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Abstract

In this work, we develop a novel robust Bayesian approach to inverse problems with data
errors following a skew-t distribution. A hierarchical Bayesian model is developed in the
inverse problem setup. The Bayesian approach contains a natural mechanism for regular-
ization in the form of a prior distribution, and a LASSO type prior distribution is used
to strongly induce sparseness. We propose a variational type algorithm by minimizing
the Kullback-Leibler divergence between the true posterior distribution and a separable
approximation. The proposed method is illustrated on several two-dimensional linear and
nonlinear inverse problems, e.g. Cauchy problem and permeability estimation problem.

Keywords: Bayesian inverse problems; hierarchical Bayesian model; variational
approximation; Kullback-Leibler divergence

1. Introduction

Mathematical models are frequently used in science and engineering, with applications
in weather forecasting, climate prediction, chemical kinetics and oil reservoir forecasting.
In these mathematical models, there are often model parameters or inputs that have to
be estimated from indirect observational data, which constitutes an inverse problem. In
practice, observations are inevitably noisy, due to limited precision of measurement sensors.
Often the noises exhibit both heavy tail and skewness behavior, hence flexible non-Gaussian
distributions are needed to adequately accommodate these features and to fully extract all
relevant information. Further, inverse problems are often ill-posed in the sense that the
solution lacks a stable dependence on data perturbations, which necessitates the use of
regularization techniques [16]. Hence, obtaining a stable and accurate numerical solution
is generally a daunting task.

In this work, we shall develop a robust hierarchical Bayesian model which provides a
principled yet very flexible framework for solving inverse problems. We incorporate regular-
ization through a suitable prior distribution. Moreover, we allow a heavy-tailed distribution
for the error via the likelihood function. The posterior distribution is obtained by using
Bayes’ theorem. In this way, it yields an ensemble of inverse solutions consistent with the
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given data to various extents. In particular, it enables uncertainty quantification of a spe-
cific inverse solution within the ensemble. Furthermore, it provides a flexible regularization
technique by selecting nuance parameters, e.g., regularization parameter and noise level,
adaptively and automatically, through hierarchical Bayesian modeling, via e.g., the full or
empirical Bayesian treatment.

Inference based on Bayesian hierarchical models provides an attractive tool for solving
inverse problems due to its inherent ability to jointly estimate the regularizing parameters,
noise level and inverse solution as well as to calibrate their uncertainties. The Gaussian
error model is the most popular tool used in the existing Bayesian inverse problem setup.
However, in practice, the normality assumption is usually violated because of the presence
of skewness and kurtosis in real data [12]. Thus, one may seek more flexible parametric
families that are capable of capturing such features of the data. The family of skew-
normal distributions to capture the skewness in the data has been widely studied due
to its mathematical tractability and appealing probabilistic properties [2, 6, 4, 3]. One
further extension of the skew-normal distribution is the skew-t distribution which allows
both nonzero skewness and heavy tails in the distribution [8]. For a general background
on the skew-normal and related distributions, see [15] for an overview.

Markov chain Monte Carlo (MCMC) methods work particularly well in this setup and is
the major engine that has fueled the development and application of Bayesian hierarchical
models [14]. Despite the popularity of MCMC based methods, they can be computationally
expensive, and its convergence might not be easy to diagnose [10]. In this paper we inves-
tigate an alternative approach based on the variational method [20, 19, 24]. In spite of its
wide popularity in the machine learning community, the application of variational methods
to inverse problems seems largely unexplored [23, 18, 17, 13]. Tipping and Lawrence (2005)
[23] and Jin (2012) [17] developed Bayesian approaches to inverse problems with a heavy-
tailed t model to cope data with outliers. Our proposed approach generalizes the method
developed in [17] by a robust Bayesian formulation of the inverse problem using the skew-t
distribution and a sparse prior structure. The attractive features of this approach are (i)
uncertainty quantification of the computed solution, (ii) robustness to data outliers, and
(iii) general applicability to both linear and non-linear inverse problems. We shall illustrate
the efficiency of our proposed method on several ill-posed inverse problems.

The present work extends our prior work [17] in two aspects. First, this work considers
the skew-t distribution for the skewness of data errors, whereas [17] considers only the
t-distribution. The skewness in the error distribution introduces an extra layer of the
computational complexity in developing efficient inference algorithms. Second, this work
studies a sparse prior distribution, which is far more complicated than the smoothness prior
analyzed in [17]. It is noteworthy that the hierarchical Bayesian model to be developed is
generally applicable to linear and nonlinear inverse problems.

The rest of the paper is structured as follows. In Section 2, we formulate the inverse
problem and construct the hierarchical model for our case. Then we derive the variational
solution and discuss its theoretical properties in Section 3. Later, in Section 4 we illustrate
the approach on two ill-posed inverse problems, i.e., the Cauchy problem and the per-
meability estimation in reservoir simulation, and compare its performance with the more
conventional Markov chain Monte Carlo.
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2. Methodology

Consider the following finite-dimensional linear inverse problem

y = K(u) + ε, (1)

where K : Rm → Rn denotes the forward model, u ∈ Rm is the unknown solution of
interest, K(u) represents the model output from the forward model, and ε is the additive
error to the data. Thus, the vector y ∈ Rn represents the noisy data that is observed
or measured. Such a problem setup arises in various physical applications. One example
is the Cauchy type problem for the Laplace equation, where an elliptic partial differential
equation (PDE) is satisfied over a region with some over-specified boundary conditions on a
part of the boundary. For example, in case of a re-entrance space shuttle, the temperature
field u on the outer surface is to be estimated from the temperature and the flux measured
at the inner surface, while an underlying PDE (steady/ transient heat equation) is satisfied.
This inverse problem is severely ill-posed and a regularized solution is often sought for. In
a Bayesian framework, the data is modelled statistically, and the statistical description is
given by the likelihood function p(y|u), which in turn is dictated by the error distribution
of the additive noise ε. Furthermore, we need to specify a prior distribution p(u) on the
unknown quantity u, reflecting the prior knowledge before collecting the data. Using Bayes’
theorem, we obtain the posterior distribution p(u|y) of the unknown u

p(u|y) ∝ p(y|u)p(u),

where ∝ denotes up to a multiplicative normalizing constant. This is the complete Bayesian
solution of the inverse problem (1). Hence, we have to specify the likelihood function
p(y|u) and the prior distribution p(u), which constitute the two essential components
of constructing the Bayesian solution. In the following two subsections, we describe the
likelihood function p(y|u) and the prior distribution p(u).

