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Automatic systems for estimating operator fatigue have application in safety-critical
environments. A system which could estimate level of fatigue from speech would have
application in domains where operators engage in regular verbal communication as part
of their duties. Previous studies on the prediction of fatigue from speech have been limited
because of their reliance on subjective ratings and because they lack comparison to other
methods for assessing fatigue. In this paper, we present an analysis of voice recordings
and psychophysiological test scores collected from seven aerospace personnel during
a training task in which they remained awake for 60 h. We show that voice features and
test scores are affected by both the total time spent awake and the time position within
each subject’s circadian cycle. However, we show that time spent awake and time-of-
day information are poor predictors of the test results, while voice features can give good
predictions of the psychophysiological test scores and sleep latency. Mean absolute
errors of prediction are possible within about 17.5% for sleep latency and 5–12% for
test scores. We discuss the implications for the use of voice as a means to monitor the
effects of fatigue on cognitive performance in practical applications.

Keywords: fatigue, speech, computational paralinguistics, bioinformatics

Introduction

There are a variety of safety-critical environments for which operator fatigue is a significant risk
factor, including transport, mining, and aeronautics. In response to this risk, a variety of methods
have been developed to estimate the fatigue level of an operator. Some of these are accurate but based
on obtaining physiological measurements, which require expensive or intrusive equipment. Since
in some safety-critical environments, operators are engaged in regular verbal communication, a
fatigue estimationmethod based on the analysis of speechmight provide a cheaper and less intrusive
alternative.

To develop a reliable means of predicting fatigue from speech requires an objective measure of
level of fatigue for use in the training of models. However, previous studies that have explored the
prediction of fatigue from speech have relied on subjective ratings of sleepiness as the outcome
parameter, and these ratings do not always correlate well with objective measures obtained from
behavioral tasks.
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In this paper, we describe an experiment in which a group
of subjects were kept awake over a 3-day period within which
regularmeasurements weremade both of their speech and of their
performance on a standard set of psychophysiological tests (PPTs).
We investigate the relationship between time kept awake (“sleep
latency”) and time-of-day (“phase”) with their test performance.
We show that test scores are poorly predicted from sleep latency
and phase in these data. We show that a model based on speech
features, on the other hand, can improve prediction of the test
scores, and in addition, make good predictions of sleep latency.

The paper is organized as follows. Section “Background” gives
a background to the topic, outlining some existing literature on
the effects, measurement, and prediction of fatigue in safety-
critical environments. Section “Corpus Collection and Cleaning”
describes the methodology for acquiring the corpus of speech
and performance measures. Section “Voice Features” describes
the voice features calculated from the speech recordings. Section
“Analysis of Psychophysiological Tests” gives an analysis of how
the PPT scores change over time. Section “Model Training”
describes the process by which predictive models of fatigue and
of test scores are built from speech features and presents an
evaluation of their performance. Finally, Section “Summary and
Conclusion” summarizes the key findings and discusses some
issues of practical implementation.

Background

In safety-critical environments, fatigue is a significant risk factor.
One of the clearest examples of this is in transportation, where
driver fatigue is widely considered to be an important contrib-
utory factor in fatal and serious accidents (Horne and Reyner,
1995; Lyznicki et al., 1998; Pierce, 1999; Philip et al., 2001; Dobbie,
2002; Armstrong et al., 2011; FMCSA, 2011). It is difficult to
pinpoint the exact proportion of accidents caused by fatigue but
the consensus of scientists studying safety and accident prevention
is that fatigue is the largest identifiable and preventable cause of
accidents in transportation, accounting for around 15–20% of all
accidents (Åkerstedt, 2000). Fatigue is just as significant a risk in
other safety-critical settings where vigilance is important, such as
aviation (Rosekind et al., 1994) and space flight.

It is important to note that “fatigue” has been used to describe a
variety of phenomena relating to degradations of performance due
to physical or mental exertion, lack of sleep, extreme tiredness,
etc. A review of definitions is given in (Philips, 2015), and it is
important to be clear about the relevant aspects of fatigue under
consideration. In this work, the most relevant aspect of fatigue
considered is that of sleepiness/wakefulness.

Sleep deprivation studies have shown that fatigue tends to
impair cognitive and motor performance (Pilcher and Huffcutt,
1996), leading to reduced reaction times (RTs), vigilance, and
memory (Horne and Pettitt, 1995; Lorenzo et al., 1995; Maquet,
2001; Stickgold, 2005). The major causes of fatigue are phase,
sleep latency, duration of sleep, duration of work, task-specific
factors, and any relevant sleep pathologies (Åkerstedt, 2000;
Williamson et al., 2011). See Williamson et al. (2011) for a
review of the evidence behind these identified causes of fatigue.
Sleep latency is a particularly important factor in fatigue-related

accidents; an analysis by the Federal Motor Carrier Safety
Administration (FMCSA) of fatigue-related accidents suggested
a logistic relationship between sleep latency and proportion of
crashes (FMCSA, 2011).

