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Abstract

Over the past decades, networks have emerged as a useful way of representing
complex large-scale systems in a variety of fields. In cellular and molecular
biology, gene and protein networks have attracted considerable interest as tools
for making sense of increasingly large volumes of data. Despite this interest, there
is still substantial debate over how to best exploit network models in cellular
biology. This thesis explores the use of gene and protein networks in various
biological contexts.

The first part of the thesis (Chapter 2) examines protein function prediction
using network-based ‘guilt-by-association’ approaches. Given the falling costs
of genome sequencing and the availability of large volumes of biological data,
automated annotation of gene and protein function is becoming increasingly
useful. Chapter 2 describes the development of a new network-based protein
function prediction method and compares it to a leading algorithm on a number
of benchmarks. Biases in benchmarking methods are also explicitly explored.

The second part (Chapters 3 and 4) explores network approaches in under-
standing loss of function variation in the human genome. For a number of genes,
homozygous loss of function appears to have no detrimental effect. A possible ex-
planation is that these genes are only necessary in specific genetic backgrounds.
Chapter 3 develops methods for identifying these types of relationships between
apparently loss of function tolerant genes. Chapter 4 describes the use of net-
works in predicting the functional effects of loss of function mutations.

The third part of the thesis (Chapters 5 and 6) uses network representations
to model the effects of cellular stress on yeast cells. Chapter 5 examines stress
induced changes in co-expression and protein interaction networks, finding evi-
dence of increased modularisation in both types of network. Chapter 6 explores
the effect of stress on resilience to node removal in the co-expression networks.
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Chapter 1

Introduction

1.1 Overview: Network Biology

A network or graph is a mathematical representation of a set of entities (nodes)

and the relationships (edges) between them. From a mathematical point of view,

networks have been of interest for a long time: early proofs in graph theory date

as far back as the 1700s. The use of network representations in the sciences

also has a rich history: they have long been used in a variety of fields to model

diverse structures, ranging from social systems to atomic interactions.

In the past decades however, the study of networks has undergone significant

changes. Increased computational resources have allowed us to shift our focus

from small-scale networks and the properties of individual nodes to the study

of complex large-scale networks. Interest in these larger networks has driven

development of complex network theory, a field aiming to characterise, model and

predict the structure, properties and behaviour of these network systems [159].

The applicability of this approach is not restricted to a single field of study -

large and complex networks are equally relevant in physics as they are in social

sciences. This multidisciplinarity has led to hopes that universal laws governing

the behaviour of complex networks will emerge [14].

Network approaches have been popular in biology, particularly at the level

of gene or protein networks. At least two factors have contributed to this surge

of interest. Firstly, over the last two decades, there have been marked advances

in high-throughput experimental technologies (‘omics’ methodologies) and the

computational resources to store and manipulate large data sets. This has led to

an unprecedented wealth of biological data. Networks often provide a convenient

and efficient way of conceptualising these large data sets. Furthermore, more

detailed representations, such as systems of dynamical equations for example,

become impractical for very large systems, leading many authors to favour the

simpler network models [69]. Secondly, the past few decades have also seen

the emergence of systems biology - research approaches seeking to understand

biological function in terms of the interacting components of biological systems.

Network representations are well suited to this research approach.
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The specific methodologies applied to the study of gene and protein net-

works have been numerous and varied. Fundamentally, however, these diverse

approaches share the same central idea: there is a connection between the topol-

ogy and function of gene and protein networks - the study of topology can there-

fore help us understand function. Traditionally, graph theorists have focused on

networks with either completely regular (where each node has the same number

of neighbours) or completely random (where the probability of any two nodes

being connected is constant across the network) connectivities. The structure of

gene and protein networks appears to lie somewhere in between these extremes

(Figure 1.1) [246]. This opens up two interesting avenues of research: under-

standing the function of a specific node in relation to its position in the network

and understanding the function of the network as a whole in light of its topology.

Figure 1.1: Illustration of regular lattice, random and so called ‘small-world’
networks. Small world networks are generated by randomly moving (‘re-wiring’)
a proportion of the lattice network’s edges. Small-world networks display some
key properties of real-world networks such as a highly clustered structure, com-
bined with relatively small average shortest path lengths. Image from Watts et
al [246].

1.2 Network Concepts and Terminology

A network, sometimes referred to as a graph, is a mathematical object describ-

ing the relationships between a set of entities. The entities are referred to as

nodes, while the relationships between them are edges. Complex networks are

graphs with non-trivial topological features. Some networks consist of multi-

ple unconnected sub-networks: these sub-networks are referred to as network

components.

Edges can describe relationships with or without directionality - networks are

referred to as directed or undirected accordingly. For example, transcriptional

regulatory networks are directed: there is a distinction between regulating and

being regulated by. Protein binding networks, on the other hand, are undirected,

because binding relationships are symmetrical. A weighted network is one in
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which edges are associated with a numerical value w, describing some property

of the edge, such as the strength of an interaction for example.

Networks are often represented in the form of an adjacency matrix, A, where:

A(i, j) =

{
w if i and j are joined by an edge with weight w,

0 if i and j are not joined by an edge.

A number of measures have been developed to describe properties of entire

networks as well as properties of individual nodes and edges within a network.

The paragraphs below briefly summarise the most commonly used properties.

The degree k of a node is the number of other nodes it is connected to. The

degree distribution, P (k) gives the probability that a randomly selected node

in the network has degree k. For directed networks, authors often differentiate

between out-degree (connections originating from the node) and in-degree (con-

nections from other nodes to the node), with corresponding in- and out-degree

distributions. For weighted networks, the weighted degree of a node refers to the

sum of its edges’ weights.

The shortest path length or geodesic is the minimum number of steps needed

to move from one node to another in the network. The average shortest path

length is the mean shortest path length between all node pairs in the graph and

thus gives an indication of global connectivity. Network diameter is the length

of the single longest geodesic in the network.

A drawback of using path lengths is that the measure does not cope with

disconnected graphs particularly well: the path length between nodes in different

components is infinite, rendering the average measure meaningless. Thus, some

authors prefer to use efficiency, the reciprocal of the geodesic and, correspond-

ingly global efficiency, the average of the reciprocals of all shortest path lengths

in the network. Despite this advantage, this measure is still relatively rare within

the field, perhaps because it is less intuitive than shortest path length. Calls have

been made for the increased use of efficiency rather than geodesic [159].

The centrality of nodes in the network is often of interest and there are a

number of ways of measuring this property. These include betweenness centrality,

the number of shortest paths in the network running through the node; closeness

centrality, the reciprocal of the average shortest path lengths from the node to

all others in the network and eigenvector centrality, computed, for the ith node

as the ith component of the principal eigenvector of the adjacency matrix.

Other measures used to describe the properties of the network as a whole

include the clustering coefficient or transitivity, the probability that a node’s

neighbours are also connected and assortativity, the correlation between the

properties (typically degree) of connected nodes.

A network module or community, in general terms, indicates a group of nodes

that have a higher density of connections to each other than to the rest of the
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network. Examples of modules cover, for example, friendship groups in social

networks or protein complexes in protein networks. While highly intuitive, the

concept of a network module lacks a precise definition. There are a variety of

module finding algorithms, each using a different specification for what type of

module is being sought.

1.3 Network Approaches

This section will review how complex network theory is applied in the study of

biological networks. We will first discuss how the measures outlined above are

used to characterise nodes and networks and then focus on the development of

network models and how these have been used to gain functional insight from

gene and protein networks.

1.3.1 Characterising Nodes

Early work on networks was concerned with characterising the properties of

individual nodes - for example, by identifying key players in large social networks.

While node-focused approaches have become impractical for very large networks

[159], they remain relevant for gene and protein networks.

A large part of node-centric approaches have sought to relate the position of

a node in a network to its functional importance, such as, for example, a gene’s

essentiality. The earliest work in this field used protein interaction networks

to predict the lethality of mutations in yeast genes: genes with high network

centrality were found to be more likely to be essential for survival [102]. Since

then, similar approaches have been applied to different types of network [167], in

different organisms [75] and using various types of centrality measures [172,254].

To some extent, the relationship between essentiality and lethality may not be

as straightforward as first thought: some authors have reported negative results

[253] while others have questioned which measures best capture the relationship

[172]. Furthermore, the effect might be partially an artefact due to sampling

biases in interactome mapping. High-throughput protein interaction detection

techniques have been found to favour highly expressed and highly conserved

proteins [239], both of which are also likely to be features of essential proteins.

Furthermore, if data from small-scale studies is also included, the well studied

genes are more likely to have a higher number of connections. Because essential

genes are more likely to be well studied, the connection between essentiality and

centrality may therefore be at least partly due to biases in the data. Despite these

concerns, a recent comprehensive study suggests that the relationship between

lethality and centrality holds for both degree and betweenness centrality in a

wide range of organisms [189].

More recent work has sought to relate the characteristics of genes in a network

to functional properties beyond essentiality. For example, centrality measures
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have been used to predict disease related genes [164] and to study the adverse

effect of drugs: the degree and centrality of a drug’s non-intended targets are

predictive of the number of side effects it has [242]. Furthermore, new measures

of node properties have been introduced in an attempt to capture characteristics

relating to other aspects of function. For example, Hwang et al. used bridging

centrality, the extent to which a node acts as a connector between two network

modules, to identify potential modulators of information flow between different

biological processes [93].

Another example of research strategies involving the study of individual

nodes within the context of the network are guilt-by-association approaches to

protein function prediction. The rationale behind these methods is that binding,

co-expression, co-localisation and other relationships between genes and proteins

can be considered evidence of functional association. Therefore, networks can be

used to infer what functionally uncharacterised proteins do, or to suggest new

players in established pathways. Early prediction algorithms focused on direct

network neighbourhood, but more sophisticated strategies, taking into account

the wider network topology, have been developed since then. These approaches

have also been successfully applied in clinical settings: network-based biomark-

ers for disease diagnosis have also been developed, for example in breast cancer

metastasis [33].

1.3.2 Characterising Networks

A second approach to the study of networks is attempting to link the topology

of the network as a whole to the function of the cell, instead of focusing on

individual genes or proteins.

In general terms, real-world complex networks, including gene and protein

networks, share a number of characteristics differentiating them from ‘random’

networks: real-world networks, compared to random networks, tend to have

short geodesics (‘small-world’ property), heavy-tailed degree distributions, high

clustering coefficient, high assortitivity and a highly modular structure [159].

The study and interpretation of the heavy-tailed degree distributions in par-

ticular has attracted a significant amount of attention: there has been consid-

erable debate over the role and meaning of this property. In early literature

on biological network topology, heavy-tailed degree distributions were often re-

ported as ‘power law’ or ‘scale-free’ distributions: the probability of a node

having degree k was reported to follow P (k) = akγ , where γ and a are constants

(Figure 1.2). However, these claims were often based on visual inspection and

lacked statistical support [137] - indeed, when appropriate goodness of fit mea-

sures were applied on a sample of ten networks reported as ‘scale-free’ in the

literature, none of the claims were found to be statistically robust [110].

In a number of contexts, it may not be particularly important whether the

distribution fits a power law. The presence of a heavy-tail (power law distributed
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or not) implies the presence of nodes with very high connectivity, which is func-

tionally interesting in itself. However, the emergence of power laws has been

considered particularly interesting because, in statistical physics, power law be-

haviour observed in macroscopic phenomena arises from laws operating at the

microscopic scale [220]. This has led to speculation that similar laws could be

identified in biological systems as well. Thus, enthusiasm for power laws may

have been partially driven by a desire to 1) find universal properties that tran-

scend the specific system under study [249] and 2) in the context of biological

systems, find unifying laws or generative mechanisms that explain how these

laws arise [14].

In the context of gene and protein networks, is not always clear what the

biological implications of the observations about distribution are. Indeed, simply

identifying power laws, even when statistically sound, does not necessarily imply

an interesting generative mechanism is at work: by an extension of the central

limit theorem, the sum of multiple variables drawn from heavy-tailed, but not

necessarily power law distributions, is power law distributed [249]. Thus, even

where power law distributions are correctly observed, they may not be indicative

of underlying unifying laws, but simply arise as a by-product of mixing multiple

distributions [220]. Considering the generative mechanism behind the observed

distribution is therefore crucial.

Despite these concerns, there have been interesting results in this field, par-

ticularly in the context of network growth and evolution. Barabasi and Albert

proposed the preferential attachment [13] model of network growth to explain

the degree distributions observed in real-world networks. The model is based on

the idea that the probability of a new node attaching to node i is proportional

to the degree of i. A similar idea is neatly applicable to protein networks, if we

assume they grow by gene duplication and divergence [96]: new genes arise as

modified copies of existing genes, which inherit the original gene’s interactions

with some probability. Thus, the more interactions a gene has, the likelier it

is to develop new ones, because the probability that one of its partners will be

duplicated is high. While Barabasi and Albert developed the model in the con-

text of power law distributions, the principle, if not the detail of their model, is

applicable to heavy-tailed distributions more generally.

Another area where overall network topology has promised functional insight

is the study of network robustness, the network’s ability to maintain normal func-

tion in face of perturbation. Various authors have suggested that the topology

of the network plays an important role in determining its robustness to node

removal (a model for loss of function mutation in gene and protein networks):

networks with power law distributions tolerate removal of a higher proportion

of their nodes before disintegrating than random networks [3]. Other authors

have suggested that the modularity of biological networks is also a robustness

maximising strategy: relatively independent functional modules would minimise
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the spreading of the perturbation to the network as a whole [115]. Overall, these

suggestions imply that robustness has been an important factor in the evolution

of networks - indeed simulation of possible Escherichia coli (E. coli) chemo-

taxis signalling network topologies suggest that the true network is the smallest

sufficiently robust network [118].

1.3.3 Modelling Networks

The mathematical modelling of networks and network processes is a growing

research area [159]. The aim is to construct statistical models of networks that

capture the character of real-world networked systems. The development of rep-

resentative statistical models would aid the development of a principled frame-

work for studying empirical networks. Specifically, it has been suggested they

could guide the development of meaningful network metrics, help us understand

how these metrics relate to the behaviour of the network and allow prediction of

this behaviour [159]. In the context of biological networks, accurate statistical

models of network structure could also provide insights into how the network

has evolved [184], help optimise the discovery of new interactions by guiding the

choice of proteins to study [128] and allow the generation of synthetic datasets

for testing and perfecting computational algorithms [83].

Here, we will briefly discuss some of the main network models that have been

employed in the study of gene and protein networks.

Perhaps the first attempt at constructing a model of a large-scale network was

the ‘random network’, introduced in the context of social networks by Solomonoff

and Rapoport [215] and, later (independently) by Erdös and Rényi [50]. The

Erdös-Rényi (ER) random graph, as this model is often referred to, is con-

structed by taking a set of n nodes and connecting each pair with probability

p. This results in a network, where, in the limit of large n, the probability of a

node having degree k follows a Poisson distribution:

P (k) =

(
n− 1

k

)
pk(1− p)(n−1−k) ' zke−z

k!

where z is the mean degree p(n− 1).

The ER network has been extensively studied and many of its properties

are well characterised. While well understood, the ER network is an inadequate

model of real-world networks: it fails to capture many of the key properties

of real-world networks. A particularly significant shortfall of the model is the

degree distribution: the Poisson degree distribution lacks the heavy tail of real-

world degree distributions [159] (Figure 1.2). Other differences include lack of

clustering, assortativity and community structure in ER networks [159]. Thus,

in the context of gene and protein networks, ER models are mainly used to

contrast with more realistic network models (see, for example [3]).

The configuration model allows network models with more realistic degree
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Figure 1.2: Illustration of degree distributions (P (k)) for ‘random’ networks

(Poisson degree distribution P (k) = zke−z

k! , where z is the mean degree) and
‘scale-free’ (power law degree distribution P (k) = akγ , where a and γ are con-
stants) with the same average degree. Random networks are generally used
to contrast with networks with more realistic degree distributions. Gene and
protein networks generally have heavy-tailed degree distributions (though not
necessarily following a power law). To some extent, this property may be due to
biases in network detection algorithms.

distributions [159]. The network is generated by defining a degree sequence

(the sequence of n values of degrees ki for nodes i = 1, ..., n). We can think of

this as giving each node ki ‘stubs’ and then randomly drawing edges between

the stubs, achieving a network with the predefined degree sequence. In practice,

configuration models are often used as null models for empirical networks: we are

often interested in how properties of an observed network differ from a random

network with the same degree configuration. This approach has, for example,

been applied to assessing network modularity in the context of network clustering

[92].

More sophisticated generalisations of these models exist (see, for example,

[18]) - a common problem, however, is that none of these methods capture the

high clustering coefficient often observed in real-world networks.

Some models have specifically attempted to capture this property, for exam-

ple, small-world models [246]. These models are based on starting with a regular

lattice graph and randomly rewiring a proportion of its edges. Depending on the

proportion of edges rewired, the resulting network will fall somewhere between a
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regular lattice structure and a random network. These networks have generated

a lot of interest among theoreticians [158], but are rarer in the biological lit-

erature, perhaps because the generative mechanism (rewiring edges in a lattice

graph) does not seem realistic in a biological context.

Interestingly, a somewhat related class of models, geometric random graphs

have been proposed in biological contexts. In these models, nodes are placed

randomly in space - for example, in the two dimensional case, nodes are ran-

domly assigned x and y coordinates drawn independently from the uniform (0,1)

distribution. Each pair of nodes is then connected if the distance (typically Eu-

clidean distance) between them is smaller than some parameter value. These

networks capture many of the properties of real-world protein-protein interac-

tion networks, including measures of connectivity and clustering [83,183]. Pržulj

et al. have proposed a biological interpretation of these models: the space in

which the proteins are embedded represents their biochemical properties. This

interpretation allows modelling network growth in terms of gene duplication and

mutation: the duplicated gene starts at the same location as the ‘parent’ gene

and then acquires mutations and moves away from the parent, thus inheriting

some of its parent’s interactions [184]. This model relies on the assumption that

interactions occur between proteins with similar biochemical properties - it is

unclear whether there is any evidence to support this idea. For example, a triv-

ial prediction of the model is that protein bind themselves - which is not the

case for a majority of proteins.

Future directions

Despite progress in the field, there are still a number of open research questions

[159]. There is as yet no clear consensus on which network characteristics best

capture functionally relevant information about gene and protein networks and

the extent to which this depends on the network or aspect of function being

studied. A related open question is the extent to which observed properties of

gene and proteins networks reflect genuine biology, as opposed to resulting from

biases in the way these networks are generated. Finally, none of the network

models proposed so far adequately capture the properties of gene and protein

networks while also having a plausible biological interpretation.

1.4 Network Types

In gene and protein networks, the nature of the nodes is clear: they represent

either genes or gene products. The relationship captured by the edges usually

reflects some form of functional association between the nodes. This section

summarises how the most well studied gene and protein networks are mapped

and analysed. The major repositories holding various types of network data are

summarised in Table 1.1.
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Name Interactions Organisms Notes

BioGRID Physical (ex-
perimental);
Genetic

Numerous
(eukaryotic,
prokaryotic
and viral)

IntAct Physical (ex-
perimental)

Numerous
(eukaryotic,
prokary-
otic)

MINT Physical (ex-
perimental)

Numerous
(eukaryotic,
prokaryotic
and viral)

Various related databases,
such as HomoMINT, a hu-
man interaction network with
homology-based predicted
interactions.

DIP Physical (ex-
perimental)

Numerous

I2D Physical (ex-
perimental)

Human, fly,
mouse, rat,
worm, yeast

Integrates information across
various other databases.

iRefIndex Physical (ex-
perimental);
Genetic

Numerous
(eukaryotic,
prokary-
otic)

Integrates information across
various other databases.

STRING Physical (ex-
perimental);
Predicted
(various meth-
ods)

Numerous
(eukaryotic,
prokary-
otic)

Interactions are weighted ac-
cording to estimated reliabil-
ity.

PIPs Physical (pre-
dicted)

Human Interactions are weighted ac-
cording to estimated reliabil-
ity.

KEGG Signalling
pathway;
Metabolic
pathway

Numerous
(eukaryotic,
prokary-
otic)

Also contains non-interaction
data – including information
relating to drugs, disease and
ontology groups.

Table 1.1: Summary of publicly available repositories for various types of network
data.
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1.4.1 Protein-Protein Interaction Networks

Protein-protein interaction (PPI) networks depict physical binding between pro-

teins and are among the most available and well studied molecular interaction

networks [99]. The specific form of the interaction captured depends on the data-

source: protein binding may be stable or transient and interactions may depict

binary association between proteins or alternatively represent protein complex

co-membership. Although protein-protein interactions are conceptually straight-

forward, their detection can be difficult and different experimental techniques

may introduce different forms of bias. It is therefore important to have an un-

derstanding of the techniques used to map protein-protein interactions.

Experimental Techniques

There are a number of different experimental techniques for identifying protein-

protein interactions. In broad terms, approaches fall into one of two categories:

genetic and biochemical approaches [59].

Genetic approaches are based on modifying the proteins of interest so that

their interaction produces a detectable signal. Genetic techniques are therefore

suited to mapping binary interactions and are generally capable of detecting

transient, as well as stable, binding.

Yeast two hybrid screening [98] is among the widest used genetic detection

techniques. The two genes of interest, often referred to as bait and prey, are

modified to include the activation and binding domains of a transcription factor.

As illustrated in Figure 1.3, if the proteins interact, the activation and binding

domains are brought into close proximity, producing a functional transcription

factor, which will lead to transcription of a reporter gene. This allows the in-

teraction to be detected. The disadvantage of this approach is that interactions

will only be found if they occur in the nucleus [38] and screens are vulnerable

to other sources of noise, such as mis-folding of the transcription factor [185].

Other examples of genetic techniques include LUMIER [15], a similar technique

developed for mammalian cells, where baits are tagged with a luciferase and prey

with a FLAG tag (protein sequence recognised by an antibody) so that inter-

actions can be detected by a luciferase assay on anti-Flag immunoprecipitates;

and fragment complementation assays (PCA), in which the genes of interest are

fused with complementary fragments of a reporter protein [224].

Biochemical methods [61, 86], such as tandem affinity purification followed

by mass-spectrometric protein complex identification (TAP-MS) [198], provide a

complementary approach to interaction mapping: these methods focus on identi-

fying protein complexes. Although variations on the technique exist, the general

principle is that a protein of interest is fused with a TAP tag, allowing the protein

and its binding partners to be purified through affinity selection (Figure 1.4).

Binding partners can then be identified through mass-spectrometry. The dis-

advantage of these methods is that they are vulnerable to tagging disrupting
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Figure 1.3: Illustration of a yeast two hybrid system. The bait (X), is fused to
the DNA binding domain. A potential interactor or prey (Y) is fused to the
activation domain (AD) The interaction of the bait and prey leads to recon-
struction of a functional transcription factor, recruitment of RNA polymerase
and transcription of the reporter gene. Figure reproduced from [24].

complex formation and to weakly associated components dissociating from the

complex during the purification process [185].

Figure 1.4: Illustration of tandem affinity purification. The protein of interest
(bait) is fused with a TAP tag, allowing it and its binding partners to be isolated
through affinity purification. Figure reproduced from [91]

Data Quality

Assessing the quality of high throughput protein-protein interactions is a key

step in using these data to make biological inferences. Estimating PPI data

quality, however, is not necessarily trivial. A number of factors contribute to
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the reliability of an experimental data set: the detection technique’s precision

(the fraction of detected interactions that are true positives), its sensitivity (the

fraction of true positives that the technique is able to detect) and any systematic

biases in favour or against particular types of interaction.

One approach for determining false negative and false positive rates is to ex-

amine the extent of overlap between different interaction data sets. Von Mering

et al. found that, out of 80000 yeast protein interactions identified by vari-

ous high throughput techniques, only 2400 were identified by more than one

method [239]. While this low overlap could reflect high false positive rates, it is

also possible the effect arises from low coverage or techniques exhibiting biases

towards different types of interaction. Other authors have assessed overlap be-

tween the same affinity purification technique performed by different groups and

found only limited overlap between the detected interactions [60, 123, 171, 234].

Similarly, low overlap has also been reported when comparing yeast two hybrid

data sets [188]. Again, however, these results may reflect low coverage rather

than high false positive rate.

Other quality assessment approaches include comparing PPI data sets to

benchmark sets of literature curated interactions, or evaluating the reliability

of an interaction through the biological similarity of the interactors, in terms

of, for example, correlation in expression patterns or shared biological function.

The former approach is extremely sensitive to the choice of benchmark set and

is affected by sociological biases in publication and curation processes [236].

Assessing interaction reliability through functional similarity, on the other hand,

is dependent on the quality and coverage of functional annotation data, while

the use of co-expression assumes interactors are necessarily co-expressed.

In order to circumvent these problems, Venkatesan et al. estimated the

precision of yeast two hybrid screens by retesting a random subset of reported

interactions using independent interaction assays [236]. This retesting suggested

yeast two hybrid screens have a precision of around 80%, which was considerably

higher than the precision (approximately 25%) for a literature curated set of

interactions retested the same way. Interestingly, when data from TAP-MS

screens is retested in a similar way, the performance is much poorer [253]. This

difference between the techniques, however, is likely to reflect the difference in

the type of interaction (i.e. protein complex co-membership rather than binary

interaction) captured by the two techniques, rather than poor data quality from

the TAP-MS screens. When the quality of TAP-MS data is assessed through

other measures, such as shared biological function of interactors, TAP-MS and

yeast two hybrid techniques yield comparable performance [253].

In terms of systematic bias, interaction sets are likely to favour evolutionarily

conserved and high abundance proteins [239], although the bias towards highly

expressed proteins is less pronounced in yeast two hybrid data. TAP-MS data has

also been associated with under-representation of metabolic proteins and over-

24



representation of proteins involved in transcription and protein synthesis [255].

However, this probably reflects the differing involvement of protein complexes

in these cellular functions, rather than bias in the technique itself. Interaction

data is also biased against membrane protein complexes because lipid-anchored

proteins are hydrophobic and thus more difficult to purify. Recently, affinity

purification procedures optimised for membrane proteins have been developed

to address this issue [11].

Finally, it is worth noting that the precision and sensitivity of detection

techniques are only a partial measure of the usefulness of interaction data for

biological inference: interactions captured by in vitro assays, even if genuine, do

not necessarily have biological relevance. For example, it has been hypothesised

that some interaction are evolutionary remnants of past function, but no longer

play functional role in the cell [237]. Combining physical protein-protein inter-

action data with other information capturing functional association (see below)

has been suggested as a method for pruning out these ‘pseudointeractions.’

Data Integration

Combining data from multiple screens or sources can be an effective strategy for

increasing coverage and reducing noise. Data integration is greatly aided by vari-

ous public repositories (such as BioGRID [217], IntAct [109], MINT [136], HPRD

[23], BIND [4] and DIP [205]) storing interaction data and various databases (for

example STRING [101], I2D [23] and iRefIndex [194]) combining these reposito-

ries into single datasets. As well as holding information from high-throughput

screens, many of these repositories also collate results from smaller-scale studies

of protein interaction.

Dataset Completeness

The mapping of the interactome, the complete set of protein-protein interactions,

is still a work in progress. Even the concept of completion is not clearly defined:

interactions are likely to be dependent on environmental conditions and cell

type [21] and some interactions may, in practice, be undetectable [211]. It is

therefore unclear whether the complete interaction should describe the full set

of possible interactions [38] or whether maps should be cell type and condition

specific.

Estimating how complete our current map of the interactome is difficult be-

cause estimating the size of the full interactome is non-trivial. An empirical

framework by Venkatesan et al., based on a literature-derived set of high quality

true positives and performing repeated screens, gave an estimate of the size of

the human interactome of 74000 − 200000 interactions [236]. Earlier estimates

by Stumpf et al. suggested 650000 interactions for the human interactome and

25000–35000 for budding yeast [221]. BioGRID currently holds approximately
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150000 unique physical interactions for human and 84000 for yeast and the num-

ber of interactions appears to still be growing (Figure 1.5).

Figure 1.5: The number of unique physical protein-protein interactions in the
BioGRID database in July of each year for budding yeast and human.

The incompleteness of the interactome introduces a concern that the network

properties of the ‘true’ interactome may not be the same as those of the mapped

sub-network.

Firstly, systematic bias in the detection method may mean that the proper-

ties of the sampled sub-network do not reflect the properties of the underlying

network. A trivial example would be, for example, under-representation of pro-

teins not expressed in the nucleus in Y2H screens. More subtle effects have also

been hypothesised. For example, Caldarelli et al. [26] studied network generation

mechanisms where the probability of two nodes being connected is a function of

an intrinsic property (‘importance’) of the nodes. The authors showed it is possi-

ble to generate networks with power law degree distributions even in cases where

the importance of the nodes is not power law distributed. For example, a net-

work generation algorithm linking nodes if their combined importance exceeded

a given threshold gave rise to networks with power law degree distributions even

when the importance of the nodes followed an exponential distribution. This has

implications for a number of detection techniques: Caldarelli’s results suggest

that the power law degree distribution observed in protein interaction networks

might not reflect the true properties of the network, but instead result from the

probability of edge detection being dependent on properties of the proteins. In

Y2H screens for example, being able to detect an interaction requires the correct

26



folding of the reconstructed transcription factor. It is not unrealistic to suggest

this may in turn depend on intrinsic properties of the bait and prey proteins,

such as size for example, thus leading to a potential distortion of the detected

network’s degree distribution.

However, not all techniques will be subject to this type of bias. Thus, if the

presence of heavy-tailed degree distributions in protein interaction networks were

simply an artefact of the nature described by Caldarelli et al., we would expect

different behaviour in networks derived with different techniques. A recent study

reports that the properties of protein interaction networks are consistent across

different detection techniques [99], suggesting these properties are not simply

attributable to biases of individual techniques.

A second, more general concern is that even unbiased sampling may lead

to distortion in the properties of the detected network. Analytical work by

Stumpf et al. showed that, for networks with power law degree distributions,

random node sampling does not result in the sampled sub-network having the

same degree distribution as the original network [222]. Han et al. sampled

edges from networks with random, exponential, power law, truncated normal

degree distribution and found that the resulting sub-networks had similar degree

distributions to Y2H-derived partial interactome maps [79]. These results again

highlight the concern that incomplete PPI networks are not adequate proxies

for the whole interactome and that the properties we observe in the incomplete

network are an artefact of the sampling process. It is worth noting, however, that

Han’s sampled sub-networks did not replicate all properties of the Y2H networks

- the clustering coefficient of the sampled networks and real Y2H network, for

example, were different [54].

Finally, incomplete coverage is not only a problem when looking at overall

graph topology: it can also introduce bias into the network properties of indi-

vidual nodes. For example, as discussed previously, not all protein interaction

data originates from high-throughput screens: online repositories also integrate

information from several smaller-scale studies. While this increases coverage, it

also biases data towards well studied proteins: it is likely that proteins that are

better studied will have more interactions in these datasets, potentially intro-

ducing an artificial correlation between degree and features that are of interest

to researchers, such as disease association or lethality.

To summarise, results derived from incomplete protein interaction networks

may not apply to the full network. There have been some attempts to understand

the nature of the bias introduced, but, without knowledge of the topology of the

true network, this is a difficult task. The partiality of the coverage therefore

needs to be taken into account when interpreting protein interaction networks.

Fortunately, coverage of interaction networks is growing steadily. The biases

introduced by network incompleteness are therefore likely to diminish with time.
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Predicted Protein-Protein Interactions

Given the noise, bias and limited coverage of experimental interaction mapping

techniques, computational approaches for predicting binding partners can offer

a valuable complementary perspective. The term predicted protein interaction

is used loosely in the literature: either to refer to predicted physical binding

or to encompass methods indicative of more general functional association that

may or may not involve direct physical contact between proteins [131]. This sec-

tion will focus exclusively on predicted protein binding. More nebulous types of

functional associations will be discussed in Section 1.4.4. In general terms, pre-

diction approaches come in two flavours: biologically motivated methods, which

seek to exploit biological insights to predict new interactors and statistical learn-

ing methods, which seek to find features which correlate with protein interaction

from various types of data, without explicitly requiring knowledge of biology.

There are various biological motivated approaches. The interaction of two

proteins depends on their three dimensional features - many prediction methods

therefore use protein structure to infer binding partners. For example, some

approaches look for pairs of proteins exhibiting commonly interacting protein

domains [114], while others seek to ‘inherit’ interactions from other organisms

by identifying interacting pairs of homologs, using either sequence [150] or struc-

ture [6, 7] based homology modelling. Recently, more direct methods have also

been proposed: Wass et al. used protein docking algorithms, programs tradi-

tionally used to predict the structure of complexes formed by known interactors,

to detect new interaction partners [245]. While Wass et al. demonstrated this

approach is feasible in principle, others have suggested the computational cost

of a genome-wide docking-based approach would be prohibitively high [256].

Zhang et al. suggested a less computational intensive approach, based on mod-

elling putative novel interactions on known interactions of structurally similar

proteins [256]. Integrating other non-structural information to their prediction

method and benchmarking against a set of high confidence interactors, Zhang

et al. reported performance generally comparable to, and overall better than,

high-throughput experimental methods.

