satisfy the 

boundary condition in  (2.24). Hence,  

 Equation (2.9)
(2.25)
→   𝑓(𝑀0) = 𝑀 

                                                                                          = [1|𝑀0]𝐸
𝑇 + 𝑈𝒩𝜓    

                                                                                                              = [1|𝑀0|𝑈𝒩] [
𝐸𝑇

𝜓
]          (2.27)  

where it becomes apparent that the total number of unknowns amounts to  𝑛 × 3.  

2.2 Gaussian mixtures model incorporated in the non-rigid point set 

registration framework  

2.2.1 Introduction 

This section provides a brief overview of the 𝒢ℳℳ and highlights its merits as a means of 

representing source and target input point sets in non-rigid registration frameworks. The 

current work expands on that algorithmic variant [53] that formulates non-rigid registration as 

the process of aligning two Gaussian input models by minimizing the 𝐿2 similarity (distance) 

measure between them. The work in [53] was motivated by the closed-form expression of 𝐿2 

and, due to this, the computational efficiency of the produced multiply-linked registration 

scheme. The modified version of the registration algorithm will be tested on synthetic 



73 
 

prostate data and will be extensively validated through a series of computational experiments 

in Chapter 3. 

2.2.2 Gaussian mixture model 

Let {𝓜𝟎,𝓜} ∈ ℝ
𝑚×3 such that the source model point set 𝓜𝟎 = (𝑞1, … , 𝑞𝑚)

𝑇 and the 

moving or transformed source model set 𝓜= (𝑣1, … , 𝑣𝑚)
𝑇, and 𝓢 ∈ ℝ𝑠×3 be the target set 

𝓢 = (𝑡1, … , 𝑡𝑠)
𝑇 where in an asymmetric point matching case 𝑚 ≠ 𝑠. Each member of 

{𝓜𝟎,𝓜, 𝓢} is treated as a collection of unstructured Cartesian points bearing no prior 

information beyond their spatial coordinates.  

The objective is to compute that non-rigid body transformation function ℱ:ℝ3 → ℝ3 that 

yields the optimal alignment between 𝓜= ℱ(𝓜𝟎; 𝜃) and 𝓢 following an iterating cycle of 

processes that augment accuracy of registration, until convergence. Registration does not 

depend upon the establishment of explicit prior point correspondences between 𝓜 and 𝓢. 

The parameterized spatial transformation ℱ is modelled by 𝑇𝑃𝑆 functions (see Section 2.1).  

Let the training sets {𝑣(𝑖), 𝑖 = 1,… ,𝑚} and {𝑡(𝑖), 𝑖 = 1,… , 𝑠} be constructed from 𝓜 (or 

𝓜𝟎) and 𝓢, respectively, where 𝑣(𝑖) and 𝑡(𝑖) represent random variables. Let 

𝑡(𝑖) ~ Multinomial Distribution(𝜑) = ∏ 𝜑ℎ
𝑠
ℎ=1  where 𝜑ℎ ∈ {𝜑1, … , 𝜑𝑠} represents the 

probability that the random variable 𝑡(𝑖) will obtain each of the possible discrete values, i.e., 

𝜑ℎ = 𝑃(𝑡
(𝑖) = 𝑡(ℎ); 𝜑), 0 ≤ 𝜑ℎ ≤ 1, and ∑ 𝜑ℎ

𝑠
ℎ=1 = 1. The bivariate joint probability 

distribution for the discrete variables (𝑣(𝑖), 𝑡(𝑖)) is given by 

𝑃(𝑣(𝑖), 𝑡(𝑖)) = 𝑃(𝑣(𝑖)|𝑡(𝑖))𝑃(𝑡(𝑖))           (2.28). 

We assume that the 𝑣(𝑖)′s are distributed 𝐼𝐼𝐷 (independently and identically distributed) 

according to the 3𝐷 multivariate normal distribution  

                                 𝑣(𝑖)|𝑡(𝑖) = 𝑡(ℎ);  𝜇ℎ, 𝛴ℎ ~ 𝓝𝑣(𝑖)
(𝜇ℎ, 𝛴ℎ)          (2.29) 

where 𝓝𝑣(𝑖) denotes the density of the vector-valued random variable 𝑣(𝑖) which is 

conditioned on the randomly chosen, from the set {𝑡(1), … , 𝑡(𝑠)}, 𝑡(𝑖) = 𝑡(ℎ) and is given by 

𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(ℎ);  𝜇ℎ, 𝛴ℎ ) =
1

√𝑑𝑒𝑡(2𝜋𝛴ℎ)
𝑒𝑥𝑝 [−

1

2
(𝑣(𝑖) − 𝜇ℎ)

𝑇
𝛴ℎ
−1(𝑣(𝑖) − 𝜇ℎ)]      
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                                                          =
1

√(2𝜋)3|𝛴ℎ|
𝑒𝑥𝑝 [−

1

2
(𝑣(𝑖) − 𝜇ℎ)

𝑇
𝛴ℎ
−1(𝑣(𝑖) − 𝜇ℎ)] (2.30) 

where for the mean vector 𝜇ℎ ∈ ℝ
3 it holds that 𝐸(𝑣(𝑖)) = 𝜇ℎ. 𝛴ℎ ∈ ℝ

3×3 represents the 

covariance matrix and is symmetric and positive semi-definite. Hence each 𝑣(𝑖) can be 

distributed as a mixture of Gaussian distributions by the probability density function 

   𝑃(𝑣(𝑖); 𝜑, 𝜇, 𝛴) = ∑𝜑ℎ

𝑠

ℎ=1

 𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(ℎ); 𝜇ℎ, 𝛴ℎ)                                                        

                                    = ∑𝜑ℎ
1

√(2𝜋)3|𝛴ℎ|
𝑒𝑥𝑝 [−

1

2
(𝑣(𝑖) − 𝜇ℎ)

𝑇
𝛴ℎ
−1(𝑣(𝑖) − 𝜇ℎ)] (2.31)

𝑠

ℎ=1

. 

This model is called mixtures of Gaussians.                                               

Due to the independence assumption on the 𝑣(𝑖)′s, the likelihood function becomes 

                                       𝐿(𝜑, 𝜇, 𝛴) = 𝑃(𝓜;𝓢, 𝜃, 𝜑, 𝜇, 𝛴) 

             =∏𝑃(ℱ(𝑞(𝑖); 𝜃); 𝜑, 𝜇, 𝛴)

𝑚

𝑖=1

        

                  =∏𝑃(𝑣(𝑖); 𝜑, 𝜇, 𝛴)

𝑚

𝑖=1

         (2.32).   

The maximum likelihood principle requires a maximum value of 𝐿(𝜑, 𝜇, 𝛴) or log 𝐿(𝜑, 𝜇, 𝛴):  

    𝑙(𝜑, 𝜇, 𝛴) = log 𝐿(𝜑, 𝜇, 𝛴) 

    =  log∏𝑃(𝑣(𝑖); 𝜑, 𝜇, 𝛴)                                                                               

𝑚

𝑖=1

 

=∑log𝑃(𝑣(𝑖); 𝜑, 𝜇, 𝛴)

𝑚

𝑖=1

                                                                              

=∑log( ∑ 𝑃(𝑣(𝑖)|𝑡(𝑗); 𝜇, 𝛴)

𝑡(𝑠)

𝑡(𝑗)=𝑡(1)

 𝑃(𝑡(𝑗); 𝜑))

𝑚

𝑖=1

           (2.33).         
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However, the maximum likelihood estimates of the (𝜑, 𝜇, 𝛴) parameters cannot be obtained 

in closed form by setting to zero the derivatives of (2.33) with respect to (𝜑, 𝜇, 𝛴) unless the 

association between 𝑣(𝑖)′s and 𝑡(𝑖)′s is known in advance, in which case: 

Eq. (2.33) →  𝑙(𝜑, 𝜇, 𝛴) =∑(log𝑃(𝑣(𝑖)|𝑡(𝑖); 𝜇, 𝛴) + log𝑃(𝑡(𝑖); 𝜑))

𝑚

𝑖=1

        (2.34) 

which in turn leads to the following solutions (derived in Appendix ℬ. 1): 

𝜑ℎ =
1

𝑚
∑1{𝑡(𝑖) = 𝑡(ℎ)}

𝑚

𝑖=1

                      

𝜇ℎ =
∑ 1{𝑡(𝑖) = 𝑡(ℎ)}𝑣(𝑖)𝑚
𝑖=1

∑ 1{𝑡(𝑖) = 𝑡(ℎ)}𝑚
𝑖=1

                 

𝛴ℎ =
∑ 1{𝑡(𝑖) = 𝑡(ℎ)}(𝑣(𝑖) − 𝜇ℎ)(𝑣

(𝑖) − 𝜇ℎ)
𝑇𝑚

𝑖=1

∑ 1{𝑡(𝑖) = 𝑡(ℎ)}𝑚
𝑖=1

 

where, for the indicator functions, it holds that 1{True} = 1 and 1{False} = 0. 

2.2.3 The minimization of the 𝑳𝟐 distance  

Let 𝓝𝑥(𝜇𝑖, 𝛴𝑖) depict a 𝑑-dimensional Gaussian distribution of 𝑥 [its 3𝐷 form is given by 

Equation (2.30)]. Then the product between the Gaussian densities 𝓝𝑥(𝜇1, 𝛴1) and 

𝓝𝑥(𝜇2, 𝛴2) (which are not normalized) may be written [85] as      

𝓝𝑥(𝜇1, 𝛴1)𝓝𝑥(𝜇2, 𝛴2) = 𝓒𝓝𝑥(𝜇𝜓, 𝛴𝜓)                                                                                                

                           =
1

√𝑑𝑒𝑡(2𝜋(𝛴1 + 𝛴2))

𝑒𝑥𝑝 [−
1

2
(𝜇1 − 𝜇2)

𝑇(𝛴1 + 𝛴2)
−1(𝜇1

− 𝜇2)]𝓝𝑥(𝜇𝜓, 𝛴𝜓)       (2.35) 

where   

𝓝𝑥(𝜇𝜓, 𝛴𝜓) = 𝓝𝑥 ((𝛴𝟏
−𝟏 + 𝛴𝟐

−𝟏)
−𝟏
(𝛴𝟏
−𝟏𝜇1 + 𝛴𝟐

−𝟏𝜇2), (𝛴𝟏
−𝟏 + 𝛴𝟐

−𝟏)
−𝟏
)     (2.36). 

Hence 
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∫𝓝𝑥(𝜇1, 𝛴1)𝓝𝑥(𝜇2, 𝛴2)𝒅𝒙 = ∫𝓒𝓝𝑥(𝜇𝜓, 𝛴𝜓) 𝒅𝒙 

                                                     = 𝓒∫𝓝𝑥(𝜇𝜓, 𝛴𝜓)𝒅𝒙 

                                                                    = 𝓒√𝑑𝑒𝑡 (2𝜋(𝛴𝟏
−𝟏 + 𝛴𝟐

−𝟏)
−𝟏
) 

                                                                            = 𝓒√(2𝜋)𝑑𝑑𝑒𝑡 ((𝛴𝟏
−𝟏 + 𝛴𝟐

−𝟏)
−𝟏
)   

                                                                         =  𝓒𝓤{𝛴𝟏−𝟏,𝛴𝟐−𝟏}
                      (2.37). 

Jian and Vemuri [53] represented discrete point sets by convex combinations of Gaussian 

component densities where each component density corresponds to each point in the sets. 

This approach is derived from the description of Section 2.2.2 if we assume that for any 

discrete point set it holds that "𝓜 ≡ 𝓢" and that the "𝑣(𝑖)′s" are associated with the "𝑡(𝑖)′s" 

one-on-one. As a consequence the right part of Equation (2.31) is reduced to only one 

component, namely, the 𝜑ℎ=1 term, and for each ℎ point of the 𝑠 points. The vector 𝜇ℎ in the 

reduced form of Equation (2.31) corresponds to the location of the point ℎ. Taking linear 

combinations of such Gaussian components is merely a mathematical convenience as will be 

shown below.  

Assume two mixtures of Gaussians: one representing the moving source model set and the 

other the fixed target model set with density functions ℊ𝓂𝓂(𝓜) ≡ 𝒥(𝑥; 𝒶, 𝜇, 𝛴) and 

ℊ𝓂𝓂(𝓢) ≡ 𝒲(𝑥;𝒷, 𝜈, 𝛤), respectively. They can be described by 

𝒥(𝑥; 𝒶, 𝜇, 𝛴) =∑𝒶𝑖

𝑚

𝑖=1

 𝑃(𝑥; 𝜇𝑖 , 𝛴𝑖)             (2.38) 

𝒲(𝑥;𝒷, 𝜈, 𝛤) =∑𝒷𝑗

𝑠

𝑗=1

 𝑃(𝑥; 𝜈𝑗 , 𝛤𝑗)            (2.39) 

where 𝑃(𝑥; 𝜇𝑖, 𝛴𝑖) =
1

√𝑑𝑒𝑡(2𝜋𝛴𝑖)
𝑒𝑥𝑝 [−

1

2
(𝑥 − 𝜇𝑖)

𝑇𝛴𝑖
−1(𝑥 − 𝜇𝑖)].  

The 𝐿2 distance measures the similarity between two 𝒢ℳℳ𝑠 and may be expressed by 
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𝐿2(𝓜𝟎 , 𝓢; 𝜃) = ∫(ℊ𝓂𝓂(𝓜) − ℊ𝓂𝓂(𝓢))
2
𝑑𝑥  

                                                              = ∫ (ℊ𝓂𝓂(ℱ(𝓜𝟎; 𝜃)) − ℊ𝓂𝓂(𝓢))
2

𝑑𝑥        (2.40) 

The non-rigid point set registration process becomes an optimization problem where the 

statistical dissimilarity between a non-rigidly deforming point set and a fixed deformed target 

set is minimized over a (usually regularized and) continuously optimizing transformation 

space. The 𝐿2 distance function of Equation (2.40) represents a cost function which produces 

an optimized set of parameters 𝜃 at its minimal value. The 𝐿2 distance between 𝒥(𝑥; 𝒶, 𝜇, 𝛴) 

and 𝒲(𝑥;𝒷, 𝜈, 𝛤) can take a closed-form expression by incorporating Equation (2.37), 

namely: 

    𝐿2(𝒥,𝒲) = ∫(
𝒥

𝑚
−
𝒲

𝑠
)
2

𝑑𝑥                                                                     

 = ∫(
𝒥

𝑚
)
2

𝑑𝑥 + ∫(
𝒲

𝑠
)
2

𝑑𝑥 − 2∫
𝒥𝒲

𝑚𝑠
𝑑𝑥  

            =

∑ ∑ 𝒶𝑖𝒶𝑗𝑃(0; 𝜇𝑖 − 𝜇𝑗 , 𝛴𝑖 + 𝛴𝑗)𝓤{𝛴𝒊−𝟏,𝛴𝒋−𝟏}
𝑚
𝑗=1

𝑚
𝑖=1

𝑚2
 

         +

∑ ∑ 𝒷𝑖𝒷𝑗𝑃(0; 𝜈𝑖 − 𝜈𝑗 , 𝛤𝑖 + 𝛤𝑗)𝓤{𝛤𝒊−𝟏,𝛤𝒋−𝟏}
𝑠
𝑗=1

𝑠
𝑖=1

𝑠2
 

                                    −2

∑ ∑ 𝒶𝑖𝒷𝑗𝑃(0; 𝜇𝑖 − 𝜈𝑗 , 𝛴𝑖 + 𝛤𝑗)𝓤{𝛴𝒊−𝟏,𝛤𝒋−𝟏}
𝑠
𝑗=1

𝑚
𝑖=1

𝑚𝑠
            (2.41). 

Equation (2.41) can be simplified by assuming that the Gaussian components of 𝒥 and 𝒲 are 

weighted equally and that they all share the same spherical (isotropic) covariance matrix, i.e., 

all of the components are spherical Gaussians with a uniform scale 𝜎. (The latter assumption 

has been shown to be sufficient in most of the examined cases [86] as well as in the 

computational experiments of Chapter 3.) Hence, 

Equation (2.30) →  𝒥(𝑥; 𝒶, 𝜇, 𝜎) =∑𝒶 

𝑚

𝑖=1

1

√(2𝜋𝜎𝑖
2)3
𝑒𝑥𝑝 [−

1

2

‖𝑥 − 𝜇𝑖‖
2

𝜎𝑖
2 ]         (2.42). 

The 𝑃(0; (𝜇/𝜈)𝑖 − (𝜇/𝜈)𝑗, (𝛴/𝛤)𝑖 + (𝛴/𝛤)𝑗) terms of Equation (2.41) become  
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𝑃(0; 𝜇𝑖 − 𝜇𝑗 , 𝛴𝑖 + 𝛴𝑗) ≅ 𝑃(𝜇𝑖/𝑗; 𝜇𝑗/𝑖, 𝜎𝑖
2 + 𝜎𝑗

2) 

                                                                              = (4𝜋𝜎2)−
3
2⁄ 𝑒𝑥𝑝 [−

1

4

‖𝜇𝑖 − 𝜇𝑗‖
2

𝜎2
]    (2.43) 

and the 𝓤 terms of Equation (2.41) become in 3𝐷 

𝓤
{𝛴𝒊
−𝟏,𝛴𝒋

−𝟏}
= 𝓤

{𝛤𝒊
−𝟏,𝛤𝒋

−𝟏}
= 𝓤

{𝛴𝒊
−𝟏,𝛤𝒋

−𝟏}
≅ (𝜋𝜎2)

3
2⁄  

since (𝛴/𝛤)𝑖/𝑗 ≡ 𝜎
2𝐼. Also, the 𝐿2 integral term of the inner product of the fixed 𝒢ℳℳ with 

itself, i.e., ∫𝒲2𝑑𝑥, is a constant and thus it can be left out from the optimization of the 

𝐿2(𝓜𝟎 , 𝓢; 𝜃) cost function.   

2.2.4 The minimization of the energy cost function  

By choosing 𝑇𝑃𝑆 as a deformation model (see Section 2.1.3) and letting 𝓒 = {𝑐1, … , 𝑐𝑛} 

represent a set of 𝑛 source control points where 

𝓒 ⊂ {𝑞1, … , 𝑞𝑚}            (2.44) 

the objective cost function ℰ(𝜃) may be expressed by the following regularized energy 

functional  

ℰ(𝜃) = 𝐿2(𝓜𝟎 , 𝓢; 𝜃) + 𝜆𝐼ℱ(𝜃)                                                              

    = ∫ (
𝒥𝜃
𝑚
−
𝒲

𝑠
)
2

𝑑𝑥 + 𝜆trace(𝑄𝑇𝛷𝑄)                                   

                        ≅ ∫(
𝒥𝜃
𝑚
)
2

𝑑𝑥 − 2∫
𝒥𝜃𝒲

𝑚𝑠
𝑑𝑥 + 𝜆trace(𝜓𝑇𝒩𝑇𝛷𝒩𝜓)           (2.45) 

where 𝐼ℱ corresponds to the bending energy of the TPS warping function ℱ, 𝒥𝜃 represents the 

transformed source model point set warped by ℱ and 𝜆 > 0 controls the strength of the 

regularization. As the value of 𝜆 becomes smaller the transformation becomes a non-rigid 

topical one. A very large value of 𝜆 yields a nearly pure affine transformation as a larger 

extent of optimization is required for the trace(𝜓𝑇𝒩𝑇𝛷𝒩𝜓) to become smaller. For a fixed 

𝜆, there exists a unique ℱ(𝑀0) = [1|𝑀0]𝐸
𝑇 + 𝑈𝒩𝜓 that minimizes Equation (2.45). 
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2.2.5 Derivatives of 𝓔 with respect to the motion parameters 

Equation (2.45) can be written 

ℰ(ℱ) ≅  𝐿2
′ (ℱ) + 𝜆𝐼(ℱ)              (2.46) 

 ℱ = ℱ(𝜓, 𝐸)                                   

  𝐿2
′ (ℱ) = ∫(

𝒥

𝑚
)
2

𝑑𝑥 − 2∫
𝒥𝒲

𝑚𝑠
𝑑𝑥.          

The derivatives of the cost function ℰ with respect to the affine and 𝑇𝑃𝑆 parameters can be 

written in analytical expressions:  

𝜕ℰ(ℱ(𝜓, 𝐸))

𝜕𝜓
=
𝜕ℰ

𝜕ℱ

𝜕ℱ

𝜕𝜓
 

                                                                   = (
𝜕𝐿2
′

𝜕ℱ
+ 𝜆

𝜕𝐼

𝜕ℱ
)
𝜕ℱ

𝜕𝜓
         (2.47). 

Based on the fact that 𝛷 = (𝛷)𝑇  

𝜕

𝜕𝜓
Tr[𝜓𝑇𝒩𝑇𝛷𝒩𝜓] = 𝒩𝑇𝛷𝒩𝜓+ (𝒩𝑇𝛷𝒩)𝑇𝜓 = 2𝒩𝑇𝛷𝒩𝜓                (2.48). 

 Equation (2.47)  
Eq. (2.48)
⇒            

𝜕ℰ(ℱ)

𝜕𝜓
= (𝑈𝒩)𝑇𝓗+ 2𝜆𝒩𝑇𝛷𝒩𝜓          (2.49) 

where 

        𝓗 = [
𝜕𝐿2
′

𝜕ℱ
]

𝑻

             (2.50). 

Similarly, the derivative of ℰ with respect to the affine parameters can be described by 

𝜕ℰ(ℱ(𝜓, 𝐸))

𝜕𝐸𝑇
= [
𝜕ℰ

𝜕ℱ

𝜕ℱ

𝜕𝐸
]
𝑇

= [1|𝑀0]
𝑇𝓗        (2.51). 

As ℱ represents a spatial transformation in 3𝐷 and given the assumption that 𝐿2 ≅

∫(
𝒥

𝑚
)
2

𝑑𝑥 − 2∫
𝒥𝒲

𝑚𝑠
𝑑𝑥 then 

𝓗 ≅  𝟐𝓗𝒥2 − 𝟐𝓗𝒥𝒲         (2.52)            
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 𝓗(𝒥2/𝒥𝒲) = (

𝓗𝟏𝒙 𝓗𝟏𝒚 𝓗𝟏𝒛

⋮ ⋮ ⋮
𝓗𝒎𝒙 𝓗𝒎𝒚 𝓗𝒎𝒛

) ∈ ℝ𝑚×3   (2.53). 

Assume that 𝜌 refers to each point of the transformed model set; then ∀𝜌𝜖{1,… ,𝑚} it holds 

that 

𝓗𝝆𝒙 ∝∑−
1

2𝜎2 [𝑚 (
𝑚
𝑠 )]

𝑒𝑥𝑝

[
 
 
 
 

−

‖𝜇𝜌 − (
𝜇
𝜈)𝑗
‖
2

4𝜎2

]
 
 
 
 (

𝑚
𝑠
)

𝑗=1

(𝑥𝜇𝜌−𝑥(𝜇
𝜈
)
𝑗

)     (2.54) 

𝓗𝝆𝒚 ∝∑−
1

2𝜎2 [𝑚 (
𝑚
𝑠 )]

𝑒𝑥𝑝

[
 
 
 
 

−

‖𝜇𝜌 − (
𝜇
𝜈)𝑗
‖
2

4𝜎2

]
 
 
 
 (

𝑚
𝑠
)

𝑗=1

(𝑦𝜇𝜌−𝑦(𝜇
𝜈
)
𝑗

)    (2.55) 

𝓗𝝆𝒛 ∝∑−
1

2𝜎2 [𝑚 (
𝑚
𝑠 )]

𝑒𝑥𝑝

[
 
 
 
 

−

‖𝜇𝜌 − (
𝜇
𝜈)𝑗
‖
2

4𝜎2

]
 
 
 
 (

𝑚
𝑠
)

𝑗=1

(𝑧𝜇𝜌−𝑧(𝜇
𝜈
)
𝑗

)    (2.56). 

An optimized set of affine and 𝑇𝑃𝑆 parameters can be obtained as a minimum energy 

solution of Equation (2.46) with the aid of gradient-based numerical optimization techniques 

applied to Equations (2.49) and (2.51).  

2.2.6 Modification of the algorithm 

Based on the information of Section 2.2.3 and specifically the last term of the right side of 

Equation (2.41), it becomes obvious that the 𝒢ℳℳ +ℱ𝑇𝑃𝑆 algorithm cannot be applied to 

the case where the registration pair point sets deviate significantly in number of points. The 

registration scheme is still appropriate for 𝑚 ≠ 𝑠 as long as 𝑚 ≈ 𝑠.  

The algorithm was modified according to Figure 2.2 to account for registration between a full 

3𝐷 source model 𝓜 and an occluded 3𝐷 target model 𝓢. The initial correspondences 

between these two point sets are identified on the basis of a one-to-one nearest neighbour 

correspondence criterion and by setting a maximum distance threshold as the upper limit of 

all possible correspondences. The initial approximation of considering every closest point 

pair to be a correspondence pair is a valid starting point so long as (i) the two point sets are 

already placed (with a good initial transformation) in approximate registration before the 
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iterating non-rigid registration process of Figure 2.2 is initiated; and (ii) the majority of the 

extracted points from the source have true correspondences in the occluded target surface. 

This configuration is an ideal starting point as it maximizes the probability of finding the 

correct correspondences during the process of registration. However, obtaining a satisfactory 

initial transformation is a nontrivial problem.  

Note that the ℰ(𝜃) multiply-linked objective cost function of Equation (2.45) is defined 

globally and not on nearest neighbouring points. Thus, it is the same cost function that is 

optimized as the source model point configuration dynamically evolves in each step of the 

minimization, which in turn alleviates the problem of correspondence error due to potential 

point mismatches. The overall correspondence error tends to further reduce when the target 

surface (and hence the identified overlap between the registration surfaces considered) is 

increased since then the number of true correspondence pairs, identified in the process of 

registration, is also increased (which helps in discriminating against outliers and overcoming 

the effect of noise). The 𝑇𝑃𝑆 deformation can then be computed based on a larger internal 

structure of control points. The contribution of 𝐸𝑙 = ∑ ∑ 𝑙 ((𝑥𝑖 − 𝑥𝑗)
2
)𝑗𝑖  terms in the 

distance cost function (where 𝑙 is the Gaussian distance function) is increased. The 

probability of overall correct point assignments at convergence of the algorithm is also 

increased so long as the number of true correspondence pairs prevails. In effect the topology 

of the available target scene has a major effect on the correspondence error and by extension 

on the final output of the registration process depicted in Figure 2.2. Pauly et al. [87] 

combined point-to-point and point-to-plane metrics in order to avoid penalizing 

correspondences due to large featureless regions. While this formulation is very useful for 

registration of smooth surfaces, the current 𝒢ℳℳ methodology follows a more rigorous and 

superior approach.      

The output produced from ‘establishing correspondences’ in Figure 2.2 consists of the 

extracted source model point set corr(𝓜) and the extracted target model point set corr(𝓢). 

These datasets take part in a 𝒢ℳℳ +ℱ𝑇𝑃𝑆 registration process where for the set of control 

points 𝓒 it holds that 𝓒 = corr(𝓜). The associated 𝛷, 𝒩, and 𝑈 matrices are computed for 

the extracted source model (where 𝛷 ≡ 𝑈) and the energy cost function of Equation (2.45) is 

minimized producing a set of optimized parameters 𝜃. Once the 𝑈 matrix is computed for the 

full model 𝓜 taking corr(𝓜) to serve as 𝓒, the set of control points of 𝓜, (the matrix 𝒩 

hence remains the same) and given the estimated 𝜃 parameters [which populate the matrices 
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𝐸𝑇 and 𝜓; see Equation (2.27)], the non-rigid transformation ℱ is applied to 𝓜. The output 

from this process overwrites the moving model, namely, 𝓜≔ ℱ(𝓜;𝜽), and the overall 

registration process repeats itself until a stopping criterion is satisfied. An increased number 

of correspondences is expected (which has been observed in the computational experiments 

of Chapter 3) in each iteration as a consequence of the gradual non-rigid deformation of the 

moving model.      

 

Modified Algorithm.  

Input: The original source model set 𝓜𝟎, the occluded target model set 𝓢 and the non-rigid 

parameterized 𝑇𝑃𝑆 transformation model. 

Output: The moving model 𝓜 registered onto the target scene 𝓢. 

              

Figure 2.2: Modifications of the 𝒢ℳℳ +ℱ𝑇𝑃𝑆 learning algorithm for full-model-to-

occluded-surface non-rigid registration. 
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2.3 The kernel correlation technique applied to non-rigid point set 

registration  

2.3.1 Introduction 

In this Section the concept of Kernel Correlation (𝒦𝒞) is defined and its usefulness with 

regards to point-set registration is outlined. Non-rigid registration is formulated as the process 

of aligning two point sets by maximizing the 𝒦𝒞 configuration dynamically between them 

[53, 55]. This is a similarity measure that can be described by a closed-form expression 

leading to a computationally efficient multiply-linked registration algorithm. This non-rigid 

algorithm is modified and further validated in the current work. The accuracy of the 𝒦𝒞 

registration process is empirically studied in Chapter 3 by means of computational 

experiments. 

2.3.2 Kernel correlation 

Suppose two points 𝑠𝑖,𝑠𝑗 ∈ ℝ
3; their 𝒦𝒞 [88] is given by 

𝒦𝒞(𝑠𝑖, 𝑠𝑗) = ∫𝒦(𝑠, 𝑠𝑖) ∙ 𝒦(𝑠, 𝑠𝑗) 𝑑𝑠                 (2.57) 

where 𝒦(𝑠, 𝑠𝑖/𝑗) corresponds to a kernel function defined for the vectors 𝑠 and 𝑠𝑖/𝑗, and 

centred at 𝑠𝑖/𝑗. The Gaussian Kernel function is used in this implementation which is a non-

negative and symmetric function [89] in consistency with the requirements of the 𝒦𝒞 

registration technique. Given the normalized form of this function in 3𝐷 

𝒦𝐺(𝑠, 𝑠𝑖) = (𝜋𝜎
2)−

3
2⁄ 𝑒𝑥𝑝 [−

‖𝑠 − 𝑠𝑖‖
2

𝜎2
]     (2.58), 

Equation (2.57) → 𝒦𝒞𝐺(𝑠𝑖, 𝑠𝑗) = (2𝜋𝜎
2)−

3
2⁄ 𝑒𝑥𝑝 [−

1

2

‖𝑠𝑖 − 𝑠𝑗‖
2

𝜎2
]       (2.59)             

where 𝜎 corresponds to the Gaussian Kernel scale. Equation (2.59) can be taken as a measure 

of closeness between 𝑠𝑖 and 𝑠𝑗; it is going to (2𝜋𝜎2)−
3
2⁄  when 𝑠𝑖 and 𝑠𝑗 are coming closer 

while it is going to zero when 𝑠𝑖 and 𝑠𝑗 are moving further apart.  
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To obtain a proximity measure between a discrete point 𝑠𝑙 ∈  𝚄 = {𝑠1, … , 𝑠𝑚} and the rest of 

the points of the set 𝚄, the following quantity is estimated 

𝒦𝒞𝐺(𝑠𝑙, 𝑈) = (2𝜋𝜎
2)−

3
2⁄ ∑ 𝑒𝑥𝑝 [−

1

2

‖𝑠𝑙 − 𝑠𝑘‖
2

𝜎2
]

𝑠𝑙≠𝑠𝑘

      (2.60) 

and by extension ∀ 𝑠𝑙, 𝑠𝑘 ∈ 𝚄 

𝒦𝒞𝐺(𝑈) =∑𝒦𝒞𝐺(𝑠𝑙, 𝑈)

𝑚

𝑙=1

= 2∑𝒦𝒞𝐺(𝑠𝑙, 𝑠𝑘)

𝑙≠𝑘

             (2.61) 

making 𝒦𝒞𝐺(𝑈) a compactness measure of the point set 𝑈. The larger the affinity between 

points across all pairs of points of 𝑈 the larger 𝒦𝒞𝐺(𝑈) becomes. 

2.3.3 The maximization of the correlation between kernel densities   

Assume the moving model 𝓜= ℱ(𝓜𝟎; 𝜃) = (𝑣1, … , 𝑣𝑚)
𝑇 and the target model 𝓢 =

(𝑡1, … , 𝑡𝑠)
𝑇 defined in Section 2.2.2 where 𝓜𝟎 = (𝑞1, … , 𝑞𝑚)

𝑇. Their kernel density 

estimates are defined by 

𝑃𝓜(𝑥; 𝜃) =∑
𝒦(𝑥, ℱ(𝑞𝑖; 𝜃))

𝑚

𝑚

𝑖=1

        (2.62) 

          𝑃𝓢(𝑥) =∑
𝒦(𝑥, 𝑡𝑗)

𝑠

𝑠

𝑗=1

                    (2.63).     

The objective is to solve for the parameters 𝜃 of the non-rigid transformation ℱ that can 

cause the largest minimization of the energy of the following normalized cost function  

∫(
𝑃𝓜
𝛪𝓜
−
𝑃𝓢
𝛪𝓢
)
2

𝑑𝑥 = ∫(
𝑃𝓜
𝛪𝓜
)
2

𝑑𝑥 + ∫(
𝑃𝓢
𝛪𝓢
)
2

𝑑𝑥 − 2∫
𝑃𝓜𝑃𝓢
𝛪𝓜𝛪𝓢

𝑑𝑥 

                                                = 2 −
2

𝛪𝓜𝛪𝓢
∫𝑃𝓜𝑃𝓢 𝑑𝑥                    (2.64)                             

where the final output of Equation (2.64) arises due to the normalization terms   

𝛪𝓜 = √∫𝑃𝓜
2 𝑑𝑥                       (2.65) 
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   𝛪𝓢 = √∫𝑃𝓢
2 𝑑𝑥                       (2.66). 

