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Abstract 

Dopaminergic projections to striatum and prefrontal cortex are thought to signal 

rewards, thereby energising movement, facilitating learning, and motivating effort. 

Extensive evidence links reward to attention and to dopamine. However a direct 

characterisation of how dopamine influences reward sensitivity in humans is lacking.  

This thesis examines the effects of dopamine and reward on eye movements. First, I 

introduced incentive manipulations into an “oculomotor capture” task, in which 

involuntary saccades are generated towards salient distractors. Whereas rewards 

increased both speed and accuracy, penalties slowed responses while increasing 

accuracy. A previously unreported effect is described, in which missed rewards capture 

attention. 

Subsequently, I developed a new paradigm that manipulates incentives trial-to-trial, 

during a speeded saccadic distraction task. In healthy volunteers, reward reduced 

distractibility and increased vigour (in terms of reaction time and velocity), and 

pupillary dilatation reflected reward expectation. This new task was then employed in a 

pharmacological study, in which I found that the dopaminergic D2-selective agonist 

cabergoline increased reward sensitivity in healthy volunteers. 

Parkinson's disease (PD) results in dopamine deficiency. PD patients performing my 

task had reduced reward sensitivity in saccade velocity and distractibility, as well as 

pupil dilatation. Patients were compared on versus off their dopaminergic medication, 

and although oculomotor vigour did not improve, medication normalised their blunted 

autonomic responses. 
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Finally, 20 patients with medial prefrontal damage following subarachnoid 

haemorrhage performed the oculomotor task. Using lesion mapping, I found specific 

medial orbitofrontal regions in which damage correlated with reduced reward 

sensitivity. 

The results demonstrate that the extent to which reward invigorates behaviour is 

influenced by dopamine. Importantly, reward improves both speed and accuracy, 

contravening the theoretically predicted trade-off. To resolve this paradox, I develop an 

extension of optimal control theory that includes a costly precision signal. This model 

helps conceptualise reward's power to improve both speed and accuracy.   
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1. General Introduction 

Rewards are defined by being the objects of all strivings. Without rewards, neither 

action nor decision can be motivated. Equivalently, one might say that rewards are 

valuable to the organism (McClure, Daw, and Montague 2003). Rewards may be 

apparent or covert, they may be objects or abstract goals, they may be real or imaginary, 

they may be for immediate consumption or even be transposed onto other people. 

Reward manifests in behaviour in a number of ways, depending on how it is 

represented:  

 When it is part of a future plan, it is called a goal.  

 When it is predicted in the future, it is called expected reward.  

 When an actual reward is measured relative to the expected reward, it is a 

reward prediction error.  

 When rewards are represented as consequences of actions, they are informative 

feedback (Dayan and Balleine, 2002).  

Research has explored how rewards might be bound, under various circumstances, to 

objects, actions, locations, and times (in the form of memories) (Murphy and Miller 

1955; Gaffan 1979; Takikawa, Kawagoe, and Hikosaka 2002a; Rushworth et al. 2004; 

Lisman, Grace, and Duzel 2011). Common to all these, reward appears to imbue things 

with salience (Berridge, 2012), that is, a significance that makes the reward’s context 

more relevant for the future. When salience drives action, this has been referred to as 

motivation; when salience drives perception, it is called attention. 

In this thesis, I consider the relationship between attention and reward, the role of 

dopamine in modulating attention as a function of incentives and the effects of brain 
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pathology in human medial prefrontal cortex and in Parkinson’s disease (PD) on 

attentional responses modulated by reward. 

1.1. Attention: defining salience and goals 

Attention is our ability to selectively process stimuli in the environment (Broadbent, 

1958; Driver, 2001; Treisman and Gelade, 1980). An archetypal example is the property 

of the visual system to focus only on a subregion of space (Duncan, 1980; Posner et al., 

1980). Attention allows the exclusion of some elements of the environment, and 

inclusion of other elements, in further sensory processing, in decision-making, and in 

the generation of actions (Posner and Petersen, 1990).  

Sometimes we direct attention to items because they have high sensory salience. 

At other times, we direct attention to items because we expect them to be useful, even 

when they are not perceptually salient (Bacon and Egeth, 1994). Sensory salience is 

usually considered to be a property of the stimulus that is not dependent on the state of 

the observer, for example loud noises in a quiet setting, or sudden lights in a dark 

environment (Itti and Koch, 2001; Koch and Ullman, 1985). However, sensory salience 

is not inherently a property of stimuli alone; rather it is a function of both the stimulus 

and the organism: what counts as salient for an organism is determined by its sense 

organs, and how information encoded by them is processed.  

Thus sensory salience is fundamentally determined by evolution: salient items 

command our attention more than non-salient items probably because they indicate an 

important, time-critical change in the environment. For example, loud noises or sudden 

visual onsets are salient to many animals, perhaps because they permit rapid detection 
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of predators or prey, and therefore have survival implications. Under this framework, 

one might define salience simply as that which commands our attention. 

Attention can on the other hand also be guided by an organism’s own internal 

state. This might be governed by beliefs (e.g. Pavani et al., 2000), prior conditioning 

(e.g. Dayan et al., 2000), or task-dependent setting of priorities (e.g. Hodgson et al., 

2000). One important subset of these state-dependent effects is the goal-directed control 

of attention (Corbetta and Shulman, 2002). An enormous variety of cognitive tasks have 

been used to study goal-directed attention, ranging from simple cueing, predictability, 

and search templates, to complex task-switching (Ridderinkhof et al. 2011).  

A common feature of all these forms of control is their flexibility (Norman and 

Shallice, 1980; Picton et al., 2006; Stuss et al., 1995), and to distinguish such control 

from stimulus-driven orienting of attention, they are sometimes termed ‘top-down’ 

control mechanisms. Flexibility implies performance can vary; but not simply because 

of limitations due to attention or resources dwindling. It implies that performance can 

vary specifically in ways that benefit an organism, and critically, that performance can 

be influenced by reward (Pessoa, 2009; Ursu and Carter, 2005). 

In the studies presented in this thesis, I aim to manipulate rewards and penalties 

to measure how expectation of reward can influence the control of attention. The main 

question I intend to answer is: to what extent and in what ways can rewards and 

penalties alter the processing of visually salient events? First, in section 1.2.2., I 

introduce the issue of attention and reward, then in section 1.2.3, I consider the use of 

gaze shifts as a marker of the deployment of attention, and finally in section 1.2.4, I 

review current understanding of the interaction of top-down and bottom-up signals in 

the orienting of attention, particularly with respect to the effects of salient abrupt visual 
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onsets which often capture attention and gaze. Sections 1.2.5 to 1.2.8 examine four 

influential experimental paradigms which have hitherto been used to study reward in 

attention: contingent attentional capture, reward association, trial-to-trial priming, and 

location-specific reward.  

1.2. Attention and reward 

In the following section I will review some evidence that attention is under the control 

of goals, which are assigned value according to reward. Firstly, I will discuss how one 

might quantify rewards, and then comment on how attentional selection might be 

improved by incentives. I will then explore some key studies that demonstrate that 

under some circumstances, attentional capture is indeed influenced by goals. Finally I 

discuss paradigms in which learnt reward associations guide attention, and conclude 

that in those particular studies, rewards act not as goals, but rather to amplify low-level 

perceptual salience.  

1.2.1. Reward and utility 

Microeconomics, which concerns itself with how individuals make decisions based 

upon preferences, heuristics and assets, distinguishes clearly between value and utility 

(Rangel et al., 2008; Stuphorn, 2006). Whereas value exists in the world, between 

people, utility is the subjective quantity that is assigned to a valued reward. Utility is a 

construct designed to allow seemingly contradictory behaviours to be understood. For 

example, in the Allais paradox (Allais, 1953), people are offered a choice between the 

two options 

 A:  (certain £1m) 
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 B:  (89% chance of £1m, 10% chance of £5m, or 1% chance of nothing) 

and it turns out that people prefer A (certain £1m) to B. The expected value of B is of 

course 39% larger than the value of A, but we might like to say that its utility is smaller. 

This can be captured by a utility function showing risk aversion, in that compared to the 

default of £1m, the 1% outcome of getting zero is highly unpleasant (Figure 1.1) —in 

fact it is worth sacrificing £390,000.  

 

Figure 1.1: Utility links an organism's needs to rewards in its environment.  

It makes ecological sense for losses to be overweighted compared to gains, if the status quo does 

not pose an imminent danger. Therefore the utility function is often concave. The simplest utility 

function for a particular state or action can be specified as the product of probability and an 

exponential function of reward, integrated over all possible outcomes. 

However when people are given a choice between: 

 C:  (10% chance of 5m, 90% chance of nothing) 

 D:  (11% chance of 1m, 89% chance of nothing) 

people generally prefer C to D. There is a 1% greater chance of getting zero in C than 

D, and C is again worth £390,000 more than D in terms of expected value.  So in this 
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situation, simple expected value cannot account for why people will tolerate a 1% 

chance of losing in C>D, but not in A>B. The standard explanations are that: 

a) probabilities also obey a subjective scaling law, such a subjectively weighted 

utility (Karmarkar, 1979)  

b) utility functions have a reference point, such that the 'zero-point' of A/B is 

different to C/D (cumulative prospect theory, (Tversky and Kahneman, 1992)) 

c) a second criterion is in play, such as aspiration levels in the security-

potential/aspiration model (Lopes and Oden, 1999) 

d) a priority heuristic is used, meaning that some attributes are not used for 

decision-making unless other attributes have drawn a tie (Brandstätter et al., 

2006). 

These considerations of loss aversion and probability discounting have directed several 

studies of the representation of subjective reward value in the brain during decisions 

(Glimcher and Rustichini, 2004; Platt and Glimcher, 1999; Tobler et al., 2008). 

However, an economic approach is less often applied to motivation by rewards, 

especially in humans (Berridge and Robinson, 2003; Niv et al., 2006). Motivation, the 

mechanism by which reward can overcome behavioural costs, has proved more difficult 

to study. 

1.2.2. Economics of distraction 

In a teleological sense, one might expect anticipation of the reward value of a goal to 

exert an influence on stimulus-driven orienting of attention, e.g. as indexed by 

distraction mediated by abrupt visual onsets. In particular, if an organism expects a high 

value from continuing its current goal, it makes economic sense for it to ignore 
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distractions more effectively. The balance is tipped in favour of the goal precisely when 

the danger posed by ignoring the distraction is smaller than the expected value of the 

current goal. 

In animal studies, reward and penalty are the only methods of manipulating 

goal-driven attention. Goals are set by making primary rewards contingent on the 

stimulus or action, and thus the neural attention and reward expectation are usually 

conflated (Bendiksby and Platt, 2006; Maunsell, 2004). Rewards in human studies have 

often consisted merely of "correct" or "incorrect" feedback. More recently monetary 

rewards have been explored, and in some cases, primary rewards, such as food or drink 

(Kringelbach et al., 2003; Levy and Glimcher, 2011). Using reward in the study of 

human cognitive control has the advantage of allowing quantitative assay of goal-

directed effects, both in magnitude and valence, as well as paralleling the animal 

neurophysiological literature. The consensus is that real monetary rewards may have 

almost the same incentive salience as 'virtual' money rewards (Bickel et al., 2009; Irwin 

et al., 1992). 

Over the last 10 years, the use of reward has gained currency in human studies 

of goal-directed control. Rewards attenuate distractor effects in the Eriksen flanker task 

(Hübner and Schlösser, 2010) and Stroop task (Krebs et al., 2011). These reports 

provide fresh evidence that reward manipulations cannot easily be accounted for purely 

in term of speed-accuracy trade-off or ‘criterion shifts’: a true motivational change 

appears to be involved. But motivation by rewards and penalties play rather different 

roles in controlling behaviour (O’Doherty et al. 2001; Frank, Seeberger, and O’Reilly 

2004) , and may have different neural representations (Roesch and Olson, 2004, see 

Bissonette et al., 2014 for a recent review). One might expect, then, that they would 
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influence attention in an asymmetrical way. For example, penalty might conceivably 

increase caution whereas reward might promote impulsive responding; perhaps penalty 

might even repel attention.  

More recently, interest has arisen in the effects of reward on the orienting of 

attention in the face of distractors (Kiss, Driver, and Eimer 2009; Kristjánsson, 

Sigurjónsdóttir, and Driver 2010; Hickey, Chelazzi, and Theeuwes 2010a; Anderson, 

Laurent, and Yantis 2011a). However, to my knowledge, no studies to date have 

parametrically varied reward and penalty in a distraction task.  

But how best to measure the effects of reward and penalty on the deployment of 

attention? Typically, we can either measure orienting movements (overt attention, 

Posner 1980; Posner and Cohen 1984) or attentional changes in the absence of 

movement (covert attention) e.g. selectively listening to one conversation in a cocktail 

party (Cherry, 1953). In this study I focus on eye movements, but there are many 

reasons—discussed below—to believe that both overt and covert attention have neural 

mechanisms in common, with eye movements providing an objective index of where 

attention is prioritised. 

1.2.3. Parallels between overt and covert attention 

Helmholtz (von Helmholtz, 1962) noted that even when he kept his eyes fixed on the 

same spot, he was able to move his attention from one location to another, with the 

consequence that he was better at detecting brief flashes at the location he was attending 

to, independent of their retinal location. This suggested that overt and covert attention 

can be dissociated. Since then a wealth of behavioural data shows that visual processing 

can be enhanced in regions of space independently of fixation location (Eriksen and 
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Eriksen 1974; Posner, Snyder, and Davidson 1980). Many metaphors alluded to the 

spatiotemporal properties of attention, including filters, spotlights and zoom lenses 

(Eriksen and St James, 1986; LaBerge, 1983).  

More rigorously, Remington (1980) attempted to separate shifts of attention 

from saccades using peripheral and central arrow cues, as well as modulating target 

location probability. He showed that, when required, subjects could sometimes detect 

probes better at locations short of the saccade target even 20ms before a saccade, 

arguing for separability of overt and covert attention.  

However subsequent studies suggested that attention and eye movements are 

actually very closely related. In a visual search task, saccadic latencies vary in tandem 

with the movement of attention (McPeek et al., 1999). Furthermore, in many situations, 

attention obligatorily follows saccades. When saccades and endogenous (target-

probability driven) attention are required in opposite directions, responses are faster to 

the saccade targets until about 200 ms after the saccade (Shepherd et al., 1986). 

Similarly, making a saccade just after identifying a letter improves letter identification 

at the saccade target, and worsened identification at the opposite location, even when 

saccade direction was kept constant within a block (Hoffman and Subramaniam, 1995). 

These authors also found reaction times (RTs) were longer when concomitant saccades 

were required. These findings strongly suggest that eye movements and the movement 

of attention might share some common mechanisms.  

A stronger proposal is that orienting of visuospatial attention is effectively 

identical with preparation of eye movements (Rizzolatti et al., 1987; Sheliga et al., 

1994). In support of this, the same spatially selective neurones in superficial layers of 

superior colliculus are active in a saccadic task and a visual detection task for a given 
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expected stimulus location (Wurtz and Goldberg, 1989). Both overt and covert attention 

also appear to share neural mechanisms as demonstrated by PET studies in humans 

(Corbetta et al. 1993) and fMRI (Corbetta 1998; Corbetta and Shulman 1998).  

For these reasons, I argue that an experimental stimulus that provokes eye 

movements also draws attention to that location (although the converse does not always 

hold—see Belopolsky and Theeuwes 2012) . Measuring saccades also has some 

advantages. Firstly, in a situation in which, on a single given trial, attention may or may 

not move, measuring gaze shifts I would argue gives a direct indication that attention 

has moved, unlike in measures of covert attention. Secondly, saccadic reaction time 

(SRT) arguably provides a better index of the moment at which attention shifts, than 

manual reaction times, because of the close connection between attention shifts and eye 

movements, discussed above. 

1.2.4. Top-down versus bottom-up guidance of attention 

One way to test the effect of rewards on the processing of visual salience is to 

investigate the effects of abrupt visually salient stimului. Such stimuli are known to 

attract both eye movements and covert attention (Posner 1980). Salience is thought to 

direct attention via so-called ‘bottom-up mechanisms’ (Itti and Koch, 2001; van Zoest 

and Donk, 2004). One would expect that rewards and penalties, by virtue of being 

motivational, would generate effects in line with other goal-directed (or ‘top-down’) 

factors that influence attention (Maunsell, 2004). I will therefore discuss some 

important instances of the interaction between other goal-directed and stimulus-driven 

factors in guiding attention. 
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The earliest investigators of top-down factors manipulated the spatial 

expectation of a target, and measured accuracy of target detection or identification. Cues 

that predicted where a target would subsequently appear caused subjects to pay more 

attention to one location than another, and improved their performance. Posner (1980) 

found that such predictive cues had qualitatively different effects than a distracting 

irrelevant flash. Distracting flashes could also improve detection, but the effect was 

short-lived and if the target appeared late (e.g. 1 second after the flash), the effect was 

actually reversed. From this arose Posner’s theoretical distinction between 

endogenously and exogenously directed attention: endogenous guidance was typically 

voluntary and required effortful processing, whereas exogenous guidance was deemed 

involuntary (does not require volition) and automatic.  