2.1. Likelihood function

In order to cope with the presence of outliers and skewness in the observational data y,
we choose to model the noisy data by a very flexible class of distributions, i.e., the skew-t
distribution. The skew-t distribution, with the scale parameter, skewness parameter, and
degrees of freedom, includes Gaussian, centered-t, and skew-normal distribution as special
cases. It has been intensively studied since 2001, as an extension of the skew normal family,
which was first introduced by Azzalini [2]. There are several different but mathematically
equivalent parameterizations of skew-t distributions; see, e.g., Branco and Dey (2001, 2002)
[8, 9], Azzalini and Capitanio (2003) [5]. Kim and Mallick (2003) [21] studied moments
and quadratic forms of the skew-t distribution.

By assuming that each noise component εi is independent and identically distributed,
following the skew-t distribution, the density function can be expressed as

p(εi|σ2, α, ν) ∝ 1

σ

(
1 +

ε2i
νσ2

)− ν+1
2
∫ ξi

−∞

(
1 +

x2

ν + 1

)− ν+2
2

dx,
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where ξi = αεi
σ

√
ν+1

ν+(εi/σ)2
, ν is the degrees of freedom, σ is a scale parameter, and α

is a skewness parameter. The skew-t distribution degenerates to the regular Student’s t
distribution, if the skewness parameter α vanishes α = 0. Further, when the degrees of
freedom ν approaches ∞, the skew-t distribution recovers the skew normal distribution.
Therefore, the normal distribution is obtained when the skewness parameter α is set to zero
and the degrees of freedom ν approaches ∞. Following the preceding setup, the likelihood
function p(y|u) is given by

p(y|u) ∝
(

1

σ

)n n∏
i=1

(
1 +
|K(u)− y|2i

νσ2

)− ν+1
2
∫ ξi

−∞

(
1 +

x2

ν + 1

)− ν+2
2

dx,

where

ξi =
α(K(u)− y)i

σ

√
ν + 1

ν + (|K(u)− y|i/σ)2
.

The stochastic representation of the skew-t distribution has been studied by several
researchers [1, 11]. Following the representation of Cancho et al. (2011) [11], we arrive at
the following hierarchical structure

yi = K(u)i + ∆zi + w
− 1

2
i τ

1
2Ni,

where

• zi = w
− 1

2
i |N0,i| and N0,i ∼ N(0, 1),

• Ni ∼ N(0, 1) and Ni is independent of N0,i,

• ∆ = α√
1+α2σ and τ = σ2

1+α2 ,

• and wi ∼ Gamma(ν
2
, ν

2
).

Likewise, the density function f(ε) of the skew-t distribution ξi can be recast as a scale
mixture:

f(ε) =

∫ ∞
0

∫ ∞
0

fε|Z,W (ε; z, w)fZ|W (z;w)f(w)dzdw

=

∫ ∞
0

[∫ ∞
0

w
√

1 + α2

πσ
exp

{
−wz

2

2
− w(1 + α2)

2σ2

(
ε− ασz√

1 + α2

)2
}
dz

]
f(w)dw

=

∫ ∞
0

[
2
√
w

σ
φ

(
ε

σ/
√
w

)
Φ

(
αε

σ/
√
w

)]
(ν/2)ν/2

Γ(ν/2)
w

ν
2
−1e−

ν
2
wdw,

where the term 2φ(·)Φ(·) is the density function of the skew-normal distribution [2]. Thus,
the skew-t distribution can be represented as a scale-mixture of the skew-normal distri-
bution (more precisely a mean-scale-mixture of the normal distribution). The hierarchical
representation from Cancho et al. (2011) [11] is especially suitable for posterior sampling
and can also be very useful in our variational approximation of the posterior distribution.
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The re-parametrization allows us to put prior on the hyperparameters ∆ and τ , while main-
taining the computational convenience of the model. The likelihood p(y|u) of the data y
given u and the hyper-parameters z, w, ∆ and τ is as follows

p(y|u, z,w,∆, τ) ∝
n∏
i=1

(w−1
i τ)−

1
2 exp

{
−wi

2τ
(yi −K(u)i −∆zi)

2
}
, (2)

where w and z are the vectors of wi’s and zi’s.

2.2. Prior specification

To stably solve any ill-posed inverse problem, we have to regularize it. In the Bayesian
context, the prior distribution plays the role of regularization, in the same manner the
penalty function in classical regularization techniques [16]. Hence, its appropriate choice
is extremely important for getting physically meaningful inverse solutions. However, the
proper choice shall reflect the domain specific knowledge about concrete applications. One
such example is anatomical knowledge from a complementary medical imaging modality.
In this work, we shall consider a sparse type prior on the unknown u. Our choice is moti-
vated by following observations. First, the sparse prior represents an important prior that
has successfully found numerous engineering applications, especially in the deterministic
context. Meanwhile, it is illuminating for the hierarchical Bayesian modeling, since the
technique can be extended other priors, e.g., the conventional smoothness prior or priors
with scale-mixture representation, with little extra effort.

