Downloaded 09/21/15 to 144.82.107.163. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. Sc1. COMPUT. (© 2014 Society for Industrial and Applied Mathematics
Vol. 36, No. 4, pp. A1911-A1936

STABILIZED FINITE ELEMENT METHODS FOR
NONSYMMETRIC, NONCOERCIVE, AND ILL-POSED PROBLEMS.
PART II: HYPERBOLIC EQUATIONS*
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Abstract. In this paper we consider stabilized finite element methods for hyperbolic transport
equations without coercivity. Abstract conditions for the convergence of the methods are introduced
and these conditions are shown to hold for three different stabilized methods: the Galerkin least
squares method, the continuous interior penalty method, and the discontinuous Galerkin method.
We consider both the standard stabilization methods and the optimization-based method introduced
in [E. Burman, SIAM J. Sci. Comput., 35 (2013), pp. A2752-A2780]. The main idea of the latter
is to write the stabilized method in an optimization framework and select the discrete function for
which a certain cost functional, in our case the stabilization term, is minimized. Some numerical
examples illustrate the theoretical investigations.
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1. Introduction. Several finite element methods have been proposed for the
computation of hyperbolic problems, such as the SUPG method [5, 16], the discon-
tinuous Galerkin (DG) method [19, 18, 17], and several different weakly consistent,
symmetric stabilization methods for continuous approximation spaces [14, 11, 9, 3].
In most of these cases, however, the analysis relies on the satisfaction of a coercivity
condition. Indeed if a scalar hyperbolic transport equation

(1.1) B-Vu+ou=Ff

is considered, with data given on the inflow boundary, it is typically assumed that
there exists 0p € Rt such that

(1.2) oo < inf <a—%v-ﬁ) .

e

In, for instance, [16, 17, 1] the degenerate case oy = 0 is allowed using special expo-
nentially weighted test functions, which we will also exploit in this paper.

In practice this condition is quite restrictive and rules out many important flow
regimes such as exothermic reactions, compressible flow fields, or data assimilation
problems with data given on the outflow boundary. Our objective in the present
paper is to propose an analysis of stabilized finite element methods in the noncoercive
case. Indeed similarly as in the elliptic case [20] the discrete solutions of standard
stabilized finite element methods are shown to exist and have optimal convergence
under a condition on the mesh size. Unlike the elliptic case there appears to be no
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equivalent result, even suboptimal, for the standard Galerkin method. This part uses
tools similar to those of [16, 17, 1]. Then we show how the method introduced in
[6] can be applied to hyperbolic problems beyond the coercive regime of condition
(1.2). The advantage of this latter method is that the mesh conditions under which
the analysis holds are much less restrictive and boundary conditions may be imposed
on the outflow boundary just as easily as on the inflow boundary, without modifying
the parameters of the method. For a full motivation of the method and analysis in
the elliptic case see [6].

We will consider problem (1.1) with smooth coefficients 3 € [W2°°(Q)]¢ and
o € Wh*(Q). Boundary data will be given on either the inflow or the outflow corre-
ponding to solving either the standard transport problem or a model data assimilation
problem. For such smooth physical parameters both cases can easily be solved using
the method of characteristics, provided that for each x € ) there exists a streamline
leading, in finite time, to the boundary where data is imposed and |8(z)| # 0 for
all x € Q. In the following we always assume that 3 satisfies these assumptions,
unless otherwise stated, and that the stationary problem admits a unique, sufficiently
smooth solution.

Problems on conservation form V - (fu) are cast on the form (1.1) by using the
product rule and including the low order term with coefficient V-5 in o. The present
paper has the following structure. In section 2 we propose an abstract analysis under
certain assumptions on the discrete bilinear form. Then in section 3 we give a detailed
description of how three different stabilization methods, the Galerkin least squares
(GLS) method, the continuous interior penalty (CIP) method, and the DG method,
satisfy the assumptions of the abstract theory for the case of the advection-reaction
equation. In all cases we prove that the classical quasi-optimal estimate for stabilized
methods holds,

lu = unll L2 + 1728 V(u —up)l| 120) < CH¥2]u] s -

We also show how to include a model problem for data assimilation in the analysis.
Finally, in section 4 we illustrate the theory with some numerical examples.

2. Abstract formulation. Let © be a polygonal /polyhedral subset of R?. The
boundary of Q will be denoted by 02 and its outward pointing normal by n. We let
V,W denote two Hilbert spaces with norms || - [y and || - [|[w. The abstract weak
formulation of the continuous problem takes the following form: find u € V such that

(2.1) a(u,v) = (f,v) YveW
with formal adjoint: find z € W such that
(2.2) a(w,z) = (g,w) YweV.

The bilinear form a(-,-) : V. x W — R and the data f are assumed to satisfy the
assumptions of Babuska’s theorem [2] so that problems (2.1) and (2.2) are well-posed.
(See [13] for an analysis of (1.1) in the coercive regime.) We denote the forward
problem on strong form Lu = f and the adjoint problem on strong form £*z = g.

Remark 1. The analysis below never uses the full power of Babuska’s theorem.
We only need to assume that (2.1) admits a unique solution for the given data and
that certain discrete stability conditions are satisfied by a(-,-) as specified below. For
the problems considered here the solution of (2.2) will always be z = 0.
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2.1. Finite element discretization. Let {7,}r, denote a family of
quasi-uniform, shape regular triangulations 75, := {K}, indexed by the maximum
triangle radius h := maxge7, hx. The set of faces of the triangulation will be de-
noted by F and F;,; denotes the subset of interior faces. Let X ,’.’f denote the finite
element space of piecewise polynomial functions on Tp,

XF o= {v, € L3(Q) : vp|x €PL(K) VK € Tp}.

Here P (K) denotes the space of polynomials of degree less than or equal to k on a
triangle K. The L2-scalar product over some measurable X C R is denoted (-, -)x
and the associated norm ||-|| x, and the subscript is dropped whenever X = 2. We will
also use (-, )y to denote the L%-scalar product over Y C R%~1. For the elementwise
L2-scalar product and norm over 2 we will use the notation (-,-);, := ke, (5K

- ln = (-, ),% In the estimates of the paper capital constants are generic, whereas
lowercase constants are specific to the estimate. Sometimes capital constants will be
given subscripts to point to the main dependencies on parameters. We will also use
a ~ b to stress an important dependence in a on some parameter b, i.e., a = Cb, with
C assumed to be moderate.

We let 7, denote the standard L2-projection onto X} and iy : C°(Q) — X} the
standard Lagrange interpolant. Recall that for any function u € (V U W) N H*¥F1(Q)
there holds

23)  fu—inul + AV~ ipw)| + B2 D> — inw)lln < e ul e .

where D? denotes the Hessian matrix, and the matrix norm used is the Frobenius
norm. A similar result holds for 7. If 7, projects onto X} N C%(Q) the same result
holds under the assumption of local quasi regularity of the mesh. The following dis-
crete commutator property follows by straightforward modifications of the result in [4]
and holds for iy, the elementwise L2-projection onto X ,’f, and, under our assumptions
on the mesh, for the L2-projection onto continuous finite element functions. Here
pEeW?>(Q),0<n <2,

(2.4) > leun = in(oun) i ) < o oh™ > P unll?2(q)-
KeTn

We also note that the following inverse inequalities hold, ez, c; € R such that

(2.5) lullox < er(h™%|jullk +h%|Vul k) Yue HY(K),

1
hi? llunllox + hi|[Vunlx < crllunllx Vun € Pe(K).