A key question over the last two decades, which I hope to address in this study, 

has been the extent of automaticity, that is, whether exogenous processes can be 

overridden. Jonides (1981) provided evidence that they cannot: irrelevant transients at 

the target location 150 ms before a target did speed detection even when the flash 

statistically predicted the target to be at the opposite location. The benefit was not even 

mitigated by prior knowledge of the target being at a different given location, nor when 

subjects performed another concomitant task. A benefit at the transient location was 

always accompanied by a cost at other locations. It seemed that exogenous flashes 

exerted an obligatory pull on attention—a hypothesis which received confirmation from 

Theeuwes (1991), who noted that an irrelevant colour singleton slows search.  

This began an unresolved debate between those who proposed that bottom-up 

processes that commanded attention could never be fully suppressed (Theeuwes 1991b; 

Belopolsky, Schreij, and Theeuwes 2010), and those who argued that top-down 
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processes could always attenuate attentional capture (Remington, Johnston, and Yantis 

1992; Folk and Annett 1994). 

In favour of the indefeasibility of salience, work on visual search has shown that 

colour singletons ‘pop out’—they can be spotted much easier than targets individuated 

by conjunctions of features (Treisman and Gelade, 1980; Wolfe, 1994). Likewise, 

finding a sudden onset in an array of gradual onsets is also easy and independent of the 

set size (Yantis and Johnson, 1990).  

However, salient items sometimes fail to capture attention even when they are 

the target. Subjects identify a target letter faster and without a set-size cost if it is an 

onset oddball, but not if it is a colour oddball, luminance increment oddball, or a 

luminance offset oddball (Jonides and Yantis 1988; Folk and Annett 1994), suggesting 

that attention might only be captured by onsets. If subjects simply have to report 

whether a colour or luminance singleton is present, RT is independent of set size in both 

cases (Folk and Annett, 1994), showing that colour singletons can be processed rapidly 

even though they do not guide attention.  

One explanation for these findings could be that onsets of new objects play a 

special role in generating involuntary capture. In conditions when attention is initially 

unfocused, irrelevant visual offsets are equally as effective as irrelevant onsets in 

capturing attention, but when attention is endogenously directed beforehand, only 

onsets are effective (Theeuwes, 1991a). When ‘partial’ offsets and onsets which do not 

create or destroy visual objects are used, set-size effects have been found, indicating the 

capture is not fully automatic. Object creation may thus be a special case in its attention-

capturing power (Watson and Humphreys, 1995).  
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1.2.5. Attentional capture on covert and overt attention tasks 

Can prior goals alter whether attention is captured by salient stimuli? Studies to 

date have been surprisingly inconclusive. An important facet of the goals vs. salience 

debate is the “contingent capture” task (Folk, Remington, and Johnston 1992). In this 

influential paradigm, prior expectations of target features influence the effectiveness of 

a distractor in capturing attention.  

The experiment involved comparing the speed of identifying a target when the 

target was a singleton onset among other simultaneous distractors, versus when it was a 

colour singleton. These two types of target were preceded by a non-informative cue 

which was either an onset or colour singleton, at a valid or invalid location (Figure 1.2).  
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Figure 1.2: The contingent capture paradigm (Folk, Remington & Johnston, 1992). 

 An irrelevant precue influences the speed of detecting a subsequent target. The precue can either be 

in the same location (valid) as the target, or a different location (invalid). If the target is identified 

by its colour, then coloured precues are more distracting. If the target is identified by being an 

onset, then an onset precue is more distracting. 

These irrelevant spatial precues produce interference only when the target was 

defined by the same feature dimension (i.e. both colour or both onsets), suggesting that 

involuntary shifts of attention depends on the current goal (see also Folk and 

Remington, 1999).  

However, there are limits to the specificity of filtering in contingent capture. 

Although feature dimensions can be selected, individual colours cannot (Remington, 

Johnston, and Yantis 1992).  Moreover, even having a clear attentional set for a colour 

cannot fully prevent distraction by an irrelevant onset (Schreij et al., 2008). It is not 

clear whether such effects reflect true attentional capture, or simply non-spatial alerting 

effects or filtering costs (Folk Remington and Wu, 2009).  One way to distinguish these 

alternatives is that if contingent capture were truly related to attentional set, it ought to 

be under voluntary control. This is not always the case, since completely nonpredictive 

precues can capture attention even if subjects are adopting an attentional set for a 

different colour (Belopolsky, Schreij, and Theeuwes (2010)..  

Thus the findings from contingent capture experiments using manual reaction 

time as an index of attentional deployment are inconclusive. They raise the question of 

the precise mechanism of top-down control in attentional capture. An alternative way to 

study attentional capture is to use gaze shifts as a more direct probe of the location of 

attentional deployment. 
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Theeuwes et al. (1998) devised a paradigm where an eye movement was 

required to a target that was defined as the item in the display that does not change in 

colour. On some trials, a distractor was present, which caused an erroneous eye 

movement to the distractor (Figure 1.3). This 'capture' of the eyes can be used to 

measure how attention is allocated in a bottom-up or involuntary manner. 

In the oculomotor capture paradigm, the first eye movement is to the distractor 

on up to 40% of trials, and depends on the target-to-distractor angle relative to fixation; 

a maximum is found at about 90 degrees (Theeuwes et al. 1998). The effect is strongest 

when a new object appears at a novel location, rather than a location that was previously 

occupied. Fascinatingly, subjects are often unaware of many of their saccadic errors. 

 

Figure 1.3: The oculomotor capture paradigm of Theeuwes et al., 1998.  

Six discs are initially present, of which five change colour, and the saccade target is identified as the 

item that does not change. Simultaneously, a new object appears in the display. A proportion of 

saccades are erroneously directed towards the new object, an effect known as ‘oculomotor capture’. 

Even when examining only “correct” saccades, i.e. those that landed on the 

target, a curvature of the saccade’s trajectory can be measured. Early saccades tend to 

curve towards the distractor, whereas late saccades tend to curve away from it 

(Theeuwes and Godijn 2012).  
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1.2.6. Reward associations and attention 

Can a top-down set for a specific feature modulate capture—covert or overt—by that 

feature? A few recent studies have probed this using reward manipulations, and 

interestingly, the answer appears to be ‘yes’. Most studies to date of reward in visual 

attention use an associative learning paradigm, in which reward value varies with a 

specific visual feature, e.g. target colour. Typically, there is a training phase, in which 

red and green targets (for example) are associated with high and low reward 

respectively (e.g. Anderson, Laurent, and Yantis 2011b). In a subsequent testing phase, 

without reward, attentional capture is measured for irrelevant (distractor) items of each 

of these colours.  

 

Figure 1.4: Reward associations capture attention: the experiment of Anderson, Laurent and 

Yantis, 2011b.  

A) Participants identified a target line segment as horizontal or vertical, and reward magnitude was 

contingent on the colour of the surrounding shape. B) In a subsequent test phase, subjects were 

slower to detect a target when a distractor was present that had previously been associated with high 

reward, compared to low reward. 
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In one associative reward-learning study, Anderson Laurent and Yantis (2011b) 

trained 26 participants to determine the orientation of a line segment inside a coloured 

shape, over more than a thousand trials. The line segment could be either horizontal or 

vertical (Figure 1.4A). This target item was embedded in an array of distractors, 

comprising shapes of different colours, each containing a line segment that was at 45 

degrees to vertical or horizontal—i.e. distractors could not generate response 

competition. In the learning phase, the target was always in a red or green shape, and 

distractors were always in other colours. Thus the colour of a shape indicated the target 

line with 100% fidelity, but was not strictly necessary for identifying the target, and was 

uncorrelated with the response required. The enclosing shapes were always constant. 

Crucially, after every correct response, subjects received reward contingent on the 

colour of the shape surrounding target, either 1 cent or 5 cents.  

In the subsequent test phase, participants had to perform a similar orientation 

discrimination on a horizontal or vertical line segment, amongst distractors which were 

at 45 degrees (Figure 1.4B). In this phase, the target was designed to pop out, being 

enclosed in a shape that was unique compared to the distractors. Crucially the colours of 

these shapes were irrelevant, but on 50% of the trials one of the distractors was red or 

green (the target was never red or green). The key finding was that RT was faster when 

a distractor in a previously high-reward colour was present, compared to when a low-

reward colour distractor was present. Both red and green distractors resulted in slower 

RTs than when all distractors were neutral colours. This suggests that features 

previously associated with rewards are more distracting. 

The authors concluded that, since the distractors were neither physically salient, 

nor goal-relevant (i.e. had no features in common with the target), the reward effect 
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cannot be accounted for by simple bottom-up or top-down accounts, unless reward 

association itself contributes to perceptual salience. They also found that individuals 

with lower working memory capacity were more susceptible to this reward effect.  

Subsequent studies have shown that eye movements are also more likely to be 

directed towards colours associated with high-reward (Anderson and Yantis 2012), and 

there is even generalisation of these effects from visual search to a flanker task 

(Anderson, Laurent, and Yantis 2012).  

To my knowledge, only one reward-association study has been performed using 

the oculomotor capture task. In that study (Theeuwes and Belopolsky 2012), during 

training, subjects made saccades to the horizontal or vertical bar amongst other shapes, 

and were rewarded higher for horizontal than vertical bars (or vice versa). In a 

subsequent test phase, they had to look towards an equiluminant colour change, but on 

two-thirds of trials a horizontal or vertical bar was added to the display. The orientation 

previously associated with high reward produced more oculomotor capture than the 

orientation associated with low reward (Theeuwes and Belopolsky 2012).  

These experiments argue that stimulus-reward associations can influence 

allocation of attention at an early stage of processing. Classical theories of attention 

have often given a special role to spatial location in attentional selection (Broadbent 

1958; Tsal and Lavie 1988; Theeuwes, Van der Burg, and Belopolsky 2008). Therefore 

an interesting question is whether a spatial location associated with reward also 

influences the subsequent guidance of attention, a question that I focus on in some of 

my experiments. 
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1.2.7. Trial-to-trial effects in reward association studies 

After making a response, subsequent effects on behaviour are often indexed 

experimentally by trial-to-trial effects. These have classically been shown to affect 

anticipation (Granjon and Reynard, 1977), conflict resolution (Gratton et al., 1992; 

Nieuwenhuis et al., 2006), and task switching (Rogers and Monsell, 1995). Trial-to-trial 

effects in visual search have also been reported, both for distractor and target identity 

(Hickey and Theeuwes, 2008; Pinto et al., 2005), as well as for location (Shore and 

Klein, 2001). An open question is whether short-term reward effects also occur.  

Trial-to-trial effects of reward have been documented in associative learning 

paradigms (Anderson, Laurent, and Yantis 2011a), resulting in forms of priming for the 

previously highly-rewarded feature.  

Such effects have prompted several researchers to ask the question: is it just 

current rewards that influence orienting, or could previous successes and failures to 

obtain reward also contribute? Recent studies have demonstrated that, on short 

timescales, reward can influence distraction (Camara, Manohar and Husain 2013; Della 

Libera and Chelazzi, 2009).  

A consistent finding in visual search is that, on trials where a feature is selected 

for, and a subsequent response is rewarded, this feature attracts attention on the next 

trial (Hickey et al., 2009, 2010b, 2011; Kristjánsson et al., 2010). Studies that have 

examined the ‘priming of pop-out’ in visual search show that this is greater on rewarded 

trials, with persistence of colour-based selection on to the next trial, despite colour 

being an irrelevant feature (Hickey et al., 2006).  



1. General Introduction 1.2. Attention and reward 

 
46 

Indeed, it has been hypothesised that rewards affect initial target localisation, but 

not subsequent attentional filtering of distractors (Hickey et al., 2011). In this latter 

study, distractors and targets could either be the same colour or a different colour to the 

previous trial. By comparing constant—versus variable—coloured distractors and 

targets, Hickey et al. were able to separate the contribution of feature-priming to target 

selection and distractor inhibition. They found that previous rewards speeded search for 

the previous trial’s target colour, but had no effect on the ability to filter out the 

previous trial’s distractor colour. They hypothesised that rewards affect initial target 

localisation, but not subsequent attentional filtering of distractors. This design, which 

separates the repetition of features in the target or distractor, inspired my study of 

section 2.3 which uses spatial location. In a follow-up study that employed pop-out of 

both colour and orientation, in a much larger display array, reward influenced the effect 

of the features selected on the previous trial upon both subsequent targets and 

subsequent distractors (Hickey and van Zoest, 2013). 

These studies all examined the effect of reward on specific features of targets, 

rather than spatial locations per se. Location-specific slowing for search targets 

preceded by a distractor that had previously been associated with reward has also been 

observed (Anderson, Laurent, and Yantis 2011a). But, using this covert attention 

paradigm, the investigators were unable to determine on which trials attention actually 

went to a given location.  Furthermore, as Theeuwes and Belopolsky (2012) point out, it 

is not possible to distinguish true bottom-up attentional capture from increased 

"attentional holding" due to difficulty distinguishing targets from distractors. However, 

measuring gaze shifts provides a way potentially to circumvent such problems, a 

strategy I employ in the studies reported here. 
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1.2.8. Spatially Contingent Rewards 

One very direct way to examine how stimulus salience and reward might be integrated 

is to study simple visual saccades to a rewarded region with an immediately 

neighbouring penalised region, while varying the visual salience of these two regions 

(Stritzke et al., 2009). Here penalties have a small but significant effect on reducing the 

variability of saccadic endpoints. The generated biases can be accounted for by a linear 

model weighting luminance (stimulus salience) and reward to determine saccadic 

endpoints (Schütz and Gegenfurtner, 2010). Interestingly this model reveals that earlier 

saccades are governed more by stimulus salience than later saccades.  

A tidy interpretation of this is that value information is gradually integrated 

during the course of a trial, a view supported by the finding that later saccades curve 

more towards the rewarded region than earlier saccades (Schütz et al., 2012a). Similar 

intra-trial reward-integration effects have been observed in monkeys (Markowitz et al., 

2011). These findings are contrary to the suggestion of Hickey et al. (Hickey et al., 

2011), that reward is effective in the initial target localisation phase but not the later 

distractor-filtering stage. One solution to these apparently contradictory proposals is that 

spatially contingent rewards follow a different time-course of integration to feature-

contingent rewards.  

Two previous investigations used oculomotor capture to measure the location-

specific effect of reward on orienting. In one study, subjects learnt that rewards are 

greater on one side of space than another (asymmetrical reward), and these spatial 

differences in expectation of reward modulated oculomotor preparation (Milstein and 

Dorris, 2007a). Crucially, the proportion of oculomotor capture to irrelevant but salient 

onsets was greater on the higher-reward side.  



1. General Introduction 1.2. Attention and reward 

 
48 

In a related study in which the timing of the distractor was varied, a build-up of 

reward-related modulation was seen over time within each trial (Ding and Hikosaka, 

2007a). Both these experiments show a location-specificity in the effect of reward on 

oculomotor preparation. However, the studies both examined reward-location 

associations that had been gradually learnt over time. To my knowledge, no study has 

systematically studied the immediate location-specific effect of reward, as opposed to 

learned reward contingencies. 

How can a single system explain the multitude of effects of contingent capture, 

feature associations, trial-to-trial effects and spatial reward biases? To solve this, some 

authors have proposed a priority map or integrative map, in which goals, memories and 

biases, and physical stimulus salience are combined on a two-dimensional 

representation (Awh et al., 2012; Fecteau and Munoz, 2006; Wolfe, 1994). Although the 

brain localisation of priority maps is a subject of debate, there is consensus that it is 

likely to integrate input from both occipital and frontal brain areas, and exert influences 

on both the temporal and parietal pathways of sensory processing (Bisley and Goldberg, 

2010; Ipata et al., 2009).  

To summarise what is known of the interaction between attention and reward, 

long term training by associating colours and spatial locations with reward can appear to 

create salience much like perceptual salience. However there is also some evidence that 

flexible control over bottom-up factors can be driven by rewards.  
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1.3. Neuroscience of reward and attention 

1.3.1. Neural encoding of reward 

In this section I consider some key evidence regarding neuronal responses to rewards. In 

particular, I critically examine evidence that dopamine's primary role is to signal 

reward, using data from single-cell recordings in midbrain, striatum and cortex. Finally 

I discuss evidence that medial prefrontal cortex represents rewards, drawing on 

functional imaging and animal lesion studies. 

Early neuronal studies of reward used intracranial self-stimulation (Bramham 

and Milner, 1954; Poschel et al., 1974; Smith and Coons, 1970). A network of 

connected loci that supported self-stimulation—including the medial forebrain bundle, 

septal nuclei, mediodorsal thalamus, lateral hypothalamus, amygdala, nucleus 

accumbens and orbitofrontal cortex (OFC)—were found to be activated by the sight or 

taste of food, specifically when the animals were hungry (Ono et al., 1980; Rolls, 1972; 

Rolls et al., 1980).  

The medial forebrain bundle, which most strongly reinforced self-stimulation, 

carries five major catecholamine pathways: the dorsal and ventral noradrenergic 

bundles, and the nigrostriatal, mesolimbic and mesocortical dopaminergic pathways. 