Specifically, we illustrate the approach with the total variation prior p(u). It is equiva-
lent to using a Laplace (double exponential) prior (or the Bayesian Lasso prior) [7, 22] on
the differences between neighboring entries. Following the works [7, 22], we employ a scale
mixture of normal representation for the Laplace distribution. Hence, the prior distribution
p(u) is given by

p(u|λ) ∝ λm exp (−λ(|u1|+ |u2 − u1|+ · · ·+ |um − um−1|)) . (3)

Let L be an m×m matrix with L(1, 1) = 1. For i > 1, the ith row, denoted by Li, has 1
in the ith entry and −1 in the (i− 1)th entry and the rest of the elements of the vector Li

are zero. Using the expression from Park and Casella (2008) [22], it can be represented by

p(u|λ) ∝
∫
· · ·
∫

(
m∏
j=1

sj)
−1 exp

(
−1

2
utLtΣ−1

s Lu

) m∏
j=1

λ2 exp

(
−
λ2s2

j

2

)
ds2

1ds
2
2 . . . ds

2
m. (4)

In the representation (4), Σs is an m ×m matrix with diagonal elements s2
i . The normal

mixture representation gives a conjugate structure in the conditional posterior distribution.
Let s be the vector of the elements si’s. We assume a flat normal prior on the hyperparam-
eter ∆ and Gamma priors on the inverse variance (precision) τ−1 and the hyperparameter
λ1 = λ2. In summary, we have the following scale mixture representation of the prior
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distribution p(u|s):
p(u|s) ∼MVN(0, (LtΣ−1

s L)−1),

p({s2
j}mj=1) ∝

m∏
j=1

λ2 exp

(
−
λ2s2

j

2

)
,

∆ ∼ N(0, σ2
∆),

τ−1 ∼ Gamma(a0, b0),

λ1 ∼ Gamma(a1, b1).

(5)

The notation MVN(m,Σ) denotes a multivariate normal distribution with mean m and
covariance Σ, and Gamma(a, b) denotes the Gamma distribution with parameters (a, b).

By combining the representations (4) and (2) using Bayes’ formula, we arrive at the
following posterior distribution

p(u, z, s,w, τ,∆, λ|y) ∝
n∏
i=1

wiτ
− 1

2 exp

{
−wiz

2
i

2
− wi

2τ
(yi −K(u)i −∆zi)

2

}
× p(w)p(u|s)p(s)p(∆)p(τ)p(λ).

(6)

The posterior distribution p(u, z, s,w, τ,∆, λ|y) is the full Bayesian solution to the
inverse problem (1), and it encapsulates all the information about the problem. However,
it is a distribution lives in potentially very high-dimensional spaces, and thus it is not
directly informative about the unknown u. Hence, it is necessary to have tools to explore
the posterior state space. We shall develop an approximate inference method based on
the mean field approximation for exploring the posterior state space, i.e., by constructing
an approximate posterior density under the assumption of the conditional independence
among different parameter components.

2.3. Variational approximation algorithm

Due to the presence of several hyper-parameters and the intractable normalizing con-
stant, the posterior distribution (3) is not explicitly available in closed form. One way
to explore the high-dimensional posterior state space is to use MCMC based methods to
simulate samples from the posterior distribution. However, it is well known that the con-
vergence of the chain is often not easy to diagnose [10], and it takes many samples to get
the reliable estimates on the statistics, e.g., mean and variance. Hence, we shall take an
alternative route and use the variational approximation approach. The variational method
gives a fast iterative algorithm to approximate the posterior distribution, and to extract
summarizing statistics, e.g., posterior mean and variance.

The idea behind variational approximations is to find a simpler and separable distri-
bution to approximate the posterior density using Kullback-Leibler (KL) divergence, while
still capturing distinct features of the posterior distribution (3) in a computationally effi-
cient way. The KL divergence is a non-symmetric measure of the difference between two
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probability distributions, and it is defined as

DKL(q(u, z,w, s,∆, τ, λ)|p(u, z,w, s,∆, τ, λ|y))

=

∫
· · ·
∫
q(u, z,w, s,∆, τ, λ) ln

q(u, z,w, s,∆, τ, λ)

p(u, z,w, s,∆, τ, λ|y)
dudzdwdsd∆dτdλ

=

∫
· · ·
∫
q(u, z,w, s,∆, τ, λ) ln

q(u, z, s,,∆, τ, λ)

p(u, z,w, s,∆, τ, λ,y)
dudzdwdsd∆dτdλ+ ln p(y),

(7)

where p(y) is the normalizing constant of the posterior distribution (3), i.e.,

p(y) =

∫
· · ·
∫
p(u, z,w, s,∆, τ, λ,y)dudzdwdsd∆dτdλ.

Since the term p(y) in equation (7) is a constant, minimizing the KL distance is equiv-
alent to minimizing the first term in equation (7). Upon slightly abusing the notation, we
shall denote the first term by DKL as well. In this way, we have successfully transform the
sampling problem into an equivalent optimization problem of finding a simpler distribution
q(u, z,w, λ,∆, τ, λ) by minimizing the KL distance DKL. If we impose no constraint on the
approximation q(u, z,w, λ,∆, τ, λ), minimizing the KL distance recovers the true posterior
density, which however is numerically intractable. The intractability is largely due to the
strong coupling between the factors. To enable the computational tractability, we impose
a conditional independence condition, or equivalently separability, among the parameter
components u, z,w, s,∆, τ and λ as

q(u, z,w, s,∆, τ, λ) = q(u)q(z)q(w)q(s)q(∆)q(τ)q(λ). (8)

Under this assumption, we can find an effective approximate posterior density, denoted by
q(u, z,w, s,∆, τ, λ) hereafter, using an alternating direction iterative algorithm, cf. Algo-
rithm 1 for a complete list of steps.