Equation (2.62) → 𝑚2∫𝑃𝓜
2 𝑑𝑥 = ∫(∑𝒦(𝑥,ℱ(𝑞𝑖; 𝜃))

𝑚

𝑖=1

)

2

𝑑𝑥 

                         = [∑∫𝒦(𝑥, ℱ(𝑞𝑖; 𝜃))
2

𝑚

𝑖=1

𝑑𝑥 + 2∑∫𝒦(𝑥, ℱ(𝑞𝑖; 𝜃)) ∙ 𝒦 (𝑥, ℱ(𝑞𝑗; 𝜃)) 𝑑𝑥

𝑖≠𝑗

] 

                         = 𝑚(2𝜋𝜎2)−
3
2 +𝒦𝒞𝐺(𝓜)                                                                       (2.67).       

Similarly,       Equation (2.63) → 𝑠2∫𝑃𝓢
2 𝑑𝑥 = 𝑠(2𝜋𝜎2)−

3
2 +𝒦𝒞𝐺(𝓢)                   (2.68).         

While 𝒦𝒞𝐺(𝓜) is not invariant under non-rigid registration, 𝒦𝒞𝐺(𝓢) is a constant. The 

following relationships are produced: 

Equations (2.65) ∧ (2.67) → 𝛪𝓜
2 ∝ 𝒦𝒞𝐺(𝓜)           (2.69) 

Equations (2.66) ∧ (2.68) → 𝛪𝓢
2 ∝ 𝒦𝒞𝐺(𝓢)               (2.70). 

To further exploit Equation (2.64)   

∫𝑃𝓜𝑃𝓢 𝑑𝑥 = ∫[∑
𝒦(𝑥,ℱ(𝑞𝑖; 𝜃))

𝑚

𝑚

𝑖=1

∙∑
𝒦(𝑥, 𝑡𝑗)

𝑠

𝑠

𝑗=1

] 𝑑𝑥 

                                                  =  
1

𝑚𝑠
 ∑∑𝒦𝒞𝐺(ℱ(𝑞𝑖; 𝜃), 𝑡𝑗)

𝑠

𝑗=1

𝑚

𝑖=1

                                              

                                     = − 
1

𝑚𝑠
𝛯(𝓜𝟎 , 𝓢; 𝜃)               (2.71)                         

The energy of the cost function of Equation (2.64) is minimized as the correlation between 

𝑃𝓜 and 𝑃𝓢 is maximized or equivalently as the 𝒦𝒞 multiply-linked registration cost function 

𝛯, which represents the sum of all pairwise kernel correlations between the moving model 

and the fixed target model point sets, is minimized. Hence, 
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Equation (2.64)
Eq. (2.71)
→      ∫(

𝑃𝓜
𝛪𝓜
−
𝑃𝓢
𝛪𝓢
)
2

𝑑𝑥 = 2 +
2

𝑚𝑠

𝛯(𝓜𝟎 , 𝓢; 𝜃)

𝛪𝓜𝛪𝓢
        (2.72). 

2.3.4 The minimization of ℰ and analytical expressions of ℰ 

Following a similar process to the one described in Section 2.2.4  

ℰ(𝜃) = ∫(
𝑃𝓜(𝜃)

𝛪𝓜(𝜃)
−
𝑃𝓢
𝛪𝓢
)

2

𝑑𝑥 + 𝜆trace(𝑄𝑇𝛷𝑄)                                                                     

= 2 −
2

𝑚𝑠
 
∑ ∑ 𝒦𝒞𝐺(ℱ(𝑞𝑖; 𝜃), 𝑡𝑗)

𝑠
𝑗=1

𝑚
𝑖=1

𝛪𝓜(𝜃) ∙ 𝛪𝓢
+ 𝜆trace(𝜓𝑇𝒩𝑇𝛷𝒩𝜓)       (2.73). 

To simplify the computation of derivatives of ℰ, note that maximizing 

∫
𝑃𝓜𝑃𝓢
𝛪𝓜𝛪𝓢

𝑑𝑥 =
1

√∫𝑃𝓜
2 𝑑𝑥 ∫𝑃𝓢

2 𝑑𝑥

∫𝑃𝓜𝑃𝓢 𝑑𝑥 

is the same as minimizing  

∫𝑃𝓢
2 𝑑𝑥 −

(∫𝑃𝓜𝑃𝓢 𝑑𝑥)
2

∫𝑃𝓜
2 𝑑𝑥

 

or, for a fixed 𝑃𝓢, equivalent to minimizing   

  

−
(∫𝑃𝓜𝑃𝓢 𝑑𝑥)

2

∫𝑃𝓜
2 𝑑𝑥

= 𝛯𝓜 

By following a similar pattern of work to the one described in Section 2.2.5 

𝜕ℰ(ℱ)

𝜕𝜓
≅

2

𝑚𝑠𝛪𝓢
(𝑈𝒩)𝑇𝓡+ 2𝜆𝒩𝑇𝛷𝒩𝜓                     (2.74) 

           𝓡 = [
𝜕𝛯𝓜
𝜕ℱ

]
𝑻

∈ ℝ𝑚×3   (2.75)                                                 

 
𝜕ℰ(ℱ)

𝜕𝐸𝑇
= [1|𝑀0]

𝑇𝓡              (2.76)                                              
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                                        𝓡 =
2𝓗𝑃𝓜

2(∫𝑃𝓜𝑃𝓢 𝑑𝑥)
𝟐 − 2𝓗𝑃𝓜𝑃𝓢 ∫𝑃𝓜𝑃𝓢 𝑑𝑥 ∫𝑃𝓜

2𝑑𝑥

(∫𝑃𝓜
2𝑑𝑥)

𝟐       (2.77). 

𝓗(𝑃𝓜
2/𝑃𝓜𝑃𝓢)

= (

𝓗𝟏𝒙 𝓗𝟏𝒚 𝓗𝟏𝒛

⋮ ⋮ ⋮
𝓗𝒎𝒙 𝓗𝒎𝒚 𝓗𝒎𝒛

) ∈ ℝ𝑚×3   (2.78).                            

Assume that 𝜌 refers to each point of the transformed model set; then ∀𝜌𝜖{1,… ,𝑚} it holds 

that 

𝓗𝝆𝒙 ∝∑−
1

𝜎2 [𝑚 (
𝑚
𝑠 )]

𝑒𝑥𝑝

[
 
 
 
 

−

‖𝜈𝜌 − (
𝜈
𝑡)𝑗
‖
2

2𝜎2

]
 
 
 
 (

𝑚
𝑠
)

𝑗=1

(𝑥𝜈𝜌−𝑥(𝜈
𝑡
)
𝑗

)     (2.79) 

𝓗𝝆𝒚 ∝∑−
1

𝜎2 [𝑚 (
𝑚
𝑠 )]

𝑒𝑥𝑝

[
 
 
 
 

−

‖𝜈𝜌 − (
𝜈
𝑡)𝑗
‖
2

2𝜎2

]
 
 
 
 (

𝑚
𝑠
)

𝑗=1

(𝑦𝜈𝜌−𝑦(𝜈
𝑡
)
𝑗

)    (2.80) 

𝓗𝝆𝒛 ∝∑−
1

𝜎2 [𝑚 (
𝑚
𝑠 )]

𝑒𝑥𝑝

[
 
 
 
 

−

‖𝜈𝜌 − (
𝜈
𝑡)𝑗
‖
2

2𝜎2

]
 
 
 
 (

𝑚
𝑠
)

𝑗=1

(𝑧𝜈𝜌−𝑧(𝜈
𝑡
)
𝑗

)   (2.81). 

2.3.5 Modifications 

The 𝒢ℳℳ +ℱ𝑇𝑃𝑆 and 𝒦𝒞 + ℱ𝑇𝑃𝑆 algorithms are both based on multiply-linked non-rigid 

registration methods. The ∫
𝒥𝒲

𝑚𝑠
𝑑𝑥 term of the 𝐿2 distance (see Section 2.2.3) and the 

∫𝑃𝓜𝑃𝓢 𝑑𝑥 term of Equation (2.64) are similar. The same series of modifications were 

performed on the 𝒦𝒞 + ℱ𝑇𝑃𝑆 registration algorithm for recovering deformation in an 

occluded target surface as specifically presented in Section 2.2.6 and graphically outlined in 

Figure 2.2.  
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2.4 Gaussian mixtures model and 𝓔𝓜 incorporated in the non-rigid 

point set registration framework  

2.4.1 Introduction 

The 𝒢ℳℳ/ℰℳ formalism [57] is combined with the 𝑇𝑃𝑆 deformation model and is applied 

to non-rigid point registration. In the following, the fundamental principles of this technique 

are reviewed followed by relevant modifications of the algorithm.    

2.4.2 The expectation maximization formalism applied to Gaussian 

mixture models 

This Section has been prepared as an extension of Section 2.2.2; it follows the exact 

definition of 𝒢ℳℳ including the 𝓔𝓜 formalism and its implications and caveats on 

optimization. For example, Equation (2.31) represents the probabilistic distribution of the 

transformed source model points across the set of fixed target points. If the association 

between the 𝑣(𝑖)′s and the 𝑡(𝑖)′s is known in advance then it is a straightforward task to 

evaluate the solutions of Equation (2.33), which, however, is not possible in point-set 

registration.  

This is a mixture density estimation problem. The 𝓔𝓜 iterative algorithm implements an 

efficient technique for the maximum likelihood estimation. It consists of two steps: (i) the 𝓔-

step where the most probable assignments of the 𝑣(𝑖)′s to the 𝑡(𝑖)′s are made (producing 

optimized 𝒻
𝑡(ℎ)
(𝑖)
′s, see Equation (2.82) below); and (ii) the 𝓜-step where the maximum 

likelihood estimates of the (𝜑ℎ, 𝜇ℎ, 𝛴ℎ) parameters are updated using the best guesses of (i). 

The 𝓔- and 𝓜-steps iterate until (guaranteed) convergence to a local maximum of Equation 

(2.33). It is because of the 𝓔-step that the (𝜑ℎ, 𝜇ℎ, 𝛴ℎ) parameters of the 𝒢ℳℳ of Equation 

(2.31) can be obtained in closed form in the 𝓜-step. 

{𝓔 − step}:                                                                                                                                

                           𝒻
𝑡(ℎ)
(𝑖)
≔ 𝑃(𝑡(𝑖) = 𝑡(ℎ)|𝑣(𝑖);  𝜑, 𝜇, 𝛴 )                           (2.82) 
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𝒯 =

(

  
 

𝒻
𝑡(1)
(1)

𝒻
𝑡(1)
(2)

⋯ 𝒻
𝑡(1)
(𝑚)

𝒻
𝑡(2)
(1)

𝒻
𝑡(2)
(2)

⋯ 𝒻
𝑡(2)
(𝑚)

⋮ ⋮ ⋯ ⋮

𝒻
𝑡(𝑠)
(1)

𝒻
𝑡(𝑠)
(2)

⋯ 𝒻
𝑡(𝑠)
(𝑚)
)

  
 
         𝑠. 𝑡. 

∀ (𝑖, ℎ):  𝒻
𝑡(ℎ)
(𝑖)
∈ [0,1]       

                 ∑ 𝒻
𝑡(ℎ)
(𝑖)

𝑠

ℎ=1

= 1                     

     0 <∑𝒻
𝑡(ℎ)
(𝑖)

𝑚

𝑖=1

< 𝑚                

{𝓜− step}:                                                                                                                                  

              𝜑ℎ ≔
1

𝑚
∑𝒻

𝑡(ℎ)
(𝑖)

𝑚

𝑖=1

                                                       (2.83)                      

                              𝜇ℎ ≔
∑ 𝒻

𝑡(ℎ)
(𝑖)
𝑣(𝑖)𝑚

𝑖=1

∑ 𝒻
𝑡(ℎ)
(𝑖)𝑚

𝑖=1

                                                  (2.84)                                      

𝛴ℎ ≔
∑ 𝒻

𝑡(ℎ)
(𝑖)
(𝑣(𝑖) − 𝜇ℎ)(𝑣

(𝑖) − 𝜇ℎ)
𝑇𝑚

𝑖=1

∑ 𝒻
𝑡(ℎ)
(𝑖)𝑚

𝑖=1

            (2.85).        

By applying Bayes’ rule to the 𝓔 − step the class posterior probability distribution of the 

𝑡(𝑖)′s given the 𝑣(𝑖)′s can be written 

𝑃(𝑡(𝑖) = 𝑡(ℎ)|𝑣(𝑖);  𝜑, 𝜇, 𝛴 ) =
𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(ℎ);  𝜇, 𝛴 )𝑃(𝑡(𝑖) = 𝑡(ℎ);  𝜑)

𝑃(𝑣(𝑖); 𝜑, 𝜇, 𝛴)
                                    

                                                  =
𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(ℎ);  𝜇, 𝛴 )𝑃(𝑡(𝑖) = 𝑡(ℎ);  𝜑)

∑ 𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(𝑔);  𝜇, 𝛴 )𝑃(𝑡(𝑖) = 𝑡(𝑔);  𝜑)𝑠
𝑔=1

           (2.86) 

where the class priors  𝑃(𝑡(𝑖) = 𝑡(ℎ);  𝜑) = 𝜑ℎ and 

       𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(ℎ);  𝜇, 𝛴 )

=
1

√(2𝜋)3|𝛴ℎ|
𝑒𝑥𝑝 [−

1

2
(𝑣(𝑖) − 𝜇ℎ)

𝑇
𝛴ℎ
−1(𝑣(𝑖) − 𝜇ℎ)]                             (2.87). 
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Hence, 

    𝒻
𝑡(ℎ)
(𝑖)
≔

𝜑ℎ
1

√(2𝜋)3|𝛴ℎ|
𝑒𝑥𝑝 [−

1
2 (𝑣

(𝑖) − 𝜇ℎ)
𝑇
𝛴ℎ
−1(𝑣(𝑖) − 𝜇ℎ)]

∑ 𝜑𝑔
𝑠
𝑔=1

1

√(2𝜋)3|𝛴𝑔|

𝑒𝑥𝑝 [−
1
2 (𝑣

(𝑖) − 𝜇𝑔)
𝑇
𝛴𝑔−1(𝑣

(𝑖) − 𝜇𝑔)]
                       (2.88). 

The numerator and denominator of the output of Equations (2.86) and (2.88) contain similar 

terms.  

According to the literature: (i) 𝒻
𝑡(ℎ)
(𝑖)
∈ [0,1] which implies ‘soft’ guesses. The softassign 

technique [90-92] is based on this choice; or (ii) 𝒻
𝑡(ℎ)
(𝑖)
∈ {0,1} which indicates single best 

guesses (i.e., see solutions of Equation 2.34 in Section 2.22). Appendix 𝓑.1 presents the 

mathematical derivation of the maximum likelihood estimates of the (𝜑ℎ, 𝜇ℎ, 𝛴ℎ) parameters. 

Appendix 𝓑.2 and appendix 𝓑.3 give details about the convergence property of the ℰℳ 

algorithm and the combined 𝒢ℳℳ and ℰℳ formalism that led to Equations (2.82) −

(2.85), respectively. 

2.4.3 The minimization of the log-posterior cost function via the 𝓔𝓜 

algorithm 

It is mathematically convenient to assume that the target model points are the ones that 

undergo the non-linear transformation ℱ. Equation (2.32) of Section 2.2.2 can then be written  

𝑃(𝓜;𝓢, 𝜃, 𝜑, 𝜇, 𝛴) =∏𝑃(𝑞(𝑖); 𝜑, 𝜇, 𝛴)

𝑚

𝑖=1

=                                                                                           

=∏∑𝑃(ℱ(𝑡(ℎ); 𝜃); 𝜑)

𝑠

ℎ=1

 𝑃(𝑞(𝑖)|ℱ(𝑡(ℎ); 𝜃); 𝜇, 𝛴)

𝑚

𝑖=1

                                                                     

   =∏∑𝜑ℎ
1

√(2𝜋)3|𝛴ℎ|
𝑒𝑥𝑝 [−

1

2
(𝑞(𝑖) − ℱ(𝑡(ℎ); 𝜃))

𝑇

𝛴ℎ
−1 (𝑞(𝑖) − ℱ(𝑡(ℎ); 𝜃))]

𝑠

ℎ=1

𝑚

𝑖=1

     (2.89) 

since the transformed target set points in Equation (2.89) serve as centres of Gaussian 

clusters and hence 𝜇ℎ≡ℱ(𝑡(ℎ); 𝜃).  
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To address outliers in the fixed source model point set, a fictitious Gaussian cluster centre, 

ℎ = (𝑠 + 1), can be introduced. Equation (2.89) then becomes   

𝑃(𝓜;𝓢, 𝜃, 𝜑, 𝜇, 𝛴) =                                                                                                                                    

=∏∑𝜑ℎ
1

√(2𝜋)3|𝛴ℎ|
𝑒𝑥𝑝 [−

1

2
(𝑞(𝑖) − ℱ(𝑡(ℎ); 𝜃))

𝑇

𝛴ℎ
−1 (𝑞(𝑖) − ℱ(𝑡(ℎ); 𝜃))]

𝑠+1

ℎ=1

𝑚

𝑖=1

       (2.90). 

Consider the posterior probability distribution of 𝜃 given 𝓜 

𝑃(𝜃|𝓜,𝓢, 𝜑, 𝜇, 𝛴 ) =
𝑃(𝓜|𝓢, 𝜃, 𝜑, 𝜇, 𝛴 )𝑃(𝜃)

𝑃(𝓜)
               (2.91) 

where the class prior density 𝑃(𝜃) is expressed by 

𝑃(𝜃) =
𝑒−𝜆𝐼(𝜃)

∑ 𝑒−𝜆𝐼(𝜃𝑓)𝜃𝑓

=
𝑒−𝜆𝐼(𝜃)

𝒵(𝜆)
        (2.92). 

The value of 𝑒−𝜆𝐼(𝜃) in Equation (2.92) represents the likelihood of having 𝜃 while 𝐼(𝜃) and 

𝜆 have their usual meaning (see also Equation (2.46) of Section 2.2.5); 𝒵(𝜆) is a partition 

normalization function. 𝑃(𝜃) corresponds to a normalized probability, i.e., 0 ≪ 𝑃(𝜃) ≪ 1 

and ∑ 𝑃(𝜃𝑓)𝜃𝑓 = 1. 

It can be proved (see Appendix 𝓑.4) that   

argmax
𝜃

𝑃(𝜃|𝓜,𝓢, 𝜑, 𝜇, 𝛴 )

≅ argmin
𝜃

[∑∑𝒻
𝑡(ℎ)
(𝑖)
(𝑞(𝑖) −ℱ(𝑡(ℎ); 𝜃))

𝑇

𝛴ℎ
−1 (𝑞(𝑖) − ℱ(𝑡(ℎ); 𝜃))

2

𝑠+1

ℎ=1

𝑚

𝑖=1

−∑∑𝒻
𝑡(ℎ)
(𝑖)
log𝜑ℎ

𝑠+1

ℎ=1

𝑚

𝑖=1

+∑∑
3𝒻
𝑡(ℎ)
(𝑖)

2
log(2𝜋)

𝑠+1

ℎ=1

𝑚

𝑖=1

+∑∑
𝒻
𝑡(ℎ)
(𝑖)

2
log|𝛴ℎ| +

𝑠+1

ℎ=1

𝑚

𝑖=1

∑∑𝒻
𝑡(ℎ)
(𝑖)
log 𝒻

𝑡(ℎ)
(𝑖)

𝑠+1

ℎ=1

𝑚

𝑖=1

+ 𝜆𝐼(𝜃)]                                                                                                                    (2.93)             

where ∀ (𝑖, ℎ):  𝒻
𝑡(ℎ)
(𝑖)
∈ [0,1], ∑ 𝒻

𝑡(ℎ)
(𝑖)𝑠+1

ℎ=1 = 1 for 1 ≤ 𝑖 ≤ 𝑚, and 0 < ∑ 𝒻
𝑡(ℎ)
(𝑖)𝑚

𝑖=1 < 𝑚.  
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The term 𝔒𝑀(𝑞
(𝑖)) = √(𝑞(𝑖) − ℱ(𝑡(ℎ); 𝜃))

𝑇
𝛴ℎ
−1(𝑞(𝑖) − ℱ(𝑡(ℎ); 𝜃)) of Equation (2.93) is the 

Mahalanobis distance, i.e., the distance of 𝑞(𝑖) from  𝜇ℎ given 𝛴ℎ. The term 𝔅(𝒯) =

∑ ∑ 𝒻
𝑡(ℎ)
(𝑖)
log 𝒻

𝑡(ℎ)
(𝑖)𝑠+1

ℎ=1
𝑚
𝑖=1  represents a measure of statistical uncertainty which makes sure that 

the 𝒻
𝑡(ℎ)
(𝑖)

 values of the matrix of posterior probabilities 𝒯 are away from zero or one [93] (at 

the beginning and during the alternating 𝓔 − and 𝓜− step optimization). Note that now 

𝒯 ∈ ℝ(𝑠+1)×𝑚. Only when the transformation starts to converge to an optimal solution 

(towards the end of the optimization) will the 𝒻
𝑡(ℎ)
(𝑖)

's start acquiring binary values.  

The update rule of the 𝓔 − step which optimizes the 𝒻
𝑡(ℎ)
(𝑖)

's is summarized now by 

𝒻
𝑡(ℎ)
(𝑖)
≔

𝜑ℎ
1

√(2𝜋)3|𝛴ℎ|
𝑒𝑥𝑝 [−

1
2 (𝑞

(𝑖) − ℱ(𝑡(ℎ); 𝜃))
𝑇

𝛴ℎ
−1 (𝑞(𝑖) − ℱ(𝑡(ℎ); 𝜃))]

∑ 𝜑𝑔
𝑠+1
𝑔=1

1

√(2𝜋)3|𝛴𝑔|

𝑒𝑥𝑝 [−
1
2 (𝑞

(𝑖) − ℱ(𝑡(𝑔); 𝜃))
𝑇
𝛴𝑔−1(𝑞

(𝑖) − ℱ(𝑡(𝑔); 𝜃))]
     (2.94) 

and is applied ∀ 𝒻
𝑡(ℎ)
(𝑖)
∈ 𝒯. The (continuous-valued) matrix 𝒯 corresponds initially to a fuzzy 

approximation of the (discrete-valued) correspondence matrix 𝔍 or {𝔧(ℎ)
(𝑖)
} which has a binary 

classification character. The energy function of Equation  (2.93) is well behaved as 𝒯 → 𝔍 

owing to the continuous character of 𝒯.  

In the 𝓜− step Equation (2.93) is minimized w.r.t 𝜃 and (𝜑ℎ, 𝛴ℎ) using the computed from 

the 𝓔 − step matrix 𝒯, which is kept fixed in this step. As the 𝜇ℎ 's are not considered free 

parameters they are not optimized in the 𝓜− step. However, treating the (𝜑ℎ, 𝛴ℎ) 's as free 

parameters of the optimization can increase the number of local minima of Equation (2.93), 

i.e., various non-rigid point-set transformations may become valid solutions given the 

‘flexibility’ provided in the optimization by these additional parameters, especially in the 

presence of symmetry-breaking random noise.  

Consider the following approximation  

𝔒𝑀
2 (𝑞(𝑖))

2
≈
1

2

‖𝑞(𝑖) − ℱ(𝑡(ℎ); 𝜃)‖
2

𝜎2
=
1

2

‖𝑞(𝑖) − ℱ(𝑡(ℎ); 𝜃)‖
2

𝑇
               (2.95) 
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and that 𝑇, the temperature parameter, as defined in Equation (2.95) is subject to linear 

deterministic annealing [91, 92, 94-96]. As the magnitude of 𝑇 becomes larger, the elements 

of {𝒻
𝑡(ℎ)
(𝑖)
: 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ ℎ ≤ 𝑠 + 1} tend to take the 

1

𝑠+1
 value, which implies a global point 

matching process. As the magnitude of 𝑇 → 0, the set {𝒻
𝑡(ℎ)
(𝑖)
: 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ ℎ ≤ 𝑠} acquires 

a binary character, i.e., the 𝑞(𝑖) ' s are assigned to the closest Gaussian clusters centred at 

ℱ(𝑡(ℎ); 𝜃) which implies a local point matching process. The case for ℎ = 𝑠 + 1 is reserved 

for the class of outliers in the source model; it is reasonable to choose a large constant value 

for the temperature parameter, i.e., 𝑇 = 𝑇0, and let the fictitious 𝜇𝑠+1 be the centre of mass of 

{ℱ(𝑡(1); 𝜃), … , ℱ(𝑡(𝑠); 𝜃)}.  

The other free parameter, 𝜑ℎ, can be chosen specifically for non-rigid point set registration to 

be  

𝜑ℎ =
1

𝑚 + 1
                   (2.96) 

 1 ≤ ℎ ≤ 𝑠.                              

Equation (2.96) summarizes the following two choices: (i) another fictitious Gaussian cluster 

centre, 𝑖 = (𝑚 + 1), is introduced to address outliers in the moving target point set. Thus the 

matrix 𝒯 becomes  

𝒯 =

(

 
 
 
 

𝒻
𝑡(1)
(1)

𝒻
𝑡(1)
(2)

⋯ 𝒻
𝑡(1)
(𝑚)

𝒻
𝑡(1)
(𝑚+1)

𝒻
𝑡(2)
(1)

𝒻
𝑡(2)
(2)

⋯ 𝒻
𝑡(2)
(𝑚)

𝒻
𝑡(2)
(𝑚+1)

⋮ ⋮ ⋯ ⋮ ⋮

𝒻
𝑡(𝑠)
(1)

𝒻
𝑡(𝑠)
(2)

⋯ 𝒻
𝑡(𝑠)
(𝑚)

𝒻
𝑡(𝑠)
(𝑚+1)

𝒻
𝑡(𝑠+1)
(1)

𝒻
𝑡(𝑠+1)
(2)

⋯ 𝒻
𝑡(𝑠+1)
(𝑚)

𝒻
𝑡(𝑠+1)
(𝑚+1)

)

 
 
 
 

         𝑠. 𝑡. 

 𝒻
𝑡(ℎ)
(𝑖)
∈ [0,1] for 1 ≤ 𝑖 ≤ 𝑚 + 1 and 1 ≤ ℎ ≤ 𝑠 + 1, except 𝒻

𝑡(𝑠+1)
(𝑚+1)

≡ 0  

  ∑ 𝒻
𝑡(ℎ)
(𝑖)

𝑠+1

ℎ=1

= 1     ∀ 𝑖 ∈ {1,2, … ,𝑚}.       

The cluster of target model outliers is centred at the fictitious 𝑞𝑚+1 which corresponds to the 

centre of mass of {𝑞1, … , 𝑞𝑚}, and for 𝑇 = 𝑇0; and (ii) from Equation (2.83) of the 𝓜− step  
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∑ 𝒻
𝑡(ℎ)
(𝑖)

𝑚+1

𝑖=1

= 1 ⇔ 𝜑ℎ =
1

𝑚 + 1
      ∀ ℎ ∈ {1,2, … , 𝑠}. 

The row normalization of the affinity matrix 𝒯 in (ii) is particularly useful for non-rigid point 

matching that involves outliers in the target model or points of the target model for which no 

reliable and most probable correspondences can be established with points of the source from 

the onset of registration.  

An example is those points of the target that have true correspondences in the source but 

cannot immediately, right from the onset of registration, be assigned to them with a large 

probability in the 𝓔 − step (i.e., in the registration between the original full source and an 

occluded, extensively deformed and noisy target surface). Due to the continuous 

classification character of 𝒯 and the row summation constraint, they may initially be 

considered more as outliers (by some probability value) in the 𝓔 − step of the algorithm and 

gradually converge to their true correspondences in the source as the registration progresses 

and the deformation is recovered. 

In the absence of row normalization, as specifically defined in this section, such points (or in 

general any outliers of the target) will be forced by the column normalization of 𝒯 to 

erroneous correspondences with the source (including potential outliers of the source in the 

absence of column normalization) during the optimization. This leads to the calculation of an 

erroneous transformation function (derived exclusively from the established correspondence 

pairs, see Equation (2.100) later on in the text) that not only reinforces the mismatched 

correspondences but also causes the creation of new erroneous correspondences (which in 

turn are further reinforced in the next cycle of iterations of the 𝓔 − and 𝓜− step𝑠).  

Similar arguments can be raised for the column normalization of the affinity matrix 𝒯 which 

has been extended to explicitly treat outliers in the source; it does not favour the assignment 

of outliers of the source to target points (including potential outliers of the target in the 

absence of row normalization). The case where the source points have true correspondences 

in the target but these cannot be readily determined in the 𝓔 − step at the beginning of 

registration (due to extreme deformation of the target surface) is addressed by the column 

summation constraint and the continuous classification character of 𝒯. 

The common overlap between the original full source and an occluded and deformed target 

surface or an occluded, deformed and noisy target surface cannot always be determined 
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precisely, i.e., the extracted surface from the original full source may contain points that have 

no true correspondences in the extracted target surface (which can either be identical to the 

original occluded target model or be a subset of it) and cannot be rejected as outliers. This 

depends upon the distance threshold that was imposed in the extraction of the common 

overlap combined with the extent of deformation in the occluded target and the character of 

the registering surface itself (which is quite smooth for prostate). Only when the extracted 

source surface consists of points with true correspondences in the target and points that can 

be qualified as outliers can the ℰℳ +ℱ𝑇𝑃𝑆 methodology be used for full-model-to-occluded 

model non-rigid registration.          

The row normalization of 𝒯 is another constraint of the algorithm that must be satisfied 

∀ ℎ ∈ {1,2, … , 𝑠}. Consider the example of Figure 2.3. It shows the converged form of 𝒯 

which is the binary (from linear-assignment) correspondence matrix 𝔍.   

 

𝖏(𝒉)
(𝒊)
∈ {𝟎, 𝟏} 𝒒𝟏 𝒒𝟐 𝒒𝟑 ⋯ 𝒒𝒎 Centre of target outliers: 𝒒𝒎+𝟏 

𝒕𝟏 1 0 0 0 0 0 

𝒕𝟐 0 0 0 0 0 1 

𝒕𝟑 0 0 1 0 0 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝒕𝒔 0 0 0 0 0 1 

Centre of source outliers: 𝝁𝒔+𝟏 0 1 0 ⋯ 1 0 

Figure 2.3: The binary correspondence matrix 𝔍. Taken from Ref. [57] and modified 

accordingly for the purposes of this presentation.   

 

The ‘fuzzy correspondence’ matrix is defined by 

Ғ = (

𝒻
𝑡(1)
(1)

⋯ 𝒻
𝑡(1)
(𝑚)

⋮ ⋯ ⋮

𝒻
𝑡(𝑠)
(1)

⋯ 𝒻
𝑡(𝑠)
(𝑚)
). 

The row and column summation constraints guarantee (i) a one-to-one correspondence 

between transformed target points and fixed source points; and (ii) the identification of 
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outliers in the source and target models upon convergence of Ғ (shown in blue in Figure 2.3), 

following a graduated assignment scheme.   

The row normalization of 𝒯 plays a major role in the 𝓔 − step as it quantifies the presence of 

outliers in the set of target points as well as augments the overall process of correct point 

matching. It has however a minor impact on the optimization of Equation (2.93) of the 

𝓜− step. In general the values of 𝜑ℎ ∀ ℎ ∈ {1,2, … , 𝑠} are optimized in the 𝓜− step based 

on Equation (2.83) where the value of ∑ 𝒻
𝑡(ℎ)
(𝑖)𝑚+1

𝑖=1  arising from each of the 𝑠 rows of 𝑇 is 

indirectly dictated (within the context of non-rigid point set registration) by the normalization 

of the 𝒻
𝑡(ℎ)
(𝑖)

's of each of the 𝑚 columns of 𝑇 in the 𝓔 − step.  

The energy cost function is given by (see Appendix 𝓑.5) 

ℰ2(𝒯, 𝜃) =∑∑𝒻
𝑡(ℎ)
(𝑖) ‖𝑞

(𝑖) − ℱ(𝑡(ℎ); 𝜃)‖
2

2
  

𝑠

ℎ=1

𝑚

𝑖=1

+∑𝒻
𝑡(ℎ)
(𝑚+1) ‖𝑞𝑚+1 − ℱ(𝑡

(ℎ); 𝜃)‖
2

2
  

𝑠

ℎ=1

+∑𝒻
𝑡(𝑠+1)
(𝑖) ‖𝑞(𝑖) − 𝜇𝑠+1‖

2

2

𝑚

𝑖=1

+ 𝑇∑∑
3

2
𝒻
𝑡(ℎ)
(𝑖)
log 𝑇

𝑠

ℎ=1

𝑚

𝑖=1

+ 𝑇∑
3

2
𝒻
𝑡(ℎ)
(𝑚+1)

log 𝑇0

𝑠

ℎ=1

+ 𝑇∑
3

2
𝒻
𝑡(𝑠+1)
(𝑖)

log 𝑇0

𝑚

𝑖=1

+ 𝑇 (∑∑𝒻
𝑡(ℎ)
(𝑖)
log 𝒻

𝑡(ℎ)
(𝑖)

𝑠

ℎ=1

𝑚

𝑖=1

+∑𝒻
𝑡(ℎ)
(𝑚+1)

log 𝒻
𝑡(ℎ)
(𝑚+1)

𝑠

ℎ=1

+∑𝒻
𝑡(𝑠+1)
(𝑖)

log 𝒻
𝑡(𝑠+1)
(𝑖)

𝑚

𝑖=1

)

+ 𝜆𝑇𝐼(𝜃)                   (2.97).                                                                                              

The term of Equation (2.97) 

𝑇𝔅(𝒯) = 𝑇 ∑∑𝒻
𝑡(ℎ)
(𝑖)
log 𝒻

𝑡(ℎ)
(𝑖)

𝑠+1

ℎ=1

𝑚+1

𝑖=1

=                                                                                                       

= 𝑇(∑∑𝒻
𝑡(ℎ)
(𝑖)
log 𝒻

𝑡(ℎ)
(𝑖)

𝑠

ℎ=1

𝑚

𝑖=1

+∑𝒻
𝑡(ℎ)
(𝑚+1)

log 𝒻
𝑡(ℎ)
(𝑚+1)

𝑠

ℎ=1

+∑𝒻
𝑡(𝑠+1)
(𝑖)

log 𝒻
𝑡(𝑠+1)
(𝑖)

𝑚

𝑖=1

) 

represents now the fuzziness of 𝒯. 