Let V,, and W), denote two finite element spaces such that dim V;, = dim W}, (in
practice V;, = W}, herein). Now we introduce a discrete bilinear form ay(-,-) : Vj X
Wi, — R associated to a(-,-) and a stabilization operator s,(-,-) : Vs x Wj, — R. The
standard stabilized finite element formulation for problem (2.1) takes the following
form: find u; € V}, such that

(2.6) an(up, vn) + sp(un, vn) = (f,on) + sp(u,vr)  Vop € Wi,

Observe that since sp(u,vp) appears in the right-hand side, we can only use sta-
bilization operators such that this quantity is known. As we shall see below, the
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noncoercivity of the form ay(-, ) leads to problem-dependent mesh conditions for the
well-posedness of (2.6). To alleviate the conditions on the mesh we propose the fol-
lowing finite element method for the approximation of (2.1): find (up, zn) € Vi x W),
such that

(2.7) an (U, wh) + sa(2h, wh) = (f,wh),
an (v, zn) — Sp(un, vp) = —sp(u, vg)

for all (vp,wp) € Vi, x Wy, Here s4(, ) is a stabilization term related to the adjoint
equation that will be discussed below. Observe that we here solve simultaneously
(2.1) and (2.2) with g = 0 in the latter equation. We will consider either continuous
approximation spaces Vj, := X ,’.’f N H() or discontinuous approximation Vj, := X ,’f
The bilinear form ay, (-, -) is a discrete realization of a(-, -), typically modified to account
for the effect of nonconformity, since in general V;, ¢ V and W) ¢ W. Weakly
imposed boundary conditions may be set in the form ap(-,-), but below we have
chosen to impose them using s,(-,-) and sq(-,-) to obtain a more unified analysis. In
(2.7) stabilization can also be added in ap(-,-). Our numerical experiments did not
show any advantages of the addition and this approach will not be pursued here.

The bilinear forms s4(-,-), sp(-,+) in (2.7) are symmetric, positive semidefinite
stabilization operators, defined on [V, U W}]2. For simplicity we will always assume
that v is sufficiently regular so that strong consistency holds, i.e., sp(u,vs) is well
defined. Note also that for the method to make sense sp(u,vy) must be known,
either to be zero, or depending only on known data. This will be the case below.
The modifications of the analysis to the case of weakly consistent stabilization are
straightforward and not considered here. The seminorm on V;, UW)}, associated to the
stabilization is defined by

1
|$h|Sy = Sy(xhaxh)za Yy=a,p.

We will assume that the following strong consistency property holds. If w is the
solution of (2.1), then

(2.8) an(u, ) = (Lu, ) = (f,¢) V ¢ € Wh.

Then w solution of (2.1) solves (2.6), and u solution of (2.1) and z = 0 solve the
system (2.7).

We also assume that there are interpolation operators my : V. — Vj and my :
W — Wy, satisfying (2.3). We introduce the (semi)norm || - ||+ and assume that the
following approximation estimates are satisfied:

(2.9)
v = mvolly + lv = Tvoll+ + v = mvols, < cayh" o]y Yo € VN HF(Q),

where r > 0, depends on the approximation properties of the finite element space and
the definition of the norms in the left-hand side. From the standard error estimates
for stabilized methods we expect r = k + % for smooth exact solutions. The constant
car depends on the form a(-,-) and stabilization parameter(s) of the method included
in sp(+, ) and s4(+, ), here denoted .

2.2. Abstract assumptions on the formulation (2.6). The assumptions
made below consititutes sufficient conditions for the method (2.6) to converge. Here
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we assume that || - ||v = || - |lw. As usual the conditions are consistency, stability,
and continuity of the forms. Galerkin orthogonality for (2.6) is a consequence of the
consistency (2.8)

(2.10) ap(u — up, wp) + sp(u — up,wp) =0 Vwy, € Wy,

We assume that there exists ¢, ¢, € RT such that for all A > 0 and uj, € Vj, there
exists v, € W}, satisfying

(2.11)
cs(lunllyy + lunls,) < an(un, va(un)) + sp(un, va(un)) + e(R)(lun ¥ + unl3,),

where €(h) is a continuous function such that €(0) = 0, and
(2.12) [va(un)llv + vaun)ls, < cy(llunllv + luals,)-

These assumptions ensure that the stabilized formulation satisfies a discrete inf-sup
condition for e(h) small enough. We also assume the following continuity:

213)  an(v—7vo,2n) <|lv —mvollycallznls, + znllv) Vo €V, zn € Wi

2.3. Abstract assumptions on formulation (2.7). Observe that the follow-
ing partial coercivity is obtained by taking v, = up, and wy, = 25, in (2.7):

(2.14) 23, + [unls, = (f, 20)+sp(u, un).
The following Galerkin orthogonality holds for (2.7) by (2.8):

(2.15) ap(u — up,wp) = Sq(zn,wy) Yw, € Wy,
an(vn, zn) = sp(up, —u,vy) Yop € Vi,

Let é(h) and €(h) denote continuous, monotonically increasing functions such that
€(0) = 0 and 0 < €(h). We assume that the following discrete stability holds for all
up € Vi, zn € Wy For some &, ¢, € R, for all uj, € Vj, there exists v, (up) € W
such that

(2.16) Csllunlly < an(un, va(un)) + &h)lunll + &lunl?,

and similarly, for all z;, € W), there exists vq«(21) € Vi, such that

(2.17) Csllznlliy < an(vas(zn), zn) + &)||2nllfy + &lzal?, -
Moreover assume that the functions v, and v, satisfy the bounds

(2.18) lva(ur)llw < Eyllunllv,  |va(un)ls, < ER)|unllv + é;lunls,,
(2.19) [vax (zn)lv < Enllznllw,  |vax(zn)ls, < éh)llznllw + énlznls, -

Since we are interested in problems that are ill-conditioned, we here assume ¢, < &,
without loss of generality. We finally assume that the following continuity relation
holds:

(2.20) ap(v —myv,ap) < ||lv = mvullsea(|znls, + |znllw) Yo € V, xp, € W,
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2.4. Convergence analysis for the abstract methods. We will first prove
a convergence result for the standard stabilized finite element method (2.6). Then we
will consider (2.7).

PROPOSITION 2.1. Assume that the solution of (2.1) is smooth and that the
forms of (2.6) and the operators my, mw are such that (2.10)—(2.13) are satisfied.
Also assume that e(h) satisfies the bound

(2.21) e(h) < —.
Then (2.6) admits a unique solution uyp, for which there holds
lu —unllv + [u—unls, < casyh"[ulgri(qy,

where ¢qey ~ (cq + 1)2—”

Proof. Since the spaces W}, and V}, have the same dimension, the matrix is square
and it is sufficient to prove uniqueness. Assume (f,vp,)~+sp(u, v,) = 0 for all v, € W,
Under condition (2.21) there holds

1
§Cs(|\uh|\%/ + [unl?,) < an(un, va(un)) + sp(un, va(un)) = 0,

hence up = 0 and existence and uniqueness follows. Let &, := myu — up. By the
stability assumption (2.11) we have

cs(16nll% + 1€n15,) < an(8n, va(€n)) + sp(€n, va(én)) + e(R)(IEnIIY + [€nl3,)-

It follows that under the condition (2.21) there holds

Ses (Il + 16, < an(En, valen)) + splEn valen)

and by Galerkin orthogonality (2.10), the continuity (2.13), and the stability (2.12)

%cs(llfhl\% +1€nl5,) < an(myu —u, va(€n)) + sp(mvu — u, va(én))

callmvu —ull+ (Jva(&n)ls, + 1va(&n)llv) + [Tvu — uls, [va(8n)ls,

<
< (ca + Dllmve —ully + |lmvu —uls, Jen([Enllv + [Enls, )-

We conclude by noting that [[u — uplly < [lu — mvullv + [[&n]|v and applying the
approximation (2.9). O
We now turn to the analysis of (2.7). In this case the analysis is based on a
combination of coercivity of the stabilization operators (2.14) and an inf-sup argument
using (2.16) and (2.17). This allows us to exploit the strong stability property (2.14)
enjoyed by the stabilization terms and thereby improve the robustness of the method.
THEOREM 2.2. Assume that the solution of (2.1) is smooth, that the forms of
(2.7) and the operators my, mw are such that (2.9), (2.15)—(2.20) are satisfied, and
that
(2.22) é(h) <

b | S

Then (2.7) admits a unique solution up, zp, for which there holds

lu —unllv + [lznllw + |u —unls, + |2als, < Casyh” [u|grer(q)-
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The constant in the above estimate is given by