Ablation studies showed that septal nuclei, amygdala and OFC are activated by but not 

necessary for self-stimulation, whereas nucleus accumbens and medial forebrain bundle 

must be intact for self-stimulation to occur in other areas (Rolls, 1974). Self-stimulation 

was dampened by monoamine blockers such as chlorpromazine, and potentiated by 

monoamine agonists such as amphetamine, leading to the catecholamine hypothesis of 

reward (Wise, 1980; Wise and Rompre, 1989) .  
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Noradrenaline was a strong candidate for the mediator of the reinforcing effects 

of reward (Ritter and Stein, 1974), but distinguishing the effects of noradrenaline and 

dopamine proved difficult. This was in part because self-stimulation effects were 

confounded by alertness and attention, but also due to the neuroanatomical and 

pharmacological overlap of the two transmitter systems (Mason, 1979; Mason and 

Iversen, 1977; Rolls, 1971). Locus coeruleus neurones were active during feeding 

behaviour and supported self-stimulation (Ritter and Stein, 1973); substantia nigra and 

ventral tegmental neurones were also active during feeding, but did not support self-

stimulation (Mora et al., 1977). 

With the advent of more selective receptor blockers (such as pimozide) and 

selective agonists (such as pirebidil and apomorphine), stronger evidence accumulated 

for dopamine as the mediator of reward (Mora et al., 1976; Yokel and Wise, 1975); for 

reviews see (Wise, 1980; Wise and Rompre, 1989). Noradrenergic pathways are 

necessary for aversive conditioning and context conditioning, suggestive of a role in 

attention or arousal (Cole and Robbins, 1987; Selden et al., 1990).  

 

Dopamine’s role in reward has been refined and debated by various authors who 

approach the problem with different questions. Three views on its role could be 

summarised as follows: dopamine 

1) mediates the experience of pleasure (hedonic value) 

2) provides motivational drive (behavioural incentive) 

3) causes association of stimuli to unconditioned rewards during learning. 
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Evidence for a role in pleasure include dopamine’s strong operant reinforcing value, 

correlations between receptor binding and pleasure ratings for drugs, and correlations 

between addiction and dopamine levels (Volkow et al., 1999, 2009; Wise et al., 1978). 

As a motivational drive, dopamine appears to ‘excite’ animals to act, making them more 

eager; organisms require it to make an effort for a reward, and to discount rewards over 

time when they have to wait (Berridge, 2007; Crow, 1973; Ishiwari et al., 2004; 

Robbins and Everitt, 2007; Salamone et al., 2005, 2007). Finally, in its role as the 

“glue” that binds a stimulus to unexpected rewards, dopamine is necessary for 

Pavlovian learning, it parallels the degree of stimulus-reward association, and dopamine 

release is well predicted by the error signal in formal learning models (Dickinson et al., 

2000; Everitt and Robbins, 2005; Flagel et al., 2011; Montague et al., 1996; Schultz, 

2002).  

It is less often discussed that dopamine release also signals aversive events 

(Bromberg-Martin et al., 2010a), casting doubt upon much of the above theorising. In a 

foraging situation, receipt of a reward indicates the devaluation of the current option 

(Charnov, 1976; Hayden et al., 2011a), and under such circumstances dopamine still 

signals the reward (Nakahara et al., 2004).   

1.3.2. Properties of dopaminergic neurones  

The human substantia nigra pars compacta contains around 7 x 105 dopaminergic 

neurones, and projects primarily to the caudate and putamen with a divergence factor of 

about 400 to 1 (Schultz, 1998). Dopaminergic neurones from the ventral tegmentum 

project to limbic structures including hippocampus and ventral striatum, and to the 

prefrontal cortex (Gasbarri et al., 1997; Lisman et al., 2011; Rossato et al., 2009). 

Approximately 75% fire phasically to the rewarding properties of a wide variety of 
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stimuli, and about 20% of these also respond to aversive stimuli. The responses can 

have a latencies as low as 50 ms, and are often no more than 3 to 6 additional spikes on 

a spontaneous background of 1 to 9 spikes/s (Redgrave et al., 1999). During association 

of a stimulus with reward, they show single-trial transfer to the conditioned stimulus, 

and generalise to stimuli with a similar appearance, in certain contexts. The same 

neurones also respond to novelty: for stimuli with low perceptual salience, responses 

decay over 3 to 5 trials; for high-salience stimuli such as loud noises, there may be 

minimal adaptation (Mirenowicz and Schultz, 1994; Schultz, 1998).  

Dopamine release has two unusual properties. First, out of one neurone’s 

500,000 varicosities, 60% are extrasynaptic, and can increase extracellular dopamine 

concentrations 60-fold for an extended period of 200 ms. Second, the release of 

dopamine at a terminal can be decoupled from the firing of the dopaminergic neurone 

by local neurones in target regions, leading to tonic dopamine release. Dopamine then 

binds to G-protein-coupled receptors, allowing a slow but flexible modulation of the 

postsynaptic membrane potential. D1-class receptors are adenylate cyclase-coupled (Gs, 

excitatory), comprising subtypes D1 and D5, and are exclusively postsynaptic. D2-class 

receptors, comprising D2 D3 and D4 subtypes, inhibit adenylate cyclase (Gi, inhibitory), 

and are found both postsynaptically and presynaptically (Beaulieu and Gainetdinov, 

2011).  

The main striatal target of nigral dopamine neurones are GABAergic medium 

spiny neurones (MSNs). D1 receptors are most abundant, and cells expressing D1 

receptors project to the internal globus pallidus, whose cells are also GABAergic. The 

result of activating these D1-expressing cells is thus said to be excitatory at the 

thalamus, giving rise to the “direct pathway”; the D2-expressing cells project to the 
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external pallidum, and activating them is thus said to be inhibitory at the thalamus 

(Albin et al., 1989; Graybiel, 1990; Surmeier et al., 2007). To complicate matters, each 

spiny neurone expresses both D1- and D2-receptors (Aizman et al., 2000). Each MSN 

receives approximately 10,000 cortical terminals, 5000 ventral thalamic afferents, and 

1000 dopaminergic varicosities (Smith et al., 2006; Wickens, 2009). Approximately 

400,000 corticostriatal axons terminate in the volume of one MSN dendritic tree, but 

each axon only produces 40 synapses in this volume, which itself contains 3000 MSNs. 

Thus each corticostriatal axon only contacts <1% of the MSNs in its arborisation, so due 

to the 100-to-1 convergence, any two neighbouring MSNs are unlikely to share an input 

(Bar-Gad and Bergman, 2001).  

The effect of dopamine in the striatum is mixed and context-dependent; when a 

striatal neurone is inactive, D1 receptors close sodium channels, but when the neurone 

is depolarised, they open calcium channels, causing “plateau potentials” (Hernández-

López et al., 1997). In light of these differential state-dependent effects, it has been 

suggested that D1 stimulation may increase the nonlinearity in the integration of 

glutamatergic cortical inputs. Equivalently, it may stabilise the membrane potential, in 

one of two states. In contrast, D2-receptor activation appears to always decrease 

responsivity of striatal cells to glutamatergic inputs (Cepeda et al., 1993; Surmeier et al., 

2007).  

Compartment models generate different behaviour than one might expect: D1 

stimulation delays and reduces spiking but increases early temporal integration; D2 

stimulation increases spiking but decreases integration (Moyer et al., 2007). 

Functionally, this may lead to time-dependent effects, in which  tonic dopamine 

attenuates NMDA-driven responses, whereas phasic release potentiates them (Cepeda 
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and Levine, 1998; Haber et al., 2000). Striatal interneurones, comprising 5% of striatal 

cells, may be cholinergic or GABAergic, and also bear dopamine receptors, but are 

poorly understood.  

In prefrontal cortex, dopamine action at D1 receptors can facilitate LTP, while 

D2 receptor stimulation facilitates LTD (Gurden et al., 2000; Otani et al., 1998). In the 

dentate gyrus and CA1 cell fields, D1 receptors facilitate LTP and inhibit LTD. D1 

blockade can abolish learning in rats (Lemon and Manahan-Vaughan, 2006) and spatial 

working memory in primates (Sawaguchi and Goldman-Rakic, 1991). Due to this 

complementary effect of D1- and D2-class receptors, general stimulation of both 

dopamine receptor classes (e.g. by the non-selective agonist pergolide) enhances 

intracortical inhibition (Ziemann et al., 1996) and yet increases cortical excitability. 

Prefrontal dopamine might also have distant effects: injection of D1agonists into FEF 

can produce effects very similar to attention in V4 neurones (Noudoost and Moore, 

2011a, 2011b)—an effect which has been interpreted as a mechanism for top-down 

attention. 

1.3.3. The functional role of striatal dopamine in humans 

Dopamine has many proposed functions in humans, and influences a wide variety of 

behaviours, being central in motor control, learning, memory, and motivation (Hallett 

1990; Sawaguchi and Goldman-Rakic 1991; Wise 2004; Flagel et al. 2011; Lisman, 

Grace, and Duzel 2011; Berridge and Kringelbach 2013). Dopaminergic dysfunction 

has been implicated in schizophrenia (Williams-Gray et al., 2006), chorea (Jahanshahi 

et al., 2013; Lee and Marsden, 1994; Martin, 1927), dystonia (Berardelli et al., 1998; 

Bhatia and Marsden, 1994; Perlmutter et al., 1997; Schicatano et al., 1997), impulse 

control disorders (Sinha et al., 2013), obsessive-compulsive disorder, Tourette’s 
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syndrome (Denckla, Bemporad, and MacKay 1976; Gravino 2013), attention deficit 

hyperactivity disorder, and addiction (Trifilieff and Martinez; Volkow et al., 2009). A 

variety of lines of evidence are available, but perhaps the most direct method available 

in humans is PET.  

Dopamine release can be measured relatively specifically using PET ligands 

such as 11C-raclopide. Binding potential changes have been observed during 

amphetamine and alcohol use (Boileau et al., 2003; Drevets et al., 2001), enjoying food 

(Small et al., 2003), psychological life stress (Pruessner et al., 2004), and by TMS to 

motor cortex (Strafella et al., 2003), but not during exercise (Wang et al., 2000).  

Direct evidence of dynamic, reward-related dopamine release as a function of 

performance has been observed while playing video games (Koepp et al., 1998). One 

study reported that, when actions result in uncertain rewards, dopamine is released in 

medial caudate and lateral putamen, whereas when actions produce expected rewards, 

dopamine is released in caudate head—but curiously found no changes in ventral 

striatum (Zald et al., 2004). 

Several PET studies have examined correlations between tonic dopamine levels 

in the striatum, and behavioural traits. Tonic striatal dopamine levels correlate with 

choking under pressure (underperformance when incentives are high) (Aarts et al., 

2014; Silston and Mobbs 2014). Greater ventral striatal dopamine is associated with 

disinhibitory personality traits (Lawrence and Brooks, 2014) and hedonic pleasure on a 

self-report scale (Volkow et al., 2002), as well as decreased aggression (Schlüter et al., 

2013), but do not appear to be directly associated with gambling tendencies or 

maladaptive decision making (Linnet, 2013).  



1. General Introduction 1.3. Neuroscience of reward and attention 

 
56 

Recreational drug users’ ratings of “highs” correlated strongly with striatal DAT 

occupancy as well as D2 receptor availability in OFC and ACC (Volkow and Fowler, 

2000; Volkow et al., 2001, 2002). When response inhibition is performed under 

rewarding conditions, compared to a non-rewarded feedback-only condition, dynamic 

PET with 11C-raclopride ligand reveals increased dopamine levels in the nucleus 

accumbens (Jonasson et al., 2014).  

Complementing PET studies, recent fMRI studies have shown increased BOLD 

signal in the midbrain in correlation with rewards, which may reflect the mechanism by 

which the dopaminergic, serotonergic, and other ascending brainstem pathways might 

be activated (Düzel et al., 2009). Tractography complements tracer studies 

demonstrating that the primary target of  dopamine from the dorsomedial substantia 

nigra is the ventral striatum (Chowdhury et al., 2013).  

Mathematical models of learning suggest that dopamine and serotonin are both 

important in inhibition and reward processing (Daw et al., 2002), leading to interactions 

between reward/penalty and aversion/approach behaviour (Boureau and Dayan, 2011; 

Guitart-Masip et al., 2014). One hypothesis is that serotonin and dopamine control 

different aspects of learning in go/nogo tasks with positive and negative outcomes 

(Guitart-Masip et al., 2012), and in support of this, a large reversal learning study has 

found that dopamine transporter (DAT1) polymorphisms increase perseveration on 

incorrect responses during reversal, whereas serotonin transporter (SERT) 

polymorphisms alter lose-shift behaviour (den Ouden et al., 2013).  
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1.3.4. Cortical regions responding to reward 

Reward alters brain activity in a wide range of brain areas. Functional imaging in 

humans and single-cell physiology in primates have given complementary evidence for 

the presence of reward signals. With present methods, it has not been possible to 

distinguish between modulation of ongoing processing by rewards (in the form of 

motivation, relevance or salience) and representation of reward values (e.g. for 

comparison or selection). But whatever its functional role, the effect of reward appears 

to be ubiquitous. 

1.3.4.1. Functional imaging of reward signals in prefrontal cortex  

In humans and primates, prefrontal cortex is often subdivided first according to the 

three brain surfaces: orbital, medial, and dorsolateral. The medial surface is divided into 

the cingulate gyrus and sulcus, dorsomedial cortex superiorly, and the ventromedial 

PFC inferiorly which wraps onto the gyrus rectus on the orbital surface. Anterior 

cingulate cortex (ACC) is further subdivided into dorsal, rostral, pregenual and 

subgenual areas (Gittins and Harrison, 2004; Johansen-Berg et al., 2008). The orbital 

surface of the brain is divided into medial and lateral portions, with the most posterior 

regions in close proximity to the anterior perforated substance and ventral striatum, and 

in continuity with anterior insula (Kahnt et al., 2012). In functional imaging, the term 

orbitofrontal is sometimes avoided as cytoarchitectonic boundaries cannot be 

delineated; the term “ventromedial PFC” generally does not include the central and 

lateral zones of OFC.  

Orbitofrontal cortex (OFC) activation has been shown to correlate with a 

mixture of reward-related variables (for a review, see Levy and Glimcher, 2012). In  

choice situations, there are effects of reward size (O’Doherty et al. 2001; O’Doherty et 
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al. 2002; Spicer et al. 2007; Croxson et al. 2009), expected value (Breiter et al., 2001; 

Hare et al., 2008; Kahnt et al., 2010), relative value (Elliott et al., 2008), and subjective 

utility (Elliott et al., 2003; Stuphorn, 2006; Tom et al., 2007). When there are two 

options, there is encoding of both net value (O’Doherty et al. 2001) and attended item 

reward (Lim et al., 2011). The response is modulated by regret, for example the relative 

value of unchosen or counterfactual rewards (Boorman et al., 2011; Camille et al., 2004; 

Coricelli et al., 2005; Ursu and Carter, 2005), but not by cognitive emotional regulation 

(Staudinger et al., 2009). 

Careful distinction of the roles of stimulus, response and outcome shows 

differences between medial and lateral OFC. Lateral OFC was more active when a 

reward association needed to be updated, whereas medial OFC correlated with the 

expected and actual reward levels (Noonan et al., 2011). Medial OFC may be involved 

in computing reward prediction errors (Bellebaum et al., 2012; Rolls et al., 2008), 

whereas mid- and lateral OFC may be more active in situations of greater uncertainty 

(Elliott et al., 1999; Tobler et al., 2007) and may encode risks (Elliott et al., 2003; 

Engelmann and Tamir, 2009). Another study has suggested that medial OFC encodes 

willingness to pay whereas lateral OFC encodes willingness to accept compensation 

(Martino et al., 2009). A final possibility is that reward signals in OFC are specific to 

actions (Li and Daw, 2011; McClure et al., 2003b), and that lateral OFC is specifically 

involved in behavioural shifts, independently of negative feedback (Cools et al., 2002).  

Other studies have postulated a postero-anterior division of function, e.g. a 

gradient of increasing abstraction (Sescousse et al., 2010), or the encoding of a reward’s 

identity independently of its value (Klein-Flügge et al., 2013). 
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While encoding value may be a canonical role of OFC, several studies have 

shown increased activation in OFC in seemingly unrelated domains, for example in 

tasks that require theory of mind (Gallagher and Frith, 2003), humour comprehension 

(Goel and Dolan, 2001; Wild et al., 2003), moral decisions (Moll et al., 2002) and 

contextual memory (Frey and Petrides, 2000, 2003). Such varied involvement may 

indicate that our understanding of representations in OFC remains incomplete. 

Anterior cingulate cortex (ACC) activation has been suggested to be caused by 

an even wider range of situations, including task difficulty, response conflict detection 

or resolution, error detection or prediction, signalling negative reward prediction errors 

or surprise, estimating risk or uncertainty, and switching between exploitation and 

exploration (Carter et al., 1999; Kennerley et al., 2006; Kolling et al., 2012; Paus, 2001; 

Rushworth and Behrens, 2008; Rushworth et al., 2004; Shenhav et al., 2013),. 

ACC was identified in many early PET studies as becoming more metabolically 

active when task difficulty increased (Paus et al. 1998). Further studies confirmed that is 

activated during Stroop conflict, particularly on incongruent trials that follow congruent 

trials (Kerns et al., 2004), and in task switching studies (e.g., classifying a letter as 

vowel/consonant versus upper/lower case). ACC is active when a new task must be 

activated, compared to reactivating a recent task (Dreher and Berman, 2002).  ACC has 

thus been thought to be active in situations of high response conflict (Botvinick et al., 

2001; Carter et al., 1999).  