Let’s assume 𝑇 = 𝑇1. The benefit matrix 𝒯 is evaluated in the 𝓔 − step and is used as input in 

the 𝓜− step where argmin
𝜃

ℰ2(𝒯, 𝜃). The computed transformation is then applied to the set 
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of target points leading to an updated target model. The 𝓔 − and 𝓜− steps will be repeated 

until pre-specified stopping criteria are satisfied. The target model is transformed during the 

optimization of (𝒯, 𝜃) for a given temperature 𝑇. Hence this algorithm produces a distinct set 

of (𝒯, 𝜃) parameters upon convergence for 𝑇 = 𝑇1 as a result of a sequential alternating 

optimization process. The converged 𝜃 parameters at 𝑇1 can be applied to the original target 

model to produce the registered target surface in one step (as the 𝜃 parameters produced by 

the 𝒢ℳℳ +ℱ𝑇𝑃𝑆 and 𝒦𝒞 + ℱ𝑇𝑃𝑆 algorithms at convergence were applied onto the original 

source model to generate the registered source surface at a given 𝜆). The next round of 

optimizations in the 𝓔 − and 𝓜− steps take place for 𝑇2(< 𝑇1), according to a deterministic 

linear annealing schedule, and so forth. As the non-rigid transformation ℱ is regularized by 

𝜆𝑇 in Equation (2.97), 𝜆 can now be considered a constant.        

Summarizing, the 𝓔𝓜 algorithm, embedded within a deterministic annealing mechanism, 

optimizes the following two steps:  

{𝓔 − step}:                                                                                                                                                      

The optimization of 𝒯 is initiated by (i) the column normalization of 𝒯 (∑ 𝒻
𝑡(ℎ)
(𝑖)𝑠+1

ℎ=1 = 1)  

𝒻
𝑡(ℎ)
(𝑖)
≔

1

√(2𝜋𝑇)3
𝑒𝑥𝑝 [−

1
2𝑇 (𝑞

(𝑖) − ℱ(𝑡(ℎ); 𝜃))
𝑇

(𝑞(𝑖) − ℱ(𝑡(ℎ); 𝜃))]

∑
1

√(2𝜋𝑇)3
𝑒𝑥𝑝 [−

1
2𝑇 (𝑞

(𝑖) −ℱ(𝑡(𝑔); 𝜃))
𝑇
(𝑞(𝑖) − ℱ(𝑡(𝑔); 𝜃))]𝑠+1

𝑔=1

         (2.98) 

{𝒻
𝑡(ℎ)
(𝑖)
: 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ ℎ ≤ 𝑠 + 1}              

where 𝑇 = 𝑇0 and 𝜇ℎ = 𝜇𝑠+1 for ℎ = 𝑠 + 1; (ii) followed by the row normalization of 𝒯 

(∑ 𝒻
𝑡(ℎ)
(𝑖)𝑚+1

𝑖=1 = 1)  

𝒻
𝑡(ℎ)
(𝑖)
≔

1

√(2𝜋𝑇)3
𝑒𝑥𝑝 [−

1
2𝑇 (𝑞

(𝑖) − ℱ(𝑡(ℎ); 𝜃))
𝑇

(𝑞(𝑖) − ℱ(𝑡(ℎ); 𝜃))]

∑
1

√(2𝜋𝑇)3
𝑒𝑥𝑝 [−

1
2𝑇 (𝑞

(𝑔) − ℱ(𝑡(ℎ); 𝜃))
𝑇
(𝑞(𝑔) − ℱ(𝑡(ℎ); 𝜃))]𝑚+1

𝑔=1

         (2.99) 

{𝒻
𝑡(ℎ)
(𝑖)
: 1 ≤ 𝑖 ≤ 𝑚 + 1, 1 ≤ ℎ ≤ 𝑠}            
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where 𝑇 = 𝑇0 and 𝑞(𝑖) ≡ 𝑞𝑚+1 for 𝑖 = 𝑚 + 1. Equations (2.98) and (2.99) were derived 

assuming that 𝜑𝑔 is constant ∀ 𝑔 ∈ {1, … , 𝑠 + 1} and ∀ 𝑔 ∈ {1,… ,𝑚 + 1}, respectively. The 

benefit matrix 𝒯 will be affected by the output from the optimization of the non-rigid 

transformation function of the 𝓜− step. 

{𝓜− step}:                                                                                                                                                   

The process of min𝜃 ℰ2(𝒯, 𝜃) comes into play and the following least-squares problem is 

solved for the correspondence pairs established in the 𝓔 − step   

min
𝜃
ℰ2(𝒯, 𝜃) = min

𝜃
ℰ3(𝜃) =                                                                                                                     

                          = min
𝜃
(∑∑𝒻

𝑡(ℎ)
(𝑖) ‖𝑞

(𝑖) − ℱ(𝑡(ℎ); 𝜃)‖
2

2
  

𝑠

ℎ=1

𝑚

𝑖=1

+ 𝜆𝑇𝐼(𝜃))         (2.100)

≈ min
𝜃
(∑

‖𝓌ℎ − ℱ(𝑡
(ℎ); 𝜃)‖

2

2

𝑠

ℎ=1

+ 𝜆𝑇𝐼(𝜃))                          (2.101) 

where ∀ ℎ ∈ {1,… , 𝑠}: 𝓌ℎ = ∑ 𝒻
𝑡(ℎ)
(𝑖)𝑚

𝑖=1 𝑞(𝑖). The sole purpose of 𝓌ℎ is to simplify the 

mathematical problem.  

There are two types of non-rigid registration that are being considered in this study: (i) 

registration between full source and full target models where 𝑠 ≅ 𝑚 [the maximum number 

of correspondence pairs is equal to 𝑚𝑖𝑛(𝑠,𝑚)]; and (ii) registration between full source and 

occluded target models (the total number of points in the common overlap will define the 

maximum number of correspondence pairs).   

As discussed earlier the effective number of correspondence pairs may not always be the 

maximum possible. It can be reduced by spurious points in the target or in the source model. 

These points will have no impact on the calculation of ℱ during min𝜃 ℰ3(𝜃) in the present 

implementation. Only the linear motion of such target points will be affected (determined by 

the computed ℱ) which won’t disqualify them from continuing to be spurious points of the 

moving target model.     
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2.4.4 Integration of the 𝑻𝑷𝑺 deformation model in the 𝓖𝓜𝓜/𝓔𝓜 

algorithm 

The objective of the 𝓜− step is to minimize ℰ3 w.r.t 𝜃 

ℰ3(𝜃) = ∑
‖𝓌ℎ −ℱ(𝑡

(ℎ); 𝜃)‖
2

2

𝑠

ℎ=1

+ 𝜆𝑇trace(𝜓𝑇𝒩𝑇𝛷𝒩𝜓)                (2.102) 

for any given temperature 𝑇 during the linear annealing schedule [𝒩 here is specifically 

defined as the left null space of [1|𝓢0] where 𝓢0 refers to the original target model; it is 

assumed that 𝓢0 ≡ control points, see also Equation (2.105) below and text for details] or to 

minimize ℰ4 w.r.t 𝜃 

ℰ4(𝜃) = ∑
‖𝓌ℎ − ℱ(𝑡

(ℎ); 𝜃)‖
2

2

𝑠

ℎ=1

+ 𝜆trace(𝜓𝑇𝒩𝑇𝛷𝒩𝜓)                  (2.103) 

as the reduction of temperature 𝑇, which controls the transition from rigid to non-rigid 

registration, has an impact on the benefit matrix 𝒯 and hence must be associated with the 

𝓔 − step.   

Based on Equation (2.27) of Section 2.1.3  

ℱ(𝓢0) = 𝓢 = [1|𝓢0]𝐸
𝑇 + 𝑈𝒩𝜓            (2.104) 

                = [1|𝓢0]𝐸
𝑇 + 𝛷𝒩𝜓                     (2.105)    

where 𝓢 is the transformed target model, 𝛷 is the 𝑇𝑃𝑆 kernel matrix, 𝑈 is the basis matrix, 𝜓 

relates to the non-affine subspace of the 𝑇𝑃𝑆 warping, and 𝐸𝑇 represents the affine 

transformation. Equation (2.105) was produced by selecting 𝓢0 to be the set of control points 

which means that 𝑈 ≡ 𝛷 ∈ ℝ𝑠×𝑠 and 𝒩 is the left null space of [1|𝓢0] (see also Appendix 

𝓑.6). This choice is applicable to non-rigid point set registration between a full source model 

and a full target model where 𝑠 ≅ 𝑚.  

Let the set of 𝓌ℎ ' s ∀ ℎ ∈ {1,… , 𝑠} be represented by Ѡ ∈ ℝ𝑠×3  

Ѡ = (

𝓌1

⋮
𝓌𝑠

) = (

𝓌𝑥
(1) 𝓌𝑦

(1) 𝓌𝑧
(1)

⋮ ⋮ ⋮

𝓌𝑥
(𝑠) 𝓌𝑦

(𝑠) 𝓌𝑧
(𝑠)
)                
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                                                         = (

𝒻
𝑡(1)
(1)

⋯ 𝒻
𝑡(1)
(𝑚)

⋮ ⋯ ⋮

𝒻
𝑡(𝑠)
(1)

⋯ 𝒻
𝑡(𝑠)
(𝑚)
)(

𝑞𝑥
(1) 𝑞𝑦

(1) 𝑞𝑧
(1)

⋮ ⋮ ⋮

𝑞𝑥
(𝑚) 𝑞𝑦

(𝑚) 𝑞𝑧
(𝑚)
)                   

                                    = Ғ𝓜𝟎                                       (2.106)            

where 𝓌(𝑥/𝑦/𝑧)
(ℎ)

= ∑ 𝒻
𝑡(ℎ)
(𝑖)
𝑞(𝑥/𝑦/𝑧)
(𝑖)𝑚

𝑖=1 , Ғ is the correspondence matrix and 𝓜𝟎 refers to the 

original source model. 

The objective cost function of Equation (2.103) can be rewritten into (see Appendix 𝓑.6) 

ℰ5(𝐸
𝑇 , 𝜓) = 2ℰ4(𝐸

𝑇 , 𝜓) =                                                                                                                         

= ‖Ғ𝓜𝟎 −𝓠𝟏𝓡𝟏𝐸
𝑇 − 𝛷𝒩𝜓‖𝐹

2 + 2𝜆trace(𝜓𝑇𝒩𝑇𝛷𝒩𝜓)                                                                

= ‖𝛷𝒩𝜓 − Ғ𝓜𝟎‖𝐹
2 + ‖𝓠𝟏𝓡𝟏𝐸

𝑇‖𝐹
2 + 2trace[(𝛷𝒩𝜓 − Ғ𝓜𝟎)(𝓠𝟏𝓡𝟏𝐸

𝑇)𝑻]

+ 2𝜆trace(𝜓𝑇𝒩𝑇𝛷𝒩𝜓)                 (2.107).                                                                   

Also, 

min
𝜓
ℰ5(𝐸

𝑇 , 𝜓)⟹𝜓 = 𝒩𝑇(𝛷 − 2𝜆𝐼)−1Ғ𝓜𝟎                    (2.108)  

min
𝐸𝑇
ℰ5(𝐸

𝑇 , 𝜓)⟹ 𝐸𝑇 = 𝓡1
−1𝓠1

𝑇(Ғ𝓜𝟎 − 𝛷𝒩𝜓)              (2.109) 

where 𝓠𝟏 and 𝓡𝟏 arise from the full rank 𝓠𝓡 decomposition of [1|𝓢0] according to 

  [1|𝓢0] = 𝓠𝓡 = [𝓠𝟏|𝒩] [
𝓡𝟏
𝟎
] = 𝓠𝟏𝓡𝟏                              (2.110). 

Once the correspondences are established in the 𝓔 − step, the least-squares cost function of 

Equation (2.107) is minimized w.r.t. 𝜓 based on Equation (2.108) and then w.r.t. 𝐸𝑇 based 

on Equation (2.109) for a given temperature. The transforming target model is then updated 

and this alternating process is repeated until convergence. The same joint optimization over 

the correspondence matrix Ғ and transformation parameters (𝐸𝑇 , 𝜓) takes place again for a 

lower temperature, starting from the last updated target model, following a predefined linear 

deterministic annealing mechanism, and so forth.   

To account for the possibility of choosing a set of control points from 𝓢0, the objective cost 

function of Equation (2.103) can be rewritten for 𝑈 ≠ 𝛷′ into (see Appendix 𝓑.7) 
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 ℰ6(𝐸
′𝑇 , 𝜓′) = ‖Ғ𝓜𝟎 − 𝓠𝟏𝓡𝟏𝐸

′𝑇 − 𝑈𝒩′𝜓′‖𝐹
2 + 2𝜆trace(𝜓′𝑇𝒩′𝑇𝛷′𝒩′𝜓′) =                          

= ‖𝑈𝒩′𝜓′ − Ғ𝓜𝟎‖𝐹
2 + ‖𝓠𝟏𝓡𝟏𝐸

′𝑇‖𝐹
2 + 2trace[(𝑈𝒩′𝜓′ − Ғ𝓜𝟎)(𝓠𝟏𝓡𝟏𝐸

′𝑇)𝑻]

+ 2𝜆trace(𝜓′𝑇𝒩′𝑇𝛷′𝒩′𝜓′)                             (2.111)                                                

where 𝐸′𝑇 ∈ ℝ4×3 represents the affine transformation,  𝑈 ∈ ℝ𝑠×𝑛 is the basis matrix, 

𝛷′ ∈ ℝ𝑛×𝑛 is the 𝑇𝑃𝑆 kernel matrix, 𝓠𝟏 and 𝓡𝟏 arise from the full rank 𝓠𝓡 decomposition 

of [1|𝓢0] according to Equation (2.110), 𝜓′ ∈ ℝ(𝑛−4)×3 relates to the non-affine subspace of 

the 𝑇𝑃𝑆 warping, 𝒩′ ∈ ℝ𝑛×(𝑛−4) represents the left null space of [1|𝓟0] ∈ ℝ
𝑛×4 and 

𝓟0 = {𝑃1, … , 𝑃𝑛} corresponds to the set of the original target control points.  

Also, 

min
𝜓′
ℰ6(𝐸

′𝑇 , 𝜓′) ⟹ 𝜓′ = 𝓤−𝟏𝒩′𝑇𝑈𝑇Ғ𝓜𝟎                             (2.112)  

where 𝓤 = [𝒩′𝑇𝑈𝑇𝑈𝒩′ − 2𝜆𝒩′𝑇𝛷′𝒩′] and  

min𝐸′𝑇 ℰ6(𝐸
′𝑇 , 𝜓′)⟹ 𝐸′𝑇 = 𝓡1

−1𝓠1
𝑇(Ғ𝓜𝟎 − 𝑈𝒩

′𝜓′)             (2.113).  

2.4.5 Modifications 

The available C++ algorithm [68] was rewritten using the output from the mathematical 

derivations of Sections 2.4.3 and 2.4.4. As the perturbation from spurious points in the target 

or in the source model was not accounted for in the codes, Equations (2.98) and (2.99) of 

Section 2.4.3 were implemented for an extended affinity matrix 𝒯 (see Figure 2.3). This 

modification is necessary for the non-rigid point set registration between a full source model 

and an occluded and extensively deformed target surface, and other cases, as described in 

Section 2.4.3.  

The energy cost function of Equation (2.107) was derived by selecting the original target 

model to be the set of control points (i.e., 𝑈 ≡ 𝛷) which affords higher accuracy of 

registration. Equation (2.111) is produced by selecting the set of control points to be a subset 

of the original target model (i.e., 𝑈 ≠ 𝛷′). While the 𝒢ℳℳ/ℰℳ formalism as presented in 

this study is consistent with relevant machine-learning concepts and specifically the work 

published in Ref. [57], there is discrepancy between Equations (15), (16) and (17) of Ref. 

[57] and the results of this work. 
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One way to perform non-rigid point set registration between a full source model 𝓜𝟎 and an 

occluded target model 𝓢0 using the modified algorithm may be by transforming 𝓢0 onto 𝓜𝟎 

where 𝓢0 ≡ control points. The reliability of registration depends upon the quality of the 

correspondence matrix Ғ which is constructed at the 𝓔 − step. The matrix Ғ is of good quality 

when the true correspondences are only identified and the remainder from 𝓜𝟎 is treated as 

outliers of the source. Considering the morphology of the prostate surface, this option must 

be rejected.  

A second approach is to register 𝓜𝟎  onto 𝓢0. By imposing tight non-rigid registration 

conditions, all points of the source with valid correspondences in the target can - theoretically 

- be discriminated against the remainder (which is treated as outliers of the source) at the end 

of the annealing process. By using this set of source points as control points of the 

registration and applying the computed ℱ onto 𝓜𝟎 the remainder of the full source can be 

transformed accordingly. Determining this set of source control points is however not 

possible in our calculations. This way is also not promising considering the smooth topology 

of the prostate surfaces. 

Another approach is to first obtain the one-on-one nearest-neighbour correspondences 

between 𝓜𝟎 and 𝓢0 by setting a maximum distance threshold as the upper limit of all 

correspondences, as Figure 2.4 shows. The two point sets must be in approximate registration 

before the non-rigid registration process of Figure 2.4 is initiated and the initial 

correspondences must be produced from the closest point pairs (by imposing a low value for 

the maximum distance threshold).  

The output from ‘establishing nearest neighbour correspondences’ in Figure 2.4 consists of 

the extracted source model point set corr(𝓜) and the extracted target model point set 

corr(𝓢). The corr(𝓜) dataset is aligned onto corr(𝓢) based on the modified 𝒢ℳℳ/ℰℳ +

ℱ𝑇𝑃𝑆 registration algorithm where for the set of control points 𝓒 it holds that 𝓒 = corr(𝓜). 

The initial value for temperature, 𝑇0, of the deterministic annealing mechanism must be so 

large as the largest squared distance that can be computed from all point-pair combinations 

between corr(𝓜) and corr(𝓢). In doing so all possible correspondences between the two 

datasets become equally probable in the 𝓔 − step. The correspondence matrix Ғ is then 

characterized by a high degree of fuzziness.   
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In the 𝓜− step, the energy cost function of Equation (2.107) is minimized w.r.t 𝜃 given the 

estimated Ғ in the 𝓔 − step according to Equations (2.108) and (2.109). The 𝛷(= 𝑈) and 𝒩 

matrices, which are also required in the calculations, are estimated. The dataset corr(𝓜) is 

updated using the optimized 𝑇𝑃𝑆 and affine parameters 𝜃. The final set of optimized 

parameters 𝜃 at 𝑇0 is obtained after a series of alternating  𝓔 − and 𝓜− step optimizations.  

The temperature is then reduced (by a fixed annealing rate) and the same process is repeated 

for the already transformed dataset corr(𝓜). As the temperature is gradually reduced the 

correspondences are further fine-tuned recovering the local structures, as is expected from 

Equations (2.98) and (2.99).    

The optimized 𝑇𝑃𝑆 and affine parameters 𝜃 obtained at the end of the annealing schedule 

will then be used to calculate the non-rigid transformation ℱ that will be applied to 𝓜. The 

𝑈 matrix for the full model 𝓜 is computed taking corr(𝓜) to be the set of control points of 

𝓜. The output from this process overwrites the moving model, namely, 𝓜≔ ℱ(𝓜;𝜽), and 

the overall process is repeated until a stopping criterion is satisfied. An increased number of 

correspondences is expected due to the gradual non-rigid deformation of the moving model. 

This approach can lead to reliable non-rigid registration results between full models and 

occluded surfaces only if the extracted source surface consists of points with true 

correspondences in the extracted target model (plus possible outliers), hence it is worthwhile 

further exploiting it.   
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Modified Algorithm.  

Input: The original full source model set 𝓜𝟎, the original occluded (and deformed and 

noisy) target model set 𝓢0 and the non-rigid parameterized 𝑇𝑃𝑆 transformation model. 

Output: The moving model 𝓜 registered onto the target scene 𝓢0. 

 

Figure 2.4: Modifications of the 𝒢ℳℳ/ℰℳ +ℱ𝑇𝑃𝑆 learning algorithm for full-model-

to-occluded-surface non-rigid registration. 

 

2.5 Summary 

The state-of-the-art registration algorithms proposed by (i) Jian and Vemuri [53, 54]; (ii) Tsin 

and Kanade [55]; and (iii) Chui and Rangarajan [57] were formulated exclusively for non-

rigid registration between “complete” general surfaces (2𝐷 or 3𝐷). These techniques are 

subject to the condition that the registration pair datasets must not deviate significantly in 

number of points. In this work the algorithms are modified to account for non-rigid 
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registration between 3𝐷 full prostate surfaces and occluded ones. A mechanism for 

producing valid initial correspondences between them is designed and invoked as the initial 

stage before the registration process is initiated using all three types of algorithms.  

For (i) and (ii) the emphasis is placed on designing and implementing a suitable process for 

achieving reliable final correspondences between the transformed full source and the 

occluded target. It is designed having in mind the multiply-linked character of the associated 

(globally defined) objective cost functions. The approach of performing non-rigid registration 

between the extracted datasets from the full source and occluded target is tested. It is because 

of the multiply-linked nature of the relevant energy functions that the overall correspondence 

error can be considerably reduced during the non-rigid registration of the extracted source 

and target point datasets (which in turn is based on the original algorithmic formulation of the 

non-rigid registration models of (i) and (ii)). The prostate surfaces can undergo a large 

variation in shape in the presence of important amounts of noise and outliers. To provide an 

accurate non-rigid registration scheme specifically for the smooth and (often extensively) 

perturbed prostate surfaces: (a) the complete set of extracted source points is chosen to serve 

as the set of control points in the non-rigid registration with the extracted target point dataset; 

and (b) the complete set of extracted source points (which is gradually increasing in size as 

the deformation is incrementally being recovered) is chosen to serve as control points for the 

calculation of the 𝑇𝑃𝑆 deformation of the remainder of the registering full source model. As a 

consequence higher levels of registration accuracy between the full prostate source and the 

partial deformed view of it (which also bears the effects of additional perturbations) are 

achieved.  

For (iii), aside from the proposed general methodology that is applied to (i) and (ii), which 

has been suitably adjusted, a series of algorithmic reformulations are performed. These are 

based on (a) the exact mathematical expressions that are derived in this work; and (b) 

implementations of relevant terms which were not part of the available algorithm [68] in their 

optimal form such as the mathematical expressions for the column and row normalization of 

an extended affinity matrix 𝒯 as specifically derived in Section 2.4.3. 
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Chapter 3 

Design of synthetic test prostate data and assessment of 

registration accuracy of selected non-rigid algorithms via 

computational experiments  

    

3.1 Introduction 

The sensitivity of the selected non-rigid algorithms, defined by registration accuracy, with 

respect to a series of perturbation effects must be measured. And for that purpose suitable 

synthetic prostate data were carefully designed to simulate a wide variety of available real 

medical imaging data.  

The preparation of prostate synthetic data was guided by a large volume of real prostate data 

that were collected intraoperatively via the aid of the da Vinci Surgical System. Clinical cases 

of deformed prostate surfaces characterized by geometric features with high-frequency details 

(i.e., a sharp creases) were observed. A number of other synthetic prostate surfaces were also 

constructed spanning unobserved but possible clinical scenarios. The familiar geometric 

structure of the prostate surface was maintained in all simulations.          

A number of validation schemes for assessing the registration accuracy of the non-rigid 

algorithms were also developed and tested via an extensive series of computational 

experiments. The registration accuracy was determined by computing the 𝑇𝑅𝐸𝑠 using the 

approach of Section 1.4.2.  

Sections 3.3-3.6 refer to registration between full 3𝐷 models while 3.7 and 3.8 to full-model-

to-partial-model registration. The computational registration experiments were conducted 

after an optimal initial manual alignment between the source and the target model (see 

Section 3.2). As was mentioned in Chapter 2, no prior point-to-point correspondences are 

assumed between them. Also, the identification of the final correspondences between the 

registering source and the target arises from an optimization process (as implemented in the 

registration algorithms), which is initiated by an approximate manual alignment between the 
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datasets. The more “unrealistic” the initial alignment is the more deteriorated the non-rigid 

registration accuracy will be computed (i.e., the estimated final correspondences would 

further deviate from the true ones). Even for an ideal initial alignment between the source and 

the target, it is not guaranteed that the examined algorithms will identify the exact final 

correspondences (which is a particularly challenging task considering the smoothness of the 

prostate surfaces and that no intrinsic features or extrinsic markers are used to guide the non-

rigid registration (see Section 1.2.1). If the true correspondences could be identified by the 

examined algorithms that would imply 𝑇𝑅𝐸 = 0.) By performing an optimal initial alignment 

before registration, we set the condition for establishing “the best warping accuracies that can 

be computed” using the given algorithms (or measuring their capacity to identify the true 

final correspondences). This output can be used as a benchmark against which the 

improvement of accuracy should be aimed at starting from less-optimal cases of initial 

alignment considering that the computational experiments of this work were conducted based 

on an extensive series of representative simulations of real medical imaging data.   

 The 3𝐷 prostate surface mesh of Figure 3.1 was used in these experiments
7
. The C++ 

computer algorithms that are presented in this Chapter were developed with the aid of the 

Visualization Toolkit (VTK, version 5.8.0. See Ref. [97]). The computational registration 

experiments were conducted at the Computer Science cluster of UCL (Sun N1 Grid Engine 

6.1. See Ref. [98]) by submitting batch jobs. 

 

                         

Figure 3.1: In the left panel: the 3𝐷 prostate segmented image volume. In the right panel: 

the 3𝐷 point-cloud representation of the prostate surface mesh.  

                                                           
7
 The 𝑀𝑅𝐼 prostate segmentation was provided by Yipeng Hu and was prepared by a 

radiologist at University London College Hospital (UCLH). The 𝑀𝑅𝐼 scans were acquired at 

UCLH with local ethical approval for the research purpose. 
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3.2 Initial alignment of the source model onto the target surface 

A software application was implemented for the manual alignment of the source model onto 

the target scene before the non-rigid registration is initiated (see Figure 3.2). The graphical 

user interface (𝐺𝑈𝐼) was developed using the 𝑄𝑡 library [99] and the visualization utility is 

managed by 𝑉𝑇𝐾 and 𝑃𝐶𝐿 [100]. The main features of the software are: 

 The ability to scale and superimpose the source model onto the target scene or the 

target onto the source and save the new orientation(s) and size(s) of the manually 

registered (colour-coded) model(s) into a designated directory. 

 The option of downsampling feature datasets using 𝑉𝑇𝐾 or 𝑃𝐶𝐿. 

 The option of producing a surface-reconstructed point cloud using 𝑉𝑇𝐾. 

 Crop a full model to produce a partial view of it. 

 Load three (or two or one) 3𝐷 images and view them in the same geometrical 

coordinate system. 

 Produce synthetic test data. 

 Calculate the 𝑇𝑅𝐸𝑠. 

 

                  

Figure 3.2: Screenshot of the 𝐺𝑈𝐼 developed for the initial manual alignment of the 

source model onto the target scene. 
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3.3 Deformation effects and their impact on 𝑻𝑹𝑬 

The capabilities of the nonrigid algorithms to recover deformation are tested by 

systematically increasing the size and the extent of the non-linear transformation applied onto 

the source. This is a very critical examination considering the smoothness of prostate surface 

and that it is lacking distinctive features. Algorithm 1 shows the pseudocode for a routine 

which implements a way of producing warped prostate surfaces for registration.    

Algorithm 1: Generation of full target models of registration by application of a 𝑇𝑃𝑆 warp 

onto the source.  

Input: The original full source model set 𝓜𝟎; number of elements 𝓝𝟏 of a subset of 𝓜𝟎, 

call it 𝓜, which serves as the source model of registration; minimum 𝓝𝟐 and maximum 𝓝𝟑 

number of points selected randomly from 𝓜𝟎 to serve as source control points for the 

(random) 𝑇𝑃𝑆 transformation applied onto 𝓜𝟎 to produce ℱ1
(𝑖)(𝓜𝟎; 𝜃); and 𝓝𝟒, 𝓝𝟓, and 

𝓝𝟔 which represent, respectively, the upper limits of three uniform distributions with lower 

limits zero.     

Output: The 𝓜 model set and the difference 𝓜𝟎 −𝓜 which provides the set of “target 

markers” for the 𝑇𝑅𝐸 calculations (see Algorithm 2); {ℱ1
(𝑖)(𝓜𝟎; 𝜃)}, {ℱ1

(𝑖)(𝓜; 𝜃)}, and 

{ℱ1
(𝑖)(𝓜𝟎 −𝓜;𝜃)}. 

1: Randomly select 𝓝𝟏 points from 𝓜𝟎 to produce 𝓜. 

2: Identify the labels of those points of 𝓜𝟎 that form 𝓜 and exclude them from the list 

of point labels of 𝓜𝟎 to generate 𝓜𝟎 −𝓜. 

3: 𝑓𝑜𝑟        𝒊 = 𝓝𝟐      𝑡𝑜      𝓝𝟑            {by adding 𝓝𝟐, 𝑖. 𝑒. ,   𝒊 ≔ 𝒊 +𝓝𝟐}  

4: Randomly select 𝑖 points from 𝓜𝟎 to form the set of source control points required 

for the calculation of the affine and 𝑇𝑃𝑆 transformation parameters of ℱ1
(𝑖)

. The 

complexity of deformation across 𝓜𝟎 is governed by the variable 𝑖. 

5:  𝑓𝑜𝑟        𝒋 = 1      𝑡𝑜       𝒊            {𝒋 ≔ 𝒋 + 1}  

𝑥𝑗
′ ≔ 𝑥𝑗 + 𝑋𝑗; 𝑦𝑗

′ ≔ 𝑦𝑗 + 𝑌𝑗; and 𝑧𝑗
′ ≔ 𝑧𝑗 + 𝑍𝑗 
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where (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) represents the 3𝐷 𝑗𝑡ℎ control point which, by application of 

the 𝑇𝑃𝑆 transformation ℱ1
(𝑖)

 onto (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) or 𝓜𝟎, will be mapped exactly to 

its correspondence, i.e., the 𝑗𝑡ℎ target point (𝑥𝑗
′, 𝑦𝑗

′, 𝑧𝑗
′). {𝑋𝑗, 𝑌𝑗 , 𝑍𝑗} represents a 

set of random numbers each of which arises from a distinct uniform 

distribution (one for each dimension). Each of the three distributions is lying 

between zero and an upper value which is: 𝓝𝟒 (for the 𝑥 dimension); 𝓝𝟓 (for 

the 𝑦 dimension); and 𝓝𝟔 (for the 𝑧 dimension). Hence 𝑋𝑗 ∈ [0,𝓝𝟒]; 

𝑌𝑗 ∈ [0,𝓝𝟓]; and 𝑍𝑗 ∈ [0,𝓝𝟔]. This step determines {(𝑥𝑗
′, 𝑦𝑗

′, 𝑧𝑗
′)}, i.e., the set 

of all (“randomly” produced) target points of the 𝑇𝑃𝑆 deformation, which are 

also required for the calculation of the affine and 𝑇𝑃𝑆 transformation 

parameters of ℱ1
(𝑖)

. The size of deformation across 𝓜𝟎 is governed by 

(𝓝𝟒,𝓝𝟓,𝓝𝟔). 

6:  𝑒𝑛𝑑 𝑓𝑜𝑟 

7: Calculate the 𝑇𝑃𝑆 transformation ℱ1
(𝑖)

 and apply it onto 𝓜𝟎 to produce ℱ1
(𝑖)(𝓜𝟎; 𝜃).  

8: Identify the correspondences of 𝓜 and those of 𝓜𝟎 −𝓜 in ℱ1
(𝑖)(𝓜𝟎; 𝜃) to produce 

the target model of registration ℱ1
(𝑖)(𝓜; 𝜃) and the set of “deformed” target markers 

ℱ1
(𝑖)(𝓜𝟎 −𝓜;𝜃), respectively.    