Non-structure based prediction methods also exist. For example, some meth-

ods exploit evolutionary relationships between proteins. Because physical inter-

actions occur through the interactions of specific residue interfaces on the pro-

teins [232], interacting proteins are evolutionary linked: the deleterious effect

of a mutation perturbing the interaction can be alleviated by a compensating

mutation on the other protein. It is therefore possible to predict interaction

based on correlated mutations [174] - this principle has lead to a number of

methods predicting interactors based on similarity in the evolutionary history

(phylogenetic trees) of proteins [37,206].

Unlike the methods discussed so far, purely statistical approaches make mini-

mal assumptions about the biological mechanisms governing protein interactions
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- instead, given a set of ‘training examples’ (known interactors and (optionally)

a set of known non-interactors) and some data about these examples, machine

learning methods seek to identify data features that are predictive of the in-

teractions. These methods have the advantage of potentially being capable of

exploiting large volumes of heterogeneous data. For example, Pancaldi et al.

built a predicted interaction network in fission yeast based on over 100 gene and

protein features [168]. The disadvantage is that purely statistical methods are

entirely dependent on the quality of the training examples.

Computational methods can also provide a useful tool for prioritising the

testing of putative new interactions. However, it is important to note that

these methods may be affected by biases in our current understanding of the

interactome: computational methods are usually benchmarked against sets of

high confidence interactions during development. Systematic biases in these

benchmark sets may therefore affect how well computational methods appear to

be performing.

Dynamic and Specific Protein Interaction Networks

Unlike the genome, the interactome is dynamic [21]. Protein expression varies

between cell types and during development, meaning the interactome is depen-

dent on both cell type and developmental context. Furthermore, many protein

interactions are transient. Thus, even within a specific cellular and develop-

mental context, the interactome is constantly changing. Recent work on PPI

networks is seeking to recognise this: while dynamic or condition specific PPI

data sets do not yet exist [94], a number of authors have attempted to combine

gene expression and protein interaction data to create approximations of dynamic

or condition specific networks. Examples of this approach will be discussed in

detail in Chapter 5.

Recently, the effects of alternative splicing on protein interactions networks

have also received more attention. This is particularly pertinent when working

with human networks: current estimates suggest over 60% of human genes un-

dergo alternative splicing [72,149,153]. Both Buljan et al. [25] and Weatheritt et

al. [247] found that alternatively spliced regions in the human genome were en-

riched in conserved protein-protein binding motifs, suggesting alternative splic-

ing may give rise to tissue or cell type specific interactions. Ellis et al. [47] tested

this idea experimentally by examining the effect of including or excluding brain

specific exons in a number of mouse genes - they found that approximately a

third of the alternative splicing events lead to changes in the interactions of the

gene products. Davis et al. [40] used a bioinformatic approach to examine the

effect of alternative splicing on protein interaction domains, finding evidence for

altered interactions in almost 20% of genes. Interestingly, both Buljan et al. and

Ellis et al. report that proteins affected by tissue-specific splicing have higher

degree and centrality in PPI networks, suggesting alternative splicing is likely to
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play a significant role in altering network topology. These results suggest that

alternative splicing may fine-tune PPI networks in a tissue-specific manner.

1.4.2 Co-Expression Networks

In co-expression networks, edges between genes capture high levels of similarity

in expression patterns. The rationale behind the study of these networks is that

genes with similar function tend to have similar patterns of expression [46] - co-

expression networks therefore provide a perspective on functional associations

between genes. The advantage of working with co-expression networks is that

many of the concerns raised in relation to PPI network bias and incompleteness

are not relevant. Furthermore, condition and cell type specific networks are

readily available. On the other hand, the functional significance of co-expression

is less clear than that of direct binding and co-expression network generation is

associated with its own set of statistical problems.

Network Generation

Co-expression networks are conceptually straightforward, but the details of net-

work generation can vary considerably between studies. The most common ap-

proach is to use some measure of similarity in expression as a basis for network

generation. Various metrics have been proposed. The simplest method is the

use of a correlation (either Pearson, see, for example [44] or Spearman see, for

example [9]) metric. More sophisticated approaches have been proposed, al-

though it remains unclear whether these offer real benefits. For example mutual

information based measures have been used to capture non-linear correlations

in gene expression [39]. However, estimating mutual information from expres-

sion data can be computational intensive and it remains unclear whether mutual

information captures meaningful biological relationships [216]. Networks are nor-

mally generated by considering genes with a high correlation magnitude and/or

significance value. Here, again, specifics of approaches differ on a number of

methodological points: whether absolute values of correlation magnitude are

used when thresholding; whether only magnitude or magnitude and significance

of the correlation are considered; whether significance values are corrected for

multiple testing; whether the resulting network is weighted or unweighted.

A drawback of using correlation-based methods is that they cannot distin-

guish between direct and indirect dependencies: two genes may be co-expressed

because one regulates the other, or because they are both co-regulated by the

same transcription factor [148]. Recently, probabilistic graphical models have

been suggested as a potential solution to this issue. Probabilistic graphical mod-

els use a network representation to encode a probability distribution: nodes rep-

resent variables of interest and edges represent conditional dependence. Thus,

probabilistic graphical model approaches seek to find the pattern of conditional
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dependencies that best explain the gene expression data. These methods include

graphical Gaussian models [177,208] and bayesian network [31,156] approaches.

Allen et al. [5] performed a comprehensive comparison of different network

generation approaches, using both simulated data and real expression data from

E. coli. Correlation, mutual information and partial correlation based methods

all performed comparably in constructing global network topology, with partial

correlation based methods being particularly good at identifying few connections

with high specificity. Bayesian networks were found to be hindered by their poor

scalability to large datasets.

Co-Expression Data

Until recently, co-expression networks were typically generated from microarray

data. Microarrays are a hybridization based technology: sets of one-stranded

DNA probes are incubated with fluorescence labelled target sequences. The

hybridization of complementary sequences allows inferring the expression levels

of sequences corresponding to particular probes. Recently however, progress in

transcriptome sequencing (RNA-seq) technologies has allowed the construction

of co-expression networks from RNA-seq data. RNA-seq data has the advantage

of not having to pre-define the sequences to be measured, not being subject to

noise from cross-hybridization and having a greater dynamic range than microar-

rays [243]. RNA-seq datasets also allow study of novel [200] and alternatively

spliced [197] transcripts. On the other hand, there are also concerns relating

to RNA-seq data quality: the technique struggles with identification of rare

transcripts (as these get obscured by the wide dynamic range) and exhibits a

bias towards longer genes (because longer sequences generate more reads) which

has not yet been fully addressed by existing normalization methods [225]. It is

also worth noting that networks generated from microarray and RNA-seq data

may not capture the same functional relationships. In a comparative study of

Arabidopsis co-expression networks, overlap between RNA-seq and microarray

network was low, with microarray networks having higher similarity to known

biological networks [68].

Co-Expression Network Analysis

Topological analysis of co-expression networks has focused, to a large extent,

on identifying highly connected nodes and detecting network modules [56]. For

example, comparison of network modules and hubs in normal and disease co-

expression networks is used to suggest candidate genes for disease association

[238]. Guilt-by-association type approaches have also been applied in the context

of co-expression results, for example in identifying new players in B-cell signal

transduction [16] and plant cell wall synthesis [179].

The analysis and interpretation of the global topological properties of co-

expression networks can be confounded by the way they are generated. For
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example, correlation is transitive: if A correlates with B and B correlates with

C, A and C are also likely to be correlated. The high clustering coefficient

of co-expression networks therefore simply reflects this property and cannot be

considered indicative of the functional properties of the cell [218]. This also

has implications for null model selection: configuration models (networks with

the same degree distribution but reshuffled edges) are not necessarily appropriate

null models for co-expression networks. Null models generated by computing new

networks from permuted versions of the original expression data may therefore

be more appropriate under some circumstances.

1.4.3 Genetic Interaction Networks

A genetic interaction between two genes refers to the emergence of an unexpected

phenotype when variation in the two genes co-occurs. The effect can be negative,

for example loss of function in one gene being lethal only when function is also

lost in some specific other gene (synthetic lethality), as well as positive, for

example when the deleterious phenotype of one mutation is rescued by mutation

in another gene. These types of interactions are of great interest, because they

are thought to play a role in the complexity of biological organisms - for example,

in the genetics of complex disease [8].

Genetic interaction networks have been extensively mapped in a number

of singled celled organisms, particularly in budding yeast (Saccharomyces cere-

visiae) [36, 228]. The topology of these networks appears functionally informa-

tive in a way reminiscent of PPI networks: similar biological processes cluster

together and node degree correlates with functional importance of the node.

Genetic interaction networks have also been suggested as tools for identifying

potential drug targets [36].

1.4.4 Other Functional Association Networks

Protein-protein, co-expression and genetic interaction networks are perhaps the

most well studied of gene and protein networks. However, there are a number

of other methods of inferring functional association between genes. This section

will briefly outline these other forms of interaction.

Genomic Context

These methods seek to use genomic information to infer functional associations

between genes. One approach is to look at whether gene pairs appear together

on multiple genomes: if two gene products need to interact to function correctly,

they are more likely to be co-inherited, as loss of one protein would impair the

function of the other [176]. We can thus use the correlated absence or pres-

ence of gene pairs across multiple genomes (‘phylogenetic profile’) to infer as-

sociation. Because of greater availability of sequences genomes in prokaryotes
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than eukaryotes, phylogenetic profiling based methods have traditionally been

more successful in prokaryotic organisms [191]. Recently, however, Lin et al.

proposed an approach supplementing phylogenetic profiles with sequence based

information to improve performance in eukaryotes [139]. Other methods base

prediction on genomic distance (i.e. how many base pairs separate two genes

on the genome): functionally associated genes are known to tend to occur close

together in the genome [52]. An extension of this approach is to look for com-

posite proteins, formed from the fusion of two genes into a single gene, to infer

a functional association between the two genes in organisms where they remain

separate [49]. The STRING database incorporates a number of these methods

onto its predicted interaction networks [101].

Literature-Based

A number of methods concentrate on retrieving existing information (as opposed

to discovering or predicting novel interactions). For example, text mining meth-

ods look for statistically significant co-occurrence of gene names in abstracts or

articles to infer functional association [20]. Resources collating this data into

gene and protein networks include iHOP [87] and STRING. Other approaches

use the Gene Ontology (GO), a controlled vocabulary of terms used to function-

ally annotate genes and gene products, to compute functional similarity between

gene pairs based on the number of shared annotations [180].

1.4.5 Dynamic Networks

There are important classes of gene and protein networks that are conceptu-

ally different from the networks discussed above: metabolic, signalling and gene

regulatory networks. Metabolic networks describe the metabolic processes oc-

curring in cells. Details of these representations vary, but the most common

approach is to represent metabolites as nodes and enzymes catalysing reactions

as edges [103]. Signalling networks depict biochemical events involved in sig-

nal transduction within cells such as, for example, phosphorylation cascades.

Again, specifics of network construction approaches differ between studies [170].

Finally, gene regulatory networks represent how transcription factors and other

transcriptional regulators control gene expression [107].

These classes of networks differ from those described above in a number of

significant ways. Firstly, they are directed: the relationships depicted in these

networks can be asymmetric. The concept of directionality is trivial in gene

regulatory networks, but is also applicable to metabolic and signalling inter-

actions: metabolic reactions can be irreversible, signalling networks generally

propagate information in a recognisable direction (usually from outside the cell

to the nucleus). Secondly, they are not necessarily genome wide. While for the

previously described networks (PPI, co-expression, etc), datasets may not cover

the whole genome, the network is theoretically extensible to all genes or proteins.

33



Metabolic networks are only applicable to enzymes involved in metabolism, sig-

nalling networks only to proteins involved in cell signalling and while all genes

are regulated by others (i.e. they have in-degree in the gene regulatory network),

only a subset of proteins regulate the transcription of others. Thirdly, because of

the nature of the relationships depicted in these networks, they are amenable to

dynamic modelling. Various levels of representation have been employed, from

logical models [70] to systems of differential equations [117]

These smaller-scale dynamic network approaches are a valuable complemen-

tary approach to the larger-scale static network representations. Some of the

tools applied to the analysis of static network representation have also been ap-

plied to these dynamic networks, such as, for example, topological analysis of

metabolic networks [73], along with other structural approaches, such as stoi-

chiometric analysis [182]. However, it is important to recognise that because of

the differences between static and dynamic, and genome-wide and specialised

networks, the same approaches may not always be optimal for both.

There has also been interest in integrating these networks with other gene

and protein network representations, for example for predicting the phenotypic

consequences of genomic variation [111]. How to best deal with the differences

in scope and edge type of these networks when integrating them with other gene

and protein networks remains an open question.

1.5 Thesis Overview

In summary, while network approaches show promise as a systems-level approach

to cellular biology, significant challenges remain. How to best extract biologically

interesting information from network representations remains unclear. This is

the central question explored in this thesis: I will discuss the development and

application of network tools in three biological scenarios:

• Chapter 2 looks at prediction of protein function using functional associa-

tion networks, developing novel prediction methods as well as explicitly ad-

dressing the issues involved in the benchmarking of prediction algorithms.

(The work in Chapter 2 was co-supervised by John Shawe-Taylor).

• Chapters 3 and 4 address the question of how genetic variation gives rise

to variation in phenotype. Specifically, we will be looking at networks

methods to understand loss of function variation in the human genome.

(This work was partially undertaken as a visiting scholar in Mark Gerstein’s

laboratory).

• Chapters 5 and 6 model changes in cellular state in terms of changes to

protein interaction and gene co-expression networks. In particular, we

will be applying network approaches to model cell response to oxidative
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stress. The work presented in Chapter 5 has been published in Lehtinen

et al. [133].
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Chapter 2

A Graph Kernel Method for

Gene Function Prediction

2.1 Introduction

2.1.1 Gene Function Prediction: Scope and Definitions

Modern biology is characterized by rapidly increasing volumes of genomic and

proteomic data. As a consequence, there is much interest in automated ex-

traction of functionally meaningful information from these datasets. One key

approach is the in silico prediction of gene and protein function.

Gene and protein function prediction are terms that encompass a large vari-

ety of problems and approaches. The interpretation of the term function is broad

and covers different levels of abstraction: definitions range from a protein’s bio-

chemical role to its impact on phenotype. The aspect of function considered

depends on the data set at hand and the biological context of the prediction.

Depending on the context of the problem, prediction can be approached from

two different angles. Gene-centric approaches aim to predict what function a

gene might be involved in while function-centric approaches focus on predicting

novel genes involved in a particular function. Although this chapter will focus

mainly on function-centric methods, it is worth noting these two approaches are

closely related and, in many contexts, are considered interchangeable.

Owing to the scope of the problem, a variety of data sources and predic-

tion methods have been exploited in gene function prediction. In general terms,

prediction methods fall into two broad categories: de novo methods seeking to

predict function based on intrinsic properties of a gene and guilt-by-association

(GBA) approaches, which predict new functional labels based on a gene’s simi-

larity to already functionally characterised genes.

A number of established GBA-type prediction methods base their predic-

tions on sequence or structural similarity. Recently however, in response to the

increasing prevalence of functional association data, there has been considerable

interest in developing GBA methods exploiting functional association networks.
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This chapter explores network-based function prediction using kernel methods

and explicitly addresses difficulties associated with the benchmarking of GBA

methods.

2.1.2 Exploiting Networks for Function Prediction

Early uses of functional association networks for function prediction focused on

local network connectivity, predicting a gene’s function based on the function of

its direct neighbours [85, 212] or its 2-neighbourhood (neighbours’ neighbours)

[32]. While these approaches showed promise, they failed to take advantage

of the wider network topology, which has been shown to contain meaningful

information about the functional clustering of genes [248].

Meanwhile, other approaches have focused solely on finding clusters in the

whole network. For example, functional prediction has been approached as a

graph partition task: methods have aimed to allocate nodes into functional

categories in a way that minimizes the number of interactions between the cat-

egories [106,235]. These approaches have been criticised for not fully exploiting

network proximity information [191]: all genes within a functional category are

considered equally functionally associated, regardless of the distance between

them in the network. Depending on the problem at hand, this may be unhelpful

- for example, if we are interested in prioritizing candidate genes for experimental

validation.

As both global topology and local proximity are predictive of functional as-

sociation, there has been considerable interest in developing methods exploiting

both these features. Although the specifics of these methods vary, fundamen-

tally, they all seek to build on the same idea: that the functional similarity

between genes relates to how reachable one gene is from the other. In other

words, the functional similarity of two genes depends on 1) how close the genes

are in the network and 2) how many paths connect the two. Thus, it is perhaps

not surprising many of the network-based methods can be expressed in terms

relating to ‘walks’ on the network. This idea will be explored further in the

Technical Background (Section 2.2). There are two main classes of methods ex-

ploiting both global topology and local proximity: probabilistic network models

and kernel methods.

A number of authors have implemented probabilistic network models for gene

function prediction. A probabilistic network model is a mathematical construct

representing dependencies between random variables. In the context of gene

networks, these models capture how a gene’s function depends on that of its

network neighbours. A number of approaches have modelled the problem in

terms of belief propagation in these networks [42, 121, 134, 231]. GeneMANIA

[244], one of the most successful prediction algorithms to date [155,175], makes

use of this approach, implementing Gaussian label propagation (more details on

the GeneMANIA algorithm will be provided in Section 2.5.2). To our knowledge,

37



no prediction algorithm has out performed GeneMANIA. The performance of

the prediction methods developed in this chapter will therefore be benchmarked

against GeneMANIA.

The other major class of methods makes use of kernels. Kernel approaches

transform functional association networks into functional similarity scores be-

tween genes, based on the topology of the network (as discussed further in Sec-

tion 2.2). This representation allows the use of statistical learning approaches

(for example regressions) on network data. Existing methods have most com-

monly used diffusion kernels, paired with support vector machines [127] or lo-

gistic regression [130]. A related method, FunctionalFlow [157], makes use of a

diffusion kernel-like process.

While most existing methods have focused on diffusion kernels, recently, work

by Heriche et al. compared different kernel functions (i.e. different ways of gen-

erating similarity scores between genes from the network) [82]. In this work,

the commute time kernel was found to perform most robustly: when tested on

a number of different benchmarks, this kernel was consistently among the top

performers, while other kernel’s performance fluctuated significantly. Further-

more, the authors argue that the performance of most other kernels is dependent

on correct parametrization, which, as discussed below, can be problematic. The

commute time kernel, on the other hand, is parameter free.

In Heriche et al.’s work, kernels are exploited for prediction using a near-

est neighbour approach (see Technical Background, Section 2.2, for a detailed

overview). More complex algorithms for kernel based prediction have been well

documented [213]. The performance of commute time kernels paired with more

complex prediction algorithms has not been explored.

2.1.3 Problems with Network Based Approaches

Despite the widespread interest, network-based prediction approaches are not

unproblematic. The central concern is that our validation paradigms are un-

able to distinguish between methods which reliably detect patterns which will

allow us to predict new annotations and methods which simply capture features

of existing data. This section will discuss potential problems with validation

paradigms and network-based approaches themselves.

Cross-Validation

Accurate evaluation of the performance of prediction methods is essential for

meaningful comparison of different algorithms. This requires sets of genes known

to be functionally associated to use as examples of true positives. These known

labels are commonly derived from the Gene Ontology (GO) [10].

The GO was originally developed to provide a controlled vocabulary of terms

relating to the biological function of genes and gene products. The GO labels

genes with standardised descriptions of functions, relating to one of the three
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main ‘branches’ of the ontology (biological process, molecular function and cel-

lular component). Terms are organized in a hierarchical manner, allowing de-

scriptions at different levels of specificity. For benchmarking purposes, authors

consider genes labelled with the same term as a ‘set’ sharing the same function.

A typical benchmarking approach is cross-validation: a subset of known la-

bels are hidden, and the performance of the method is assessed by how well

the hidden labels are recovered. A concern with using cross-validation to com-

pare prediction algorithms is that performance is assessed with respect to labels

which are already known, while we are actually interested in the ability to pre-

dict new labels. If the properties of undiscovered labels are not the same as

those of the known labels, cross-validation may not be a reliable indicator of real

performance.

This is particularly pertinent in the context of protein function prediction:

the propagation of information across biological databases raises concerns about

the similarity of known and undiscovered labels [131]. The discovery of new

functional labels may affect the content of functional association networks and

vice versa - thus potentially leading to differences in the way known and undis-

covered labels are represented in functional association datasets. For example,

the discovery of new functional associations between genes affects the labelling

of proteins in databases such as GO or KEGG (kyoto encyclopedia of genes and

genomes [105]). If we then use cross-validation on a GO or KEGG dataset to

assess a prediction method, the results may not actually reflect the algorithm’s

ability to predict function for new genes, but rather the extent to which infor-

mation has been dissipated across databases (Figure 2.1).

Recent work has explicitly investigated this problem by looking at the GO

annotations of genes which interact in PPI networks. 13% of GO annotations

shared by interacting genes were found to be derived from the same publication

that reported the interaction [66], confirming the idea that information does

indeed propagate between databases. Furthermore, the authors found a low

(r=0.2) but significant correlation between how well guilt-by-association methods

perform for a particular term (as assessed by cross-validation) and the extent of

this overlap between network and gene annotation data.

Interestingly, similar problems have also been reported for sequence simi-

larity based prediction algorithms. The GO derives some of its annotations

from sequence similarity (for example ‘IEA’ (inferred from electronic annota-

tion, ‘ISS’ (inferred from sequence similarity)). Again, this raises the concern

that the dataset used for evaluation is not independent from the dataset used

for prediction, potentially leading to a biased estimation of predictive perfor-

mance. Indeed, Rogers and Ben-Hur [201] showed that including these evidence

codes when benchmarking a prediction algorithm tends to over-estimate how

well sequence similarity based methods perform.

These problems also raise the issue of method parametrization. Parameter
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Figure 2.1: A schematic illustration of how the transfer of information from
prediction data to benchmarking data can interfere with assessing the predictive
power of algorithms. Dark circles represent genes annotated with a particular
function, light circles represent unannotated genes. Characterisation of new
functional associations (for example protein-protein interactions from a yeast
two hybrid screen or the identification of new binding partners from a smaller
scale study) leads to new GO annotations being made. As a result, an association
based prediction method that seems to perform well under cross-validation may
actually be a poor predictor of new annotations: the good performance simply
reflects the non-independence of the functional association and annotation data.

choices can only be made based on what is known at the time of prediction.

However, this will optimize performance on the set of already known labels,

which, as discussed, may not actually be the optimal setting for discovering new

labels (a problem akin to over-fitting). The extent to which this affects prediction

performance has not been investigated.

More Realistic Benchmarks

There have been significant efforts to compare prediction algorithms using a

more realistic benchmark. Competitions such as CAFA (Critical Assessment of

Function Annotation) [187] and MouseFunc [175] evaluate prediction methods

based on novel true positives uncovered after the predictions have been made.

Thus, unlike cross-validation, this benchmark directly assesses an algorithms’

ability to predict novel annotations.

Despite being welcomed as an attempt to provide fair comparative assessment

of methods, CAFA-style competitions have also attracted criticism, particularly
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because of their use of GO annotation.

A major concern is that the process of label acquisition is affected by existing

annotations, extending the problems with cross-validation to benchmarks based

on new labels as well. This problem has mainly been raised in the context of

sequence similarity based methods. As discussed previously, genes may have

‘IEA’ annotations for a particular function based on high sequence similarity

with better annotated genes. While these annotations are ignored in the CAFA

challenge, they may have an indirect effect on the assessment: if the presence of

IEA annotations makes it more likely for the gene to acquire a high confidence

annotation for the same label (for example, through GO curation or by guiding

the direction experimentation), methods predicting new labels based on sequence

similarity will appear to perform well because they replicate this feature of label

acquisition.

Gillis and Pavlidis [67] explicitly addressed this concern by showing that sim-

ply using pre-existing ‘IEA’ annotations as a predictor of future high confidence

annotations performed comparatively to the best CAFA entries in the 2012-2013

competition. This suggests that (sequence based) computational methods may

simply be re-creating the ‘IEA’ annotation and therefore seem to perform well,

not because of actual predictive power, but because they mimic the process of

annotations becoming incorporated in the GO.

Gillis and Pavlidis discussed this problem in the context of sequence based

prediction. However, we hypothesise that similar concerns may also be relevant

for network based prediction if the incorporation of annotations into the GO is

affected by existing functional annotation data.

A second concern is that CAFA style benchmarks cannot differentiate be-

tween true negatives (i.e. genes that do not have a particular function) and

undiscovered labels [43]. This is particularly problematic in light of the biases

highlighted previously: if these biases exist, CAFA style competitions run the

risk of undervaluing methods that provide genuine insight, in favour of methods

that simply mimic the process of GO annotation acquisition.

Predictions Biases

Aside from problems relating to benchmarking, there are also concerns relating

to biases inherent in network-based approaches.

Gillis and Pavlidis argue that network-based methods simply predict more

labels for already well characterized nodes (‘rich get richer’) instead of providing

function specific insight [64]. The authors showed that ranking genes based on

multifunctionality (a measure relating to the number of GO categories a gene

is annotated with) and then using this single ranking to predict membership

in multiple GO categories yields a very high average performance. A relatively

good, though weaker, performance is also achieved by ranking genes by network

degree. There is a moderate correlation between a gene’s degree and its multi-
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functionality, although the strength of this correlation varied between networks.

Crucially, the magnitude of this correlation in different networks correlates with

the performance of the degree based ranking, suggesting the functionally mean-

ingful information captured by degree is actually information about multifunc-

tionality. Furthermore, the authors found that although network-based methods

outperformed the degree based ranking, the performance of the two methods

was highly correlated. The authors thus suggest that network based predic-

tion is highly dominated by a gene’s degree, which in turn simply reflects the

gene’s multifuctionality. Thus, the authors argue that network based methods

are simply predicting more labels to genes that are already well characterized,

but, crucially, do not provide function specific insight.

Extending this work on multifunctionality, the authors find that a small num-

ber of edges between highly multifunctional genes encode much of the functional

information in the network [65], raising the concern that GBA properties are not

generalizable to the network as a whole.

The origin of this multifunctionality effect is unclear. One possibility is that

it reflects a genuine property of biological networks: highly connected genes may

indeed be more likely to be highly multifunctional. On the other hand, the effect

may also be due to biases in the way genes are annotated and interaction data

acquired. Regardless of the cause, the lack of function specific insight is clearly

an undesirable property for a function predictor.

2.1.4 Aims and Objectives

This Chapter will explore a new method for function prediction, based on using a

kernel combined with a dimensionality reduction approach (‘Compass’). We will

evaluate the performance of Compass against the GeneMANIA algorithm on a

number of benchmarks. We develop a ‘GO rollback’ benchmark to mimic CAFA-

style prediction competition and two benchmarks (RNAi and ageing) based on

experimental screens linking genes to particular phenotypes. We will use these

these benchmarks to explicitly investigate the biases in prediction and prediction

evaluation discussed in the Introduction.

2.2 Technical Background

This section provides technical background on relevant tools used in network

based gene function prediction.

2.2.1 Kernel Methods

A kernel is a function that gives the inner product of two vectors in a multidi-

mensional space (referred to as a feature space):

K(x, y) = 〈φ(x), φ(y)〉
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where φ(x) is the mapping of x onto the feature space and 〈·, ·〉 takes the inner

product. The matrix of inner products K is referred to as the kernel matrix.

To build an intuition for kernel functions, we can think of them as generating

a measure of similarity between two data points in a particular feature space.

Thus, different kernels, mapping to different feature spaces, represent different

notions of similarity.

In general, the motivation behind kernel methods is the hope that mapping

data into the feature space will aid pattern detection - for example, as illustrated

in Figure 2.2, making the data linearly separable.

Figure 2.2: Illustration of how a mapping into a different space can make patterns
in data more detectable. The two figures show the same data in two different
spaces. In the original space, the non-linear boundary between the two groups
(red circles and blue crosses) is detectable by eye, but difficult to handle using
linear methods. Mapping the data into a three dimensional feature space using
quadratic map φ(x, y) = (x2, y2, 2

√
2xy) makes the groups linearly separable.

Adapted from stackexchange.com

The usefulness of kernel methods lies in avoiding having to explicitly compute

the mapping: a number of statistical learning algorithms, such as support vector

machines, linear regression and principal component analysis, can be applied to

the kernel matrix instead of the original data. We can often generate the kernel

matrix without explicitly mapping into the features space. In many contexts,

this is useful because the mapping is computationally expensive.

In the context of guilt-by-association prediction, however, the motivation

for applying kernel learning is slightly different. Unlike a standard learning

problem, our data is not in the form of a set of feature vectors, we only have

access to a network representation. Therefore, transforming the network into a

kernel matrix allows us to apply a broad range of statistical learning methods

to network data.

Another advantage of kernel methods in the context of guilt-by-association

prediction is their suitability to problems involving data integration. Protein

function prediction often exploits information from a variety of heterogeneous
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sources. Kernels have a number of properties which make them well suited for

this type of problem.

Firstly, any symmetric, positive semi-definite function is a valid kernel [213].

This means that any symmetric matrix with non-negative eigenvalues is a valid

kernel matrix - i.e. the representation of inner products of a set of vectors in

some feature space. Therefore, we can define a similarity measure and determine

whether it is a valid kernel simply through analysis of the similarity matrix. We

do not necessarily need to know anything about the feature space the similarity

measure relates to. This makes kernel methods applicable to data types much

more diverse than vectors. Thus, kernels allow us to represent heterogeneous

data in a common format.

Secondly, various mathematical operations (including addition, multiplica-

tion and exponentiation) preserve positive semi-definiteness, meaning we can,

for example, simply add kernel matrices in order to combine them and still have

a valid kernel matrix.

Graph Kernels

The usefulness of kernel methods for guilt-by-association prediction is crucially

dependent on the choice of kernel: the representation is only meaningful if the

position of points in the feature space reflects functional similarity. In a network

where edges represent evidence of functional association, how functionally similar

two nodes are, intuitively, depends on 1) the proximity of the two nodes (i.e

length of shortest path between the nodes) and 2) the density of connectivity

between the two nodes (the number of paths between the two nodes). A number

of similarity measures seek to capture this idea using the idea of a random walk, a

stochastic process where a ‘walker’ transitions from node i to j with probability

wij/di, where wij is the weight of the edge between nodes i and j and di is the

weighted degree of node i (di =
∑

j wij).

Below we will discuss three commonly used kernels which can all be inter-

preted in terms of a random walk on a network. First, however, we will introduce

the idea of the graph Laplacian L. Similarly to the adjacency matrix A, the graph

Laplacian is a matrix representation of a network: L = D − A, where D is a

diagonal matrix containing the degree of each node. The Laplacian matrix has a

number of useful properties and is key to the computation of the kernel matrices

we are interested in.

The Diffusion Kernel: KD = eβL = limn→∞(1 + βL
n )n,

where L is the graph Laplacian and β is a constant. The diffusion kernel

captures a measure of similarity between nodes relating to a lazy random walk

(a variant of a random walk where the walker remains in place with probability

1 − diβ). KD(i, j) represents the sum of the probabilities the walker will take

each of the paths between nodes i and j [120].

The Commute Time Kernel: KCT = L+,

44



where L+ is the Moore-Penrose pseudoinverse of the Laplacian, which satis-

fies the following:

LL+L = L

L+LL+ = L+

(L+L)H = L+L

(LL+)H = LL+

where XH is the conjugate transpose of X.

The commute time kernel is a representation of the data in a space where

genes are separated by the average number of steps it takes for a walker to

transition between two nodes [53,186].

Random-Forest Kernel: KRF = (I + L)−1

In the context of a random walk on a graph, KRF relates to the probability

of transitioning between two nodes in a random walk with a random number of

steps [28].

2.2.2 Kernelized Prediction Algorithms

GBA protein function prediction is a supervised learning problem: we seek to

predict new labels based on a training set of known labels (or ‘examples’). These

known labels are represented as a vector y, where yi = 1 if gene i is involved in

the function, −1 if known not to participate in the function and 0 if unlabelled

(see below for further discussion of negative labels). Our aim is compute a score

vector ŷ representing the likelihood of genes participating in the function. There

are a number of ways graph kernels can be exploited for this type of prediction.

Nearest Neighbour Method

The simplest approach, explored by Heriche et al. [82] is to treat the kernel as

a look up table: each gene is simply assigned a score based on the sum of its

similarities with known pathway members:

ŷ = K · y

This approach treats the kernel matrix as a table of similarities between

genes, without making use of the fact that the similarities actually represent

inner products between gene vectors in the feature space. It is possible to express

a number of statistical learning algorithms in forms where they can be applied to

these inner products instead of the feature vectors themselves. We will present

a brief over-view of some of the major algorithms. Throughout this section,

vectors and matrices will be in bold, to distinguish them from scalars.
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Regression Methods

Regression method can be applied to data in kernel form. Regression algorithms

seek to find a model relating the target vector y to the feature vectors (often

referred to as independent variables in the context regression algorithms) X.

This model can then be used to compute ŷ for unlabelled genes. To illustrate

how these algorithms can be applied to kernel data, we will use the example of

a ridge regression.