~ vh2
gmw(caﬂ)g—" (1+—6~(~) )

nCs
Similarly, if sp(u,wp) = 0, there holds
lunls, + [znls, < Casyh"|ulmr1(q)-

Proof. For the first inequality, let &, = myu — up. As in the previous case it is
enough to prove the claim for &,. By the definition (2.7) there holds

[€n15, +12nl%, = 5p(Ens En) 50 (2ns 20) = an(Ens 2n)+5a(2ns 21) —an(En, 20) +5p(Ens En)-
By the stabilities (2.16)—(2.18) there exists v4(£n) and v (zr) such that

Es(I€nlly + llznllfy) < an(€n, va(én

+ ap (Vs (21

h
h

)+ 5a(va(én), 2n)

s2n) = $p(Ens Vax (21)) + EM)|ERIIT + Enlénls,
1€nllv + Elénls,) + Eh)l[znllfy + El2nlE,
l2nllw + &ylznls.)-

)
)
+ |znls,
+ [€nls,

—~ o~

é(h)
é(h)

It follows that for all py, ps > 0 we may write
Esiv (€nll3 + lznlliy) + s (€nl3, + |2al3,) < an(én, pszn + pvva(én))
+ Saptszn + pvva(€n), 2n) — an(psén — pvvas(2n)s 2n) + 8p(En,s sh — v vax(2n))

+ v e IEnl + llznlliy) + pvén(€nls, + 12nl3,)
+ pv|zals, (E(R)[IEnllv + Eylénls,) + v Inls, (€(R)llznllw + &;l2nls,)-

By arithmetic-geometric inequalities in the right-hand side

pveEh)(IEnlly + [Iznll5) + pvE,(16nl%, + |2al3,)
+ pvlznls, () IEnllv + éylénls,) + nviénls, (E(R) | znllw + Eyl2nls,)

~ 1_ 2 2 ~ é(h)2 2 2
< (200 -+ 0 ) QIR+ lanlie) + o (20 + S5 (e, + anl,).

Therefore under the condition (2.22) there holds

1. . é(h)?
seem el + lanlfe) + (s — v (200 + S25) ) (0l + )

< an(€n, pszn + pvva(€n)) + sa(pszn + pvva(€n), 2n)
— an(psén — pvVax(2n); 2n) + 8p(En, 11sEn — f1Vax (2n))-

Then, by choosing uy = %7 Bs = 9cn + = ( k and applying the Galerkin orthogonality
of (2.15), we have, since by assumptlon cS < Cp,

Enlly + lznlly + 1€n13, + [2nl3,

< ap(myu —u, pszn + pyvva(€n)) + sp(mvu — u, s — v vasx(zn))-
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We proceed by applying the continuity (2.20) in the first term of the right-hand side
and the Cauchy—Schwarz inequality in the stabilization term,
1€l + lznllfy + I€nl5, + I2al3,
< lu = mvull+callpszn + pvva(€n)ls, + llnszn + pvva(&n)llw)

+|u — mvuls, |psEn — pvvas(2n)]s, -

Using a triangle inequality followed by the stability of v, (2.18) and v, (2.19) and
the bound pv (&, + €(h)) < us, which holds under the assumption é, < &,, we may
conclude that
I€RlI + l2nllfy + 1€n1%, + [2nl%, < (lu—mvully +u - myuls,)
x (ca + Dps(lI€nllv + llznllw + [8nls, + |2nls.)-

We conclude from this expression and (2.9) that the first claim holds. The second
result is an immediate consequence of sp(u,wp) = 0 and the symmetry of s,(-,-).
Uniqueness of the discrete solution follows by taking f = 0 in (2.1) and observing
that since then v = myu = 0 we have uj, = z;, = 0 by which uniqueness follows using
the same a priori estimates. O

3. Stabilization methods. We let £ denote the first order hyperbolic operator
on nonconservation form,

(3.1) Lu:=F-Vu+ou.

Here 3 € [W2>(Q)]? is a nonsolenoidal velocity vectorfield and o € W1>°(Q). We
assume that boundary conditions are set on the inflow boundary 92—,

ulpa- = gin, 0QF = {x € 00 : £B(x) -n > 0}.
The adjoint operator takes the form
(3.2) Lu:= =V - (Bu) + ou.

We have assumed below that the reaction is moderately stiff so that the relevant time
scale of the flow is given by h|3|~1. In particular we will not track the influence of the
size of ¢ in the error bounds below, assuming h2 (lloll Lo () + IV - BllL=(q)) moderate.
We will consider three different stabilized finite element methods below and show that
they all satisfy the assumptions of the abstract theory. The bilinear form a(-,-) of
(2.6) and (2.7) is defined as

(3.3) ap(up,vn) = (Lup, vn)n — 5 Z / B - nox[un){vn} ds,

KeT SK\OQ

where {vy} denotes the average of vj, from the two element faces,

1.
{upH(x)|ox = 3 lim (up(x —engk) + un(x + enok)),
e—0t
the jump of uy, is defined as

[up](@)|ox = sl_i}réh(uh(a: —enpr) — up(T + enpk)).
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As usual the jump terms on u;, may be omitted when a continuous function is consid-
ered in the formulation. First we will prove a general stability result on
ap (uh, ’Uh).

LEMMA 3.1. For the bilinear form (3.3) there holds for all n € W1°°(82), for all
Up, Zh € X}].f,

1
on(un,eun) =5 [ (3 mden st [
o0

1 1
<:|Z—5-V77——V-B+U>ei’7 dz,
o 2 2

1 1 1
—/ (B-n)zpen ds—l—/zi <:|:—ﬁ-V7]——V-B+U> et dr.
2 Joq Q 2 2

Proof. Consider the first inequality with the negative sign in the exponent. By
definition we have

(3.4)

an(un, e "up) = (B Vup + oup, e "up)n — 5 Z / B norklunl{e”"up}t ds
KeT GEN\OQ

ah(ei”zh, zp) =

and note that an integration by parts in the advective term yields

(B Vun, e Mun)n = 5 Z/ B nok[un]{e”"up} ds

KeT OK\OQ
= (up,e”"(B-Vn -V ﬁ)uh)

(uh,e "ﬂ Vuh h—l— Z / ﬂ NoK uh]{e "uh} ds

KET OK\00
—|—/ (B-n)uie " ds.
o0
This equality implies the following well-known relation:
(3.5)
(8- Vup, e Tup)p — = Z / B - noxun]{e Tup} ds

KeT SK\OQ
= % ((uh, e (B-Vn—V-pBlup) —l—/ 8- n)u,%e_’7 ds) .
o0

The first stability result is obtained by applying this equality in (3.4). The inequality
for the adjoint case is proven similarly by observing that after an integration by parts
in the bilinear form

(3.6) an(e "zp,2n) = —(e "zp,B- Ve + (V-8 —0)zp)

+ % Z /a;qanﬁ -nok[znl{e” " zn} ds + /69(5 n)zpe " ds

KeTy

and then applying (3.5). The case in which the power is positive follows similarly,
observing that the change of sign has an effect only in the inner derivative
8- Vn. d
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The importance of this lemma is a consequence of the existence of a particular function
7 that is given in the following result.

LEMMA 3.2. Under the assumptions on 3 there exists ng € W°°() such that
B-Vno >11in Q. For the proof of this result see [1, Appendix A].

It follows that the second term of the right-hand sides in the equations of Lemma
3.1 are nonnegative for

(3.7) n:= (14120 =V 8= @) no-

Below we always assume that 7 is of this form. In general e™7u; ¢ V}, and hence
Lemma 3.1 is insufficient to prove (2.16) and (2.17). The trick is to chose v, to be
some suitable approximation of e™"uy, in V3, me™"uy, and control the approximation
error using the stabilization. Since we are often required to estimate this error we
introduce the notation 6(e~"up) := e "Mup — me~Tuy. Similarly v,. is chosen as an
approximation of —e~"zp,.