9: 𝑒𝑛𝑑 𝑓𝑜𝑟  

Ten different sets of computational registration experiments, 𝐸𝑥𝑝 𝐴 − 𝐸𝑥𝑝 𝐽, were conducted 

for each registration algorithm and for fixed 𝓜𝟎, 𝓝𝟏 = 330 points, 𝓝𝟐 = 2 and 𝓝𝟑 = 200 

while 𝓝𝟒, 𝓝𝟓, and 𝓝𝟔 were varied. The tests in 𝐸𝑥𝑝 𝐸 and 𝐸𝑥𝑝 𝐻 − 𝐸𝑥𝑝 𝐽 simulate as 

close as possible the available clinical data. Various other combinations of input parameters 

that could lead to possible instances of prostate deformation were also tested. See Table 3.1 

and Figures 3.3 and 3.4. 
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 𝓝𝟒 𝓝𝟓 𝓝𝟔 

𝑬𝒙𝒑 𝑨 10 10 10 

𝑬𝒙𝒑 𝑩 9 9 9 

𝑬𝒙𝒑 𝑪 8 8 8 

𝑬𝒙𝒑 𝑫 7 7 7 

𝑬𝒙𝒑 𝑬 6 6 6 

𝑬𝒙𝒑 𝑭 5 5 5 

𝑬𝒙𝒑 𝑮 4 4 4 

𝑬𝒙𝒑 𝑯 4 4 8 

𝑬𝒙𝒑 𝑰 4 8 4 

𝑬𝒙𝒑 𝑱 8 4 4 

Table 3.1: Ten different sets of deformed target models of registration are produced from 

Algorithm 1 by varying 𝒩4, 𝒩5, and 𝒩6. See also Figures 3.3 and 3.4, and text 

for details.   
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Figure 3.3: Examples of synthetic prostate datasets which represent nonlinearly deformed 

target models of registration and were produced from Algorithm 1. The 3𝐷 

point-cloud representations are not in scale. See Table 3.1 and text for details. 
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Figure 3.4: Examples of sets of original and “deformed” target markers from 𝐸𝑥𝑝 𝐴. 

These sets were produced from Algorithm 1 and are used in the 𝑇𝑅𝐸 

calculations. The 3𝐷 datasets are not in scale. See Table 3.1 and text for 

details. 

 

The registration takes place between 𝓜 and each element of {ℱ1
(𝑖)(𝓜;𝜃)} of each 

experiment producing as output a set of affine and 𝑇𝑃𝑆 transformation parameters 

{(𝐸(𝑖), 𝜓(𝑖))} as well as {ℱ2
(𝑖)(𝓜;𝜃)}. Since 𝓜 serves as the set of control points in the ℱ2

(𝑖)
  

𝑇𝑃𝑆 transformation it holds that 𝑈 ≡ 𝛷. The ℱ2
(𝑖)

 𝑇𝑃𝑆 transformation, constructed based 

upon (𝐸(𝑖), 𝜓(𝑖)), is then applied onto 𝓜𝟎 −𝓜 according to Equation (2.27) of Section 

2.1.3 where 𝓜 is also used as control points in this transformation. This leads to the set 

{ℱ2
(𝑖)(𝓜𝟎 −𝓜;𝜃)}. See also Figure 3.5 for a graphical representation of an example 

registration experiment.  
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Figure 3.5: Registration between  𝓜 and ℱ1
(10)(𝓜;𝜃) of 𝐸𝑥𝑝 𝐴. The average 𝑇𝑅𝐸 

computed with the 𝐸𝑀 + 𝑇𝑃𝑆 method and for 𝒅 = 15 is (0.2812 ± 0.2103) 

mm. See text for details. 

 

The 𝑇𝑅𝐸 calculations are conducted by randomly pooling a number of points from 

ℱ1
(𝑖)(𝓜𝟎 −𝓜;𝜃) and comparing them to their correspondencies in ℱ2

(𝑖)(𝓜𝟎 −𝓜;𝜃). This 

process takes place between each element of {ℱ1
(𝑖)(𝓜𝟎 −𝓜;𝜃)} and its counterpart in 

{ℱ2
(𝑖)(𝓜𝟎 −𝓜;𝜃)} and for different numbers of randomly selected target markers (and for 

each experiment and non-rigid registration method), as Algorithm 2 demonstrates below:  

Algorithm 2: Calculation of 𝑇𝑅𝐸𝑠.  

Input: The 𝓜𝟎 −𝓜 model set; {ℱ1
(𝑖)(𝓜𝟎 −𝓜;𝜃)} and {ℱ2

(𝑖)(𝓜𝟎 −𝓜;𝜃)} where 𝓚𝟏 is 

the number of elements in each set; 𝓚𝟐 is the number of times that a fixed number of target 

markers 𝒅 𝜖 {3,5,10,15} is randomly selected from 𝓜𝟎 −𝓜. 

Output: Consider a list of 𝑇𝑅𝐸𝑠 each arising from a random configuration of 𝒅 target 

markers drawn from 𝓜𝟎 −𝓜; they are computed by first identifying their correspondences 

in ℱ1
(𝑖)(𝓜𝟎 −𝓜;𝜃) and ℱ2

(𝑖)(𝓜𝟎 −𝓜;𝜃) and then using the relationship  
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𝑇𝑅𝐸2 =
1

𝑑
∑‖(ℱ1

(𝑖)(𝓜𝟎 −𝓜;𝜃))
𝑗
− (ℱ2

(𝑖)(𝓜𝟎 −𝓜;𝜃))
𝑗
‖
2

𝑑

𝑗=1

        (3.1) 

where (ℱ1/2
(𝑖)(𝓜𝟎 −𝓜;𝜃))

𝑗
represent the 3𝐷 Cartesian target marker coordinates of the 𝑗th 

pair of spatial correspondences. A distinct list of 𝑇𝑅𝐸𝑠 can be produced for each element of 

{ℱ1
(𝑖)(𝓜𝟎 −𝓜;𝜃)} and its counterpart in {ℱ2

(𝑖)(𝓜𝟎 −𝓜;𝜃)} for a fixed 𝒅. The same 

process can be repeated ∀ 𝒅 ∈ {3,5,10,15}.  

1: 𝑓𝑜𝑟        𝒅 = 3,5,10,15  {number of target markers} 

2:  𝑓𝑜𝑟        𝒊 = 1      𝑡𝑜       𝓚𝟏            {𝒊 ≔ 𝒊 + 1} 

3:   𝑓𝑜𝑟        𝒎 = 1      𝑡𝑜       𝓚𝟐            {𝒎 ≔ 𝒎+ 1} 

4: Randomly select 𝒅 points from 𝓜𝟎 −𝓜 and identify their point 

labels.  

5:    𝑓𝑜𝑟        𝒏 = 1      𝑡𝑜       𝒅            {𝒏 ≔ 𝒏 + 1} 

6: Find the correspondences of the target marker in  

ℱ1
(𝑖)(𝓜𝟎 −𝓜;𝜃) and ℱ2

(𝑖)(𝓜𝟎 −𝓜;𝜃) based on its already 

identified point label.  

7: Calculate the squared distance between the two 

correspondences and add the result to a running total.  

8:    𝑒𝑛𝑑 𝑓𝑜𝑟 

9: Divide the sum of the computed squared distances in (5 − 8) by 𝒅, 

take the square root of the output to compute the 𝑇𝑅𝐸, and append the 

result onto a list specifically linked to 𝒊. 

10:   𝑒𝑛𝑑 𝑓𝑜𝑟 

11:  𝑒𝑛𝑑 𝑓𝑜𝑟 

12: 𝑒𝑛𝑑 𝑓𝑜𝑟 
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Consider the average value and the standard deviation of all 𝑇𝑅𝐸𝑠8 originating in 𝓚𝟐 random 

configurations of 𝒅 target markers drawn from ℱ1
(𝑖)(𝓜𝟎 −𝓜;𝜃) as described in the output 

section of Algorithm 2. A list of average values and standard deviations of 𝑇𝑅𝐸𝑠 can be 

produced by iteratively examining each element of {ℱ1
(𝑖)(𝓜𝟎 −𝓜;𝜃)} and its counterpart 

in {ℱ2
(𝑖)(𝓜𝟎 −𝓜;𝜃)} for a fixed 𝒅 and for all experiments and registration methods.  

  

 

 

 

 

 

 

 

Figure 7.1: K1=100, k2=100, d=15 EM+TPS. Only a subset of the available data is 

graphically presented. 

 

 

 

 

Figures 3.6: Average 𝑇𝑅𝐸𝑠 computed with the 𝐸𝑀 + 𝑇𝑃𝑆 method to determine sensitivity 

to deformation. 𝓚𝟏 = 100, 𝓚𝟐 = 100, and 𝒅 = 15. Only a subset of the 

available data is graphically presented.   

                                                           
8
 The 𝑇𝑅𝐸𝑠 showed no significant dependence on the (random) configuration of target 

markers as can be seen in Figures 3.6-3.8.  
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Figure 3.7: Average 𝑇𝑅𝐸𝑠 computed with the 𝐾𝐶 + 𝑇𝑃𝑆 method to determine sensitivity 

to deformation. 𝓚𝟏 = 100, 𝓚𝟐 = 100, and 𝒅 = 15. Only a subset of the 

available data is graphically presented. Only results from Experiments 𝐸, 𝐻, 𝐼 

and 𝐽 are shown, as most representative of the clinical data.  

 

Hence the impact that the varying size of deformation (as implemented in the various 

experiments) has on the 𝑇𝑅𝐸 in going from 𝓝𝟐 to 𝓝𝟑 source control points can be 

determined ∀ 𝒅 ∈ {3,5,10,15}. As the 𝑇𝑅𝐸𝑠 showed no significant dependence on 𝒅 across 

all experiments and for all registration methods (using the same input files), we report here 

the results only for 𝒅 = 15. See also Figures 3.6-3.8. 
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Figure 3.8: Average 𝑇𝑅𝐸𝑠 computed with the 𝐺𝑀𝑀 + 𝑇𝑃𝑆 method to determine 

sensitivity to deformation. 𝓚𝟏 = 100, 𝓚𝟐 = 100, and 𝒅 = 15. Only a subset 

of the available data is graphically presented. Only results from Experiments 

𝐸, 𝐻, 𝐼 and 𝐽 are shown, as most representative of the clinical data.   

 

3.4 The effect of Gaussian noise and its impact on 𝑻𝑹𝑬 

The intraoperatively acquired clinical data are perturbed by noise, which, in this work, is 

assumed to be of Gaussian type. The target model of registration is produced by injecting 

Gaussian noise in the source. Its impact on 𝑇𝑅𝐸 is determined as a function of increasing size 

of Gaussian noise.  

The perturbation from Gaussian noise can be explicitly modelled in the objective cost 

function (its contribution can be parameterized using a Gaussian normal distribution with 

zero mean and 𝜎 standard deviation, see Ref. [62]). The available “noisy” clinical data were 

qualitatively compared to simulated analogues, i.e., “noisy” synthetic target models of 

registration, a range of standard deviations of the Gaussian normal distribution were deduced 
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on the basis of similarity assuming zero mean, and the relevant impact on 𝑇𝑅𝐸 was 

determined for this range. Additional calculations were also conducted by extending this 

identified range of standard deviations.  

The best learning algorithm for prostate surface registration must be able to quantify the 

underlined noise level in the real clinical data, and decide whether to account for noise 

explicitly in its energy cost function (which could increase the accuracy of registration to 

clinically acceptable levels) or not; the present analysis gives more insight into this question 

assuming that all points of the synthetic target model are subject to Gaussian noise.  

Algorithm 3: Generation of full target models of registration by adding noise to the full 

source model. The injected noise is generated from a Gaussian normal distribution with fixed 

mean and varying standard deviation. (See also Figure 3.9 for a diagrammatic presentation.)    

Input: 𝓜𝟎 and 𝓝𝟏 as defined in Algorithm 1 (𝓜 and 𝓜𝟎 −𝓜 maintain the same 

definitions); the mean 𝜇 of the Gaussian normal distribution; 𝜎3 and 𝜎2 which represent, in 

respect, the maximum standard deviation of the Gaussian distribution and an increment 

parameter that is iteratively added to the running standard deviation 𝜎 until 𝜎3 is reached.    

Output: 𝓜 and 𝓜𝟎 −𝓜; {𝓙𝜎} where 𝓙𝜎 corresponds to updated 𝓜 according to (𝜇, 𝜎). 

1: Randomly select 𝓝𝟏 points from 𝓜𝟎 to produce 𝓜 and 𝓜𝟎 −𝓜. 

2: 𝑓𝑜𝑟       𝜎 = 𝜎2      𝑡𝑜      𝜎3            { 𝜎 ≔  𝜎 + 𝜎2} 

3:  𝑓𝑜𝑟        𝒊 = 1      𝑡𝑜       𝓝𝟏            { 𝒊 ≔ 𝒊 + 1} 

𝑥𝑖
′ ≔ 𝑥𝑖 + 𝑋𝑖; 𝑦𝑖

′ ≔ 𝑦𝑖 + 𝑌𝑖; 𝑧𝑖
′ ≔ 𝑧𝑖 + 𝑍𝑖 

where (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and (𝑥𝑖
′, 𝑦𝑖

′, 𝑧𝑖
′) represent the original 3𝐷 𝑖𝑡ℎ point of 𝓜 and 

its updated version, respectively. {𝑋𝑖 , 𝑌𝑖, 𝑍𝑖} corresponds to a set of random 

numbers that are generated from a Gaussian normal distribution with fixed 

mean 𝜇 and (increasing) standard deviation 𝜎. A new copy of the original 𝓜 

is updated for each new value of 𝜎.  

4:  𝑒𝑛𝑑 𝑓𝑜𝑟 

5: 𝑒𝑛𝑑 𝑓𝑜𝑟 
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Figure 3.9: A diagrammatic representation of Algorithm 3. 

 

Four different sets of computational registration experiments, 𝐸𝑥𝑝 𝐴 − 𝐸𝑥𝑝𝐷, were 

conducted for each registration algorithm and for fixed 𝓜𝟎, 𝜇 = 0, 𝜎2 = 0.015 and 𝜎3 =

1.500 while 𝓝𝟏 was varied, as shown in Table 3.2. The objective of this exercise is to 

quantify the relationship between registration accuracy and number of perturbed target points 

as the level of noise is increased. The number of target points won’t be a constant throughout 

the process of a real clinical operation. Thus it is critical to define the minimum threshold for 

achieving acceptable registration accuracy.   

 

 𝐸𝑥𝑝 𝐴 𝐸𝑥𝑝 𝐵 𝐸𝑥𝑝 𝐶 𝐸𝑥𝑝 𝐷 

𝓝𝟏 52 131 244 329 

Table 3.2: Four different sets of noisy target models of registration are produced from 

Algorithm 3 by varying 𝒩1 and 𝜎. See also Figure 3.9 and text for details.   

 

This relationship cannot be predicted by mathematical derivations. As the number of target 

points is reduced the possibility of establishing a valid registration between source and 

“noisy” target (using any of the non-rigid registration algorithms, even under an ideal initial 

alignment between them) may be decreased (mainly due to the increased possibility of 

establishing erroneous correspondences) for the same increase of level of noise. This 
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becomes a determining factor for the validity of registrations to “noisy” and occluded target 

surfaces (probably less so to full “noisy” target models) above a certain noise threshold.  

𝓜 (≡ control points) is registered against each element of {𝓙𝝈} leading to {(𝐸(𝜎), 𝜓(𝜎))} 

and {ℱ(𝜎)(𝓜;𝜃)} , and by extension to {ℱ(𝜎)(𝓜𝟎 −𝓜;𝜃)} following a similar approach to 

the one taken in Section 3.2. The registration accuracy is determined by averaging out all 

𝑇𝑅𝐸𝑠 produced by randomly selecting (100 times) 𝑑 Cartesian points (where 𝒅 ∈

{3,5,10,15}) from 𝓜𝟎 −𝓜 and calculating the distances between them and their 

correspondences in ℱ(𝜎)(𝓜𝟎 −𝓜;𝜃), according to Equation (3.1).  

The 𝑇𝑅𝐸𝑠 showed no dependence on 𝒅 and the random configurations of target markers. The 

average 𝑇𝑅𝐸𝑠 were computed for all registration methods using the same input files and for 

𝑑 = 15. The results are shown in Figures 3.10 – 3.12. 

 

Figure 3.10: Average 𝑇𝑅𝐸𝑠 computed with the 𝐾𝐶 + 𝑇𝑃𝑆 method to determine sensitivity 

to noisy. Only a subset of the available data is presented in the graphs. 
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Figure 3.11: Average 𝑇𝑅𝐸𝑠 computed with the 𝐺𝑀𝑀 + 𝑇𝑃𝑆 method to determine 

sensitivity to noise. Only a subset of the available data is presented in the 

graphs. 

 

The learning algorithms would behave ideally if ℱ(𝜎)(𝓜; 𝜃) ≡ 𝓜 and hence ℱ(𝜎)(𝓜𝟎 −

𝓜;𝜃) ≡ 𝓜𝟎 −𝓜. The computed 𝑇𝑅𝐸𝑠 would then be strictly attributed to the injected 

Gaussian noise.    
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Figure 3.12: Average 𝑇𝑅𝐸𝑠 computed with the 𝐸𝑀 + 𝑇𝑃𝑆 method to determine sensitivity 

to noise. Only a subset of the available data is presented in the graphs. 

 

3.5 The presence of outliers and their impact on 𝑻𝑹𝑬 

As mentioned in Section 1.1, the 3𝐷 target model arises from stereo-based reconstruction of 

endoscopically acquired intraoperative (left and right) stereo image planes. However, stereo 

correspondence cannot always be achieved for all features leading to a reconstructed point-

cloud surface with “holes”. It can also be erroneous for some 2𝐷 points leading to outliers.  

Another source of outliers for the prostate target surface, probably the most important, may 

be the surrounding environment itself. This section focuses on this possibility while the other 

possibility is examined in Section 3.6 where the target model of registration is also subject to 

deformation, as this combination simulates some clinical data.   

The target model of registration is produced by adding outliers randomly to the source as 

Algorithm 4 below demonstrates. The number of outliers is systematically increased and its 

impact on 𝑇𝑅𝐸 is examined. 



124 
 

Algorithm 4: Generation of full target models of registration by adding outliers to the full 

source model. (See also Figure 3.13.)   

Input: 𝓜𝟎 and 𝓝𝟏 as defined in Algorithm 1 (𝓜 and 𝓜𝟎 −𝓜 maintain the same 

definitions); the integer number 𝓝𝟑 which corresponds to the maximum number of outliers 

added;  𝓝𝟐 represents the number of outliers that are recursively added to a running total 𝓷 

until 𝓝𝟑 is reached; and 𝓝𝟒, 𝓝𝟓, and 𝓝𝟔 which represent, respectively, the upper limits of 

three uniform distributions with lower limits zero (as in Algorithm 1).   

Output: 𝓜 and 𝓜𝟎 −𝓜; {𝓛𝒉} where 𝓛𝒉 corresponds to 𝓜 plus 𝓷 outliers. 

1: Randomly select 𝓝𝟏 points from 𝓜𝟎 to produce 𝓜 and 𝓜𝟎 −𝓜. 

2:  𝑓𝑜𝑟       𝓃 = 𝓝𝟐      𝑡𝑜      𝓝𝟑            {𝓃 ≔ 𝓃 +𝓝𝟐} 

3:  Randomly select 𝓃 points from 𝓜𝟎.  

4:   𝑓𝑜𝑟        𝒊 = 1      𝑡𝑜       𝓃            { 𝒊 ≔ 𝒊 + 1} 

𝑥𝑖
′ ≔ 𝑥𝑖 + 𝑋𝑖; 𝑦𝑖

′ ≔ 𝑦𝑖 + 𝑌𝑖;𝑧𝑖
′ ≔ 𝑧𝑖 + 𝑍𝑖 

where (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and (𝑥𝑖
′, 𝑦𝑖

′, 𝑧𝑖
′) represent the original 3𝐷 𝑖𝑡ℎ point of 

𝓜𝟎 and its updated version, respectively. The set {𝑋𝑖, 𝑌𝑖, 𝑍𝑖} is defined 

in Algorithm 1. This step creates 𝓃 random outliers.  

5:    𝑒𝑛𝑑 𝑓𝑜𝑟 

6: Append 𝓃 outliers onto 𝓜 to generate the target model of registration 𝓛𝒉. 

7:  𝑒𝑛𝑑 𝑓𝑜𝑟 
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                        Figure 3.13: A diagrammatic representation of Algorithm 4.  

 

One set of computational registration experiments for each registration algorithm was 

performed using as input 𝓝𝟏 = 321 points, 𝓝𝟑 = 303, 𝓝𝟐 = 3, and 𝓝𝟒 = 𝓝𝟓 = 𝓝𝟔 =

50. 𝓜 (≡ control points) is registered against each element of {𝓛𝒉} leading to {(𝐸(ℎ), 𝜓(ℎ))} 

and {ℱ(ℎ)(𝓜;𝜃)} , and by extension to {ℱ(ℎ)(𝓜𝟎 −𝓜;𝜃)}. The registration accuracy is 

determined by averaging out 4 × 100 × 100 distinct 𝑇𝑅𝐸𝑠 computed via a similar process to 

the one followed in Section 3.3. The same input files were used for all registration methods. 

See Table 3.3 for results. The computed 𝑇𝑅𝐸𝑠 would take zero values if ℱ(ℎ)(𝓜;𝜃) ≡ 𝓜 

and hence ℱ(ℎ)(𝓜𝟎 −𝓜;𝜃) ≡ 𝓜𝟎 −𝓜, which is equivalent to saying that the non-rigid 

registration algorithms can fully discriminate against outliers.   

 

 Average 𝑇𝑅𝐸𝑠 (mm) 

𝐾𝐶 + 𝑇𝑃𝑆 0.0071 ± 0.0040 

𝐺𝑀𝑀 + 𝑇𝑃𝑆 0.0093 ± 0.0056 

𝐸𝑀 + 𝑇𝑃𝑆 0.0000 ± 0.0000 

Table 3.3: The average 𝑇𝑅𝐸𝑠 computed with all registration methods to determine the 

sensitivity to outliers. 
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3.6 The effect of non-Gaussian noise onto a deformed target model and 

its impact on 𝑻𝑹𝑬 

This Section examines the effect of random (non-Gaussian) noise and/or artefacts from 

erroneous stereo correspondence onto a deformed target model as a function of number of 

points in the target dataset, and their impact on registration accuracy (see Algorithm 5).   

Algorithm 5: Generation of full target models of registration by application of a 𝑇𝑃𝑆 warp 

onto the full source model followed by the injection of random non-Gaussian noise. See also 

Figure 3.14 for a diagrammatic representation.    

Input: The original full source model set 𝓜𝟎; the number of points 𝓝𝟏 selected randomly 

from 𝓜𝟎 to serve as source control points for the (random) 𝑇𝑃𝑆 transformation applied onto 

𝓜𝟎 to produce ℱ1(𝓜𝟎; 𝜃); 𝓝𝟐, 𝓝𝟑, and 𝓝𝟒 which represent, respectively, the upper limits 

of three uniform distributions with lower limits zero (defined as 𝓝𝟒, 𝓝𝟓, and 𝓝𝟔 in 

Algorithm 1, respectively); 𝓜𝟑 and 𝓜𝟐 which correspond, in respect, to the maximum 

number of points selected randomly from ℱ1(𝓜𝟎; 𝜃) and an increment parameter that is 

iteratively added to the running total of selected points 𝜇 until 𝓜𝟑 is reached; 𝓚𝟏, 𝓚𝟐, and 

𝓚𝟑 which relate, respectively, to the lower limits of another three uniform distributions with 

corresponding upper limits 𝓛𝟏, 𝓛𝟐, and 𝓛𝟑.  

Output: ℱ1(𝓜𝟎; 𝜃); {𝓦𝝁} where 𝓦𝝁 corresponds to a random subset of ℱ1(𝓜𝟎; 𝜃) 

perturbed by random noise (defined as the target of registration); {𝓢𝝁} where 𝓢𝝁 refers to the 

correspondences of 𝓦𝝁 in 𝓜𝟎 (defined as the source of registration); {𝓜𝟎 − 𝓢𝝁} where 

𝓜𝟎 − 𝓢𝝁 provides the set of (source) target marker points for the 𝑇𝑅𝐸 calculations; and 

{ℱ1(𝓜𝟎; 𝜃) −𝓦𝝁} where ℱ1(𝓜𝟎; 𝜃) −𝓦𝝁 represents the set of deformed target marker 

points (without noise).  

1: Randomly select 𝓝𝟏 points from 𝓜𝟎 and produce the target points of the 𝑇𝑃𝑆 

deformation according to Step 5 of Algorithm 1. 

2: Calculate the 𝑇𝑃𝑆 transformation ℱ1 and apply it onto 𝓜𝟎 to produce ℱ1(𝓜𝟎; 𝜃). 

3:  𝑓𝑜𝑟        𝜇 = 𝓜𝟐      𝑡𝑜      𝓜𝟑           {𝜇 ≔ 𝜇 +𝓜𝟐} 

4:  Randomly select 𝜇 points from ℱ1(𝓜𝟎; 𝜃) and identify their point labels. 
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5:   𝑓𝑜𝑟        𝑗 = 1      𝑡𝑜       𝝁            {𝑗 ≔ 𝑗 + 1} 

𝑥𝑗
′ ≔ 𝑥𝑗 + 𝑋𝑗; 𝑦𝑗

′ ≔ 𝑦𝑗 + 𝑌𝑗; 𝑧𝑗
′ ≔ 𝑧𝑗 + 𝑍𝑗  

where (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) and (𝑥𝑗
′, 𝑦𝑗

′, 𝑧𝑗
′) represent the original 3𝐷 𝑗𝑡ℎ point of 

ℱ1(𝓜𝟎; 𝜃) from the selection of 𝜇 points and its updated version 

(which belongs to 𝓦𝝁), respectively. {𝑋𝑗, 𝑌𝑗 , 𝑍𝑗} represents a set of 

random numbers each of which arises from a distinct uniform 

distribution (one for each dimension) s.t.  

𝑋𝑗 ∈ [𝓚𝟏, 𝓛𝟏]; 𝑌𝑗 ∈ [𝓚𝟐, 𝓛𝟐]; 𝑍𝑗 ∈ [𝓚𝟑, 𝓛𝟑]. 

6:   𝑒𝑛𝑑 𝑓𝑜𝑟 

7:  Identify the correspondences of 𝓦𝝁 in 𝓜𝟎 to produce 𝓢𝝁 and 𝓜𝟎 − 𝓢𝝁. 

8:  Select and generate ℱ1(𝓜𝟎; 𝜃) −𝓦𝝁. 

9:  𝑒𝑛𝑑 𝑓𝑜𝑟  
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Figure 3.14: A diagrammatic representation of Algorithm 5. The input 3𝐷 meshes originate 

in 𝑇𝑒𝑠𝑡 2 of 𝐸𝑥𝑝 𝐵. See text for details. 

 

Two experiments, 𝐸𝑥𝑝 𝐴 and 𝐸𝑥𝑝 𝐵, consisting of four sets of tests each,  

𝑇𝑒𝑠𝑡 1 − 𝑇𝑒𝑠𝑡 4, were conducted for all registration methods where in each set of tests all 

input parameters were kept fixed save 𝓝𝟐, 𝓝𝟑, and 𝓝𝟒 (see Table 3.4). The difference 

between 𝐸𝑥𝑝 𝐴 and 𝐸𝑥𝑝 𝐵 lies in the values chosen for (𝓚𝟏,𝓚𝟐,𝓚𝟑) and (𝓛𝟏, 𝓛𝟐, 𝓛𝟑): for 

the set of tests of 𝐸𝑥𝑝 𝐴, 𝓚𝟏 = 𝓚𝟐 = 𝓚𝟑 = −1 and 𝓛𝟏 = 𝓛𝟐 = 𝓛𝟑 = 1; for the set of tests 

of 𝐸𝑥𝑝 𝐵, 𝓚𝟏 = 𝓚𝟐 = 𝓚𝟑 = −2 and 𝓛𝟏 = 𝓛𝟐 = 𝓛𝟑 = 2.  
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Table 3.4 : Experimental parameters of 𝓝𝟐, 𝓝𝟑 and 𝓝𝟒 for the sets of tests of 𝐸𝑥𝑝𝑠  𝐴 

and 𝐵. The fixed input parameters are: 𝓝𝟏 = 20 points, 𝓜𝟑 = 300 and 

𝓜𝟐 = 50. See also text for details. 

 

Each element of {𝓢𝝁} where 𝓢𝝁 ≡ control points is registered against each corresponding 

element of {𝓦𝝁} leading to {(𝐸(𝜇), 𝜓𝜇))} and {ℱ2(𝓢𝝁; 𝜃)}, and by extension to {ℱ2(𝓜𝟎 −

𝓢𝝁; 𝜃)} using 𝓢𝝁 as control points. The registration accuracy is calculated by averaging out 

all 𝑇𝑅𝐸𝑠 arising from random selections (100 times in number) of 𝒅 Cartesian points from 

ℱ1(𝓜𝟎; 𝜃) −𝓦𝒍 and determining the distances between them and their correspondences in 

ℱ2(𝓜𝟎 − 𝓢𝒍; 𝜃) according to Equation (3.1), and ∀ 𝒅 ∈ {3,5,10,15} and for each set of tests 

in 𝐸𝑥𝑝𝑠  𝐴 and 𝐵. This process is repeated between each element of {ℱ1(𝓜𝟎; 𝜃) −𝓦𝝁} and 

its counterpart in {ℱ2(𝓜𝟎 − 𝓢𝝁; 𝜃)}. The same input files were used for all registration 

methods. The computed 𝑇𝑅𝐸𝑠 showed no dependence on 𝓭 and the random configuration of 

target markers. The average 𝑇𝑅𝐸𝑠 for each set of tests of 𝐸𝑥𝑝 𝐴 and 𝐸𝑥𝑝 𝐵 are tabulated in 

Tables 3.5 and 3.6, respectively. 

 

 

 

 

 

 

 

 

          𝑬𝒙𝒑 𝑨 and 𝑬𝒙𝒑 𝑩 

 𝓝𝟐 𝓝𝟑 𝓝𝟒 

𝑻𝒆𝒔𝒕 𝟏 4 4 4 

𝑻𝒆𝒔𝒕 𝟐 4 4 8 

𝑻𝒆𝒔𝒕 𝟑 4 8 4 

𝑻𝒆𝒔𝒕 𝟒 8 4 4 
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  Average 𝑻𝑹𝑬𝒔 for 𝑬𝒙𝒑 𝑨 (mm) 

  𝓢𝟓𝟎 →𝓦𝟓𝟎 𝓢𝟏𝟎𝟎 →𝓦𝟏𝟎𝟎 𝓢𝟏𝟓𝟎 →𝓦𝟏𝟓𝟎 𝓢𝟐𝟎𝟎 →𝓦𝟐𝟎𝟎 𝓢𝟐𝟓𝟎 →𝓦𝟐𝟓𝟎 𝓢𝟑𝟎𝟎 →𝓦𝟑𝟎𝟎 

𝐾𝐶 + 𝑇𝑃𝑆 

𝑻𝒆𝒔𝒕 𝟏  1.5520±0.1918 1.2533±0.1567 1.2365±0.1900 1.4987±0.2943 1.1437±0.1695 

𝑻𝒆𝒔𝒕 𝟐  2.0206±0.3313 2.1647±0.3804 2.0431±0.3867 1.9324±0.3545  

𝑻𝒆𝒔𝒕 𝟑  2.0074±0.2409  1.2250±0.2114 1.5649±0.2595 1.650±0.2114 

𝑻𝒆𝒔𝒕 𝟒 2.1498±0.2596 1.4365±0.1860 1.7726±0.2058    

     

𝐺𝑀𝑀 + 𝑇𝑃𝑆 

𝑻𝒆𝒔𝒕 𝟏       

𝑻𝒆𝒔𝒕 𝟐 2.2475±0.3047 2.0114±0.3295 2.2435±0.3809 2.0866±0.4189 1.9576±0.3632 1.9354±0.3393 

𝑻𝒆𝒔𝒕 𝟑 1.7484±0.1977 2.0677±0.2725 1.4203±0.1508 1.3041±0.2276 1.5930±0.3021 1.6465±0.1669 

𝑻𝒆𝒔𝒕 𝟒 2.1511±0.2796 1.4467±0.1813 1.7103±0.1941 1.7267±0.1997 1.4554±0.2134 1.3450±0.2337 

     

𝐸𝑀 + 𝑇𝑃𝑆 

𝑻𝒆𝒔𝒕 𝟏 0.8029±0.1000 0.6936±0.0991 0.5911±0.0774  0.5823±0.0693 0.5475±0.0767 

𝑻𝒆𝒔𝒕 𝟐  0.6351±0.0878 0.5997±0.0825 0.5492±0.0674  0.5624±0.0612 

𝑻𝒆𝒔𝒕 𝟑 0.8678±0.1200 0.6767±0.1046 0.5897±0.0919 0.5679±0.0788 0.5877±0.0713 0.5620±0.0744 

𝑻𝒆𝒔𝒕 𝟒 0.7223±0.1298 0.7120±0.1537 0.6424±0.1002 0.5901±0.0680 0.6160±0.1021 0.8822±0.3037 

Table 3.5: Average 𝑇𝑅𝐸𝑠 for each set of tests of 𝐸𝑥𝑝 𝐴, 𝒅 = 15, and for all registration 

methods. Empty spaces represent failed registrations.   