A linear regression models the relationship between the target vector and

feature vectors as a linear combination of the feature vectors:

y = XW + ε

where X is a matrix in which rows are the feature vectors, W is the weighting

of each feature (i.e dimension of the feature vector) and ε is a random error

term. We thus want to choose W to minimize the error term (or ‘loss function’)

- specifically, we are interested in minimizing the sum of the squares of the error

terms. This is known as the least squares approximation:

||ε||2 = (y −XW)′(y −XW)

The optimization problem can then be solved by setting the derivative of the

loss function (with respect to W) to zero. Provided the inverse of X′X exists,

this solution can be expressed in terms of a linear combination of the training

points:

W = (X′X)−1X′y = X′X(X′X)
−2

X′y = X′α

where α = X(X′X)−2X′y

It is entirely possible that the inverse of X′X does not exist. These cases

correspond to ill posed problems: there is not enough information to precisely

specify the solution. One way to solve this problem is to add additional con-

straints - this is known as regularization. A natural constraint is to favour

simpler models by including the norm of the weight vector into the loss function:

instead of minimizing ||ε||2 we now want to minimize ||ε||2 + λ||W||2, where λ

is a positive constant controlling the relative importance of the two constraints.

The solution to the optimization problem then becomes:

W = (X′X + λI)−1X′y

where I is the identity and thus (X′X+λI) is always invertible. Rearranging

to obtain an expression in terms of a linear combination of the training points:

(X′X + λI)W = X′y

W = λ−1X′(y −XW) = X′α

46



where α = λ−1(y −XW). The expression for α can be re-arranged to give:

α = (XX′ + λI)
−1

y = (K + λI)−1y

where K is the product of inner products of the feature vectors (i.e. kernel

matrix). Thus, we have expressed the ridge regression in a form requiring only

the target vector y and the kernel matrix.

Dimensionality Reduction

Dimensionality reduction methods aim to find lower dimensional representations

of datasets, either by recoding the data to reduce dependence between dimen-

sions (a technique known as principal component analysis or PCA) or by selecting

dimensions that are more relevant for the predictions task (known as partial least

squares or PLS).

Principal component analysis aims to re-express a dataset in terms of uncor-

related dimensions (principal components), choosing these dimensions to retain

as much of the variance in the original data as possible. Thus, the problem of

choosing the directions of maximal variance can be expressed as choosing w so

as to maximise w′Cw, subject to ||w|| = 1, where C is the covariance matrix

given by C = 1
lX
′X and l is the number of data points. This definition of the

covariance matrix assumes the data is centred (i.e. has a mean of zero). It is

worth noting however, that the work presented below in deriving kernel versions

of PCA and PLS does not make use of this assumption and is valid even with

non-centred data.

This optimization problem is solved by choosing the directions as the eigen-

vectors of C. Hence, the projection of the data onto the jth principal component

is given by (Xuj), where uj is the eigenvector corresponding to the jth largest

eigenvalue. Choosing the m first eigenvectors thus gives a projection onto an m-

dimensional subspace. The number of dimensions is usually chosen depending

on how much of the variance we want to preserve.

We can also compute this projection using the kernel matrix. There is a

relationship between the eigenvectors of C and K. If v and λ are an (normalized)

eigenvector-eigenvalue pair of K, then:

lCX′v = X′XX′v = X′Kv = X′v

meaning X′v and lambda is an eigenvector-eigenvalue pair for lC. Further-

more, ||X′v||2 = v′XX′v = λ. Thus, the corresponding normalized eigenvector

of lC is u = λ−
1
2 X′v. Hence, the projection on to the jth principal component

is:

λ−
1
2 Xuj = λ−1XX′vj = λ−1Kvj = vj

.
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Thus, we can compute the projection onto the principal components using

only the principal components of the kernel matrix.

For regression type problems, we can then perform a standard regression in

the new subspace. The advantage of this approach is that by removing the direc-

tions of low variance, we are potentially de-noising the data. The disadvantage,

however, is that we are not necessarily choosing the directions which are most

predictive. Partial least squares regression seeks to address this problem, by

choosing directions maximizing the covariance between the feature vectors and

target.

Theoretically, the directions maximizing covariance between X and y can be

found using a singular value decomposition (svd) of the covariance matrix lCxy =

X′y. However, this approach is restricted in the number of directions which can

be extracted: the number of non-zero singular values of X′y is restricted by the

number of dimensions of y.

Instead, PLS chooses only the first direction in this manner. Then, instead

of choosing further directions as orthogonal to u1 as we would with the svd, we

instead look for directions orthogonal to the projection used in the regression i.e.

Xu1. We can find the next direction by projecting X into the space orthogonal

to Xu1, a process referred to as ‘deflating’ X. Thus, with X1 = X, we obtain

X2 as:

X2 = (I− X1u1(X1u1)′

(X1u1)′X1u1
)X1

and then recomputing Cxy and performing svd again, iterating until the de-

sired number of directions have been found. Deflating y is redundant: removing

explained covariance has no effect on the extraction of subsequent directions.

Once the desired number of directions have been found, we then perform

a regression using the projection of data onto these directions. For the PLS

regression, it is possible to express W, the matrix of regression coefficients as

(see references [145,190] for derivation):

W = U(P′U)−1C′

where U is a matrix with columns uj , the direction found on the jth iteration,

P is a matrix with columns pj =
X′jXjuj

u′jX
′
jXjuj

and C has columns cj =
y′Xjuj

u′jX
′
jXjuj

,

where Xj corresponds to the jth deflation of the X.

As before, we now seek to express this process in terms of the kernel matrix

K. To achieve this, we re-express uj as ajuj = X′jBj. By definition, if vj and σj

are the right singular vector and the singular value corresponding to uj and we
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use yj to indicate the jth deflation of y:

(X′jyj)vj = σjuj

(X′jyj)
′uj = σjvj

→ X′jyjy
′
jXjuj = σ2juj

This leads to the following recursion: Bj = yjy
′
jXjX

′
jBj = yjy

′
jKjBj, with

the normalization Bj =
Bj

||Bj|| . This allows us to estimate Bj without needing Xj.

To compute the deflation, we define tj = ajXuj:

tj = ajXjuj = XjX
′
jBj = KjBj

The deflation of the kernel can then be computed as:

Kj+1 = Xj+1X′j+1

= (I−
(Xjuj)(Xjuj)

′

(Xjuj)′(Xju1)
)XjX

′
j(I−

(Xju1)(Xju1)′

(Xju1)′(Xju1)
)

= (I−
tjt
′
j

t′jtj
)Kj(I−

tjt
′
j

t′jtj
)

For computing the regression coefficients in terms of the kernel matrix, we

express these as W = X′α so that ŷ = Kα. By expressing W = U(P′U)−1C′

in terms of B and K, we get the following expression for α (for details of the

derivation, refer to Shawe-Taylor and Cristianini [213]):

α = B(T′KB)−1T′y

where T is a matrix with columns tj .

In summary, both PCA and PLS regressions can be expressed in forms that

only require us to know the kernel matrix.

Support Vector Machines

Support vector machines (SVMs) are another set of algorithms often used in the

context of kernel learning. SVMs aim to find a hyperplane that separates points

labelled yi = 1 and yi = −1 so that the distance between the hyperplane and

the nearest point from each category is maximized. Unlabelled genes are then

categorized based on which side of the hyperplane they fall. Alternatively, ŷ can

be computed as the distance of the unlabelled genes from the hyperplane. Like

regression and dimensionality reduction algorithms, SVMs can be expressed in

both primal and dual forms.
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2.2.3 Protein Function Prediction and Negative Examples

So far in this section, we have discussed prediction methods in general terms,

without considering gene function prediction specifically. However, it is worth

briefly discussing the selection of training examples in the context of gene func-

tion. The choice of positive examples is generally not problematic: these could

be, for example, a specific genes set of interest or genes known to be involved in

some function (for example, a particular GO term).

Some prediction methods, however, also require negative examples, that is,

a set of genes known not to participate in a function. The selection of negative

examples is more challenging: any bias in the choice of these genes will introduce

a bias in prediction. Efforts have been made to produce systematic negative gene

sets for GO terms. While these have been reported to improve performance in

some context, they can also have a detrimental effect [251]. Furthermore, for

functions of interest that do not correspond to GO terms, negative sets are rarely

available. Alternatives to choosing a set of negative examples include treating

all unlabeled genes as negatives in the training phase or randomly sampling the

unlabeled genes for a set of negatives.

2.3 Benchmark Development

The quality of a benchmark set is crucial in assessing a new prediction algo-

rithm. We therefore developed a number of benchmarks designed to correspond

as closely as possible to real situations in which prediction algorithms are used.

Crucially, for all our benchmarks, we sought to minimize the overlap between

the networks used for prediction and the dataset used for testing. This section

will detail the three benchmarks we developed: one based on the GO, another

on RNAi screens and a third on screens for long lived mutants in fission yeast.

Table 2.3 summarises the benchmarks and how they were used.

2.3.1 GO Rollback Benchmark

This benchmark was built to mimic a CAFA style prediction competition: pre-

diction was seeded with gene sets derived from GO annotations made prior to

a specific cut-off date, using networks also pre-dating the cut-off. Performance

was assessed based on how well the algorithm predicted new annotations made

after the cut-off date. We call this a ‘rollback’ benchmark.

Specifically, predictions were seeded using sets of proteins labelled with the

same GO term in 2009 and using functional association networks also from 2009.

Performance was evaluated by considering new genes having acquired the label

since 2009 as true positives. This GO rollback benchmark was constructed using

data from yeast (Saccharomyces cerevisiae) and fly (Drosophila melanogaster).

Evaluation sets were created from the Biological Process (BP) branch of the

GO tree, using terms of level 5 and above in the GO tree (i.e. level 5 and
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more specific). For each GO term, proteins annotated to the term prior to 2010

were taken as the seed set and those having acquired the label later as the test

set. GO annotations were filtered by evidence code in order to 1) ensure high

quality seed and test sets and 2) avoid predicted annotations, thus minimizing

dependence between network data and test set. Specifically, only annotations

derived from author or curator statements and directly from experiment were

used (corresponding to evidence codes: IC, IDA, IMP, TAS and NAS).

Proteins not present in any of the functional association networks were ig-

nored and categories with no proteins in the seed or novel set were excluded.

This resulted in sets of 760 (yeast) and 967 (fly) GO terms.

A potential disadvantage with this benchmark is that it relies on the GO

to provide training and testing examples. As discussed in the introduction, the

use of GO in assessing prediction algorithms has been criticised for a number of

reasons, including biases in how GO annotations accumulate and the inability to

distinguish between true negatives and unlabelled genes. While the GO rollback

benchmark will allow us to explicitly explore these effects, additional bench-

marks were constructed to provide a complementary perspective on predictive

performance.

2.3.2 Phenotypic RNAi Benchmark

The purpose of the phenotypic RNAi benchmark was to further reduce the over-

lap between the functional association networks and testing dataset. In the GO

rollback benchmark, the labels used for testing are not necessarily independent

of the networks - for example, if functional association networks are, directly or

indirectly, driving label acquisition.

To avoid this potential issue, we designed an additional benchmark using

knock-out screen: the functionally associated genes sets are composed of genes

giving rise to the same phenotype when knocked out. The data was downloaded

from the GenomeRNAi database [209], a repository containing phenotypes from

RNAi screens in human and fly. Each gene set corresponds to a screen for a

particular phenotype - lists of phenotypes and the number of genes giving rise to

this phenotype when knocked out are given in Table 2.1 (for fly) and Table 2.2

(for human). To ensure independence from the network data, only genome-

wide screens (as opposed to targeted screens, which tested only a subset of the

genome) performed after 2009 were considered.

Similarly to the GO benchmark, the networks used for prediction pre-dated

the test set. Thus, because the knock-out screens used were genome wide and

therefore independent of any prior knowledge and all other data pre-dated these

screens, this benchmark ensures independence of the networks and gene sets.

Thus, the problems associated with cross-validation on the GO benchmark are

not relevant for the phenotypic benchmark. We therefore evaluated performance

using cross-validation, using 5 folds as a compromise between precision and time
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needed to perform the benchmarking.

Screen Assay used to detect phenotype Genes

Muscle morphogenesis and func-
tion

Posture, locomotion, flight and viability 7955

Heat nociception Noxious heat avoidance and viability 8270

Notch induced transcription Notch pathway reporter 320

NF-kB pathway regulation
Toll and Imd pathway Drosomycin re-
porter

16

Akt-TOR pathway negative
feedback regulation

dAkt phosphorylation 111

HIF dependent transcription Hypoxia inducible HRE reporter 399

G2-M DNA damage checkpoint
regulation

Histone H3 phosphorylation 157

Self-renewal and differentiation
in neural stem cells

Number and size of neuroblasts, gan-
glion mother cells, intracellular GFP
aggregates and viability

524

Notch pathway regulation Notch pathway reporter 743

Adiposity regulation Total fly triglyceride expression 7330

S2 cell spreading
alpha-tubulin and actin protein expres-
sion

217

Secretory pathway regulation
BiP signal peptide and firefly luciferase
fusion protein expression

239

RTK-Ras-ERK pathway regula-
tion (in S2R+ cells)

ERK phosphorylation 2021

RTK-Ras-ERK pathway regula-
tion (in Kc167 cells)

ERK phosphorylation 2049

Wg pathway regulation WgRluc and sFluc protein expression 304

Hippo pathway regulation Hippo pathway reporter 9276

Srp/Lz-induced transcriptional
activation

Srp/Lz-induced transcription reporter
(PO45)

113

Immune deficiency pathway reg-
ulation

Immune deficiency pathway reporter 25

Table 2.1: List of the gene sets making up the phenotypic benchmark in fly. Each
gene set corresponds to one genome-wide RNAi screen. The genes in the gene set give
rise to the same phenotype when knocked-out. The table lists the phenotype assayed
in each screen and the number of genes associated with each phenotype. The data was
downloaded from the GenomeRNAi database [209].

2.3.3 Fission Yeast Ageing Benchmark

As a further method of validation, the prediction algorithms were benchmarked

on an experimentally derived set of novel (i.e previous undiscovered) long-lived

mutants in fission yeast (Schizosaccharomyces pombe) (see [214] for details).

Predictions were seeded using known long-lived mutants clg1, pef1 [29], pma1

[97], sck2 and pka1 [202].
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Screen Assay used to detect phenotype Genes

Homologous recombination DNA
double-strand break repair (HR-
DSBR)

(HR-DSBR) DR-GFP reporter 265

HeLa cell morphology Cell morphology 609

Self-renewal and pluripotency in
human embryonic stem cells

POU5F1 protein expression 384

Vaccinia virus (VACV) infection
Number of influenza A H1N1
(A/WSN/33) infected cells and vi-
ral polymerase protein expression

222

TP53 interactions TP53 protein expression and viability 651

Human papillomavirus oncogene
expression regulation

HPV18 LCR reporter activity 362

Combinatorial effect with c-Myc Viability (synthetic lethal) 292

Centrosome clustering alpha-tubulin protein expression 64

DNA damage regulation after
ionizing radiation

Ionizing radiation sensitivity 286

Proliferation and survival of hu-
man cancer cell lines

Viability 477

Homologous recombination DNA
double-strand break repair (HR-
DSBR)

(HR-DSBR) DR-GFP reporter and
DNA content

171

TRAIL-induced apoptosis (1) Viability 178

TRAIL-induced apoptosis (2) Viability (synthetic lethal) 25

Negative-strand RNA virus in-
fection (1) - vesicular stomatitis
virus (VSV)

VSV-eGFP protein expression and
DNA content

41

Selective autophagy regulation
Sindbis virus (SIN) capsid SIN-
mCherry.capsid and autophagosome
GFP–LC3 protein expression

29

Combinatorial effect with nera-
tinib

Viability (synthetic lethal) 10

Regulation of FOXO1 nuclear lo-
calization

EGFP-FOXO1a protein expression and
DNA content

99

Vaccinia virus (VACV) infection
Vaccinia virus VACV IHD-J/GFP pro-
tein expression and DNA content

1978

Combinatorial effect with
MLN4924, a NAE inhibitor

Viability (synthetic lethal) 187

Non-small cell lung cancer
(NSCLC) cytotoxicity (1)

shRNA abundance 246

Oncolytic Maraba rhabdovirus
infection (1)

Viability 122

hepcidin regulation hepcidin::fluc mRNA expression 286

Negative genetic interaction with
BLM

shRNA abundance 136

Negative genetic interaction with
MUS81

shRNA abundance 112

Negative genetic interactions
with PTEN

shRNA abundance 107

Negative genetic interaction with
PTTG1

shRNA abundance 98

Negative genetic interactions
with KRAS

shRNA abundance 197

Table 2.2: List of the gene sets making up the phenotypic benchmark in human. Each
gene set corresponds to one genome-wide RNAi screen. The genes in the gene set give
rise to the same phenotype when knocked-out. The table lists the phenotype assayed
in each screen and the number of genes associated with each phenotype. The data was
downloaded from the GenomeRNAi database [209].
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Benchmark
Name

Organism(s) Purpose Performance Evaluation

GO Rollback Yeast, Fly Selecting PLS pa-
rameters

Cross-validation on annotations
known prior to the cut-off date

GO Rollback Yeast, Fly Comparing Com-
pass and GeneMA-
NIA

How well annotations made after
the date-cut off were predicted

RNAi Phe-
notypic

Fly, Human Comparing Com-
pass and GeneMA-
NIA

Cross-validation

Ageing Fission yeast Comparing Com-
pass and GeneMA-
NIA

Prediction was seeded with long-
lived mutants known prior to the
screen and evaluated based on
how well the mutants identified
in the screen were predicted

Table 2.3: Summary of the different benchmarks used in this chapter. The
GO Rollback benchmark mimics CAFA style prediction competitions by using
training labels and networks from prior to a specific cut-off date and evaluat-
ing the performance on annotations made after this date. This benchmark was
also used in selecting the PLS parameters. In the RNAi phenotypic benchmark,
functionally associated gene sets are derived from genes giving rise to the same
phenotype in an RNAi knock-out experiment. The ageing benchmark uses an
experimentally identified set of long-lived fission yeast mutants not previously
known in the literature. Thus, in both the RNAi and ageing benchmarks, the
gene sets used for testing are derived from genome wide screens and the net-
works used for prediction pre-date these screens: this benchmark is therefore
free from the problems of information transfer associated with the CAFA style
GO benchmark.

2.4 Preliminary Work

2.4.1 Regression and Support Vector Machines

We initially compared a number of approaches on the yeast GO benchmark.

Building on the work by Heriche et al. [82], who used a commute time kernel

combined with a nearest neighbour approach (see Section 2.2), we investigated

the effect of combining a commute time kernel with a regression based approach

and with a support vector machine classifier. Performance was measured as the

area under a receiver operating characteristic (ROC) curve.

The relative performance of these methods is shown in Figure 2.3. All meth-

ods appear to perform almost identically (average error rate of about 0.3, corre-

sponding to an AUC of about 0.7). While small difference in AUC may actually

translate to relevant differences from a practitioner’s point of view, neither of

the methods seemed promising enough to warrant further exploration.
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Figure 2.3: The relative performance of different prediction approaches on the
GO benchmark. Simple is the nearest neighbour approach using the commute
time kernel employed in the work by Heriche et al. Regression is a linear
regression performed on the commute time kernel. SVM is prediction using a
support vector machine and the commute time kernel. The figures show the
prediction error, measured as 1 - AUC (area under ROC curve).

2.4.2 Dimensionality Reduction Approaches

Next, we explored dimensionality reduction approaches: these methods project

the data into a lower dimensional space, in which a regression is then performed.

In general terms, these approaches have the advantage of potentially reducing

noise by removing non-informative dimensions. However, selecting the right

number of dimensions to use in the regression is difficult. We cannot simply

choose the number of dimension giving optimal performance in our prediction

task (i.e. predicting novel labels): this uses information (the novel labels) we

would not have access to in a genuine prediction context. Instead, the number

of dimensions needs to be chosen based on information available at the time of

prediction: performance on the seed set.

We therefore compared the performance of a principle component analysis

(PCA) approach and a partial least squares (PLS) regression on both the seed

set (assessed by cross validation) and on the novel genes (assessed by how highly

the novel genes were ranked).
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Figure 2.4: The performance of dimensionality reduction approaches (PCA and
PLS) on the yeast GO benchmark. The figure shows performance (measured by
AUC) as a function of the number of dimensions included, for both the novel
labels and on the labels known at the cut-off date. The performance on the seed
set was estimated by two-fold cross-validation. This performance is displayed
because cross-validation on the seed set is necessary to select the number of
dimensions to use. Error bars represent standard error of the mean.

As shown in Figure 2.4 (compared to Figure 2.3), both these methods outper-

formed our previous approaches (with AUC > 0.8 for PLS and PCA, compared

to AUC of about 0.7 for our previous methods). However, the two algorithms

differ in their robustness to the choice of dimensions. For PCA, the performance

on the seed set is relatively robust across a range dimensions, with 400 dimen-

sions giving optimal performance. On the novel set, on the other hand, optimal

performance is achieved between 100 and 150 dimensions and deteriorates with

the addition of further dimensions. This difference in behaviour is consistent

with our hypothesis about the existence of overlap between the seed set and

the functional association networks: there is information within the functional

association networks which is helpful in characterizing the seed set, but is not

useful in predicting new labels.

With PLS, the number of optimal dimensions between seed set and novel

set is consistent: performance is maximized using a single dimension. This is

in line with previous work recommending the use of K-1 dimensions for PLS

discriminant analysis, where K is the number of classes [129].

Thus, while, at optimal parameter values, PCA would outperform PLS (see
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Figure 2.4), the parameter values chosen by cross-validation lead to PLS outper-

forming PCA (0.832 vs 0.801). For this reason, we focused on PLS for further

development and testing.

We also looked at PLS parametrization on the fly GO benchmark. Consistent

with the results in yeast, the seed set gave optimal performance using 1 dimension

(see Figure 2.5). For the novel proteins, performance is very slightly improved

with the addition of an extra dimension.

Figure 2.5: Compass performance on the GO yeast and fly benchmark sets, using
different number of dimensions for the PLS regression. Performance is measured
by area under ROC curve (AUC). Performance is shown estimated from cross-
validation on the seed set (‘seed’) and prediction of new labels (‘new’). Error
bars represent standard error of the mean.

We also explored setting parameters separately for each GO term, but found

this was detrimental to performance. Therefore, we used average performance

across all GO terms to select a parameter value to use for all terms.

2.5 Algorithms

2.5.1 Compass Algorithm

We developed an algorithm based on a commute-time kernel on the functional

association network, followed by a kernelized version of a partial least squares

(PLS) regression (Compass). The Compass algorithm takes the following steps:

1. The commute-time kernel KCT [250] of the functional association network
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is computed as laid out in Section 2.2. The commute-time kernel assumes

the network has one connected component (i.e. all nodes are reachable

from all nodes). In this work, if functional networks had more than one

connected component, only the largest component was considered, as this

resulted in the elimination of a very small minority of the nodes. For net-

works with larger or more numerous smaller components, each component

can be treated separately.

2. The kernel matrix is normalized:

Knorm
CT (i, j) = KCT (i, j)/

√
KCT (i, i) ∗KCT (j, j)

This step is taken to decrease the effect of nodes with large degree.

3. All genes not part of the seed set are treated as negative examples. The

reason for this choice was two-fold: firstly, more sophisticated methods

of negative example selection are GO-specific, whereas we seek to develop

a general purpose tool. Furthermore, as discussed earlier, the inclusion

of negative examples can have a detrimental effect on performance [251].

Thus, if n+ is the set of known positives, then the target vector y for the

PLS regression is given by y(i) = 1, if i ∈ n+, else y(i) = −|n+|/|n|, where

n is the total number of genes so that the elements of y sum to zero.

4. We perform the PLS regression using the implementation by Shawe-Taylor

and Cristianini [213], using a single dimension in the regression. The pre-

dicted variable, ŷ, gives scores for all non-labelled genes reflecting their

likelihood of belonging to n+.

Example of Compass Usage

Figure 2.6 summarises the inputs and outputs of the Compass algorithm: the

inputs are a list of genes of interest and functional association data and the

output is a list of genes, ranked by likelihood of functional association with the

genes of interest.

To illustrate how the algorithm is used, Table 2.4 gives the results of pre-

diction using the fission yeast ageing benchmark. The algorithm is given the

known long-lived mutants clg1, pef1, pma1, sck2 and pka1, and the STRING

functional association network for fission yeast. The Table shows the top 20

candidate genes returned by the Compass algorithm. Many of these 20 genes

are associated with the cellular stress response and the list is enriched for GO

categories relating to the cellular response to nutrients. There is a well docu-

mented link between stress, nutrient status and ageing [62], suggesting some of

these putative longevity-related genes may indeed be worth further exploration.
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Gene Description Additional notes

SPBC1347.11 stress responsive orphan 1
Involved in oxidative stress re-
sponse

SPCC4B3.07 negative regulator of Ofd1
Involved in cellular response
to hypoxia

SPBC3D6.02 But2 family protein

SPBC354.07c
oxysterol binding protein
(predicted)

SPCC1494.08c conserved fungal protein

SPAC19E9.03 cyclin Pas1
Involved in regulation of cell
cycle and transmembrane
transport

SPAC24B11.06c MAP kinase Sty1
Involved in stress-activated
MAPK cascade

SPAC8C9.03
cAMP-dependent protein ki-
nase regulatory subunit Cgs1

Involved in nucleocytoplasmic
transport and the stress re-
sponse

SPAC11G7.01
serine-rich Schizosaccha-
romyces specific protein

SPAC13G6.10c
cell wall protein Asl1, pre-
dicted O-glucosyl hydrolase

involved in carbohydrate
metabolic processes

SPBC1271.12
oxysterol binding protein
(predicted)

SPBC16E9.13
serine/threonine protein ki-
nase Ksp1 (predicted)

Involved in cell signalling

SPAC26F1.10c tyrosine phosphatase Pyp1 Involved in MAPK signalling

SPCC1753.02c
G-protein coupled receptor
Git3

Involved in glucose mediated
signalling pathway

SPBC19C7.03 adenylate cyclase
Involved in glucose mediated
signalling pathway

SPBC713.11c
plasma membrane proteolipid
Pmp3

SPBC336.12c
MBF transcription factor
complex subunit Cdc10

SPBC3E7.15c
sphingosine N-acyltransferase
Lac1

SPAC1399.03 uracil permease

SPAC31G5.11
cAMP-independent regula-
tory protein Pac2

Table 2.4: The table gives the fist twenty genes returned by the Compass algo-
rithm in response to a query list of genes with long-lived knock-out phenotypes.
The list is enriched for GO categories relating to signalling and cellular glucose
response.
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Figure 2.6: Summary of Compass’ inputs and outputs: the algorithm is given a
list of genes of interest and functional association data in the form of a network.
The algorithm estimates how likely genes are to be functionally associated with
the gene set of interest and returns a list of candidate genes ranked according to
this score.

2.5.2 GeneMANIA algorithm

The performance of the Compass algorithm was compared to the algorithm used

by the GeneMANIA [244] web-server. This section will discuss the GeneMANIA

algorithm in detail. Briefly, GeneMANIA follows the following steps:

1. Network rescaling: the weights of all edges in the functional association

networks are re-scaled to reduce the impact of high degree nodes.

2. Network scoring: All networks are given a score reflecting their relevance

to the query set.

3. Network combining: Networks are combined, weighting each network ac-

cording to the relevance score.

4. Prediction: Genes are scored according to likelihood of belonging to the

pathway using a label propagation algorithm on the combined network.
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Network Scaling

A is the adjacency matrix of the functional association network. Â, the re-scaled

adjacency matrix is given by

Â(i, j) = A(i, j)/
√

(
∑
i

A(i, j) ∗
∑
j

A(i, j))

Weighting

To compute a linear combination of the functional association networks, W =∑
d αdÂd, GeneMANIA calculates the weights αd the following way:

An ‘ideal’ vectorized network, t is constructed:

t(i, j) =


(n−)2/(n+ + n−) both i and j in pathway

−(n−n+)/(n+ + n−) one of i or j in pathway

0 i and j both out of pathway

where n+ is the number of genes in the pathway and n− is the number of

non-pathway genes connected to the pathway genes.

GeneMANIA then chooses α to minimize (t − Xα)T (t − Xα), where α =

[α1, α2, . . . , αd]
T and X is a matrix with d columns, each containing a vectorized

form of the functional networks (where non-pathway, non-pathway edges are

excluded). The optimization is constrained by α1, α2 . . . >= 0.

Prediction

The target vector, y, is computed as y ∈ +1, k,−1 if gene i is positive, unlabeled

or negative receptively and k = n+−n−
n .

Once the functional networks are combined, non-pathway genes are ranked

according to likelihood of belonging to the pathway by solving the following

optimisation problem:

ŷ = arg max
ŷ

∑
i

(ŷi − yi)2 +
∑
i

∑
j

Wij(ŷi)− ŷj)2

which can be re-written in matrix notation as:

f = arg max
ŷ

(ŷ − y)′(ŷ − y) + ŷ′Lŷ

where L is the Laplacian matrix. The solution to this equation can be found

by solving y = (I− L)ŷ, that is: ŷ = (I− L)−1y.

It is worth noting the similarity between GeneMANIA’s label propagation

algorithm and the random forest kernel KRF = (I + L)−1. Using a nearest

neighbour approach with the random forest kernel will therefore give:

ŷ = (I + L)−1y
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2.5.3 Network Construction and Weighting

Because the prediction approaches explored in this chapter can be applied to any

functional association network, network construction itself is not the focus of this

chapter. However, as functional association network construction was necessary

for benchmarking, we will briefly outline the approach taken in building these

networks.

Functional association networks were downloaded from STRING database

(version 8.1) [101]. STRING collates information about different indicators of

functional association (conserved genome neighborhood, gene fusion, phylogenic

co-occurrence, co-expression, database imports, large-scale experiments and lit-

erature co-occurrence) and weights interactions based on how well these inter-

actions correspond to shared membership in KEGG pathways.

Different networks were combined into a single network simply by adding the

adjacency matrices. Because associations in the individual networks are weighted

on the same scale, this automatically introduces a weighting of the information

sources. Unlike GeneMANIA’s weighting algorithm, however, this weighting is

not specific to the seed set. STRING also provides a pre-computed combined

network, based on a naive Bayes approach. However, GeneMANIA’s seed-specific

weighting of different networks requires distinct networks - therefore, to achieve

a fair comparison between GeneMANIA and Compass, we elected not to use this

pre-computed network.

2.6 Comparison to GeneMANIA

2.6.1 Results Summary

Table 2.5 summarises the results of comparing Compass to GeneMANIA on a

number of benchmarks.

Benchmark set Compass GeneMANIA

RNAi (Fly) 0.681 0.674
RNAi (Human) 0.636 0.625
RNAi (Combined) 0.654 0.644
Ageing (Fission Yeast) 0.713 0.613
GO Yeast (all) 0.832 0.803
GO Fly (all) 0.722 0.738

Table 2.5: Performance of Compass and GeneMANIA on the RNAi, Ageing and
GO benchmarks as measured by AUC. In the RNAi benchmark, the human data
consisted of 27 sets of functionally related genes and the fly data of 18 sets. In
the GO benchmark, the full yeast set consisted of 760 terms and the fly set
of 967 terms. The fission yeast screen consisted of 15 mutants identified in a
genome-wide screen.
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2.6.2 RNAi Benchmark

In the RNAi benchmark, functionally related genes sets are derived from an

RNAi interference screen: the sets are formed of genes which, when knocked out,

yield the same phenotype. Figure 2.7 shows the comparative performance on the

RNAi benchmark, as estimated by five fold cross validation. As summarised in

Table 2.6 Compass significantly outperforms GeneMANIA on this benchmark.

When considering the fly benchmark alone, although Compass outperforms Gen-

eMANIA, the difference between the two algorithms is not significant. It should

be noted that the fly benchmark set is relatively small (n = 18) - it is therefore

possible that the fly benchmark does not give us sufficient power to detect a

statistically significant difference between the algorithms.

Figure 2.7: Comparison of the performance of Compass and GeneMANIA on the
RNAi benchmark. Each data point represents AUC for a functionally related
set of genes, as estimated by five fold cross-validation.

Benchmark set Compass GeneMANIA p-value

RNAi (Fly) 0.6814 0.6737 0.3271
RNAi (Human) 0.6360 0.6245 0.0174
RNAi (Combined) 0.6542 0.6442 0.0175

Table 2.6: Performance on the RNAi benchmark, as estimated by five fold
cross-validation and measured by AUC. P-values are derived from a two-tailed
Wilcoxon ranked sum test. The human data consisted of 27 sets of functionally
related genes and the fly data of 18 sets
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2.6.3 GO Benchmark

The relative performance of Compass and GeneMANIA at predicting novel GO

labels was assessed using a roll-back benchmark (see Section 2.3). Average per-

formance across all GO categories, as measured by AUC, was 0.832 with Compass

and 0.803 with GeneMANIA for the yeast benchmark and 0.722 (Compass) and

0.738 (GeneMANIA) on fly.