Fatigue can be measured and quantified in a variety of ways.
The subjective measures are the simplest of these. Some of the
commonly used measures are the Epworth Sleepiness Scale (ESS)
(Johns, 1991) and the Karolinska Sleepiness Scale (KSS) (Åkerst-
edt and Gillberg, 1990). The KSS is commonly used, in part, due
to its simplicity and the speed with which it can be administered
(a simple 9 point scale with annotated anchors), whereas the ESS,
which asks subjects to rate from 0 to 3 a number of situations for
likelihood of dozing, tends to be used more in clinical settings
since it is based on general information about a subject’s lifestyle.

Gillberg et al. (1994) showed that for subjects kept awake
overnight, KSS scores correlated with performance on a visual
vigilance task and a RT task with r= −0.62 and 0.71, respectively.
This indicates that around 38–50%of the variation in performance
was explained by subjective ratings.

There are some problems, however, with using self-reported
measures of sleepiness. First, subjects will be biased in various
ways and as a result there is considerable variability in individual
abilities to recognize fatigue (Horne and Baulk, 2004; Kaplan et al.,
2007). In studies validating the KSS, correlations between RT tests
and KSS scores have been moderately strong, with r= 0.57 (with
a SD of 0.25 across subjects) in Kaida et al. (2006), and between
0.49 and 0.71 for individual subjects in Gillberg et al. (1994). Yet,
a large study involving shift workers at a paper mill carried out by
Åhsberg et al. (2000) showed no correlation between the results
of RT tests and KSS scores. Thus, it seems likely that confounding
variables and individual differences between subjects have a very
large effect upon the relationship between subjective measures of
sleepiness and performance. Similarly, Williamson et al. (2011)
point out that in many studies involving shift work, subjective
ratings of sleepiness are typically higher in the morning and lower
in the afternoon, even though risk of incidents tends to show the
reverse trend; it is further noted that one possible explanation for
this could be that risk is substantially more affected by factors,
such as time awake than by subjective ratings of sleepiness.

Instead of subjective reports on sleepiness, a wide variety of
objective measures can also be used to quantify fatigue. One type
of objective measurement of fatigue is to use a performance mea-
surement as a proximate measure. Psychological or physiological
tests of this type include RT, vigilance, or cognitive tests (Jackson
and van Donger, 2011).

The estimation of fatigue level from subjective reports or from
the results of PPTs can be informative in the scientific study of
sleepiness and sleep pathologies. In safety-critical environments,
however, where it would be helpful tomonitor or predict fatigue to
reduce risk, these approaches are impracticable. Due to this, there
has been increasing interest over the last few decades in generating
models to predict fatigue based on objective measurements. One
such type of this model is known as a biomathematical model,
which makes predictions from information of the known major
factors of fatigue, such as phase, sleep latency, and duration of
sleep. Many such biomathematical models exist (Mallis et al.,
2004), and some have been developed for specific applications,

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2015 | Volume 3 | Article 1242

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Baykaner et al. Predicting fatigue from speech

such as aerospace (Mallis and Mejdal, 2003). In general, these
models are used to aid with fatigue risk management for transport
and aviation organizations, but are not relied upon in isolation.
Part of the reason for this is that due to the types of input to the
model, themodels are unable to account for individual differences
in subjects (other than those which manifest directly in dura-
tion of sleep), and so the prediction accuracy for any individual
suffers even as the general trends are predicted correctly. For a
comparison of models see van Dongen (2004).

Another class of models being developed to predict fatigue is
computer-vision-basedmonitoring systems. A review of these can
be found in Barr et al. (2005). These models focus on aspects of
the face, which give cues to fatigue, examples of which include
blink rate and the proportion of time the eyelids cover more
than 80% of the eye. Sometimes, these models also include other
non-vision-based inputs, measuring aspects of physiology, such
as heart rate. Recent models of this kind have accuracy ratings of
90% for predicting behavioral outcomes, such as simulated driver
crashes (Vural et al., 2008).

Even more accurate ways of monitoring fatigue are possible
using more intrusive physiological measurements. Begum (2013)
reviews the capacity of electroencephalography (EEG), electrocar-
diography (ECG), elektrookulogram (EOG), and pulse oximetry
measurements to describe fatigue.

While the vision-based physiological approaches may be accu-
rate, measuring these features presents a significant challenge to
user acceptance in many practical applications because of the
additional expensive or intrusive equipment required. By contrast,
a cheap and non-intrusive fatigue monitoring system could be
implemented if it were possible to predict fatigue from voice.
This would be particularly useful in those situations requiring
drivers or operators to regularly communicate by speaking, (e.g.,
in aviation, aeronautical, or mining transportation industries).

Existing research has identified a number of vocal correlates
of fatigue. Vogel et al. (2010) demonstrated that when subjects
were kept awake for a period of 24 h, the durations of their pauses
gradually increased for read speech, and variation in the fourth
formant frequency decreased for sustained vowel sounds. The
study concluded that speech analysis provides objective data on
central nervous system functioning and therefore on fatigue.