The stabilization terms may now be chosen as one of the following, where the first
two assume H '-conforming approximation and the last discontinuous approximation.
In all three cases we have W, = V},. Below vx € R, X = GLS, CIP, DG, denotes
a stabilization parameter associated to the method X and 7. € RT a stabilization
parameter associated to the weakly imposed boundary condition.

e The GLS method. In this case continuous finite element spaces are used,
Vi = Wy, := XF N HY(Q), and the stabilization operators take the form

(3.8) Sp)GLs(uh, wh) = ('YGLS|B|_1h£Uh, Ewh),
(3.9) Sa,cLs(zn,vn) = (Yars|Bl T hL  zp, L¥vp).

Note that s, grs(u,wsn) = (f,veLs|8| " hLwy), showing that s,(u,-) can
indeed be expressed using data.

e CIP stabilization. Here as well continuous finite element spaces are used,
Vi, = Wy, := XF N HY(), and the stabilization is given by

(3.10) scrp(un,wn) = Z / hEyverpllBn - npl L) [Vun] - [Vwn] dz
FeFint

for both the primal and the adjoint equations, where [Vuy]|r denotes the
jump of the gradient over the face F'.

e The DG method. In this case we do not impose any continuity constraints in
the finite element space V}, := X ,’f The method is stabilized by penalizing the
jump of the solution over element faces for both the primal and the adjoint
equations.

(3.11) spa(un,wp) ==Y /FWDGIB-nFI[Uh][wh] de,

FeFint

where [up]|F denotes the jump of the solution over the face F. The choice
YDG = % is known to lead to the classical upwind formulation for the method
(2.6).
To account for boundary conditions the above stabilizations are modified as follows:
(3.12) Sp(un, wp) == 8p x (Un, wh) + Spe,—(Un, W),
Sa(zhsVn) = Sa,x (2h, V) + Sbc,+(2h, ) + Sbe,— (2h, Un),
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with X = GLS, CIP, DG and sp. 4 := faQ Yoe|(B - n)+|upvp ds. Note that the value
of z;, is penalized on the whole boundary. This is necessary to obtain robustness if no
boundary conditions are set in ay, (-, -) and allows for the simple choice of test functions
used in the analysis below. It should be noted that for problems where the adjoint
solution satisfies z = 0 the stabilization in the bulk or on the boundary can be changed
to any form satisfying the assumptions (2.17)-(2.20). The consistency requirements
are much weaker, since the exact solution is trivial. The variant where zj is penalized
only on the outflow boundary can also be shown to be stable using the arguments
below, provided that weak boundary conditions are included also in ap(-,-). In this
case different weight functions must be used for u; and z,. The present choice was
motivated mainly by the use of a single exponential weight in all estimates and that
it makes integration of data assimilation problems straightforward by changing the
boundary contribution in s, (-, -).

Below we will consider the methods (2.6) and (2.7) one by one, in each case
showing that the assumptions (2.10)—(2.13) are satisfied for method (2.6) as well as
(2.15)—(2.20) for method (2.7). Clearly some arguments are very similar between the
different methods and full details are given only for the GLS method. The conclusion
is that all three schemes satisfy the assumptions necessary for the abstract analysis to
hold. The dependence of the e(h), €(h), €(h) and ¢, and &, on the physical parameters
and on h is specified in each case in the proofs. The natural norm for the analysis is

1 1
lzllw = llzllv := [lz] + 22 8 - Va|[n +[[|8 - n[> z[|oe,

but to keep down the technical detail we will first prove the results in the reduced
norm,

1
(3.13) lzllw = [lzllv := [lzll + 115 - n|zz([aq,

and then show how the control of the streamline derivative can be recovered separately.
We also define the continuity norm for all three methods as

1, 1 1
(3.14) [oll+ = I(1B12h72 + |os))oll + (118 - nl> vl 7,

where og = —V - B 4+ 0. It is straightforward to show that in all cases the approxi-
mation estimate (2.9) holds with 7 = k + & for any interpolant in X} with optimal
approximation properties. The error estimate that results from the abstract analysis
for the transport equation may be written in all cases, for both (2.6) and (2.7),

[u —unllv + [|h2 8- V(u —up)|| + [u — upls, < CR*FF|u|grsr (o

However, the condition (2.21) leads to a stronger constraint on the mesh for the for-
mulation (2.6) than (2.22). We first prove a lemma, similar to the superapproximation
result of [17], useful in all three cases.

LEMMA 3.3. Let w be an interpolation operator that satisfies (2.3) and (2.4); then
there holds

lle™Tup, — me Mupl|v + |le” Tup — me” Tup ||+ + le” Tup — me” Tup|s, < IL(A)||unllv,
where v = a,p and II(h) = CysCace—n hz. Here Cdc,e-n Tefers to the mazimum

a
constant of (2.4) for n = 0,1,2. The result holds for all three methods presented
above.
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Proof. First observe that by inequality (2.4) we have

(3.15) h=2|6(e M) || + B2 || VE(e Mup) | < C max cgep o-nh? [lusll,

ne{0,1}

recalling that d(e™"up) := e "up, — me "uy. Similarly using (2.5) followed by (2.4)
gives

D6 un) 3 < D AR 6(e M un) % + h2 ([ V(e Mun) %)
KeTy, KeTy,

2 2 2
< C® max b emohlfun

Using these results in definitions (3.13) and (3.14) we obtain

_ _ 1 1 1 1 _1 _
l6(e™Tup)||l+ + [[6(e™"un)llv < CUIBl 7 + h2llosllFe +h2)[[A725(e™ up)||
n|z8(e <C o ||unl|.
+ 18- nl20(e”"un)||F < Cpe DX Caen,en [[un

For the stabilization norm we first consider the boundary term and the three methods
separately. For the boundary terms we observe that

1
Sty (8(e7Mup), 0(e™Mup)) 2 < AZN(e M) |lv < Chpo g}%ﬁ}cdc,w—nh%l\uhl\.
n s

Then note that for the GLS method

sp.crs(0(eun), 8 Mun))2 < véph? (1817 I1V8(e™un)|ln + lollze[15(e~un)||)

L
1
C’yﬁd ng}%ﬁ} Cdc,n,e_"h2 ||Uh||

IN

and similarly s, crs(d(e™"up), 5(6”7uh))% < O, g0y MaXpeqo,1} Cdc,n7ewh% [lwn]]-
For the CIP method we use elementwise trace inequalities followed by (2.4), with
n=1and n=2,

scrp((e Mup), 5(e Mup))?

<A rperh?|BlLe < > (Vs un) % + h2|D25(6”Uh)||§<)>
KeTy,

<& rperh 1Bl (e = + Cacz =) llunll
Finally for the DG method, we simply observe that
spa(6(e”"un), 8¢ "un))* < Crpalld(e up)ll+. O
3.1. GLS stabilization. We assume that
Vi = XFNHYQ), Wy = Vi

Let 7wy, m be defined by the Lagrange interpolator i5. It follows by the construction
of the stabilization operator and (2.8) that (2.10) and (2.15) hold (recalling that
z=0.) It is also straightforward to show that (2.9) holds with r = k + 1. We collect
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the proof of the remaining assumptions of Proposition 2.1 and Theorem 2.2 in two
propositions.

PROPOSITION 3.4 (satisfaction of assumptions for (2.6) with GLS). Let the bilin-
ear forms of (2.6) be defined by (3.3) and (3.8) with Y. > 1. Then (2.11)—(2.13) are
satisfied, with e(h) = Cvggnh%.

Proof. To show (2.11) we take v, := 7y (e~ "uyp,) with n defined by (3.7) and use
the first inequality of Lemma 3.1 to obtain

(3.16) an(up, v (€ "up)) = ap(up, e Tup) — an(up, (e Tup))

1 B
> —Yaislunls, 16(e™ Tun)||+

1 1 .
+ —/ (B-n)ure ™ ds + —||uhe_57 1%
2 Jog 2
Using Lemma 3.3 we have
1, a1 , _
(3.17) §||uhe 2 ||* + 5 (B-n)yuie " ds < ap(up, mv (e Tup))
o0

1 P 2 2
3 89(5 “n)_upe” "+ §AVGLSH(h)(|Uh|Sp + [[unlly,)-

We need a similar bound for the stabilization operator using the function v, (up). This
is straightforward observing that

sp(un, va(un)) = (Lun, yors|Bl ™ hL(une™)) + spe.— (un, e Mup)
— (Lun,vars| Bl hL (e Mun)) — sbe,— (un, d(e” Mup))
> [(varsh|BI™) % Lupe™ 2|2 + el (8- 1) |Fupe™ #[|3g

= funls, (I8~ un)ls, + gz shIBI ) (L Hun]) .