Although conflict does explain this activation, errors could also be responsible. 

For example, ACC is more active after no-go task commission errors (Garavan et al., 

2003), and ACC is thought to be a source of the error-related negativity in the evoked 

potential (Carter et al. 1998; Yeung, Botvinick, and Cohen 2004). But because this 



1. General Introduction 1.3. Neuroscience of reward and attention 

 
60 

effect is also observed in oddball tasks, it might be attributable to the low frequency of 

such events (Braver et al., 2001). In a flanker interference paradigm, dorsal areas (pre-

SMA) activated by conflict have been distinguished from more ventral areas (anterior 

cingulate sulcus / cingulate motor area), which were activated when errors were 

committed (Ullsperger and von Cramon, 2001). This has been corroborated in the go-

nogo task (Garavan et al., 2003). A distinction has also been suggested between rostral 

pre-SMA, which was activated during a change-of-plan, and caudal pre-SMA which 

was activated during free choice (Nachev et al., 2005, 2008). 

One difficulty with the conflict hypothesis is that conflict is persistently 

confounded with reaction time (Grinband et al., 2011; Nachev, 2006, 2011). Recently, 

reward-based interpretations of dorsomedial function have been proposed (Sallet et al., 

2007).  

When a stream of rewards is occasionally punctuated with reduced rewards, 

ACC is more active after the reduced rewards, suggestive of a negative reward 

prediction error signal (Knutson et al. 2000; Bush et al. 2002; Knutson et al. 2003). 

These prediction errors appear to be specific to action plans (Jocham et al., 2009; 

Kennerley et al., 2011), and specific for self-generated action, rather than externally 

guided actions (Walton et al., 2004).  

A further candidate role for ACC activations is in signalling surprise—i.e. the 

absolute value of prediction error. This account predicts activation for both positive and 

negative feedback, as long as the feedback is unexpected (Holroyd et al., 2009).  

In addition to the above distinctions of action selection, conflict, error detection 

and effort, dorsomedial cortex activation is also increased during a risky decision, 
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whereas ventromedial areas are more active during receipt of rewards (Cohen et al., 

2005; Ernst et al., 2004; Xue et al., 2009). When surprise is frequent, it is possible for 

an organism to anticipate or expect that surprise—producing uncertainty. Cingulate 

cortex appears to be active in situations of increased uncertainty  (Hayden et al., 2011a; 

Rushworth and Behrens, 2008; Walton et al., 2007), and may track the values of 

alternatives to the current option during foraging (Kolling et al., 2012; Mobbs et al., 

2013)—findings which support neurophysiological recordings in primate ACC 

(Blanchard and Hayden, 2014; Hayden et al., 2011a).  

Although neuroeconomic and reward-learning constructs have been a core 

element of investigation of dorsomedial areas, in human life these general mechanisms 

are likely harnessed in a number of other situations including embarrassment (Berthoz 

et al., 2002), working memory (Petit et al., 1998), social cognition (Apps and Ramnani, 

2014; Behrens et al., 2008, 2009; Zheng et al., 2014), and effort discounting (Croxson et 

al. 2009; Kurniawan et al. 2013; Shenhav, Botvinick, and Cohen 2013; Bonelle et al., 

submitted). 

Subcortical areas that show haemodynamic changes with rewards include the 

ventral striatum especially nucleus accumbens (Berns et al., 2001; Breiter et al., 2001; 

Elliott et al., 2000; Tanaka et al., 2004), caudate, and ventral tegmental area (Düzel et 

al., 2009; Knutson et al., 2000)—areas which are known to receive projections from 

OFC and ACC (Carr and Sesack, 2000; Vázquez-Borsetti et al., 2011).  

1.3.4.2. Single-cell physiology of cortical reward signals 

Vision provides a clear case of how reward signals may operate in the brain.  Cells in 

early visual areas respond more strongly to stimuli and features associated with reward 

(Shuler and Bear, 2006, Stănişor et al., 2013). This effect is seen progressively more 
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strongly in higher visual areas. Cells in the lateral intraparietal area encode spatially 

specific rewards (Platt and Glimcher, 1999; Sugrue et al., 2004), but also independently 

encode motor reaction time (Bendiksby and Platt, 2006), and relative reward values 

(Rorie et al., 2010). Neurones in dorsomedial prefrontal cortex prominently increase or 

decrease their firing rates both during and after reward (Seo and Lee, 2009; So and 

Stuphorn, 2010). This suggests that there is a gradual progression from posterior to 

anterior, encoding stimulus reward value, action value, and the actual delivery of reward 

(Cisek and Kalaska, 2010). Even within prefrontal cortex, reward values can be bound 

to stimuli, states, or actions, and these bindings may be learnt through predictions and 

prediction-errors.  

Neurones in orbitofrontal cortex exhibit firing rates proportional to stimulus-

related reward and predicted reward (Hikosaka and Watanabe, 2000; Padoa-Schioppa 

and Assad, 2006; Wallis and Miller, 2003), and it is possible to find cells there that are 

active only for specific conjunctions between reward and stimulus (Thorpe et al., 1983). 

These neurones may be involved in relative and qualitative aspects of value (Rolls, 

2000; Tremblay and Schultz, 1999). The ventromedial portion may be further sub-

specialised for subjective appraisal or comparison of values (Bouret and Richmond, 

2010; Noonan et al., 2010). 

Neurones in cingulate cortex show reward-related activity, but also exhibit 

post-error activity (Amiez et al., 2005; Matsumoto et al., 2007) and increased firing 

when an action needs to be changed (Quilodran et al., 2008; Shima and Tanji, 1998). 

For example in a saccadic countermanding (stop signal) task, 5-10% of neurones fired 

more after uncancelled (error) saccades, but were uncorrelated with RT, and of these 

25% also responded to omitted reward, and 25% to unexpected rewards (Ito et al., 
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2003). In contrast supplementary eye field (SEF) neurones, on the same task, exhibited 

increased firing when saccadic RT was longer, suggesting conflict-driven activity, 

whilst others fired in advance of an expected reward (Stuphorn et al., 2000).   

Characteristically, there are cells in cingulate areas that fire specifically for only 

particular action-reward combinations, for example in an asymmetrically rewarded 

go/nogo task (Matsumoto et al., 2003). When sequential movements are required, 

neuronal responses are specific not for the action itself, but for the serial position in the 

sequence (Procyk et al., 2000). ACC is also coupled to reward-sensitive areas of the 

basal ganglia: activity of VTA dopaminergic neurones can induce increased firing in 

ACC (Onn and Wang, 2005); and caudate nucleus areas signalling reward also receive 

extensive projections from ACC (Ding and Hikosaka, 2006; Yanike and Ferrera, 2014).  

Both orbitofrontal and cingulate areas contain populations of neurones whose 

firing rates encode combinations of reward, risk and effort; but anterior cingulate 

contains the greatest population of cells that encode all three simultaneously (Kennerley 

et al., 2008). Some recent paradigms have interpreted ACC neurones firing in response 

to reward as signals that mediate the switch between exploration and exploitation 

(Quilodran et al., 2008). 

1.3.4.3. Lesions of non-human primate prefrontal cortex 

In animals, the terminology ventromedial PFC and medial OFC are sometimes 

distinguished – a practice that is uncommon in human functional imaging (Kringelbach, 

2005). Histologically, medial OFC (area 13) can be distinguished from the medial wall 

areas that include subgenual ACC.  
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Lesions to OFC in animals leads to perseveration, disinhibition, emotional 

disturbances and altered reward preferences (Dias et al., 1996; Iversen and Mishkin, 

1970). Healthy individuals are able to modify preferences according to desires—as 

manifest by devaluation of food rewards by satiation. Bilateral OFC lesions prevents 

these dynamic preference shifts, but only when the food selection is mediated by a food-

object pairing. OFC may be required for using stimulus-reward associations (Izquierdo 

et al., 2004), but impaired devaluation of rewards themselves has also been found in 

OFC lesions, as well as amygdala lesions (Rhodes and Murray, 2013). Lateral OFC 

lesions impair devaluation of reward by satiation, whereas medial lesions (in the gyrus 

rectus) preserve devaluation but impair extinction (Rudebeck and Murray, 2011a, 

2011b).  

OFC-lesioned monkeys are also impaired at reversal learning, despite being able 

to correctly learn the initial reward mapping (Izquierdo et al., 2004). The specific deficit 

in reversal appears to be with suppressing stimulus-reward pairings (Jones and Mishkin, 

1972), perhaps due to a failure to use context information to suppress habitual 

behaviour (Dias et al., 1996). However, it seems unlikely that OFC alone encodes 

reward preferences, according to a study of rat OFC inactivation: reversal learning did 

take place, but could not be expressed in behaviour after OFC was reactivated. If OFC 

was again inactivated later, the reversed preferences re-emerged (Keiflin et al., 2013).  

Lesions to dorsomedial prefrontal cortex, in contrast, lead to surprisingly 

subtle deficits: reduced post-error performance monitoring and impairments in pairing 

actions with reward values (Rushworth et al. 2004). Lesions to ACC sulcus reduced the 

ability to sustain a correct response after positive feedback (Kennerley et al., 2006; 

Rudebeck et al., 2008), and reduced the ability to select actions that led to high-
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probability rewards in probabilistic action-outcome matching. Cingulate sulcal lesions 

did not affect stimulus-response learning is some studies (Rudebeck et al., 2006), 

though a recent report has revealed that bilateral ACC lesions also led to problems using 

rewards in reversal learning of object-reward associations, as well as difficulty 

switching responses in reversal learning of action-reward associations (Chudasama et 

al., 2013). In contrast with OFC lesions, devaluation by satiation was unaffected. 

In summary, reward affects large areas of the brain, depending upon the task in 

question, but its effects are most consistently seen in a connected subset of areas 

including the substantia nigra and ventral tegmentum, ventral striatum especially 

nucleus accumbens, and the medial prefrontal cortex, including OFC and ACC. 

Dopamine may be a key player, but its role is not well defined, since it appears 

whenever the organism is excited. Subcortical and cortical areas most likely function as 

a unit, since all levels of the system can encode information that is behaviourally highly 

sophisticated. OFC and ACC do appear to have different profiles of activity in response 

to rewards, whether it be described as associations with actions versus objects, 

representation of internal reward versus environmental reward, or counterfactual 

rewards versus prediction errors.  

1.4. Human lesion studies in reward-related cortical areas 

The classical “frontal syndrome” can include a vast array of cognitive features, 

including apathy, bradyphrenia, emotional lability, disinhibition, distractibility, 

difficulty with cognitive estimation, humour, proverb interpretation, theory of mind, 

word generation, and prominent working memory deficits. This gamut of symptoms has 

been operationalised in many ways, for example distinguishing dorsolateral executive, 

orbitofrontal inhibitory, and medial motivational components (Cummings, 1995). 
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Human prefrontal cortex is more amenable to such fractionation than in other animals, 

since it accounts for 30% of the human cerebral cortex, compared to 7% in macaque and 

4% in rabbits, with expansions in DLPFC, SMA and lateral OFC, as well as the almost 

unprecedented appearance of frontopolar cortex (Ongür and Price, 2000; Walker, 1940). 

Notably, lesions to human PFC cause even more subtle deficits than in other primates.  

It is a truism that all purposive behaviour is goal-directed, and as such is 

execution is governed by motivational incentives. Many of the neurological 

impairments following PFC lesions which have historically been described as deficits of 

cognitive control, inhibition, decision-making and attention are amenable to an 

alternative description: in terms of reward and neuroeconomic optimality. Both orbital 

and medial patients consistently show impairments that could be interpreted as reward-

related deficits. 

1.4.1. Human lesions to orbitofrontal cortex 

Human OFC anatomy is highly variable (Kringelbach and Rolls, 2004), and is 

phylogenetically more primitive than frontopolar and dorsolateral cortex. 

Architectonically, it comprises a mixture of agranular cortex posteriorly, dysgranular 

cortex centrally, and granular isocortex anteriorly (Braak 1980; Ongür and Price 2000). 

Brodmann's original classification (Brodmann, 1909, 1914) labelled the major portion 

of the orbital surface as area 11. Walker (Walker, 1940) subdivided OFC into 20 

architectonic subregions. On the basis of tracer studies demonstrating input and output 

connectivity, the area can be divided into orbital and medial areas. The orbital portion is 

a convergence area for all sensory modalities; medial regions send prolific efferents to 

the hypothalamus and brainstem (Kringelbach, 2005; Ongür et al., 2003).  
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OFC lesions lead to an assortment of cognitive changes that can be hard to 

pinpoint experimentally, yet disabling in daily life. For example, relatively subtle 

impairments in social, emotional, moral, appetitive and evaluative judgements have 

often been reported (Milner 1963; Drewe 1975; Rolls et al. 1994; Anderson et al. 1999; 

Godefroy, Cabaret, and Rousseaux 1994; Stuss and Knight 2002; Dolan 1999; 

Ciaramelli et al. 2007). Accordingly patients may have difficulties with detecting 

deception, and with theory of mind tasks (Stone et al., 1998; Stuss and Anderson, 2004; 

Stuss et al., 2001a).  Although a single unified explanation of such pervasive 

behavioural changes seems unlikely, some of these impairments might be describable in 

terms of the handling and representation of rewards. 
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Figure 1.5: Architectonic subdivisions of ventral frontal regions 

Histologically defined boundaries in human (above) and macaque (below). Taken from Ongur, 

Ferry and Price (2003) 

The Iowa Gambling Task was one of the earliest behavioural measures revealing 

reward-related changes in these patients (Bechara et al. 1994), showing that these 

patients are more influenced by immediate punishment than by delayed reward, and 

therefore make economically unsound choices (Bechara, Tranel, and Damasio 2000; 

Fellows and Farah 2005b; Maia and McClelland 2004). Lesions to OFC cortex 

specifically lead to increased bet size in gambling tasks (Studer et al., 2013), greater 

risk-taking (Floden et al., 2008) and longer deliberation times (Manes et al., 2002) 

without changes in probabilistic reasoning, although similar risk effects can also be seen 

after non-ventromedial lesions (Clark et al., 2003). Interestingly, these patients also 

lacked normal anticipatory autonomic responses to risk, as measured by galvanic skin 

responses (Bechara et al. 1997; Bechara et al. 2005). It is therefore possible that 

subconscious autonomic activation, which is a well-recognised function of orbital 

cortex in lower animals, could be an important component of decision-making—as 

“somatic markers” (Bechara et al. 1994; Damasio 2008). In chapters 3-6 I will consider 

pupil dilatation in response to incentives as a potential marker for altered reward 

processing.  

A study of 5 OFC patients showed reduced risk aversion compared to healthy 

controls, and remarkably, found that patients were consequently closer to theoretically 

optimal behaviour (Hsu et al., 2005), a finding that has been paralleled in animal OFC 

lesions (Pais-Vieira et al., 2007) and also human amygdala lesions (Martino et al., 

2010). A larger study of nine OFC patients on a 5-card variant of the Iowa gambling 

task revealed two subgroups of patients—5 of the nine showed strong risk-taking 
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behaviour, but 4 had normal risk aversion (Sanfey et al., 2003)—without clear lesion 

location differences. In a changing environment, OFC patients had difficulty in flexibly 

adjusting behaviour to select the highest reward option, as seen in reversal learning 

tasks (Fellows and Farah, 2003; Hornak et al., 2004)—a deficit that can be explained in 

terms of learning rate given a reward prediction error. This appears to be due to 

insensitivity both for rewards and penalties (Berlin et al., 2004). In parallel with some 

primate lesion studies, not only is stimulus-reward learning impaired, but also personal 

preference judgements have been shown to be inconsistent in OFC patients (Fellows 

and Farah, 2007).  

To explain impulsivity in OFC patients, it has been hypothesised that they might 

discount time more steeply, that is, have preferences for sooner smaller rewards, than 

waiting for larger rewards (Sellitto et al., 2010) as seen after animal OFC lesions 

(Mobini et al., 2002). Impulsivity in these patients is unlikely to result from 

disinhibition (Solbakk et al., 2014). Rather, such individuals overestimate how much 

time has passed, perhaps indicating a faster subjective sense of time (Berlin et al., 

2004). However no direct evidence for altered temporal discounting has been found in 

patients, to explain the link with impulsivity (Fellows and Farah, 2005b). Rather, these 

authors reported that when OFC patients were asked to “think of 5 events that may 

happen to you in the rest of your life”, and to estimate how far into the future these may 

occur, the future extension of their events was much shorter (5.6 years) than controls 

(13 years) or dorsolateral prefrontal patients (9.4 years).  

Tying together these many deficits into a single function, computational step or 

representation type remains contentious (reviewed in Zald and Andreotti 2010), but 

evaluation appears to be a common denominator. A general framework that treats OFC 
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as providing reinforcement context signals has been recently proposed (Wilson et al., 

2014). In this promising account, OFC is responsible for representing the world in terms 

of goal contexts for reinforcement learning.  

1.4.2. Human lesions to dorsomedial prefrontal cortex 

Dorsomedial prefrontal regions include supplementary motor cortex (SMA), pre-

supplementary motor cortex (pre-SMA) cingulate sulcus and cingulate gyrus, as well as 

pregenual cortex. Compared to orbitofrontal cortex, this area is characterised as more 

motor than sensory, and indeed SMA efferents contribute to 10% of the corticospinal 

tract (Dum and Strick, 1991).  