Krajewski et al. (2009) used machine learning methods to
generate models for predicting fatigue from read speech sam-
ples of formulaic operator system communication. The test
corpus was based on subjects giving ratings on the KSS indi-
cating how fatigued they felt. The most accurate model was
able to recognize and distinguish between samples classified as
“slightly fatigued” and samples classified as “strongly fatigued”
with a recognition rate of 83.8%. A variety of similar models
were generated for the Interspeech 2011 speaker state challenge
(Schuller et al., 2011), with similar degrees of success. Another
version of this type of model has been developed with to predict
“microsleeps” with similar success (Krajewski et al., 2008). Other
variations also exist, such as the model developed by Günsel
et al. (2013), which uses prosodic features extracted by psychoa-
coustic masking, and the model developed by Thakare (2014),
which utilizes automatic speech recognition (ASR) to identify key
phonemes from which to extract features. This latter approach
would require a robust ASR system in operational environments

to account for environmental noise, reverberation, and channel
distortions.

In summary, these studies of fatigue prediction from speech
shows that features can be computed from the speech signal to
categorize speakers as fatigued/not-fatigued with modest per-
formance based on a subjective rating of sleepiness. However,
these studies still fall short for application within safety-critical
environments, since (i) subjective ratings are not always reliable,
(ii) system performance has not been compared to predictions
based on time alone, and (iii) fatigue should be considered to be a
continuous rather than a categorical measure.

In this work, we address some of the weaknesses of previous
studies. We describe a data set comprising speech recordings and
objective psychophysiological test results collected from speakers
over an extended period of wakefulness. We build predictive
models of fatigue from both speech and time using regression
methods that treat fatigue as a continuousmeasure. This allows us
to estimate the additional value of speech information over time
alone for objective measures of fatigue. Our goal is to test whether
the prediction of objective fatigue from speech is a tractable prob-
lem and to estimate the possible performance of machine learning
approaches.

Corpus Collection and Cleaning

Seven aeronautical professionals (six male and one female) as
part of their training took turns participating in a wakefulness
study wherein each remained in an isolation chamber for a period
of approximately 60 h. The isolation began at 10 a.m. on day 1
and concluded around 9 p.m. on day 3. During the isolation, the
subjects did not sleep and among other duties were tasked with
carrying out a standard battery of PPTs approximately every 6 h.
In addition, the subjects recorded several minutes of read speech
at regular intervals of approximately 6 h (although at different
times to the PPTs). This section describes these activities, and the
process undertaken to construct a data corpus.

Psychophysiological Tests
The full battery of PPTs consisted of 12 tasks. From these five
particular sub-tests measuring RT, memory, and cognition were
selected for further analysis as these are known to relate to fatigue
(see Background). Table 1 gives a description of these PPTs.

It was noted that the resolution of scores for the memory
tests were fairly small (only 12 or 16 states), and it was decided
that instead of using two individual memory performance scores
it would be better to combine these data in a way which also
increases the overall resolution of the performancemeasures. This
was done by summing the errors for both memory tests (where
errors include both failing to select a picture or digit from the
original set, and selecting pictures or digits which did not feature
in the original set). In this way, four measures of performance are
considered: simple RT in milliseconds, planned RT in millisec-
onds,memory in total number of errors, and cognition in seconds.
In all cases, higher values represent poorer performance.

Speech Recordings
In total, 74 recordings of speech were collected (4 subjects pro-
duced 10 recordings each, 2 subjects produced 11 recordings,
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TABLE 1 | Psychophysiological tests selected for analysis.

S No. Type Measures Description

1 Simple RT Mean reaction time in milliseconds
averaged over 57–60 trials

A monitor displays occasional flashes of light. Subjects must respond to every third flash
by pressing a button on a handset as quickly as possible

2 Planned RT Mean timing error in milliseconds
averaged over 50 trials

A monitor displays a colored bar growing in an arc within the border of a circle. After some
time, a line appears ahead of the forward end of the bar, and the subject must press a key
to stop the bar as close to the line as possible

3 Memory (pictures) Count of pictures missed and
incorrect selections

A monitor displays 16 pictures in a 4×4 grid for 20 s. The pictures disappear and are
immediately replaced by 64 pictures containing the original 16. The subject has 60 s to
identify the original set of pictures

4 Memory (numbers) Count of numbers missed and
incorrect selections

A monitor displays 12 numbers from the range 1–100 displayed in a 3×4 grid for 20 s.
The numbers disappear for 15 s, and then a 5×6 grid of numbers appears containing the
original 12 numbers. The subject has 60 s to identify the original set of numbers