Combining this result with (3.17), using (3.3) it follows that for ~,. large enough
(3.18) %;gg e M(unllyy + [unl?,) < an(un, v (€™ un)) + sp.ars(un, mv (e "up))
+ (CyI1(R) + (varshlBI ™) sup [£e™ ) (unf3, + lunll}):

We conclude that (2.11) holds with ¢, = %infweg e~ and
€(h) = (C4TI(R) + (rgrshlB|™)* sup |£e™#]) ~ Cponh.

Considering now (2.12) we have

(3.19) [va(un)llv < e unllv + [[6(e™" un)|lv < (ilelg e +10(h))[unllv
and for the stabilization part,

(320) [va(un)ls, < sup L™ 3 h2 Cy lunllv + sup e Munls, +16(e"un)ls,

_ 1 _
< (sup e  "h2C,on + H(R))||un v + sup e " |up|s, .
e ze
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It follows that (2.12) holds for any

¢y > max(sup [Le 2 |h%0730, supe T +1I(h)) ~ Cvggnh% +supe .
€N e zeQ
For the continuity (2.13) we first use an integration by parts and the Cauchy—Schwarz
inequality to obtain

(3.21) ap(v —myv,zp) = (v — Tyu, L) + / (B-n)(v—myv)xy ds
o

< llu—mvull+ (10817 h) 2L an ]| + ll2nllyv).

To conclude we need to express the norm over the adjoint operator in the right-hand
side by the stabilization of the primal operator. Observe that for all x5 € V}, there
holds

(322)  [(BI7 h)> L@ < Janls, + Cygh® @lloll=(a) + IV - BllL=@)llznllv-

Collecting the results of (3.21) and (3.22) we see that ¢, > 1+ Cwoh%. O
PROPOSITION 3.5 (satisfaction of the assumptions for (2.7) with GLS). Let the
bilinear forms of (2.7) be defined by (3.3), (3.8), and (3.9). Then the inequalities
(2.15)—(2.20) hold with é(h) = 0.
Proof. Starting from the inequality (3.16) with v, (up) := mw (e "up) we imme-
diately get

1, _ _ -1
5 infe Nunllr < anun, 7w (e un)) + g2 TR [unls, [[unllv
+ sup e‘”vl:c1|uh|§p,
€N

1

from which we deduce, using (infzeqe™) ™" =sup,cq €,

1., _ _ _ L
—inf e up |3 < an(un, 7w (e Tup)) + (sup e’yg1 I(h)? + sup e "y, ) un|%
4 zeQ z€Q z€Q ’
which is the required inequality with é(h) =0, ¢ = iinfzeg e~ ", and
én > sup e"’ygisﬂ(h)Q + sup e_"'yl;cl.
IS reN

In a similar fashion we may show that (2.17) holds, also with the weight e~", and
corresponding test function ve.(zn) = —myv (e~ "z,). First observe that in this case
using Lemma 3.1 (second equation),

1 1

3 wlrglg e | znll? — 3 /89@ n)zie " ds < —an(e "zn, 2n)
=ap(—myv (e "zn),2n) —an(d(e™"z1), z1)-

For the second term in the right-hand side we have after integration by parts and

application of Lemma 3.3

an(6(e=2n), 2n) = /8 (B mB(e )z s+ (36 ), L)

< Cllo(e " zn) |1+ 12nls, < CH(R)||znllv|2nls, -
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Here we used that the boundary penalty on z; is active on the whole boundary. We
may then conclude as before that

1., _ _ -
1 inf ez, ||3 < an(—mv (e "24), 21) + (sup €"C,II(h)* + sup e ;. ) |20 %,
€N €N €N

with similar constants as before.
The inequalities of (2.18) and (2.19) follow by similar arguments as (3.19) and
(3.20). The only differences occur in the right inequalities.

11 _ _ _
[va(un)ls, < h2vZpssup L e up|v + sup e "up|s, + |6(e™"un)ls,
z€eQ e

1 _ _
< (Cyponh? supe™ " + L(h))[|un|lv + supe™"up|s, -
zeQ e

We then use an inequality similar to (3.22), this time adding the boundary penalty
term that is included in the stabilization in formulation (2.7) (see (3.12)):

(3.23)
1 1 1
lunls, < |unls, + Cayh2 (2|0 o) + IV - Bllze @) unllv + 3218 - nl2un|laq-

Note that the boundary contribution cannot be controlled by |up|s, as one would like
1

but must be controlled using the V-norm. This adds an O(v2.) contribution to the
constant in front of ||up||v:

i 1
(3.24) lunls, < |unls, + (v, + Cpyh2 (2|0l L) + IV - BllLos @) lunllv-

The proof of (2.19) is similar, but here the stronger adjoint boundary penalty can
control the boundary term, leading to

1
|znls, < lznls, + Cayh2 (2||o||Loc@) + IV - BllLe @)l znllw-

We conclude that the inequalities (2.18) and (2.19) hold with

1
¢y > supe "+ 1II(h) and é(h) > C’gmnh% +sup e Ty
e e

The continuity (2.20) is immediate by integration by parts and the Cauchy—Schwarz
inequality,

ap(v — myv,xp) = (u—myu, L) + / (B-n)(v—myv)ry ds
o0

< Cyllu = mvull(Jzals, + lznllw). O

Remark 2. Note that for the GLS method é(h) = 0in (2.16) and (2.17), indicating
that the scheme is unconditionally stable. This follows from the fact that the whole
residual is considered in the stabilization term. This nice feature, however, only
holds under exact quadrature. When the integrals are approximated, the quadrature
error once again gives rise to oscillation terms from data that introduces a nonzero
contribution to é(h).
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3.2. CIP. In this case also W), = V}, := XF N H(Q), but the stabilization added
to the standard Galerkin formulation is a penalty on the jump of the gradient over
element faces [12, 9]. The key observation is that the following discrete approximation
result holds for yorp large enough (see [7, 8]):

(3.25) Hh% |Bh|_%(ﬁh “Nup, — LosBr - Vup)||? < scrp(un, up).

Here (3, is some piecewise affine interpolant of the velocity vector field 8 and I, is the
quasi-interpolation operator defined in each node of the mesh as a straight average of
the function values from triangles sharing that node,

(TosBn - Vun)(@:) = N1 >~ (Bu - V) (@),

{K:z,eK}

with N; := card{K : x; € K}. Stability is then a consequence of the following lemma.
LEMMA 3.6. The following inequalities hold:

(3.26) inf [|h% (L, —vn)|| < Cpserp(un,un)® + ecrp(h)un
Uh h

and

(327) inf [|h* (L2 = wn)| < Cypscrp(an, 2n)? + corp(h) |zl
Wh, h

with ecrp(h) ~ h3 (|| Bllwe. (@) + Cde,0.0)-
Proof. Since the proofs of the two results are similar we only detail the arguments
for (3.26). First note that
inf |12 (Cun — o)l < 112 (i - Vun — Tos(in - Vun))|

v EVY
+ h% ||B — ihBHLoo(Q)HVuhH + h% Houh - ih(auh)H.

Using (3.25), interpolation in L, an inverse inequality, and the discrete commutator
property (2.4) we conclude

Jnf [[h% (Lun = va)|| < Caysorp(un,un) +h3 (|Bllwa~(@) + cacoo)llun]- D
For the CIP method we choose the my and 7y as the L2-projection in order to exploit
orthogonality to “filter” the element residual. Observe that if u € H2 %< (Q), e >0,
then scrp(u,-) = 0. The consistencies (2.10) and (2.15) hold from the consistency of
(3.3). The approximation result (2.9), with r = k + 1 is a consequence of standard
results for the CIP method (see, for instance, [8].) We now prove that the remaining
assumptions for Proposition 2.1 and Theorem 2.2 hold.