Large lesions to bilateral ACC have reportedly caused akinetic mutism (Barris 

and Schuman, 1953; Jürgens and von Cramon, 1982) and emergence of primitive 

reflexes (Shahani et al., 1970).  

One might predict, given the prominent error-related activities found in imaging 

and electrophysiological studies, that dorsomedial lesions in humans might lead to 

learning deficits. There is only scant evidence that patients are less likely to change their 

response after negative feedback (Floden et al., 2008) and they do not seem to have 

altered error-related responses (Løvstad et al., 2012), although patients with lateral 

prefrontal lesions do (Gehring and Knight, 2000; Woods and Knight, 1986).  

Focal damage to supplementary motor area may cause contralateral alien limb 

syndrome, in which patients are unable to inhibit afforded actions (Goldberg et al., 

1981). Consistent with a role of dorsomedial cortex in motor planning, isolated ACC 

lesions can lead to effector-specific impairments on response-mapping tasks (Turken 

and Swick, 1999) and impaired suppression of reflexive movements (Paus et al., 1991). 
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Similarly, isolated lesions of pre-SMA can lead to effector-specific impairments in 

response inhibition (Nachev et al., 2007; Sumner et al., 2007; Verfaellie and Heilman, 

1987) and task switching (Parton et al., 2005). This response disinhibition may be 

nonspecific, as measured by impaired stop signal reaction times (a feature more 

commonly associated with right inferior frontal damage), and associated with slower, 

more variable response times (Picton et al., 2007). Bilateral lesions result in increased 

costs of response conflict in Stroop (Stuss et al., 2001b) and faster forgetting of task-set 

instructions in Wisconsin card sort (Stuss et al., 2000). 

To what extent do these reward-related areas control attention? Most human 

lesion studies of distractibility tend to implicate the whole of prefrontal cortex. Several 

prefrontal lesion studies show difficulty adhering to a current goal (Howes and Boller 

1975; Wilkins, Shallice, and McCarthy 1987; Rueckert and Grafman 1996; Robertson et 

al. 1997; Molenberghs et al. 2009), and to complement these, other studies demonstrate 

impaired ability to focus attention (Woods and Knight 1986; Barceló, Suwazono, and 

Knight 2000; Knight 1984, reviewed in Manohar et al., 2013).  

1.4.3. Human subcortical lesions 

Isolated focal lesions to the basal ganglia are rare. When they occur, a common 

cognitive symptom is abulia—a lack of will, motivation, or self-generated action—most 

commonly caused by damage to the caudate (Bhatia and Marsden, 1994; Schmidt et al., 

2008a). Bilateral lesions to the globus pallidus can also lead to profound behavioural 

apathy, a syndrome which has been considered to be a disorder of motivation, perhaps 

as a result of insensitivity to reward (Adam et al., 2013; Schmidt et al., 2008b). Indeed, 

these authors showed that a direct dopamine receptor agonist can reverse reward 

insensitivity and behavioural apathy in a patient with bilateral globus pallidus lesions. 
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1.5. Reward and dopamine in Parkinson’s disease 

1.5.1. Parkinson’s disease and dopamine 

Dopamine depletion is closely connected to, if not the primary cause of, the symptoms 

of PD (Hornykiewicz, 2001): difficulty initiating movements, slowness of movements, 

and increased muscle rigidity (Jankovic, 2008). Symptoms appear when dopamine 

concentrations in the putamen fall to about 80% of normal levels (Kish et al., 1988; 

Otsuka et al., 1996), and striatal dopamine binding can be abnormal up to 25 years 

before symptom onset (Fuente-Fernández, 2013). The motor disorders in PD are 

significantly improved by the dopamine precursor levodopa, dopamine breakdown 

inhibitors such as selegiline and entacapone, D2 dopamine receptor agonists 

bromocriptine, ergots, apomorphine and ropinirole. Pharmacologically these drugs 

increase dopamine receptor stimulation in the dorsal striatum (Connolly and Lang, 

2014).  

For small movements, PD patients have normal movement velocities, but as the 

movement distance is increased, in PD the velocity remains constant and the movement 

takes longer, whereas in healthy controls the velocity scales up with distance and the 

movement time remains constant (Flowers 1975; Flowers 1976; Hallett and Marsden 

1979). The inability to increase velocity could be attributable to inability to extend the 

duration of the normal triphasic pattern of agonist and antagonist activity that comprises 

a ballistic movement (Hallett and Khoshbin, 1980). 

Although PD has classically been considered as a disorder of the motor system, 

over the last 10 years it has become increasingly clear that a range of cognitive 

disturbances accompany the disease (Yarnall, 2014). These include depression, anxiety, 
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apathy, hallucinations, delusions, sleep disturbance, pain, and a loss of the sense of 

smell (Kumar et al., 2002; Modugno et al., 2013); REM sleep behavioural disorder is 

the most common parasomnia, in which patients appear to “act out their dreams”, and 

may precede the motor onset of PD by years or decades (Boeve et al., 2004; Schenck et 

al., 1996). The variety of motor and cognitive symptoms in PD can be organised with 

reference to the primary dopamine pathways in the brain: nigrostriatal, mesocortical and 

mesolimbic.  

About 15% of patients, when treated with dopaminergic medication, develop 

impulse control disorders including pathological gambling, compulsive shopping, 

compulsive eating, hypersexuality, and “punding”: repetitive obsessive purposeless but 

high-level behaviours such as collecting, sorting or disassembling (Maréchal et al., 

2014; Voon et al., 2006, 2007; Weintraub et al., 2006). Dopamine medications 

themselves are commonly the object of compulsion, with a number of patients 

demanding rapid drug escalation and continuing to request more tablets despite the 

severe side effects of dyskinetic choreiform movements (Evans and Lees, 2004). This 

may be accompanied by euphoria, inappropriate joy, racing thoughts and grandiose 

ideation, resembling mania; withdrawal states and craving can occur, similar to 

amphetamine withdrawal (Lawrence et al., 2003). 

About 60% of patients will develop apathy during the course of the disease 

(Aarsland et al., 2009; Pedersen et al., 2009; Starkstein, 2009) which can be 

decomposed into reductions in action initiation, emotional responsiveness, self-interest 

and curiosity. Apathy in PD may be partly attributable to a low-dopamine state (for 

review see Sinha, Manohar and Husain 2013), and be improved by methylphenidate 

(Chatterjee and Fahn, 2002; Mendonça et al., 2007).  



1. General Introduction 1.5. Reward and dopamine in Parkinson’s disease 

 
74 

The motivational changes seen in PD may be distinct from those in depression 

and frontal dementia, and give rise to several rather interesting phenomena.  Kinesia 

paradoxa occurs when PD patients (or rats with dopaminergic lesions) who are severely 

akinetic in a standard environment, may be able to move very fast in situations of 

extreme motivation (e.g. running from a fire, or for rats, swimming when dropped in a 

water bath) (Keefe et al., 1989). Motor symptoms in PD also exhibit strong placebo 

effects, whose magnitude correlates with the amount of placebo-induced dopamine 

release in dorsal striatum, as measured by PET (de la Fuente-Fernández and Stoessl, 

2002).  

Care must be taken in studying cognition in PD patients, since they may be 

impaired in a wide range of tasks including the tower of London ( Owen et al. 1995), 

Wisconsin card sort (Owen et al. 1993; Price, Filoteo, and Maddox 2009; Jahanshahi et 

al. 2002), working memory (Lewis et al., 2005), word fluency (Dalrymple-Alford et al., 

1994), and spatial attention (Briand et al., 2001a; Filoteo and Maddox, 1999; Wright et 

al., 1990). Patients may have concurrent brain atrophy (Burton et al., 2004; Matsui et 

al., 2007), depression (Gotham et al., 1986), and dementia (Kehagia et al., 2010). These 

considerations must be accounted for both when selecting patients, and in interpreting 

behavioural data.  

1.5.2. Reward and Parkinson’s disease 

Given that dopamine is central in both motivation and signalling reward, and that PD 

patients have deficits in both dopamine and motivation, it is unsurprising to find that 

reward processing is aberrant in PD.  
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Probabilistic reversal learning is generally impaired in PD patients (Swainson et 

al., 2000), and patients similarly have difficulty with switching set in the Wisconsin 

card sort (Canavan et al., 1989), though whether this is due to perseverative errors (as 

after lesions to OFC or ventral striatum) or to noisy responding, has been a matter of 

debate.  

During a classification task with feedback, often thought to be more sensitive to 

dorsal striatal function, PD patients show specific impairments in shifting classification 

from one feature dimension to another (extradimensional set-shifting), and on task-

switching e.g. between letter- and digit-naming (Downes et al., 1989; Lange et al., 

1992).  However, withdrawal of medication has different effects on the tasks: 

probabilistic reversal learning is improved, whereas task-set switching is worse (Cools 

et al., 2001a). One explanation of this phenomenon is that PD selectively depletes 

dopamine from the dorsal striatum, and replacing dopamine causes a relative 

“overdosing” of the ventral striatum (Cools et al., 2003, 2010a). 

In a highly influential study, Frank and colleagues asked PD patients to select 

one of two abstract symbols, after which they were rewarded or penalised (Figure 1.6, 

(Frank et al., 2004). PD patients ON medication were better at selecting symbols 

associated with a high probability of reward, but worse at avoiding the low-probability 

symbols. Patients OFF medication were worse at selecting high-probability items, and 

better at avoiding the low-probability symbols. The investigators concluded that 

dopamine improves probabilistic learning by reward, whereas depletion by contrast 

improves learning from penalties. A similar effect occurs when patients are required to 

classify a single stimulus under rewarded vs. penalised probabilistic feedback: reward 
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learning is faster ON, whereas penalty learning is faster OFF medication (Bodi et al., 

2009). 

Frank et al. explained performance by considering the “direct pathway” (D1) to 

facilitate execution of a planned response, and the “indirect pathway” (D2) suppressing 

competing responses. The authors assume that phasic dopamine during rewards 

activates and increases plasticity in the direct pathway, and at the same time deactivates 

the indirect pathway, driving learning to facilitate reinforced responses. Conversely, low 

dopamine during penalties activates the indirect pathway, driving avoidance learning 

(Frank, 2005). Their addition of this extra D1 vs. D2 dimension to a simple 

reinforcement learning model increases its explanatory scope.  

This is consistent with evidence that D2 agonists impair reinforcement learning 

of actions (Pizzagalli et al., 2008). A follow-up study in healthy volunteers taking the 

D2 agonist cabergoline and the D2 blocker haloperidol showed that cabergoline 

improved learning by penalty, similar to PD patients OFF medication; haloperidol in 

contrast improved reward learning. This is of course quite interesting, since 

Parkinsonism is a common side effect of haloperidol, and cabergoline treats PD. To 

account for all this, the model had to be extended to include pre- and post-synaptic 

dopamine (Pizzagalli et al., 2008)—once again increasing its scope, and arguably 

decreasing its power.  
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Figure 1.6: Dopamine’s differential effect on positive and negative feedback.  

Task and results of Frank, Seeberger and O’Reilly (2004).  A) Patients on and off medication had to 

learn which of two symbols to choose, based on probabilistic reward and penalty. In the training 

phase, symbols were always paired as illustrated. In a test phase, in which the pairs were mixed up, 

patients were better at avoiding penalised symbols when OFF, but better at selecting rewarded 

symbols when ON.  

1.5.3. Functional imaging of reward modulated responses in PD  

A few studies have examined changes in brain activity in PD as a function of reward. 

PD patients may have blunted activation of the ventral striatum by reward predictions, 

with supranormal activation of those same regions by actual rewards (Schott et al., 

2007), and they may activate more brain areas in response to rewards than controls 

(Künig et al., 2000; Rowe et al., 2008). The error responses in dorsal striatum may be 

attenuated (Schonberg et al., 2010), whereas ventral striatum may be hyperresponsive in 

patients with impulse control disorders (Steeves et al., 2009). In a study of reversal 

learning in eight PD patients on and off levodopa, dopamine increased the response of 
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the ventral striatum at the moment of reversal (Cools et al., 2007). Another study 

showed similar levodopa-induced increases of ventral striatal reward responses, but a 

diminution of OFC reward responses with dopamine agonists, which could be 

attributable to differences between phasic and tonic stimulation (van Eimeren et al., 

2009).  

1.5.4. Novel theories of motor deficits in PD: the central role of 

vigour 

The planning of movement can be conceived as taking place by optimising a cost 

function according to an internal model of motor control (Wolpert and Ghahramani, 

2000). In systems terms, the motor system receives proprioceptive inputs, and a 

command; from these it must generate appropriate muscle-level instructions. In 

mathematical terms, the motor system must solve an inverse problem to find the correct 

instructions, given that instructions cause certain effects (Wolpert, 1997). Since many 

trajectories and speed profiles are possible to achieve a given goal position, additional 

constraints must be in play—termed cost functions. The cost of a particular movement 

plan may be given in terms of time, energy, or accuracy. In mathematical terms, these 

costs can equally be described as priors on the inference from proprioceptive states to 

motor instructions (Friston 2011).  

In animals, the control of movement timing and speed is strongly influenced by 

reward schedule (Niv et al., 2005; Weiner and Joel, 2002). Using the notion that an 

action is expensive because of how fast it must be performed, a simple cost function 

proportional to 1/RT can be constructed, and results in an optimal responding rate that is 

proportional to the square root of the average reward rate (Niv, 2007; Niv et al., 2006).   
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Theories of vigour have contrasted the paucity of movement in PD with the 

increased drive to responding elicited by dopamine agonists. The comparison suggests 

that in terms of motor control, symptoms of Parkinsonism are manifestations of reduced 

willingness to exert effort, equivalent to an increase in the cost of movement (Mazzoni 

et al., 2007). Evidence that might count towards this would be an interaction between 

reward and bradykinesia in PD. Mazzoni and colleagues (2007) reported that patients 

with PD have difficulty in controlling their movement velocity in response to reward 

feedback. The authors suggested that this was due to impaired action costing in the face 

of reward, but their result might also be interpreted as a pure learning deficit (Mazzoni 

et al., 2007). Indeed, a contrasting theory has been recently put forward that frames 

some PD symptoms in terms of aberrant learning in the no-go pathway (Xiao-Xi, 2012). 

A detailed investigation of reward’s effect on motor and decision performance may shed 

light on this discrepancy. 

1.6. Plan of thesis 

My aim is to measure attentional capture using eye movements, and study how it is 

modulated by incentives. I aim to characterise the behavioural effects of reward, and 

how they interact with high and low dopaminergic states, and whether they are 

dependent on medial prefrontal cortex. The chapters of this thesis address the following 

empirical questions: 

1. Do incentives have a direct impact on distraction as measured by oculomotor 

capture?  

2. Can recent reward history influence distractibility, for example on a trial-to-trial 

basis? 
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3. Can autonomic measures, i.e. pupil dilatation, reflect incentivisation by reward? 

4. What is the effect of a dopamine agonist (cabergoline) on the reward modulation 

of distraction in healthy people? 

5. Do patients with dopamine depletion—Parkinson's disease—have altered reward 

modulation? And can dopaminergic medication restore any deficits? 

6. Do lesions of medial prefrontal cortex in humans influence reward-based 

incentivisation of distraction?  

7. Are there specific regions of the medial frontal lobe that are more or less critical 

for reward sensitivity in the guidance of attention? 
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2. Missed rewards capture attention 

2.1. Introduction 

Distraction is obviously disadvantageous in certain situations, but beneficial in others. 

In an evolutionary context, distraction would allow us to be alert to rare but highly 

significant events. For example, rapidly orienting towards the movement of a predator 

seen in peripheral vision might be life-saving (Shelley-Tremblay and Rosén, 1996). 

Rapid attentional capture by low-level sensory properties could increase fitness even if 

it were weak—i.e. not imperative. Although it has been suggested that distraction 

evolved in this way (Anderson, 2013; Johnston and Strayer, 2001), to my knowledge it 

has not previously been framed economically. 

Intuitively, when distraction occurs, it is at the expense of attention to any 

ongoing task at hand. Orienting to a distractor is only of net benefit when the dangers of 

ignoring a distraction outweigh the gains from continuing with the current goal. 

Because of this, evolution ought to precisely titrate distractibility to the level of risk in 

our environment. Higher levels of environmental uncertainty (quantified as risk, or 

variance in outcome) should breed correspondingly higher levels of distractibility. 

Avoiding distraction is essentially taking a small risk, in order to reap a reward (Figure 

2.1).  
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Figure 2.1: Economics of distraction 

Distraction by perceptually salient stimuli may be beneficial or counterproductive, depending on the 

situation. The panels illustrate the economical trade-offs involved when avoiding distraction, or 

being distracted. a) If a distractor is ignored, the ongoing yield of the rewarding task is obtained, but 

there is a potential risk of danger. b) If attention is captured by a distractor, the danger can be 

avoided, and a benefit might be derived if the distractor poses a new opportunity; however the 

rewards of continuing the ongoing task are lost. Whether or not distraction makes economical sense 

will thus depend upon our estimates of risk, opportunity, and ongoing task reward.  Optimising 

distraction rate by ongoing task rewards may be critical for survival. 