5 Cognition Total time taken to complete task (in
seconds)

A monitor displays a 7×7 grid containing randomly positioned red and black numbers
(for example, 1–25 in red and 1–24 in black). The subject performs three tasks as fast as
possible: (i) click the black numbers in ascending order; (ii) click the red numbers in
descending order; (iii) alternately click red and black numbers, with the red numbers
descending and the black numbers ascending

and 1 subject produced 12) at approximately 6 h intervals. The
inconsistent number of recordings per subject occurred because a
few subjects additionally provided a “baseline” recording the day
prior to the experiment (at the same time of day as the experiment
begun) and a couple of subjects missed the final recording on
the third day. The selected reading materials were excerpts from
a novel displayed on a screen, and recordings were made on a
Roland R-05 digital recorder sitting on the desk in front of them.
Recordings were collected at 24-bit resolution at 44,100 samples
per second. Subjects were able to decide themselves how much to
read so recording durations varied between 105 and 495 s.

Since the outcome of themodeling work is prediction of level of
fatigue, it was necessary to assign each recording a number related
to the fatigue level of each subject at the time of recording. There
were two possible sources of fatigue level: one computed from the
test scores or one computed from sleep latency and phase.

Aligning Speech and PPT Data
An alignment process is required for the speech and PPT corpus.
Since the PPT and speech data were recorded at different times
throughout the experiment it is necessary to use some method of
aligning the speech and PPT data for comparison.

A simplemethod, utilized in this work, is to uniquely assign the
nearest PPT result (in time) to each recording; with an average of
3 h difference between the start time of the speech recording and
the start time of the PPTs. Other possible methods could be used;
for example, PPT scores could be linearly interpolated between
adjacent recording times, or a more sophisticated approach could
involve modeling the change in PPT scores with time. However,
doing this involves making assumptions about the relationship
between PPT scores and sleep latency, so it was considered prefer-
able not to use these methods.

Voice Features

In order to build models describing or predicting fatigue based
on speech, it is necessary to quantify descriptive aspects of that
speech, these are known as features. Building a large vector of

features describing many different aspects of the speech increases
the likelihood that some of these features may be related to
fatigue. Features were therefore extracted representing variation
of the speech recordings in the time, frequency, and modulation
domains.

Feature Extraction
The following steps were taken to generate the feature vectors:

1. The speech recording waveform is first pre-emphasized and
divided into 50msHamming-windowed sections overlapping
by 10ms.

2. A fast Fourier transform (FFT) is applied to each window and
a bank of triangular filters is used to calculate a smoothed
spectrum. The filters are 200mel wide and spaced by 100mel.

3. A cosine transform of the log-compressed smoothed spec-
trum is taken to generate 19mel Frequency Cepstral Coeffi-
cients (MFCCs) per frame.

4. The first and second temporal differences of the MFCCs are
computed.

5. The autocorrelation of each window is computed and inter-
polated onto a log delay axis.

6. A cosine transform of the log delay autocorrelation function
is taken producing 19 autocorrelation coefficients (ACCs) per
frame.

7. The first and second temporal differences of the ACCs are
computed.

8. The energy of each window is calculated, and the first and
second temporal difference is computed.

9. The distributions of theMFCCs, ACCs, and energies are used
to calculate summary statistics. These are based on the 5, 10,
25, 50, 75, 90, and 95% quantiles together with skewness and
kurtosis.

10. Finally, the speech recording is band-pass filtered between
300 and 3500Hz, rectified and low-pass filtered at 80Hz to
generate a temporal envelope trace. The modulation spec-
trum of the temporal envelope was calculated using 40 band-
pass filters logarithmically spaced between 0.1 and 50Hz.
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In total a feature vector containing 1093 parameters was gener-
ated for each recording. The MFCCs were chosen to describe the
shape of the frequency spectrum of the speech, and the first and
second temporal differences to describe the changes in this shape
over time. Similarly, the ACCs describe the shape and structure of
the short-time speech waveform, while the modulation features
describe longer temporal structure. In general, it is preferable
to produce a large feature space which captures the changes in
characteristics of the voice, which would reasonably be expected,
vary with changes in fatigue. Some of these features additionally
have precedent in the literature; for example, MFCCs, as well
as their time derivatives and second time derivatives, have been
shown to be promising for describing fatigue (Greeley et al.,
2013). It has also been demonstrated that autocorrelation-based
features can also be useful for representing speech (Ando, 2013),
although these features have not yet been used in the construction
of predictive models in paralinguistics.

It is clear that in generating somany features, some are bound to
have little or no bearing upon the fatigue of the speaker. However,
it is important to first maximize the descriptive power of the
feature set before pruning away those aspects which do not aid
in prediction. The former task is known as feature extraction and
the latter as feature selection, and both constitute important parts
of model construction.

Analysis of Psychophysiological Tests

An analysis of the PPT data and their relation to sleep latency
and phase was carried out. Figure 1 shows the PPT scores plotted
across the duration of isolation. Each subject’s data is plotted in
gray with the overall mean across subjects in blue.