PROPOSITION 3.7 (satisfaction of assumptions for (2.6) with CIP). Let the bilin-
ear forms of (2.6) be defined by (3.3) and (3.10). Let 5. > 1. Then (2.10)—(2.13)
are satisfied, with e(h) ~ h3.

Proof. To prove the stability (2.11) take v, = my (e7"uy) and use lemma 3.1, the
orthogonality of the L2-projection, and lemma 3.6 to obtain

(3.28) ap(up, mv (e "up)) = ap(un, e "up) — (Lup, — wp, 0(e”"up))

> —Clunls, |6(e ™ un) 14+ — ecrp(h)||unll|h~25(e " un)|
1

1
+ —/ CE n)u,%e*" ds + —||uhe*g|\2.
2 Jaa 2
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We also observe that for the stabilization
(3.29) sp(un, v (e Tun)) > sp(un, une™") — |unls, |0(e”"up)|s, -
Now observe that since the jump of Ve™" is zero we have, using (3.28) and (3.29),

1 1 7 1

3 00 e unlfy + funl3,) < Glhune 12+ 5 [ (8- mude™ dat sy e ™)

< an(un, wy (€ Tun)) + sp(un, mv(e”"un))
[unls, (Col16(e ™ un)ll+ + [6(e " un)ls,) + ecrp (h)|unll[[h=26(e un)||.
Using Lemma 3.3 we deduce that (2.11) holds with
1
€ =5 12?2 e~ " and e(h) > II(h)(Cy + ecrp(h)).

For (2.12) only the stabilization part differs from the GLS case. Since the jump of

Ve~ is zero we immediately get

|va(un)ls, < supe "upls, + [6(e "un)|s, < supe "upls, + IL(h)|lullv
e e

and hence ¢, > sup,cq e~ "7+ II(h). The continuity (2.13) follows by observing that
by (3.6) there holds

(3.30) ap(v—myv,zp) = inf (v—mwyu, Lz, — wp) —l—/ (B-n)(v—myv)z), ds
o0

whe‘/h
< o — myoll+(Cylanls, + (CshEecrp(h) + 1)|nllv),

where we observe that the boundary part must be controlled using the norm
[-[v. O

PROPOSITION 3.8 (satisfaction of assumptions for (2.7) with CIP). Let the bilin-
ear forms of (2.7) be defined by (3.3) and (3.10) for both sp(-,-) and sq(-,-), together
with the respective boundary penalty terms of (3.12). Then the inequalities (2.15)—
(2.20) hold with &(h) ~ h?.

Proof. Starting from (3.28) with v, (up) := mw (e~ "uyp) we have using Lemma 3.3,

(3.31)
1

1 n
—lune™ 2 ||* + —/ 1B -nlure™ ds < ap(un, mw (e "up)) —/ (B-n)_uie " ds
2 2 Jog o9

+ (Cylunls, + ecrp(h)|lunl)IL(R)[Jun |

_1
< an(un, mw (€~ Mun)) + (7,2 sup e " + C3 sup e"1I(h)?)|uns,
zeQ xeQ)

1, .
+ (Z inf e +ecfp(h)n(h)) |-

The last inequlaity is due to an arithmetic-geometric inequality. Hence we see that
(2.16) holds with é(h) = ecrp(h)II(h) ~ h? and

_ 1., - . _ _
G =7 inf e7", &, > C’,? sup e"TI(h)? —|—'ybcl supe” .
zeQ z€Q z€Q

The inequality (2.17) is proved similarly as in the GLS case, taking this time v, (z5) :=
—7y (e~ "zp,), with my the L2-projection and using the second inequality of Lemma
3.1 and Lemma 3.3 after integration by parts:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/21/15 to 144.82.107.163. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

A1928 ERIK BURMAN

ap(d(e "zp), 2n) = / (B-n)d(e "zp)zn ds+ inf (6(e7"zp), L 2n — wp)
50 wp €Wy

< Cllo(e™zn)ll+(|2nls, +ecrp(h)|znll) < CU(R)[|2n (1205, + ec1r(h)|znl)-

Then we conclude as before. For the stabilities (2.18) and (2.19) we proceed as in
Proposition 3.4 and we only detail the second inequality of (2.18). When using the
CIP method the primal and adjoint stabilization terms differ only in the boundary
contributions; therefore, by symmetry, the second inequality of (2.19) follows identi-
cally. Since the jump of Ve™" is zero we get

_ _ 1 1
(3.32) [va(un)ls, < Sup ¢ MNunls, +16(e™"un)ls, + velllB - nl2va(un)lloa-
x

The boundary term is controlled by adding and subtracting e~"u;, and then applying
a triangle inequality followed by Lemma 3.3, leading to

1 L1
(3.33) YENNB -l va(un)llon < TUA) unllv + 7211812 une ™" loc
1
< (I(h) + vy sup ™) [lunl|v-
€N
Therefore (2.18) and (2.19) hold with

(3.34) ¢y > supe "+ 1II(h) and é(h) > ’yb%c sup e " + 2II(h).
e e

The proof of continuity (2.20) follows as in (3.30). a

3.3. The discontinuous Galerkin method. In the case where discontinuous
elements are used, i.e., Vj, = W), := X}, the analysis is simplified by the fact that
Bn-Vuy € V3. Here we let my and 7y denote the elementwise L2-projection onto X,’j.
The analysis is essentially the same as for the CIP method and when appropriate we
will refer to the previous analysis. Thanks to the local character of the DG method
the results hold without assuming any quasi regularity of the meshes. The consistency
results (2.10) and (2.15) are standard, as well as the approximation result (2.9), with
r=k+ 1 (see [13]). As before we collect the proofs of the remaining assumption in
a proposition.

PROPOSITION 3.9 (satisfaction of assumptions for (2.6) with DG). Let the bilinear
forms of (2.6) be defined by (3.3) and (3.11). Then (2.10)—(2.13) are satisfied with
e(h) ~ h=.

Proof. Let i3 € X be the Lagrange interpolant of 3 with and moo € X} the
projection of o on piecewise constant functions. For (2.11) take v, := 7y (e "uy,), use
L?-orthogonality, and apply Lemma 3.1 to obtain for . large enough,

(3.35)
ap(up, mv (€ "up)) + sp(un, mv (e Tup)) = ap(un, e Tup) + sp(un, e "up)
— an(un, 6(e”Mun)) — sp(un, (e Tun))

2 ((inf = B)Vun + (moo — o)un, 6(e”"un))

_ 1. .
=2 > (18- nlllull, (1 + 1066 un) )y o + 5 10f e (lunly + unl3,)
KeTy,

> —|unls, Cl18(e™"un) |1+ = epc (h)|[unllllh~28(e™"un)|

1
.., 2 2
+ 5 zlgge (lunllv =+ lunls, )
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where

3
2

epc(h) = W™ |[inB — Bl o) + 72 700 — || Lo () ~ (| Bllwz.os () + ol wr.oo () )2

It follows that (2.11) holds with ¢; = % infyeq e and e(h) > (Cy+epa(h))I(h). The
proof of (2.12) is analogous with the CIP case with similar constants. Considering
finally the continuity (2.13) we have after an integration by parts

(3.36)
ap(v —myv,zp) = (v —myv, L2p) + 5 Z n){v — mvo}, [Tn]) or\00
+((B-n)(v —7vv), 2n)sq

= (v —myv, (inB — B)Vay, + (0 — moo)zh) + Z n){v — myo}, [xh]>8K\BQ
K

N~

+((B-n)(v —7vv), Th) 5o
< [lo = 7yl (Cy znls, + (CshZepa(h) + 1)|zp]v). O

PROPOSITION 3.10 (satisfaction of assumptions for (2.7) with DG). Let the bilin-
ear forms of (2.7) be defined by (3.3) and (3.11) for both sy(-,-) and sq(-,-) together
with the respective boundary penalty terms of (3.12). Then the inequalities (2.15)—
(2.20) hold with &h) ~ h2.