Crucially, trading off risk for reward makes predictions about how changes in 

reward might influence distractibility. In particular, if the value of avoiding distraction 

is high, distractibility should decrease. Similarly, if distraction is penalised 

distractibility will also fall. It is interesting to note that this account classifies 

distractibility as a form of risk aversion.  

Conversely, we can think of ongoing activities as requiring continuous 

motivational incentives to make them economically worthwhile—i.e. worth filtering out 

other possible actions. When higher rewards are available, a subject should engage more 

“effort” to obtain them. Here, effort acts as an effective cost, encapsulating risk 
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aversion. The overall cost can be framed economically as effort discounting (Hursh, 

1980; Kahneman, 1973; Pessoa, 2009).  

According to the first sense (economic motivation), the predictions about how 

reward should influence distraction could be summarised as follows: 

 (2.1) 

where Ψ(x) is a sigmoid function such as 1/(1+e–x), and U(r) is the utility of an outcome 

r. The sensitivity to environmental uncertainty is governed by the concavity of U (i.e. 

).  If this is negative (Figure 1.1), then distractibility should increase in 

environments with greater dangers, or with lower task-related gains.  

Incentivising performance with rewards attenuates distractor effects in the 

Eriksen flanker task (Hübner and Schlösser, 2010) and the Stroop task (Krebs et al., 

2011). In particular, performance improvements cannot easily be accounted for purely 

in term of speed-accuracy trade-off or ‘criterion shifts’: reward induces a true 

motivational change. But motivation by rewards and penalties play different roles in 

controlling behaviour (O’Doherty et al. 2001; Frank, Seeberger, and O’Reilly 2004), 

and may be represented differently at the neural level (Roesch and Olson, 2004). Might 

rewards and penalties then influence distractibility in different ways? Attention is biased 

towards previously rewarded features (Anderson et al., 2011a; Hickey et al., 2010a; 

Kiss et al., 2009a; Kristjánsson et al., 2010), which may faciltate decision making and 

foraging (Krajbich et al., 2012; Manohar and Husain, 2013), but no reverse effect has 

been seen for penalties (Wang et al., 2013).  
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To my knowledge, no studies to date have parametrically varied incentive levels 

in a distractor-avoidance task. If motivation influences distractibility, incentivising with 

either rewards or penalties should reduce distraction, but without trading off speed.  

Interestingly, vigour theory provides a strikingly different prediction (Dayan, 2012a; 

Niv, 2009; Niv et al., 2007). The ongoing reward rate determines the optimal rate of 

responding.  If distraction were penalised, although this motivates behaviour, it would 

not speed responses.   

Reward has been found to have short-term effects on subsequent trials; in 

particular, attentional priming and negative priming are both modulated by reward 

(Anderson et al., 2011a; Hickey et al., 2011). But how might information be retained 

from trial-to-trial? Rewards might be held in working memory (Camara, Manohar, and 

Husain 2013), and it has previously been shown that working memory contents can 

influence distraction (Theeuwes, Olivers, and Chizk 2005; Theeuwes, Belopolsky, and 

Olivers 2009). Signals other than reward might also be retained from trial to trial. 

According to theories of reinforcement learning, outcomes on previous trials generate a 

‘prediction error’ which is critical in altering subsequent behaviour (Sutton and Barto, 

1990). In a spatial task, the strongest negative prediction errors will occur at locations 

where rewards were previously missed. If this information were critical for learning, it 

might be retained in memory, and subsequently influence spatial orienting. 

These considerations led me to study the spatial effect of reward and penalty on 

distractibility. I used oculomotor capture (Kramer et al., 1999) as an index of 

distractibility in humans. In my version of this task, six red discs were shown, one of 

which remained red (the saccade target) while another disc turned bright yellow, 

becoming suddenly salient (the distractor). Subjects made speeded saccades towards the 
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target, but the simultaneous bright distractor often subversively ‘captured’ the eyes. 

Although oculomotor capture depends upon several features of the task e.g. target-

distractor similarity (Mulckhuyse et al., 2008), it cannot fully be voluntarily overridden. 

To examine how incentive influences oculomotor capture, subjects were 

awarded money for their speed of looking at the target, but incurred a penalty if they 

looked at the distractor. First, I systematically and explicitly varied the reward for 

making saccades to the target, and the penalty for shifting gaze to the distractor. I 

predicted that blocks with higher reward and higher penalty would lead to less 

distraction. Next, I examined the effect of the previous trial’s reward and penalty, upon 

performance, predicting that capture would be greater if the distractor is in a location 

that was rewarded on the previous trial.   

2.2. Study 1: Block-to-block manipulation of incentives  

2.2.1. Method 

The aim of the study was to test how varying the amount of expected reward influences 

oculomotor capture generated by a visual transient. To this end, I modified the 

oculomotor capture paradigm (Theeuwes 1991a). Subjects were instructed that they 

would see six red circles, and when the fixation cross disappeared, four would turn grey, 

one would turn yellow, and the remaining circle is the target and would remain red 

(Figure 2.2). They must move their eyes to the disc that remained red (the target), and 

not to look the disc that turned yellow (the distractor).  

Subjects received the following further instructions: the faster they directed gaze 

to the target, the more money they would make. If they were too slow, they would 
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obtain zero reward, and if they looked at the yellow distractor, they could lose money. 

Thus subjects were rewarded for every saccade to the correct target according to their 

speed, and/or penalised for every saccade that was captured. Monetary feedback was 

presented after each trial. In Study 1, the maximum reward available and the flat penalty 

for errors, were manipulated between blocks. Subjects were explicitly shown these 

values at the start of each block. 

 

 

Figure 2.2: Study 1: Experimental paradigm 

a) The structure of one trial in my study. Subjects fixate and are shown their current winnings. Six 

red discs appear for 400 to 600 ms, and then change colour. Four of them become grey, one 

becomes a salient yellow, and the remaining red disc is the saccade target. If subjects look at the 



2. Missed rewards capture attention 2.2. Study 1: Block-to-block manipulation of incentives 

 
87 

target first, they are rewarded according to their speed; if they look at the yellow distractor, they 

may be penalised. b) An example of the overlaid saccades from one block of trials, rotated to the 

canonical orientation, showing oculomotor capture on some trials. c) Histogram of the angular 

direction of the initial saccade, relative to the direction of the target; example data from one subject. 

d) For correct saccades to the target, subjects were rewarded according to their speed, with a falloff 

matched to their median reaction time.  

2.2.1.1. Subjects 

Fifteen subjects from the University subject pool (age range 19-24, 11 female, with 

normal or corrected-to-normal vision) all gave informed consent. The study was 

approved by UCL research ethics committee. Subjects were instructed that they would 

be paid according to their performance, and that they would earn between £10–15.   

2.2.1.2. Apparatus 

A PC running Matlab (The MathWorks) plus Psychophysics Toolbox under windows 

was used to present stimuli on a CRT with resolution 1024x768 pixels at 100 Hz. A 

frame-mounted Eyelink 1000 (SR Research) infrared tracker monitored left eye position 

relative to the screen, sampled at 1 kHz. Eye movements were parsed online by the 

Eyelink PC and sent to the presentation PC over a patch cable, to provide trial-by-trial 

feedback. Subjects sat 60cm from the 21” display against forehead- and chin-rest. 

Randomised 9-point calibration was performed at the start of the experiment and after 5 

blocks. 

2.2.1.3. Stimuli 

A white fixation cross measuring 1.5 degrees was displayed at the centre of the screen 

on a black background, surrounded by 6 dark red discs (31% beam intensity) each 

subtending 3 degrees of arc, with centres equally spaced on an invisible circle of radius 

11.0 degrees from the fixation point. The total reward accumulated by the subject so far 



2. Missed rewards capture attention 2.2. Study 1: Block-to-block manipulation of incentives 

 
88 

was displayed numerically, centred 2.4 degrees below the fixation cross in digits 1.5 

degrees high. This display remained until fixation had been maintained for a flatly 

distributed random foreperiod between 750 and 1050 ms. The fixation cross was then 

erased, and simultaneously, four of the six discs became dark grey (12.5% intensity), 

one remained dark red, and one became bright yellow. The yellow distractor was always 

one of the two discs immediately next to the dark red target (see Figure 2.2a).Thus on 

every trial there was a red target disc and a neighbouring yellow distractor disc. 

The endpoint and landing time of the first saccade that landed outside a circle 

radius 5 degrees was determined online and used to determine trial outcome (see reward 

function below). At that moment, feedback sound was played and the amount won or 

lost on that trial was displayed numerically in the centre of the screen, for 300 ms. 

2.2.1.4. Design 

Subjects performed 10 blocks of 56 trials each. Prior to each block, subjects were 

numerically shown their maximum reward attainable if they looked at the target 

quickly, and also the penalty they would receive if they looked at the distractor. The 

block began after a keypress. The maximum reward and fixed penalty for each block 

was one of 5 conditions: 

 10p maximum reward (to target) and 10p penalty (to distractor) 

 10p maximum reward and 2p penalty 

 10p maximum reward with no penalty 

 20p maximum reward with no penalty 

 30p maximum reward with no penalty. 

Henceforth I will call these conditions [+10,-10], [+10,-2], [+10,0], [+20,0] and [+30,0] 

respectively. The range of penalty levels was chosen to be smaller than the reward 
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magnitudes, as pilot studies showed that a penalty of -10p was approximately as 

effective as a reward of 30p in motivating faster RTs. 

The order of the 5 conditions was manipulated in a Latin square across subjects, 

with the last 5 blocks using the reverse order of the first 5. There were therefore 5 

different block orders, and 3 subjects performed each order. On each trial, foreperiod 

and target location was randomised, and the distractor was randomised to be one 

position either clockwise or anticlockwise of the target. Before the experiment, subjects 

performed 32 practice trials. 

2.2.1.5. Reward functions and penalties  

The saccade endpoint was categorised into one of 6 bins according to the nearest disc. If 

the saccade landed on a grey disc, or if the endpoint was greater than 15 degrees distant 

from fixation, a reward of zero was given. If the endpoint was nearest to the yellow 

disc, the penalty value was displayed. This penalty was always constant within a block. 

By contrast, rewards (to targets) varied as a function of the maximum reward for a block 

and the saccadic reaction time in the following way: 

    (2.2) 

truncated to the nearest integer, where RT was the time of initiation of the saccade. 

Median saccadic reaction time in the practice trials was used as the 37% falloff point for 

reward magnitude (to determine τ), with a minimum RT cut-off (tmin) at the 10th 

percentile (faster than this, reward was maximal, see Figure 2.2d). If this reward value 

was zero, the words ‘Too slow’ were displayed instead of the number ‘0’. 
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Feedback sound was played based on the trial reward; a buzz if a penalty was 

incurred, a low pitched bleep if zero reward, a high-pitched ping if a reward of 15p of 

lower was obtained, and a ‘ker-ching’ cash-register sound was played if a reward of 

over 15p was obtained. Sounds lasted 250 ms and were matched for amplitude. 

2.2.2. Results 

On each trial of the task, subjects saw six locations spaced around a circle, and were 

required to make a rapid saccade to the location which did not change colour. A 

coloured bright distractor was present at a neighbouring location (Figure 2.2a). The 

first saccade was determined using a combined velocity and acceleration criterion. To 

quantify the pull of the distractor on each trial, I measured the first saccade’s deviation 

towards the distractor, i.e. the angle from the fixation cross of the saccade endpoint 

relative to the direction of the target (see Figure 2.2c for an example in one subject). 

The saccade was also classified by the location nearest to its endpoint, as being towards 

the target (correct), the distractor (capture error), or to a different location. The 

proportion of trials where the eyes were captured by the distractor, and the angle of 

deviation, formed my primary measures of distraction by the salient onset.  

2.2.2.1. Reward and penalty reduce oculomotor capture 

The proportion of capture was determined for each reward condition (Figure 2.3a). The 

block’s reward and penalty level ([+10,-10], [+10,-2], [+10,0], [+20,0], or [+30,0]) 

significantly modulated the proportion of oculomotor capture (1-way ANOVA over 

block type, F(4,56)=4.34, p<0.004): as predicted, distractors captured the eyes less 

when they were highly penalised [+10 -10] compared to the condition where there was 

no penalty, i.e. [+10,0] (2-tailed t(14)=3.69, p<0.002). Introducing penalties can 

therefore reduce salience-driven attentional capture. 
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Figure 2.3: Study 1: Improvement by reward and penalty, with choking under pressure. 

a) The proportion of trials on which the eyes were erroneously captured by the salient distractor is 

shown, for the different blocks. As the possible penalty for distraction was increased (towards left), 

subjects were better at avoiding distraction. When potential rewards were increased moderately, 

subjects again improved. However when reward was maximal (far right), ‘choking under pressure’ 

was observed: capture was again high. b) Reaction times were fastest when rewards were high, and 

slowest when penalty was high. c) For each reward condition, trials were binned according to 

reaction time, and the conditional accuracy was plotted. Under moderate rewards [+20 -0], the 

accuracy curve is shifted upwards despite speeding of responses -- a finding which cannot be 

explained by trading speed for accuracy. 

Moderately high rewards [+20,0] also reduced capture rates by 5.5% (SEM 

1.6%), relative to low rewards (p=0.028 one-tailed). But counter-intuitively, very high 

rewards [+30,0] did not reduce capture rates compared with low rewards [+10,0] 

(t(14)=0.3, p>0.5). Rather, the highest rewards actually increased capture compared to 

the moderate-reward condition (two-tailed t(14), p=0.049), and relative to the high-

penalty condition [+10,-10] (two-tailed t(14)=-3.69, p<0.002) (Figure 2.3a). Very high 

incentives, therefore, were ineffective at preventing oculomotor distraction. A similar 

analysis of the raw deviation angles of saccades showed the same pattern of significant 

effects. 

One might suspect the order in which subjects experienced the reward 

conditions would be important. However, although there was a main effect of subject 

(p<0.01) on capture, there was no effect of block order (F(4,40)=0.43, p>0.5), and no 

interaction of reward condition with block order (F(16,40)=1.29, p>0.05). This indicates 

that the counterbalanced order of reward-condition blocks was effective. 

Were these reward- and penalty-related improvements due simply to subjects 

being more cautious? Analysis of median saccadic reaction times revealed that subjects 
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were significantly slower in high-penalty blocks than high-reward blocks (t(14)=3.38, 

two-tailed p=0.004) (Figure 2.3b). In other words, the possibility of penalties made 

subjects both slower and more accurate. However, increasing rewards showed a trend to 

speeding up reaction times (t(14)=1.09, p=0.29), compared to low rewards [10,0]. This 

was true in the moderate reward condition [20,0] even though distraction was reduced. 

Thus the reduction in distraction due to reward cannot be explained by caution. Note 

that reaction time appears to relate to the block’s average reward rate, and as expected, 

the total winnings in each block vary with expected value, with subjects winning on 

average £5.20 on high reward blocks, and losing £1.53 on high penalty blocks. 

2.2.2.2. Rewards speed RT, Penalties cause slowing 

This asymmetrical relation between reaction time and distraction is portrayed using 

conditional speed-accuracy functions for each condition (Figure 2.4). The proportion of 

correct saccades in each of 5 RT bins was calculated for each reward condition, and the 

mean function across subjects was plotted. As expected, in all 5 reward conditions there 

was a strong positive correlation of accuracy with RT (all r2 in range 0.88 to 0.95, all 

p<0.002, Figure 2.4). 

  



2. Missed rewards capture attention 2.2. Study 1: Block-to-block manipulation of incentives 

 
94 

Figure 2.4: Conditional accuracy function for Study 1. 

Accuracy rises from 50% at the earliest RT bin, to over 80% for the slowest RT bin. When reward 

is moderately increased, there is an increase in accuracy as well as shortening of reaction times.  

It was observed that, for the slower trials, different reward conditions produced 

different effects on the speed-accuracy gradient. Therefore I estimated the slope of the 

speed-accuracy relation for each reward condition in each subject, using a median split 

of RTs. Medium-high rewards [+20,0] had a significantly steeper accuracy:speed 

function (mean gradient 517 %/s ± 82, compared with 316 ± 98, t(14)=2.34, p=0.018), 

indicating that the benefit of reward in this case cannot be explained simply by a speed-

accuracy trade-off. 

2.2.2.3. No effect of reward on saccade velocity 

The peak speed was calculated for each correct saccade, using 5 ms averaging windows 

for velocity. The mean peak speed for the 5 reward conditions were compared using 1-

way repeated-measures analysis of variance. There was no effect of reward or penalty 

on velocity (p>0.05).  

2.2.2.4. Reward reduces blink rate, but penalty increases it 

The proportion of trials that were aborted due to a blink was counted in each block. 

There was a significant main effect of reward condition (Figure 2.5, F(4,74)=2.67, 

p=0.042), and pairwise t-tests showed a significant difference between the [-10,+30] 

and [-2,+30] conditions (p<0.05 corrected with Tukey’s LSD); the two penalty 

conditions had 5.7% and 5.0% less capture than the +30p condition.  
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Figure 2.5: Blink rate during the task is reduced by high rewards, compared to high penalties. 

The proportion of trials that contained blinks during the foreperiod was calculated in each block. 

Error bars indicate standard error of the mean. The error rates differed by one-way ANOVA 

(p=0.042), and pairwise comparisons showed more blinks during between the high-penalty 

condition than high-reward. 