To explore the effects of subject, sleep latency and phase iso-
lation on the PPT scores, a mixed-effects linear regression model
was estimated for each test. In this model, the test score for any
particular subject at any particular time is predicted from three
factors: sleep latency (fixed factor), phase (fixed factor), and a
random factor that represents the average test performance of each
subject. The phase parameter was derived from the time of day
using:

P = cos (ω (t − α))

where t is the time of day, α is a constant set to 3 h, and ω is set
to 2πf such that one cycle spans 1 day (i.e., =1/24). The selection
of α = 3 h shifts the positive peak of the cycle to 3 a.m., which
is close to the typically quoted time of the lowest point in the
circadian rhythm (Duffy et al., 2002). Linearmixed-effectsmodels
were trained using the R statistics package “lme4” (Bates et al.,
2014). Table 2 provides the regression coefficients and signifi-
cance values for each fixed factor for each test. The significance
values are estimated using ANOVA by building two models, with
and without the factor, to see if leaving out the parameter makes
a significant reduction in the accuracy of the model.

For the planned RT test sleep latency had a significant effect on
the score, and for the cognition test phase had a significant effect
on the score. All other effects were non-significant at p< 0.05. The
effect of phase on the modeling was not sensitive to the choice of
the 3 a.m. reference value, and similar outcomes were found for
phase references between 1 a.m. and 6 a.m.

Although these results agree with the graphs in Figure 1, they
are somewhat surprising, since it has been generally noted that
sleep latency and phase are important predictors of fatigue, and
that RT, memory, and cognition are impaired by fatigue. We
suggest below some origins for the weakness of the relationships
found here.

First, it may be that these subjects were motivated to perform
fairly well, even with sleep deprivation, so were able to focus
their attention for the duration of the tests. Horne and Pettitt
(1995) showed that subjects could maintain baseline performance
for 36 h on an auditory vigilance task when given a monetary
incentive, and continue to perform better than subjects with no
incentive beyond this time. Cote et al. (2009) saw subjects able to
recruit additional mental effort to combat the effects of fatigue in
an electroencephalography study. In this experiment, the subjects
were aeronautical professionals in training and may have believed
that they were going to be judged on their PPT performance,
which gave them an incentive to perform well.

Second, it has been demonstrated that there are significant
individual differences in the size of the effect of sleep deprivation
(Frey et al., 2004). In Frey et al. (2004) the subjects most resilient
to sleep deprivation had similar mean performance scores before
and after sleep deprivation, but much greater variation after being
deprived of sleep. The subjects in this experiment were aeronau-
tical professionals likely to have been selected for their ability to
concentrate on certain cognitive tasks, so may show better than
average resilience to sleep deprivation.

Third, since prior to the experiment subjects had only limited
exposure to the test battery, it is possible that there was a learning
effect. Since any learning effect would result in better performance
over repeated practice thismay have concealed some of the fatigue
effect, resulting in a smaller than expected change in score over
time.

Under any of these interpretations, it is clear that to proceed
with our analysis of the effect of fatigue on speech we now have
two possible approaches. Either we assume that the PPT scores
do indeed indicate level of fatigue and aim to predict these from
characteristics of the speech or we assume that the sleep latency
and phase indicate level of fatigue and aim to predict these from
speech. A comparison of our modeling results may shed light on
the relative value of these two measures.

Model Training

With the speech features generated and the initial analysis com-
plete, it remains to generate models to predict level of fatigue from
the speech recordings. In the Section “Models Predicting Sleep
Latency and Phase from Speech,” we consider models that predict
sleep latency and phase from the speech, while in the Section
“Models Predicting Psychophysiological Test Performance from
Speech,” we consider models that predict the PPT scores from
speech.

Models Predicting Sleep Latency and Phase
From Speech
In this section, models are trained to predict fatigue, on the
assumption that latency and phase are the primary components
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FIGURE 1 | Psychophysiological test scores plotted against the clock time in the isolation experiment. The gray lines indicate the subject scores and the
blue line is the mean score across subjects.
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TABLE 2 |Mixed-effects linear regression model describing the relationship
between PPT scores, sleep latency, and phase.

Test Sleep latency p(Sleep latency) Phase p(Phase)

Simple RT 0.653 0.107 −3.10 0.774
Planned RT 0.403 0.00347* 1.22 0.734
Memory 0.0286 0.156 0.785 0.149
Cognition −0.0256 0.939 25.8 0.00471*

The * marker indicates significance at p<0.05.

of interest as suggested by Åkerstedt (2000) and Williamson et al.
(2011). Predictions of fatigue according to sleep latency on the
same data set is presented in Baykaner et al. (2015), where a
binary classifier for fatigued/not-fatigued (based on sleep latency)
achieved a classification accuracy of 80% for speaker independent
features and 90% for speaker-dependent features. In contrast in
this work, we train regression models for the continuous predic-
tion of sleep latency and phase.