Remark 1. The conditional independence assumption between different groups of the pa-
rameters decouples these factors, which then enables the computational tractability of the
variational algorithm. To further reduce the computational cost, one can divide the vector
parameter u into subgroups. In this work, we do not assume the conditional independence
between the components of the parameter vector u. The validity of such an approxima-
tion is problem dependent. This assumption represents also the essential restriction, which
may compromise the accuracy of the variational approximation: Unlike the Markov chain
Monte Carlo, which can be made arbitrarily accurate by running the chain sufficiently,
the variational approximation has only limited accuracy. The accuracy of the variational
approximation is determined by the strength of the correlation between different factors,
and the weaker is the correlation, the more accurate is the approximation. However, the
correlation strength generally cannot be verified a prior. To this day, the accuracy issue
remains one of the open theoretical questions on the variational approximation. For related
discussions of this interesting issue, we refer to the work [25].

Next we develop the explicit formulas for carrying out each step of Algorithm 1. To
this end, we first derive the necessary optimality system (with respect to each component).
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Algorithm 1 Variational Bayesian approximation algorithm.

1: Set initial guess q0(w), q0(z), q0(λ), q0(s), q0(∆) and q0(τ).
2: for k = 1, · · · , K do
3: Find qk(u) by

qk(u) = arg min
q(u)

DKL

(
q(u)qk−1(z)qk−1(w)qk−1(λ)qk−1(s)qk−1(∆)qk−1(τ)|p((·),y)

)
4: Find qk(z) by

qk(z) = arg min
q(z)

DKL

(
qk(u)q(z)qk−1(w)qk−1(λ)qk−1(s)qk−1(∆)qk−1(τ)|p((·),y)

)
.

5: Find qk(w) by

qk(w) = arg min
q(w)

DKL

(
qk(u)qk(z)q(w)qk−1(λ)qk−1(s)qk−1(∆)qk−1(τ)|p((·),y)

)
.

6: Find qk(λ) by

qk(λ) = arg min
q(λ)

DKL

(
qk(u)qk(z)qk(w)q(λ)qk−1(s)qk−1(∆)qk−1(τ)|p((·),y)

)
.

7: Find qk(s) by

qk(s) = arg min
q(λ)

DKL

(
qk(u)qk(z)qk(w)qk(λ)q(s)qk−1(∆)qk−1(τ)p((·),y)

)
.

8: Find qk(∆) by

qk(∆) = arg min
q(λ)

DKL

(
qk(u)qk(z)qk(w)qk(λ)qk(s)q(∆)qk−1(τ)|p((·),y)

)
.

9: Find qk(τ) by

qk(τ) = arg min
q(λ)

DKL

(
qk(u)qk(z)qk(w)qk(λ)qk(s)qK(∆)q(τ)|p((·),y)

)
.

10: Check the stopping criterion.
11: end for
12: Return approximation q(u)q(z)q(w)q(λ)q(s)q(∆)q(τ).
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In view of equation (7), the term DKL is given by

DKL =

∫
· · ·
∫
q(u, z,w, s,∆, τ, λ) ln

q(u, z,w, s,∆, τ, λ)

p(u, z,w, s,∆, τ, λ,y)
dudzdwdsd∆dτdλ.

Then we plug the separable condition into equation (8), and enforce the normalizing condi-
tions of all probability densities. To this end, we appeal to the associated Lagrange function
L for the divergence DKL as

L(q(u), q(z),q(w), q(λ), q(s), q(∆), q(τ),%)

= DKL + %1

(∫
q(u)du− 1

)
+ %2

(∫
q(z)dz− 1

)
+ %3

(∫
q(w)dw − 1

)
+ %4

(∫
q(λ)dλ− 1

)
+ %5

(∫
q(s)ds− 1

)
+ %6

(∫
q(∆)d∆− 1

)
+ %7

(∫
q(τ)dτ − 1

)
,

where the vector % = (%1, %2, . . . , %6, %7) ∈ R7 is the vector of Lagrange multipliers (for the
normalizing condition). To simplify the notation, we drop the arguments and denote the
Lagrange function by L. Following the derivation in Jin and Zou (2010) [18], we take the
derivative of the Lagrange function L with respect to q(u) and equate it to zero:

0 =
∂

∂q(u)
DKL + ρ1

=
∂

∂q(u)

∫
· · ·
∫
q(u, z,w, s,∆, τ, λ) ln

q(u, z,w, s,∆, τ, λ)

p(u, z, s,w,∆, τ, λ,y)
dudzdwdsd∆dτdλ+ ρ1

=

∫
· · ·
∫ (

∂

∂q(u)

∫
q(u, z,w, s,∆, τ, λ) ln

q(u, z,w, s,∆, τ, λ)

p(u, z, s,w,∆, τ, λ,y)
du

)
dzdwdλd∆dτds + ρ1.

=

∫
· · ·
∫

[ln q(u) + 1 + ln q(z) + ln q(w) + ln q(λ) + ln q(τ) + ln q(∆) + ln q(s)

− ln p(u, z, s,w,∆, τ, λ,y)]× q(z)q(w)q(λ)q(τ)q(∆)q(s)dzdwdλd∆dτds + ρ1.

Upon rearranging the terms in the equation, we deduce

ln q(u) = −
∫
· · ·
∫

[1 + ln q(z) + ln q(w) + ln q(λ) + ln q(τ) + ln q(∆) + ln q(s)

+ ln p(u, z, s,w,∆, τ, λ,y)]× q(z)q(w)q(λ)q(τ)q(∆)q(s)dzdwdλd∆dτds + ρ1.