  Average 𝑻𝑹𝑬𝒔 for 𝑬𝒙𝒑 𝑩 (mm) 

  𝓢𝟓𝟎 →𝓦𝟓𝟎 𝓢𝟏𝟎𝟎 →𝓦𝟏𝟎𝟎 𝓢𝟏𝟓𝟎 →𝓦𝟏𝟓𝟎 𝓢𝟐𝟎𝟎 →𝓦𝟐𝟎𝟎 𝓢𝟐𝟓𝟎 →𝓦𝟐𝟓𝟎 𝓢𝟑𝟎𝟎 →𝓦𝟑𝟎𝟎 

𝐾𝐶 + 𝑇𝑃𝑆 

𝑻𝒆𝒔𝒕 𝟏 2.1903±0.1782  1.7820±0.1261 1.8724±0.1787 1.7356±0.1338 1.8936±0.1624 

𝑻𝒆𝒔𝒕 𝟐 2.4687±0.2397 2.8344±0.3788 2.2143±0.2117 2.2359±0.1873 2.5476±0.2358 2.2117±0.2290 

𝑻𝒆𝒔𝒕 𝟑 3.0463±0.3208 2.0409±0.1983 2.5483±0.1865 2.5077±0.2063 2.4344±0.2293 2.3744±0.2066 

𝑻𝒆𝒔𝒕 𝟒 2.5737±0.2327 2.1146±0.1833   2.2232±0.2516 2.1490±0.1746 

     

𝐺𝑀𝑀 + 𝑇𝑃𝑆 

𝑻𝒆𝒔𝒕 𝟏  2.3020±0.2411 1.7840±0.1154 1.9119±0.1455 1.7140±0.1465 2.0292±0.1623 

𝑻𝒆𝒔𝒕 𝟐 2.4666±0.2246  2.2364±0.2183 2.2595±0.1557 2.4297±0.1649 2.3578±0.1991 

𝑻𝒆𝒔𝒕 𝟑  2.1625±0.1815 2.5500±0.2115 2.6899±0.2261 2.3701±0.2387  

𝑻𝒆𝒔𝒕 𝟒       

     

𝐸𝑀 + 𝑇𝑃𝑆 

𝑻𝒆𝒔𝒕 𝟏  1.3170±0.1017 1.1466±0.1105 1.0911±0.0882 1.4985±0.2095 1.0171±0.1074 

𝑻𝒆𝒔𝒕 𝟐 1.6750±0.1345 1.4960±0.2571 1.1166±0.0918 1.0526±0.1071 1.1806±0.2677 0.9735±0.0924 

𝑻𝒆𝒔𝒕 𝟑  1.1785±0.1315  1.1180±0.1114 1.1201±0.1252 1.0702±0.1017 

𝑻𝒆𝒔𝒕 𝟒 1.3659±0.1089 1.1613±0.1027 1.1344±0.1010 1.1451±0.1395 1.1805±0.1570 1.2799±0.2195 

Table 3.6: Average 𝑇𝑅𝐸𝑠 for each set of tests of 𝐸𝑥𝑝 𝐵, 𝒅 = 15, and for all registration 

methods. Empty spaces represent failed registrations. 
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3.7 Measuring the accuracy of registration within the space of common 

overlap 

3.7.1 Occlusion, deformation and their combined impact on 𝑻𝑹𝑬 

The capabilities of the non-rigid algorithms to handle incomplete (due to occlusion) and 

deformed target surfaces are examined. The target model is produced by randomly selecting 

surface patches from the source followed by the application of a random 𝑇𝑃𝑆 transformation. 

The size for the area of the target surface (hence the common overlap) is fixed in these 

experiments (it is varied in the experiments of Section 3.8).  

Incomplete surfaces in the target will be ‘statistically’ recovered using the algorithms’ 

surface-hole- and partial-view- filling capabilities. Large parts of missing surface in the target 

(more than half missing) can be recovered by incorporating the geometric information 

encoded in the corresponding source template point cloud to propagate a regularized 

deformation along the missing surface. The accuracy of registration is determined by 𝑇𝑅𝐸 

calculations.  

Algorithm 6: Generation of occluded and deformed target models of registration by random 

selection of source surface patches and application of a 𝑇𝑃𝑆 warp onto them. (See also Figure 

3.15.)  

Input: The original full source model set 𝓜𝟎; 𝓝𝟏 which corresponds to the number of 

elements of {𝓟𝒊} where 𝓟𝒊 represents a surface patch randomly selected from 𝓜𝟎; 𝓝𝟐 

which is the number of cells (geometric arrangements of 3𝐷 Cartesian points) per surface 

patch; 𝓜𝟑 which is the maximum number of points selected randomly from 𝓟𝒊 to serve as 

source control points for the (random) 𝑇𝑃𝑆 transformation applied onto 𝓟𝒊 to produce 

ℱ1
(𝑙)(𝓟𝒊; 𝜃); the increment parameter 𝓜𝟐 which is iteratively added to the running total of 

selected source control points 𝑘 until 𝓜𝟑 is reached; 𝓝𝟑, 𝓝𝟒, and 𝓝𝟓 which relate, 

respectively, to the upper limits of three uniform distributions with lower limits zero (defined 

as 𝓝𝟒, 𝓝𝟓 and 𝓝𝟔 in Algorithm 1, respectively); the number of elements 𝓝𝟔 of a random 

subset of 𝓟𝒊, call it 𝓥𝒊, which serves as the source model of registration. 
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Output: {𝓟𝒊}; {𝓥𝒊}; {𝓟𝒊 − 𝓥𝒊} which provides the set of source target marker points for the 

𝑇𝑅𝐸 calculations; {ℱ1
(𝑙)(𝓟𝒊; 𝜃)}, {ℱ1

(𝑙)(𝓥𝒊; 𝜃)} and {ℱ1
(𝑙)(𝓟𝒊 − 𝓥𝒊; 𝜃)} ∀ 𝑖 ϵ {1, … ,𝓝𝟏}. The 

number of elements of the latter sets are 
𝓜𝟑−𝓜𝟐

𝓜𝟐
 for a given 𝑖, i.e., 𝑙 ϵ {1, … ,

𝓜𝟑−𝓜𝟐

𝓜𝟐
}.  

1: Compute the total number of cells for 𝓜𝟎, call it 𝝉. 

2: 𝑓𝑜𝑟        𝑖 = 1      𝑡𝑜      𝓝𝟏           {𝑖 ≔ 𝑖 + 1} 

3: Randomly select a cell from 𝓜𝟎, call it 𝛿. 

4: 𝑖𝑓 (𝛿 +𝓝𝟐 ≤ 𝝉) 

5:  𝑓𝑜𝑟        𝑓 = 𝛿      𝑡𝑜      𝛿 +𝓝𝟐           {𝑓 ≔ 𝑓 + 1} 

6: Select corresponding cell labels from 𝓜𝟎 to produce a continuous surface 

patch 𝓟𝒊. 

7:  𝑒𝑛𝑑 𝑓𝑜𝑟 

8: 𝑒𝑙𝑠𝑒 

9:  𝑓𝑜𝑟        𝑓 = 𝛿      𝑡𝑜      𝝉           {𝑓 ≔ 𝑓 + 1} 

10: Select corresponding cell labels from 𝓜𝟎 to produce part of a continuous 

surface patch 𝓟𝒊.    

11:  𝑒𝑛𝑑 𝑓𝑜𝑟 

12:  Randomly select a new cell from 𝓜𝟎, call it 𝜸.  

13:   𝑖𝑓 (𝜸 + 𝛿 +𝓝𝟐 − 𝝉 ≤ 𝝉) 

14:    𝑓𝑜𝑟        𝑓 = 𝜸      𝑡𝑜      𝜸 + 𝛿 +𝓝𝟐 − 𝝉           {𝑓 ≔ 𝑓 + 1} 

15: Select corresponding cell labels from 𝓜𝟎 to produce another 

random continuous surface patch s.t. the total number of cells 

of 𝓟𝒊 becomes 𝓝𝟐.    

16:    𝑒𝑛𝑑 𝑓𝑜𝑟 

17:   𝑒𝑙𝑠𝑒 
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18:    𝑓𝑜𝑟        𝑓 = 0      𝑡𝑜      𝛿 +𝓝𝟐 − 𝝉           {𝑓 ≔ 𝑓 + 1} 

19: Select corresponding cell labels from 𝓜𝟎 counting from the 

first cell label to produce another continuous surface patch s.t. 

the total number of cells of 𝓟𝒊 becomes 𝓝𝟐.    

20:    𝑒𝑛𝑑 𝑓𝑜𝑟 

21:   𝑒𝑛𝑑 𝑖𝑓 

22: 𝑒𝑛𝑑 𝑖𝑓 

23: Randomly select 𝓝𝟔 points from 𝓟𝒊 to produce 𝓥𝒊 and 𝓟𝒊 − 𝓥𝒊. 

24:  𝑓𝑜𝑟        𝑘 = 𝓜𝟐      𝑡𝑜      𝓜𝟑            {𝑘 ≔ 𝑘 +𝓜𝟐} 

25: Randomly select 𝑘 points from 𝓟𝒊 to form the set of source control points 

required for the calculation of the affine and 𝑇𝑃𝑆 transformation parameters of 

ℱ1
(𝑙)

.  

26: Produce the random target points of ℱ1
(𝑙)

 according to Step 5 of Algorithm 1, 

compute the transformation and apply it onto 𝓟𝒊 to generate ℱ1
(𝑙)(𝓟𝒊; 𝜃). 

27: Identify the correspondences of 𝓥𝒊 and 𝓟𝒊 − 𝓥𝒊 in ℱ1
(𝑙)(𝓟𝒊; 𝜃) to produce the 

target model of registration ℱ1
(𝑙)(𝓥𝒊; 𝜃) and the set of “deformed” target 

markers ℱ1
(𝑙)(𝓟𝒊 − 𝓥𝒊; 𝜃), respectively. 

28:  𝑒𝑛𝑑 𝑓𝑜𝑟  

29: 𝑒𝑛𝑑 𝑓𝑜𝑟  
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                    Figure 3.15: A diagrammatic representation of Algorithm 6. 

 

One experiment for each registration method was conducted where 𝓝𝟏 = 100, 𝓝𝟐
′ =

300 points (converted from 𝓝𝟐; it corresponds to 46% of total source surface), 𝓜𝟑 = 51, 

𝓜𝟐 = 1, 𝓝𝟑 = 𝓝𝟒 = 𝓝𝟓 = 3, and 𝓝𝟔 = 150.     

In order to exploit the “correctness” of the established correspondences in full-to-partial 

model registration, the registration process takes place twice: (i) between 𝓥𝒊 (≡

control points) and each element of {ℱ1
(𝑙)(𝓥𝒊; 𝜃)}, i.e., ∀ 𝑙 ϵ {1, … ,

𝓜𝟑−𝓜𝟐

𝓜𝟐
} for a given 𝑖, 

producing as output {(𝐸𝑖
(𝑙), 𝜓𝑖

(𝑙))} and {ℱ2
(𝑙)(𝓥𝒊; 𝜃)} as well as {ℱ2

(𝑙)(𝓟𝒊 − 𝓥𝒊; 𝜃)} using 𝓥𝒊 
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as control points. The same process is repeated ∀ 𝑖 𝜖{1, … ,𝓝𝟏}; and (ii) between 𝓜𝟎 (using 

as control points the set of extracted points from the full source; both the set of control points 

and the full source are updated during the process of registration) and each element of 

{ℱ1
(𝑙)(𝓥𝒊; 𝜃)}, i.e., ∀ 𝑙 ϵ {1, … ,

𝓜𝟑−𝓜𝟐

𝓜𝟐
} and ∀ 𝑖 𝜖{1, … ,𝓝𝟏}, producing as final output 

{ℱ𝑖
(𝑙)(𝓜𝟎; 𝜃)} as well as {ℱ2

′(𝑙)(𝓟𝒊 − 𝓥𝒊; 𝜃)}.  

Each element of the latter set corresponds to the final positions of the transformed target 

markers which are updated iteratively during the process of registration based upon the affine 

and 𝑇𝑃𝑆 parameters produced from the registration between the (updated) extracted source 

model (which also serves as control points for the transformation applied to the set of target 

markers) and the fixed target model.  

The intersection between the (updated) extracted source model and the set of (transformed) 

target markers should be the null set. Otherwise the computed accuracy of registration 

between the full source model and the occluded target model may be misleading. As it is 

impossible to impose this requirement in these experiments, the computational results of this 

section should be viewed with this in mind. Random visual inspections of these sets have 

indicated some overlap.  

The 𝑇𝑅𝐸 calculations for (i) [and (ii)] are conducted by randomly selecting 𝒅 points (where 

𝒅 ∈ {3,5,10,15}) from ℱ1
(𝑙)(𝓟𝒊 − 𝓥𝒊; 𝜃) and determining the distances between them and 

their correspondences in ℱ2
(𝑙)(𝓟𝒊 − 𝓥𝒊; 𝜃) [ℱ2

′(𝑙)(𝓟𝒊 − 𝓥𝒊; 𝜃)] for a given (𝑙, 𝑖). This process 

takes place 100 times and is repeated between each element of {ℱ1
(𝑙)(𝓟𝒊 − 𝓥𝒊; 𝜃)} and its 

counterpart in {ℱ2
(𝑙)(𝓟𝒊 − 𝓥𝒊; 𝜃)} [{ℱ2

′(𝑙)(𝓟𝒊 −𝓥𝒊; 𝜃)}] ∀ 𝑖 𝜖{1, … ,𝓝𝟏},∀ 𝑙 ϵ {1, … ,
𝓜𝟑−𝓜𝟐

𝓜𝟐
} 

and ∀ 𝒅 ∈ {3,5,10,15} using a similar approach to the one taken in Algorithm 2. The input 

files were the same for all registration methods. The computed 𝑇𝑅𝐸𝑠 showed no significant 

dependence on the value of 𝓭 and the random configuration of target markers. The average 

𝑇𝑅𝐸 is computed by the relationship 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑅𝐸 =
∑  𝑇𝑅𝐸𝑧

(𝑙;𝑖;𝑑)
𝑙,𝑖,𝑑,𝑧

Total Number of 𝑇𝑅𝐸𝑠
  where 𝑧 ∈

{1,… ,100} designates the 𝑧𝑡ℎ random selection of 𝓭 markers and Total Number of 𝑇𝑅𝐸𝑠 =

100 × 50 × 100 × 4 = 2000000. The computed registration accuracies for (i) and (ii) and 

all registration methods are shown in Table 3.7.  
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 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑻𝑹𝑬 (𝒎𝒎) 

 (i) (ii) 

𝑲𝑪 + 𝑻𝑷𝑺 0.7621 ± 0.6544 1.2197 ± 1.2198 

𝑮𝑴𝑴+ 𝑻𝑷𝑺 0.7503 ± 0.7953 1.2911 ± 1.2520 

𝑬𝑴+ 𝑻𝑷𝑺 0.2527 ± 0.3258 3.2141 ± 0.6542 

                 Table 3.7: Average 𝑇𝑅𝐸𝑠 for (i) and (ii) and all registration methods. 

 

The large discrepancy between the 𝐸𝑀 + 𝑇𝑃𝑆 results and the 𝐺𝑀𝑀 + 𝑇𝑃𝑆 and 𝐾𝐶 + 𝑇𝑃𝑆 

ones in (ii) of Table 3.7 is attributed to the fact that the extracted source model contains 

(aside from points with true correspondences in the target) points that have no 

correspondences in the target. The latter ones are treated in the 𝐸𝑀 + 𝑇𝑃𝑆 algorithm as 

equally strong candidates for assignment to target points due to the smoothness of the 

prostate surface, which reduces the accuracy of the computed affine and 𝑇𝑃𝑆 parameters. The 

𝐺𝑀𝑀 + 𝑇𝑃𝑆 and 𝐾𝐶 + 𝑇𝑃𝑆 algorithms treat the surface of the extracted source model as a 

whole in determining correspondences based upon a smoother process of optimization. (See 

Chapter 5 for more details).       

3.7.2 Occlusion, deformation, Gaussian noise and their combined impact 

on 𝑻𝑹𝑬 

The output from Algorithm 6 of Section 3.7.1, specifically, {ℱ1
(𝑙)(𝓥𝒊; 𝜃)}  ∀ 𝑖 ϵ {1, … ,𝓝𝟏} 

and ∀ 𝑙 ϵ {1, … ,
𝓜𝟑−𝓜𝟐

𝓜𝟐
}, becomes input for Algorithm 7 and is updated to include the 

contribution of Gaussian noise. (See also Figure 3.16.)    

Algorithm 7: Generation of occluded, deformed and noisy target models of registration. 

Input: The mean 𝜇 of the Gaussian normal distribution and its standard deviation 𝜎; 𝓝𝟏, 

𝓜𝟑, 𝓜𝟐, and {ℱ1
(𝑙)(𝓥𝒊; 𝜃)} ∀ 𝑖 ϵ {1, … ,𝓝𝟏} and ∀ 𝑙 ϵ {1, … ,

𝓜𝟑−𝓜𝟐

𝓜𝟐
} (as defined in 

Algorithm 6).    

Output: {𝒢1
(𝑙)(𝓥𝒊; 𝜃)} ∀ 𝑖 ϵ {1, … ,𝓝𝟏} and ∀ 𝑙 ϵ {1, … ,

𝓜𝟑−𝓜𝟐

𝓜𝟐
} where 𝒢1

(𝑙)(𝓥𝒊; 𝜃) 

represents ℱ1
(𝑙)(𝓥𝒊; 𝜃) perturbed by Gaussian noise.    
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1: 𝑓𝑜𝑟        𝑖 = 1      𝑡𝑜      𝓝𝟏           {𝑖 ≔ 𝑖 + 1}   

2:  𝑓𝑜𝑟        𝑙 = 1      𝑡𝑜      𝓜𝟑 −𝓜𝟐           { 𝑙 ≔  𝑙 + 1}  

3: ℱ1
(𝑙)(𝓥𝒊; 𝜃) is updated to include the effect of Gaussian noise for fixed (𝜇, 𝜎) 

generating 𝒢1
(𝑙)(𝓥𝒊; 𝜃) (following a similar approach to the one taken in 

Section 3.4). 

4:  𝑒𝑛𝑑 𝑓𝑜𝑟 

5: 𝑒𝑛𝑑 𝑓𝑜𝑟   

 

                  

Figure 3.16: The injection of Gaussian noise with (𝜇, 𝜎) = (0, 0.450) in an occluded and 

deformed target surface.  

 

The registration occurs twice: (i) between 𝓥𝒊 (≡ control points) and each element of 

{𝒢1
(𝑙)(𝓥𝒊; 𝜃)} ∀ 𝑖 ϵ {1, … ,𝓝𝟏} and ∀ 𝑙 ϵ {1, … ,

𝓜𝟑−𝓜𝟐

𝓜𝟐
} producing as output {(𝐸𝑖

(𝑙), 𝜓𝑖
(𝑙))} 

and {𝒢2
(𝑙)(𝓥𝒊; 𝜃)} as well as {𝒢2

(𝑙)(𝓟𝒊 − 𝓥𝒊; 𝜃)} using 𝓥𝒊 as control points; and (ii) between 

𝓜𝟎 and each element of {𝒢1
(𝑙)(𝓥𝒊; 𝜃)} ∀ 𝑖 ϵ {1, … ,𝓝𝟏} and ∀ 𝑙 ϵ {1, … ,

𝓜𝟑−𝓜𝟐

𝓜𝟐
} producing 

as final output {𝒢𝑖
(𝑙)(𝓜𝟎; 𝜃)} as well as {𝒢2

′(𝑙)(𝓟𝒊 − 𝓥𝒊; 𝜃)}. The computed average 𝑇𝑅𝐸𝑠 

are given in Table 3.8. 
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 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑻𝑹𝑬 (𝒎𝒎) 

 (i) (ii) 

𝑲𝑪 + 𝑻𝑷𝑺 1.0306 ± 0.5587 2.0246 ± 1.2965 

𝑮𝑴𝑴+ 𝑻𝑷𝑺 1.0160 ± 0.5435 2.1313 ± 1.3521 

𝑬𝑴+ 𝑻𝑷𝑺 
†
0.6893 ± 0.4751 3.2350 ± 0.6538 

Table 3.8: Average 𝑇𝑅𝐸𝑠 for (i) and (ii) computed by adding Gaussian noise (𝜇, 𝜎) =

(0, 0.450) on occluded and deformed surfaces and for all registration 

methods. 
†
The corresponding value in the absence of row and column 

normalization of 𝒯 is (2.8872 ± 0.5332) mm.  

 

3.8 Measuring the accuracy of registration in the space beyond common 

overlap 

3.8.1 Occlusion, deformation and their combined impact on 𝑻𝑹𝑬 

Algorithm 8: Generation of occluded and deformed target models of registration for 

measuring the accuracy of registration beyond common overlap. (See also Figure 3.17.) 

Input: The original full source model set 𝓜𝟎; 𝓜𝟐 which corresponds to the maximum 

number of points selected randomly from 𝓜𝟎 to serve as source control points for the 

(random) 𝑇𝑃𝑆 transformation applied onto 𝓜𝟎 to produce ℱ1
(𝑙)(𝓜𝟎; 𝜃); the increment 

parameter 𝓜𝟏 which is iteratively added to the running total of selected source control points 

𝑘 until 𝓜𝟐 is reached; 𝓝𝟏, 𝓝𝟐, and 𝓝𝟑 which relate, respectively, to the upper limits of 

three uniform distributions with lower limits zero (defined as 𝓝𝟒, 𝓝𝟓 and 𝓝𝟔 in Algorithm 

1, respectively); 𝓝𝟒 which corresponds to the number of elements of {𝓟𝒊
(𝑙)} where 𝓟𝒊

(𝑙)
 

represents a surface patch randomly selected from ℱ1
(𝑙)(𝓜𝟎; 𝜃). 𝓟𝒊

(𝑙)
 is the target of 

registration; 𝓝𝟓 which relates to the number of cells per surface patch (𝓟𝒊
(𝑙)); the number of 

elements 𝓝𝟔 of a random subset of 𝓜𝟎 − 𝓞𝒊
(𝑙)

, call it 𝓥𝒊
(𝑙)

, where 𝓞𝒊
(𝑙)

 represents the 

correspondence of 𝓟𝒊
(𝑙)

 in 𝓜𝟎. 𝓥𝒊
(𝑙)

 is appended to 𝓞𝒊
(𝑙)

 to produce the full source model of 

registration. 𝓜𝟎 − 𝓞𝒊
(𝑙) − 𝓥𝒊

(𝑙)
 provides the set of source target marker points for the 
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“virtual” 𝑇𝑅𝐸 calculations (see below). Assume that the correspondences of 𝓜𝟎 − 𝓞𝒊
(𝑙) −

𝓥𝒊
(𝑙)

 in ℱ1
(𝑙)(𝓜𝟎; 𝜃) − 𝓟𝒊

(𝑙)
 are represented by 𝓓𝒊

(𝑙)
.  

Output: {ℱ1
(𝑙)(𝓜𝟎; 𝜃)} ∀ 𝑙 ϵ {1, … ,

𝓜𝟐−𝓜𝟏

𝓜𝟏
}; {𝓟𝒊

(𝑙)}, {𝓞𝒊
(𝑙)}, {ℱ1

(𝑙)(𝓜𝟎; 𝜃) − 𝓟𝒊
(𝑙)}, {𝓥𝒊

(𝑙)}, 

{𝓜𝟎 − 𝓞𝒊
(𝑙)}, {𝓜𝟎 − 𝓞𝒊

(𝑙) − 𝓥𝒊
(𝑙)}, {𝓥𝒊

(𝑙) + 𝓞𝒊
(𝑙)} and {𝓓𝒊

(𝑙)} ∀ 𝑖 ϵ {1, … ,𝓝𝟒} and 

∀ 𝑙 ϵ {1, … ,
𝓜𝟐−𝓜𝟏

𝓜𝟏
}.  

1: 𝑓𝑜𝑟        𝑘 = 𝓜𝟏      𝑡𝑜      𝓜𝟐            {𝑘 ≔ 𝑘 +𝓜𝟏}   

2: Randomly select 𝑘 points from 𝓜𝟎 to form the set of source control points required 

for the calculation of the affine and 𝑇𝑃𝑆 transformation parameters of ℱ1
(𝑙)

.   

3: Produce the random target points of ℱ1
(𝑙)

 according to Step 5 of Algorithm 1, compute 

the transformation and apply it onto 𝓜𝟎 to generate ℱ1
(𝑙)(𝓜𝟎; 𝜃). 

4:  𝑓𝑜𝑟        𝑖 = 1      𝑡𝑜      𝓝𝟒            {𝑖 ≔ 𝑖 + 1} 

5:  Apply steps 3-22 of Algorithm 6 to produce 𝓟𝒊
(𝑙)

 from ℱ1
(𝑙)(𝓜𝟎; 𝜃). 

6: Identify the correspondences of 𝓟𝒊
(𝑙)

 and those of ℱ1
(𝑙)(𝓜𝟎; 𝜃) − 𝓟𝒊

(𝑙)
 in 𝓜𝟎 

to produce 𝓞𝒊
(𝑙)

 and 𝓜𝟎 − 𝓞𝒊
(𝑙)

, respectively.      

7:  Randomly select 𝓝𝟔 Cartesian 3𝐷 points from 𝓜𝟎 − 𝓞𝒊
(𝑙)

 to generate 𝓥𝒊
(𝑙)

.  

8:  Append 𝓥𝒊
(𝑙)

 onto 𝓞𝒊
(𝑙)

 to produce the full source model of registration. 

9: Identify the correspondences of 𝓜𝟎 − 𝓞𝒊
(𝑙) − 𝓥𝒊

(𝑙)
 in ℱ1

(𝑙)(𝓜𝟎; 𝜃) − 𝓟𝒊
(𝑙)

 to 

produce  𝓓𝒊
(𝑙)

. 

10:  𝑒𝑛𝑑 𝑓𝑜𝑟     

11: 𝑒𝑛𝑑 𝑓𝑜𝑟     
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                         Figure 3.17: A diagrammatic representation of Algorithm 8. 

 

Five different sets of experiments, 𝐸𝑥𝑝 𝐴 − 𝐸𝑥𝑝 𝐸, were performed for all registration 

methods where all input parameters were kept fixed except 𝓝𝟓 and 𝓝𝟔 (See Table 3.9). As a 

result the accuracy of registration (measured in the space beyond common overlap) can be 

determined as a function of the size of the target surface (hence the area of common overlap) 

which is subject to deformation.  
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 𝓝𝟓
′  % 𝒐𝒇 𝑻𝒐𝒕𝒂𝒍 𝑺𝒖𝒓𝒇𝒂𝒄𝒆 𝓝𝟔 

𝐸𝑥𝑝 𝐴 50 7.6 320 

𝐸𝑥𝑝 𝐵 100 15 280 

𝐸𝑥𝑝 𝐶 150 23 250 

𝐸𝑥𝑝 𝐷 200 31 230 

𝐸𝑥𝑝 𝐸 250 38 210 

Table 3.9: Experimental parameters of 𝓝𝟓
′  and 𝓝𝟔 for the sets of experiments  𝐴 − 𝐸. 

𝓝𝟓
′  is derived from 𝓝𝟓, and represents the number of 3𝐷 points per surface 

patch. The values of 𝓝𝟔 were specifically chosen to make the density of 

points across 𝓥𝒊
(𝑙)
+ 𝓞𝒊

(𝑙)
 approximately constant. The fixed input parameters 

are: 𝓝𝟏 = 𝓝𝟐 = 𝓝𝟑 = 6, 𝓜𝟐 = 105, 𝓜𝟏 = 5 and 𝓝𝟒 = 10. See also text 

for details. 

The registration takes place between 𝓥𝒊
(𝑙) + 𝓞𝒊

(𝑙)
 (using as control points the set of extracted 

points from the full source model) and 𝓟𝒊
(𝑙)

 ∀ 𝑖 ϵ {1, … ,𝓝𝟒} and ∀ 𝑙 ϵ {1, … ,
𝓜𝟐−𝓜𝟏

𝓜𝟏
} 

producing as final output {𝓑(𝓥𝒊
(𝑙) + 𝓞𝒊

(𝑙); 𝜃)} as well as {𝓑(𝓜𝟎 − 𝓞𝒊
(𝑙) − 𝓥𝒊

(𝑙); 𝜃)}. See also 

Figure 3.18.   

The 𝑇𝑅𝐸 calculations were conducted by randomly selecting 𝓭 target marker points 

(where 𝓭 ∈ {3,5,10,15}) from 𝓑(𝓜𝟎 − 𝓞𝒊
(𝑙) − 𝓥𝒊

(𝑙); 𝜃) and determining the distances 

between them and their correspondences in 𝓓𝒊
(𝑙)

. The selection of 𝓭 points is repeated 100 

times. This process takes place ∀ 𝑖 ϵ {1, … ,𝓝𝟒}, ∀ 𝑙 ϵ {1, … ,
𝓜𝟐−𝓜𝟏

𝓜𝟏
} and ∀ 𝓭 ∈ {3,5,10,15}. 

The input files were the same for all registration methods. The computed 𝑇𝑅𝐸𝑠 showed no 

dependence on the value of 𝓭 and the random configuration of the target markers. 

The average 𝑇𝑅𝐸 is computed by the relationship 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑅𝐸 =
∑  𝑇𝑅𝐸𝑧

(𝑙;𝑖;𝑑)
𝑙,𝑖,𝑑,𝑧

Total Number of 𝑇𝑅𝐸𝑠
  where 

𝑧 ∈ {1,… ,100} designates the 𝑧𝑡ℎ random selection of 𝓭 markers and 

Total Number of 𝑇𝑅𝐸𝑠 = 200000. The computed registration accuracies for the sets of 

experiments 𝐴 − 𝐸 and all registration methods are shown in Table 3.10.   
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Figure 3.18: An example registration from the set of experiments 𝐶. 𝓭 = 15 markers are 

selected randomly from  𝓑(𝓜𝟎 − 𝓞𝟑
(5) − 𝓥𝟑

(5); 𝜃) and the distances between 

them and their correspondences in 𝓓𝟑
(5)

 are determined. This process is 

repeated 100 times. By averaging out the so produced 𝑇𝑅𝐸𝑠 using the 

𝐾𝐶 + 𝑇𝑃𝑆 method, it is calculated that Average 𝑇𝑅𝐸 = (2.0619 ±

0.2643) 𝑚𝑚. The intersection between the (updated) extracted source model 

and the set of (transformed) target markers is by definition the null set.   
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 𝑨𝒗𝒈 𝑻𝑹𝑬 (𝒎𝒎) 

 𝑬𝒙𝒑 𝑨 𝑬𝒙𝒑 𝑩 𝑬𝒙𝒑 𝑪 𝑬𝒙𝒑 𝑫 𝑬𝒙𝒑 𝑬 

𝑲𝑪+ 𝑻𝑷𝑺 3.4801±1.3737 2.7107±1.0604 2.4739±0.9746 2.2145±0.9751 2.1650±1.0154 

𝑮𝑴 + 𝑻𝑷𝑺 3.5581±1.4063 2.7202±1.0547 2.4648±0.9620 2.2605±1.0233 2.1677±0.9716 

𝑬𝑴+ 𝑻𝑷𝑺      
†
4.8100±0.8724 

Table 3.10: Average 𝑇𝑅𝐸𝑠 for the sets of experiments 𝐴 − 𝐸. 
†
The extracted source model 

is comprised of points with true correspondences in the target and points with 

no matching counterparts in the target. The latter originate in 𝓥𝒊
(𝑙)

despite the 

fact that the maximum distance imposed in the extraction of the common 

overlap obtained quite low values. The empty spaces denote failed 

registrations.  

  

3.8.2 Occlusion, deformation, Gaussian noise and their combined impact 

on 𝑻𝑹𝑬 

Algorithm 9: Generation of occluded, deformed and noisy target models of registration for 

measuring the accuracy of registration beyond common overlap. (See also Figure 3.19.)  

Input: 𝓜𝟎, 𝓜𝟐, 𝓜𝟏, 𝓝𝟏, 𝓝𝟐, 𝓝𝟑 and 𝓝𝟓 as defined in Algorithm 8 (ℱ1
(𝑙)(𝓜𝟎; 𝜃) 

maintains the same definition); the mean 𝜇 of the Gaussian normal distribution; 𝜎3 and 𝜎2 

which represent, in respect, the maximum standard deviation of the Gaussian distribution and 

an increment parameter that is iteratively added to the running standard deviation 𝜎 until 𝜎3 is 

reached; 𝓝𝟒 which corresponds to the number of elements of {𝓟(𝑖)𝜎
(𝑙)} where 𝓟(𝑖)𝜎

(𝑙)
 

represents the 𝑖th surface patch randomly selected from 𝒢𝜎
(𝑙)(𝓜𝟎; 𝜃), which in turn relates to 

the updated ℱ1
(𝑙)(𝓜𝟎; 𝜃) with Gaussian noise (𝜇, 𝜎). 𝓟(𝑖)𝜎

(𝑙)
 is the target of registration; the 

number of elements 𝓝𝟔 of a random subset of 𝓜𝟎 − 𝓞(𝑖)𝜎
(𝑙)

, call it 𝓥(𝑖)𝜎
(𝑙)

, where 𝓞(𝑖)𝜎
(𝑙)

 

represents the correspondence of 𝓟(𝑖)𝜎
(𝑙)

 in 𝓜𝟎. 𝓥(𝑖)𝜎
(𝑙)

 is appended to 𝓞(𝑖)𝜎
(𝑙)

 to produce the 

full source model of registration. 𝓜𝟎 − 𝓞(𝑖)𝜎
(𝑙) −𝓥(𝑖)𝜎

(𝑙)
 provides the set of source target 

marker points for the “virtual” 𝑇𝑅𝐸 calculations. Assume that the correspondences of 

𝓜𝟎 − 𝓞(𝑖)𝜎
(𝑙) −𝓥(𝑖)𝜎

(𝑙)
 in 𝒢𝜎

(𝑙)(𝓜𝟎; 𝜃) − 𝓟(𝑖)𝜎
(𝑙)

 are represented by 𝓓(𝑖)𝜎
(𝑙)

.     
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Output: {ℱ1
(𝑙)(𝓜𝟎; 𝜃)} ∀ 𝑙 ϵ {1, … ,

𝓜𝟐−𝓜𝟏

𝓜𝟏
}; {𝒢𝜎

(𝑙)(𝓜𝟎; 𝜃)} ∀ 𝑙 ϵ {1, … ,
𝓜𝟐−𝓜𝟏

𝓜𝟏
} and 

∀ 𝜎 ϵ {0.015,… , 𝜎3}; {𝓟(𝑖)𝜎
(𝑙)}, {𝓞(𝑖)𝜎

(𝑙)}, {𝒢𝜎
(𝑙)(𝓜𝟎; 𝜃) − 𝓟(𝑖)𝜎

(𝑙)}, {𝓥(𝑖)𝜎
(𝑙)}, {𝓜𝟎 −

𝓞(𝑖)𝜎
(𝑙)}, {𝓜𝟎 − 𝓞(𝑖)𝜎

(𝑙) − 𝓥(𝑖)𝜎
(𝑙)}, {𝓥(𝑖)𝜎

(𝑙) + 𝓞(𝑖)𝜎
(𝑙)} and {𝓓(𝑖)𝜎

(𝑙)} ∀ 𝑖 ϵ {1, … ,𝓝𝟒} and 

∀ 𝑙 ϵ {1, … ,
𝓜𝟐−𝓜𝟏

𝓜𝟏
} and ∀ 𝜎 ϵ {0.015,… , 𝜎3}.  