Model Construction
Before constructing the prediction models the 1093 extracted
speech features described in the Section “Feature Extraction”
were normalized within subjects by gaussianization (Chen and
Gopinath, 2001). This process maps each feature value distribu-
tion onto a Gaussian distribution. This not only conditions the
features values but also makes features more similarly distributed
across speakers so that the sensitivity of each feature to a particular
voice is minimized. This is important because without some type
of subject normalization it is possible to train models which
appear to perform well but, in fact, simply predict which speaker
is talking.

Predictive models were trained using 100 randomized 10-fold
cross-validations. Since the corpus is relatively small it is difficult
to reserve sufficient data both for testing and training in isolated
sets, so a cross-validation procedure was considered more appro-
priate, and by carrying this out 100 times with the order of the
data randomized each time, the confidence in the reliability of the
results can be improved. The selected model training algorithms
were multilinear regression (MLR) and support vector regression
(SVR) using the “SMOreg function” (Shevade et al., 1999). The
SVR method was implemented using a linear kernel with two
tested complexity parameters (C= 1 and C= 0.01). The corpus
was not sufficiently large to allow for a separate development
set involving rigorous hyper-parameter training (as would be
necessary with more complex SVR kernels), so only two cases
are tested here to give a broad indication of how the trade-
off between model flexibility and robustness affects prediction
accuracy.

Results
Models were evaluated by comparing metrics calculated as aver-
ages and SDs across 100, 10-fold cross-validations. Table 3 shows
the relative performance of the models.

The results are given in terms of correlation (R), mean absolute
error (MAE), and relative absolute error (RAE). R indicates the
strength of the linear relationship between the predictions and
observation. The MAE answers the question “how close is the

average estimate to the actual value?” RAE is the ratio of the MAE
of the trainedmodels to theMAEof the equivalent nullmodel (i.e.,
a model that always predicts the mean parameter value). Thus, an
RAE score below 100% indicates predictions which have smaller
error than a null model, and an RAE of 50% indicates that there
was half as much error.

The cross-validation procedure shows that the speech model
predictions correlated with sleep latency at around R= 0.71–0.73,
explaining 50–53% of the variation in the data, whereas phase
predictions were poorer and had correlations of R= 0.3–0.44,
explaining only 9–19% of the variation. The MAEs and RAEs
show substantially lower error for the sleep latency predictions
than for the null model, whereas for phase the average predic-
tion, errors were similar to the null model. It is important to
note that the phase MAEs are artificially high because some
errors are calculated as being >12 h whereas the error should be
calculated as the smallest difference in time between prediction
and observation; for example, a predicted phase of 23:00 for an
observed phase of 01:00 will be assigned an error of 22 h, whereas
it should be assigned an error of 2 h. Since prediction errors
of >12 h are very infrequent; however, the effect of this inaccu-
racy is small. For example, recalculating a single 10-fold cross-
validation with the adjusted MAEs resulted in MAE= 309.60,
and MAE= 343.53 for the SVR (C= 0.01) and MLR, respectively.
Dividing the MAEs by the range of possible observations in each
case (i.e., 3600min for sleep latency and 1440min for phase)
demonstrates that the best average prediction error was equivalent
to 17.49% of the range for sleep latency, and 22.35% of the range
for phase.

Figure 2 shows the predicted phase and sleep latency from all
test folds of a single 10-fold cross-validation of the SVR (C= 0.01)
model plotted against the respective observed values. Although
the phase prediction error was similar to that of the null model,
the scatterplot in Figure 2 indicates that the phase model does
have a small degree of predictive power for separating the early
and late periods of the day. As expected, the scatterplot for sleep
latency shows a positive linear correlation, indicating that the
sleep latency model performs reasonably well.

Models Predicting Psychophysiological Test
Performance from Speech
As discussed in the Section “Aligning Speech and PPT Data,” the
PPTs and speech recordings were also not temporally coincident.
As a result, the PPT scores must be aligned to the speech record-
ings. This was done by selecting the nearest recording time to each
PPT score and assigning the score (uniquely) to that recording.
In addition to this alignment, however, this process resulted in
six samples being excluded. This is because 5 of the 74 speech
recordings were baseline recordings made the day prior to the
experiment for which no equivalent PPT score is associated, and
a remaining recording was made only a few minutes after the end
of one subject’s isolation (leaving no unique PPT scores to assign
to it). The corpus thus has 68 aligned samples.

Before constructing models to predict the four sets of PPT
scores described in the Section “Psychophysiological Tests,” the
PPT scores were Z-standardized within subjects to account for
individual differences in performance. Without standardizing the
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TABLE 3 | Cross-validation model training for sleep latency, and phase from speech features.