Proof. The stability (2.16) and (2.17) follows by taking v, := mw (e "uy) and
Vax := —my (e "2zp), using (3.35) and the manipulations of Proposition 3.8. The proof
of the inequalities (2.18) and (2.19) uses the same techniques as the corresponding
results for the CTP-method and results in similar constants. Finally (2.20) follows
from (3.36). O

3.4. Convergence of the error in the streamline derivative. As mentioned
the natural norm for the above analysis would include the L2-norm of the h%—weighted
streamline derivative. Given the results of the previous section it is straightforward
to prove optimal convergence of the streamline derivative for both (2.6) and (2.7).
We only give the result for the method (2.7) below. The proof of the result for (2.6)
is identical.

PROPOSITION 3.11. Let up, z, be the solution of (2.7) with bilinear form (3.3)
stabilized with one of the methods presented in sections 3.1-3.3. Assume that the
conditions of Theorem 2.2 are satisfied. Then there holds

18-V (u—un)ln < Cppoyh*ul g (q).
Proof. First consider the GLS method. Add and subtract o(u — up) inside the

streamline derivative norm and use a triangle inequality to obtain, using the previously
obtained error estimates,

-1 _1 1
18-V (u—up)|| < CylIBI L2072 (Ju—unls, +]lol Lo @) P? u—unll) < Cypoh®|ul grer(qy-
For the CIP method we may write &, := myu—uy, where my is any interpolation oper-

ator with optimal approximation properties, and note that by Galerkin orthogonality,
interpolation in L°°, and inverse inequalities, we have
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18-V (u—un)ll* = (8- V(u—wun),Bn- V& — LosSh - V&) — (0(u — un), LosSn - VEr)
— 5a(2n, LosBh - VEn)
+(B-V(u—un), (B—=PBr) V&) —(B-V(u—u),B V(ryu—u))
< Cyl|B - V(u —un) (A~ %1€nls, + 1Bllwr(@ll€nll + 118 - V(u — myu)|)
+ (Cypeh™% |2nls, + o]l ooy llu — un )1 Bn - V.

Here we have used the L2-stability of the interpolation operator I,,; and the inequality

15a(2hs TosBn - VER)| < |2nls, Cypoh™ % || Bn - VEn].
Observing that

1B - VEnll < CllBllwree @ I8nll + 118 - V(u = un) | + |5 - V(u = wyu)|

and using suitable arithmetic-geometric inequalitites to absorb factors ||8- V (u —up)||
in the left-hand side we conclude that

18V (u—un)l* < Cypo (h_llihl?sp + [1€nl1” + llu — unl®
ek, + 118 V= ) |2) < Copoh® ullpeen o)
The last inequality is a consequence of the estimate
l = unllv + [ = unls, + |znls, < Copoh*2 |ulprsi (o)

of Theorem 2.2 and standard approximation results on ||u — myu| and ||5 - V(u —
myu)||. The proof for the discontinuous Galerkin method is similar and is left to the
reader. O

3.5. The data assimilation case. The aim of the methods presented in [6]
is to introduce a framework where also ill-posed problems such as those arising in
inverse problems or data assimilation problems can be included, without modifying
the method. We will therefore in this section discuss the case where data is given on
the outflow boundary in (1.1) as a model case of data assimilation. By the reversibility
of the transport equation under our assumptions on S this problem is not ill-posed on
the continuous level. However, on the discrete level methods based on upwinding are
likely to experience difficulties. Since our framework relies on neither upwinding nor
coercivity, this case can be included with only minor modifications in the formulations
without any loss of stability. Consider the problem (1.1) with the boundary condition
u = g on 094. Let the formulation (2.7) be defined by the bilinear form (3.3) and
the stabilization term s,(-,-) for X = GLS,CIP, DG,

(3.37) Sp(un,vp) = Sp x(Un, Un) + Sbe,+ (U, Vp).

The term s,4(, -) is unchanged. The data assimilation problem then typically consists
in finding u|gq_, which amounts to solving the backward transport equation. Observe
that the boundary penalty for the primal equation now acts on the outflow boundary.
The stabilization may then be chosen as any of the three methods considered in
sections 3.1-3.3 and Theorem 2.2 holds under the same conditions as before, but the
stability will be given by a different weight function. Once the functions v, and v,
have been identified the rest of the analysis is identical to that of sections 3.1-3.3. We
recall the following inequalities from Lemma 3.1.
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LEMMA 3.12. For the bilinear form (3.3) there holds, for all n € W1°°(Q),

an(up, —€"up) = _%/ (8- n)u,%e" ds —|—/ u,% (%ﬂ -Vn+ %V B — 0) e dx,
o0 Q
1 1 1
ap(€"zp, zp) = 5/ (B-n)zie" ds—l—/ 22 (gﬁ.Vn—l— §V-ﬂ—0> e" dx.
o0 Q

It follows that apart from the form of the exponential dependencies in the constants
nothing changes for the method (2.7). The situation is different for method (2.6),
since here the same test function must be used in the forms ap(-,-) and sp(-,-). We
see that the choice vq(up) := —my(€"up) is necessary in ap(-,-); however, due to
the least squares character of s,(-,-), the term can never have a stabilizing effect
for positive stabilization parameter when this weight function is used. If instead the
stabilization parameters in (2.6) are chosen negative it is straightforward to show that
the assumptions for Proposition 2.1 hold. This correpsonds to using downwind fluxes
instead of upwind fluxes. For more general problems, however, data are provided at
some points along the characteristics and it is therefore not possible for any given
point in the domain to decide whether the data will arrive from the upwind or the
downwind side unless the characteristic equations are solved for each given data.
Therefore the strategy of changing the sign of the stabilization parameter inside the
domain to match the location of given data is not so attractive. In contrast the
method (2.7) does not use the flow direction for stability and can therefore be applied
in a much wider context, without tuning the stabilization parameters.

4. Numerical examples. Here we will give some simple numerical examples
illustrating the above theory. All computations were made using Freefem++ [15].
We will only consider the CIP method and compare the results obtained by (2.6)
with those of (2.7) and in some cases with the standard Galerkin method. We use
an exact solution from [10] adapted for the case of vanishing viscosity with some
different velocity fields. We consider pure transport on conservation form and with a
nonsolenoidal velocity field,

(4.1) V- (Bu)=f on.

Three different velocity fields will be used:

(4.2) By = (_(_"’JSUZZ; y) ,

(4.3) By == —100 (Z i i) ,

or

2

y—1
10arctan(—2) — =

(4.4) B3 =
sin(z/e) + sin(y/e)

We will consider two different exact solutions, one smooth given by

(4.5) u(z,y) = 30z(1 — 2)y(1 —y),
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Fic. 1. Contour plots of approzimations of the smooth solution (4.5), 64 X 64 mesh, affine
approzimation. From left to right: standard Galerkin, method (2.6), method (2.7).

obtained by choosing a suitable right-hand-side f, and one nonsmooth obtained by
setting f = 0, but introducing a discontinuous function for the boundary data. The
smooth solution (4.5) satisfies homogeneous Dirichlet boundary conditions both on
the inflow and the outflow boundary and has ||u|| = 1. Unless otherwise stated, we
use the stabilization parameters yorp = 0.01 for piecewise affine approximation and
verp = 0.001 for piecewise quadratic approximation. The boundary penalty term is
taken as vp. = 0.5 for (2.7) and 7. = 1.0 for (2.6).

We have first considered the velocity field (4.2) and the solution (4.5). Note
that inf,cq V - 1 = —40, making the problem strongly noncoercive, since then oy =
%infweg V - p1 = —20. In our experience the standard Galerkin method performs
relatively well for the coercive case when approximating smooth solutions in two
space dimensions. As can be seen in Figure 1, this is not the case here. Three contour
plots are presented representing computations using the standard Galerkin method,
the method (2.6), and (2.7) on a 64 x 64 unstructured mesh. Note the oscillations
that persist in the standard Galerkin solution, despite the smoothness of the solution.
These oscillations remained on all the meshes considered, up to a finest mesh with
256 x 256 elements, although their amplitude decreased. This highlights the increased
need of stabilization for noncoercive problems. In Table 1 we present the errors in
both the L?-norm and the streamline derivative norm,

(4.6) 1h218]72 8- V(u—up)|,

on six consecutive unstructured meshes with 2, N = 3,....8, elements on each
side and piecewise affine approximation. We note that the stabilized methods both
have (and sometimes exceed) the expected convergence orders. Indeed the L2-error
converges as O(h**1) and the error in the streamline derivative (4.6) as O(h**2).
As expected the convergence of the standard Galerkin method is very uneven. It is
unclear if the error in the streamline derivative converges at all. In Table 2 the same
sequence of computations is reported using piecewise quadratic elements. The stability
of the standard Galerkin method is noticeably improved. Nevertheless the errors of
the stabilized methods are two orders of magnitude smaller. The errors of formulation
(2.7) are slightly smaller than those of (2.6), but on the other hand the former method
uses twice as many degrees of freedom as the latter.