1: 𝑓𝑜𝑟        𝑘 = 𝓜𝟏      𝑡𝑜      𝓜𝟐            {𝑘 ≔ 𝑘 +𝓜𝟏}    

2: Same as steps 2 and 3 of Algorithm 8. 

3:  𝑓𝑜𝑟       𝜎 = 0.015      𝑡𝑜      𝜎3            { 𝜎 ≔  𝜎 + 𝜎2} 

4:  Same as step 3 of Algorithm 3. ℱ1
(𝑙)(𝓜𝟎; 𝜃) is updated to 𝒢𝜎

(𝑙)(𝓜𝟎; 𝜃). 

5:   𝑓𝑜𝑟        𝑖 = 1      𝑡𝑜      𝓝𝟒            {𝑖 ≔ 𝑖 + 1} 

6:   Apply steps 3-22 of Algorithm 6 to produce 𝓟(𝑖)𝜎
(𝑙)

 from 𝒢𝜎
(𝑙)(𝓜𝟎; 𝜃). 

7:   Identify the correspondences of 𝓟(𝑖)𝜎
(𝑙)

 and those of  

𝒢𝜎
(𝑙)(𝓜𝟎; 𝜃) − 𝓟(𝑖)𝜎

(𝑙)
 in 𝓜𝟎 to produce 𝓞(𝑖)𝜎

(𝑙)
 and 𝓜𝟎 − 𝓞(𝑖)𝜎

(𝑙)
, 

respectively.         

8: Randomly select 𝓝𝟔 Cartesian 3𝐷 points from 𝓜𝟎 − 𝓞(𝑖)𝜎
(𝑙)

 to 

generate 𝓥(𝑖)𝜎
(𝑙)

.    

9: Append 𝓥(𝑖)𝜎
(𝑙)

 onto 𝓞(𝑖)𝜎
(𝑙)

 to produce the full source model of 

registration. 

10: Identify the correspondences of 𝓜𝟎 − 𝓞(𝑖)𝜎
(𝑙) − 𝓥(𝑖)𝜎

(𝑙)
 in 

𝒢𝜎
(𝑙)(𝓜𝟎; 𝜃) − 𝓟(𝑖)𝜎

(𝑙)
 to produce  𝓓(𝑖)𝜎

(𝑙)
.     

11:   𝑒𝑛𝑑 𝑓𝑜𝑟 

12:  𝑒𝑛𝑑 𝑓𝑜𝑟     

13: 𝑒𝑛𝑑 𝑓𝑜𝑟     
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                 Figure 3.19: A diagrammatic representation of Algorithm 9. 

 

Five different sets of experiments, 𝐸𝑥𝑝 𝐴 − 𝐸𝑥𝑝 𝐸, were conducted for all registration 

methods where all input parameters were kept fixed except 𝓝𝟓 and 𝓝𝟔 (See Table 3.11). As 

a result the accuracy of registration (measured in the space beyond common overlap) can be 

determined as a function of the size of the target surface (hence the area of common overlap) 

which is subject to deformation plus noise. Such synthetic target models closely mimic some 

of the available clinical data [where 𝜎 ≈ (0.105 − 0.300)].     
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 𝓝𝟓
′  % 𝒐𝒇 𝑻𝒐𝒕𝒂𝒍 𝑺𝒖𝒓𝒇𝒂𝒄𝒆 𝓝𝟔 

𝐸𝑥𝑝 𝐴 50 7.6 320 

𝐸𝑥𝑝 𝐵 100 15 280 

𝐸𝑥𝑝 𝐶 150 23 250 

𝐸𝑥𝑝 𝐷 200 31 230 

𝐸𝑥𝑝 𝐸 250 38 210 

Table 3.11: Experimental parameters of 𝓝𝟓
′  and 𝓝𝟔 for the sets of experiments  𝐴 − 𝐸. 

𝓝𝟓
′  is derived from 𝓝𝟓, and represents the number of 3𝐷 points per surface 

patch. The values of 𝓝𝟔 were specifically chosen to make the density of 

points across 𝓥(𝑖)𝜎
(𝑙)
+𝓞(𝑖)𝜎

(𝑙)
 approximately constant. The fixed input 

parameters are: 𝓝𝟏 = 𝓝𝟐 = 𝓝𝟑 = 6, 𝓜𝟐 = 105, 𝓜𝟏 = 5, 𝓝𝟒 = 10, 

𝝁 = 0, 𝝈𝟐 = 0.165, and 𝝈𝟑 = 1.335. See also text for details. 

 

The registration takes place between 𝓥(𝑖)𝜎
(𝑙) + 𝓞(𝑖)𝜎

(𝑙)
 (using as control points the set of 

extracted points from the full source model) and 𝓟(𝑖)𝜎
(𝑙)

 ∀ 𝑖 ϵ {1, … ,𝓝𝟒}, 

∀ 𝑙 ϵ {1, … ,
𝓜𝟐−𝓜𝟏

𝓜𝟏
} and ∀ 𝜎 ϵ {0.015,… , 𝜎3}, producing as final output {𝓑(𝓥(𝑖)𝜎

(𝑙) +

𝓞(𝑖)𝜎
(𝑙)
; 𝜃)} as well as {𝓑(𝓜𝟎 − 𝓞(𝑖)𝜎

(𝑙)
− 𝓥(𝑖)𝜎

(𝑙)
; 𝜃)}. See Figure 3.20.  

The 𝑇𝑅𝐸 calculations were conducted by randomly selecting 𝓭 target marker points 

(where 𝓭 ∈ {3,5,10,15}) from 𝓑(𝓜𝟎 − 𝓞(𝑖)𝜎
(𝑙) − 𝓥(𝑖)𝜎

(𝑙); 𝜃) and determining the distances 

between them and their correspondences in 𝓓(𝑖)𝜎
(𝑙)

. The selection of 𝓭 points is repeated 100 

times. This process takes place ∀ 𝑖 ϵ {1, … ,𝓝𝟒}, ∀ 𝑙 ϵ {1, … ,
𝓜𝟐−𝓜𝟏

𝓜𝟏
}, ∀ 𝜎 ϵ {0.015,… , 𝜎3} 

and ∀ 𝓭 ∈ {3,5,10,15}. The computed 𝑇𝑅𝐸𝑠 showed no dependence on the value of 𝓭 and 

the random configuration of the target markers. Sections 3.8.2.1 and 3.8.2.2 present the 

computed 𝑇𝑅𝐸 results for all methods and 𝓭 = 15. The input files were the same for all 

registration methods. 
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Figure 3.20: An example registration from the set of experiments 𝐶. 𝓭 = 15 markers are 

selected randomly from  𝓑(𝓜𝟎 − 𝓞(4)0.345
(2) − 𝓥(4)0.345

(2) ; 𝜃) and the 

distances between them and their correspondences in 𝓓(4)0.345
(2)

 are 

determined. This process is repeated 100 times. By averaging out the so 

produced 𝑇𝑅𝐸𝑠 using the 𝐾𝐶 + 𝑇𝑃𝑆 method, it is calculated that 

Average 𝑇𝑅𝐸 = (3.0048 ± 0.1907) 𝑚𝑚. The intersection between the 

(updated) extracted source model and the set of (transformed) target markers 

is by definition the null set. 
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3.8.2.1 𝑻𝑹𝑬𝒔 computed using the 𝑲𝑪+ 𝑻𝑷𝑺 technique 

Consider the set of experiments 𝐸 and a given (𝑙, 𝜎). The average 𝑇𝑅𝐸 value at (𝑙, 𝜎) is 

computed by averaging out 100 ×𝓝𝟒 𝑇𝑅𝐸𝑠, i.e., ∀ 𝑖 ϵ {1, … ,𝓝𝟒}. These values were 

calculated using the 𝐾𝐶 + 𝑇𝑃𝑆 method.  

Figure 3.21 represents graphically the computed average  ∀ 𝑙 ϵ {2, … ,20}, where 𝑙 is even, 

and ∀ 𝜎 ϵ {0.015,0.18,0.345.0.51}. As the average 𝑇𝑅𝐸𝑠 for the odd values of 𝑙 were 

consistent with the registration accuracy pattern of Figure 3.21 they were omitted for better 

clarity. The simulations produced by injecting Gaussian noise with 𝜎 > 0.345 go beyond the 

solution space defined by the observed noise in the available clinical data.     

 

                                  

Figure 3.21: Average 𝑇𝑅𝐸𝑠 for the set of experiments 𝐸. They were computed 

∀ 𝑙 ϵ {2, … ,20}, where 𝑙 is even, and ∀ 𝜎 ϵ {0.015,0.18,0.345.0.51} using the 

𝐾𝐶 + 𝑇𝑃𝑆 technique. 

  

For 𝐸𝑥𝑝 𝐸 the maximum allowable 𝜎 from the set {0.015,0.18,0.345.0.51} that can lead to 

clinically acceptable registration accuracies is 0.345. Figure 3.22 presents a slice of Figure 

3.21 across 𝜎𝑚𝑎𝑥 = 0.345 (the 𝑇𝑅𝐸𝑠 are ca. ≤ 3 𝑚𝑚). See also Table 𝒞. 1 of Appendix 𝓒 

which lists the corresponding average 𝑇𝑅𝐸𝑠 for 𝜎𝑚𝑎𝑥 and ∀ 𝑙 ϵ {1, … ,20} for 𝐸𝑥𝑝 𝐴 −
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𝐸𝑥𝑝 𝐸. Figure 3.23 represents graphically the average 𝑇𝑅𝐸𝑠 for the set of experiments 𝐴 − 𝐷 

computed ∀ 𝑙 ϵ {2, … ,20}, where 𝑙 is even, and ∀ 𝜎 ϵ {0.015,0.18,0.345.0.51}.        

           

                     

                 Figure 3.22: A slice of Figure 3.21 across 𝜎 = 0.345. 
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Figure 3.23: Average 𝑇𝑅𝐸𝑠 for the set of experiments 𝐴 − 𝐷. They were computed 

∀ 𝑙 ϵ {2, … ,20}, where 𝑙 is even, and ∀ 𝜎 ϵ {0.015,0.18,0.345.0.51} using the 

𝐾𝐶 + 𝑇𝑃𝑆 technique. See text for details.  

 

3.8.2.2 𝑻𝑹𝑬𝒔 computed using the 𝑮𝑴𝑴+ 𝑻𝑷𝑺 technique 

This section follows a similar approach to the one taken in Section 3.8.2.1. The average 

𝑇𝑅𝐸𝑠 were calculated using the 𝐺𝑀𝑀 + 𝑇𝑃𝑆 method. The results for the set of experiments 

𝐸 are graphically presented in Figure 3.24. Figure 3.25 shows the slice of Figure 3.24 across 

𝜎𝑚𝑎𝑥 = 0.345. The average 𝑇𝑅𝐸𝑠 for 𝜎𝑚𝑎𝑥 and ∀ 𝑙 ϵ {1, … ,20} for 𝐸𝑥𝑝 𝐴 − 𝐸𝑥𝑝 𝐸 are listed 

in Table 𝒞. 2 of Appendix 𝓒. Figure 3.26 represents graphically the average 𝑇𝑅𝐸𝑠 for the set 

of experiments 𝐴 − 𝐷 computed ∀ 𝑙 ϵ {2, … ,20}, where 𝑙 is even, and 

∀ 𝜎 ϵ {0.015,0.18,0.345.0.51}.          
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Figure 3.24: Average 𝑇𝑅𝐸𝑠 for the set of experiments 𝐸. They were computed 

∀ 𝑙 ϵ {2, … ,20}, where 𝑙 is even, and ∀ 𝜎 ϵ {0.015,0.18,0.345.0.51} using the 

𝐺𝑀𝑀 + 𝑇𝑃𝑆 technique.  

                                

                             Figure 3.25: A slice of Figure 3.24 across 𝜎 = 0.345. 
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Figure 3.26: Average 𝑇𝑅𝐸𝑠 for the set of experiments 𝐴 − 𝐷. They were computed 

∀ 𝑙 ϵ {2, … ,20}, where 𝑙 is even, and ∀ 𝜎 ϵ {0.015,0.18,0.345.0.51} using the 

𝐺𝑀𝑀 + 𝑇𝑃𝑆 technique. See text for details. 
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Chapter 4 

Registration of medical imaging data 

 

Trial computational registration experiments were conducted using real prostate imaging 

data
9
 following the process described below: 

(i) The 3𝐷 source mesh prepared from the 𝑀𝑅𝐼 segmentation of the prostate surface
10

 is 

transformed into a (downsampled) point-cloud representation (see Figure 4.1). 

(ii) The 3𝐷 target (left and right) video images of the prostate surface are acquired 

endoscopically via the aid of the da Vinci Surgical System; they undergo surface 

(stereo-vision) reconstruction leading to a point-cloud representation of the prostate, 

which is also downsampled (see Figure 4.2).   

(iii)The source and target models are manually aligned before the non-rigid registration is 

initiated by, i.e., superimposing the (scaled) source onto the target scene; the 

orientation(s) and size(s) of the corresponding dataset(s) are saved in a designated 

directory (see Figure 4.3). 

(iv) The 𝐺𝑀𝑀+ 𝑇𝑃𝑆 and 𝐾𝐶 + 𝑇𝑃𝑆 non-rigid registration algorithms are executed using 

as input the aligned models of (iii) and their output is qualitatively examined (see 

Figure 4.4). 

(v) Steps (ii)-(iv) are repeated for different 3𝐷 target images (see Figure 4.5 and 

Appendix 𝓓). 

                                                           
9
 The medical imaging prostate data were provided by Daniel Stoyanov. 

10
 The 𝑀𝑅𝐼 prostate segmentation was provided by Yipeng Hu and was prepared by a 

radiologist at University London College Hospital (UCLH). The 𝑀𝑅𝐼 scans were acquired at 

UCLH with local ethical approval for the research purpose. 
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Figure 4.1: [A] 3𝐷 𝑀𝑅𝐼 prostate mesh; [B] Point-cloud representation (downsampled to 

654 data points). 

 

                            

Figure 4.2: [A] 3𝐷 video prostate image; [B] 3𝐷 stereo-reconstructed surface (ca. 60K 

data points); [C] downsampled version of [B] (ca. 4K data points). 
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Figure 4.3: [A] Initial orientations of the downsampled source and target models; [B] The 

(scaled) source model is manually superimposed onto the target surface. 

                          

Figure 4.4: [A] The source model (in red) is registered onto the downsampled target scene 

(in blue); [B] The source model (in red) is registered onto the original target 

scene (in blue); [C] The original manually aligned source model (in red) and 

the registered source model (in blue). The registration was conducted using the 

𝐾𝐶 + 𝑇𝑃𝑆 algorithm. The overlapping area between the datasets is about 50% 

of the surface of the full source model.   
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Figure 4.5: Selected video prostate images followed by the output of 𝐾𝐶 + 𝑇𝑃𝑆 non-rigid 

registration. The registered source is in red and the target prostate scene and 

its surrounding area are in blue. The registration output is not in scale to the 

video images. 
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Chapter 5 

Discussion 

The results from the computational full-model-to-full-model registration experiments of 

Chapter 3 are compared. The best full-model-to-occluded-scene non-rigid registration 

approaches are identified based on performance in registration accuracy, and their suitability 

for 𝐴𝑅 prostate surgery applications is examined. Their solution space is also determined. 

The experiments 𝐴 − 𝐶 of Section 3.3 allow for a relatively large size of deformation across 

𝓜𝟎 (which can incrementally obtain a higher magnitude in going from 𝐸𝑥𝑝 𝐶 to 𝐸𝑥𝑝 𝐴; see 

Table 3.1 and Figure 3.3) leading to the possibility of exaggerated cases of prostate surface 

deformation (where the 𝑇𝑅𝐸𝑠 can be as high as 4 mm). As the number of source control 

points of ℱ1
(𝑖)

 is increased, the complexity of deformation across 𝓜𝟎 is also increased. The 

synthetic datasets of Experiments 𝐸 and 𝐻 − 𝐽 are the ones that simulate the closest the 

available prostate imaging data. The best 𝑇𝑅𝐸𝑠 arise from the application of the 𝐸𝑀 + 𝑇𝑃𝑆 

(shape-based) registration algorithm (< 2 mm) for these test datasets. This clearly 

demonstrates the superiority of the 𝐸𝑀 + 𝑇𝑃𝑆 technique over 𝐾𝐶 + 𝑇𝑃𝑆 and 𝐺𝑀𝑀 + 𝑇𝑃𝑆 in 

establishing valid point-to-point correspondences during the full-model-to-full-model 

deformation process especially for large nonrigid variations in prostate surface.    

Section 3.4 aims at determining the relationship between registration accuracy and number of 

perturbed (by Gaussian noise) points of a full target model as the Gaussian noise level is 

increased. The Gaussian standard deviations 𝜎 that can be deduced from the clinical data (and 

for 𝜇 = 0) are in the range 0.105-0.300. All algorithms produce approximately the same 

𝑇𝑅𝐸𝑠 in this range (and beyond), irrespective of the number of points of the full target model. 

The computed values of the 𝑇𝑅𝐸𝑠 can be attributed mainly to the magnitude of injected 

Gaussian noise. All algorithms can also discriminate effectively against outliers in the full 

target scene (which may be originating in the surrounding environment of the target model) 

as the 𝑇𝑅𝐸 results of Section 3.5 clearly indicate.       

Section 3.6 focuses on exploiting the relationship between 𝑇𝑅𝐸 and number of perturbed (by 

non-Gaussian noise in Exps 𝐴 and 𝐵) target points for a series of deformed full target models 

(Test 1-Test 4). The general conclusions stemming from Tables 3.5 and 3.6 are that (i) all 
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three non-rigid registration algorithms can establish in most of the times valid 

correspondences and recover the deformation accurately, even when the deformed target 

scene is perturbed by non-Gaussian noise; (ii) combined with (i), the 𝐸𝑀 + 𝑇𝑃𝑆 technique 

outperforms the 𝐾𝐶 + 𝑇𝑃𝑆 and 𝐺𝑀𝑀 + 𝑇𝑃𝑆 methods in the identification of true 

correspondences during the full-model-to-full-model registration process; (iii) the 

establishment of erroneous correspondences becomes more frequent when the number of 

points of the noisy and deformed full target datasets goes below a certain threshold (i.e., when 

the number of target points becomes 50 in these computational experiments, see Tables 3.5 

and 3.6); and (iv) while the 𝑇𝑅𝐸 values arising from the 𝐸𝑀 + 𝑇𝑃𝑆 registrations are affected 

mainly by the non-Gaussian noise, the corresponding ones produced by the 𝐾𝐶 + 𝑇𝑃𝑆 and 

𝐺𝑀𝑀 + 𝑇𝑃𝑆 registration methods are also affected by the correspondence error.      

In the full-model-to-partial-model non-rigid registration experiments of Section 3.7.1, the 

size of the synthetic target scene is fixed to ca. 46% of the total source surface and the 

incurred deformation is mild. From the average 𝑇𝑅𝐸 results of column (i) of Table 3.7 it can 

be observed that the accuracy of the non-rigid registration between a partial source model 

and a partial target model is still affected by some correspondence error (which turns out to 

be the smallest when the 𝐸𝑀 + 𝑇𝑃𝑆 method is used), despite the fact that the source model is 

comprised of only points with true correspondences in the (mildly) deformed target. The 

correspondence error is further increased in going to full-model-to-partial-model non-rigid 

registrations as can be seen in column (ii) of Table 3.7.  

The correspondence error is considerably higher for the registrations performed with 

𝐸𝑀 + 𝑇𝑃𝑆 than that produced by 𝐾𝐶 + 𝑇𝑃𝑆 and 𝐺𝑀𝑀 + 𝑇𝑃𝑆. This discrepancy can be 

attributed to the way that the correspondences are estimated in each technique. For example 

the 𝒢ℳℳ methodology of establishing correspondences (see Section 2.2) is completely 

different in comparison to that of the 𝒢ℳℳ/ℰℳ technique (Section 2.4). The optimization 

of the 𝒢ℳℳ multiply-linked cost function takes place w.r.t. 𝜃 given a set of Euclidean 

distances that arises from all possible point-pair combinations that can be formed within the 

source and between the source and the target based on Equations 2.49, 2.51 and 2.52-2.56. In 

other words the optimal transformation of the moving model is computed by taking as input 

not only all possible correspondence pairs that can be formed between the moving model and 

the target (depicted by 𝓗𝒥𝒲 of Equation 2.53; the most probable ones are those with the 

smallest Euclidean distance) but also its (transforming) configuration of points as a whole 
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(𝓗𝒥2). Hence the latter term participates in (and governs) the establishment of 

correspondences during the non-rigid registration process according to the 𝒢ℳℳ 

methodology. The 𝒦𝒞 technique of Section 2.3, as a multiply-linked methodology, follows a 

similar approach of identifying correspondences as Equations 2.74, 2.76 and 2.77-2.81 

indicate. In the  𝒢ℳℳ/ℰℳ formulation the correspondences are identified in a one-on-one 

basis according to the row and column summation constraints imposed in the 𝓔 − step 

without considering the effect that the so computed transformation will have on the moving 

model as a whole. Let’s assume that the moving prostate model contains also points that have 

no matching counterparts in the target. While the 𝒢ℳℳ and 𝒦𝒞 optimizations of the 

corresponding energy functions won’t be affected much by the presence of such points, the 

optimization of the 𝒢ℳℳ/ℰℳ cost function can be largely affected by them leading to 

erroneous non-rigid transformations. Considering the smooth surface of the prostate the 

extracted source model is quite likely to include such points.        

Any correspondence error in the 𝓔 − step of the 𝒢ℳℳ/ℰℳ technique will propagate into a 

larger error in the estimation of 𝜃 in the 𝓜− step (based on Equation 2.101) than it could 

have been had the optimization of the energy function w.r.t 𝜃 been smoother. The latter is 

guaranteed in the 𝒢ℳℳ and 𝒦𝒞 techniques owing to Equations 2.54-2.56 and 2.79-2.81, 

respectively, where in the calculation of 𝓗(𝒥2/𝒥𝒲) (Equation 2.53) and 𝓗(𝑃𝓜
2/𝑃𝓜𝑃𝓢)

 

(Equation 2.78) the Euclidean distances are modulated by exponential functions. 

Reformulating the optimization of the ℰ3 cost function w.r.t 𝜃 to become a smoother process 

may be one additional modification that can help in correcting possible point mismatches in 

the next iteration of the 𝓔 − step for the registration of prostate surfaces. This must be 

combined with the imposition of a “tight” distance threshold in the extraction of the 

overlapping area. 

The occluded and deformed synthetic prostate surfaces that were generated in Section 3.7.1 

are further perturbed by the injection of a relatively increased (𝜎 = 0.450) Gaussian noise 

(see Section 3.7.2). From the average 𝑇𝑅𝐸𝑠 that are computed from the partial-model-to-

partial-model non-rigid registrations (see column (i) of Table 3.8) it can be observed that (i) 

the registrations are still valid despite the addition of one more perturbation; (ii) the 

establishment of correspondences doesn’t seem to be largely deteriorated by the injected 

Gaussian noise (for the specific size of the synthetic target scene) across all three methods 

(compare with corresponding 𝐴𝑣𝑔 𝑇𝑅𝐸𝑠 under column (i) of Table 3.7); (iii) the overall 
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correspondence error is consistently increased for all three non-rigid techniques; and (iv) the 

𝐴𝑣𝑔 𝑇𝑅𝐸 computed by ℰℳ + 𝑇𝑃𝑆 is considerably smaller when the row and column 

normalization of the affinity matrix 𝒯  (see Section 2.4.3) is also included in the method’s 

formulation. The establishment of correct correspondences in the 𝒦𝒞 + 𝑇𝑃𝑆 and 𝒢ℳℳ +

𝑇𝑃𝑆 full-model-to-partial-model registrations [see column (ii) of Table 3.8] is less affected 

by the additional points (those with no matching counterparts in the target) that arise from the 

extraction of common overlap than that in the ℰℳ + 𝑇𝑃𝑆 registrations.  

An extensive series of computational experiments were conducted for the assessment of the 

warping accuracy of the 𝒦𝒞 + 𝑇𝑃𝑆 and 𝒢ℳℳ + 𝑇𝑃𝑆 full-model-to-partial-model 

registrations in the region beyond common overlap (in Section 3.8). In these experiments the 

size of the deformed target scene is not constant (𝐸𝑥𝑝 𝐴 − 𝐸𝑥𝑝𝐸). Such tests are critical for 

determining the algorithms’ suitability for 𝐴𝑅 prostate laparoscopic surgery applications.        

The deformation applied onto the occluded prostate target scenes of Section 3.8.1 resembles 

in size and complexity the one that was synthesized in 𝐸𝑥𝑝 𝐸 of Section 3.3 [see Figure 3.3; 

it can be observed in Figures 3.7 and 3.8, for the range of number of control points until and 

including 105, that the 𝑇𝑅𝐸𝑠 stemming from the 𝒦𝒞 + 𝑇𝑃𝑆 and 𝒢ℳℳ + 𝑇𝑃𝑆 full-model-

to-full-model registrations, in respect, do not go higher than ca. 2.5 mm]. Such simulations 

represent the “upper bound of all possible prostate deformations” based on the available 

clinical data although some that go beyond this limit (approximately for the range of numbers 

of control points > 20 in Figures 3.7 and 3.8) are also included. From inspection of Table 

3.10 it can be concluded that, for the case of deformed and occluded target surfaces, both the 

𝒦𝒞 + 𝑇𝑃𝑆 and 𝒢ℳℳ + 𝑇𝑃𝑆 methodologies can provide the clinical accuracy (𝑇𝑅𝐸 ≲ 3 

mm) that is required for 𝐴𝑅 prostate surgery applications as long as the size of the target 

scene is greater than ca. 30% of the total (scaled) source surface (i.e., from 𝐸𝑥𝑝 𝐷 and above 

in Table 3.10).   

The occluded target models of Section 3.8.2 were deformed in a similar way to the one used 

in Section 3.8.1. In the 𝒦𝒞 + 𝑇𝑃𝑆 and 𝒢ℳℳ + 𝑇𝑃𝑆 computational experiments only a 

subset of those models that could simulate the closest the clinically observed deformation 

(specifically those arising from the range of numbers of control points until and including 20; 

see Section 3.8.2 for details and also 𝐸𝑥𝑝 𝐸 of Figure 3.3) were perturbed by Gaussian noise. 

From the analysis of Section 3.8.2.1 and Table 𝒞. 1 of Appendix 𝓒 it can be concluded that 

the  𝒦𝒞 + 𝑇𝑃𝑆 technique is a clinically acceptable non-rigid registration method for “noisy”, 
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occluded and deformed target surfaces as long as (i) the size of the target model is greater 

than ca. 38% of the total (scaled) source surface; (ii) the standard deviation 𝜎 of the Gaussian 

noise is less than 0.345 for 𝜇 = 0; and (iii) the observed deformation is not characterized by 

overly increased complexity as defined in this work (i.e., when it does not exceed the levels 

of deformation observed in the current medical imaging data). From the analysis of Section 

3.8.2.2 and Table 𝒞. 2 of Appendix 𝓒 a similar set of conclusions can be drown for the  

𝒢ℳℳ + 𝑇𝑃𝑆  technique. The second condition and as a consequence the third one can be 

relaxed by parameterizing the contribution of noise explicitly in the objective cost function 

[62].  

All three requirements lie within the solution space defined by the observed occlusion, 

deformation and noise in the available prostate imaging data which can be considered as 

representative samples. Hence both the 𝒦𝒞 + 𝑇𝑃𝑆 and 𝒢ℳℳ + 𝑇𝑃𝑆 techniques can 

produce a clinically accurate non-rigid registration between a preoperatively prepared 𝑀𝑅𝐼 

prostate surface and prostate target scenes which reinforces their suitability for use in 𝐴𝑅 

image guidance and navigation in prostate surgery. Chapter 4 and Appendix 𝒟 investigate the 

performance (by visual inspection) of a number of 𝒦𝒞 + 𝑇𝑃𝑆 and 𝒢ℳℳ + 𝑇𝑃𝑆 non-rigid 

registrations to real medical imaging data; the observed deformations in all cases that were 

examined seem to be fully recovered by these medical imaging registration methodologies.    

The work by Papazov and Burschka [101] involves an interesting concept that could 

potentially be used to reformulate the ℰℳ + 𝑇𝑃𝑆 algorithm making it more suitable for full-

model-to-partial-model prostate surface registration. The authors have developed a 

deformable 3𝐷 shape (dense) registration algorithm based on a system of ordinary 

differential equations (𝑂𝐷𝐸). Each 𝑂𝐷𝐸 consists of a correspondence term and a 

regularization term and yields a trajectory that maps the transition and motion of each source 

point from its initial undeformed position to its end position on the target.   

All vectors connecting each source point to its closest point on the target surface are initially 

computed based on a closest-point search scheme leading to a preliminary correspondence 

vector field. This is further refined by the following smoothing procedure: only those 

(displacement) vectors that show no deviations from their corresponding average values are 

allowed to terminate on the target points. The latter are computed over all neighbouring 

points of each source point.  
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This local optimization procedure returns an effective smooth correspondence field 

improving significantly the correspondence estimation especially when consecutive 

acquisitions (at high video frame rates) of imaging data of smoothly deforming objects are 

involved (such as in the case of stereoendoscopic acquisition of smoothly deforming prostate 

surfaces) as the interframe displacements are relatively small. This formulation could 

considerably improve the closest-point search mechanism that is currently used in the 

extraction of the common overlap between the full source and the occluded target model and 

provide a more reliable extracted source model for the 𝓔 − step of the modified ℰℳ + 𝑇𝑃𝑆 

algorithm.     
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Chapter 6 

Conclusions and future work 

Three robust state-of-the-art nonrigid registration schemes were examined for their suitability 

in supporting robot-assisted 𝐴𝑅 prostate surgical treatment procedures. The objective of this 

work is to enhance the surgical accuracy and oncological cure of prostate cancer tumour 

performed by the da Vinci surgical system.  

Computational experiments were conducted first for full-model-to-full-model prostate surface 

registrations using synthetic prostate data. Their output was collected and analysed providing 

some initial insight to their capacity of recovering prostate deformation as well as treating 

noise, outliers and the combined effects of noise and deformation. The 𝐸𝑀 + 𝑇𝑃𝑆 technique 

outperforms the 𝐾𝐶 + 𝑇𝑃𝑆 and 𝐺𝑀𝑀 + 𝑇𝑃𝑆 methods in these type of registrations. The 

warping accuracies computed by 𝐸𝑀 + 𝑇𝑃𝑆 are below 2 mm for all clinically relevant 

simulations.  

The registration algorithms were reformulated to address occlusion based on modified 

concepts originating in the work of other workers. Their accuracy was exploited in the 

surface of common overlap and in the space beyond common overlap using synthetic prostate 

imaging data.  

In the first case the size of the occluded target scene was kept fixed bearing the effect of a 

mild deformation. The computational experiments were performed in the absence and 

presence of Gaussian noise. The objective was to obtain some initial input about the capacity 

of the modified algorithms to provide valid registrations in the presence of occlusion, (not 

extreme) prostate deformation and measurement noise and, for those that they could, quantify 

the size of the inherent correspondence error. The 𝐾𝐶 + 𝑇𝑃𝑆 and 𝐺𝑀𝑀 + 𝑇𝑃𝑆 techniques 

were the only ones that could provide valid point-to-point (and ‘clinically’ acceptable) 

correspondences during the full-model-to-partial-model deformation process.    

The suitability of non-rigid point-set warping methods for 𝐴𝑅 prostate surgery applications 

can be assessed by measuring the registration accuracy in the space beyond common overlap 

which is the most reliable validation scheme. The synthetic prostate data that were used in 
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these experiments resemble as close as possible the available prostate imaging data both in 

deformation and noise.  

The 𝒦𝒞 + 𝑇𝑃𝑆 and 𝒢ℳℳ + 𝑇𝑃𝑆 techniques can produce clinically accurate non-rigid 

registrations as long as the size of the target scene is greater than ca. 30% of the total (scaled) 

source surface, in the absence of noise. The relationship between the (minimum) size of the 

target scene and the (maximum) magnitude of the standard deviation 𝜎 of the Gaussian noise 

that the occluded and deformed target models are subject to was determined for obtaining 

clinically accurate full-model-to-partial-model prostate surface registrations. The 𝐸𝑀/𝑇𝑃𝑆 

non-rigid registration algorithm cannot recover the prostate surface deformation accurately in 

full-model-to-occluded-model registrations due to the way that the correspondences are 

estimated.  