Now recall the normalizing condition
∫
q(u)du = 1, and that all terms other than p(u, z, s,w,∆, τ, λ,y)

are independent of the variable u and thus contribute only to the normalization condi-
tion (and also the Lagrange multiplier %1). Hence, we deduce that at a critical point
q∗(u, z,w, s,∆, τ, λ), the component q∗(u) can be expressed as

ln q∗(u) = Eq∗(z)q∗(w)q∗(λ)q∗(τ)q∗(∆)q∗(s)[ln p(u, z, s,w,∆, τ, λ,y)]− ln Zq∗(u),
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where Eq[·] denotes the expectation with respect to the density q. The constant term is
given by

lnZq∗(u) = ρ1+1+

∫
· · ·
∫

[ln q∗(z)+ln q∗(w)+ln q∗(λ)+ln q∗(τ)+ln q∗(∆)+ln q∗(s)]dzdwdλd∆dτds.

Finally, we have the general form

q∗(u) ∝ exp

(∫
· · ·
∫

ln p(u, z, s,w,∆, τ, λ,y)q∗(z)q∗(w)q∗(λ)q∗(τ)q∗(∆)q∗(s)dzdwdλd∆dτds

)
.

A similar expression holds for each of the remaining variables. Hence, we update each
of the conditional posterior distribution while fixing the distributions of the remaining
components. So far we have not employed the linearity of the inverse problem. For linear
inverse problems, i.e., K(u) = Ku, we can derive explicit formulas. A detailed expression
of the distributions are given below under (2), (4) and (5). For u we derive

qk(u) ∼MVN((KtΣ−1
qτ,wK + LtΣ−1

qs L)−1KtΣ−1
qτ,wy∆, (K

tΣ−1
qτ,wK + LtΣ−1

qs L)−1), (9)

where Σqτ,w is an n × n diagonal matrix with the (i, i)th entry (Eq∗(τ)[τ
−1]Eq∗(wi)[wi])

−1.
Similarly, Σqs is an m×m diagonal entry with the (i, i)th entry (Eq∗(s)[

1
s2i

])−1 and y∆ = y−
Eq∗(∆)[∆]Eq∗(z)[z]. For notational convenience, we drop the subscript q in the expectation
Eq[·] in the following description.

Following the calculation from Park and Casella (2008) [22], 1
s2j

follows an independent

inverse Gaussian distribution with parameters

µ =

√
E(λ1)

E[(Lu)2
j ]

and λ2 = E[λ1] = E[λ2].

The density and the inverse Gaussian pdf fInG are given by

q∗( 1
s2j

) ∼ Inverse Gaussian(µ, λ2),

fInG(x, µ, λ2) ∝ x−
3
2 exp

(
−λ2

(x− µ)2

2µ2x

)
.

(10)

The latent variables zi follow a truncated normal distribution, restricted to positive
side, i.e.,

q∗(zi) ∼ TN(µi, E[w−1
i ]σ2

i ) (11)

with

µi =
E(∆)E[τ−1]

E[∆2]E[τ−1] + 1
(yi − (KE[u])i) and σ2

i =
1

E[∆2]E[τ−1] + 1
.

10



For the latent variable ∆, we have

A = E[τ−1]
n∑
i=1

E[wi]E[zi](yi − (KE[u])i),

B = E[τ−1]
n∑
i=1

E[wi]Ek[z
2
i ] +

1

σ2
δ

,

q∗(∆) ∼ N(A
B
, B−1).

(12)

For the variance hyperparameters w, τ and λ1, we have

wi ∼ Gamma

(
1 +

ν

2
,
ν

2
+

1

2
E[τ−1(yi − (Ku)i −∆zi)

2 + z2
i ]

)
,

τ−1 ∼ Gamma

(
a0 +

n

2
, b0 +

1

2

n∑
i=1

E[wi]E[(yi − (Ku)i −∆zi)
2]

)
,

λ1 ∼ Gamma

(
a1 +m, b1 +

1

2
E[‖s‖2]

)
.

Since the updated densities are of standard form, we can compute the expectations in
closed form and implement the variational algorithm in exact arithmetic.

Now we briefly comment on the computational complexity of Algorithm 1. To this
end, we first observe that at each step, the updated densities for each component are of
standard form and within the standard density families, and thus it amounts to updating
the parameters for related densities. The density p(u) follows a multivariate normal distri-
bution, where the computation of the mean u∗ involves solving a linear system, where the
matrix essentially involves two matrix products. Note that in the implementation since the
covariance Σu ≡ (KtΣ−1

qτ,wK+LtΣ−1
qs L)−1 is symmetric and positive semi-definite, it can be

computed efficiently with the Cholesky decomposition. Hence, the computational complex-
ity is dominated by computing the matrix product in the inverse covariance, computing
the matrix inversion, and solving the linear system for the mean: the matrix multiplication
involves O(m2n) operations (with m and n being the number of unknowns and number
of data points respectively), Cholesky decomposition involves O(m3) operations, and the
linear system involves O(m2) operations. The update of the vector s, which follows an in-
verse Gaussian distribution componentwise, involves evaluating the term E[‖Lu‖2], which
by the bias variance decomposition is given by

E[‖Lu‖2] = ‖Lu∗‖2 + tr(ΣuLtL),

which again invokes computing the covariance and its complexity is of order O(m3). The
same operation is required for updating the entries wi. The cost of updating the rest of
the components are cheaper, in comparison with the preceding ones. In sum, the operation
complexity per iteration of the algorithm is of order O(m3 +m2n).