Assessing the statistical significance of these results is not entirely trivial: be-

cause of the hierarchical structure of the GO, there can be considerable overlap

in the sets of proteins annotated with different GO terms. For example, all pro-

teins annotated as participating in the process cation transmembrane transporter

activity will also be annotated with the term ion transmembrane transporter ac-

tivity. Thus, the performance of a prediction algorithm on one of these GO sets

is not independent of its performance on the other. This dependence between

GO terms introduces a difficulty for statistical testing: statistical tests tend to

assume independence of data points.

This problem has not been discussed particularly widely in the literature and,

to our knowledge, no standard solution exists. Some authors choose to consider

only the most specific level of the GO hierarchy, thus avoiding dependencies

between parent and child terms. However, this does not guarantee independence:

GO terms at the same level of the hierarchy may be closely related and thus be

applicable to many of the same proteins. Furthermore, considering only the most

specific level may introduce a systematic bias into the assessment process: the

performance of a prediction algorithm may be dependent on the specificity of

the predicted function.

To address this problem, we sought to generate a set of independent GO

terms. Overlap between GO terms was here defined as max(|n ∩ m|/|n|, |n ∩
m|/|m|) where |m| and |n| are the sets of proteins labelled with GO terms m

and n respectively. GO terms with % overlap below a specific threshold were

considered independent. To build the largest possible set of independent GO

terms, the GO terms with overlap exceeding the threshold with the largest num-

ber of other GO terms was eliminated. This process was repeated until only

independent GO terms remained.

There is a trade-off between the overlap threshold and the number of GO

terms available for testing (and thus the power of the statistical test). Several

thresholds were therefore explored (see Table 2.7) and results are consistent

across thresholds: on the yeast benchmark, Compass significantly outperforms

GeneMANIA, while on the fly benchmark GeneMANIA outperforms Compass.

2.6.4 Ageing Benchmark

The final benchmark was based on long lived mutants identified in a genome

wide screen [214]. Prediction was seeded with long lived mutants known prior

to the screen. On this benchmark, Compass outperformed GeneMANIA (0.7131
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Benchmark set Compass GeneMANIA p-value (if applicable)

GO Yeast (all) 0.832 0.803 -
GO Yeast (< 75% overlap) 0.831 0.789 4.67 ∗ 10−4

GO Yeast (< 50% overlap) 0.837 0.816 0.0049
GO Yeast (< 25% overlap) 0.838 0.816 0.0127
GO Fly (all) 0.722 0.738 -
GO Fly (< 75% overlap) 0.709 0.726 1.42 ∗ 10−4

GO Fly (< 50% overlap) 0.709 0.723 0.0014
GO Fly (< 25% overlap) 0.713 0.730 0.0033

Table 2.7: Comparison of Compass and GeneMANIA on GO benchmark sets
with reduced overlap for statistical testing. The table shows the performance of
the algorithms on a subset of the GO terms with < 75%, < 50%, < 25% overlap
in labelled proteins. The number of GO terms in each category was 309, 207
and 130 for GO-terms for yeast, 440, 393 and 239 for fly).

vs 0.6129). The statistical significance of this result was evaluated by comparing

how highly each long lived mutant was ranked by Compass and GeneMANIA,

giving a p-value of 0.0168 (two-tailed Wilcoxon sing-rank test).

2.6.5 GeneMANIA weighting scheme

The Compass and GeneMANIA algorithms differ in two ways: firstly, the way

prediction networks are combined (with GeneMANIA computing a query specific

weighting) and in the prediction algorithm itself. Therefore, to ensure that the

observed differences in performance were not simply due to GeneMANIA’s seed-

specific weighting of the networks, we also ran GeneMANIA without the seed-

specific weighting step on the GO benchmark. This gave average performance of

0.800 and 0.747 for yeast and fly respectively (compared to 0.832 and 0.722 with

Compass). The relative performance of the two algorithms was thus unchanged.

Interestingly, for the fly dataset, GeneMANIA’s performance is improved by

removal of the seed-specific weighting.

2.7 Detailed Investigation of Prediction

In order to understand potential biases in our prediction algorithm or bench-

marking paradigm, we studied prediction results in detail.

2.7.1 Cross-Validation vs Rollback

We compared prediction performance as evaluated by cross-validation on the

seed set and using the rollback benchmark. As expected, performance was higher

using cross-validation (see Figure 2.8), suggesting information transfer between

the functional association network and the seed set causes the seed set to be ‘too

easy’ to predict.
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Figure 2.8: Comparison between Compass performance on new data and known
data (as measured by two-fold cross validation) in yeast and fly benchmarks.
Each data point represents performance on one GO term.

Furthermore, correlation between the two benchmarks was relatively low

(Pearson’s correlation coefficient of 0.260 for yeast and 0.073 for fly), indicating

that cross-validation on known protein sets is not a particularly good indicator

of performance when predicting novel proteins.

This low correlation could potentially interfere with parametrization because,

in practice, parameter selection usually involves some form of cross-validation.

Indeed, as discussed previously, cross-validation leads to a non-optimal choice of

parameters for the fly benchmark.

2.7.2 Effect of Gene Degree on Label Predictability

Next, we sought to investigate the relationship between a gene’s degree and how

easily predictable new labels for that gene are: some authors have raised concerns

that network-based prediction methods tend to favour high degree genes [64]. We

investigated this in our benchmarks by taking the set of test genes and looking

at the relationship between a gene’s degree and its position in the prioritized list

(thus, low ranking = high priority of being functionally associated with the seed

set).

In the yeast GO benchmark, there is a significant negative correlation be-

tween degree and ranking for both Compass and GeneMANIA (SCC -0.4031 and

-0.3266, respectively, p < 10−60) (see Figure 2.9): genes with high degree tend

to be easier to predict. Interestingly, the greatest difference in performance for

the two methods is for low degree genes, where Compass clearly outperforms

GeneMANIA.

In fly, on the other hand, the situation is very different: while GeneMANIA

performs relatively consistently across degrees (slight negative correlation be-

tween ranking and degree, SCC -0.1009, p < 10−15), Compass’ performance is

very dependent on degree (SCC -0.8189, p < 10−60).

However, when the same network is used as a predictor for the RNAi phe-

notypic benchmark, both methods shows a similar dependence on degree (SCC
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Figure 2.9: The effect of a gene’s degree on its predictability in the GO Bench-
mark. The figure shows the average ranking of novel labels, grouped by the
degree of the predicted gene. Error bars represent standard error of the mean.

-0.6117 and -0.6512 for Compass and GeneMANIA respectively), with Compass

again outperforming GeneMANIA on low degree nodes (see Figure 2.9). This

therefore suggests that the strong correlation seen between degree and perfor-
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Figure 2.10: The effect of a gene’s degree on its predictability in the fly phenotype
benchmark. The figure shows the average ranking of novel labels, grouped by
the degree of the predicted gene. The ease of prediction is measured as the
ranking of the gene in a prioritized list (low ranking = easy to predict). Error
bars represent standard error of the mean.

mance on the fly GO benchmark is not an inherent property of the network, but

depends on the set of genes used to seed and evaluate the performance.

2.7.3 Effect of Discovery Date on Label Predictability

Next, using the GO rollback benchmark, we investigated the effect of a label’s

discovery date on how easy it was to predict. In yeast, later labels are more

difficult to predict (see Figure 2.11): there is a significant positive correlation

between date of discovery and ranking for both compass and GeneMANIA (SCC

0.2058 and 0.1629 respectively, p < 10−15). In fly, a slight correlation is found

for Compass, but not GeneMANIA (SCC 0.0267, p = 0.033).

2.7.4 Effect of Degree on Discovery of New Labels

Having identified two factors affecting how well Compass and GeneMANIA pre-

dict gene labels (the labelled gene’s degree and the date at which the label was

discovered), we were interested in whether there could be a potential interaction

between these effects. We therefore looked at whether genes with high degrees

were more likely to acquire new labels.

In yeast, overall, genes with high degrees tend to acquire new labels first (see
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Figure 2.11: Relationship between date of how easy a label is to predict and the
degree of the labelled gene. The ease of prediction is measured as the ranking
of the gene in a prioritized list (low ranking = easy to predict). The width of
each distribution has been normalized individually (i.e. only relative shape, not
width, is relevant).

Figure 2.12): there is a significant negative correlation between degree and date

of discovery (Spearman correlation coefficient (SCC) -0.1750, p < 10−19). No
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significant correlation was found in the fly data.

Figure 2.12: Relationship between date of discovery of a new label and the
degree of the labelled gene on the GO rollback benchmark. The figure shows the
distribution of degrees of the genes for which new labels were discovered during
the course of each year. The width of each distribution has been normalized
individually (i.e. only relative shape, not width, is relevant).
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2.8 Discussion

2.8.1 Relative Performance of GeneMANIA and Compass

Overall, we find Compass outperforms GeneMANIA on a majority of our bench-

marks. Compass performs better on the RNAi phenotype, yeast GO and fission

yeast ageing benchmarks, while GeneMANIA outperforms Compass on the fly

GO rollback benchmark.

Interestingly, while success at predicting a particular label is correlated with

the degree of the labelled gene for both Compass and GeneMANIA on both

the RNAi and GO benchmarks, this effect is clearly strongest for Compass on

the fly GO benchmark, the only benchmark for which GeneMANIA outperforms

Compass. This is not a feature of the fly network itself: on the RNAi benchmark,

the degree-performance correlation of the two methods is comparable. The high

degree dependency of Compass’ performance on the fly GO benchmark therefore

appears to be a result of the data used to seed and/or evaluate the performance.

It is unclear what particular feature of the fly GO data results in this behaviour

- further investigation of this effect could provide further insights into the factors

determining the relative performance of the two algorithms.

Conversely, on the other benchmarks we studied, Compass outperforms Gen-

eMANIA on nodes with low degree. These are also the benchmarks for which

Compass outperformed GeneMANIA overall. This raises the possibility that a

key feature of a successful predictor is the ability to successfully make predictions

for genes for which less functional association information is available.

2.8.2 Further Investigation of the Effects of Network Quality on

Predictive Performance

The reliability of the predictions made by Compass and GeneMANIA is de-

pendent on the quality of the network data used by the algorithms. However,

prediction algorithms may differ in how well they tolerate noisy network data

and in their sensitivity to different types of noise (false edges versus missing

edges, for example). Given the concerns over functional association network

quality and completeness, understanding how an algorithm responds to noisy

input data is valuable. It would be interesting to test Compass’ dependence on

network quality by introducing noise into the functional association networks by

removing true edges and/or adding spurious edges to the network. Additionally,

because String gives each interaction a score according to the reliability of the

evidence for the interaction, further insight could be gained by experimenting

with different reliability score thresholds for the input network. This could help

understand whether the prediction algorithm performs better with a sparse high

quality network or with denser but less reliable network data.
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2.8.3 Cross-Validation and Parameter Selection

Our results also highlight potential difficulties when it comes to assessing how

well prediction methods perform. Like previous studies [175], we find that cross-

validation on known datasets overestimates the quality of our prediction meth-

ods: on the GO rollback benchmark when performance is measured on retrieval

of new labels, results are consistently lower than when performance is measured

by cross-validation on the labels known prior to the cut-off date. Furthermore,

the correlation between these two measures is low, suggesting that performance

on a cross-validation benchmark is not indicative of success in predicting new

labels. Additionally, as seen from our results on the fly GO benchmark, cross-

validation on the seed set may lead to non-optimal choice of parameters.

2.8.4 Temporal Effects

Our results on the yeast (but not fly) GO rollback benchmark also suggest an

interesting temporal effect on the difficulty of predicting new labels: labels ac-

quired a short time after the date of origin of the functional association networks

(‘early new labels’ ) are easier to predict than labels acquired several years later.

This effect may be attributable to information transfer between databases. If the

discovery of a new functional association clearly implicates a protein in a particu-

lar function, this function is 1) likely to be easily predictable from the functional

association data and 2) become incorporated into GO rapidly and thus feature

in the early new labels. In essence, this extends the problem of non-independent

network and evaluation data from cross-validation to early new labels as well.

Even if the discovery of functional associations does not directly lead to

functional annotation in GO, early new labels may still be non-independent

if the discovery of new labels is guided by the state of functional association

networks at the time. Indeed, a researcher interested in a particular pathway

is likely to use the information available at the time to test for new pathway

components. Thus, the network proximity of a hidden true positive to other

genes in its GO category could be a major factor in both how soon the label is

uncovered and how well the new label is predicted through guilt-by-association

approaches.

It is difficult to untangle the temporal effect from the effect of gene degree on

the predictive performance. Annotations for genes with high degree are easier

to predict. In the GO benchmark, genes with high degrees tend to acquire

annotations first. Therefore, the higher performance on the early new genes

may be due to this degree effect, rather than a direct consequence of temporal

effects. This would also explain why the correlation between date of discovery

and ease of prediction is not seen in the fly data, where no correlation between

degree and date of discovery was found.

These observations raise the question of why genes with a higher degree

acquire labels sooner. Again, we hypothesis similar effects to those discussed
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above: the discovery of new functional information is guided by what is currently

known about function. Thus, we are more likely to discover more about the

function of genes we are already familiar with. This is the ‘rich get richer’ effect

discussed in the Introduction.

These temporal effects are not seen in the fly. The reasons for this are

unclear. Investigating whether similar effects exist in other organisms would

allow determining how general these temporal effects are and would potentially

clarify why they are not seen in the fly data.

2.8.5 Problems with CAFA-Style Benchmarks

These observations raise the question of whether differences between early and

late new labels affects what is being assessed by CAFA or MouseFunc style

benchmarks. The time period between prediction and assessment (i.e. the time

window allowed for new annotations to accumulate) is typically under a year -

performance is therefore only assessed on the early new labels. If these labels are

indeed biased by the processes discussed above, the ability to assess prediction

methods’ performance will also be affected. This problem is exasperated by the

necessity of considering genes lacking a specific category labelled as negatives for

that term - when they could actually represent hidden true positives [43]. This

could lead to penalisation of methods ranking the ‘more difficult’ and not yet

discovered labels higher than the more obvious ones. This leads to the concern

that competition style benchmarks may encourage the building of tools to mimic

experimental discovery as opposed to guiding it.

2.8.6 Conclusion and Further Work

We have proposed a novel guilt-by-association prediction algorithm for gene

function prediction and compared its performance to GeneMANIA, a leading

network based prediction algorithm. We find that the relative performance of the

two algorithms is dependent on the benchmark set used, suggesting a one-size-

fits all approach to function prediction may not be optimal. However, it is worth

noting that on the benchmark sets where the functional association network

was independent from the evaluation data (i.e. RNAi and ageing benchmarks),

Compass consistently outperforms GeneMANIA.

We explicitly examine how the choice of a benchmark set affects perceived

performance. We find that on the GO benchmark, performance assessed through

cross-validation is not necessarily indicative of performance on new labels and

that, for CAFA-style prediction challenges, the time lag between prediction and

evaluation may significantly alter perceived performance. Thus, while these

systematic evaluation efforts are crucial for meaningful comparison of prediction

algorithms, there are questions over choice of benchmark sets and evaluation

methods that remain to be addressed. It seems clear that simply relying on the

GO for comparison of different algorithms is not sufficient.
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Part of the difficulty in protein function prediction arises from the broad-

ness of the concept of protein function. Indeed, it would be surprising if a

single method performed optimally in all contexts. Thus, a potentially fruit-

ful approach would be to focus on optimizing prediction algorithms for specific

contexts, instead of seeking to build a general function predictor.

The work in the chapter has explored protein function prediction in a function-

centric context: the algorithm is designed for users interested in finding novel

proteins involved in a specific function. As mentioned previously, similar algo-

rithms can also be applied to predicting the function of a specific gene. This is

an important potential application for Compass-type methods: there is a grow-

ing gap between the number of sequenced genes and the number of functionally

annotated genes. The usefulness of network-based prediction methods for this

type of prediction is limited because there is often very little functional asso-

ciation data about unannotated genes. A strength of the Compass method is

that the kernel used for prediction need not be derived from network-data. It

would be straightforward to construct a kernel from structural similarity data,

for example. Thus, if used with non-network input data, Compass could also be

a valuable tool for predicting the function of unannotated genes.
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Chapter 3

Identifying Genetic

Interactions between Loss of

Function Tolerant Genes

3.1 Introduction

One of the fundamental questions in modern biology is the relationship between

genotype and phenotype. For a limited number of phenotypes (Mendelian dis-

eases for example), this relationship is well understood. Overall however, how

variation in genotype leads to variation in phenotype remains an open question.

Considerable efforts have been made to address this issue. Large scale

projects mapping human genetic variation, such as the 1000 genomes project [1]

which involves the complete sequencing of over 1000 human genomes, hold a

lot of promise and provide rich data sets for computational approaches. One

interesting observations arising from these efforts is the high frequency of non-

functional genes in the genomes of healthy people. This tolerance to loss of

function is surprising: redundant genes would be expected to be lost during the

course of evolution. Therefore, this apparent redundancy (often referred to as

loss of function tolerance) is of interest to researchers [143].

3.1.1 Loss of Function Variation

Loss of function (LoF) variants are mutations in protein coding genes (or, indeed,

in functionally important non-coding regions) that lead to significant or complete

loss of protein function. Traditionally, LoF variants have been assumed to be

deleterious and therefore expected to occur only rarely. However, in light of

recent whole genome sequencing studies, it appears that LoF variants may be

more common than previously thought: estimates for the number of LoF variants

carried by apparently healthy individuals rage from 100 to 800 [143].

However, a number of factors make discerning between apparent and gen-

uine LoF tolerance challenging. Firstly, correctly identifying LoF variants is
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problematic (see below), leading to a high probability of false calls. Secondly,

if LoF variants occur only heterozygously, they may in fact be recessive dis-

ease mutations. Thirdly, even LoF variants appearing homozygously in healthy

genomes may have a complex relationship to phenotype, such as being necessary

only in specific genetic backgrounds or environmental conditions.

3.1.2 Challenges in LoF Variant Identification

The identification of LoF variants requires predicting whether changes in the

coding sequence will result in a non-functional protein. Both the sequencing and

prediction processes are associated with errors. It is therefore possible that high

LoF variant frequency may be partially attributable to calling errors. Therefore,

before studying the frequency of LoF variation in more detail, we must first

address the question of false positives.

Potential sites for loss of function variants are particularly sensitive to se-

quencing errors [144]. Sequencing technologies involve DNA fragmentation, se-

quencing of these fragments (i.e. ‘nucleotide calling’) and mapping of the re-

sulting reads onto a reference genome. Both base calling and mapping processes

are error prone, with next generation, short-read sequencing technologies being

particularly vulnerable to these mis-call and mis-mapping errors [151]. The rea-

son this problem is particularly acute for potential loss of function sites is that

variants disrupting protein function are under negative selection, which leads to

lower variation in functional regions of the genome. Meanwhile, sequencing er-

ror is uniformly distributed across the genome. Thus, the signal (true variation)

to noise (calling and mapping errors) is expected to be lower in functional re-

gions than genome average, leading to a higher rate of false positive LoF variant

calling [144].

Even discounting sequencing errors, the challenge of predicting which variants

will give rise to non-functional protein remains. Generally, variants causing

premature stops, shifts in the reading frame, splice site disruption or large scale

deletion are categorised as LoF variants [144]. However, the true phenotypic

consequence of these variants is not necessarily complete loss of function. For

example, in some cases, a truncated transcript may produce a functional version

of the protein. Furthermore, given the prevalence of alternative splicing in the

human genome [108], we would expect to find some LoF variants affecting only

a subset of a gene’s transcripts.

Attempts have been made the mitigate these problems. MacArthur et al

[143] filter candidate LoF variants from the pilot phase of the 1000 genomes

project (185 sequenced genomes and 3000 putative LoF variants) based on

sequence read mapping and quality, local sequence context, gene annotation and

the predicted effect of nearby variants. This process filtered out the majority

of the candidate LoF tolerant genes, giving the previously mentioned estimate

of 100 high confidence LoF variants per genome. Thus, even using conservative
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estimates, LoF tolerance is surprisingly common.

3.1.3 Interactions between Genes: Recessive LoF Variants and

Epistasis

One potential explanation for the frequency of LoF tolerant genes is that some

of these genes are only conditionally LoF tolerant: the gene is only necessary

in specific genetic backgrounds or environmental conditions. Recessive disease

alleles are the most straightforward example of this type of interaction: the dis-

ease phenotype only manifests in presence of both disease alleles. More complex

interactions between genes at different loci are known as genetic interactions or

epistasis and are considered to be fundamental in understanding complex dis-

ease [35]. Thus, differentiating between genuine LoF variants, recessive disease

alleles and variants associated with complex disease would be of great interest

from a clinical point of view.

3.1.4 Aims and Objectives

This chapter explores loss of function variation in the 1000 genomes project, iden-

tifying potential genetic interactions between a set of apparently loss of function

tolerant genes - that is, genes for which variants are present homozygously in

the genome of healthy individuals. First, we develop approaches for identifying

pairs of potential genetic interactors and analyse a list of putative interactors.

Secondly, we explore methods for identifying larger communities of potential ge-

netic interactors and suggest a set of potential epistatic communities based on

these methods.

3.2 LoF Data

The data used in this chapter was collected as part of phase 1 of the 1000 genomes

project (1092 genomes) [1]. Prior to the work presented here, LoF variants were

identified from the sequence data as outlined in [143]. Briefly, variations causing

shifts in reading frame, splice overlap or premature stops within a coding region

were classified as LoF variants (Figure 3.1). LoF variants occurring in only one

allele were excluded - all remaining LoF variants (317 genes) thus correspond to

homozygous loss of function.

This data can be presented as an occurrence matrix, X, of dimensions m by

n, where m is the number of genes with LoF variants in the healthy genomes

(317) and n is the number of genome samples (1092). X(i, j) = 1 if sample j

has a homozygous loss of function variant of gene i and 0 otherwise.
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Figure 3.1: Types of variation predicted to lead to loss of function: frame shifts
(FS), splice overlap and premature stops. The pie chart shows the proportion
of the LoF variants in the 1000 genomes data set resulting from each type of
variation.

3.3 Identifying Pairwise Genetic Interactions

The identification of genetic interactions in humans is challenging. In model

organisms, particularly yeast, genetic interactions have been probed by inducing

loss of function (‘knocking out’) two genes simultaneously and comparing the

resulting phenotype to the single knock-out phenotypes. Double knock-outs can

be performed in human cell lines, but this only allows identifying interactions

that affect phenotype at the cell level. Epistasis in humans has also been studied

using genome-wide association studies (GWAS) [135], using statistical methods

to detect over-representation of single nucleotide polymorphism (SNP) pairs in

individuals with a particular disease. This approach is potentially powerful, but

also has drawbacks. Firstly, because individuals have a large number of SNPs -

approximatively around 10 million per genome [124,195] - a large number of sam-

ples will be needed to confidently detect interactions between them. Secondly,

detecting genetic interactions using GWAS requires focusing on interactions as-

sociated with a particular disease.

Here, we propose an alternative approach: we look for pairs of LoF variants

that occur together in healthy genomes less often than expected (Figure 3.2).

We are interested in genetic interactors that have detrimental effect on health:

78



thus, by definition, genomes with loss of function in both of these interactors

would be less likely to appear in our sample of healthy genomes. LoF variants

occurring together in healthy genomes less often than expected are therefore

candidates for genetic interactors.

Our approach has the advantage of not having to focus on a specific disease.

Additionally, because we are specifically interested in LoF variants instead of

SNPs, we require fewer samples. The drawback, however, is that we are limited

to the study of complete loss of function, and will therefore not be able to detect

the consequences of more subtle variation. Additionally, while the sample size

required is smaller than in GWAS, the 1000 genomes available to us may not

provide enough statistical power to identify interactnewnightions between rarer

LoF variants. Nevertheless, the accumulation of sequence data is on-going. Thus,

even if interesting interactions are not found in the 1000 genomes data set, the

methods developed will be applicable once more data is available.

Figure 3.2: The Figure shows the LoF co-occurrence matrix: how often ho-
mozygous LoF variants at different loci appear in the same healthy genome in
thousand genomes project data. The co-occurrence matrix, A, is computed as A
= XXT . The colour in the heatmap represents the number of samples in which
both genes carry homozygous LoF mutantions (on a logarithmic scale with base
e). We are interested in identifying gene pairs which co-occur less often than
expected based on their prevalence in the genome data. Note that the diagonal
entries in the matrix are all non-zero: they represent how many genomes each
LoF variant occurs in. The diagonal appears discontinuous because of the figure
resolution.
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3.3.1 Hypergeometric Model

To identify pairs of LoF variants co-occurring at unexpectedly low frequencies,

LoF co-occurrence was modelled using the hyper-geometric distribution. The

probability P (k) of LoF variants in gene A and gene B occurring in the same

genome k times is given by:

P (k) =

(
a
k

)(
n−a
b−k
)(

n
b

)
where a is the number of samples LoF variant A occurs in, b is the number

of samples LoF variant B occurs in and n is the total number of genomes.

A p-value for the co-occurrence of each gene pair was computed using this

distribution. In order to account for multiple testing, actual false discovery rates

were estimated by bootstrapping. The data in each row of the occurrence matrix

was reshuffled: the frequency of each LoF was kept constant, but the genomes

in which they occur were randomized. In this permuted data, no attractive or

repellent relations exist between the LoFs, therefore, all LoF pairs picked up as

either significantly over or under co-occurring are false positives. False discovery

rates r at different p-values cut-offs were estimated based on the number of false

positives at each cut-off (Figure 3.3), averaged over repeated randomizations

(5000 repeats):

rp<c = Ñp<c/Np<c

where, at significance threshold c, Ñ is the average number of significant

pairs identified in the randomized data and N is the number of significant pairs

identified in the original occurrence data.

An actual false discovery rate of 0.05 for both over and under co-occurrence

was deemed acceptable. This corresponded to a cut-off of p = 0.0005 for over

co-occurrence and p = 0.005 for under co-occurrence. This model identified 154

under co-occurring and 143 over co-occurring gene pairs, representing interac-

tions between 90 LoF variants (Table 3.1).

3.3.2 Confounding Factors and Model Refinement

The aim of the analysis is to identify under co-occurring pairs. The assumption is

that these pairs under co-occur in the healthy population because their combined

effect is associated with a decreased probability of being healthy and therefore

a decreased probability of the genome appearing in the thousand genome data.

(It is worth noting that over co-occurrence could potentially correspond to al-

leviating genetic interactions where the presence of one LoF variant alleviates

the negative effects of another. For simplicity, we will focus only on the under-

occurrence in this work). However, genetic interactions are not the only reason

some LoF variants my occur less often than expected: under co-occurrence may
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Figure 3.3: Correcting for multiple testing: the estimation of false discovery
rates (y-axis) for p-value cut-offs from the hypergeometric (HG) test (x-axis).
The figure shows total false discovery rate across all gene pairs for different p-
value cut-offs when testing individual gene pairs, as estimated by bootstrapping.

also be due to linkage effects and population stratification.

Linkage Effects

Genes that are located close together on a chromosome are more likely to be in-

herited together. Therefore, for genes on the same chromosome, the assumption

of independent occurrence does not apply. If a population is descended from

a relatively small ancestor population (‘population bottleneck’), co-occurrence

relations in that population may simply reflect those present by chance in the an-

cestor population, and thus not have functional importance. With independent

inheritance, this effect would disappear rapidly, but a tendency to be inherited

together will slow down this process.

Although linkage effects only act in one direction (increasing the probability

of being inherited together), counter-intuitively, they can still result in under

co-occurrence between LoF pairs. If a LoF-variant of gene A is located close to a

non-LoF variant of gene B in the ancestor population, this will result in the over

co-occurrence of LoF-A and non-LoF-B. However, if LoF-B occurs frequently

enough, the over co-occurrence of LoF-A and non-LoF-B will appear as the

under co-occurrence of LoF-A and LoF-B.

To assess the impact of linkage on the LoF pairs identified, we inspected

pairs located on the same chromosome. 31 out of the 143 over co-occurring pairs

and 16 out of 154 under co-occurring pairs were found on the same chromosome.
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This is higher than we would expect by chance: sampling pairs of LoF variants

randomly gives an average of approximately 10 pairs on the same chromosome.

This suggests that some of the LoFs pairs we identify as over or under co-

occurring may not be functionally significant, but simply due to linkage.

Because of chromosomal cross-over (the exchange of genetic material between

homologous chromosomes) physically distant loci on the same chromosome are

inherited independently. As a first approximation, we used a genomic average

of recombination rate to estimate the distance at which gene pairs could be con-

sidered to be inherited independently. Yu et al [252] have estimated that for a

distance of 0.75 mega base pairs (Mbp), the expected frequency of chromoso-

mal cross-over is 1%. Thus, loci separated by over 37.5 (0.75 ∗ 50) Mbp have

50% expected cross-over frequency and can thus be considered to be inherited

independently. Therefore, as a rough guide, LoF pairs on the same chromosome

separated by more than 40 Mbp should not be attributable to genetic linkage

effects. More accurate estimates could also be made by considering chromosome

specific recombination rate estimates.

Figure 3.4: The number of LoF pairs in the significantly over and under co-
occurring sets separated by less than x base pairs. Pairs of LoF variants that
are not on the same chromosome are ignored.

The distance at which loci can be considered independent could also be esti-

mated from our data. Figure 3.4 shows the cumulative distribution of distance

between the significantly over or under co-occurring LoF pairs. We can think

of this distribution as arising from two processes: the underlying probability

of observing over or under co-occurring LoFs, which, for now, we will assume

is independent of distance (however, this point will be discussed further later)

and the genetic linkage effect, which will decay with distance. The first process

would be expected to give rise to an approximately linear relationship between

the distance cut-off and the number of observed pairs (until the distance cut-off

becomes of the same order of magnitude as chromosome length). Thus, above

distances for which the genetic linkage effect becomes negligible, the cumulative

distribution should be approximately linear. From our curve, this appears to be

around 20 Mpb, an estimate of the same order of magnitude as the one based
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on recombination rate.

It would also be possible to explicitly account for linkage effects in the null

model used to identify significantly over or under co-occurring LoF pairs. How-

ever, there is evidence to suggest that genetic interactors are likely to occur close

together on the genome. Firstly, functionally related gene pairs are known to be

located closer together on the genome [176]. Secondly, gene duplication is known

to be an important mechanism in the evolution of genetic interactions [104], in-

creasing the probability of finding genetic interactors in close proximity to each

other.

Thus, explicitly accounting for linkage effects in the null model or disregard-

ing LoF pairs occurring too close together increases the risk of not detecting

functionally interesting LoF pairs. Given the small size of the current sample, a

more pragmatic strategy is to ignore the effects of linkage in the identification

process, but consider them in the interpretation of the results.

Population Stratification

The population sampled in the thousand genomes dataset is not genetically ho-

mogeneous. The Phase 1 data comprises genomes from people of African (n

= 246), American (n = 181), East Asian (n = 286) and European (n = 379)

decent. Physical separation, followed by genetic drift, can lead to systematic

differences in allele frequency between populations, an effect referred to as pop-

ulation stratification. If two LoF variants occur at different frequencies in differ-

ent populations, their under co-occurrence may simply be due to this population

stratification and not reflect a functional interaction. Figure 3.5 illustrates the

relative population specific frequencies of LoFs found to under co-occur with

other LoFs. The uneven distribution of numerous LoFs in the different popu-

lations suggests that population stratification may indeed contribute to under

co-occurrence.
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There are a number of ways in which we can attempt to discount this pop-

ulation effect. One solution would be to analyse each population separately -

however, this will considerably reduce sample size and thus statistical power. It

is therefore useful to consider alternative strategies. Theoretically it is possi-

ble to construct a hyper-geometric model which takes into account population

structure, by considering co-occurrence within each population separately as il-

lustrated in Figure 3.6. However, in practice, this distribution is prohibitively

intensive to compute: if two LoFs occur in the same sample k times, there are 4k

ways these occurrences could be distributed in the 4 populations (k in African;

k − 1 in African, 1 in American; etc...).

Figure 3.6: A model of co-occurrence taking into account population structure:
each population is treated separately and total co-occurrence is the sum of the
population co-occurrences. A Venn diagram depicts the samples (n) from each
population, the samples (a) in which LoF variant A appears, the samples (b) in
which LoF variant B appears and the samples in which the two variants co-occur.

A more practical approach is to estimate p-values by bootstrapping. As il-

lustrated in Figure 3.7, by keeping the number of times each LoF occurs within

a population constant, but randomizing the samples they occur in, a proba-

bility distribution can be computed and p-values estimated. An example of a

distribution is shown in Figure 3.8.

False discovery rates were estimated as discussed in Section 3.3.1. The re-

lationship between p-value cut-off and false discovery rate is illustrated in Fig-

ure 3.9. A total false discovery rate of 0.05 is achieved by selecting a significance

threshold of 2.5× 10−4 for both under and over co-occurrence.

The disadvantage of this approach is that it may mask genuine genetic inter-

actions: especially for low frequency LoF variants, the variants may be unevenly

distributed between populations by chance. Such pairs would not be detected

as significantly under co-occurring, because the effect would be attributed to

population stratification.