The warping accuracy measured in the space beyond common overlap from the registration 

to occluded (~38 % of original total surface) and deformed synthetic target prostate surfaces 

is estimated (2.1650±1.0154) mm using the modified 𝐾𝐶/𝑇𝑃𝑆 technique, and 

(2.1677±0.9716) mm based on the modified 𝐺𝑀𝑀/𝑇𝑃𝑆 method. The maximum allowable 

standard deviation 𝜎 of Gaussian noise with 𝜇 = 0 that may be added to these surfaces 

without overshooting the mean value of the registration error above 3 mm is 0.345 for both 

𝐾𝐶 + 𝑇𝑃𝑆 and 𝐺𝑀𝑀 + 𝑇𝑃𝑆.  

The results from the 𝒦𝒞 + 𝑇𝑃𝑆 and 𝒢ℳℳ + 𝑇𝑃𝑆 registration schemes can be used as a 

point of reference in developing more advanced nonrigid registration platforms for full-

model-to-partial-model prostate surface registrations applied to 𝐴𝑅 prostate surgery. The 

𝒦𝒞 + 𝑇𝑃𝑆 and 𝒢ℳℳ + 𝑇𝑃𝑆 algorithms and any other more advanced ones must be 

quantitatively evaluated by a series of custom-built prostate tissue phantom studies. These can 

be conducted by the experimental protocol proposed in the following: 

 𝑀𝑅𝐼/𝐶𝑇 scans of a prostate tissue phantom with implanted target markers will be 

taken; their segmentation will produce a 3𝐷 prostate surface, which will be the 

source. 

 Mechanical pressure (in arbitrary directions) will be exerted onto the source leading to 

a set of deformed phantoms. Their 𝑀𝑅𝐼/𝐶𝑇 scans will be taken and will be 

segmented to produce deformed prostate volumes (3𝐷 target models). The target 
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models represent the ground truth and will be used to measure the performance of 

registration algorithms in warping accuracy. 

 The source will be nonrigidly registered to each of the target models using a 

registration algorithm. 

 The 𝑇𝑅𝐸 will be computed. 

 The first four steps will be repeated each time for a different configuration and 

number of randomly implanted target markers. The mean and standard deviation of 

the 𝑇𝑅𝐸𝑠 will be calculated for the applied registration algorithm. 

 The first five steps will be repeated each time for a different algorithm. The 

corresponding mean 𝑇𝑅𝐸𝑠 and standard deviations of registrations algorithms can 

then be compared and the best one for clinical applications can be determined.  
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Appendix 𝓐 

Supporting material for the 𝑇𝑃𝑆 interpolation scheme  

 

𝓐.1 Notation  

Symbols for Section 2.1.1.1 

Symbol Definition     Type                  

𝛸   𝛸 = {𝑥1, … , 𝑥𝐿} ⊂ ℝ
𝑁    Set of discrete data 𝑥𝑖 ∈ ℝ

𝑁 

𝐻   𝐻 = {ℎ𝑥1 , … , ℎ𝑥𝐿} ⊂ ℝ    Set of values of ℎ𝑥 = ℎ(𝑥) ∈ ℝ 

𝜗   Approximant 𝜗:ℝ𝑁 → ℝ     Function 

ℎ    Approximand ℎ:ℝ𝑁 → ℝ    Function 

ϕ       Radially symmetric basis function   Function 

‖𝑥 − 𝑥𝑖‖  Euclidean distance between 𝑥𝑖 and 𝑥   Real number 

𝛼𝑖   Coefficients of the interpolant 𝜗   Scalars 

 

Symbols for Section 2.1.1.2 

Symbol Definition     Type                  

𝑃𝑖   𝑃𝑖 = (𝑥𝑖, 𝑦𝑖): source control point   2𝐷 point 

𝑛   Number of source and target control points  Integer value 

𝛱  𝛱 = {𝑃1, … , 𝑃𝑛}: source control points Set of points 𝑃𝑖 ∈ ℝ
2 

𝒢  𝒢 = {𝑔𝑃1 , … , 𝑔𝑃𝑛}: target control points  Set of values of 𝑔𝑃 = 𝑔(𝑥, 𝑦)  

𝑔   Approximand 𝑔:𝐷 → ℝ2    Function 

𝐷   Domain of 𝑔 and 𝑓    Set of 2𝐷 points 

𝑓   Approximant 𝑓: 𝐷 → ℝ2    Function 

𝑡𝑥, 𝑡𝑦   Translation coefficients of the interpolant 𝑓  Scalars 

𝑟𝑥𝑥, … , 𝑟𝑦𝑦 Rotation coefficients of the interpolant 𝑓  Scalars 
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𝛾𝑥1 , … , 𝛾𝑦𝑛  𝑇𝑃𝑆 warping coefficients of the interpolant 𝑓  Scalars 

ϕ   ϕ(𝑟) =  𝑟2 log 𝑟: 2𝐷 𝑇𝑃𝑆 basis function  Function 

𝒳   Space of 𝑇𝑃𝑆 interpolants 𝑓    Set of functions 

𝐼(𝑓)   Thin-plate bending functional of 𝑓 in 2𝐷      Real nonnegative value 

𝒲𝑓   Affine and 𝑇𝑃𝑆 coefficients of optimized 𝑓  Set of real values 

 

Symbols for Section 2.1.1.3 

Symbol Definition      Type                  

𝑓   Approximant 𝑓     Function 

𝑑   Number of imaging dimensions    Integer value 

𝑚   Total order of the partial derivatives of 𝑓   Integer value 

𝐼𝑚(𝑓)   Thin-plate functional for 𝑑 = 2 and general 𝑚  Real nonnegative value 

𝐼𝑚
𝑑 (𝑓)   Thin-plate penalty functional for general 𝑑,𝑚  Real nonnegative value 

 

Symbols for Section 2.1.2 

Symbol Definition       Type                  

𝑞   𝑞 = (𝑥, 𝑦, 𝑧): 3𝐷 point of the source model 𝑀0  3𝐷 point 

𝑚   Number of 3𝐷 points of the source and target models Integer value 

𝑀0   𝑀0 = (𝑞1, … , 𝑞𝑚)
𝑇: undeformed 3𝐷 source model  𝑚 × 3 matrix 

𝑡   𝑡 = (𝑥, 𝑦, 𝑧): 3𝐷 point of the target model 𝑆    3𝐷 point      

𝑆   𝑆 = (𝑡1, … , 𝑡𝑚)
𝑇: 3𝐷 target model     𝑚 × 3 matrix 

𝑛   Number of source and target control points    Integer value 

𝑃𝑖   𝑃𝑖 = (𝑥𝑖
𝑃, 𝑦𝑖

𝑃, 𝑧𝑖
𝑃): 𝑖 ∈ {1, … , 𝑛}: source control point  3𝐷 point 

𝛺   𝛺 = {𝑃1, … , 𝑃𝑛} ⊆ {𝑞1, … , 𝑞𝑚}: source control points  Set of 3𝐷 points  

𝒢   𝒢 = {𝑔𝑃1 , … , 𝑔𝑃𝑛}: target control points         Set of 𝑔𝑃𝑖 = 𝑔(𝑥𝑖
𝑃, 𝑦𝑖

𝑃, 𝑧𝑖
𝑃) values 

𝑔   Approximand 𝑔:𝐷 → ℝ3     Function 

𝐷   𝐷 = {𝑞1, … , 𝑞𝑚} ⊂ ℝ
3: domain of 𝑔 and 𝑓    Set of 3𝐷 points 

𝑓   Approximant 𝑓: 𝐷 → ℝ3      Function 
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𝛼𝑥, 𝛼𝑦,  𝛼𝑧  Translation coefficients of the interpolant 𝑓    Scalars 

𝛽𝑥𝑥, … , 𝛽𝑧𝑧  Rotation coefficients of the interpolant 𝑓    Scalars 

𝜃𝑥1 , … , 𝜃𝑧𝑛  𝑇𝑃𝑆 warping coefficients of the interpolant 𝑓    Scalars 

ϕ   ϕ(𝑟) = 𝑟: 3𝐷 𝑇𝑃𝑆 basis function     Function 

‖𝑞𝑖 − 𝑃𝑗‖  Euclidean distance between 𝑃𝑗 and 𝑞𝑖    Real number 

𝑈𝑖𝑗   𝑈𝑖𝑗 = ϕ(‖𝑞𝑖 − 𝑃𝑗‖)       Function 

𝑀      𝑀 = 𝑓(𝑀0): transformed 3𝐷 source model    𝑚 × 3 matrix 

[1|𝑀0]  Augmented form of 𝑀0      𝑚 × 4 matrix 

𝐸       Matrix of the affine transformation coefficients  3 × 4 matrix 

𝑈   Basis matrix        𝑚 × 𝑛 matrix 

𝑄   Matrix of the 𝑇𝑃𝑆 coefficients     𝑛 × 3 matrix 

𝑇   Matrix of the target control points      𝑛 × 3 matrix 

𝛷   𝑇𝑃𝑆 kernel matrix in 3𝐷      𝑛 × 𝑛 matrix 

𝑃     Matrix of the source control points     𝑛 × 3 matrix 

𝐴   Augmented form of 𝑃: 𝐴 = [1|𝑃]         𝑛 × 4 matrix 

𝛹   𝛹 = [
𝛷 𝐴
𝐴𝑇 0

]         (𝑛 + 4) × (𝑛 + 4) matrix 

𝛥   Matrix of the affine and 𝑇𝑃𝑆 coefficients      (𝑛 + 4) × 3 matrix 

𝛶   Augmented form of 𝑇: 𝛶 = [
𝑇
0
]       (𝑛 + 4) × 3 matrix 

 

Symbols for Section 2.1.3 

Symbol Definition      Type                  

𝐼2
3(𝑓)   Thin-plate functional of 𝑓 for 𝑑 = 3,𝑚 = 2   Real nonnegative value 

𝑚   Number of 3𝐷 points of the source model  Integer value 

𝑀0   Undeformed 3𝐷 source model   𝑚 × 3 matrix 

𝑀      Transformed 3𝐷 source model    𝑚 × 3 matrix 

𝑛   Number of source control points    Integer value 

𝐸       Matrix of the affine transformation coefficients 3 × 4 matrix 
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𝑈   Basis matrix       𝑚 × 𝑛 matrix 

𝑄   Matrix of the 𝑇𝑃𝑆 coefficients    𝑛 × 3 matrix 

𝛷   𝑇𝑃𝑆 kernel matrix in 3𝐷     𝑛 × 𝑛 matrix 

𝑃     Matrix of the source control points    𝑛 × 3 matrix 

𝐴   Augmented form of 𝑃: 𝐴 = [1|𝑃]        𝑛 × 4 matrix 

𝒩   Affine subspace of the 𝑇𝑃𝑆 warping space   𝑛 × (𝑛 − 4) matrix 

𝜓    Non-affine subspace of the 𝑇𝑃𝑆 warping space (𝑛 − 4) × 3 matrix 

𝓠   The matrix produced by 𝐴 = 𝓠𝓡         orthogonal 𝑛 × 𝑛 matrix 

𝓠𝟏   The first four columns of 𝓠    orthogonal 𝑛 × 4 matrix 

𝓠𝟐   The last (𝑛 − 4) columns of 𝓠      orthogonal 𝑛 × (𝑛 − 4) matrix  

𝓡   The matrix produced by 𝐴 = 𝓠𝓡    𝑛 × 4 matrix 

𝓡𝟏   The matrix defined by 𝓡 = [
𝓡𝟏
𝟎
]     4 × 4 matrix 

 

𝓐.2 Presenting the solution of the 𝐼𝑚
𝑑 (𝑓) functional 

Let us first define the nullspace [80, 82] of the 𝐼𝑚
𝑑 (𝑓) functional of Equation (2.5) of Section 

2.1.1.3. It is a space of 𝑀 polynomials in 𝑑 variables of total degree up to order 𝑚− 1 where 

𝑑,𝑚 have been defined in Section 2.1.1.3. The dimension of the nullspace is determined by 

𝑀 = (
𝑑 +𝑚 − 1

𝑑
) =

(𝑑 +𝑚 − 1)!

𝑑! (𝑚 − 1)!
                             (𝒜. 1). 

Suppose that 𝑚 = 2. Let the 𝑀 = 𝑑 + 1 polynomials that span the nullspace of 𝐼𝑚
𝑑 (𝑓) be 

depicted by {𝛿1, … , 𝛿𝑀}. If 𝑑 = 𝑚 = 2 then the following three monomials in two variables 

span the nullspace     

𝛿1 = 1,    𝛿2 = 𝑥,    𝛿3 = 𝑦. 

 If 𝑚 = 2 and 𝑑 = 3 the following four monomials in three variables span the nullspace 

𝛿1 = 1,    𝛿2 = 𝑥,    𝛿3 = 𝑦,       𝛿4 = 𝑧. 

The solution of the 𝐼𝑚
𝑑 (𝑓) functional [80, 82] expressed in an analytical form is given by 



170 
 

𝑓𝑠 =∑𝛼𝑣𝛿𝑣

𝑀

𝑣=1

+∑𝜃𝑖ϕ(𝑠, 𝑝𝑖)

𝑛

𝑖=1

                           (𝒜. 2) 

where, for a 𝑑 dimensional source image, 𝑝 represents a source control point in 𝑑 dimensions 

(𝑑 = 1, 𝑑 = 2, 𝑑 = 3 or 𝑑 = 4 for time-varying 3𝐷 source images) and 𝑠 corresponds to any 

other point of the 𝑑 dimensional source image. The number 𝑛 is the total number of source 

control points. The set {𝛼1, … , 𝛼𝑀} is comprised of 1 × 𝑑 vectors which consist of the affine 

coefficients. The 𝑀 polynomials 𝛿1, … , 𝛿𝑀 span the nullspace of 𝐼𝑚
𝑑 (𝑓) [which is not 

measured by 𝐼𝑚
𝑑 (𝑓)] as described previously. The term ∑ 𝛼𝑣𝛿𝑣

𝑀
𝑣=1  represents the affine 

transformation component and the set of  𝑀 polynomials is sufficient for an optimal affine 

transformation in the least-squares sense. The elements of the {𝜃1, … , 𝜃𝑛} set are 1 × 𝑑 

vectors which include the 𝑇𝑃𝑆 coefficients. The 𝑇𝑃𝑆 basis functions ϕ(𝑠, 𝑝𝑖) depend only on 

𝑚 and 𝑑 [80, 82]. It holds that ϕ(𝑠, 𝑝) = ϕ(‖𝑠 − 𝑝‖) = ϕ(𝑟) where 

𝑟 = ‖𝑠 − 𝑝‖ = √∑(𝑠𝑘 − 𝑝𝑘)2
𝑑

𝑘=1

                         (𝒜. 3). 

For all partial derivatives of 𝑓𝑠(1 × 𝑑 vector)of total order 𝑚 = 2 and in 𝑑 image dimensions 

to be square integrable it must hold that  

|𝑓𝑠|
2 = ∫ ∑ (

𝜕2𝑓

𝜕𝑠𝑘𝜕𝑠𝑙
)

2

𝑑𝑠

𝑑

𝑘,𝑙=1

 

ℝ𝑑

< ∞                   (𝒜. 4). 

By applying the requirement of (𝒜. 4) of square integrability for general 𝑚, 𝑑 to (𝒜. 2) the 

following basis functions are produced  

ϕ(𝑟) = {
𝐻𝑚,𝑑𝑟

2𝑚−𝑑 log 𝑟          𝑖𝑓 2𝑚 − 𝑑 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝐻𝑚,𝑑𝑟
2𝑚−𝑑                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                

 

where 

𝐻𝑚,𝑑 =

{
 
 

 
 (−1)

𝑑
2⁄ +1+𝑚

22𝑚−1𝜋
𝑑
2⁄ (𝑚 − 1)! (𝑚 − 𝑑 2⁄ )!

         𝑖𝑓 2𝑚 − 𝑑 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝛤(𝑑 2⁄ −𝑚)

22𝑚𝜋
𝑑
2⁄ (𝑚 − 1)!

                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               
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where 𝛤(𝑥) is the Gamma function. It is defined by 𝛤(𝑥) = ∫ 𝑒−𝑡𝑡𝑥−1 𝑑𝑡
∞

0
 for 𝑥 > 0 and 

𝛤(𝑥 + 1) = 𝑥𝛤(𝑥),     𝑥 ≠ 0, −1,−2,… 

For 𝑚 = 𝑑 = 2 ϕ(𝑟) =
1

8𝜋
𝑟2 log 𝑟 and for 𝑚 = 2, 𝑑 = 3 ϕ(𝑟) = −

1

8𝜋
𝑟 using the 

aforementioned relationships. The empty entries of Table 2.1 of Section 2.1.1.3 are attributed 

to the fact that 2𝑚 − 𝑑 > 0 ↔ 𝑚 > 𝑑 2⁄ . 

Suppose that 𝑚 = 2, 𝑑 = 3. The 𝛼𝑣 vectors of  (𝒜. 2) can be summarized by  

𝛼 = (𝛼1, … , 𝛼𝑀)
𝑇                                   (𝒜. 5). 

Similarly the 𝜃𝑖 1 × 𝑑 vectors of  (𝒜. 2) can be summarized by  

𝑄 = (𝜃1, … , 𝜃𝑛)
𝑇                                   (𝒜. 6). 

To compute the affine and 𝑇𝑃𝑆 coefficients that are respectively contained in these vectors 

the following system of linear equations must be solved   

𝛷𝑄 + 𝐴𝛼 = 𝑇                                  

𝐴𝑇𝑄        = 0                 (𝒜. 7)    

where 𝛷, 𝑄, 𝐴, 𝛼 = 𝐸𝑇, 𝑇 were defined in Section 2.1.2. The system of equations (𝒜. 7) can 

also be written as    

[
𝛷 𝐴
𝐴𝑇 0

] [
𝑄
𝛼
] = [

𝑇
0
]          (𝒜. 8)       

which reflects the relationship (2.23) of Section 2.1.2, namely, 𝛹𝛥 = 𝛶. 
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Appendix 𝓑 

Mathematical derivations 

 

𝓑.1 Derivation of the maximum likelihood estimates of the (𝜑ℎ , 𝜇ℎ , 𝛴ℎ) 

parameters 

In the 𝓜− step the following quantity is maximized w.r.t. (𝜑ℎ, 𝜇ℎ, 𝛴ℎ) 

∑∑𝒻
𝑡(𝑗)
(𝑖)
log (

𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(𝑗); 𝜇, 𝛴)𝑃(𝑡(𝑖) = 𝑡(𝑗); 𝜑)

𝒻
𝑡(𝑗)
(𝑖)

) =

𝑠

𝑗=1

𝑚

𝑖=1

                                                           

=∑∑𝒻
𝑡(𝑗)
(𝑖)

𝑠

𝑗=1

𝑚

𝑖=1

log

(

 
 
 

1

√(2𝜋)3|𝛴𝑗|

𝑒𝑥𝑝 [−
1
2 (𝑣

(𝑖) − 𝜇𝑗)
𝑇
𝛴𝑗
−1(𝑣(𝑖) − 𝜇𝑗)] 𝜑𝑗

𝒻
𝑡(𝑗)
(𝑖)

)

 
 
 

                  (ℬ. 1 ).                  

𝓑.1.1 The derivation of  𝜇ℎ ≔
∑ 𝒻

𝑡(ℎ)
(𝑖)
𝑣(𝑖)𝑚

𝑖=1

∑ 𝒻
𝑡(ℎ)
(𝑖)𝑚

𝑖=1

 

∇ 𝜇ℎ∑∑𝒻
𝑡(𝑗)
(𝑖)

𝑠

𝑗=1

𝑚

𝑖=1

log

(

 
 
 

1

√(2𝜋)3|𝛴𝑗|

𝑒𝑥𝑝 [−
1
2 (𝑣

(𝑖) − 𝜇𝑗)
𝑇
𝛴𝑗
−1(𝑣(𝑖) − 𝜇𝑗)] 𝜑𝑗

𝒻
𝑡(𝑗)
(𝑖)

)

 
 
 

=                         

= ∇ 𝜇ℎ (−
1

2
∑∑𝒻

𝑡(𝑗)
(𝑖)

𝑠

𝑗=1

𝑚

𝑖=1

(𝑣(𝑖) − 𝜇𝑗)
𝑇
𝛴𝑗
−1(𝑣(𝑖) − 𝜇𝑗))                      (ℬ. 2)                                    

  = ∑𝒻
𝑡(ℎ)
(𝑖)

𝑚

𝑖=1

𝛴ℎ
−1(𝑣(𝑖) − 𝜇ℎ)  = 0                                                               (ℬ. 3).                                   
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The relationship (ℬ. 3), which leads to the update rule, was derived from the differentiation of 

(ℬ. 2) w.r.t. each 𝜇ℎ using  

𝜕

𝜕𝑠
(𝑥 − 𝑠)𝑇𝑊(𝑥 − 𝑠) =  −2𝑊(𝑥 − 𝑠) 

where 𝑥 and 𝑠 are vectors and 𝑊(= 𝛴ℎ
−1) is a symmetric matrix (= positive semi-definite). 

𝓑.1.2 The derivation of 𝛴ℎ ≔
∑ 𝒻

𝑡(ℎ)
(𝑖)
(𝑣(𝑖)−𝜇ℎ)(𝑣

(𝑖)−𝜇ℎ)
𝑇𝑚

𝑖=1

∑ 𝒻
𝑡(ℎ)
(𝑖)𝑚

𝑖=1

 

∇ 𝛴ℎ∑∑𝒻
𝑡(𝑗)
(𝑖)

𝑠

𝑗=1

𝑚

𝑖=1

log

(

 
 
 

1

√(2𝜋)3|𝛴𝑗|

𝑒𝑥𝑝 [−
1
2 (𝑣

(𝑖) − 𝜇𝑗)
𝑇
𝛴𝑗
−1(𝑣(𝑖) − 𝜇𝑗)] 𝜑𝑗

𝒻
𝑡(𝑗)
(𝑖)

)

 
 
 

=                         

= ∇ 𝛴ℎ (∑∑𝒻
𝑡(𝑗)
(𝑖)

𝑠

𝑗=1

𝑚

𝑖=1

[−
1

2
log|𝛴𝑗| + (−

1

2
(𝑣(𝑖) − 𝜇𝑗)

𝑇
𝛴𝑗
−1(𝑣(𝑖) − 𝜇𝑗))]) =                   (ℬ. 4) 

 = −
1

2
∑𝒻

𝑡(ℎ)
(𝑖)

𝑚

𝑖=1

[𝛴ℎ
−𝑇 − 𝛴ℎ

−𝑇(𝑣(𝑖) − 𝜇ℎ)(𝑣
(𝑖) − 𝜇ℎ)

𝑇
𝛴ℎ
−𝑇] = 0                                            (ℬ. 5)  

which leads to the update rule. The Equation (ℬ. 5) was derived from the differentiation of 

(ℬ. 4) w.r.t. each 𝛴ℎ. The relationships that were used for the derivation of (ℬ. 5) are  

𝜕𝑎𝑇𝑋−1𝑏

𝜕𝑋
=  −𝑋−𝑇𝑎𝑏𝑇𝑋−𝑇                 

𝜕 log 𝑑𝑒𝑡(𝑋)

𝜕𝑋
= 𝑋−𝑇 = (𝑋−1)𝑇 = (𝑋𝑇)−1    

where 𝑋 is a matrix and 𝑎 and 𝑏 are vectors (see Ref. [85]). 

𝓑.1.3 The derivation of 𝜑ℎ ≔
1

𝑚
∑ 𝒻

𝑡(ℎ)
(𝑖)𝑚

𝑖=1  

The maximization of ℬ. 1 w.r.t. 𝜑ℎ leads to the constrained optimization 
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𝑚𝑎𝑥𝜑𝑗∑∑𝒻
𝑡(𝑗)
(𝑖)

𝑠

𝑗=1

𝑚

𝑖=1

log 𝜑𝑗          

𝑠. 𝑡.    𝑔(𝜑𝑗) =∑𝜑𝑗

𝑠

𝑗=1

− 1 = 0       

 (See Section 2.2.2 for details about the constraints.). 

Let’s define the Lagrangian 

ℒ(𝜑𝑗, 𝛽) = 𝑓(𝜑𝑗) + 𝛽𝑔(𝜑𝑗)                                                                  

=∑∑𝒻
𝑡(𝑗)
(𝑖)

𝑠

𝑗=1

𝑚

𝑖=1

log 𝜑𝑗 + 𝛽 (∑𝜑𝑗

𝑠

𝑗=1

− 1)            

where 𝛽 is the Lagrange multiplier. Hence  

𝜕

𝜕𝜑ℎ
ℒ =∑

𝒻
𝑡(ℎ)
(𝑖)

𝜑ℎ

𝑚

𝑖=1

+ 𝛽 = 0 ⇒ 𝜑ℎ = −
∑ 𝒻

𝑡(ℎ)
(𝑖)𝑚

𝑖=1

𝛽
      (ℬ. 6). 

(ℬ. 6) ⇒∑𝜑ℎ

𝑠

ℎ=1

= −
1

𝛽
∑(∑𝒻

𝑡(ℎ)
(𝑖)

𝑠

ℎ=1

)

𝑚

𝑖=1

= −
𝑚 ∙ 1

𝛽
= 1 ⇒ −𝛽 = 𝑚       (ℬ. 7). 

(ℬ. 6)
(ℬ.7)
⇒  𝜑ℎ =

1

𝑚
∑𝒻

𝑡(ℎ)
(𝑖)

𝑚

𝑖=1

           (ℬ. 8). 

𝓑.2 The incremental maximization of the log likelihood function via the ℰℳ 

algorithm  

Assume the parameters (𝜑ℎ
(𝑡)
, 𝜇ℎ
(𝑡)
, 𝛴ℎ
(𝑡)
) and (𝜑ℎ

(𝑡+1)
, 𝜇ℎ
(𝑡+1)

, 𝛴ℎ
(𝑡+1)

) which arise from two 

successive 𝓔𝓜 iterations, i.e., (𝑡) and (𝑡 + 1), respectively. Hence, for the (𝑡) iteration, 

(𝒻
𝑡(ℎ)
(𝑖)
)
(𝑡)

= 𝑃(𝑡(𝑖) = 𝑡(ℎ)|𝑣(𝑖);  𝜑ℎ
(𝑡)
, 𝜇ℎ
(𝑡)
, 𝛴ℎ
(𝑡)
 )                                                        

𝑙(𝜑ℎ
(𝑡), 𝜇ℎ

(𝑡), 𝛴ℎ
(𝑡)) =                                                                                                                                       
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              = ∑∑(𝒻
𝑡(ℎ)
(𝑖)
)
(𝑡)

log(
𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(ℎ); 𝜇(𝑡), 𝛴(𝑡))𝑃(𝑡(𝑖) = 𝑡(ℎ); 𝜑(𝑡))

(𝒻
𝑡(ℎ)
(𝑖) )

(𝑡)
)

𝑠

ℎ=1

𝑚

𝑖=1

 

Thus for the (𝑡 + 1) iteration 

(𝜑ℎ
(𝑡+1), 𝜇ℎ

(𝑡+1), 𝛴ℎ
(𝑡+1)) ≔                                                                                                                            

≔ argmax
(𝜑ℎ
(𝑡)
,𝜇ℎ
(𝑡)
,𝛴ℎ
(𝑡)
)

∑∑(𝒻
𝑡(ℎ)
(𝑖)
)
(𝑡)

log(
𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(ℎ); 𝜇(𝑡), 𝛴(𝑡))𝑃(𝑡(𝑖) = 𝑡(ℎ); 𝜑(𝑡))

(𝒻
𝑡(ℎ)
(𝑖) )

(𝑡)
)

𝑠

ℎ=1

𝑚

𝑖=1

    (ℬ. 9) 

𝑙(𝜑ℎ
(𝑡+1), 𝜇ℎ

(𝑡+1), 𝛴ℎ
(𝑡+1)) =                                                                                                                           

=∑∑(𝒻
𝑡(ℎ)
(𝑖)
)
(𝑡+1)

log(
𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(ℎ); 𝜇(𝑡+1), 𝛴(𝑡+1))𝑃(𝑡(𝑖) = 𝑡(ℎ); 𝜑(𝑡+1))

(𝒻
𝑡(ℎ)
(𝑖) )

(𝑡+1)
)  (ℬ. 10)

𝑠

ℎ=1

𝑚

𝑖=1

 

≥ ∑∑(𝒻
𝑡(ℎ)
(𝑖)
)
(𝑡)

log(
𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(ℎ); 𝜇(𝑡), 𝛴(𝑡))𝑃(𝑡(𝑖) = 𝑡(ℎ); 𝜑(𝑡))

(𝒻
𝑡(ℎ)
(𝑖) )

(𝑡)
)

𝑠

ℎ=1

𝑚

𝑖=1

         (ℬ. 11)         

=   𝑙(𝜑ℎ
(𝑡), 𝜇ℎ

(𝑡), 𝛴ℎ
(𝑡))                                         (ℬ. 12).                                                                            

The log likelihood expression of (ℬ. 9) is maximized in the 𝓜− step w.r.t. (𝜑ℎ, 𝜇ℎ, 𝛴ℎ) and 

in the 𝓔 − step w.r.t. 𝒻
𝑡(ℎ)
(𝑖)

. Hence the transition from (ℬ. 10) to (ℬ. 11). Equations (ℬ. 9) −

(ℬ. 11) clearly show that the log likelihood 𝑙(𝜑ℎ, 𝜇ℎ, 𝛴ℎ) increases monotonically with 

successive 𝓔𝓜 iterations. It suffices to declare convergence of the 𝓔𝓜 algorithm when (i) 

𝛥𝑙 ≤ 𝑗 where 𝑗 is a pre-set convergence parameter; and (ii) the increase of the log likelihood 

reaches a plateau.      

𝓑.3 The lower bound of the log likelihood function  

The 𝓔𝓜 algorithm maximizes the log likelihood 𝑙(𝜑ℎ, 𝜇ℎ, 𝛴ℎ) of Equation (2.33) (of Section 

2.2.2) incrementally (see Appendix ℬ.2 and Ref [93]). The lower bound of 𝑙 can be estimated 

by 
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𝑙(𝜑, 𝜇, 𝛴) =∑log( ∑ 𝑃(𝑣(𝑖)|𝑡(ℎ); 𝜇, 𝛴)

𝑡(𝑠)

𝑡(ℎ)=𝑡(1)

 𝑃(𝑡(ℎ); 𝜑))

𝑚

𝑖=1

                                                             

= ∑log (∑𝒻
𝑡(ℎ)
(𝑖)
[
𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(ℎ); 𝜇, 𝛴)𝑃(𝑡(𝑖) = 𝑡(ℎ); 𝜑)

𝒻
𝑡(ℎ)
(𝑖)

]

𝑠

ℎ=1

)

𝑚

𝑖=1

                

    ≥  ∑∑𝒻
𝑡(ℎ)
(𝑖)
log (

𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(ℎ); 𝜇, 𝛴)𝑃(𝑡(𝑖) = 𝑡(ℎ); 𝜑)

𝒻
𝑡(ℎ)
(𝑖)

)

𝑠

ℎ=1

𝑚

𝑖=1

   (ℬ. 13). 

The relationship of (ℬ. 13) is based on Jensen’s inequality    

ℎ(𝐸[𝑋]) ≥ 𝐸[ℎ(𝑋)]             (ℬ. 14) 

where  ℎ(𝑋) = log𝑋 is a strictly concave function and 𝑋 ∈ ℝ+ is a random variable  

𝑋 ≡ [
𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(ℎ); 𝜇, 𝛴)𝑃(𝑡(𝑖) = 𝑡(ℎ); 𝜑)

𝒻
𝑡(ℎ)
(𝑖)

]         (ℬ. 15). 

However, the equality in (ℬ. 14) holds if and only if 𝐸[𝑋] = 𝑋. Note that by definition [see 

Equation (2.82)] 

𝒻
𝑡(ℎ)
(𝑖)
= 𝑃(𝑡(𝑖) = 𝑡(ℎ)|𝑣(𝑖);  𝜑, 𝜇, 𝛴 )                                                                              

 =
𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(ℎ);  𝜇, 𝛴 )𝑃(𝑡(𝑖) = 𝑡(ℎ);  𝜑)

𝑃(𝑣(𝑖); 𝜑, 𝜇, 𝛴)
        (ℬ. 16).                

Eq. (ℬ. 15)
Eq.  (ℬ.16)
→       𝑋 = 𝑃(𝑣(𝑖); 𝜑, 𝜇, 𝛴)                                                                                    

                 = ∑𝜑𝑗

𝑠

𝑗=1

𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(𝑗); 𝜇𝑗 , 𝛴𝑗)     (ℬ. 17).      

The variable 𝑋 of Equation (ℬ. 17) is a ‘constant-valued random variable’ as it doesn’t 

depend on 𝑡(ℎ). It is hence due to the Equation (2.82) of the 𝓔 − step that  

𝑙(𝜑ℎ, 𝜇ℎ, 𝛴ℎ) =∑∑𝒻
𝑡(ℎ)
(𝑖)
log (

𝑃(𝑣(𝑖)|𝑡(𝑖) = 𝑡(ℎ); 𝜇, 𝛴)𝑃(𝑡(𝑖) = 𝑡(ℎ); 𝜑)

𝒻
𝑡(ℎ)
(𝑖)

)

𝑠

ℎ=1

𝑚

𝑖=1

    (ℬ. 18). 
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It is in the 𝓜− step that 𝑙(𝜑ℎ, 𝜇ℎ, 𝛴ℎ) of Equation (ℬ. 18) is maximized w.r.t. (𝜑ℎ, 𝜇ℎ, 𝛴ℎ), 

i.e.,  

  (𝜑ℎ, 𝜇ℎ, 𝛴ℎ) ≔ argmax
(𝜑ℎ,𝜇ℎ,𝛴ℎ)

∑ ∑ 𝒻
𝑡(ℎ)
(𝑖)
log (

𝑃(𝑣(𝑖)|𝑡(𝑖)=𝑡(ℎ);𝜇,𝛴)𝑃(𝑡(𝑖)=𝑡(ℎ);𝜑)

𝒻
𝑡(ℎ)
(𝑖) )𝑠

ℎ=1
𝑚
𝑖=1          (ℬ. 19) 

leading to Equations (2.83)-(2.85).  