Test Model Average performance over 100, 10-fold CVs

R MAE RAE

Sleep latency Null model 0.00 (0.00) 993.90 (200.82)/min 100 (00.00)%
MLR 0.71 (0.18) 726.53 (190.27)/min 73.77 (19.85)%
SVR (C=1) 0.70 (0.19) 756.36 (219.35)/min 77.95 (26.84)%
SVR (C=0.01) 0.73 (0.19) 629.70 (167.38)/min 64.44 (17.69)%

Phase Null model 0.00 (0.00) 352.85 (75.21)/min 100 (00.00)%
MLR 0.43 (0.35) 379.58 (106.43)/min 112.86 (46.52)%
SVR (C=1) 0.44 (0.34) 369.63 (101.17)/min 109.72 (44.03)%
SVR (C=0.01) 0.30 (0.39) 321.82 (86.85)/min 92.16 (20.17)%

Average metrics are displayed with SDs shown in parentheses. Bold shows best performing systems.

FIGURE 2 | Scatter plots showing the relationships between speech-based model predictions of phase (top) and sleep latency (bottom).

PPT scores any constructed models may be trained to predict the
subject (that ordinarily has higher or lower scores), rather than the
change in subject performance, which is actually of interest.

Models were constructed to predict standardized PPT scores
using the same subject feature normalization and model training
procedures as described in the Section “Results” using 100, 10-fold
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cross-validations. Table 4 shows the results of the constructed
models together with the performance of a simple linear regres-
sion model based on two features of sleep latency and phase
(denoted as “Time MLR”) for comparative purposes.

Table 4 shows that predictions based on time features alone
are similar to those of the null model, which just allocates a
z-score of 0 to all predictions. The time MLR showed slightly
better performance on the planned RT test than on the other
tests, with a correlation of 0.32. This is unsurprising since the
analysis in the Section “Analysis of Psychophysiological Tests”
showed that the planned RT test score was the only one sig-
nificantly affected by sleep latency. For the predictions based
on speech features, the error varied between 79 and 97% of
the null model, with the planned RT being best predicted, the
simple RT and memory tests being predicted less well, and the
cognition test predicted poorest. The MLR and SVR (C= 1)
models performed very similarly. Given that the MLR and SVR
techniques are quite different in their model building approach,
this gives confidence that the cross-validation procedure was
fair. The SVR (C= 0.01) model performed worse that the SVR
(C= 1) model, perhaps indicating that the C= 0.01 results were
underfitted.

Although some indication of the model performance can be
gained by observing the correlation coefficients and RAEs of the
test z-scores, it is easier to interpret when the predictions and
observations are de-normalized so that error can be considered
in its original units. Figure 3 shows scatterplots indicating the
relationship between the PPT scores and the de-normalized pre-
dictions for all test folds of a single 10-fold cross-validation of

TABLE 4 | Performance results for models constructed to predict
psychophysiological test scores from time only or from speech features
using SVM and MLR approaches.

Test Model 10-Fold performance

R MAE RAE

Simple
RT

Null model 0.00 (0.00) 0.76 (0.21) 100.00 (0.00)%
Time MLR 0.14 (0.39) 0.75 (0.21) 99.91 (13.21)%
Speech MLR 0.49 (0.35) 0.64 (0.21) 86.57 (26.75)%
Speech SVR (C= 1) 0.48 (0.36) 0.64 (0.21) 87.01 (26.50)%
Speech SVR (C= 0.01) 0.34 (0.38) 0.71 (0.21) 96.10 (23.36)%

Planned
RT

Null model 0.00 (0.00) 0.79 (0.21) 100.00 (0.00)%
Time MLR 0.32 (0.35) 0.75 (0.20) 96.12 (16.54)%
Speech MLR 0.57 (0.32) 0.60 (0.18) 78.84 (25.42)%
Speech SVR (C= 1) 0.58 (0.32) 0.60 (0.18) 78.75 (25.05)%
Speech SVR (C= 0.01) 0.51 (0.32) 0.66 (0.18) 87.49 (24.52)%

Memory Null model 0.00 (0.00) 0.81 (0.19) 100.00 (0.00)%
Time MLR 0.08 (0.38) 0.84 (0.19) 103.30 (9.17)%
Speech MLR 0.49 (0.31) 0.66 (0.19) 84.16 (26.87)%
Speech SVR (C= 1) 0.49 (0.32) 0.67 (0.19) 84.28 (26.55)%
Speech SVR (C= 0.01) 0.36 (0.35) 0.76 (0.18) 96.31 (25.23)%

Cognition Null model 0.00 (0.00) 0.77 (0.22) 100.00 (0.00)%
Time MLR 0.16 (0.39) 0.78 (0.21) 102.26 (12.45)%
Speech MLR 0.43 (0.34) 0.69 (0.22) 93.94 (30.96)%
Speech SVR (C= 1) 0.44 (0.34) 0.69 (0.22) 93.41 (30.35)%
Speech SVR (C= 0.01) 0.39 (0.34) 0.72 (0.21) 97.12 (27.42)%

Average metrics are displayed with SDs shown in parentheses. Bold shows best
performing systems.

the time-features only MLR model (for each PPT). Recalculating
the correlations and MAEs for the denormalised predictions of
the time based MLR model gives R= 0.64, 0.83, 0.56, and 0.78,
and MAE= 41.90ms, 12.42ms, 2.54 errors, and 35.55 s, for the
simple RT, planned RT, memory, and cognition tests, respectively.
The correlations are much higher than those calculated based
on the z-standardized data, indicating that the subject means are
responsible for the largest portion of the prediction accuracy (i.e.,
individual differences in subject performance account for a large
part of the variation in the data).