It is also worth noting that each of the ancestry categories (i.e. African,

American, East Asian and European) is divisible into sub-populations, although

variation between these sub-populations is likely to be less significant than be-

tween the populations. Given that statistical power of our analysis is limited by

the relatively small sample size, we chose to ignore sub-population structure.
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Figure 3.7: Bootstrapping for estimating p-values for the hypergeometric model
taking into account population stratification. The frequency of each LoF variant
is kept constant within each population, but the samples it occurs in are re-
shuffled. Repeating this process allows estimating the distribution of expected
co-occurrence, if all LoF variants behave independently.

3.3.3 Pairwise Interactions: Results

The original model identified 154 under co-occurring gene pairs, representing

interactions between 65 LoF variants. 23 of these LoF variants were olfactory

receptors (ORs). Loss of function in ORs is common in the human genome [143].

Based on prevalence of OR pseudogenes in different mammals, OR loss has

become more common during primate evolution [55]. This has been interpreted

as a decrease in the functional importance of OR genes. Thus OR genes may

be more likely than other genes to be genuinely LoF tolerant. Although this

does not preclude the existence of genetic interactions involving ORs, results

involving ORs have been omitted for clarity.

Omitting pairs involving ORs left 68 pairs, corresponding to interactions

between 37 LoF variants. These are listed in Table 3.1. In the population

corrected model, only one non-OR pair was identified (a pair also identified in

the original model).

3.3.4 Interpretation and Evaluation of Putative Interactions

Evaluating the reliability of our results is not straightforward. None of the

putative genetic interactions from Table 3.1 overlap with documented genetic

interactions in BioGRID. However, the genetic interaction data for human is very

sparse: BioGRID only holds 1676 interactions for human (compared to 150394

for yeast). Indeed, out of the 317 LoF tolerant genes, only 8 had documented

genetic interactions in BioGRID and none of these interactions involved another

of LoF tolerant genes. Comparison with existing BioGRID genetic interactions
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Table 3.1: Putative genetic interactions identified from the human genome data
by testing for significant under co-occurrence. If the gene pair is on the same
chromosome, the table also shows distance between the loci (in base pairs). One
pair was also identified in a model correcting for population structure. This pair
is italicised in the table.

Gene 1 Gene2 Distance
(bp)

AC133919.6 ALMS1 -
ALMS1 C17orf77 -
AC133919.6 C5orf27 -
C17orf77 C5orf27 -
AC018755.11 FAM187B 16377033
ALMS1 FMO2 -
AC018755.11 FUT2 2889379
C5orf27 FUT2 -
AC133919.6 GAB4 -
AC133919.6 GDPD4 -
ALMS1 GRIA1 -
AC018755.11 KRTAP13-2 -
AC018755.11 KRTAP4-8 -
C5orf27 KRTAP4-8 -
IFNA10 KRTAP4-8 -
KRT37 KRTAP4-8 324724
FUT2 LILRA2 5891993
FUT2 LILRA3 5597305
FUT2 LILRB1 5936481
AC133919.6 MAGEE2 -
C17orf77 MAGEE2 -
FUT2 MAGEE2 -
KRTAP4-8 MAGEE2 -
AC133919.6 MAN2A1 -
C17orf77 MAN2A1 -
FUT2 MAN2A1 -
KRTAP13-2 MAN2A1 -
KRTAP4-8 MAN2A1 -
C5orf27 PKD1L2 -
MAGEE2 PKD1L2 -
MAN2A1 PKD1L2 -
KRTAP4-8 PTCHD3 -
ALMS1 RP11-455G16.1 -
AC133919.6 RP11-48B14.2 -

Gene 1 Gene2 Distance
(bp)

C12orf60 RP11-48B14.2 -
C17orf77 RP11-48B14.2 68994530
CYP2F1 RP11-48B14.2 -
DEFB126 RP11-48B14.2 -
DSCR8 RP11-48B14.2 -
FMO2 RP11-48B14.2 -
FUT2 RP11-48B14.2 -
GPR142 RP11-48B14.2 68769581
GRIA1 RP11-48B14.2 -
HSD17B13 RP11-48B14.2 -
RP11-455G16.1 RP11-48B14.2 -
KRTAP4-8 SLC22A14 -
AC133919.6 SLC35G6 -
FUT2 SLC35G6 -
GRIA1 SLC35G6 -
AC133919.6 TEX26 -
C17orf77 TEX26 -
AC133919.6 ZNF284 -
C12orf60 ZNF284 -
CYP2F1 ZNF284 2967891
FMO2 ZNF284 -
ALMS1 ZNF474 -
RP11-48B14.2 ZNF474 -
ZNF284 ZNF474 -
AC133919.6 ZNF804A -
C17orf77 ZNF804A -
DEFB126 ZNF804A -
FMO2 ZNF804A -
FUT2 ZNF804A -
GRIA1 ZNF804A -
ZNF474 ZNF804A -
ALMS1 ZNF860 -
RP11-48B14.2 ZNF860 -
ZNF804A ZNF860 -
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Figure 3.8: Example of a cumulative probability distribution for a LoF pair in
the original hypergeometric model and in the population corrected model. One
of the LoFs occurs in 45 samples (occuring in 26, 1, 16 and 2 Asian, African,
European and American samples resectively) and the other in 58 samples (27, 13,
14 and 4 for Asian, African, European and American samples). For this LoF pair,
the population corrected null model reduces the probability of co-occurrence of
the LoF pair.

is therefore not an adequate way of validating our method. As an alternative

approach to evaluating our results, we attempted to look for interactions between

yeast orthologs of our putative interactors. However, only three of the putative

interactors had yeast orthologs. Thus, we were unable to evaluate our results

using existing interaction data.

Some of the putative interactions seem like plausible candidates. For exam-

ple, in the pair identified using both the original and population corrected model

(KRT37 and KRTAP4-8a), both proteins are involved in hair and nail formation

(KRT37 is a keratin protein and KRTAP4-8a is a keratin associated protein). A

functional association between these two proteins is therefore likely, although we

found no evidence in the literature to indicate a potential genetic interaction be-

tween the two. It should also be noted that these two proteins are close together

on the same chromosome: the result may therefore reflect a linkage effect.

The interaction between FUT2 (a Golgi stack membrane protein involved

in antigen synthesis pathways) and the leukocyte immunoglobulin-like receptor

group (LILRA2, LILRA3 and LILRB1) is also interesting. An association study

in the Finnish population found a significant link between Celiac disease and
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Figure 3.9: Estimation of false discovery rates for hypergeometric test signifi-
cance threshold in the population corrected model. The figure shows total false
discovery rate across all gene pairs for different p-value cut-offs when testing
individual gene pairs.

FUT2 loss of function [173]. Several genome wide association studies on the

other hand, have indicated a potential association between Celiac disease and

the region of chromosome 19 containing the LIL receptors (region 19q13.4) [154].

It is worth noting that while FUT2 is also located on chromosome 19 (19q13.3),

it is not located in the region identified in the genome wide association studies.

It is therefore possible that we see the lower than expected co-occurrence of these

loss of function variants because their co-occurrence increases the probability of

developing Celiac disease. A caviat to this hypothesis is that because Celiac

disease can develop at any age [51], the extent to which individuals with the

disease would be excluded from participating in the 1000 genomes project is

unclear.

3.4 Network Approaches to LoF pairs

The analysis above focuses solely on pair-wise relations between genes. How-

ever, genetic interactions may also arise between larger groups of genes. We are

therefore interested in detecting under co-occurrence in larger communities of

genes.

Modularity based clustering methods are a powerful way of detecting com-

munity structure in networks. This section will briefly introduce the use of

modularity in community detection and then build on existing modularity based

algorithms to make them applicable to epistatic community detection in genome

data.
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3.4.1 Introduction to Modularity

The identification of community structure in networks, or graph partitioning,

has received a lot of attention in network science [160]. Broadly, approaches to

network clustering problems can be divided into two categories depending on

whether the number of clusters is pre-determined. When the number of clusters

is pre-determined, partitioning the network can be expressed as a constrained

optimization problem: assigning nodes into a fixed number of clusters such as

to minimize the number of edges between clusters - there are a number of well

known approaches that can be applied to this sort of problem. Unfortunately

however, for a large number of situations in modern network science, the number

of clusters is not pre-determined: alternative approaches are therefore required.

For a number of network science clustering problems, it is assumed that

the network in question divides naturally into communities - the goal is thus

to discover these communities from the network data [162]. Thus, instead of

simply minimizing the number of edges between the clusters, partition methods

seek to divide the network so that the number of edges running between clusters

is smaller than expected [162]. To illustrate this difference, a partition seeking

to minimize the number of edges between clusters, with no constraints on the

number of clusters, would simply place all nodes into a single cluster. Taking

into consideration the expected number of edges allows avoiding these types of

solutions.

Thus, we seek a partition that maximizes a modularity function Q.

Q = (number of edges within clusters) − (expected number of such edges)

The expected number of edges is computed using a null model representing

a network without community structure. The choice of null model is thus ex-

tremely important in the computation of the partition. Newman proposed [162]

a null model that preserves expected degree: the probability Pij of an edge being

assigned between nodes i and j is proportional to the degree (k) of i and j:

Pij = kikj/2m

where m is the number of edges in the network.

Q is then given by:

Q =
1

2m

∑
ij

[Aij − Pij ]δ(gi, gj)

where δ(r, s) = 1 if r = s and 0 otherwise gi is the cluster into which node

i has been allocated. The factor 1
2m is irrelevant as it has no bearing on the

solution of the optimization problem - it is included by convention, for historical

reasons [162].
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Considering first the division of the network into just two clusters, let si = 1

if node i belongs to one cluster and si = −1 if node i belongs to the other.

Making use of
∑

ij Aij =
∑

ij Pij, Q can be written in terms of s as:

Q =
1

4m

∑
ij

[Aij − Pij ](sisj + 1)

=
1

4m

∑
ij

[Aij − Pij ](sisj)

=
1

4m
sTBs

where s is a vector with ith element equal to si and B = A −P. Note that

this is expression is similar to that used in spectral clustering, with B replacing

the graph Laplacian. The reasoning below used to derive the partition is thus

the same as that used in spectral clustering.

By expressing s as a linear combination of the normalized eigenvectors ui of

B (so that s =
n∑
i=1

aiui with ai = uT
i · s), Q can be re-written as:

Q =
1

4m

n∑
i=1

aiu
T
i B

n∑
j=1

ajuj

=
1

4m

n∑
i=1

(uT
i · s)2βi

where βi is the eigenvalue corresponding to the eigenvector ui.

Thus, choosing s as the eigenvector corresponding to the largest eigenvalue

would maximize Q. However, the elements of s are constrained to take values

of either 1 or −1. The best approximation is to set the value of si according to

the sign of the ith value of the eigenvector.

The division of the network into more than two parts is achieved through re-

peated divisions in two. However, treating the two clusters as separate networks

would be incorrect: this would mean ignoring edges falling between the clusters,

thus changing the degree of the nodes and therefore the modularity, leading to

the maximization of the wrong quantity. Instead, the additional change in mod-

ularity ∆Q from subdividing cluster g must be expressed explicitly, as outlined

in [162]:

∆Q =
1

4m
[
∑
i,j∈g

Bij(sisj)−
∑
i,j∈g

Bij ]

Because s2i = 1,
∑
i,j∈g

Bij can be expressed as:

∑
i,j∈g

Bij =
∑
i,j∈g

(sisj)δij
∑
k∈g

Bik

thus allowing (sisj) to be factored out and ∆Q to be written as:
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∆Q =
1

4m

∑
i,j∈g

[Bij − δij
∑
k∈g

Bik](sisj)

=
1

4m
sTB(G)s

where B
(G)
ij is the ng×ng matrix corresponding to nodes belonging to cluster

g, given by:

B
(g)
ij = Bij − δij

∑
k∈g

Bik

If the additional contribution to the modularity from further sub-division

of the cluster is positive (∆Q > 0, the partition is accepted. The sub-division

process is continued until the modularity can no longer be increased by further

division.

3.4.2 Anti-Community Clustering

As we have seen, the most positive eigenvalue and corresponding eigenvector

contain information about the community structure of a network. Meanwhile,

the most negative eigenvalue and corresponding eigenvector contain information

about ‘anti-community’ structure: by using the eigenvector to determine clusters,

we are minimizing the modularity, instead of maximizing it, thus selecting a

partition where the number of edges within the cluster is smaller than expected

[161]. Note that this is equivalent to reversing the sign of B and using the

eigenvector corresponding to the largest eigenvalue.

3.4.3 Identification of Epistatic Communities from Co-Occurrence

Data

In this section, we apply modularity based methods to identify higher order

genetic interaction (‘epistatic communities’) between the LoF variants. Our goal

is to divide the LoF variants into groups with lower than expected co-occurrence.

First, we develop and test several variations on the modularity based methods

outlined above, before applying these methods to identify groups of genes with

genetic interactions.

Clustering Approaches

The first possible approach would be to treat the co-occurrence matrix (Fig-

ure 3.2) itself as the adjacency matrix of the network. Finding groups of genes

with genetic interactions would thus correspond to partitioning the network into

modules containing as few edges as possible.

This network could thus be clustered using the same modularity based method

as above, using the degree preserving null model (Pij = kikj/2m), where ki is
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the weighted degree of node i and m is the total number of edges.

Another possibility is to compute the null model based on the frequency of

the LoF variant in the thousand genomes data, i.e. explicitly modelling the

expected co-occurrence between LoF variants if the probability of each variant

being present in a sample was independent of the presence or absence of other

variants:

P (i, j) =
ninj
S

where S is the number of samples and ni is the number of samples LoF variant

i occurs in.

There is an important difference between these two null models: in the degree

preserving null model,
∑

ij Aij =
∑

ij Pij , insuring the elements of B sum to zero.

This, however, is no longer true when calculating the expectation based on the

frequency of the LoF variants. Newman’s model uses
∑

ij Aij =
∑

ij Pij in the

derivation of the expression for Q. Thus, for the frequency based null model, Q

should be expressed as:

Q =
1

4m

∑
ij

[Aij − Pij ](sisj + 1)

=
1

4m
[
∑
ij

[Aij − Pij ](sisj) +
∑
ij

[Aij − Pij ]]

=
1

4m
[sTBs +

∑
ij

Bij ]

Because
∑

ij Bij is a constant independent of the choice of partition, the

result of the clustering will not be affected. With further sub-division of the

modules, the constant will cancel out in the computation of ∆Q. Thus, the

modularity maximization/minimization algorithm is still valid.

However, although we can use the same algorithm for the clustering, the

change in null model may have significant impacts on the number of modules we

find: if, for example, the expected co-occurrence tends to be greater than the

observed co-occurrence then the majority of the elements in B will be negative.

Because the sign of the elements in B is what determines module allocation,

all negative elements would lead to trivial solutions of all nodes in the same

module or all nodes in different modules (depending on whether we are clustering

according to smallest or largest eigenvector).

It is therefore worth exploring whether better results are achieved by intro-

ducing a weighting constant in the computation of B so that:

B = A− αP

where α =
∑

ij Aij/
∑

ij Pij .

A third approach is to cluster the occurrence matrix X (as defined in sec-
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tion 3.2) instead of the co-occurrence matrix. The matrix can be thought to

represent a bipartite graph, with LoF variants corresponding to one type of

node and samples to the other. We aim to partition this network so as to min-

imize the number of edges falling between clusters. By extension of previous

ideas, we can define a null model for this graph as:

Pij = kikj/2m

where, as before, ki is the degree of node i (i.e. the number of samples variant

i appears in) and kj is the degree of node j (i.e. the number of LoF variants

appearing in sample j). As before, we can use this to compute the modularity

matrix B. Here, however, X and therefore P and B are not square matrices.

Indeed, we are clustering two types of nodes: genes and samples. Our expression

for Q therefore becomes:

Q =
1

4m
qTBr

where q and r are vectors indicating the module assignments of genes and

samples respectively. As with s, qi = 1 if gene i belongs to group 1 and −1 if it

belongs to group 2.

Following the same reasoning as previously, we express q and r in terms of

the left and right singular vectors of B to give:

Q =
1

4m

n∑
i=1

m∑
j=1

(uT
i · q) ∗ (vT

i · r)σij

where ui and vi are the ith right and left singular vectors of B and B = UσV.

Thus, as before, the optimal partition of the matrix is given by choosing q and

r according to the sign of the elements of the right and left singular vectors

corresponding to the smallest singular value.

This approach, however, becomes problematic when wanting to continue the

subdivision of the network. Previously, modularity was re-expressed in terms

of B
(G)
ij relating to the sub-division of module g. The formulation of g was

dependent on s2i = 1. This, however, is not necessarily true of qi ∗ ri and thus we

cannot adapt our previous approach to the clustering of the original data matrix.

In order to proceed, we can treat the modules as separate sub-networks, although

this will lead to the optimization of the wrong quantity (see Section 3.4.1).

In summary, we have proposed four possible approaches for identification of

epistatic communities:

1. Treating the co-occurrence matrix as a network and computing a modu-

larity matrix using a degree preserving null model.

2. Treating the co-occurrence matrix as a network and computing a modu-

larity matrix based on the frequency of occurrence of each LoF variant.
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3. Modifying approach 2 to include a weighting in computing the modularity

matrix to ensure its elements sum to zero.

4. Treating the original data matrix as a bipartite network and using a sin-

gular value decomposition to find the optimal partition.

3.4.4 Evaluation of Partition Approaches

Clustering approaches are typically benchmarked using data with a known com-

munity structure: the performance of the algorithm is evaluated based on how

well the clustering replicates the real structure. However, real-word data with a

known anti-community structure is not readily available. Therefore, to evaluate

the performance of the four proposed algorithms, data with a predefined anti-

community structure was created and the algorithms benchmarked using this

data.

Creation of Simulated Data

Ideally, the data used to evaluate the clustering algorithms would have properties

as close as possible to the real data. However, generating data with the correct

properties is not trivial: there are a number of uncertainties in the processes

governing the appearance of LoFs in genomes.

The approach we chose was to model the occurrence of LoF variants as

independent variables (ignoring population and genomic distance effects) and

introducing a term to model the decreased probability of finding certain groups

of LoFs in the same healthy genome.

First, we create a set ofm pre-defined epistatic communities C = (c1, c2, ..., cm)

by randomly assigning some of the LoF variants into one of the communities.

(The specifics of the size and number of the communities used during testing

are discussed below). Based on these communities, we define a matrix of inter-

actions J , where Jij = 1 if i and j are in the same community and 0 otherwise.

We also assign each LoF variant li a ‘base’ probability (λ(li)) of being present

in the sample (where li = 1 indicates the presence of LoF i and li = 0 indicates

its absence). To create data similar to the true data, we set λ(li) according to

the frequency of occurrence of li in the original data (λ(li) = µi if li = 1 and

λ(li) = 1− µi, where µi is the frequency of LoF i).

We then model the joint probability distribution for a set of LoF variants

l = (l1, l2, ...ln) being present in a genome as:

P (l) = λ(l1) ∗ λ(l2) ∗ ... ∗ λ(ln) ∗ exp(−
∑
i,j

(Jijlilj))

We sample the distribution using the Metropolis-Hastings algorithm:

1. The algorithm is initialized with a randomly selected sample l.
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2. A candidate l′ for the next sample is generated by changing the absence of

presence of a randomly selected LoF: l′i = 1− li

3. The candidate is accepted with probability α = P (l′)/P (l). If α > 1 the

candidate is accepted automatically.

4. If the candidate is accepted, set l = l′.

5. Return to step 2 until the desired number of iterations is run.

The first sample is generated randomly. Consequently, the first samples

generated by the algorithm will not follow the desired distribution. Figure 3.10

shows the LoF frequency in the first 7000 iterations. The algorithm appears

to reach equilibrium around n = 1000. We therefore discarded the first 1500

iterations.

Figure 3.10: Figure representing the convergence of the Metropolis-Hastings al-
gorithm. The plot show the frequency of LoF variants in samples generated from
the first 7000 iterations of the algorithm. The frequency stabilizes around 1000
iterations, suggesting the algorithm has converged to the desired distribution.

The samples generated by successive iterations of the Metropolis-Hastings

algorithm are highly correlated. To correct for this, samples were only taken

every 500 iterations. A total of 1000 samples were generated.
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This model is an ad-hoc method of creating the testing data and does not

replicate the true data perfectly: λ is the empirical distribution we seek to

recreate, but the inclusion of the interaction term changes the expected frequency

of the LoF variants. Furthermore, LoF variants which do not occur in any sample

are not included in the original data. Thus, LoF variants with a frequency of 0

in the simulated data were removed.

Figure 3.11 compares distributions for the number of samples a LoF appears

in (variant LoF frequency) and the number of LoF variants occurring in a sample

(sample LoF frequency). The distributions for the original and simulated data

are similar in shape, although the scaling is different, due to the removal of LoF

variants with a frequency of 0 from the simulated data.

Figure 3.11: Comparison of distributions for the number of samples a LoF ap-
pears in (variant LoF frequency) and the number of LoF variants occurring in
a sample (sample LoF frequency). The values on the y-axis for the variant LoF
frequencies are different, because variants with a frequency of zero have been
removed.

Evaluation Results

In order to evaluate the performance of the four methods, we require a metric

capturing how well the set clusters generated by the algorithm (Ω = {ω1, ω2, . . . , ωK})
correspond to the communities present in the simulated data ( C = {c1, c2, . . . , cJ}).
Our clustering algorithms are not guaranteed to divide the nodes into the same

number cluster - we therefore select to use normalized mutual information (NMI)
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and Rand Index (RI) because of their suitability for assessing methods giving

rise to differently sized clusters [146].

Normalized mutual information is a measure with an information theoretic

interpretation: mutual information I captures the extent to which information

about cluster membership tells us about class membership. If the number of

objects to cluster (in our case, the number of nodes in the network) is N , mutual

information is given by:

I =
∑
k

∑
j

|ωk ∩ cj |
N

log
N |ωk ∩ cj |
|ωk||cj |

If the cluster assignment is random - i.e. knowing which cluster a node has

been assigned to gives no information about which class it might belong to, I

will be 0. I is maximized when the clustering assignment corresponds to the

exact classes. However, because there is no penalty for further sub-division, I

is also trivially maximized by assigning each node into its own cluster. I would

thus exhibit a bias favouring partitions with numerous clusters. To correct for

this, we normalize I:

Inorm =
2I(Ω;C)

[H(Ω) +H(C)]

where H(Ω) and H(C) are give by:

H(Ω) = −
∑
k

|ωk|
N

log
|ωk|
N

H(C) = −
∑
j

|cj |
N

log
|cj |
N

Inorm takes on values between 0 and 1 and, because H(Ω) tends to also

increase with the number of clusters, is less sensitive to the number of clusters.

Same Community Different Community

Same Cluster TP FP

Different Cluster FN TN

Table 3.2: Illustration of true and false positives and negatives in the assessment
of clustering algorithms

The Rand Index measures the proportion of node pairs that have been cor-

rectly assigned. As illustrated in Table 3.2, there are two types of correctly

assigned nodes:

1. true positives (TP: pairs belonging to the same community having been

correctly assigned to the same cluster), and

2. true negatives (TN: pairs belonging to different communities having been

correctly assigned into different clusters).
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and two types of incorrectly assigned nodes:

1. false positives (FP: pairs belonging to different communities having been

assigned to the same cluster), and

2. false negatives (FN: pairs belonging to the same community having been

assigned into different clusters).

The Rand Index is then given by:

RI =
TP + TN

TP + TN + FP + FN

We tested the four clustering algorithms on simulated data containing com-

munities of different sizes: small (63 communities of 5 nodes), medium com-

munities (31 communities of 10 nodes), large communities (10 communities of

30 nodes) and very large communities (3 communities of 100 nodes). Method

2 clearly outperforms the other clustering methods on both NMI (Figure 3.12)

and RI (Figure 3.13).

To control for the potential effect of the number of clusters found by each

algorithm on the evaluation metric, we compare the cluster assignment to a

random cluster assignment with the same number of clusters and nodes per

cluster. The results are presented in Table 3.3. Although all methods perform

better than random, the performance is not particularly high in absolute terms,

especially as measured by NMI. Furthermore, all methods generated, on average,

below 5 clusters. This will potentially limit the usefulness of these clustering

methods for identifying real epistatic communities.

Method 2 outperforming the other clustering approaches is not unexpected

- it is most probably a consequence of a more astute choice of null model for

the expected co-occurrence. Method 1 generates the expected co-occurrence

using a degree preserving model. The degree preserving model assumes the

degree of a node represents an inherent property of the node: its interaction

probability. Edges between nodes are generated according to the joint probability

distribution of the node interaction properties. This does not make sense for the

co-occurrence network: inherent properties of the LoFs are captured by their

frequency (i.e. total occurrence), not total co-occurrence.

It is also worth noting that method 2 models the expected co-occurrence as

the joint probability of independent variables based on their observed frequency.

This is also how to joint probability of the LoFs is modelled during generation

of the simulated data, prior to multiplication by the interaction term. Thus,

it could be argued that method 2 does well because they way it models the

data is also the model used in generating the test data. It is difficult to avoid

this problem: the data generation models a very plausible mechanism for the

processes generating the original data. However, it would be interesting to check

the performance of the algorithms on data generated using a different mechanism.
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Figure 3.12: Comparative performance of the four clustering algorithms on simu-
lated data containing different size communities as measured by NMI. Method
1: clustering the co-occurrence matrix using Newman modularity; Method
2: clustering the co-occurrence matrix, computing modularity using frequency
based expectation; Methods 3: similar to method 2, but ensuring the modu-
larity matrix sums to 0; Method 4: using modularity-type clustering to cluster
the original data. Refer to section 3.4.3 for further details. The communities
present in the data were as follows: small (63 communities of 5 nodes), medium
communities (31 communities of 10 nodes), large communities (10 communities
of 30 nodes) and very large communities (3 communities of 100 nodes).
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Figure 3.13: Comparative performance of the four clustering algorithms on sim-
ulated data containing different size communities as measured by RI. Method
1: clustering the co-occurrence matrix using Newman modularity; Method
2: clustering the co-occurrence matrix, computing modularity using frequency
based expectation; Methods 3: similar to method 2, but ensuring the modu-
larity matrix sums to 0; Method 4: using modularity-type clustering to cluster
the original data. Refer to section 3.4.3 for further details. The communities
present in the data were as follows: small (63 communities of 5 nodes), medium
communities (31 communities of 10 nodes), large communities (10 communities
of 30 nodes) and very large communities (3 communities of 100 nodes).
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3.4.5 Epistatic Communities

Based on the results on simulated data, method 2 was used to cluster the co-

occurrence matrix into putative epistatic communities, including (Table 3.4)

and excluding (Table 3.5) the olfactory receptors. Interestingly, on this data,

the number of clusters was considerably larger than on the simulated data - this

suggests that the simulated data does not fully capture all the properties of the

original data.

In order to examine whether the clusters correspond to particular biological

functions, we performed a GO-enrichment analysis on each cluster (using the

clusters excluding the OR receptors).

Enrichment analysis is a method of determining whether a specific feature -

in this case, GO-category - is significantly over- or under-represented in a gene

list, compared to a background gene list. All enrichment analyses presented here

were performed using GO::Term-Finder [22], which computes p-values using the

hypergeometric distribution:

p = 1−
k−1∑
i=0

(
M
i

)(
N−M
n−i

)(
N
i

)
where N is the total number of genes in the background list, M is the number

of genes with a given annotation in the background list, n is the size of the gene

list of interest and k is the number of annotated genes in the gene list of interest.

P-values were corrected using Bonferroni correction for multiple hypothesis

testing.

The analysis gave significant enrichment in only one of the cluster: the clus-

ter AC079612.1, C2orf91, CAPN9, MAGEE2, TCHHL1, TTC28, UNC93A was

enriched for the label ‘unannotated’ (corrected p-value: 0.00417).

The lack of coherent GO annotations within the clusters does not necessarily

indicate a poor quality clustering. Firstly, because all the genes are loss of

function tolerant, it is plausible they may be less well studied than other genes

with a clearer impact of phenotype. Thus, the lack of functional enrichment may

not reflect a lack of functional coherence, but a lack of knowledge about the genes

in question. This would also explain the enrichment for the ‘unannotated’ label

in one of the clusters. Secondly, the number of genes studied is small - a greater

number of genomes would contain a greater number of LoF variants, potentially

making it easier to identify functionally coherent groups of LoF tolerant genes.

3.5 Conclusion

The central idea motivating the work in this chapter is the unexpected frequency

of loss of function variants in healthy genomes. One of the possible explanations

is that genes appearing to be tolerant of loss of function are conditionally essen-

tial: loss of function in pairs or groups of genes may be tolerated if they occur
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Table 3.4: Epistatic communities identified using modularity based clustering of
the co-occurrence matrix.

AC018755.11 AC092171.1 AKR1E2 C12orf60 C17orf107 C3orf49 C5orf49
CALHM2 CCDC7 CD207 COL23A1 CSTL1 DCLRE1A FTHL17 GAB4 GPRC6A
IFNE LRRC39 MAGEB16 OR10C1 OR4L1 OR51H1P OR51V1 OR52A1 OR5M1
OR5M10 OR5M11 OR7G3 OR8I2 OR9K2 PNLIPRP3 POM121L4P PRB4
RAET1E RP11-48B14.2 RP11-794P6.2 SDR42E1 SPERT TNK1 TTC24
CEACAM4 ZNF469
ABCC12 ACSM3 C19orf71 C8orf44 CBLC DBF4B EXO5 FAM187B FBXL21
FMO2 FUT2 GDPD4 GPR142 GRIA1 H2BFM MBL2 MRGPRX3 MST1R NOX5
OR10D3 OR2T4 OR52M1 OR5AC2 OR5H15 OR8B3 PLA2G4D PSORS1C2
RESP18 RFPL1 RP11-113D6.6 RP11-65D24.2 RP11-830F9.6 SDIM1 TAS2R8
TBC1D29 TCHHL1 TIGD6 UGT2B10 ZAN ZNF681 ZNF80
OR4C16 SEMA4C
ARID3A C2orf91 MAN2A1 OR10R2 PKD1L2
C14orf180 C17orf77 C17orf97 DEFB126 EBF4 FLJ43860 KHDC1L LPA OR10A6
OR52I2 OR52K2 SLFN12L SNX31 SPATA4 TRIM22 UBE2NL UMODL1
CELA1 FADS6 IFNA10 OR2G6 OR4C11 PLA2R1 TLR5 TRIM73 TXNRD3NB
ZC2HC1C
AC079612.1 APOBEC3B C9orf43 CLYBL DDIT4L GPR135 HTN3 KRT37 LIPJ
MS4A12 OLFM4 OR2A5 PRAMEF4 RP11-766F14.2 TTC28
ABHD14B AC132186.1 AC133919.6 ACTR3C AGAP6 AHCTF1 ALMS1
C10orf113 C14orf182 C18orf56 C4orf17 COX6B2 CR392000.1 CST9 CTD-
2373H9.6 DSCR8 EIF3CL GSTT2 GSTT2B ITIH5 JMJD1C KRTAP1-1
KRTAP13-2 KRTAP4-7 KRTAP4-8 KRTAP9-1 LAD1 NRAP OR10AD1 OR10G7
OR2C1 OR2D3 OR2T11 OR2T27 OR2V2 OR4S2 OR4X2 OR52B4 OR5AR1
OR5H1 OXGR1 PLEKHG5 RP11-276H1.3 RP11-455G16.1 RP11-481A20.11
SATL1 SCN8A SPATA31A6 SPZ1 TGFB1 TMEM82 UBQLNL UGT2B28 UTS2D
ZFP91 ZFP91-CNTF ZNF790
BPIFB3 COL6A5 DKFZP779J2370 LILRA2 OR52N4 OR6C74 PSG1 SLC35G6
C2orf57 GLT6D1 IDO2 OR5B17 TMEM198
FAM111B LILRA3 OR51I2 PXDNL
AC129492.6 AL359878.1 ATP13A5 C13orf45 C6orf123 CAPN9 CFHR1 CRIPAK
CYP2A13 CYP2F1 HBM HID1 HSD17B13 IDI2 KRT31 KRTAP1-5 METTL7B
MOGAT1 NACA2 NOXO1 OR13C2 OR3A1 OR4D6 OR4X1 OR51F1 OR51I1
OR6C4 OR6Q1 OR7G1 PSG9 RETNLB SLC22A14 SLCO1B1 SMUG1 SPTBN5
TEX22 TSPAN19 VN1R1 ZNF417 ZNF474 ZNF804A
OR4P4 RAI1 RP11-297N6.4
FAM25A GEN1 PTCHD3 ZNF284
ABCA8 C11orf21 C3orf14 CPN2 DEFB128 DKFZP434O1614 DNAH8 ENPP7
GBP7 IL34 LCE4A OR10X1 OR2D2 OR5K4 OTOP1 PCDHA3 PKHD1L1 PT-
GDR RHD SOX13 STK19 TAS2R46 TAS2R7 ULBP3 ZNF812
CENPBD1 CYP2C18 OR13D1 PCDHGA8 SERPINB3 TLR10
CYP2D6
LILRB1 NIPA2 UNC93A ZNF860
C10orf68 CYP2C19 GRIN3B MAGEE2 OR11G2 OR13C4 OR6C1
C5orf27
C1orf227 DNAJC28 NT5C1B-RDH14 OR1B1 RFX8 TOR1AIP1 ZNF154
TAAR2
ARMS2 OR2B11 RP1L1 TEX26
C21orf88 COL16A1 OR51Q1 PP12708 TRIM38
CD200R1 OR4D10
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Table 3.5: Epistatic communities identified using modularity based clustering of
the co-occurrence matrix (excluding olfactory receptors).