So far we have focused on linear inverse problems. For nonlinear problems, we can
recursively approximate the forward operator K(u) with its first-order Taylor expansion

11



around the mean ũ of the current variational approximation qk(u), following [17]

K̃(u) = K(ũ) + J(u− ũ),

where J = ∇uK(ũ) is the Jacobian of the forward map K with respect to u. Iteratively
applying the algorithm and correspondingly adjusting the Jacobian of the forward model
K(u), we can deliver an accurate solution of the nonlinear inverse problem.

3. Theoretical properties

The variational Bayesian algorithm in Section 2 minimizes the KL distance between the
joint density of the posterior distribution, with respect to the posterior distribution of each
independent part of the distribution in a separable form. At the end of each iteration cycle
(i.e., after updating distributions of u, z,w, s, ∆, τ, λ) we have N0 many new parameters
determining the posterior distribution of u, z,w, s,∆, τ, λ, where N0 is fixed. Since the
distributional forms are fixed during the updating procedure, the value of the parameters
uniquely determines the distribution. Let Θ be the N0 dimensional parameter vector. Then
we have the following result.

Theorem 3.1. Let Θk ∈ RN0 be the set of parameters after kth iteration. Then Θnk → Θ0

for some Θ0 in RN0 and some subsequence {nk}k≥1.

Proof. (Sketch) It suffices to show that the sequence {Θ}k is bounded in RN0 . If not,
some parameter (say |θi|) would go to infinity in a subsequence. Then in that subsequence,
the KL distance between q(·) and the joint density p(·, y) would go to infinity as well.
However, we begin with a finite initial distance, and each step of Algorithm 1 decreases the
KL distance. Thus, this scenario is infeasible and the sequence {Θ}k is bounded. Hence,
it contains a convergent subsequence.

Using the smoothness of the distributions and assuming the exchangability of the in-
tegral and differentiation we can conclude that the limit point Θ0 is critical, i.e., the
stationary condition holds. For the proof, see Appendix A.

Theorem 3.2. For the limit point Θ0, the stationary condition corresponding to the min-
imization of DKL(q(u, z,w, s,∆, τ, λ)|p(u, z,w, s,∆, τ, λ,y)) holds.

Remark 2. Let DKL(Θk) = DKL(q(Θk)|p(u, z,w, s,∆, τ, λ,y)). If a stationary point Θ0

in DKL(Θ) is the unique global optimum, then we have Θk → Θ0. If the sequence Θk

converges to Θ1 in some other subsequence Θnl, then Θ1 is another stationary point with
DKL(Θ1) = DKL(Θ0), contradicting the uniqueness.

A more general result is about the convergence to a local optimum, under stronger
conditions. The rationale is that once the solution is in a small neighborhood around the
stationary point, then it stays in that neighborhood and achieves the local minima. Suppose
that Θk converges to Θ0 in a subsequence, which is a stationary point, cf. Theorem 3.2.
If the Hessian of the KL distance is positive definite and continuous at Θ0, the result can
be summarized as follows. For the proof, we refer to Appendix B.
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Theorem 3.3. Suppose that DKL has a multivariate Taylor expansion with a positive
definite Hessian at Θ0. Then we have Θk → Θ0.

The preceding theoretical results suggest a stopping criterion for the variational algo-
rithm. For example, one can take

‖uk+1 − uk‖
‖uk‖

< tol,

where tol is a pre-specified small tolerance, and uk is the mean of the posterior approxi-
mation at iteration k. That is, the algorithm is assumed to have converged to the optimal
solution, whenever the relative change of the posterior mean is within the tolerance tol.

4. Numerical experiments

Now we illustrate the efficiency of the proposed approach. We consider the following
two examples, i.e., the Cauchy problem and the reservoir simulator example. These are
exemplary of linear and nonlinear inverse problems for partial differential equations.

4.1. Cauchy problem for Laplace equation

In the Cauchy type problem, an elliptic PDE is satisfied over a specified domain Ω ⊂ R2.
The boundary Γ of the domain Ω is divided into Γ = Γ0 ∪ Γ1, where Γ0 and Γ1 are
accessible and inaccessible parts of the boundary, respectively. In the Cauchy problem, the
temperature field and the flux are observed over the subset Γ0. Such a scenario occurs for
example in case of a re-entrant shuttle or spaceship, where the temperature on the outer
surface is unknown and has to be estimated from the observations on the inner surface.
This inverse problem is severely ill-posed and may not have a solution if errors are present in
the observational data. Mathematically, the inverse problem for steady state heat equation
can be written into

−∆u = f (13)

with the following Cauchy type boundary conditions

u = g and
∂u

∂n
= q on Γ0,

where n is the unit outward normal direction to the boundary. The inverse problem is to
estimate θ = u on the inaccessible boundary Γ1 from the measured data g and q on a subset
of Γ0. In practical computations, we divide the domain Ω into finitely many triangles and
approximate the function by the continuous piecewise linear finite element functions. In
turn, the discretization gives us the following finite-dimensional formulation

θ(x) =
m∑
i=1

wj(x)uj

over the boundary Γ1 which yields the true data yt = Ku, where K is the n×m sensitivity
matrix with n the number of observations on Γ0 and m is the number of basis elements on
the boundary Γ1.
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For our numerical test, we take the domain Ω to be the unit square Ω = [0, 1] × [0, 1].
The boundaries Γ1 and Γ0 are taken to be Γ1 = (0, 1)× {1} and Γ0 = Γ \ Γ1. We take the
exact solution u(x1, x2) to the Laplace equation (13) to be u(x1, x2) = sin(πx1)eπx2+x1+x2.
We generate yi = yt,i +α1 maxi{|y|t,i}ei. Here, (13) is satisfied with f = 0. The number of
data points is n = 2n1 on {0, 1} × (0, 1), with n1 equally spaced points on each side of the
square domain. We use m many basis on the boundary Γ1. In our numerical simulation, we
consider different values of the skewness parameter δ := α/

√
1 + α2. The random variables

ei’s follow an independent skewed-t distribution with different parameters δ and σ. Using
n1 = 80 and m = 41 we perform a simulation study for different δ values.