Figure 4 shows the predictions for all test folds of a single 10-
fold cross-validation of the speech MLR model (for each PPT).
Recalculating the correlations and MAEs for the denormalised
predictions of the speech-based MLR model gives R= 0.69, 0.84,
0.67, and 0.90, and MAE= 38.62ms, 11.56ms, 2.25 errors, and
27.43 s, for the simple RT, planned RT, memory, and cognition
tests, respectively. Both correlations and MAEs are improved
upon the time based models in every case. Dividing the MAEs by
the full range of scores for each test gives error proportions of 11.9,
7.36, 11.26, and 5.00%. This indicates that all trained models were
capable of making reasonably accurate predictions.

In summary, the speech-basedmodels showed an improvement
over the time based models in their prediction of PPT scores and
had average prediction errors ranging from5 to 12%of their range,
and correlations ranging from R= 0.67 to 0.90.

Summary and Conclusion

A sleep deprivation study was carried out during which trained
aeronautical professionals performed a series of PPT and made
a series of recordings of read speech. Analysis of the test scores
showed a variation over time that was only weakly correlated
with either sleep latency or phase. This unexpected result may
have been due to the ability of the subjects to recruit additional
mental effort to perform well at times unrelated to the duration
of sleep deprivation or time of day. That is, the observed variation
in test scores may have had more to do with variation in levels of
motivation than simply time spent awake.

Analysis of the speech recordings showed that measurable and
systematic voice changes occurred over the duration of the exper-
iment. Some voice features seem to change over the duration of
sleep deprivation and may be used to make predictions of sleep
latency with an error of about 10 h on average. The change in
voice features over the circadian cycle was much weaker, however,
and could not be shown to be significantly different from a null
model. Assuming that 60 h sleep deprivation representsmaximum
fatigue, this suggests that speech may be used to estimate fatigue
level to approximately one part in six.

Significantly, voice features were also able to improve the pre-
dictions of test scores made within about 3 h of the recording
over those that could be obtained by time alone. The prediction
error of the best speech models were 10–18% smaller than time
alone model. On average, over the four test types, scores could
be predicted to within about 5–12% of their typical range from
the speech recordings. The most improved test score prediction
performance was obtained for the planned RT test, which was
also the test score most strongly correlated with sleep latency. The
other test scores were not only well correlated with sleep latency
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FIGURE 3 | Scatter plots showing the relationship between “time only” model predictions and observations for the psychophysiological tests. The
solid line is the line y= x, which shows all possible perfect predictions.

FIGURE 4 | Scatter plots showing the relationship between speech MLR model predictions and observations for the psychophysiological tests. The
solid line is the line y= x, which shows all possible perfect predictions.

but also showed improved prediction by the speech models. This
may be explained by the fact that different speech models were
built for each PPT type, and that these may have tapped into
different speech features.

That PPT scores are better predicted from the speech fea-
tures than from time may be due to some common cognitive or

physiological basis for test performance and speech performance.
The ability of an individual to recruit additional mental effort
despite lack of sleep on some occasion may have affected both test
scores and voice features, and it is worth noting the possibility that
the aeronautical professionals taking part in this study might have
had a special aptitude for performing well while sleep deprived.
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If so, this would limit the generalizability of the specific models
trained here, but it seems likely that new models could be trained
on different subjects with similar performance.

A significant limitation of this study is the relatively small cor-
pus size, which casts doubt on the generalizability of themodels to
new data and subjects. In addition, it was not possible to consider
the effects of speaker gender, language, or accent, and train sepa-
rate models where applicable. In a practical implementation such
considerationsmight allow for improved prediction performance,
however, the prediction performance obtained in the currentwork
does demonstrate the validity of the model building approach,
and makes explicit the tractability of the problem. The fact that
both MLR and SVR models produce good predictions is evidence
that the evaluation by cross-validation provides a fair estimate of
likely performance on new data. If the models only worked by
fortuitous selection of training vectors, wewould seemuchweaker
performance in the MLR model where a parametric model of
feature values is constructed.

Additionally, it is important to note that the use of gaussian-
ized speech features in the model construction procedure has
important practical implications. In any implementation of this
approach for the prediction of fatigue for a new speaker, it will
be necessary to establish an enrollment stage in which the voice
characteristics of the speaker are established before any prediction
can be made.

The main finding of this work was that objective and contin-
uous measures of fatigue can be made from analysis of the voice.
The predictive models of fatigue demonstrate the tractability of
the problem and the viability of this machine learning approach.
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