BPIFB3 DNAH8 FBXL21 GEN1 PSG9 RAET1E RP11-766F14.2 RP11-830F9.6
SDIM1 TAAR2 TRIM38 VN1R1 ZNF284 ZNF417
ABCA8 ABCC12 AC092171.1 AC129492.6 ACSM3 AKR1E2 ARID3A C13orf45
C17orf97 C18orf56 C19orf71 CCDC7 CELA1 COL16A1 CYP2A13 DCLRE1A
DDIT4L DEFB128 DNAJC28 GRIA1 HBM ITIH5 KRT37 LAD1 MBL2 MO-
GAT1 PLEKHG5 PRAMEF4 PRB4 PSORS1C2 PTCHD3 PTGDR RESP18
RP11-276H1.3 SATL1 SLC35G6 SLFN12L SNX31 SOX13 SPATA4 SPERT
TAS2R7 TAS2R8 TBC1D29 TGFB1 TLR10 TSPAN19 UBE2NL UMODL1 ZAN
AC018755.11 AC132186.1 ACTR3C ATP13A5 C11orf21 C17orf77 C1orf227
C21orf88 C2orf57 C3orf14 C4orf17 C5orf27 C6orf123 CALHM2 CENPBD1
CFHR1 CLYBL COL23A1 COX6B2 CST9 CSTL1 CYP2C19 CYP2F1 DBF4B
DEFB126 DKFZP434O1614 DKFZP779J2370 EBF4 EXO5 FAM25A FUT2
GBP7 GSTT2B HTN3 IDI2 IFNE JMJD1C KRT31 KRTAP1-1 KRTAP1-
5 KRTAP9-1 LCE4A LILRA2 LILRA3 LRRC39 MAGEB16 METTL7B
NACA2 NIPA2 NOXO1 NRAP NT5C1B-RDH14 OLFM4 PCDHA3 PCDHGA8
PLA2G4D PNLIPRP3 POM121L4P PXDNL RETNLB RHD RP11-297N6.4
RP11-455G16.1 RP11-481A20.11 RP11-794P6.2 SLCO1B1 SPTBN5 SPZ1 STK19
TEX22 TRIM73 TXNRD3NB UBQLNL UGT2B10 UGT2B28 UTS2D ZNF154
ZNF681 ZNF790 ZNF804A ZNF812
C8orf44 DSCR8 FADS6 HID1 NOX5 OTOP1 PKD1L2 SMUG1 TNK1 TRIM22
ZNF80
C3orf49
SLC22A14 ZC2HC1C
ABHD14B AGAP6 AHCTF1 COL6A5 FAM111B KRTAP13-2 MAN2A1 OXGR1
PLA2R1 RAI1 SPATA31A6 TMEM82 TTC24 ZNF469
ALMS1 CR392000.1 FLJ43860 FTHL17 GAB4 KHDC1L KRTAP4-8 LIPJ LPA
MRGPRX3 RP11-65D24.2 TLR5 TOR1AIP1
PP12708
AC079612.1 C2orf91 CAPN9 MAGEE2 TCHHL1 TTC28 UNC93A
AL359878.1 APOBEC3B C10orf68 C14orf180 C14orf182 C17orf107 CD200R1
CD207 CRIPAK CYP2C18 EIF3CL FMO2 GPR135 GPRC6A GSTT2 IDO2
KRTAP4-7 LILRB1 MS4A12 MST1R PKHD1L1
CTD-2373H9.6 GLT6D1 GRIN3B PSG1
C9orf43 GDPD4 GPR142 RFX8 TAS2R46
AC133919.6 ARMS2 C10orf113 C12orf60 C5orf49 CBLC CEACAM4 CPN2
CYP2D6 ENPP7 FAM187B H2BFM HSD17B13 IFNA10 IL34 RFPL1 RP11-
113D6.6 RP11-48B14.2 SDR42E1 SERPINB3 TMEM198
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separately, but the combined effect of these loss of function variants on the same

genome is deleterious. This is known as genetic interaction.

We would expect LoF variants of genetic interactors to occur together on

healthy genomes less often than expected by chance. In this chapter, we develop

methods for detecting pairs or communities of genetic interactors and use them

to identify putative genetic interactors in data from the 1000 genomes project.

We attempt to validate the genetic interactions we identify using known genetic

interactions in human. While none of the identified gene pairs correspond to

known interactors, this does not necessarily indicate our approach is flawed:

genetic interaction data for humans is sparse - it is therefore not unexpected

that our gene pairs did not overlap with known interactors.

We also attempt to validate the putative interactions by considering what

is known about the function of the gene pairs. Some of the pairs we identified

seem promising: particularly, we identified interactions potentially relating to

Celiac disease. There are two caveats to this observation. Firstly, as Celiac

disease can manifest at any age, it is unclear whether sufferers would necessarily

be excluded from the 1000 genomes dataset. Secondly, the gene pairs potentially

representing interactions associated with Celiac disease were all relatively close

together on the same chromosome. The interaction could therefore simply arise

due to linkage effects instead of representing a genuine functional association

between the genes.

Fundamentally, the work in this chapter is limited by the relatively small

sample of genomes. Indeed, the main value of the work presented here is the

method development, rather than the biological insight generated from this

dataset. However, genome availability is increasing rapidly - the ideas devel-

oped in this chapter could therefore be applied on a larger dataset once one

becomes available.

106



Chapter 4

Functional Association

Networks For Prediction of

Loss of Function Tolerance

This chapter explores the use of network data in predicting the functional conse-

quences of loss of function mutation. We extend previous work on using network

centrality as an indicator of functional importance by integrating this approach

with the kernel-based guilt-by-association prediction methods explored in Chap-

ter 2. We show that integration of the guilt-by-association approach improves

the performance beyond using centrality only.

4.1 Introduction

Predicting the functional impact of genomic variation is a key challenge for

computational biologists. The falling cost of personal genomes makes identifying

potential disease variants of great clinical interest. Prediction is also interesting

from a basic science point of view: the predictive power of our models is a

measure of how well they represent cellular function and organisation.

The impact of variation in a protein coding gene can be thought of at different

levels of resolution: the effect on a protein’s primary sequence, on its three

dimensional structure, on its interactions with other molecules, and finally, on

the cell and organism as a whole. Ultimately, comprehensive understanding and

prediction of the effects of variation will require integration of information across

all these levels of resolution.

In this work, we are interested in the functional effects of complete homozy-

gous loss of function in individual genes. Networks are a natural tool to assessing

the wider consequences of the loss of an individual protein. Network approaches

can be applied to the problem in two distinct ways:

1. Network centrality: essential genes tend to be more central in protein

interaction networks [102] while loss of function tolerant genes tend to
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have lower centrality [112]. Network centrality is therefore often used as a

feature when attempting to categorise the functional impact of a variant.

2. Guilt-by-association: previous work suggests that the effect of loss of func-

tion in a gene can be predicted from the functional effects of its neighbours

in a PPI network [90]. Guilt-by-association approaches could therefore be

applicable to predicting the consequences of variation.

Previous work has mainly focused on PPI networks - these have been applied

to predicting mutations that may act as cancer drivers [112], or discrimination

between haploinsufficiency (where a single non-functional allele causes disease -

i.e. dominant disease genes) and haplosufficiency (a single non-functional allele

does not cause disease - i.e. recessive disease genes and loss of function tolerant

genes) [90]. Integrated networks, comprising information from PPI, phospho-

rylation, metabolic, signalling, genetic and regulatory networks have also been

utilised to discriminate between LoF tolerant and essential genes [111].

In this section, we seek to extend previous work by building a 3 class predictor

discriminating between LoF tolerant, recessive and dominant disease genes, using

PPI, genetic interaction and metabolic networks, as well as guilt-by-association

methods. Furthermore, we explicitly examine the relationship between centrality

and functional significance in different networks. Because different networks

hold different representations of functional association, the correlation between

essentiality and centrality may not hold in different networks.

4.2 Datasets

The dominant and recessive disease gene sets used in this work were obtained

from the Online Medelian Inheritance in Man (OMIM) database [77] by text

mining. The LoF tolerant gene set is the set identified from the 1000 genomes

project (see Chapter 3).

The PPI network was downloaded from the interaction repository BioGRID

[217], the genetic interaction network derived from a radiation hybrid screen

[138] (see Section 4.3 for details), the metabolic network was downloaded from

the Recon 2 database [226] and the functional association network from the

STRING database [101]. Table 4.1 gives the number of genes from each gene

class (dominant, recessive and tolerant) present in each of the networks.

4.3 Network properties

First, the network properties of three gene classes were explored in different types

of network. If significant differences between the dominant, recessive and LoF

tolerant genes can be found, these properties can be used in building a predictive

tool for discriminating between the classes.
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Dominant Recessive Tolerant

All genes 298 456 317

Physical 285 420 112

Genetic 268 423 131

Metabolic 27 198 14

Functional Association 251 395 152

Table 4.1: The number of the genes from the 3 categories (dominant disease
gene, recessive disease gene and loss of function tolerant gene) present in each
of the networks used for prediction.

4.3.1 Protein Interaction Networks

In PPI networks (from BioGRID [217]), as expected degree and betweenness

centrality varied according to functional impact: dominant disease genes were

more central than recessive disease genes, which were, in turn, more central

than LoF tolerant genes (Figure 4.1). Differences between all three categories

are significantly different (Wilcoxon ranked sum, p < 10−6 for degree, p < 10−4

for centrality).

Figure 4.1: Degree and betweenness centrality in protein interaction networks.
Differences between all three categories are significantly different (Wilcoxon
ranked sum, p < 10−6 for degree, p < 10−4 for centrality)

4.3.2 Genetic Interaction Networks

Sampling biases are a well documented concern in PPI networks [76]. In 2006,

known interactions were estimated to comprise only 10% of the full network

[80]. While the number of physical interactions held in BioGRID has grown

considerably since (from 26700 in December 2006 to 146800 in June 2014), the

mapping is still likely to be incomplete. Well studied proteins are therefore likely

to have a higher number of documented interactions. Even high-throughput

methods which theoretically should sample the network randomly have been

found to be biased towards evolutionarily conserved and high abundance proteins

[239]. This may mean that known disease associated genes, which are likely to be

109



both well studied and evolutionarily conserved, have an artificially high number

of interactions compared to the rest of the network.

To circumvent this bias, degree and centrality were also examined in a model

of a human genetic interaction network. Traditional double-knockout interaction

data is very sparse in human: for example, BioGRID holds only 1643 unique

genetic interactions (June 2014) for Homo Sapiens. This has motivated attempts

to assess human genetic interactions in other ways: Lin et al developed a method

of re-appropriating data from radiation hybrid (RH) panels, a technique normally

used for genetic mapping, to infer human genetic interactions [138]. This dataset

has the advantage of being comprehensive (assessing 99% of possible gene pairs).

However, the paradigm differs from the traditional double knock-out and has

been less well studied.

In radiation hybridization experiments, a donor cell carrying a selectable

marker is radiated, causing random DNA fragmentation. The irradiated donor

cells are then fused with host cells lacking the marker. Fused cells are grown on

selective media, leading to survival of host cells having incorporated the marker,

along with a random set of other DNA fragments from the donor cell. The

survival rate of clones is assumed to depend on which fragments of DNA are co-

retained. Genetic interactions are therefore inferred from increased or decreased

survival rates when two genes are co-retained (Figure 4.2).

Figure 4.2: Inference of genetic interactions from radiation hybrid experiments.
The figure illustrates a genetic interaction between gene A and B. The fused
cell receiving DNA fragments containing only gene A or gene B from donor
cell results in cell death. Receiving both gene A and gene B, however, results
in survival, suggesting an interaction between the two genes. Figure modified
from [138].

The RH genetic interaction network is therefore different from the standard

double knock-out: instead of the effect of losing function in two genes, this inter-
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action captures the effect of having an extra copy of two genes. The functional

significance of these interactions has not been experimentally validated, thus in-

terpretation of the RH network requires caution. Lin et al found that while the

RH and PPI networks shared a number of global network properties, there was

only limited overlap between the networks themselves [138]. This suggests the

two approaches capture a different form of interaction, potentially making the

RH network a valuable complementary approach.

The result observed in the PPI network was replicated in the RH network:

dominant disease genes had the greatest degree and centrality and the LoF

tolerant genes the lowest. All differences between the groups were significant

(Wilcoxon ranked sum, p < 0.005 for both degree and centrality), but the effect

was less pronounced than in the PPI network.

Figure 4.3: Degree and betweenness centrality in radiation hybrid genetic in-
teraction networks. Differences between all three categories are significant
(Wilcoxon ranked sum, p < 0.005 for both degree and centrality).

The greater difference in degree and centrality between the gene groups in

the PPI network compared to the RH network is not necessary indicative of

sampling biases playing a role in the PPI network: the change may simply reflect

differences in the nature of the interactions captured by the two networks. The

effect being observable in the RH network, however, does suggest that it is not

attributable simply to sampling bias.

4.3.3 Metabolic Networks

As discussed previously, the relationship between gene essentiality and PPI net-

work centrality is well documented. Whether a similar relationship exists in

metabolic networks is not as clear. Khurana et al [111] find a negative corre-

lation between gene significance and metabolic network degree and a positive

correlation between metabolic network degree and the number of paralogues.

The authors suggest that these paralogues may be involved in compensating for

enzyme deactivation, thus making high degree genes more likely to be loss of

function tolerant. Rio et al [199], however, find that while single measures of

connectivity are not predictive of functional importance, combining a number of
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centrality measures does predict essentiality - with higher centrality correlating

with higher likelihood of essentiality.

The lack of consensus on the role of centrality in metabolic networks may

be partly due to metabolic networks being conceptually less well defined than

protein interaction networks. Metabolic networks are often represented as bipar-

tite networks, with nodes representing either reactions or metabolites. Gene (or

enzyme) networks are constructed from these bipartite networks by connecting

enzymes which catalyse reactions involving the same metabolite (as illustrate in

Figure 4.4).

Figure 4.4: Construction of gene-gene (or enzyme-enzyme) metabolic networks
from metabolite-enzyme networks: enzymes interacting with the same metabo-
lites are connected, usually with edges weighted according to the number of
shared metabolites. Figure from [219].

Particularities of this conversion process may vary, for instance in the treat-

ment of edge directions (i.e whether a metabolite is created or consumed in

a reaction) and the weighting of edges. Furthermore, many authors removed

highly connected ‘currency metabolites’ such as ATP because these molecules
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participate in a large number of functionally diverse reactions, thus diluting the

functional information available from the network topology. Various approaches

to currency metabolite have been proposed ranging from simply removing all

metabolites with connectivity higher than a specific threshold [63] to heuristic

methods removing highly connected metabolites until a specific network prop-

erty (such as modularity [92]) is maximised. (The implicit assumption is that

the chosen property correlates with how informative the network is.) Finally, in

large scale metabolic networks, cellular compartmentalisation means that reac-

tions appearing to share the same metabolite are in fact physically separated.

Again, how this is treated in metabolic network generation differs between au-

thors.

This ambiguity around the treatment of metabolic networks is apparent in

work discussed above: Rio et al remove a total of 10 currency metabolites, while

Khurana et al do not discuss currency metabolites. We were therefore interested

in how metabolite removal affects how well functional importance is captured in

these networks.

The human metabolic network was downloaded from Recon 2 [226]. This

network was in the form of a reaction-metabolite bipartite network. Enzymes

were mapped onto reactions they catalyse, after which an enzyme-enzyme net-

work was generated as described above (discarding edge directions and weighting

edges by the number of shared metabolites to give a weighted, non-directed net-

work).

Without metabolite removal, no relationship was found between the essen-

tiality and centrality in the metabolic network, differing from the negative cor-

relation reported by Khurana et al [111]. To investigate the effect of metabolite

removal, we adopted the approach laid out by Huss et al [92]: metabolites were

removed in order of degree and the change in network modularity computed.

However, unlike Huss et al, there was no clear cut-off point that optimised mod-

ularity. Therefore, the choice of which metabolite to remove was based on lists of

currency metabolites in the literature [142,210,240], leading to removal of 23 dis-

tinct metabolites, corresponding to 149 nodes in the network as some metabolites

were present in multiple compartments. However, even with metabolite removal,

no significant relationship between essentiality and centrality was observed.

Based on these results, the metabolic network was excluded from further

study.

4.4 Prediction Using Centrality

Our results suggest dominant disease, recessive disease and LoF tolerant genes

have different centrality in PPI and GI networks, suggesting these networks may

be used in building a classifier. There are various ways in which the centrality

measures may be used to predict the category of a gene. Here we investigate
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nearest neighbour approaches: a gene is classified according to the class of the k

genes with a centrality most similar to its own. For simplicity, we include only

degree, not betweenness centrality, in building the predictor.

Classification was benchmarked using leave-one-out cross-validation, on ran-

dom subset of 100 genes from each gene class (to avoid bias due to different num-

bers of each type of gene - see Table 4.1). This random sampling was repeated

100 times - the average performance is shown in Figure 4.5 and Figure 4.6.

Both the PPI and GI classifiers outperform a random predictor (expected

performance 0.33), with the PPI classifier having greater maximal performance.

Interestingly, for both classifiers, the performance on the tolerant gene set in-

creases with the number of neighbours included in the predictor, while the perfor-

mance on the dominant set decreases. A possible explanation for this is the way

the degrees in the two sets are distributed: the distribution is right skewed and

the genes with exceptionally high degrees are more likely to be dominant than

recessive (see Figure 4.1 and Figure 4.3). Thus, as the number of genes included

in the predictor is increased, on average, the new genes in the neighbourhood of

the gene to be classified are more likely to be tolerant than dominant. Thus, the

proportion of genes classified as tolerant increases, while the proportion of those

classified as dominant decreases.

4.5 Guilt-by-Association

Networks can also be used for guilt-by-association type prediction of protein

function. As discussed above, previous work suggests that proximity in a PPI

network to other haplosufficient or haploinsufficient genes is predictive of a gene’s

behaviour [90]. The commute-time kernel introduced in Chapter 2 allows a more

sophisticated treatment of network proximity than approaches based on shortest

path length only.

Here, we use the commute-time kernel matrix (built from the human func-

tional association network from the STRING database [101]) for gene classifica-

tion using a k-nearest neighbours approach: a gene is classified into the same

category as the k genes with highest similarity to it. We also explore a weighted

approach, where the similarities of the k nearest genes are summed together and

the gene is classified according to this score.

As before, performance was benchmarked using leave-one-out cross-validation

on a sample of 100 genes from each gene category (dominant, recessive and tol-

erant). The average performance is illustrated in Figure 4.7 and Figure 4.8. The

weighted approach outperforms the unweighed approach, while both methods

outperform the degree-based approaches. With the guilt-by-association method,

performance is higher on the dominant genes and is improved with increasing

k, while the performance on the tolerant genes deteriorates. This behaviour

can be attributed to the higher degree and centrality of dominant genes: these
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Figure 4.5: Performance of a nearest neighbour classifier for different values
of k (nearest neighbours), using degree from PPI network. The figure shows
percentage of correctly classified genes (overall and in each category), averaged
over 100 random samples of 100 genes from each category. The shaded region
represents the standard error of the mean.

genes will have higher than average similarity to all nodes in the network. Thus,

as more genes are included in the prediction, the additional genes will have a

higher probability of being dominant genes, thus increasing the probability of

classifying genes as dominant. In the unweighed predictor, at around k=100,

this leads to all tolerant genes being misclassified. The effect is less pronounced

in the weighted model, because the effect of additional genes is smaller, as they

have, by definition, lower similarity than the nearest neighbours.

4.6 Integrated Prediction

Our analysis thus far suggests centrality in the PPI and genetic networks and

proximity in the functional association networks can be used to distinguish be-

tween dominant disease, recessive disease and loss of function tolerant genes.

Next, we investigated whether these information sources could be combined to

improve overall performance.

For simplicity, the analysis here is restricted to genes present in all three

networks (PPI, GI and functional association from which the kernel is derived).

Figure 4.9 shows the performance of individual data sources on this data set.
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Figure 4.6: Performance of a nearest neighbour classifier for different values
of k (nearest neighbours), using degree from GI network. The figure shows
percentage of correctly classified genes (overall and in each category), averaged
over 100 random samples of 100 genes from each category. The shaded region
represents the standard error of the mean.

Overall, on this smaller dataset, the predictive performance is lower than on the

full dataset, for all networks.

The predictor assigned each gene a score reflecting the likelihood of belong-

ing to each category. This combined score is a linear combination of each data

source’s individual scores. For the GI and PPI networks, the score is the number

of neighbours within the k nearest neighbours belonging to each category. For

the kernel predictor, the score is the sum of the similarity scores of the genes in

each category within the k nearest neighbours. Performance was benchmarked

using leave-one-out cross validation on sets of 20 random genes from each cat-

egory, averaged over 100 samples. The optimal number of neighbours for each

information source was determined by further cross-validation within each fold.

Figure 4.10 shows the performance of the combined predictor at different

relative weightings of the information sources. Optimal results are achieved

through integration of the PPI data and the functional association kernel. The

addition of GI data does not improve performance. This is not surprising, given

the lower predictive performance of the GI data-based classifier (Figure 4.9). It

remains possible, however, that a more sophisticated prediction approach would

exploit the GI data more successfully.
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Figure 4.7: Performance of a kernel-based k nearest neighbour classifier for dif-
ferent values of k for an unweighted (gene classifed based on the number of genes
in each category in its k nearest neighbours) classifier. The figure shows the per-
centage of correctly classified genes averaged over 100 random samples of 100
genes from each gene class (dominant, recessive and tolerant).

4.7 Discussion and Further Work

This section explores approaches for distinguishing between genes that are domi-

nant disease causing when mutated, recessive disease causing when mutated and

tolerant to loss of function.

Our results suggest that centrality and degree in PPI and GI networks as

well as proximity in functional association networks can be used to discriminate

between the three gene categories. Furthermore, we found that combining de-

gree information from PPI networks and proximity information from functional

association networks outperforms either predictor alone.

As discussed in Chapter 2, it has been suggested that the performance of

guilt-by-association type predictors is dominated by gene degree [64]. It is in-

teresting to note that in this work, inclusion of the guilt-by-association data

improved performance over use of degree information alone. It remains pos-

sible, however, that the improvement comes from the inclusion of additional

network data (i.e. the STRING functional association network the kernel was

derived from) as opposed from the use of guilt-by-association specifically. It
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Figure 4.8: Performance of a kernel-based k nearest neighbour classifier for dif-
ferent values of k for a weighted (the similarities of the genes in each category in
the k nearest neighbours are summed) classifier. The figure shows the percent-
age of correctly classified genes averaged over 100 random samples of 100 genes
from each gene class (dominant, recessive and tolerant).

might therefore be interesting to control for this explicitly, by comparing the

predictive performance of degree and guilt-by-association based predictors using

the same network data.

Degree and centrality in metabolic networks were not found to be useful

predictors. It is worth noting, however, that the number of genes present in the

metabolic network was considerably smaller than in the other networks (see 4.1).

It is therefore possible that the lack of predictive power in the metabolic networks

was due to low coverage, rather than an inherent property of the network.

This section only explored relatively simple prediction algorithms. It may

be interesting to investigate whether more sophisticated algorithms will further

improve performance. Particularly, in this work, the addition of degree infor-

mation from the GI network did not improve the performance of the predictor

using PPI degree information and the kernel data. It would be interesting to

explore whether a different prediction approach would make this dataset more

useful.
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Figure 4.9: Performance of three data sources (GI network, PPI network and
kernel) on the set of genes common to all three sources. The figure shows the
proportion of correctly classified genes in random samples of 20 genes from each
category, averaged over 500 draws.
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Figure 4.10: Performance of the combined predictor using the kernel, PPI and
GI data, for various relative weightings of the different information sources.
The kernel predictor always has a weight of 1 - the PPI and GI data are given
the weighting indicated on the x and y axis respecively. The figure shows the
proportion of correctly classified genes in random samples of 20 genes from each
category, averaged over 100 draws.
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Chapter 5

Network Approaches to

Modelling the Stress Response

in Fission Yeast

5.1 Introduction

5.1.1 Stress Response

The ability to maintain function in the face of external perturbations (envi-

ronmental ‘stress’) is important for all organisms. It is particularly crucial for

micro-organisms, such as yeast, which cannot relocate to escape these pertur-

bations [140]. Micro-organisms adapt to environmental changes through rapid

and significant rearrangement of their regulatory systems. This rearrangement,

known as the stress response, is orchestrated at multiple levels of regulation

(transcriptional, post-transcriptional, translational) [126].

Genome wide technologies have produced insight into global stress-induced

changes in gene expression: in response to stress, cells shift resources away from

metabolism, growth and proliferation, and towards protective mechanisms [140,

204]. This redirection of resources is seen in both budding and fission yeast, and

in response to multiple stress types. In addition to this core response, however,

other components of the stress response are fine-tuned to the type and strength

of the specific stimulus [58].

While most of the changes in gene expression associated with the stress re-

sponse are transient [140], exposure to stress has a lasting effect on the cell: the

stress response results in higher tolerance against future insults of the same kind,

as well as against other stressors [19]. This cross-protection effect is attributed

to lasting activation and/or expression of stress proteins [125].

Stress induced genes have noisier expression than growth related genes and

show higher variability between cells and conditions [132,169]. Consequentially,

variable environments lead to higher levels of heterogeneity within a population

of cells, making it more likely for at least part of the population to survive
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a change in conditions (‘bet hedging’) [140]. Additionally, these stress induced

genes also show high inter-species variability, suggesting they evolve more rapidly

(greater ‘evolvability’) [181,227].

Thus, it appears that stress not only promotes short-term adaptation to allow

maintenance of function, but contributes to long-term resilience and acts as a

major driving force of evolutionary change [140].

5.1.2 Studying Changing Networks

Network approaches are a powerful tool in the analysis of genome wide data sets

and a useful framework for capturing the global state of a system. Recently,

there has been increasing interest in understanding how cellular networks dif-

fer under different conditions - for example cell type, disease or environmental

perturbations.

Condition-specific networks are generally generated by combining a static

PPI network with condition-specific data. This is often only an approximation

of the true differences, as this approach cannot distinguish between network

rewiring (condition-specific loss or gain of interactions) and changes in network

state (such as, for example, changes in the expression levels of proteins) [94].

Despite this, these approximations of condition-specific networks are often the

best way to probe system level changes, because condition-specific interaction

mapping studies are still relatively rare.

There are two mains approaches to differential network analysis. One ap-

proach is to identify subnetworks that are only active under particular condi-

tions [41,95,207]. For example, by integrating known transcriptional regulatory

interactions with gene expression data to find condition-specific transcriptional

regulatory networks, Luscombe et al. showed large scale topological difference

between conditions [141]. Interestingly, these condition-specific networks could

be classed, based on their structure, into two categories: endogenous (internal

transcriptional programs) and exogenous (responses to external stimuli). Given

that growth and proliferation fell into the former category, and stress response

into the latter, this division bears resemblance to the two antagonistic gene ex-

pression programs discussed earlier.

Another example of such approach, applied specifically to stress, combined

physical protein interaction, curated pathway, metabolic and gene expression

data and revealed changes in local network topology in response to oxidative

stress [71].

In an interesting extension of this type of approach, Komurov and White

mapped the expression dynamics of proteins onto a protein interaction net-

work [119]. This revealed two types of functional subnetwork: static modules

composed of constantly expressed proteins and dynamic modules composed of

proteins co-expressed in a condition dependent manner. Interestingly, given the

link between the noisiness and evolvability of stress response gene expression
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(see Section 5.1.1), both evolutionary rate and expression noise were higher in

static module proteins. Furthermore, some of these static module proteins were

found to be phenotypic enhancers of genetic mutations. The authors therefore

suggest that fluctuations in the levels of these modules may thus contribute to

bet hedging strategies through enhancement of cell-to-cell variability.

An alternative approach to working with condition-specific networks is to

analyse changes to the network as a whole, instead of focusing on subnetworks.

The advantage of this approach is that it enables detection of global changes

in network structure. For example, Mihalik and Csermely generated distinct

networks for stressed and unstressed states by weighting the budding yeast in-

teractome by the abundance of the interacting proteins in each condition [152].

The authors reported a partial disassociation of this network under heat stress,

with fewer connections between network modules. The authors suggest that this

decoupling of modules represents a cellular survival strategy. The pruning of in-

teractions could (i) increase network resilience to further damage by decreasing

information flow between modules, thus minimizing the spread of damage [115];

(ii) represent the emergence of more specialized and autonomic functional units,

which Mihalik and Csermely suggest could allow to cell greater behavioural flex-

ibility [152]; or (iii), in networks where links have a metabolic cost, result from

energy saving measures.

5.1.3 Work Undertaken

In the work presented here, we study stress induced changes to cellular networks,

with a patricular focus on the modular structure of the network. Two comple-

mentary approaches approaches are used: co-expression and weighted protein

interaction networks.

Co-Expression Networks

A co-expression network captures similarities in genes’ patterns of expression.

In these networks, nodes represent genes and edges connect genes with strongly

correlated expression. Co-expression networks are interesting because strongly

correlated expression suggests functional association [46]: proteins involved in

the same function are likely to be co-regulated. Indeed, in functional interac-

tion networks, such as STRING [101], co-expression is often one of the main

components of the functional association score. Given the known biases of pro-

tein interaction networks and their low coverage, particularly in fission yeast,

co-expression networks provide a distinct and complementary perspective.

Co-expression networks are generally constructed from gene expression data

under different environmental perturbations. In this work, however, genetic

perturbations were used instead of environmental ones, as outlined further below

(see Section 5.2.1). This allowed the construction of co-expression networks for

both stressed and non-stressed conditions.
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An advantage of this approach is that it does not rely on combining condition

specific data with a condition independent network, thus allowing the study of

stress induced changes to the topology of the network. A potential limitation is

that while high levels of co-expression are considered an indicator of functional

association between genes, the extent to which changes in co-expression are

indicative of changes in functional association has not been explicitly studied.

However, it is reasonable to expect that proteins which interact under specific

conditions would be more tightly co-regulated in these conditions. This idea

is supported by well documented condition-specific changes in transcriptional

regulatory networks [48,141].

Protein Interaction Network

Protein-protein interaction (PPI) networks provide a complementary view of cel-

lular state. As cellular function is carried out at the protein level, PPI networks

have a more straight forward interpretation and may therefore potentially pro-

vide greater functional insight. For example, the idea of network rearrangement

resulting from energy saving mechanisms is only relevant when interactions are

associated with metabolic cost. Some protein interactions, such as phosphoryla-

tion, are indeed energy consuming.

To generate biologically meaningful condition-specific networks, the edges in

the PPI network were weighted by the approximate probability of the interaction

occurring in the stressed or unstressed state (estimated either by co-expression

or the product of the protein abundances as discussed in Section 5.2.2). This

differed from Mihalik and Csermely’s approach, where edges were weighted by

the sum of protein abundances [152]. This method was not used in this work

as, although using the sum of protein abundances instead of the product has

the advantage of giving less extreme changes in edge weights, the biological

interpretation of this measure is unclear.

5.2 Methods

The different networks constructed and analysed in the Chapter are summarised

in Table 5.1.

5.2.1 Co-Expression Network Construction

Gene co-expression networks were constructed using gene expression data from

genetic variants, before and after exposed to oxidative stress (0.5 mM hydrogen

peroxide, H2O2), as outlined in Figures 5.1 and 5.2. Spearman correlation coef-

ficients were computed across the genetic variants for each gene pair, under both

stressed and non-stressed conditions. To generate the networks, a specific num-

ber of gene pairs with the highest significant (p<0.05) correlation coefficients

were considered connected, yielding an unweighted network. This approach was
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Network Name Network Type Dataset Used in Construction

Microarray Co-Expression Microarray expression data from mul-
tiple knock-out mutants

RNAseq Co-Expression RNAseq expression data from multi-
ple genetically different fission yeast
strains

Co-expression
weighted PPI

PPI PPI network from the iRefIndex
database and the RNAseq expression
data

Abundance
weighted PPI

PPI PPI network from the iRefIndex
database and protein abundance data
from Papadakis et al. (manscript in
preparation)

Abundance
weighted nitrogen
starvation PPI

PPI PPI network from the iRefIndex
database and protein abundance data
from Marguerat et al [147].

Table 5.1: Summary of the networks used in the analyses and the datasets used
in their construction.

taken to ensure that stressed and non-stressed networks were of similar size. The

robustness of the results was also verified by (i) including different numbers of

edges in the network and (ii) thresholding at a specific correlation coefficient,

instead of edge number. The effect of stress was found to be the same regardless

of the method of network construction (see Table 5.2).