2.2.2.5. Effect of trial history 

To test whether capture was dependent on reward history, I divided trials into those 

where the current distractor location previously contained a target or a distractor on the 

preceding trial. There was significantly more capture when the distractor was previously 

a target (F(1,14)=14.6, p=0.0019). Similarly, I divided trials into those where the 

current target location was previously a target or distractor; but there was no effect of 

what was previously at the target location (F=0.0).  

Subjects are captured more by a distractor when a target was previously at that 

location. This differs from previously described reward priming effects (Hickey, 

Chelazzi & Theeuwes, 2010; Anderson, Laurent & Yantis, 2011) in being spatially 
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specific. I propose this is because each location retains its reward status from the 

previous trial. But could this effect simply reflect a tendency for subjects to repeat their 

last action? Since there are more correct than incorrect trials, one could explain it 

simply as a “perseverative” tendency to be captured to a location that was recently 

looked at. 

To refute this, trials were broken down as above, then subdivided according to 

where the subject looked on the previous trial. A 2-way ANOVA was used to separate 

the effects of the distractor being at the previously-looked-at location, versus being the 

target or distractor. There was no main effect of where the subject previously looked 

(F(1,56)=0.52), but there was a significant interaction with whether the distractor 

location previously contained a target or distractor (F(1,56)=8.7, p=0.0046). This 

indicates there is an effect of where the eyes previously went, which interacts with the 

location history. This effect was investigated in detail in the next experiment. 

2.2.3. Discussion 

This experiment measured the effect of rewards and penalties on distractibility, using 

the paradigm of oculomotor capture (Theeuwes et al. 1998), in which the eyes are 

drawn to a visually salient distractor, rather than a non-salient target that was identified 

by being the only item that did not change. 

There were three main findings. Firstly, the results demonstrated that 

oculomotor capture can be decreased when there are penalties or rewards at stake. In the 

case of penalty, accuracy improved at the cost of speed; for rewards, subjects were both 

faster and more accurate. The effect of valence is therefore asymmetrical with regard to 

speed.  Secondly, for very high rewards, subjects were paradoxically captured more by 
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the distractors. Finally, in a post-hoc analysis of trial history, oculomotor capture by a 

distractor was greater when that distractor location was previously occupied by a valued 

target. 

This experiment differs from previous work on reward and distraction, in that I 

do not manipulate prior reward-feature associations by learning. Rather, the total 

incentives are manipulated, showing a pure motivational effect on distractibility.  

2.2.3.1. How do rewards and penalties reduce distraction? 

Rewards increase response frequency in free operant tasks (Dickinson and Balleine, 

2002), a fact which has been explained in terms of response vigour (Niv et al., 2007, 

2007). Starting with two premises, that a fast response is more costly to execute, and 

that making more responses yields more reward, an optimal response-time can be 

calculated. The optimum depends on the reward schedule, and in particular, as the 

average reward rate increases, the optimal response time shortens. Average reward rate 

may be represented in the brain by tonic dopamine levels in nucleus accumbens. 

Although Niv et al. did not explicitly discuss penalty, it might be expected to prolong 

response times. This could potentially explain the observed effect of reward and penalty 

on the speed of responses (Figure 2.3b). However, responding faster without trading off 

accuracy would require something further, such as effort (Hübner and Schlösser, 2010).   

To see this, notice that simply combining an accuracy bonus, error cost, and time 

pressure cannot lead to both speed and accuracy increases—unless the constraint “going 

faster means more errors” is somehow removed. I discuss this quandary and offer a 

solution in Chapter 7. 

It is likely that subjects deployed more cognitive resources in the moderate-

reward [+20] condition, allowing both faster responses and decreased distractibility. 
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Such a motivating effect has been noted in monkeys, where asymmetrical reward speeds 

both visually elicited saccades and memory-guided saccades without trading-off 

accuracy (Takikawa et al., 2002b; Watanabe et al., 2003), and two recent human studies 

have demonstrated an increased ability to resolve conflict under rewarded conditions in 

the Stroop task and Eriksen flanker task (Hübner and Schlösser, 2010; Krebs et al., 

2011). Such results imply that motivation by reward is not a trade-off but a true 

increase in effort; in my study, this motivational effect was specific to positive valence 

incentive rewards, rather than penalties. 

Effort is a determinant of attentional resources (Tomporowski and Tinsley, 

1996), but how might it be mediated? (Sarter et al., 2006) suggest that motivational 

effects on attention are mediated by basal forebrain cholinergic projections to prefrontal 

cortex, under the control of nucleus accumbens and anterior cingulate cortex, which are 

in turn under the influence of dopaminergic reward circuits. Such a mechanism might 

also provide an explanation for the unusual phenomenon of increased capture at high 

reward levels, discussed next. 

2.2.3.2. Choking under pressure 

A second asymmetry between reward and penalty was the paradoxical worsening of 

performance in the highest reward condition (Figure 2.3a). This is the first study to my 

knowledge where a rapid orienting task has shown this biphasic relation under 

quantitative manipulations of reward. 

Although intuitively one expects motivation to lead to improvements in 

performance, impaired performance has often been noted in connection with high 

stakes. Explanations of such ‘choking under pressure’ include high-arousal levels 

(Yerkes and Dodson, 1908), highly emotional states (Easterbrook, 1959), or raised self-
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awareness (Baumeister, 1984). Choking can be alleviated by background sound 

(Mesagno et al., 2009), and worsened by spectators (note my study was conducted in a 

quiet room with the experimenter observing throughout). It is normally seen in 

overlearnt, skilled tasks, but recent experiments have extended this to higher cognitive 

tasks (Gimmig et al., 2006). 

A recent fMRI study revealed choking in a game where expectation of high 

reward gave worse performance than low reward (Mobbs et al., 2009). They suggested 

that framing outcomes in terms of loss might cause anxiety-driven reduction in 

performance. My results do not support this claim; in particular I found choking with 

high rewards but not with penalties. But importantly, they found increased activity in 

ventral midbrain and striatum, suggestive of a dopaminergic basis: as dopamine levels 

increase, attentional performance follows an inverted-U-shape (Bodi et al., 2009; Cools 

et al., 2001a). The asymmetry of my results is also compatible with the known 

nonlinearity of dopaminergic activity under rewards versus penalties (Schultz et al., 

1997). Although dopaminergic neurones do not encode absolute rewards, they do 

encode perceptual salience alongside relative reward (Schultz, 1998), which are 

precisely the signals that would be needed to compute the trade-off between distraction 

and motivation. The pallidal and subgenual cingulate encoding of very high rewards is 

strongly dependent upon reward history, which might account for this variable and often 

suboptimal effect (Elliott et al., 2000).  

Do these results have a bearing on the mechanisms of preventing distraction? At 

first glance it appears that our motivational modulation invalidates the strong hypothesis 

that stimulus-driven capture is inevitable. Yet, my findings may be consistent with the 

hypothesis that reward cannot improve the earliest phase of distractor filtering. The 
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slowing caused by penalty could account for its reducing distraction, and rewards 

appear to have their effects on later saccades in the distribution only (Figure 2.3c), 

consistent with previous findings (Wijnen and Ridderinkhof, 2009). However the lack 

of effect of reward on capture of the fastest saccades is not consistent with Hickey et 

al.’s (Hickey et al., 2011) suggestion that reward has an early effect on target selection. 

Rather, it favours the models which posit increasing effects of reward over time in the 

trial (e.g. Ding and Hikosaka 2007; Schütz, Trommershäuser, and Gegenfurtner 2012). 

Finally, I found a trial-to-trial effect on oculomotor capture: the eyes were 

distracted more to locations that were targets on the previous trial. Furthermore, 

distraction appeared to be greatest when that target on the previous trial was not looked 

at. However, since the first experiment was not designed to examine trial-to-trial effects, 

some of the trials used to look at the history of the distractor location, also had rewards 

and penalties previously at the target location, and the proportions of these trials was not 

balanced. This motivated the second experiment. 

2.3. Study 2: Effects of reward history on distraction 

2.3.1. Method 

I was interested in the effect of reward and penalty history in the previous trial on 

oculomotor capture in the current trial. The stimuli and instructions were similar to 

study 1, except with all blocks having identical maximum reward and penalty values. 

Critically, I also manipulated the history of targets and distractors at each location.  
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2.3.1.1. Subjects 

10 subjects (aged 20–33, 5 female, with normal or corrected-to-normal vision), were 

recruited from an advert. They were instructed that they would be paid according to 

their performance. 

2.3.1.2. Stimuli  

The stimuli were identical to those in Experiment 1, except that during the fixation 

period, the 6 dark red discs were not visible. They appeared, instead, after fixation had 

been acquired for 400 ms, and remained visible for the foreperiod. In this experiment 

the foreperiod varied from 400 to 600 ms. The dark red discs were brighter than in 

Experiment 1, with an intensity of 25%. 

2.3.1.3. Design  

In order to examine the effect of location repetition, the target and distractor on the 

current trial could either be in different locations, or in the same locations, as the 

previous trial (Figure 2.6a). Additionally, when occupying the same locations, the 

target and distractor could be in switched positions: the target appearing at the previous 

distractor location, and the distractor appearing at the target location. I predicted that an 

identical configuration would lead to reduced oculomotor capture, whereas swapped 

locations would lead to increased capture, compared to the “neutral” non-repeated 

condition.  Such an effect could be due to two separable causes: saccades to the target 

could be facilitated if the location was previously occupied by a target, or inhibited by a 

previous distractor. Similarly, saccades to the current distractor could be facilitated if 

its location was previously a target, or inhibited by a previous distractor.  

In order to disentangle these two possibilities, four more conditions were 

employed (Figure 2.6b). In these conditions, only one of the locations was repeated. 
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The target alone, or the distractor alone, was at the same location as either the target or 

distractor on the previous trial. Note that two of these conditions (top two in figure) 

examine the history of the current distractor location, and the other two (lower two in 

figure) examine the history of the current target location. 

Thus in total, there were 7 ways in which the positions of distractor and target 

could be related to the positions on the previous trial. They could both remain in the 

same position; the distractor could move while the target remained fixed, or vice versa; 

the new target location could be the old distractor location while the distractor moves; 

or the new distractor location could be the old target location while the target moves; or 

finally, the distractor and target could switch locations. Each of these 7 transition types 

was equally probable. Each subject performed 10 blocks. The experiment took between 

45 minutes and 1 hour. 

 

Figure 2.6: Study 2: Design to examine trial-to-trial effects 

I manipulated the location of the target and distractor on the previous trial according to the seven 

possibilities shown. a) The target and distractor could appear in completely new locations, or at the 

same locations as on the previous trial. They could also occupy the same locations as before, but be 

swapped around so that the target and distractor are flipped, compared to the previous trial.  b) Four 

more conditions were used to determine the cause of the speeding by repetition, and slowing by 

reversal of target and distractor locations. In these conditions, only one location was repeated.  
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2.3.1.4. Reward 

Maximum reward was fixed at 20p, and penalty fixed at 2p. Subjects were informed of 

this at the start of the experiment, and therefore no further instruction was needed at the 

start of each block regarding reward and penalty. The same rules and equation governed 

reward as in Experiment 1. The reward falloff time was fixed with a time constant of 

25ms, and minimum time tmin was adjusted to subjects’ practice performance as before. 

2.3.2. Results 

2.3.2.1. Manipulation of trial history 

On each trial the locations of target and distractor were chosen from the seven possible 

transitions (Figure 2.6). The penalty and the maximum reward were held constant. I 

calculated angular deviations and proportions of capture as previously, for each of the 

transitions. 
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Figure 2.7: Results of the study 2: Effect of missed rewards  

a) Trials were first broken down according to what was previously at the current target or distractor 

location. I then examined separately whether subjects had previously looked at this location or not. 

To do this, trials were broken down according to the outcome of the previous trial: rewards or 
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penalties could have previously been obtained or missed. b) The red and blue lines correspond to 

the eight conditions above in (a). Distraction was increased only in the condition where subjects 

previously missed a reward at the current distractor location. The proportion of capture on the 

three control trial-types (see Figure 2.6) are shown on the left. c) Reaction times are shown for the 

conditions corresponding to the conditions above.  

As predicted, on trials which were identical to their antecedents, capture was minimal 

(6%), and on trials with swapped target and distractor locations, capture was maximal 

(38%). Neutral trials, where neither target nor distractor locations previously contained 

a colour, had intermediate capture (21%). 

As in study 1, I compared trials in which the current distractor location was 

previously a target, with trials in which the current distractor was previously a 

distractor. For each subject, I first examined the proportion of saccades that went to the 

distractor, as compared to the proportion of saccades that went to any other non-target, 

non-distractor location (i.e. an irrelevant, grey disc). There was significantly more 

oculomotor capture when the current distractor location had been occupied by a target 

in the previous trial – and this was specific for saccades to the distractor location 

(Figure 2.7, interaction between previous distractor status and error type, F(9,1)=11.3, 

p=0.008). This confirms that a previous reward can increase oculomotor capture to a 

distractor at that location. Could this increased capture be due to faster responding? 

There was no evidence for a difference in median error reaction times between the 

location-history conditions (i.e. when the distractor was previously a target, vs. when it 

was previously a distractor, paired 2-tailed t(18)=0.42, p=0.68). 

But could the effect of trial history be due perceptual priming of a target 

location? Or perhaps due to subjects looking to the same location just previously (i.e. a 

perceptual or motor repetition facilitation effect)? 
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2.3.2.2. Effect of previous trial outcome 

To clarify this issue, I subdivided trials according to where subjects had previously 

looked (Figure 2.7a). For the trials whose history differed only at the distractor-

location, I divided them according to whether subjects previously 

(1) looked at the location of the current distractor  

(i.e. action-repetition would result in penalty) or 

(2) looked at a location which was neither a current reward or penalty 

(action-repetition would not result in reward or penalty). 

Similarly, trials where target-location history was manipulated were divided according 

to whether subjects previously looked at the location of the current target or not. 

This factor, saccade-history, was analysed orthogonally to location-history 

(Figure 2.7a). As above, the distractor being at the previous target location significantly 

reduced capture (F(1,36)=18.7, p=<0.01). Additionally, there was more capture when 

the current distractor location was also the endpoint of the previous trial’s saccade 

(F(1,36)=6.3, p=0.017). But crucially, location history interacts with previous gaze: the 

effect of what was previously at the distractor location was +19% when it was 

previously looked at, compared to +29% when it was not looked at (significant 

interaction, F(1,36)=5.3, p=0.027). Capture is therefore increased when the distractor 

was previously a target, but only when subjects did not get the reward there.  In other 

words, distraction was greatest when subjects previously missed a reward at the current 

distractor location (Figure 2.7b). 

This effect is unlikely to be explainable in terms of response times, as there was 

no corresponding interaction for reaction times (Figure 2.7c). Although there was a 

trend for subjects to be slower when the distractor was previously a distractor (main 
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effect of location-history F(1,14)=3.5, p=0.08), they are not significantly slower or 

faster after they previously received a reward at the current distractor than when they 

missed one there (i.e. there is post-error distractibility without speeding). This 

dissociation argues against a simple speed-accuracy trade-off. 

2.3.3. Discussion 

To investigate the trial-to-trial effect found in study 1, study 2 manipulated the location 

history of each trial. Again, I found distraction was greatest when the distractor location 

was previously occupied by a valued target. However, this was only the case when 

subjects did not actually get the reward at that valued target – i.e. when they were 

previously distracted to a different location, and had missed the reward at the location 

which subsequently became the distractor.  I attribute this interaction to ‘missed 

rewards’. 

2.3.3.1. Explaining the “missed-rewards” effect 

Motor priming or perseveration cannot explain my findings, as subjects are less likely to 

repeat the previous eye movement on the current trial. Inhibition of return (IOR) thus 

initially appears to be a candidate for explaining the increased capture after a saccade to 

the location that becomes the next target. Conditional IOR has been suggested 

previously to explain such effects (Hodgson et al., 2002a). However, my effect is 

specific to cases where that location was previously a distractor. No decrease in capture 

is seen when subjects saccade to a target that is subsequently a distractor. To explain my 

results, inhibition of return would have to occur only if the location was penalised. . 

One might ask whether this location-specific increase in capture could be 

explained as ‘error correction’ responses. Rabbitt (1966) showed that there are more 
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errors after an error trial. He proposed (Rabbitt and Rodgers 1977) that some of these 

‘double-errors’ could be accounted for as corrections of the previous error. My 

experiment has shown that after missing a rewarded target, subjects are more likely to 

be captured by a salient distractor at that location. I think this is unlikely to be a 

corrective response. Firstly, error corrections occur within a few hundred milliseconds 

of the error response (Rabbitt 1966b; Rabbitt 2002), and are thought to be initiated 

almost contemporaneously with the error. In my study, subjects were required to re-

fixate at the origin after each trial, followed by a foreperiod of at least 500ms. Secondly, 

there was a trend for the effect in Experiment 1 to be modulated by reward and penalty 

size (3-way interaction of reward level with the history, p=0.298). This implicates 

reward in increasing distraction. Thirdly, there was no corresponding decrease in 

capture when subjects previously missed a reward at the current target location. This 

suggests the effect is specific to increasing the effective salience of singleton distractors, 

not simply the preparation of a corrective movement. 