In this example we keep the relative noise level α1 between 30% and 50%. Let û be the
posterior mean of u from the variational approximation. Let

ER1 =
‖û− u‖2

‖u‖2

and ER2 be the quantity when δ is assumed to be zero. The quantity Ef =
√
ER2/

√
ER1

denotes the relative gain in efficiency. For the prior on the hyperparameter ∆, we use
a flat normal N(0, 100). The parameters for the inverse Gamma distributions are set to
(a0, b0) = (a1, b1) = (1, 1). We run the variational algorithm for 300 iterations in each of
the cases, which gives a tolerance tol value around 10−6.

Table 1: The relative efficiency and estimation of δ. The noise level is 40%, and ν = 4. In the table, sδ is
standard error of the estimator δ̂ of δ.

δ δ̂ sδ Ef σ σ̂
.6 .68 .17 1.41 6.48 7.02
.8 .75 .07 2.15 6.48 6.80
.9 .86 .04 2.41 6.48 6.10

In Figure 1, we plot the recovered mean value and also the results for the more con-
ventional approach, which ignores the skewness present in the data. We observe that
accounting for the skewness of the data does give a much better recovery. The numerical
results for the relative gain in efficiency due to the new model is given in Table 1. The
estimated values of δ and σ are close to the true values. It is noteworthy that the conver-
gence of the variational algorithm is almost independent of the noise level, which awaits
further theoretical justification. In Figure 2, the posterior distribution of ∆ and τ−1 are
given which are normal and Gamma distribution, respectively. We note that if desired, the
posterior distribution can be used to quantify the uncertainty associated with the mean,
via e.g., the credible intervals, cf. Fig. 2.

The variational algorithm provides a fast, stable and accurate approximation of the
posterior distribution. In contrary, the MCMC based method may take long time to con-
verge. Even though if we run the MCMC chain long enough we can have a very accurate
approximation of posterior distribution, the cost may be prohibitively high. Also, the pres-
ence of latent variables in the density may cause slow mixing and thus, makes it far more
expensive computationally than the variational approach. In Table 2 a computational cost
analysis is given for different parameter settings, where the proposed variational method
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Figure 1: The numerical results for the Cauchy problem for the Laplace equation, with the parameter setup
δ = .8, ν

2 = 15, α = 40%. The left panel shows the convergence of the regularizing parameter λ1. The
right panel shows a typical fit. The solid line shows the true value of the coefficient on x = {1}× [0, 1], the
dotted line gives the recovered mean û by the proposed variational algorithm, and the dashed line shows
the fit with the skewness ignored.
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Figure 2: The posterior distribution for the Cauchy problem for the Laplace equation, with the parameter
setup δ = .8, ν

2 = 15, α = 40%. Left hand panel shows the posterior distribution of ∆ from equation 12
and right hand panel shows the posterior Gamma distribution for τ−1.

are shown to be suitable and cost efficient for high dimensional problems. Numerical ex-
periments indicate that it is scalable with the number m of unknowns and the number n
of data points. Fig. 3 shows the evolution of the posterior mean for the tuning parameter
λ1, indicating the slow convergence of the MCMC chain.

4.2. Multi-phase flow in reservoir simulation

The multiphase flow models (including water, oil, and/or gas phases) in heterogeneous
porous media are widely applied in many subsurface problems, e.g., reservoir simulations.
For each phase in the flow, it is governed by fluid flow equations and mass conservation. We
consider the application of the variational approximation for estimating the permeability
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Table 2: A comparison of the computational cost between the variation approximation and MCMC. The
numerical results for the Cauchy problem for the Laplace equation, with the parameter setup δ = .8,
ν
2 = 15, α = 40%. The computational times are given in seconds. For the MCMC, the chain length is
determined by the convergence of the posterior mean of λ1.

Method Computational cost
m = 40, n1 = 80 m = 60, n1 = 120 m = 80, n1 = 160

Variational 0.82 1.96 4.20
MCMC 243.20 529.27 858
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Figure 3: The posterior means of λ1 for different chain lengths are given. The convergence is slow when
compared with the variational approach in Figure 1.

field under the two-phase (water and oil) flow equations. Under the assumption that
(1) fluid displacement is dominated by viscous effects, (2) gravity, compressibility, and
capillary pressure are neglected, and (3) porosity is considered to be constant, we can write
the governing equation of two-phase flow in terms of pressure p and saturation S as follows:

∇ · (λ(S)k∇p) = Qs,

∂S

∂t
+ v · ∇f(S) = 0,

where λ is the total mobility, Qs is the source term, k is the permeability field, v is the
total velocity, and f is the fractional flux of water. Both λ and f , which are function of
the saturation S, are given by the following equations,

λ(S) =
krw(S)

µw
+
kro(S)

µo

f(S) =
krw(S)/µw

krw(S)/µw + kro(S)/µo
,

where krw is the relative permeability to water, kro is the relative permeability to oil, µw is
the viscosity of water, and µo is the viscosity of oil. We use quadratic relative permeabilities,
krw(S) = S2 and kro = (1−S)2. The total velocity is given by the sum of phase velocities,
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i.e.,
v = vw + vo = −λ(S)k · ∇p.