125



Figure 5.1: Outline of gene co-expression computation. Conventionally, the co-
expression of two genes is calculated from the correlation of their expression
time courses (top panel) or expression under different conditions. However, to
generate distinct networks for stressed and non-stressed states, genetic variants
(i.e. either knock-out mutants or genetic segregants) were used instead of a time
course or environmental conditions.
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Two distinct sets of gene expression data were used to generate networks

(giving a total of four networks: two non-stressed and two stressed). In the first

data set, gene expression was measured using microarrays, while RNA sequenc-

ing (RNA-seq) was used in the second. The use of RNA-seq to quantify gene

expression allows avoiding some of the problems associated with microarrays,

such as cross-hybridization between highly related sequences and difficulties in

accurately detecting low abundance species [243], resulting in higher replicability

and detection of lowly expressed transcripts and alternative splice variants [200].

However, some studies suggest that co-expression networks generated from RNA-

seq data may be less reliable than those from microarray data [68]. It is therefore

useful to include both in the study.

Details of the two data sets are outline below.

RNA-seq

These networks, henceforth referred to as RNA-seq co-expression, were con-

structed from gene expression levels measured by RNA sequencing in the Bähler

laboratory from 117 genetic segregants (derived from crosses of genetically dif-

ferent wild isolates), at 0 and 60 minutes post exposure to 0.5mM hydrogen

peroxide stress.

Microarray Data

These networks, henceforth referred to as microarray co-expression, were built

from gene expression levels in 8 knock-out mutants at 0 and 60 minutes after ex-

posure to 0.5 mM hydrogen peroxide stress. The mutants used in the correlation

calculation were atf31, ppr1, pap1, aft1/pap1, atf1, sty1 and pmk1. This was

the only mutant data available for both stressed and non-stressed conditions.

All expression data was collected in the same laboratory (Bähler laboratory),

following the same protocol [169].

Robustness of Microarray Correlations

Because the co-expression networks built from the microarray data set involved

only seven mutants, they may be a less reliable measure of true correlations in

gene expression. To verify, as far as possible, the robustness of the microarray

network, each of the seven mutants was sequentially eliminated from the cor-

relation calculation. For significant correlations above 0.9 this resulted in an

average change of 0.02 in magnitude of the correlation coefficients. For signifi-

cant correlations above 0.7, the change was 0.05. Generating networks from the

recalculated correlations resulted in a 0.3% edge gain and 6.75% edge loss when

thresholding at 0.9 (gain of 0.3% and loss of 2% when thresholding at 0.7).

As a further check, co-expression was re-computed using a wider pool of

mutants including 24 additional mutants, which could not be used for network
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construction, because they lacked expression data post exposure to stress. The

co-expression, as calculated from the 7 mutants correlated (0.68 Spearman cor-

relation coefficient) with the co-expression as calculated from the larger set of

mutants. These results indicate that the correlation calculation is reasonably

robust despite the relatively small number of mutants.

5.2.2 Protein Interaction Network Construction

The physical protein interaction network for S. pombe was downloaded from iRe-

fIndex [194] a database consolidating interactions from a number of repositories

(BIND [4], BioGRID [217], CORUM [203], DIP [205], HPRD [178], IntAct [109],

MINT [136], MPact [74], MPPI [165] and OPHID [23]). To capture stress in-

duced changes in the network, the interactions were weighted according to an

approximation of the probability of their occurrence under specific conditions.

As summarised in Figure 5.3, two distinct approaches were used in estimating

the probability of interactions.

Figure 5.3: Weighted protein-protein interaction (PPI) networks were gener-
ated by condition-specific weighting of the physical interaction in fission yeast.
The weight of the edge approximates the probability of the interaction occur-
ring in the non-stressed or stressed cell. Two methods of edge weighting were
used. 1) Abundance weighting, where the interaction between two proteins was
weighted by the product of the proteins’ abundances. To avoid bias against lowly
expressed proteins, these products were normalized by the product in the non-
stressed condition. 2) Co-expression weighting, where the interaction between
two proteins was weighted by how correlated their expression is.

The first method was to weight the edge between two proteins by the product

of their abundances. The protein abundance data used in this weighting scheme

was collected by mass-spectrometry quantification of proteins from wild type

fission yeast cells at 0, 60 and 240 minutes post exposure to 0.5mM hydrogen

peroxide by Papadakis et al (manuscript in preparation).

The product of the protein abundances approximates the probability of the

physical interaction occurring in the cell if we consider interactions to require

the collision of randomly moving proteins. This idea is used, for example, in
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mass action models of chemical reactions. A drawback of this approach is that

interactions between highly expressed proteins will dominate heavily over inter-

actions between lowly expressed proteins. Indeed, the multiplicative step may

cause changes to lowly expressed proteins to be masked. Although there might

be a weak correlation between the functional importance and expression level

of a protein [166], interactions between lowly expressed proteins are not func-

tionally insignificant. Therefore, in order to adjust for the bias against lowly

expressed proteins, the approximated probability of interaction (i.e. the prod-

uct of the abundances) was normalised by the approximated probability under

non-stressed conditions. This normalised product was used to weight the inter-

actions. The weights in the non-stressed network thus all become one, whereas

the edge weights in the stressed network reflect the ratio of the probabilities of

the interaction occurring pre- and post- stress.

The second way of weighting the interactions was to use the correlation coef-

ficient (from the RNA-seq data set, as this represents correlation across a larger

number of genetic variants, thus giving a better estimate of gene co-expression)

as weights for the links. Negatively correlated protein pairs were assigned a

weight of zero. This too is an approximation of the probability of the interaction

occurring in the cell, as proteins both need to be present for the interaction to

occur and the presence of the corresponding RNA can be a useful proxy.

Nitrogen Starvation

To investigate the network effects of a different form of stress, weighted abun-

dance networks were also built from protein abundance data from proliferating

and quiescent cells [147]. Quiescent cells had undergone 24 hours of nitrogen

starvation prior to protein quantification. Full details of the quantification pro-

tocol can be found in Marguerat et al [147].

5.2.3 Network Modularity

Most graph partition algorithms divide networks into non-overlapping parts.

However, modules in gene and protein networks are thought to correspond to

functional units and that proteins may participate in multiple functions - there

is therefore increasing interest in clustering gene and protein networks into over-

lapping modules (i.e. groups of nodes where nodes are permitted to belong to

more than one group).

Various approaches have been proposed to perform this overlapping cluster-

ing. To ensure our results were independent of the particularities of specific

module finding algorithms, two distinct methods of clustering were used:

1. Link Communities (LC)

2. ModuLand (ML)
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Link Communities

The Link Communities [2] algorithm clusters nodes into overlapping modules

based on a non-overlapping clustering of the edges.

Edges are first clustered by computing a similarity measure, S, between

edges. As illustrated in Figure 5.4, the similarity of two edges is based on the

extent to which the nodes they connect share neighbours. Specifically, for edges

ei,k and ej,k, connecting nodes i and k, and j and k, respectively, S is given by:

S(ei,k, ej,k) = |n+(i) ∩ n+(j))|/|n+(i) ∪ n+(j)|

where n+(i) is the set of nodes i and its neighbours. This type of measure

(intersect divided by union) is known as the Jaccard Index. Edges are then

assigned into modules by single-linkage hierarchical clustering. Finally, nodes

inherit all module assignments of their edges, giving rise to overlapping network

modules.

The similarity measure can be extended to weighted networks by re-expressing

the Jaccard Index in terms of inner products. Specifically, if A is the weighted

adjacency matrix of the network, such that A(i, j) = w(i, j), and ai is row or col-

umn vector from this matrix, such that ai = A(i, :) = A(:, i), S can be expressed

as:

S(ei,k, ej,k) = ai · aj/(ai · ai + aj · aj − ai · aj)

Like the unweighted measure, the weighted measure captures the proportion

of the nodes in the neighbourhood that are neighbours to both nodes i and j,

but gives connections with high weights greater impact.

Figure 5.4: Example of how similarity measure S(ei,k, ej,k) is computed. (A)
Similarity between edges ei,k and ej,k, both connected to node k. The total
number of nodes in the neighbourhood (|n+(i) ∪ n+(j)|) is 12, while the number
of shared nodes (|n+(i)∩n+(j))|) is 4. Therefore S = 4/12 = 3. Two simple cases
are illustrated in (B) and (C). Figure reproduced from reference [2].

In this work, a distance cut-off of 0.4 was used during the hierarchical cluster-

ing of the network edges, though stress induced effects on network overlap were

found to be conserved using other (0.3-0.5) cut-off values. The effect of cut-off

modification is discussed further in Section 5.3.2. For unweighted networks, the

algorithm was implemented using a python script provided by Ahn et al [2]. For
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weighted networks, the weighted version of the algorithm was implemented with

custom written code in MATLAB. For unconnected networks, where paths do

not exist between all pairs of nodes, only the largest connected component was

considered.

ModuLand

The ModuLand [122] family of algorithms compute overlapping modules by

treating network modularity as a landscape, where small hills can exist as part

of larger mountains, thus giving rise to overlapping module assignments, as il-

lustrated in Figure 5.5. The ‘elevation’ is community centrality, a measure cap-

turing the influence of nodes or edges on the rest of the network based on a

perturbation-flow type calculation.

Figure 5.5: Summary of ModuLand module finding algorithm. (A) First, an
influence function fs(i, j) is calculated for all nodes s. (B) These functions are
then added together to give community centrality values for all edges. This is
the ‘community landscape’ (C) Overlapping modules are found by finding local
maxima in the community landscape (D) Finally, the modules themselves can
be treated as nodes, giving rise to a higher level network. Figure reproduced
from reference [122].

Briefly, for every node n, Moduland first determines a set of nodes Sn with
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a ‘strong influence’ on the node. The set is defined iteratively by starting with

node s and then adding the neighbouring node which maximises the density d

of the set, given by d =
∑

(i,j)n
wij

|Sn| . The set is thus expanded, until addition of

further nodes no longer increase the density value.

An influence of function for node n is then computed as fn(i, j) = w(i, j) if

(i, j) ∈ Sn, and zero otherwise. The community centrality of the edge between

nodes i and j is the sum of these influence functions from all nodes:

c(i, j) =
∑
s

fs(i, j)

Edges with higher community centrality than their neighbours (i.e local max-

ima) are assigned to individual modules (forming the module core), while the

other edges are assigned to multiple modules proportionally to the centrality

community values of their neighbours (referred to as the ProportionalHill mod-

ule assignment method [223]).

ModuLand analysis was implemented using the ModuLand Cytoscape plug-

in.

5.3 Stress Induced Changes to Network Structure

5.3.1 Co-Expression Networks

The change in network structure is visualized in Figure 5.6.

Degree Distribution

The degree distribution, that is, the frequency distribution of the number of

neighbours each node has, of a network can convey a lot of information about

network structure, though by itself, it is not enough to fully characterize the net-

work. Figure 5.7 shows the degree distributions of the microarray and RNAseq

networks before and after exposure to stress. The microarray degree distribu-

tions are unusual in that they peak at a relatively high degree. Interestingly,

the average degree of the different networks is roughly comparable (see table

5.2), suggesting the difference in degree distribution is not a trivial consequence

of higher connectivity in the microarray network, but instead reflects a genuine

difference in network structure.

Despite the difference in the shape of the degree distributions, inspection of

the distributions suggest stress has the same effect on both: the distributions ap-

pear more uniform after exposure to stress. To assess this change quantitatively,

the entropy, H, of the degree distributions P (k) was calculated:

H = −
n∑
k=1

P (k)log(P (k)).
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Figure 5.6: Visualization of co-expression networks before and after exposure to
peroxide stress (0.5mM), showing the re-structuring of the network into more
distinct modules. Nodes represent genes while the links between them represent
a high level of co-regulation (that is, a high correlation in gene expression across
genetic variants). The networks represented in this image have been thresholded
at a specific number of edges (see Section 5.2.1). The stressed and non-stressed
networks therefore have the same number of edges, but not the same number
of nodes (for details on network properties, refer to Table 5.2). The visual-
izations were generated using force directed layout in cytoscape and nodes are
colour coded according to GO category. Yellow nodes in the RNA-seq unstressed
network are either non-coding RNAs or neighbours of a non-coding RNA.

Entropy captures the uniformity of a probability distribution. The greater

the entropy, the more uniform the distribution. Interestingly, stress was indeed

found to increase the entropy of the degree distribution in the RNA-seq net-

works, from 3.82 to 4.16 for networks thresholded at a specific edge number, and

from 2.72 to 4.32 for networks thresholded at a specific correlation. In micorar-

ray networks, however, stress decreased the entropy, from 4.16 to 4.02 for edge

number cut-off, and from 4.41 to 4.17 for correlation cut-off).

It is unclear whether these differences reflect genuine differences in the be-

haviour of the interaction captured by RNA-seq and microarray co-expression.

The difference in behaviour of the two networks may be due to biases in the

microarray data resulting from the limited number of mutants the co-expression

is calculated from. This is discussed further in Section 5.3.1.

For scale-free networks, it can be shown that maximizing the entropy of the

degree distribution maximizes the network’s robustness to node removal [241].
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Figure 5.7: Degree distributions of the RNAseq and microarray networks using
both fixed edge number (40 000 edges for RNAseq and 60 000 edges for microar-
ray; referred to as cut-off 1 in the legend) and fixed correlation level (0.8 for
RNAseq and 0.9 for microarray, referred to as cut-off 2 in the figure legend) to
generate the networks. Note the logarithmic scaling of the x axis.

Although the distributions observed in the RNA-seq networks are not strictly

scale-free, the change in degree distribution suggests increased resistance to node

removal in the RNA-seq networks. This idea will be discussed further in Chapter

6.

Network Statistics

In order to further quantify the change in network structure, various network

statistics were computed. These measures do not necessarily have direct biolog-

ical significance in themselves: however, they are a necessary starting point in

understanding the changes to the network structure.
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First, the average shortest path length was computed. This is the average

minimum number of steps from one node to another in the network. The measure

captures information about the network’s connectivity structure. If the network

is not fully connected (paths do not exist between all nodes), only the largest

connected component is considered. In both microarray and RNA-seq data sets,

stress was found to increase this measure (from 4.58 to 6.10 and from 4.85 to 6.33,

respectively). This increase was conserved using different correlation cut-offs for

network generation (see Table 5.2).

To assess the significance of this change, the average shortest path length

for random permutations of the network were generated. In these permutations,

the degree structure of the original network was conserved, but the edges were

randomly re-shuffled. These permutations are referred to as degree preserving

null models. Calculating the average shortest path length in these null networks

gives the expected distribution of average path length for a network with the

specific degree structure. In this work, 20 permutations were generated for each

network of interest. This was deemed to be a sufficient number of networks

because the variance of the average shortest path length (‘expected’ path length)

of the 20 control networks was low. For each degree structure, the mean average

shortest path length of the permuted networks was of the order of 2, while

the standard deviation of the measure ranged from 0.001 to 0.004. Given the

high computational cost of generating permutations and computing the average

shortest path length of large networks, additional permutations were deemed

unnecessary.

In both microarray and RNA-seq networks, stress was found to increase the

actual average shortest path length significantly more than the expected average

shortest path length (p< 10−9, two-tailed t-test). This change in average shortest

path length thus indicates a stress induced change in the structure of the network

which is not simply explained by a change in the degree distribution.

The increase in average shortest path length is particularly noteworthy, given

the stress induced increase in network density of the largest component (from

0.0067 to 0.0068 for the microarray and from 0.012 to 0.026 for the RNA-seq

networks). Network density is the number of existing connections divided by

the maximum possible number of connections for a fully connected network: a

higher network density would thus be expected to yield a shorter path length,

as more connections exist in the network. The increase in both path length and

density suggests that stress leads to a restructuring of the network where links

between ‘local’ genes (i.e. gene pairs that already have short paths between

them) are increased, but connections to more ‘distant’ genes become fewer. In

other words, the network becomes more modularised.

This idea was corroborated by a stress induced increase in transitivity, the

probability with which two neighbours of a gene are also connected in the net-

work. Stress was found to increase transitivity in both microarray and RNA-seq
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networks (from 0.38 to 0.42 and 0.52 to 0.60, respectively).

Thus, the increase in path length, transitivity and density all suggest that

stress creates a network structure with more tightly co-regulated modules, but

fewer inter-modular connections.

Modular Overlap

In this Section, we investigate the stress induced changes in the networks by

looking at modular structure.

The modular structure of gene and protein networks is interesting because

clusters of densely connected nodes are thought to correspond to functional units

[14]. In general terms, genes and proteins are often considered to participate in

more than one function. Consequently, there is increasing interest in clustering

biological networks into overlapping modules - thus allowing nodes to belong to

multiple network modules. This approach was used to further investigate the

stress induced changes to co-expression network structure, specifically looking

at module overlap. In the context of these networks, module overlap reflects

the extent to which a single protein belongs to more than one set of tightly

co-regulated proteins.

As seen in Figure 5.8, overlap decreases significantly in response to stress in

both microarray and RNA-seq networks (Wilcoxon ranked sum test, p< 10−6).

This finding is robust when using different thresholds for edge inclusion (see

Table 5.3). These results confirm the breakdown of the network into modules

that have less interconnections between them.
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Figure 5.8: Changes to modular overlap in co-expression networks in response to
oxidative stress (0.5mM hydrogen peroxide). The distinct module finding algo-
rithms were used: ModuLand (ML) and Link Communities (LC, using clustering
cut-off of 0.4, see Methods). For ModuLand modules, overlap was measured as
ML overlap (see Methods), while for LC modules, overlap was measured as the
number of modules a protein belonged to. Average LC overlap decreased from
8.88 to 3.43 for the microarray network and from 9.98 to 3.31 for the RNAseq
network. Average ML overlap decreased from 7.15 to 3.63 for the microarray net-
work and from 1.58 to 1.18 for the RNAseq network. All changes were significant
(Wilcoxon ranked sum test, p< 10−6).
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Differences Between Microarray and RNA-seq Networks

The two types of co-expression network were both generated by analysing corre-

lations in gene expression across different genetic variants. The genetic variants

in the RNA-seq data are derived from crosses of genetically different wild iso-

lates, and are therefore unlikely to show any specific biases. In the microarray

data, on the other hand, all mutants were knock-outs of single genes with known

regulatory functions in the stress response. This raises the possibility that the

RNA-seq and microarray networks do not capture the same type of interaction

and makes the interpretation of the microarray network more difficult.

In order to investigate this effect further, we tested the correlation between

a gene’s co-expression pattern as computed from the two data sets. The average

correlation was 0.093 (range: -0.31 to 0.43 Spearman rank correlation). The

low correlation between the two data sets suggests that there is a difference in

the information captured by the networks. One explanation for this discrepancy

could be that seven genetic conditions are not sufficient to accurately capture

gene co-expression. However, as discussed previously, the calculation of the

correlation from the microarray data was sufficiently robust to produce a fairly

representative approximation of co-expression. A second possible explanation

is a bias introduced because all mutants in the microarray data set are stress

related. This could affect the co-expression network in two ways. First, the

variability between the genetic conditions is low, explaining the higher average

correlation in the microarray data set. This gives us less power to probe co-

expression, meaning some patterns of co-regulation may therefore be missed.

Second, all perturbation being stress related may confound the co-expression

values for stress related genes: the expression of these genes may be dominated

by the direct effects of the perturbation, masking effects of co-regulation.

Despite these points and the difference seen in degree distribution, the stress-

induced changes in modularity are remarkably consistent in the two networks,

suggesting that this effect of stress on the co-expression network is robust.

Importance of Non-Coding Genes in Stress

There was a greater presence of non-coding RNAs after exposure to stress in the

RNA-seq network. Non-coding RNAs made up 23% of the set of genes present

only in stress, compared to 13% of genes present only in the non-stressed net-

works. This raises the possibility that the expression of non-coding RNAs be-

comes more coordinated under stress treatment. An analysis (performed by

collaborator Vera Pancaldi) of the non-coding RNAs that appear to be strongly

co-regulated only during stress reveals that the majority are annotated antisense

RNAs, overlapping protein coding transcripts on the opposite strand. The cor-

responding protein-coding transcripts (mRNAs) represent a mixture of cell-cycle

factors, chromatin remodellers and metabolism related proteins. This suggests

these strongly co-regulated non-coding RNAs might play a role in the regula-
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tion of these functions during stress. More specifically, edges were classified into

three groups: links between two non-coding RNAs, links between two coding

RNAs and links connecting one coding transcript to a non-coding one. Figure

5.9 shows the proportion of existing links compared to the total number of pos-

sible links within each of these categories, in other words, capturing the density

within each of these groups. Stress produces an increase in links connecting the

same type of gene (both coding or non-coding) whereas there is no increase in

the density of mixed (coding to non-coding) links. This result confirms findings

that non-coding antisense RNAs can be regulated independently from their cor-

responding coding partners [163]. In addition to the antisense RNAs discussed

above, some of the non-coding RNAs appearing only in the stressed network

are paired with other non-coding RNAs on the opposite strand, while others are

intergenic RNAs.

Figure 5.9: The density (existing links over possible links) of coding and non-
coding RNA sub-networks in the RNAseq co-expression network. The three
categories of links shown are: non-coding to non-coding; coding to coding; and
non-coding to coding (mixed). Dark bars shows measures for the non-stressed
network, lighter bars shows measures for the stressed network. Stress increases
the density of coding to coding and non-coding to non-coding links, without
greatly affecting the mixed links. Figure produced by Vera Pancaldi.

5.3.2 Protein Interaction Networks

Module Overlap

Changes in the co-expression network modularity appear to be translated onto

the protein network. In these protein networks, physical interactions between

proteins have been assigned a weight according to the estimated probability of

the interaction occurring in the stressed or non-stressed condition (see Section
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5.2.2 for further details). As shown in Figure 5.10, ModuLand overlap decreases

in response to stress for both methods of networks weighting (abundance and co-

expression weighting), though this finding is only significant for the abundance

weighting (Wilcoxon signed rank test, p<0.001 for abundance weighting, p =

0.6 for co-expression weighting). For reasons discussed further in Section 5.3.2,

the Link Communities algorithm assigns the vast majority of nodes to a single

module, making the measure of module overlap largely meaningless.

These effects of stress on the PPI network are less pronounced than in the co-

expression networks. Although this result may be a genuine difference between

the networks, it could also be due to the relatively small coverage of the PPI

network in fission yeast resulting in diminished statistical power to detect stress

induced changes.

To test whether a similar change in network structure is also seen in response

to other cellular stresses, weighted abundance networks were also constructed

from protein abundance data in response to 24 hours of nitrogen starvation (qui-

escence). As shown in 5.11, the ModuLand overlap is also significantly decreased

in response to nitrogen starvation (Wilcoxon signed rank test, p< 10−10). Av-

erage Link Communities overlap, however, is increased in response to nitrogen

starvation (Wilcoxon signed rank test, p< 10−3).

As with stress, the Link Communities algorithm assigns the majority of the

nodes to a single module, again, complicating the interpretation of the results. It

is therefore unclear whether the change in Link Communities overlap represents

a difference in the effects of oxidative stress and nitrogen starvation, or is simply

due to Link Communities overlap not adequately capturing the overlap in these

networks.

It is interesting that, although these two stresses produced different cellu-

lar responses, the network effect, as measured by ModuLand overlap, is similar.

The potential reasons for the network restructuring – increased robustness, en-

ergy saving and development of more distinct functional modules – are plausible

responses to both oxidative stress and nitrogen starvation.

Shortcoming of the Link Communities Algorithm on PPI networks

Hierarchical clustering in this work was performed using a distance cut-off of

0.4. In PPI networks, hierarchical clustering with a threshold of 0.4 assigned the

vast majority of nodes to a single module. At lower cut-off values, all edges were

assigned into their own module, essentially meaning that the number of modules

a node was assigned to was determined by its degree. A cut-off value for which

the clustering did not fall into one of these extremes could not be determined,

even when changes to the cut-off were below 10−5. Further optimization of the

cut-off value were prohibited by computation cost.
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Figure 5.10: Changes to modular overlap in response to oxidative stress (0.5mM
hydrogen peroxide). The distinct module finding algorithms were used: Mod-
uLand (ML) and Link Communities (LC, using clustering cut-off of 0.4, see
Methods). For ModuLand modules, overlap was measured as ML overlap (see
Methods), while for LC modules, overlap was measured as the number of mod-
ules a protein belonged to. Average ML overlap decreases from 1.90 to 1.75 for
the co-expression weighted networks and from 1.53 to 1.50 (at t= 60min) and
1.33 (at t= 240min) for the abundance weighted networks. Average LC over-
lap decreases from 1.12 and 1.04 for co-expression weighting and from 1.0043 to
1.0022 (at t= 60 and 240 min) for abundance weighting. Changes in the ML
overlap are significant for the abundance weighted network (Wilcoxon signed
rank test, p<0.001), though not co-expression weighting (p = 0.5976).

Hub-Neighbour Co-Expression

Given the limitations of examining changes in module overlap in the PPI net-

works, other network measures were used to further quantify the oxidative stress

induced changes in network structure.

A ‘hub’ is a highly connected node in a network - defined, depending on

context, either in absolute (for example, more than 5 binding partners [78])

or relative (for example, 5% most connected nodes [17]) terms. It has been

suggested that, in PPI networks, hubs are divided into two categories: ‘party’
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Figure 5.11: Changes to modular overlap in proliferating and quiescent cells.
Quiescent cells have been exposed to 24 hours of nitrogen starvation. For Modu-
Land modules, overlap was measured as ML overlap (see Methods), while for LC
modules, overlap was measured as the number of modules a protein belonged to.
Average ML overlap decreases from 2.23 to 1.53 while LC overlap increases from
1.08 to 1.13. The decrease in ML overlap is significant, Wilcoxon signed rank
test, p< 10−10). Note that these boxplots do not capture the size difference in
the networks: therefore, though the proliferation network has nodes with higher
LC overlap, its average overlap is lower because of a larger number of nodes with
LC overlap of 1.

hubs, which are co-expressed with their neighbours, thus binding with most

of their partners simultaneously; and ‘date’ hubs, not necessarily co-expressed

with their neighbours and interacting with their partners at different times or

locations [17, 78]. Date hubs are thought to function as points of cross-talk

between functional modules, while party hubs function within modules.

It is possible that the changes in network modularity could be associated with

changes in the date/party behaviour of hubs, which could potentially be observed

in the way hubs are co-expressed with their neighbours. The stress induced

change in hub-neighbour co-expression was examined for the 2%, 5% and 10% of

nodes with highest degree. This corresponded to nodes with degrees greater or

equal to 21, 12 and 8 respectively, and 32, 81 and 162 proteins in total. As shown

in Figure 5.12, the distribution of hub-neighbour co-expression appears to shift

with stress: proteins already highly co-expressed with their neighbours become
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increasingly highly co-expressed. This echoes the tighter co-regulation within

modules observed in the co-expression network. As a crude way of quantifying

this change, a linear regression was fitted to these data. For all three thresholds

of hub selection, the slope of the best-fit line was greater than one, indicating

that hubs already highly co-expressed with their neighbours become more so

after stress. However, this was only significant for the 5% set (for top 2%, 5%

and 10% nodes: R2 values were 0.7173, 0.7072 and 0.5889 and 95% confidence

intervals on the slope of the best-fit-line were 0.9276 - 1.4263, 1.0171 - 1.2905,

and 0.9035 - 1.1074). As the co-expression change is most pronounced at the

tail of the distribution (i.e. most highly co-expressed hubs), a linear regression

is a very blunt measure of the statistical significance. Unfortunately, the small

size of the data set precluded the undertaking of more sophisticated statistical

analysis.

In summary, these results hint at an interesting change in hub-neighbour

co-expression in response to stress, but are not enough to confidently draw con-

clusions
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5.4 Biological Correlates of Network Change

The results discussed so far have captured global stress induced changes in the

structure of co-expression and protein interaction networks. However, it would

be interesting to place these changes in the context of biological function, by

identifying categories of genes or proteins undergoing the largest shifts in con-

nectivity in response to stress.

5.4.1 Principles of Enrichment Analysis

Enrichment analysis is a method of determining whether a specific feature - in

this case, GO-category - is significantly over- or under-represented in a gene list,

compared to a background gene list. All enrichment analyses presented here

were performed using GO::Term-Finder [22], which computes p-values (p) using

the hypergeometric distribution:

p = 1−
k−1∑
i=0

(
M
i

)(
N−M
n−i

)(
N
i

)
where N is the total number of genes in the background list, M is the number

of genes with a given annotation in the background list, n is the size of the gene

list of interest and k is the number of annotated genes in the gene list of interest.

P-values were corrected using Bonferroni correction for multiple hypothesis

testing.

5.4.2 Co-Expression Networks

Recall that co-expression network construction involves thresholding edges ac-

cording to correlation in expression. Consequently, some genes had no connec-

tions and were thus not considered part of the network. The presence of a gene

in only the stressed or non-stressed network therefore suggests that it is more

tightly co-regulated with other genes in one of the conditions.

For the RNA-seq co-expression networks, genes which were present only in

the stressed network showed no enrichment for a specific GO-category. The genes

present in the unstressed network only were enriched for ion transmembrane

transport and related functions (corrected p < 10−4) and regulation of nitrogen

compound metabolic processes (corrected p = 0.005).

No enrichment was found in either set of nodes in the microarray network,

which is not surprising. As discussed previously, there is lesser variability be-

tween the genetic variants in this data set. This leads to a less accurate estimate

of gene co-expression, potentially masking some of the stress induced effects on

the network.

Both analyses used the set of genes present in the networks as background

to avoid biases towards categories over-represented in the whole network.
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To investigate changes in connectivity of genes present in both stressed and

unstressed networks, enrichment analysis was performed on the 10% of genes

with the greatest stress induced change in degree. In the RNA-seq networks,

the set of genes with the greatest stress induced decrease in degree was weakly

enriched for monosaccharide catabolic processes (corrected p=0.0038). The set

of genes with the greatest degree increase was enriched for cytoplasmic trans-

lation (corrected p=0.00084), suggesting tighter regulation of translation after

exposure to stress. Again, the genes present in the network were used as the

background set for the analysis. In the microarray co-expression network, no

enrichment was found in either set of genes, although when using the whole

genome as background, the enrichment for cytoplasmic translation in the genes

with increasing degree was recovered (corrected p< 10−17).

5.4.3 PPI Networks

A similar analysis was performed on PPI networks (only the co-expression weighted,

as all genes were present in both networks for abundance weighted networks).

Here, the presence of a protein under only one of the conditions is due to all its

edges having a weight of zero in the other condition, indicating that the protein

is not functionally important in that condition. Neither set of proteins, however,

was enriched for any particular GO-category when using the PPI network as

background.

Similarly to the co-expression networks, the 10% of proteins undergoing the

greatest stress induced change in degree was tested for enrichment. In the PPI

networks, unlike the co-expression networks, weighted degree - the sum of the

weights of a protein’s interaction - was used in this analysis. In these networks,

a protein’s weighted degree thus represents an approximation of its probability

of participating in interactions.

In the co-expression weighted PPI network, the set of proteins with the great-

est stress induced decrease in weighted degree is enriched (using the rest of the

network as background) for mRNA processing and particularly RNA splicing

(corrected p<0.0063). In the abundance weighted networks, there is no enrich-

ment using the abundance weighted network as background. However, using

either the larger PPI network (that is, not excluding proteins for which no pro-

teomics data was available) or the whole genome as background, the mRNA

processing and RNA splicing enrichment is recovered (corrected p<0.0028). The

10% of proteins undergoing the largest degree increase were not enriched for any

GO-terms in either of the networks using the network as background.

The enrichment analysis in abundance weighted networks was also performed

for sets of proteins undergoing a change in centrality in response to stress. Cen-

trality is an alternative method of assessing functional significance in a net-

work, with central genes or proteins generally having greater functional impor-

tance [102]. Centrality was measured as betweenness centrality, the number of
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shortest path lengths in the network passing through a node. Proteins with

decreasing betweenness centrality upon stress treatment are enriched for cytoki-

nesis (corrected p< 10−14), while proteins with increasing betweenness centrality

are enriched in proteasome subunits (corrected p< 10−19). Finally, a group of

proteins enriched for cytoskeleton re-organization (corrected p< 10−6), showed

increased betweenness centrality at the 240 min time-point.

5.4.4 Summary of Enrichment Analyses

In summary, these results suggest a stricter control of proteins involved in trans-

lation in the stressed condition. Furthermore, stress appears to decrease the

involvement of genes related to RNA splicing in interactions. This finding could

reflect that rapidly regulated stress-response genes are under-enriched for in-

trons [100], thus leading to a decreased importance of splicing-related proteins

during the stress response. This hypothesis is supported by the finding that the

enrichment for splicing related categories is no longer present at 4 hours post

exposure to stress.

Although the numbers of genes in these lists are small, the enrichment anal-

yses suggest a fundamental role for the proteasome after stress treatment, prob-

ably involved in the elimination of the oxidatively damaged protein. Both the

enrichment for cytokinesis and cytoskeleton re-organization are likely to be ex-

plained by the growth arrest which is initiated during stress response. These

findings also suggest an important rearrangement of the cellular structure as a

long-term consequence of stress, in line with recent reports of cross-talk between

cell cycle and cell shape regulation [233].