𝓑.4 The maximization of the posterior probability distribution of 𝜃 

Consider the following series of relationships 

argmax
𝜃

𝑃(𝜃|𝓜,𝓢, 𝜑, 𝜇, 𝛴 ) = argmax
𝜃

𝑃(𝓜|𝓢, 𝜃, 𝜑, 𝜇, 𝛴 )𝑃(𝜃)

𝑃(𝓜)
=                                                  

= argmax
𝜃

 𝑃(𝓜|𝓢, 𝜃, 𝜑, 𝜇, 𝛴 )𝑃(𝜃) = argmin
𝜃

(− log 𝑃(𝓜|𝓢, 𝜃, 𝜑, 𝜇, 𝛴 )𝑃(𝜃))                           

≅ argmin
𝜃

[−∑log(∑𝜑ℎ
1

√(2𝜋)3|𝛴ℎ|
𝑒𝑥𝑝 [−

1

2
(𝑞(𝑖) −ℱ(𝑡(ℎ); 𝜃))

𝑇

𝛴ℎ
−1 (𝑞(𝑖)

𝑠+1

ℎ=1

𝑚

𝑖=1

− ℱ(𝑡(ℎ); 𝜃))]) + 𝜆𝐼(𝜃)]

≅ argmin
𝜃

[
 
 
 
 

−∑∑𝒻
𝑡(ℎ)
(𝑖)
log

(

 
 
𝜑ℎ

1

√(2𝜋)3|𝛴ℎ|
𝑒𝑥𝑝 [−

1
2 (𝑞

(𝑖) − ℱ(𝑡(ℎ); 𝜃))
𝑇

𝛴ℎ
−1 (𝑞(𝑖) − ℱ(𝑡(ℎ); 𝜃))]

𝒻
𝑡(ℎ)
(𝑖)

)

 
 

𝑠+1

ℎ=1

𝑚

𝑖=1

+ 𝜆𝐼(𝜃)

]
 
 
 
 

  

≅ argmin
𝜃

[∑∑𝒻
𝑡(ℎ)
(𝑖)
log 𝒻

𝑡(ℎ)
(𝑖)

𝑠+1

ℎ=1

𝑚

𝑖=1

−∑∑𝒻
𝑡(ℎ)
(𝑖)
log (𝜑ℎ

1

√(2𝜋)3|𝛴ℎ|
𝑒𝑥𝑝 [−

1

2
(𝑞(𝑖) − ℱ(𝑡(ℎ); 𝜃))

𝑇

𝛴ℎ
−1 (𝑞(𝑖)

𝑠+1

ℎ=1

𝑚

𝑖=1

− ℱ(𝑡(ℎ); 𝜃))]) + 𝜆𝐼(𝜃)]                                                                                               
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≅ argmin
𝜃

[∑∑𝒻
𝑡(ℎ)
(𝑖)
(𝑞(𝑖) − ℱ(𝑡(ℎ); 𝜃))

𝑇

𝛴ℎ
−1 (𝑞(𝑖) − ℱ(𝑡(ℎ); 𝜃))

2

𝑠+1

ℎ=1

𝑚

𝑖=1

−∑∑𝒻
𝑡(ℎ)
(𝑖)
log 𝜑ℎ

𝑠+1

ℎ=1

𝑚

𝑖=1

+∑∑
3𝒻
𝑡(ℎ)
(𝑖)

2
log(2𝜋)

𝑠+1

ℎ=1

𝑚

𝑖=1

+∑∑
𝒻
𝑡(ℎ)
(𝑖)

2
log|𝛴ℎ| +

𝑠+1

ℎ=1

𝑚

𝑖=1

∑∑𝒻
𝑡(ℎ)
(𝑖)
log 𝒻

𝑡(ℎ)
(𝑖)

𝑠+1

ℎ=1

𝑚

𝑖=1

+ 𝜆𝐼(𝜃)].                                                                                                                              

𝓑.5 The derivation of the log-posterior cost function 

𝐸𝑞. (2.93)
𝐸𝑞.(2.95)∧𝐸𝑞.(2.96)
⇒             ℰ1(𝒯, 𝜃) =

= ∑∑𝒻
𝑡(ℎ)
(𝑖) ‖𝑞

(𝑖) − ℱ(𝑡(ℎ); 𝜃)‖
2

2𝑇
  

𝑠+1

ℎ=1

𝑚+1

𝑖=1

− ∑∑𝒻
𝑡(ℎ)
(𝑖)
log𝜑ℎ

𝑠+1

ℎ=1

𝑚+1

𝑖=1

+ ∑∑
3

2
𝒻
𝑡(ℎ)
(𝑖)
log(2𝜋)

𝑠+1

ℎ=1

𝑚+1

𝑖=1

+∑∑
3

2
𝒻
𝑡(ℎ)
(𝑖)
log 𝑇

𝑠

ℎ=1

𝑚

𝑖=1

+∑
3

2
𝒻
𝑡(ℎ)
(𝑚+1)

log 𝑇0

𝑠

ℎ=1

+∑
3

2
𝒻
𝑡(𝑠+1)
(𝑖)

log 𝑇0

𝑚

𝑖=1

+ ∑∑𝒻
𝑡(ℎ)
(𝑖)
log 𝒻

𝑡(ℎ)
(𝑖)

𝑠+1

ℎ=1

𝑚+1

𝑖=1

+ 𝜆𝐼(𝜃)                                                                                                                                                                           

ℰ1(𝒯, 𝜃) ≈ ∑∑𝒻
𝑡(ℎ)
(𝑖) ‖𝑞

(𝑖) − ℱ(𝑡(ℎ); 𝜃)‖
2

2𝑇
  

𝑠+1

ℎ=1

𝑚+1

𝑖=1

+∑∑
3

2
𝒻
𝑡(ℎ)
(𝑖)
log 𝑇

𝑠

ℎ=1

𝑚

𝑖=1

+∑
3

2
𝒻
𝑡(ℎ)
(𝑚+1)

log 𝑇0

𝑠

ℎ=1

+∑
3

2
𝒻
𝑡(𝑠+1)
(𝑖)

log 𝑇0

𝑚

𝑖=1

+ ∑∑𝒻
𝑡(ℎ)
(𝑖)
log 𝒻

𝑡(ℎ)
(𝑖)

𝑠+1

ℎ=1

𝑚+1

𝑖=1

+ 𝜆𝐼(𝜃)                                              

ℰ2(𝒯, 𝜃) = 𝑇ℰ1(𝒯, 𝜃)

=∑∑𝒻
𝑡(ℎ)
(𝑖) ‖𝑞

(𝑖) − ℱ(𝑡(ℎ); 𝜃)‖
2

2
  

𝑠

ℎ=1

𝑚

𝑖=1

+∑𝒻
𝑡(ℎ)
(𝑚+1) ‖𝑞𝑚+1 −ℱ(𝑡

(ℎ); 𝜃)‖
2

2
  

𝑠

ℎ=1

+∑𝒻
𝑡(𝑠+1)
(𝑖) ‖𝑞(𝑖) − 𝜇𝑠+1‖

2

2

𝑚

𝑖=1

+ 𝑇∑∑
3

2
𝒻
𝑡(ℎ)
(𝑖)
log 𝑇

𝑠

ℎ=1

𝑚

𝑖=1

+ 𝑇∑
3

2
𝒻
𝑡(ℎ)
(𝑚+1)

log 𝑇0

𝑠

ℎ=1

+ 𝑇∑
3

2
𝒻
𝑡(𝑠+1)
(𝑖)

log 𝑇0

𝑚

𝑖=1

+ 𝑇 (∑∑𝒻
𝑡(ℎ)
(𝑖)
log 𝒻

𝑡(ℎ)
(𝑖)

𝑠

ℎ=1

𝑚

𝑖=1

+∑𝒻
𝑡(ℎ)
(𝑚+1)

log 𝒻
𝑡(ℎ)
(𝑚+1)

𝑠

ℎ=1

+∑𝒻
𝑡(𝑠+1)
(𝑖)

log 𝒻
𝑡(𝑠+1)
(𝑖)

𝑚

𝑖=1

)

+ 𝜆𝑇𝐼(𝜃)                                                                                                                              
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𝓑.6 Derivatives of the cost function w.r.t. 𝜓 and 𝐸𝑇 when 𝑈 ≡ 𝛷 

Equation (2.103) can be rewritten in terms of the squared form of the Frobenius matrix norm 

of (Ѡ − ℱ(𝓢0))
𝑇
∈ ℝ3×𝑠  

‖(Ѡ − ℱ(𝓢0))
𝑇
‖
𝐹

2

= ‖Ѡ− ℱ(𝓢0)‖𝐹
2 =∑∑|𝓌(𝑗)

(ℎ) − ℱ(𝑡(𝑗)
(ℎ))|

2
3

𝑗=1

𝑠

ℎ=1

  

                     =  trace ((Ѡ − ℱ(𝓢0))
𝑇
(Ѡ − ℱ(𝓢0))) 

                                            = trace ((Ѡ − ℱ(𝓢0))(Ѡ − ℱ(𝓢0))
𝑇
)        (ℬ. 20). 

Eq. (2.103)
Eqs. (2.105) ∧ (2.106) ∧ (ℬ.20) 
⇒                                                                                                                            

ℰ4(𝐸
𝑇 , 𝜓) =

1

2
‖Ѡ − ℱ(𝓢0)‖𝐹

2 + 𝜆trace(𝜓𝑇𝒩𝑇𝛷𝒩𝜓)                                                                      

        =
1

2
‖Ғ𝓜𝟎 − [1|𝓢0]𝐸

𝑇 − 𝛷𝒩𝜓‖𝐹
2 + 𝜆trace(𝜓𝑇𝒩𝑇𝛷𝒩𝜓)            (ℬ. 21).      

𝓢0 is taken to be the set of control points. Consider the full rank 𝓠𝓡 decomposition of [1|𝓢0] 

(see Equation (2.26) of Section 2.1.3 for details) 

[1|𝓢0] = 𝓠𝓡 = [𝓠𝟏|𝒩] [
𝓡𝟏
𝟎
] = 𝓠𝟏𝓡𝟏       (ℬ. 22) 

where 𝓠𝟏 ∈ ℝ
𝑠×4 and 𝓠1

𝑇𝓠𝟏 = 𝓠𝟏𝓠1
𝑇 = 𝐼4, the left null space of [1|𝓢0] 𝒩 ∈ ℝ𝑠×(𝑠−4) and 

𝒩𝑇𝒩 =𝒩𝒩𝑇 = 𝐼𝑠−4, and 𝓡𝟏 ∈ ℝ
4×4.  

Eq. (ℬ. 21)
Eq. (ℬ.22) 
⇒      ℰ4(𝐸

𝑇 , 𝜓) =
1

2
‖Ғ𝓜𝟎 − 𝓠𝟏𝓡𝟏𝐸

𝑇 − 𝛷𝒩𝜓‖𝐹
2

+ 𝜆trace(𝜓𝑇𝒩𝑇𝛷𝒩𝜓)            (ℬ. 23) 

Consider the following series of Equations 

‖(Ғ𝓜𝟎 − 𝛷𝒩𝜓) − 𝓠𝟏𝓡𝟏𝐸
𝑇‖𝐹
2 = ‖(𝛷𝒩𝜓 − Ғ𝓜𝟎) + 𝓠𝟏𝓡𝟏𝐸

𝑇‖𝐹
2 =                                           

= trace([(𝛷𝒩𝜓 − Ғ𝓜𝟎) + (𝓠𝟏𝓡𝟏𝐸
𝑇)][(𝛷𝒩𝜓 − Ғ𝓜𝟎) + (𝓠𝟏𝓡𝟏𝐸

𝑇)]𝑇)                                 

= trace([𝒜 + ℬ][𝒜 + ℬ]𝑇)                                                                                                                       
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= trace([𝒜 + ℬ][𝒜𝑇 + ℬ𝑇])                                                                                                                    

= trace(𝒜𝒜𝑇 +𝒜ℬ𝑇 + ℬ𝒜𝑇 + ℬℬ𝑇)                                                                                                  

= trace(𝒜𝒜𝑇) + trace(𝒜ℬ𝑇 + (𝒜ℬ𝑇)𝑇) + trace(ℬℬ𝑇)                                                                 

= trace(𝒜𝒜𝑇) + trace(ℬℬ𝑇) + trace(𝒜ℬ𝑇) + trace((𝒜ℬ𝑇)𝑇)                                                   

= trace(𝒜𝒜𝑇) + trace(ℬℬ𝑇) + 2trace(𝒜ℬ𝑇)                                                                                   

= ‖𝛷𝒩𝜓− Ғ𝓜𝟎‖𝐹
2 + ‖𝓠𝟏𝓡𝟏𝐸

𝑇‖𝐹
2 + 2trace[(𝛷𝒩𝜓 − Ғ𝓜𝟎)(𝓠𝟏𝓡𝟏𝐸

𝑇)𝑻]            (ℬ. 24) 

where 𝒜 ≡ (𝛷𝒩𝜓− Ғ𝓜𝟎) and ℬ ≡ (𝓠𝟏𝓡𝟏𝐸
𝑇). 

Eq. (ℬ. 23)
Eq. (ℬ.24) 
⇒      ℰ5(𝐸

𝑇 , 𝜓)= 2ℰ4(𝐸
𝑇 , 𝜓) =                                                                                  

= ‖Ғ𝓜𝟎 −𝓠𝟏𝓡𝟏𝐸
𝑇 − 𝛷𝒩𝜓‖𝐹

2 + 2𝜆trace(𝜓𝑇𝒩𝑇𝛷𝒩𝜓)                                                                

= ‖𝛷𝒩𝜓 − Ғ𝓜𝟎‖𝐹
2 + ‖𝓠𝟏𝓡𝟏𝐸

𝑇‖𝐹
2 + 2trace[(𝛷𝒩𝜓 − Ғ𝓜𝟎)(𝓠𝟏𝓡𝟏𝐸

𝑇)𝑻]

+ 2𝜆trace(𝜓𝑇𝒩𝑇𝛷𝒩𝜓).                                                                                                

The derivative of ℰ5 w.r.t. 𝐸𝑇 is 

𝜕

𝜕𝐸𝑇
ℰ5(𝐸

𝑇 , 𝜓) =
𝜕

𝜕𝐸𝑇
‖𝓠𝟏𝓡𝟏𝐸

𝑇‖𝐹
2 + 2

𝜕

𝜕𝐸𝑇
trace[(𝛷𝒩𝜓 − Ғ𝓜𝟎)(𝓠𝟏𝓡𝟏𝐸

𝑇)𝑻]                       

=
𝜕

𝜕𝐸𝑇
trace[(𝓠𝟏𝓡𝟏𝐸

𝑇)(𝓠𝟏𝓡𝟏𝐸
𝑇)𝑇] + 2

𝜕

𝜕𝐸𝑇
trace[(𝓠𝟏𝓡𝟏)𝐸

𝑇(𝛷𝒩𝜓 − Ғ𝓜𝟎)
𝑇]                   

= 2(𝓠𝟏𝓡𝟏)
𝑻(𝓠𝟏𝓡𝟏𝐸

𝑇) + 2(𝓠𝟏𝓡𝟏)
𝑻(𝛷𝒩𝜓 − Ғ𝓜𝟎)                               (ℬ. 25)                       

where the first term of the right part of Equation (ℬ. 25) arises from  

𝜕

𝜕𝑋
trace[(𝐴𝑋𝐵 + 𝐶)(𝐴𝑋𝐵 + 𝐶)𝑇] = 2𝐴𝑇(𝐴𝑋𝐵 + 𝐶)𝐵𝑇 

and the second term from  

𝜕

𝜕𝑋
trace(𝐴𝑋𝐵) = 𝐴𝑇𝐵𝑇. 

Hence,   
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min
𝐸𝑇
ℰ5(𝐸

𝑇 , 𝜓)
Eq. (ℬ.25)
⇒      𝐸𝑇 = 𝓡1

−1𝓠1
𝑇(Ғ𝓜𝟎 − 𝛷𝒩𝜓)               (ℬ. 26).                                          

The derivative of ℰ5 w.r.t. 𝜓 is 

𝜕

𝜕𝜓
ℰ5(𝐸

𝑇 , 𝜓) =
𝜕

𝜕𝜓
‖𝛷𝒩𝜓 − Ғ𝓜𝟎‖𝐹

2 + 2
𝜕

𝜕𝜓
trace[(𝛷𝒩𝜓 − Ғ𝓜𝟎)(𝓠𝟏𝓡𝟏𝐸

𝑇)𝑻]

+ 4𝜆𝒩𝑇𝛷𝒩𝜓                                                                                                                     

=
𝜕

𝜕𝜓
trace[(𝛷𝒩𝜓 − Ғ𝓜𝟎)(𝛷𝒩𝜓 − Ғ𝓜𝟎)

𝑇]

− 2
𝜕

𝜕𝜓
trace[(Ғ𝓜𝟎 − 𝛷𝒩𝜓)(Ғ𝓜𝟎 − 𝛷𝒩𝜓)

𝑇] + 4𝜆𝒩𝑇𝛷𝒩𝜓                          

= 2(𝛷𝒩)𝑇(𝛷𝒩𝜓 − Ғ𝓜𝟎) − 4(𝛷𝒩)
𝑇(𝛷𝒩𝜓 − Ғ𝓜𝟎) + 4𝜆𝒩

𝑇𝛷𝒩𝜓                                        

= −2(𝛷𝒩)𝑇(𝛷𝒩𝜓 − Ғ𝓜𝟎)  + 4𝜆𝒩
𝑇𝛷𝒩𝜓.                                                                                      

Hence, 

min
𝜓
ℰ5(𝐸

𝑇 , 𝜓)
Eq. (ℬ.26)
⇒      𝜓 = 𝒩𝑇(𝛷 − 2𝜆𝐼)−1Ғ𝓜𝟎.                                                                            

𝓑.7 Derivatives of the cost function w.r.t. 𝜓′ and 𝐸′𝑇 for 𝑈 ≠ 𝛷′ 

Eq. (2.103)
Eqs. (2.104) ∧ (2.106) ∧ (ℬ.20) 
⇒                     ℰ6(𝐸

′𝑇 , 𝜓′) = 2ℰ4(𝐸
′𝑇 , 𝜓′) =                                               

= ‖Ғ𝓜𝟎 − [1|𝓢0]𝐸
′𝑇 − 𝑈𝒩′𝜓′‖𝐹

2 + 2𝜆trace(𝜓′𝑇𝒩′𝑇𝛷′𝒩′𝜓′)                (ℬ. 27)                      

where 𝐸′𝑇 ∈ ℝ4×3 represents the affine transformation, 𝑈 ∈ ℝ𝑠×𝑛 is the basis matrix, 

𝛷′ ∈ ℝ𝑛×𝑛 is the 𝑇𝑃𝑆 kernel matrix, 𝜓′ ∈ ℝ(𝑛−4)×3 relates to the non-affine subspace of the 

𝑇𝑃𝑆 warping, 𝒩′ ∈ ℝ𝑛×(𝑛−4) represents the left null space of [1|𝓟0] ∈ ℝ
𝑛×4 and 𝓟0 =

{𝑃1, … , 𝑃𝑛} corresponds to the set of the original target control points.    

Consider the full rank 𝓠𝓡 decomposition of [1|𝓢0] (see Equation (2.26) of Section 2.1.3 for 

details) 

[1|𝓢0] = 𝓠𝓡 = [𝓠𝟏|𝓠𝟐] [
𝓡𝟏
𝟎
] = 𝓠𝟏𝓡𝟏       (ℬ. 28) 

where 𝓠𝟏 ∈ ℝ
𝑠×4 and 𝓠1

𝑇𝓠𝟏 = 𝓠𝟏𝓠1
𝑇 = 𝐼4, 𝓠𝟐 ∈ ℝ

𝑠×(𝑠−4) and 𝓠2
𝑇𝓠𝟐 = 𝓠𝟐𝓠2

𝑇 = 𝐼𝑠−4 and 

𝓡𝟏 ∈ ℝ
4×4.  
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Eq. (ℬ. 27)
Eq. (ℬ.28) 
⇒      ℰ6(𝐸

′𝑇 , 𝜓′) = ‖Ғ𝓜𝟎 − 𝓠𝟏𝓡𝟏𝐸
′𝑇 − 𝑈𝒩′𝜓′‖𝐹

2 +

2𝜆trace(𝜓′𝑇𝒩′𝑇𝛷′𝒩′𝜓′)                                        (ℬ. 29).                                                                                 

It can be proven that (see Appendix 𝓑.6) 

‖(Ғ𝓜𝟎 − 𝑈𝒩
′𝜓′) − 𝓠𝟏𝓡𝟏𝐸

′𝑇‖𝐹
2 =                                                                                                       

= ‖𝑈𝒩′𝜓′ − Ғ𝓜𝟎‖𝐹
2 + ‖𝓠𝟏𝓡𝟏𝐸

′𝑇‖𝐹
2 + 2trace[(𝑈𝒩′𝜓′ − Ғ𝓜𝟎)(𝓠𝟏𝓡𝟏𝐸

′𝑇)𝑻]        (ℬ. 30) 

Hence 

Eq. (ℬ. 29)
Eq. (ℬ.30) 
⇒      ℰ6(𝐸

′𝑇 , 𝜓′) =                                                                                                          

= ‖𝑈𝒩′𝜓′ − Ғ𝓜𝟎‖𝐹
2 + ‖𝓠𝟏𝓡𝟏𝐸

′𝑇‖𝐹
2 + 2trace[(𝑈𝒩′𝜓′ − Ғ𝓜𝟎)(𝓠𝟏𝓡𝟏𝐸

′𝑇)𝑻]

+ 2𝜆trace(𝜓′𝑇𝒩′𝑇𝛷′𝒩′𝜓′)                         (ℬ. 31).                                                   

The derivative of ℰ6 w.r.t. 𝐸′𝑇 (see Appendix 𝓑.6) is  

 

𝜕

𝜕𝐸′𝑇
ℰ6(𝐸

′𝑇 , 𝜓′) = 2(𝓠𝟏𝓡𝟏)
𝑻(𝓠𝟏𝓡𝟏𝐸

′𝑇) + 2(𝓠𝟏𝓡𝟏)
𝑻(𝑈𝒩′𝜓′ − Ғ𝓜𝟎)          (ℬ. 32).         

Hence,   

min
𝐸′𝑇
ℰ6(𝐸

′𝑇 , 𝜓′)
Eq. (ℬ.32)
⇒      𝐸′𝑇 = 𝓡1

−1𝓠1
𝑇(Ғ𝓜𝟎 − 𝑈𝒩

′𝜓′)               (ℬ. 33).                                   

To obtain 𝒩′ the full rank 𝓠′𝓡′ decomposition of [1|𝓟0] is performed  

[1|𝓟0] = 𝓠
′𝓡′ = [𝓠𝟏

′ |𝒩′] [
𝓡𝟏
′

𝟎
] = 𝓠𝟏

′𝓡𝟏
′        (ℬ. 34) 

where 𝓠𝟏
′ ∈ ℝ𝑛×4 and 𝓠𝟏

′𝑻𝓠𝟏
′ = 𝓠𝟏

′𝓠𝟏
′𝑻 = 𝐼4, 𝒩

′𝑇𝒩′ = 𝒩′𝒩′𝑇 = 𝐼𝑛−4 and 𝓡𝟏
′ ∈ ℝ4×4.   

The derivative of ℰ6 w.r.t. 𝜓′ (see Appendix 𝓑.6) is  

𝜕

𝜕𝜓′
ℰ6(𝐸

′𝑇 , 𝜓′) = −2(𝑈𝒩′)𝑇(𝑈𝒩′𝜓′ − Ғ𝓜𝟎)  + 4𝜆𝒩
′𝑇𝛷′𝒩′𝜓′            (ℬ. 35). 

Hence, 

min
𝜓′
ℰ6(𝐸

′𝑇 , 𝜓′) ⟹ 𝜓′ = 𝓤−𝟏𝒩′𝑇𝑈𝑇Ғ𝓜𝟎              (ℬ. 36)                                                               
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where 𝓤 = [𝒩′𝑇𝑈𝑇𝑈𝒩′ − 2𝜆𝒩′𝑇𝛷′𝒩′] and 𝓤 ∈ ℝ(𝑛−4)×(𝑛−4). 
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Appendix 𝓒 

Experimental results 

 

 𝑬𝒙𝒑 𝑨 𝑬𝒙𝒑 𝑩 𝑬𝒙𝒑 𝑪 𝑬𝒙𝒑 𝑫 𝑬𝒙𝒑 𝑬 

𝓝𝟓
′  50 100 150 200 250 

𝝈𝒎𝒂𝒙 0.015 0.015 0.18 0.345 0.345 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏)

 3.6422 ± 1.7970 2.4066 ± 1.4275 1.5480 ± 0.5692 1.6850 ± 0.5401 1.8732 ± 0.4236 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟐)

 4.6446 ± 0.9847 2.8968 ± 0.6774 2.7120 ± 0.7497 1.9388 ± 0.5114 1.8633 ± 0.4968 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟑)

 3.2314 ± 0.6518 3.1261 ± 1.3734 1.9171 ± 1.010 2.3598 ± 0.5268 2.0581 ± 0.4173 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟒)

 3.1511 ± 0.9926 2.8123 ± 0.7179 3.0102 ± 0.5003 2.6383 ± 0.6090 1.8698 ± 0.4774 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟓)

 4.0930 ± 1.2289 2.3728 ± 0.8802 2.5567 ± 0.7319 2.0028 ± 0.4461 2.3202 ± 0.3905 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟔)

 3.8504 ± 1.5763 2.9552 ± 1.1289 1.9580 ± 0.5342 1.9517 ± 0.4865 1.8932 ± 0.6680 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟕)

 3.7562 ± 2.0253 1.5832 ± 0.3503 2.3328 ± 0.8777 2.2140 ± 0.3436 2.3169 ± 0.4966 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟖)

 3.1013 ± 1.0719 3.0074 ± 0.4945 2.2111 ± 0.4600 3.0866 ± 0.5969 1.8463 ± 0.352 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟗)

 3.4642 ± 1.1048 3.3151 ± 1.1780 2.4895 ± 0.7998 2.1410 ± 0.3950 2.8627 ± 0.7466 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟎)

 3.6942 ± 1.1969 2.7939 ± 0.6293 2.4464 ± 0.7089 2.0826 ± 0.3439 2.6657 ± 0.7034 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟏)

 3.7499 ± 1.3900 2.5434 ± 0.5253 2.3831 ± 0.7184 2.4237 ± 0.7826 1.7895 ± 0.3490 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟐)

 4.1391 ± 1.6332 3.2131 ± 0.8613 2.1472 ± 0.3954 2.6535 ± 0.4818 2.4246 ± 0.4828 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟑)

 3.4453 ± 1.5370 3.2582 ± 0.9148 2.5853 ± 0.3725 2.3830 ± 0.4454 2.7195 ± 0.5094 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟒)

 4.1730 ± 1.4540 3.7057 ± 1.2482 2.6378 ± 0.6026 2.3985 ± 0.5286 2.9216 ± 0.3718 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟓)

 3.2668 ± 0.6315 2.9902 ± 1.0851 2.2420 ± 0.4180 2.9554 ± 0.7219 2.2330 ± 0.4630 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟔)

 3.5031 ± 0.7215 3.1915 ± 1.0173 2.8171 ± 0.6761 2.5551 ± 0.4452 2.8929 ± 0.4859 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟕)

 4.3445 ± 1.3186 3.2680 ± 0.7445 2.3769 ± 0.3831 2.6241 ± 0.5855 2.3697 ± 0.3516 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟖)

 4.5456 ± 1.5632 3.1174 ± 0.9275 2.5373 ± 0.5080 2.8169 ± 0.4898 2.6418 ± 0.3901 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟗)

 3.8078 ± 1.0234 3.3120 ± 0.6481 2.6522 ± 0.6930 2.7227 ± 0.4768 2.5459 ± 0.4590 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟐𝟎)

 3.0654 ± 0.7355 3.0923 ± 1.0193 3.0338 ± 0.4356 2.7636 ± 0.4626 2.6878 ± 0.4158 

Table 𝒞. 1: Average 𝑇𝑅𝐸𝑠 for 𝜎𝑚𝑎𝑥 and ∀ 𝑙 ϵ {1, … ,20} for the set of experiments 𝐴 − 𝐸 

of Algorithm 9 using the 𝐾𝐶 + 𝑇𝑃𝑆 technique (Section 3.8.2.1).  



185 
 

 𝑬𝒙𝒑 𝑨 𝑬𝒙𝒑 𝑩 𝑬𝒙𝒑 𝑪 𝑬𝒙𝒑 𝑫 𝑬𝒙𝒑 𝑬 

𝓝𝟓
′  50 100 150 200 250 

𝝈𝒎𝒂𝒙 0.015 0.015 0.18 0.345 0.345 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏)

 3.7824 ± 1.9496 2.2054 ± 1.2601 1.3844 ± 0.4705 1.7535 ± 0.7488 1.8634 ± 0.4972 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟐)

 4.1332 ± 1.6552 2.8501 ± 0.6736 2.8006 ± 0.8077 1.8562 ± 0.4729 1.8204 ± 0.5214 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟑)

 3.3777 ± 0.7285 2.9368 ± 1.2119 1.8630 ± 1.1882 2.2705 ± 0.5637 2.1715 ± 0.5071 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟒)

 2.9926 ± 1.0366 2.7694 ± 0.8126 3.1117 ± 0.6314 2.5566 ± 0.6337 1.8298 ± 0.5588 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟓)

 3.8111 ± 0.9537 2.4349 ± 0.8065  2.6184 ± 0.7903 2.0911 ± 0.8113 2.3913 ± 0.3924 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟔)

 3.8154 ± 1.6264 2.7437 ± 0.8073 1.8465 ± 0.5360 2.0298 ± 0.5366 1.8629 ± 0.7374 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟕)

 2.9474 ± 1.2840 1.6161 ± 0.3466 2.4485 ± 1.0308 2.1729 ± 0.3211 2.5485 ± 0.5668 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟖)

 3.3764 ± 1.6932 2.9055 ± 0.4632 2.2275 ± 0.4372 3.0301 ± 0.5577 1.8194 ± 0.3621 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟗)

 3.6361 ± 1.1988 3.2028 ± 1.0329 2.5671 ± 0.8535 2.2393 ± 0.3773 2.9610 ± 0.7533 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟎)

 4.3498 ± 1.5669 2.8742 ± 0.7183  2.4205 ± 0.3655 2.0654 ± 0.3299 2.9204 ± 0.7069 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟏)

 3.4363 ± 1.3928 2.4910 ± 0.6010 2.2027 ± 0.5155 2.6008 ± 0.8290 1.8263 ± 0.3600 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟐)

 3.4358 ± 0.7472 3.3614 ± 0.7710 2.1409 ± 0.3358 2.5181 ± 0.4754 2.2107 ± 0.3843 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟑)

 3.1631 ± 1.3328 3.2730 ± 0.9451 2.6759 ± 0.4259 2.2487 ± 0.3197 2.8468 ± 0.6309 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟒)

 3.8837 ± 1.3107 3.7458 ± 1.1744 2.7432 ± 0.6717 2.3871 ± 0.5193 3.0613 ± 0.5796 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟓)

 3.7050 ± 1.2106 3.1527 ± 1.1631 2.3537 ± 0.4612 3.0615 ± 0.6925 2.1514 ± 0.3616 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟔)

 3.4212 ± 0.7815 3.2218 ± 0.7637 2.6789 ± 0.5221 2.5129 ± 0.3911 2.8813 ± 0.5646 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟕)

 4.5615 ± 1.5656 3.2641 ± 0.6349 2.4267 ± 0.3875 2.6604 ± 0.5258 2.5711 ± 0.5701 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟖)

 4.5448 ± 1.4955 3.0770 ± 0.7527 2.8891 ± 0.8985 2.9142 ± 0.5381 2.7258 ± 0.6372 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟏𝟗)

 3.8692 ± 1.1602 3.3183 ± 0.7096 2.5086 ± 0.5337 2.9782 ± 0.6275 2.8403 ± 0.4190 

𝑻𝑹𝑬𝝈𝒎𝒂𝒙
(𝒍=𝟐𝟎)

 3.2793 ± 0.8629 3.1416 ± 1.0125 3.0552 ± 0.4313 2.7508 ± 0.4510 2.8783 ± 0.4985 

Table 𝒞. 2: Average 𝑇𝑅𝐸𝑠 for 𝜎𝑚𝑎𝑥 and ∀ 𝑙 ϵ {1, … ,20} for the set of experiments 𝐴 − 𝐸 

of Algorithm 9 using the 𝐺𝑀𝑀 + 𝑇𝑃𝑆 technique (Section 3.8.2.2). 
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Appendix 𝓓 

Additional registrations on selected clinical data 

 

 

Figure 𝒟. 1: Selected video prostate images followed by the output of 𝐾𝐶 + 𝑇𝑃𝑆 non-rigid 

registration. The registered source is in red and the target prostate scene and its 

surrounding area are in blue. The registration output is not in scale to the video 

images. 
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Figure 𝒟. 2: Selected video prostate images followed by the output of 𝐺𝑀𝑀 + 𝑇𝑃𝑆 non-

rigid registration. The registered source is in red and the target prostate scene 

and its surrounding area are in blue. The registration output is not in scale to 

the video images. 
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