The goal of this application is to simulate the (high-dimensional) permeability field con-
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Figure 4: The left hand panel shows the true data values and the right hand panel shows the true log
permeability field.

ditioned on some observed data (e.g., pressure data and water cut data). In equation (1),
K(u) denotes the integrated response, which is non-linear mapping between permeability
field and the response variable. The exact water cut data and the reference permeability
field are given in Figure 4. The error ε is independently and identically distributed as
ST (0, σ2 = 1, α = 0.9, ν = 4). The permeability field is discretized onto a 50 × 50 grid.
The noisy data is generated in the same way as in the Cauchy problem. However, due to
the property of water cut values, which lies between 0 and 1, we introduced an additional
factor to control the noise. The synthetic noisy data is generated by the following equation,

yi =

{
y∗i with prob. r

y∗i + ωξεi with prob. 1− r,

where r is the probability of the corruption, and ω denotes the relative noise level, which
controls the magnitude of the noise relatively to true response value.

The algorithm converged within 100 iterations. With higher error variance, the esti-
mation accuracy decreases accordingly, cf. Figures 5–8. Nonetheless, even for the highest
noise, the recovered permeability field remains fairly reasonable. Even though not pre-
sented, we note that the variational algorithm turns out to be much faster than the regular
MCMC based algorithm.

5. Concluding Remarks

In this paper we have developed a robust Bayesian approach to inverse problems with
skewed data. We use the skew-t error distribution to handle outliers and skewness in the
data simultaneously. The proposed parameterization enables deriving efficient variational
algorithms, as illustrated by two exemplary inverse problems. In the future, we plan to use a
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Figure 5: The numerical results for the multiphase flow example, with 5% relative noise level and r = 1,
on a 50× 50 grid. Top row shows the observed data value around the true water-cut data and the initial
permeability field in left and right panel, respectively. In the second row the left hand panel shows the log
of the recovered field (i.e., posterior mean) and the log of the absolute error in fit given in the right hand
panel.

spatially correlated prior distribution in place of the independent Lasso prior. Furthermore,
we would like to study the convergence rate of the algorithm, in view of the fast convergence
numerically observed in our examples. Finally, the properties, e.g., consistency, of the
posterior distribution and its variational approximation, need to be established.
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Figure 6: The numerical results for the multiphase flow example, with 15% relative noise level and r = .25,
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Appendix A. Proof of Theorem 3.2

We denote the value of KL distance at the kth step by Dk
KL. In the variational method-

ology, Dk
KL ≥ Dk+1

KL ≥ 0. Thus we have a decreasing sequence of the KL distance and
thus the sequence converges to some constant c0. The distribution of q(u, z,w, s,∆, τ, λ) is
determined by Θ and is continuous in Θ. Thus, DKL(q(Θ0)|p(u, z,w, s,∆, τ, λ,y)) = c0.

The stationary condition is satisfied if and only if

q∗(u) ∝ exp

(∫
· · ·
∫

ln p(u, z, s,w,∆, τ, λ,y)q∗(z)q∗(w)q∗(λ)q∗(τ)q∗(∆)q∗(s)dzdwdλd∆dτds

)
.

In general,
q∗(η) ∝ exp(E−η(ln p(u, z, s,w,∆, τ, λ,y))

where E−η denotes the expectation with respect to the proposed posterior of variables other
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Figure 7: The numerical results for the multiphase flow example, with 15% relative noise level and r = .75,
on a 50 × 50 grid.Top row shows the observed data value around the true water-cut data and the initial
permeability field in left and right panel, respectively. In the second row the left hand panel shows the log
of the recovered field (i.e., posterior mean) and the log of the absolute error in fit given in the right hand
panel.

than η ( for example η can be in the set {u, z, s,w,∆, τ, λ}). If the stationary condition
does not hold for some η, then further minimization of the KL distance is possible by the
updating rule for η. Thus, letting Θnk to Θ0, we can achieve a value c0 − δ with δ > 0.
But DKL(q(Θ0)|p(u, z,w, s,∆, τ, λ,y)) = c0 , the attained minimum value, which leads to
a contradiction.

Appendix B. Proof of Theorem 3.3

(Sketch) Given Θ0 there exists ε > 0 such that

DKL(Θ) = DKL(Θ0) + 1
2
(Θ−Θ0)′H(Θ0)(Θ−Θ0) + o(‖Θ−Θ0‖2)

with H being the Hessian with respect to Θ and ‖Θ−Θ0‖2 < ε. Also, if ‖Θ−Θ0‖2 < ε,
then DKL(Θ) − DKL(Θ0) < ε1 implies that ‖Θ − Θ0‖2 < cε1 for some c > 0, because
of positive definiteness of the Hessian at the stationary point Θ0 and the smoothness of
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Figure 8: The numerical results for the multiphase flow example, with 25% relative noise level and r = 1,
on a 50× 50 grid. Top row shows the observed data value around the true water-cut data and the initial
permeability field in left and right panel, respectively. In the second row the left hand panel shows the log
of the recovered field (i.e., posterior mean) and the log of the absolute error in fit given in the right hand
panel.

DKL. Since the subsequence {Θnk} converges to Θ0, there exists K and α < 1 such that
‖Θk+1 − Θ0‖2 < ε when ‖Θk − Θ0‖2 < αε and ‖Θnk − Θ0‖2 < αε for k > K. Also,
DKL(Θnk) ↓ DKL(Θ0).

By choosing ε1 > 0 such that cε1 < αε, we have DKL(Θnk+1
) ≤ DKL(Θnk) ≤ ε1. Thus,

‖Θnk+1
−Θ0‖2 < αε. Similarly, ‖Θnk+1

−Θ0‖2 < ε and given that the KL distance DKL

decreases monotonically, Θnk+2
also lies in the αε neighborhood and so on, which proves

our claim.
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