5.5 Possible Extensions of this Work

The work presented here shows a stress induced restructuring of fission yeast

co-expression and weighted protein interaction networks. The results were a lot

more pronounced on the co-expression network. While stress induced changes

may indeed be more remarkable at the co-expression level, the difference may

also be due to the co-expression networks having significantly higher coverage

than the PPI networks. A potentially fruitful extension of this work would

be to repeat the analyses on networks constructed from predicted PPI data.

In addition to increased coverage, this could have the advantage of decreasing

systmatic biases in the network.

Additionally, the results presented here suggest changes occur in the way

nodes are co-expressed with their neighbours. The mapping of expression dy-

namics onto protein networks has received considerable attention in the liter-

ature [17, 78, 119], making it particularly interesting to investigate the changes

seen here further. Furthermore, previous work has suggested that, in response to

stress, interactions are pruned to retain only essential ones [152]. In the PPI net-
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work generated here, this would translate to nodes going from interacting with

multiple partners with relatively uniform probability to having higher probabil-

ity of interaction with specific partners. A simple approach would be to compare

the variance of a node’s edge weights before and after stress. A similar approach

has been implemented in quantifying the extent of cellular differentiation during

development [12].

5.6 Conclusion

Gene co-expression networks show higher positive correlation coefficients, longer

average shortest path lengths, higher transitivity, and less overlap between mod-

ules after exposure to stress. These findings are indicative of a tighter co-

regulation between genes within a module, but lesser communication between

modules. This type of re-organization might represent the emergence of more

specialized functional units in response to stress. It is also consistent with in-

creased network robustness, potentially ensuring resilience to further challenges.

Although changes in the weighted PPI networks are more difficult to assess, it

appears that the re-organization seen at a gene expression level is indeed trans-

lated to the protein level.

Under stress, the co-expression between a group of hubs and their neighbours

increases. This change in the hub-partner co-expression distribution is consis-

tent with the strengthening of intra-module connections parallel to a weakening

of inter-module links. These findings are reminiscent of a long standing debate

about the existence of bimodality in the hub-neighbour co-expression distribu-

tion and the distinction between party-hubs (co-expressed with neighbours and

binding many partners at once) and date-hubs (not co-expressed with neigh-

bours and binding partners in different places or at different times). However,

this data set is not of a sufficient size to justify any claims in this regard.

The analysis presented here also suggests a decreased importance for splicing

factors under stress. This effect is observed in two distinct types of protein inter-

action network: those weighted according to protein abundance as well as those

weighted according to protein co-expression. The lesser functional importance

of this regulatory mechanism after stress exposure could arise from the need for

rapid control of genes in response to stress. Importantly, the phenomenon is no

longer seen four hours after exposure to stress, highlighting its association with

the transient stage of the transcriptional response. The decreased network cen-

trality of proteins involved in cell division is consistent with the stress-induced

growth arrest, while increased centrality of proteasome subunits could indicate

a higher turnover of proteins need to eliminate the oxidatively damaged pro-

teins. Finally, increased co-expression between non-coding RNAs in the stressed

conditions suggests that they might play an important role in cellular stress

response.
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Chapter 6

Network Resilience to Node

Removal: Variability in

Network Models and

Co-Expression Networks

6.1 Introduction

Robustness, the ability to maintain function in the face of perturbation, is con-

sidered a key characteristic of evolvable complex systems, including various bi-

ological structures [115]. Robustness is interesting as a fundamental biological

phenomenon, but also because of its implications for real world applications,

such as understanding of disease or the design of new drugs [116]. Networks

models have been a popular tool in studying the robustness of various complex

systems [27]. It is therefore not surprising that ideas from complex network

theory have been used to model the robustness of gene and protein networks.

The use of terminology is not always consistent between the biological and

mathematical literature. Thus, before discussing the literature further, it may

be useful to clarify some central concepts. In general terms, robustness can

refer to tolerance to any type of perturbation. However, in the context of net-

work models, particularly static network models, robustness usually refers to

resilience to node removal. The way resilience is measured depends on the net-

work in question: static network models are limited to topological measures of

function, typically using global connectivity as a proxy for how well the network

is functioning [3]. Dynamic network models, on the other, allow quantifying

function more precisely, as the rate of production of certain molecules [30] or the

flux through key reactions [113]. These two types of robustness are sometimes

referred to as topological and dynamical robustness, respectively [14].

There is considerable literature on various network models’ resilience to node

removal. The relationship between degree distribution and resilience has been
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particularly well documented. As shown by Albert and Barabasi and a number

of other authors, random networks, which have Poisson degree distributions, are

less tolerant to (random) node removal than networks with the same average

degree but a power law degree distribution [3]. On the other hand, networks

with power law degree distributions are more vulnerable to targeted removal of

high degree nodes. This difference in behaviour is often discussed in terms of a

trade-off between average and worst-case behaviour: resilience to random node

removal comes at the cost of vulnerability to removal of specific nodes [115].

The relationship between a network’s degree distribution and its resilience to

node removal is intuitive: in a network with a heavy-tailed degree distribution,

removing a random node is likelier to result in the deletion of a node with low

degree, which is less likely to have a significant impact on global connectivity.

Indeed, for networks with power law degree distributions, it can be shown that

maximizing the entropy of the degree distribution (with a constrained average

degree) maximizes the network’s robustness to node removal [241].

The relevance of these results in terms of biological networks is still debated.

Firstly, as discussed in the Introduction Chapter, the previously prevalent idea

that power law degree structure is ubiquitous among biological networks is now

considered, at least to an extent, the result of systematic biases in the interaction

data and flawed statistics [137, 220]. Furthermore, even if heavy-tailed degree

distributions are a genuine feature of gene and protein networks, it does not

follow that this property is the cause of the robustness of biological systems.

The relationship between network structure beyond degree distribution and

robustness to node removal is less clear. There has been some interest in the

relationship between a network’s modularity (loosely defined as how easily the

network is decomposed into separate modules) and its robustness. A highly

modular structure is a common feature of biological networks [45, 81, 192, 193,

196]. Some authors have attributed the robustness of biological networks to their

high modularity: a highly modularised structure would contribute to robustness

by limiting the spread of intra-modular damage to the rest of the network [115].

Contrary to this idea, evidence generally points towards a negative correla-

tion between modularity and robustness to node removal in dynamic network

models. Hintze and Adami generated a variety of synthetic metabolic networks

through a process of in silico evolution which combined random network compo-

nents and then selected for networks producing key metabolites [84]. Over the

course of the evolutionary process, the modularity of the networks, as measured

as the presence of bottlenecks in the network, increased. Meanwhile, robust-

ness to both environmental perturbations and node removal decreased, although

the decrease was very slight for node removal. Holme constructed synthetic

metabolic networks of differing modularity and found that increasing modular-

ity increased dynamic robustness to environmental perturbations, but decreased

dynamic robustness to node removal [88]. Recently, Tran and Kwon reported
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that modularity is negatively correlated with dynamic robustness to node re-

moval in cellular signalling pathways [230]. Thus, taken together, these results

suggest a negative association between modularity and dynamic robustness to

node removal. The relationship between topological robustness and modularity,

on the other hand, remains less well studied.

6.1.1 Robustness and Stress

Robustness is a particularly interesting concept in the context of the stress re-

sponse. The stress response itself maintains the cell’s ability to function in

the face of external perturbation: it can therefore be considered as an example

of robust behaviour. However, as discussed in Chapter 5, the stress response

also provides the cell protection against further insults, thus potentially increas-

ing the cell’s robustness. Indeed, there has been speculation that the changes

observed in cellular networks in response to stress aim to maximize the cell’s

robustness [152].

Interestingly, it has been suggested there is a fundamental link between ro-

bustness and evolvability: not only is robustness selected for during the course

of evolution, but a certain degree of robustness is required for a system to be

evolvable in the first place [115]. As discussed in Chapter 5, exposure to stress is

associated with an increased rate of mutation [57] and greater evolvability [140].

It therefore seems plausible the changes to the co-expression networks in Chapter

5 would be associated with an increase in resilience to node removal.

6.1.2 Variability of Resilience

Previous work on network resilience to node removal has focused on compar-

ing worst case behaviour (targeted removal of key nodes) to average or single

realisations of random node removal. For example, in Albert and Barabasi’s

comparison of scale-free and random networks [3], the authors present the aver-

age shortest path length of the network after a fraction of the nodes have been

removed (Figure 6.1). These results appear to represent the removal a single

set of random nodes - giving little information about the expected (i.e. aver-

age) effect of node removal or the variability of the effect. The same behaviour

has also been demonstrated by other others, both analytically and using simula-

tions [27,34,89]. To date however, only a single study has addressed the question

of how variable the effect of node removal is [229] and no study has looked at

the shape of the distribution in more detail.

6.1.3 Aims and Objectives

In this Chapter, we examine the variability of network resilience to node re-

moval in random and scale-free networks. We also examine the effects of stress
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Figure 6.1: The average shortest path length in scale-free (SF) and random
(E) networks as a fraction of the nodes are removed in Albert and Barabasi’s
work [3]. The blue markers (‘failure’) represent random node removal, while
the red markers (‘attack’) represent targeted removal of high degree nodes. The
results suggest scale-free networks are more robust to random node removal, but
give no indication of the variability of the effect. Figure adapted from [3].

on resilience to node removal using the co-expression networks constructed in

Chapter 5.

6.2 Methods

6.2.1 Network Models

In line with Albert et al. [3], we compared resilience to node removal in Barabasi-

Albert graphs [13] (hence referred to as scale-free (SF) graphs) and Erdős-Rényi

(ER) random graphs. Network generation, node removal and path calculations

were all implemented using the NetworkX package for Python.

SF networks were generated according to the preferential attachment model:

the network is initialized with m nodes and grown one node at the time, until a

network with n nodes is reached. Each new node attaches to m of the existing

nodes. The probability of attaching to existing node i (τ(i)) is proportional to

the degree of i (τ(i) = ki∑
j kj

, where ki is the degree of i).

ER networks were generated by initializing a network with n nodes and then

connecting each pair of nodes with probability p.

In the work presented here, we used values n = 1000 and m = 2, giving

a SF network with 1000 nodes and 1996 edges. This corresponds to a p of

0.004 ( 1996

(10002 )
) for ER network generation. Because ER network generation is a

probabilistic process, there was slight variation in the number of edges in the
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ER network.

6.2.2 Stress Networks

We also examined the effect of node removal on the co-expression networks from

Chapter 5 before and after exposure to stress. The RNA-seq networks with

40000 edges were used.

6.2.3 Resilience Measure

The effect of node removal on the network was measured in terms of network

efficiency e, given by:

e =
1

1
2n(n− 1)

∑
i>j

ρ−1i,j

with ρ indicating the length of the shortest path between nodes i and j. The

change in network efficiency in response to node removal was measured by the

normalized change in efficiency (df =
ef−e
e ), where ef is the efficiency after

removal of fraction f of the nodes.

Efficiency is a typical choice of measure to quantify the state of the net-

work. Other measures also exist, including average shortest path length and the

size of the largest connected component. Average shortest path length becomes

problematic for networks with more than one component: the path length be-

tween nodes on different components is infinite. Efficiency solves the problem:

limx→∞
1
x = 0, thus unconnected pairs contribute nothing to the total efficiency.

The size of the largest connected component is typically used in theoretical work

(percolation models, for example [27]), particularly in the context of finding the

‘percolation threshold’, the fraction of nodes that can be removed before the net-

work fragments into multiple disconnected components. In the context of gene

and protein networks, this measure has the disadvantage of not giving informa-

tion about the connectivity within the largest component. Efficiency captures

this information, but should also be able to detect network fragmentation: stud-

ies looking at both efficiency and the size of the largest connected component

have found these measures give similar results [229].

6.3 Network Models

Figure 6.2 compares the change in efficiency after node removal in a SF and ER

network, up to removal of 10% of the nodes (corresponding to removal of 100

nodes), for 1000 realisations of random node removal. As expected, the mean

loss of efficiency is greater in the ER network (< df=0.1 >= −0.0447 for the

SF network and < df=0.1 >= −0.0581 for the ER network). The variability of

the response is greater in the SF network: the standard deviation of df=0.1 in

the SF network was 0.0231, and 0.0098 in the ER network. These results are in
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line with those of Trajanovski et al [229]. We also examine the ‘skewness’, or

the symmetry of the distribution, defined as s = E(x−µ)3
σ3 where µ is the mean

of x, σ its standard deviation and E(t) is the expected value of t. A negative

skewness indicates a long tail at low values, a positive skewness indicates a long

tail at high values. The skewness of the distribution for the SF and ER network

is -1.08 and -0.071 respectively, indicating the SF network has a longer tail at at

low df=0.1 values.

Figure 6.2: Change in efficiency in response to removal of an increasing pro-
portion of the nodes in a SF and ER network. Each dotted line represents one
realisation of random node removal, with a total of 1000 realisation for each
network. The solid lines represent average behaviour across realisations.

Next, we examined the behaviour of 100 networks of both types in order to

confirm the behaviour we observe is a general property of networks of this type.

Figure 6.3 shows the distribution of the change in efficiency after removal of 10%

of the nodes for 500 realisations of random node removal for each network. This

confirms the previous results: SF networks have greater average resilience, but

the response is more variable, with a long left tail.

6.4 Stress Networks

One of the possible explanations put forward for the stress induced changes in

network structure seen in Chapter 5 is that the post-stress network is more resis-

tant to further damage [152]. We sought to explicitly test this by examining how

node removal affects network efficiency before and after exposure to stress in the

157



Figure 6.3: Distribution of the change in efficiency after removal of 10% of the
nodes for 500 realisations of random node removal for SF and ER networks.
Each line corresponds to the distribution of df=0.1 scores for a single network.
The horizontal lines indicate average change in efficiency across the 100 networks
and 500 realizations.

RNA-seq co-expression networks. The RNA-seq networks were chosen instead

of the microarray networks because of the methodological problems associated

with the microarray networks.

First, we investigate network response to removal of a single node. For both of

the RNA-seq networks, we computed the normalized difference between efficiency

before and after single node removal. While the mean dn=1 (using n to indicate

how many nodes have been removed) score was not different for the two networks

(−1.52 × 10−4 and −1.62 × 10−4 for pre and post stress respectively, p = 0.11,

ranked sum test), the standard deviation in the post-stress network was greater

(5.06 × 10−4 vs 7.18 × 10−4) and the skewness more negative (-2.81 vs -5.06).

This suggests that while the average robustness of the network remains the same

after exposure to stress, the variability of the effect of removing a single node is

greater, with a greater probability of exceptionally high damage.

To examine whether this behaviour was simply due to the change in degree

distribution or the change in the number of nodes, we computed 10 networks

with the same degree structure as the original pre and post stress networks

by reshuffling the networks’ edges. In these networks, the effect of stress on

average dn=1 is slightly greater (-1.45×10−4 vs -1.95×10−4 pre and post stress

respectively), but the difference in standard deviation is smaller (4.94×10−4 vs
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Figure 6.4: Robustness to random node removal in RNAseq co-expression net-
works, as measured by change in efficiency. The figures shows the distribution
(top) and cumulative distribution (bottom) in normalized difference in efficiency
before and after node removal, for each node in the network.

6.08×10−4) and the skewness becomes less, not more, negative (-3.76 vs -2.85).

Thus, changes in degree distribution do not fully explain the effect of stress on

the network’s resilience to node removal. This result is compatible with the idea
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the changes in modularity structure in response to stress increase the network’s

robustness - although this behaviour may also relate to other structural changes

beyond the degree distribution.

Next, we adopted the approach used in the analysis of the SF and ER net-

work models: random nodes were sequentially removed from the network, up

to deletion of 10% of the network’s nodes (corresponding to 284 nodes in the

pre-stress and 198 nodes in the post-stress network). In one sense, this is a

more biologically realistic model of damage to proteins, as environmental per-

turbations would be unlikely to selectively cause loss of function in all copies of a

single protein. The model remains somewhat unrealistic, as 10% of the nodes are

completely removed (corresponding to losing all existing copies of the protein),

with no damage to other proteins. However, this is a necessary approximation,

as our networks cannot represent node damage, only full removal of a node.

Figure 6.5 shows the resilience to node removal in the co-expression network

before and after exposure to stress, for 200 realisations of sequential random node

removal. The average normalised change in efficiency was -0.045 in the pre-stress

network and -0.035 in the post-stress network, while the standard deviation was

0.0082 and 0.0218 and the skewness -0.2174 and -6.9442 in the pre and post-stress

networks respectively. Thus, while on average the post-stress network is more

resilient to node removal, the variability of the damage is greater and extreme

damage is more likely.
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Figure 6.6: Distribution of change in network efficiency after removal of 10%
of nodes in the network (corresponding to 284 nodes in the pre-stress and 198
nodes in the post-stress network).

A drawback of this model is that only nodes included in the network can be

deleted. This is unrealistic: random mutations would not only target highly co-

expressed genes and proteins. To correct for this, both the single and 10% node

removal simulations were re-run using a network covering the whole genome.

Genes not part of the original networks (i.e not highly co-expressed with any

other gene) were considered as nodes with no connections.

For both simulations, the pattern of behaviour remains the same: the post-

stress network is, on average, less damaged by removal of a node, but the stan-

dard deviation of the distribution is greater and the skewness is more negative.

Specifically, when looking at the effect of removing a single node, the mean dn=1

pre- and post was -7.34×10−5 vs -5.43×10−5 respectively, the standard deviation

was 5.54×10−4 vs 6.93×10−4 and the skewness was -45 vs -169. When removing

10% of the nodes, the mean df=0.1, pre- and post was -0.046 vs -0.036 respec-

tively, the standard deviation was 0.013 vs 0.034 and the skewness was -0.13 vs

-4.56. This difference in behaviour pre and post exposure to stress is illustrated

in Figure 6.7.

Again, these results show that while the expected effect of node removal on

the post-stress network is smaller, there is a greater incidence of extreme loss of

network function after exposure to stress.
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Figure 6.7: Distribution of change in network efficiency after removal of 10%
of genes from the whole genome networks (588 genes out of the full 5883 gene
genome).

6.5 Discussion and Conclusion

Our results indicate that while the overall expected (average) resilience to node

removal is greater in scale-free networks than in random networks, the variability

of the response is greater in scale-free networks. This result is not unexpected:

it is an extension of the result that scale-free networks are more vulnerable to

the targeted removal of high degree nodes than random networks. However, the

shape of the response distribution had not previously been explored (although,

while this work was being undertaken, work relating to this idea was published

by Trajanovski and colleagues [229]).

We also examine the variability of the effect of random node removal in

the co-expression networks from Chapter 5. Exposure to stress causes the co-

expression network to behave more like the scale-free network: both the expected

resilience to node removal and the variability of the response are greater after

exposure to stress. Furthermore, the incidence of extreme loss of efficiency is

higher after exposure to stress. To some extent, this change may be attributable

to the change in degree distribution or network size. However, similar changes

are not seen when simply producing networks with the same degree distribution

as the pre and post networks - thus, degree distribution alone is not enough to

explain the behaviour.

The results presented here suggest that, after exposure to stress, yeast cells

will be, on average, more resistant to deleterious mutations or protein damage.

However, the variability of the effects of deleterious mutations or protein damage
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will also be greater, with a greater incidence of extremely deleterious events. This

hypothesis is potentially experimentally testable.

From a population genetics point of view, a potential explanation for the

behaviour we observe is the relationship between stress and evolution: exposure

to cellular stress increases mutation rate [57]. Increased resilience to mutation

would therefore allow cells to tolerate the higher frequency of deleterious muta-

tions but also enable stressed cells to explore a greater range of new, potentially

adaptive, phenotypes.

It is also possible to interpret the changes we see on a single cell level: they

may represent a risk management strategy. If a cell exists in an environment

where even moderate malfunction is likely to significantly impair survival, it is

better to opt for minimal damage most of the time, at the cost of occasional

catastrophic failure. On the other hand, if the cell exists in a safer environment,

where even high levels of damage do not significantly affect the probability of

survival, the better strategy is to avoid very high levels of damage, even at the

cost of higher average damage. These two modes of behaviour correspond to

those seen in the post-stress and pre-stress co-expression networks respectively.

Figure 6.8: Illustration of how different network structures may be beneficial
in different environments. The left hand panel shows the damage distribution
(i.e. change in network efficiency) p(d) for 10% node removal for the pre- and
post-stress networks. The damage tolerance t, capturing the level of network
damage the cell can sustain before dying is also illustrated. The right hand
panel shows the relationship between overall survival probability r =

∫ t
d=0 p(d)

and the damage tolerance for both networks. For high damage tolerance (i.e.
unchallenging environments where the cell is able to survive despite a high level of
network damage), the pre-stress network has a higher overall survival probability
than the post-stress network because of the occasional catastrophic failures of
the post-stress network. However, if the damage tolerance is low, the pre-stress
network performs better than the post-stress network. Thus, the shape of the
damage distribution can have important consequences for the cell.

In more general terms, assuming the cell is attempting to maximize its

chances of survival, we can equate the probability of survival to the concept

of utility from economics. Thus, the relationship between damage and survival

probability can be thought of as a utility function. The shape of this utility

function determines the optimal strategy to adopt: concave utility functions
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promote risk averse strategies (low variance) while convex utility functions lead

to risk-seeking behaviour (high variance). Similarly, as illustrated in Figure 6.8,

we can hypothesise the change in the variance and skewness of the df distri-

bution relates to the change in the relationship between df and probability of

survival.
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Chapter 7

Discussion

This thesis has examined the use of network approaches in drawing meaning

from a rapidly increasing volume of biological data. We have explored network

models in the context of three biological applications: the prediction of protein

function, the study of loss of function variation in the human genome and the

representation of the effects of stress in fission yeast cells. This chapter will

briefly summarise the conclusions of each of the chapters, suggest directions for

further work and briefly discuss some overarching themes.

7.1 Protein Function Prediction

Chapter 2 addresses the use of guilt-by-association approaches in predicting pro-

tein function. We develop a novel prediction algorithm (Compass), based on

graph kernel and dimensionality reduction approaches and compare it to a lead-

ing network based prediction algorithm (GeneMANIA) on a number of bench-

marks. The relative performance of the two methods depends on the benchmark,

although Compass outperforms GeneMANIA on a majority of the cases.

We also explicitly examine potential biases in GO-based comparisons of pre-

diction algorithms (such as the CAFA challenge). We create a ‘roll-back bench-

mark’ in which we make predictions based on data available at a specific date

and use new annotations made after this date to evaluate performance, thus

mimicking the CAFA challenge. Unsurprisingly, we find that both GeneMANIA

and Compass predict annotations for high degree nodes more successfully than

for low degree nodes. We also find that in the yeast (but not fly) benchmark,

annotations acquired shortly after the cut-off date 1) correspond to genes with

higher degree and 2) are easier to predict than later annotations. We hypothesise

that high performance on these ‘early’ annotations is (at least partially) related

to their high degree.

These effects could reflect a systematic bias in how annotations are acquired:

it is reasonable to suggest that genes with well characterized interactions are

more likely to become functionally well characterized in the near future. This

bias would translate into the benchmark: because the time window between
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prediction and evaluation in CAFA is relatively short (6 months), algorithms

favouring high degree genes will appear to perform well, because they mimic the

process of label acquisition. Our roll-back benchmark only covers two organisms:

yeast and fly - it is therefore unclear whether these effects are simply a property

of the yeast dataset or whether they reflect a more general trend. Extending the

roll-back benchmark to include further organisms could potentially answer this

question.

CAFA-style benchmarks are appealing because of their efficiency: instead of

performing specific experiments to test the predictions, the process relies on the

continuous acquisition of novel annotations. However, this system only provides

a fair assessment of prediction methods if the process of label acquisition is in-

dependent of the prediction algorithms. As discussed above, our results suggest

this may not be the case: both network-based prediction and label acquisition

depend on a gene’s degree. This concern, however, is not limited to the bench-

marking of network-based algorithms: similar problems arise for sequence or

structural similarity-based methods, because sequence and structural similarity

drive label acquisition. Overall, these effects would lead CAFA-style benchmarks

to favour the methods mimicking the label acquisition over methods providing

other forms of insight.

One solution to this problem is to perform specific experiments to test pre-

dictions instead of relying on the process of label acquisition to provide true

positives. There is a concern, however, that this type of scheme could poten-

tially be too expensive for a large-scale evaluation of multiple methods making

predictions for multiple functional categories. Another solution would be to de-

velop more benchmarks similar to our phenotypic benchmark, where the true

positives are derived from genome-wide screens, thus circumventing the biases

associated with label acquisition. Publicly available repositories of this type

of data (such as the Genome RNAi database used in our work) would greatly

facilitate the implementation of these types of benchmark.

When thinking about both algorithm and benchmark design, the appropriate

scope for our prediction methods emerges as a key question. It is tempting to seek

a ‘one size fits all’ algorithm as a general tool for protein function prediction.

However, the results in this thesis suggest that optimal algorithm choice may

depend on the biological context of the prediction. For example, an algorithm

which performs well for large and diverse functional groups may not be the best

choice for prediction in a very narrow functional context. For those interested in

specific biological problems, it may therefore prove more effective to tailor the

design and benchmarking of prediction algorithms to the problem at hand.

It is important to note, however, that this function-specific tailoring approach

is not appropriate for all prediction problems. One of the key uses of function

prediction is the automated annotation of genes currently lacking any functional

labels. Clearly, for this type of prediction problem, we are unable to tailor our
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algorithms (or our benchmarking) to a specific functional context.

Nevertheless, there are other ways in which prediction methods can be opti-

mized for unannotated genes. For example, this type of prediction problem has

been challenging for network-based methods because there is very often little

functional association data for unannotated genes. While this thesis only con-

sidered kernels derived from functional association networks, kernel approaches

are not limited to this data: it is straightforward to generate kernels based on

other types of similarity. It may therefore prove fruitful to exploit the kernel-

based algorithms discussed in this thesis using more diverse data sources.

7.2 Loss of Function Variation

In Chapter 3, we seek to identify genetic interactions between loss of function tol-

erant genes, based on how often non-functional variants of these genes appear in

healthy genomes. We first predict interacting gene pairs using a hyper-geometric

model and then develop a modularity based approach to identify groups of poten-

tially interacting genes. None of the putative interactions we identify correspond

to known interactions, although a few are promising candidates. This does not

necessarily indicate our approach is flawed: genetic interaction data in human

is sparse and the number of genomes available for our analysis was small. The

number of sequenced genomes is growing rapidly - the methods developed in this

chapter will be applied to a larger dataset once this becomes available.

There are a number of reasons why identifying genetic interactions in the

human genome is interesting. Firstly, a human genetic interaction network would

provide a valuable additional resource for the types of network-based analyses

(protein function prediction for example) discussed in this thesis. Perhaps more

importantly, however, identification of genetic interactions could help solve a key

puzzle in modern biology: the missing heritability problem.

Understanding the genetic factors which control susceptibility to disease is

important because this knowledge can inform the diagnosis, prevention and treat-

ment of disease. Genome-wide association studies (GWAS) have allowed identi-

fication of variants associated with disease phenotypes. Interestingly, however,

the variants identified so far fail to fully explain the familial clustering of the

phenotypes: based on the disease variants identified in GWAS, we would expect

the studied diseases to be less heritable than they appear to be.

A number of explanations have been suggested for this missing heritability,

including incomplete characterisation of disease variants and shared environ-

mental factors contributing to the apparent heritability of diseases. Recently,

the presence of genetic interactions has been advanced as an alternative expla-

nation. Statistical models of heritability assume no interaction between genes -

the presence of disease associated genetic interactions could therefore be the key

to the unexplained heritability. Identifying such disease associated interactions
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through GWAS requires very large sample sizes. The methods presented in this

thesis could therefore provide a valuable alternative approach.

In Chapter 4, we build a network based three-class classifier to differentiate

between LoF tolerant genes and recessive and dominant disease genes, combining

network centrality and guilt-by-association approaches. We find that best results

are achieved by combining PPI degree data with STRING functional association

information. Unlike some previous studies, we find that centrality in metabolic

networks is not significantly different in the three gene classes. We also find that

the inclusion of genetic interaction data does not improve the performance of our

predictor. We only consider a nearest neighbour classifier - it is possible that

more sophisticated prediction approaches might further improve performance

or allow inclusion of the genetic interaction data. The main conclusion of this

chapter is that guilt-by-association can be used to predict functional impor-

tance. Collaborators will extend this work by integrating guilt-by-association

approaches into an existing prediction pipeline.

The work in Chapter 4 focuses on the action of individual genes. As outlined

above, however, interactions between different genes may play an important

role in disease susceptibility. Functional association networks naturally lend

themselves to the study of interaction effects. It would therefore be valuable

to extend these types of network-based predictors beyond the effects of single

genes.

7.3 Stress Response

Chapter 5 examines changes in fission yeast co-expression and PPI networks af-

ter exposure to oxidative stress. We find co-expression networks re-organize to-

wards a more modularised structure: while sets of genes become more tightly co-

expressed, co-expression between these modules is decreased. A similar change

is also found in the structure of weighted protein interaction networks in re-

sponse to both oxidative stress and nitrogen starvation, confirming and extend-

ing previous findings. These changes in network structure could represent the

emergence of more specialised functional modules, an increase in network robust-

ness and/or result from energy saving measures. Additionally, stress is found to

induce tighter co-regulation of non-coding RNAs, decreased functional impor-

tance of splicing factors, as well as changes in the centrality of genes involved in

cytoskeleton organization, cell division, and protein turnover.

In Chapter 6, we address the idea that the stress-induced changes in the co-

expression network might correspond to an increase in cellular robustness. Using

decrease in network efficiency as an indicator of loss of network functionality, we

study the effect of node removal, before and after exposure to stress. We find

that after exposure to stress, the average decrease in efficiency is smaller, but the

variance of the response is greater. The increased robustness to node removal

169



may reflect increased tolerance of loss of function mutations, which would be in

line with increased evolvability of cells after exposure to stress.

There is increasing interest in comparing the topology of gene and protein

networks under different conditions. As the availability of condition-specific

data increases, comparative network analysis will become increasingly important.

In some ways, this type of analysis is more straightforward than attempting

to interpret the properties of a single network. Whether network properties

such as degree distribution or clustering coefficient appear ‘surprising’ and thus

potentially meaningful is crucially dependent on the choice of null model. As

illustrated by the example of clustering coefficients in coexpression networks,

inappropriate choice of null can lead to attributing meaning to trivial network

properties. Comparative network analysis avoids this issue: the comparison is

between the two conditions, thus avoiding the need to choose a null model. On

the other hand, however, comparative network analysis faces other challenges.

For example, statistical methods for untangling random effects from genuine

condition-related changes in network structure are not well established. There

is clearly a need for further development of statistical tools in the context of

comparative network analysis.

7.4 Overall Conclusions

While the work presented in this thesis corresponds to three specific biological

scenarios, it is interesting to attempt to identify some overarching ideas. Part

of the appeal of network models is that they provide a unifying framework for

working with data from a multitude of heterogeneous sources. However, several

of our findings highlight the importance of considering both how the network is

generated and the biological context it is used in. We have already discussed this

idea in relation to the work in Chapter 2. The development of the network clus-

tering approaches in Chapter 3 also illustrates this principle: a general network

algorithm was outperformed by one explicitly modelling the network generation

process. As ‘big data’ and machine learning are becoming increasingly central in

biological research, the role of networks as a tool for data integration is growing

in importance. It will be interesting to see whether it is possible to develop

network based integrative models that also exploit our understanding of the

properties of particular data sources.
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[183] N. Pržulj, D. G. Corneil, and I. Jurisica. Modeling interactome: scale-free
or geometric? Bioinformatics, 20(18):3508–3515, Dec. 2004.
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A generic protein purification method for protein complex characterization
and proteome exploration. Nature Biotechnology, 17(10):1030–1032, Oct.
1999.

[199] G. D. Rio, D. Koschutzki, and G. Coello. How to identify essential genes
from molecular networks? BMC Systems Biology, 3(1):102+, 2009.

[200] A. Roberts, H. Pimentel, C. Trapnell, and L. Pachter. Identification of
novel transcripts in annotated genomes using RNA-seq. Bioinformatics,
27(17):2325–2329, Sept. 2011.

[201] M. F. Rogers and A. Ben-Hur. The use of gene ontology evidence codes
in preventing classifier assessment bias. Bioinformatics, 25(9):1173–1177,
May 2009.

[202] A. E. Roux, A. Quissac, P. Chartrand, G. Ferbeyre, and L. A. Rokeach.
Regulation of chronological aging in schizosaccharomyces pombe by the
protein kinases pka1 and sck2. Aging Cell, 5(4):345–357, Aug. 2006.

[203] A. Ruepp, B. Brauner, I. Dunger-Kaltenbach, G. Frishman, C. Montrone,
M. Stransky, B. Waegele, T. Schmidt, O. N. N. Doudieu, V. Stümpflen, and
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