Both methods (2.6) and (2.7) control spurious oscillations in nonsmooth exact
solutions, as can be seen in Figure 2, where the contour plots of a computation with
nonsmooth exact solution created by using the velocity field (4.3) in (4.1) setting f =0
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TABLE 1
Errors of estimated quantities for the smooth solution approximated using piecewise affine ele-
ments. SG means standard Galerkin and equations refer to methods used. L? denotes the error in
the L2-norm, and SD denotes the error in the streamline derivative norm defined in (4.6).

N | SG, L? | SG,SD | (2.6), L? | (2.6),SD | (2.7), L? | (2.7), SD
3 0.041 1.0 0.029 0.58 0.028 0.58

4 0.025 0.88 7.2E-3 0.20 6.5E-3 0.20

5 0.010 0.48 1.7E-3 0.071 1.5E-3 0.069

6 0.015 1.1 4.5E-4 0.026 4.0E-4 0.025

7 | 7.8E-3 0.76 1.1E-4 9.1E-3 1.0E-4 8.7E-3
8 | 1.9E-3 1.1 2.5E-5 3.0E-3 2.4E-5 3.0E-3

TABLE 2

Errors of estimated quantities for the smooth solution approximated using piecewise quadratic
elements.

N | SG, L? | SG,SD | (2.6), L? | (2.6),SD | (2.7), L? | (2.7), SD
3 | 0.028 0.58 9.3E-4 0.060 7.5E-4 0.045
4 | 4.6E-3 0.25 1.7E-4 0.014 1.1E-4 8.7E-3
5 | 1.9E-3 0.17 2.7E-5 3.1E-3 1.4E-5 1.7E-3
6 | 3.0E-4 | 0.042 3.3E-6 5.1E-4 1.7E-6 2.7E-4
7 | 33E-5 | 6.1E-3 4.4E-7 9.2E-5 2.1E-7 4.7E-5

F1G. 2. Discontinuous solution, 64 X 64 mesh, affine approximation. From left to right: standard
Galerkin, method (2.6), method (2.7).

and the boundary data equal one wherever z > 0.8 and y < 0.5 and zero elsewhere.
To show the increased robustness of the formulation (2.7), we propose to study the
problem (4.1) with the velocity field (4.4). This velocity field is strictly speaking not
covered by the analysis, since for some values on ¢ there may be points in the domain
where (3 vanishes. Nevertheless the right-hand side is chosen such that the exact
solution is given by (4.5). We consider a fixed 64 x 64 unstructured mesh and vary
€, creating a series of increasingly ill-posed problems where the divergence and the
maximum derivatives of 8 behaves as —%. The error in the streamline derivative (4.6)
for varying ¢ is plotted in the left graphic of Figure 3. It is fair to say that the method
(2.7) (circle markers) outperforms (2.6) (square markers). As e becomes small the
error for the approximations computed using (2.7) exhibits moderate growth of order
O(e~ %) but remains below 0.06, whereas over half the approximations computed using
(2.6) has an error larger than 0.5 and none below 0.1. For € = 0.05, the error is 120
and the computed solution bears no resemblance to the exact one. In the right plot of
Figure 3 we study how the error depends on the choice of the stabilization parameter
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0.01 0.1 0.001 0.01 0.1

F1a. 3. Study of the error in the SD-norm error (4.6). Circles: method (2.7), squares: method

1
(2.6). Left: under variation of € in (4.4), with yorp = 0.01, dotted line O(e” 3). Right: under
variation of yorp for different € (full line, € = 0.05; dashed line, ¢ = 0.025; dotted line, ¢ = 0.0125).

TABLE 3
Data assimilation using (2.7). Errors of estimated quantities for the smooth solution (4.5)
computed with data given on the outflow boundary. Approzimation using piecewise affine (P1) and
quadratic (P2) elements.

Py, L2 | Py, SD | Py, L? | Pg, SD
0.033 0.75 1.1E-3 | 0.052
7.1E-3 0.23 1.5E-4 | 9.6E-3
1.6E-3 | 0.075 | 1.8E-5 | 1.8E-3
41E-4 | 0.026 | 2.0E-6 | 2.8E-4
1.0E-4 | 8.9E-3 | 2.4E-7 | 4.8E5
2.4E-5 | 3.0E-3 - -

oo| || ot x| | 2

vorp. We plot the error defined by (4.6), this time varying the parameter yorp for
three different e. Even when accounting for the increased number of degrees of freedom
in method (2.7) the error of (2.6) is more than 50% large in all the computations and
where (2.6) fails it is more than a factor 1000 larger.

4.1. A data assimilation example. Finally we consider a model problem for
data assimilation where the boundary conditions of the problem (4.1) are imposed on
the outflow boundary instead of the inflow boundary. Method (2.7) with the bilinear
form (3.3) and the stabilizing term (3.37) with X = CIP was applied. We consider
the test case with smooth solution (4.5) and velocity field (4.2). In Table 3 we give
the computational errors in the L?-norm and the streamline norm (4.6), using either
piecewise affine or piecewise quadratic elements. Recalling the results in Tables 1
and 2 we see that the errors are comparable. This is not surprising since the use of
the adjoint equation makes the two cases similar. Attempts to use (2.6) with weakly
imposed boundary conditions on the outflow and yorp > 0 were not fruitful. This is
expected since the stabilized methods on the form (2.6) all are based on upwinding,
which is unphysical in this setting. Indeed the standard unstabilized Galerkin method
performs better than the standard stabilized method for this smooth solution. When
the stabilization parameter is chosen negative we recover the expected behavior of the
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TABLE 4
Data assimilation using the method (2.6) with the forms (3.3) and (3.37), piecewise affine
elements, vp. = —1, and three different choices of yorp denoted by vy1, v2, and v3. The CIP
stabilization parameters are assigned the values y1 = 1073, vo = 0, and v3 = —10~2. Errors of

estimated quantities for the smooth solution (4.5) computed with data given on the outflow boundary.

N | v1,L% | %,SD | v2, L% | 72,SD | 43, L? | 73, SD

3 0.044 3.48 0.034 2.8 0.029 2.25
4 0.027 2.96 0.01 1.2 6.7E-3 0.74
5 0.27 31.0 2.7E-3 0.44 1.6E-3 0.26
6 2.74 455 1.1E-3 0.26 4.2E-4 0.094
7 6170 1.8E6 3.7TE-4 0.11 1.1E-4 0.033
8 67471 3.4E7 9.9E-5 0.041 2.5E-3 0.011

stabilized method. We give the results of (2.6) using v, = —1.0 and ycorp = 0.001,
Yorp = 0, yerp = —0.01 in Table 4.

5. Concluding remarks. We have extended the methods proposed in [6] to
include hyperbolic equations and have shown how three stabilization methods known
from the literature can be used to obtain stable and (quasi-) optimally convergent
approximations. Compared to the standard stabilized method we show that the new
method yields existence of discrete solutions and (quasi-) optimal error estimates un-
der much weaker assumptions on the mesh parameter (“h? small enough” compared
to “hz small enough”). We would like to stress that the method proposed here will
not necessarily yield a more accurate solution than the standard stabilized methods
in cases where both methods work. The new method, however, has increased robust-
ness for noncoercive problems. It also makes it easier to incorporate data other than
classical inflow boundary data. The idea of recasting the problem in an optimization
framework opens interesting perspectives for optimal control, inverse problems, and
data assimilation using observers.
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