An alternative interpretation of the finding could be that subjects adopt a 

strategy, for example, win-stay, lose-switch. I argue that the pattern seen in Figure 2.7b 

could not be explained by strategy alone, for two reasons: firstly, such a strategy is not 

seen for the outcome previously at the target location; the effect is valence-specific, i.e. 

subjects are not captured more when they previously attained the reward at the current 

distractor location. Secondly, even if a more complex strategy is invoked, for example 

specifically including valence histories, the effect is location-specific. Distractibility is 

contingent upon where the target and distractor appear on the new trial: subjects are not 

captured less if the current target location was previously a missed reward. 
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For these reasons, I think these effects are most parsimoniously explained by 

distraction being specifically enhanced by missed rewards. 

2.3.3.2. Relation to previous studies 

The results are consistent with previous work on the capture of attention when a feature 

has previously been rewarded (Della Libera and Chelazzi, 2009; Hickey et al., 2010a). 

It may be helpful to compare my findings with a related experiment on feature-based 

selection. In a search paradigm, if a colour singleton distractor changes colour from trial 

to trial with the other items’ colour remaining constant, reward has no effect on ability 

to filter out the previous distractor colour. But conversely, if a colour singleton remains 

the same colour, and the other items’ colour changes from trial to trial, reward improves 

selection of the previous target colour (Hickey et al., 2011). The authors interpret this as 

suggesting that rewards facilitate target selection priming but have little effect on the 

priming of distractor filtering.  

My findings parallel this study in the spatial domain. Reward at the target 

location gives that location a selection advantage on the next trial, whereas the penalised 

distractor does not carry spatial inhibition to the next trial. Hickey et al. find that the 

reward effect of boosting the previous target feature operates both by improving 

performance when the target repeats, and by worsening performance when the target 

changes. But in my study, we find that the reward effect at the previous target location 

only has an effect if a distractor appears at that location.  

2.4. General discussion 

Study 1 demonstrates that the available rewards or penalties can modulate the amount of 

oculomotor capture. Subjects are slower and more accurate with penalties, and are faster 



2. Missed rewards capture attention 2.3. Study 2: Effects of reward history on distraction 

 
110 

and more accurate with moderate rewards (Figure 2.3). The highest reward level in my 

study appears to result in “choking under pressure”. Distraction was greatest for short-

latency saccades. I interpret the results as demonstrating that attentional capture by 

bottom-up salience can be reduced by motivation, particularly later during a trial.  

Study 2 shows a specific spatial interaction between rewards on the previous 

trial and oculomotor distraction. This entails a spatially-specific representation of 

reward that is present before the onset of a stimulus. Only when a reward was 

previously missed is distraction enhanced at that location (Figure 2.7a); I interpret this 

as a lingering, but spatially specific, reward prediction error signal. 

The persistence of a spatially specific representation of past outcomes, e.g. 

reward and penalty, appear to guide attention subsequently. Recently interest has grown 

in possible links between working memory and attention, motivated by findings on the 

maintenance of attentional templates (Olivers et al., 2011). The focus of attention can 

literally be an item in working memory (Cowan, 2011) and can exert facilitatory or 

inhibitory effects on externally directed attention (Olivers, 2009). Although the focus of 

these theories has been primarily on object features, applicability to spatial locations 

could explain why persistence of reward and penalty representations can influence 

future orienting. 

Analogies can be drawn with the findings from set-switching tasks, in which 

subjects have to either ignore a previously relevant feature, or attend to a previously 

irrelevant feature. A recent study has shown that affective stimuli can modulate feature 

selection (Dreisbach and Goschke, 2004). Viewing faces with a positive affect 

facilitates ignoring a distractor that was previously relevant, but impairs attending to a 
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target that was previously irrelevant. If reward has similar effects to positive affect, 

there is a case that a common dopaminergic mechanism underlies both phenomena. 

What psychological mechanism could be responsible for this modulation of 

capture by missed rewards? One candidate is a spatial reward-expectation map. Milstein 

and Dorris (2007) showed that reward expectation can be location-specific, and can 

modulate the preparation of eye movements. The effect of spatial reward expectation on 

oculomotor capture builds up over time during each trial (Ding and Hikosaka, 2007a). 

My study has the implication that these maps retain information from trial-to-trial, and 

critically that they interact with reward feedback mechanisms.  

However, in the oculomotor capture paradigm, attention appears to be prioritised 

to locations where there is a negative reward prediction error. This seems to be different 

to studies of top-down attentional modulation by reward, in which items that are 

associated with reward (i.e. carry a positive reward prediction error) are prioritised. 

Why might this be? The relatively short inter-trial interval I used may prevent 

preparatory effects before each trial. One possibility is that early direction of attention to 

locations uses an independent reward map. Specifically, reward expectation at a 

location has a stronger effect on oculomotor preparation when it was not obtained on 

the previous trial.  

2.4.1. Conclusion 

I have shown that in an oculomotor task with reward for fast responding, increasing the 

available reward causes both faster responding and reduced oculomotor capture, but can 

result in choking under pressure when the reward is very high. Adding increasing 

penalties for capture also reduces capture, but with concomitant slowing. I then showed 

that capture depends in a specific way on what happened on the previous trial: subjects 
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are captured when the distractor is at a location that was previously a target, but that this 

occurs specifically when the eyes were captured by the distractor on the previous trial - 

i.e. if that previous target was missed. The findings are consistent with a late-effect of 

reward. I suggest that this spatially specific effect of previous errors corresponds to the 

retention of a reward prediction error in a spatial map. 
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3. Trial-to-trial incentives influence capture 

3.1. Introduction 

Chapter 2 demonstrated two effects: firstly that from block to block, subjects were able 

to use current reward levels to adjust their propensity to be distracted, as indexed by 

oculomotor or gaze capture. Secondly, distractibility showed rapid dynamic changes 

from trial-to-trial as a function of how much money was obtained, and from which 

location. Since study 2.1 kept reward expectation constant for a whole block of trials, 

effects may have been weakened by subjects adapting to the current reward level during 

a block.  

Furthermore, because the studies in chapter 2 used colours to identify the target 

and distractor, the effects may also have been driven by reward-to-colour associations 

learned during the block, as reported in some previous investigations (Anderson et al., 

2011a; Della Libera and Chelazzi, 2006; Hickey and van Zoest, 2012a; Hickey et al., 

2010c).  

Although such long-term reward associations have been extensively examined 

(Ding and Hikosaka, 2006; Tachibana and Hikosaka, 2012; Watanabe et al., 2001), 

relatively few studies have manipulated reward cues trial-by-trial. A natural next 

question, therefore, is whether humans can use explicit moment-to-moment incentives 

to adjust their distractibility, an issue that I investigated in the experiments reported 

here. 

In monkeys, cues predicting high rewards can reduce breaks of fixation, speed 

saccadic latencies and velocities, and improve memory (Kennerley and Wallis, 2009; 
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Leon and Shadlen, 1999) but they can also promote distraction by themselves capturing 

attention (Peck et al., 2009). In humans, reward incentives can shorten prosaccade 

latencies, and improve both the accuracy and speed of antisaccades (Blaukopf and 

DiGirolamo, 2006; Jazbec et al., 2005; Mueller et al., 2010; Ross et al., 2011).  

These studies, and others (Blaukopf and DiGirolamo, 2006; Ross et al., 2011), 

used a visual cue to signify incentive, such that the reward cue could itself capture 

attention. These stimulus-specific effects could be explained if reward facilitated 

preparation of specific motor plans—akin to goal-tracking in rats—and therefore differs 

from the global motivation increase we observed in Study 2.2. One potential way to 

minimise any motor plans towards the reward cue would be to use a non-visual reward 

cue, a strategy I elected to employ in the present study.  

 

The missed reward effect demonstrated in chapter 2 was dependent on location 

history from the previous trial. Other studies specifically using rewarded saccades have 

shown that a spatial map of reward value can effectively bias subsequent fixations 

towards highly rewarded locations (Ding and Hikosaka, 2007b; Milstein and Dorris, 

2007b). Such a ‘map’-like representation might well have been responsible for the 

effect we observed in Chapter 2 where missed rewards captured attention. But between 

trials, subjects had to refixate the central cross. This makes it difficult to know whether 

the effect was truly location-based, or action-based. In other words, if a reward is 

missed at a particular location, we cannot tell whether saccades in that direction are 

facilitated (e.g. due to motor program facilitation), or saccades to that location in space 

are facilitated (e.g. due to a spatial ‘map’ of reward). After an error, planning of error-

correction responses may also cause effects on the subsequent trial (Rabbitt 1966; 
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Rabbitt 2002), again consistent with the view that the observed missed reward effect 

could also be explained as motor planning.  

To tease apart the motor plan history from spatial location history, in the current 

study I developed a task in which subjects did not refixate a central fixation point 

between trials. Specifically, in this task I used a design in which participants gazed 

between three locations (three circles in top panel of Figure 3.1). On each trial, the 

currently fixated item was the point of departure for the next saccade. The target would 

be one of the other two locations, while the distractor would appear at various intervals 

prior to the target at the third possible location. Moreover, none of the locations 

themselves would have a visual cue that signalled the potential reward if the target was 

acquired. Instead, in this new task, the stake was announced by an auditory recording 

heard at the beginning of each trial. 

In addition to the likelihood of being distracted, there are reasons to suspect that 

reaction times or saccade velocities might be speeded by incentives (Chen et al., 2013; 

Haith et al., 2012; Xu-Wilson et al., 2009)—perhaps to simultaneously maximise 

reward and minimise effort (Niv et al., 2007). But if reaction times are speeded, and 

distraction is also reduced, one might expect to see signs of increased top-down control 

during the motor responses. Saccades have traditionally been thought of as ballistic 

movements that, once initiated, continue to the planned target rapidly without further 

input. The brainstem circuits for implementing this ballistic control have been studied 

and modelled extensively in cat, rabbit and primates (Ramat et al., 2007; Robinson, 

1968, 1981). Intriguingly, recording from the brainstem and frontal eye fields have 

shown that early activation of neurones encoding distractors are associated with curved 

saccades (McPeek, 2006; McPeek et al., 2003; Port and Wurtz, 2003).  
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These observations suggest that distortion of the trajectories of saccades induced 

by a distractor might reveal mechanisms of how distraction is controlled (Bhutani et al., 

2012; Van der Stigchel, 2010). In particular, given that reward can modulate saccade 

direction (Stritzke et al., 2009), reward modulation of curvature induced by a distractor 

would suggest that rewards can alter early distractor activity in neuronal oculomotor 

maps (Hickey and van Zoest, 2012a; Schütz et al., 2012a). If incentives could increase 

the control exerted at this low level, we might expect to observe greater curvature away 

from the distractor.  

Finally, effortful control in cognition has also been linked to arousal and 

noradrenergic activity (Aston-Jones and Cohen, 2005). Pupillary dilatation is associated 

with effort, emotion and surprise signals (Preuschoff,  ’t Hart, and Einhauser 2011; 

Beatty 1982; Bradley et al. 2008; Satterthwaite et al. 2007), which may reflect 

noradrenergic activity in the locus coeruleus (Gilzenrat et al. 2010; Aston-Jones and 

Cohen 2005; Murphy et al. 2011). As such, pupillary responses to reward cues might 

provide an independent measure of subjective or even subconscious appraisal of reward 

(Bijleveld et al., 2009; Laeng et al., 2012). We therefore hypothesised that highly 

motivating cues ought to evoke pupillary dilatation. 

 

One additional aspect of the effects of reward on distractibility I wanted to investigate is 

the effect of ageing. Some previous reports have generally observed increased 

distractibility with age using oculomotor  (Kim et al., 2007; Machado et al., 2009) and 

verbal tasks (e.g. Kim et al. 2007). However, no previous investigation has reported on 

how rewards modulate distractibility with age. Hence, I also elected to examine this 

issue. 
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3.2. Study 1: Rewards modulate oculomotor capture 

3.2.1. Methods 

3.2.1.1. Participants 

Twenty-seven healthy male volunteers were recruited from an advert, age range 18 to 

36, all with normal or corrected-to-normal vision. Subjects were instructed that they 

would be paid according to their performance, with a minimum of £8 and maximum 

£12. Three subjects did not complete the task due to eye tracking difficulties and time 

constraints, so 24 subjects were analysed.  

3.2.1.2. Materials 

Participants sat 60 cm in front of a 21” CRT with resolution 1024x768 pixels at 100 Hz. 

Stimuli were presented on a PC running Matlab (The MathWorks) and Psychophysics 

Toolbox under Windows. A frame-mounted Eyelink 1000 (SR Research) infrared 

tracker monitored left eye position relative to the screen, sampled at 1 kHz. Eye 

movements were parsed online by the Eyelink PC and sent to the presentation PC over a 

patch cable, to provide immediate feedback. Randomised 9-point calibration was 

performed at the start of the experiment. 

3.2.1.3. Task 

Participants were instructed to move their eyes as fast as possible to the disc that was 

illuminated second. They were told that the first disc that lit up would be a distractor, 

and the second, the target. Three screen locations were indicated by dim grey discs, 

each 4° diameter, arranged in an equilateral triangle 11.4° apart (Figure 3.1A). One disc 

was illuminated brightly at the start of the trial, and participants were required to fixate 



3. Trial-to-trial incentives influence capture 3.2. Study 1: Rewards modulate oculomotor capture 

 
118 

this for 500 ms to start the trial. Then participants heard a recording of a voice speaking 

the maximum reward available for that particular trial. Three reward levels were used: 

0p, 10p or 50p. This indicated the maximum amount participants could win on a trial, if 

they looked very fast towards the target (second disc) that was illuminated. 

Simultaneous with the voice, the fixation disc changed colour to yellow, approximately 

equiluminant to the bright disc, to indicate the start of the trial. 

 

Figure 3.1: Oculomotor capture task with trial-wise incentives  

A) Three equidistant discs were dimly illuminated. At the start of each trial, participants had to 

fixate one disc which was brightened. A recorded voice gave an auditory reward cue, one of “0p 

maximum”, “10p maximum” or “50p maximum”, which indicated the amount of money that could 

be won if subjects were accurate and fast on that trial. After a variable foreperiod, the other two 

discs were illuminated asynchronously, with a delay of 40 to 120 ms. Subjects were instructed to 

look as fast as possible to the second disc—thus the first onset acted as an early onset distractor, and 

the second disc indicated the target.  

B) After gaze arrived at the target, subjects were rewarded according to reaction time. Reward was 

calculated as a fraction of the maximum available, using an exponential falloff. The falloff was 
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determined adaptively using quantiles of the last 20 trials, in order to maintain the difficulty level 

over the course of the experiment.  

After a non-ageing foreperiod of 1200-1600 ms, the fixation disc (the current point of 

regard) was dimmed, while one of the other discs brightened (the distractor). After a 

variable interval, the third disc (the target) was illuminated. This display remained until 

gaze arrived at the target. The time taken to reach the target (from fixation offset until 

gaze arrived at the target) was used to calculate reward (Figure 3.1B) as follows: 

   (3.1) 

to the nearest penny, where R is reward for the current trial, t is the time taken to reach 

the target, Rmax is the maximum reward that could be won on a given trial, and τ1 and τ2 

are adaptive reward criteria (see below). 

Reward was displayed as a red integer in the target disc as soon as the target was 

reached. This was accompanied by a bell sound when the reward was 10p or greater, or 

a ‘cash register’ sound when 30p or greater was won. Importantly, the target location 

was then used as the starting point for the next trial—thus trials formed a continuous 

sequence of saccades moving around in a triangle. The next trial’s target was chosen 

randomly from the two possible destinations so that, over the experiment, all three 

locations were equiprobable as target or distractor. 

Unknown to participants, the RT criteria τ1 and τ2 were adaptively adjusted 

using the last 20 trials. The criteria tracked quantiles of the RT distribution, keeping 

10% of trials faster than τ1 and 30% of trials slower than τ2. This ensured that 
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participants experienced the full range of outcomes irrespective of their baseline 

reaction speed. 

Participants performed 5 blocks of 54 trials each, with a 2 minute break between 

blocks. There were three reward cues of 0p, 10p, 50p, three possible starting locations, 

two possible target locations relative to this starting location, and three possible delays 

between the distractor and target of 40 ms, 80 ms, or 120 ms—termed the stimulus-

onset asynchrony (SOA). Thus each block consisted of 18 trials for each reward level. 

3.2.1.4. Trajectory Classification 

Saccades were parsed using criteria on velocity of 30° s-1, acceleration > 8000° s-2 and 

amplitude > 0.15°. Saccadic reaction times were calculated as the time from cue onset 

until this threshold was exceeded. Responses were classified according to the trajectory 

of the eyes after initiation of the first saccade (Figure 3.2).  

For the first saccade made during the response period, the angle of departure was 

calculated relative to the target and distractor. The trial was classed as an error if the 

first saccade’s amplitude was greater than 5°, and its endpoint was closer to the 

distractor than to the target. The next saccade whose amplitude was greater than 5° and 

whose endpoint was closer to the target was counted as an error-correction.  

Trials were classed as correct if the first saccade was larger than 5° and its endpoint was 

closer to the target than the distractor. Correct trials could be further subdivided 

according to the angle of departure. Saccades could be straight to the target (angle 

within ±15° from target direction), or be pulled towards the distractor, or pushed away 

from the distractor (see Figure 3.2). This provided a sensitive measure of the pull of the 
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distractor (Van der Stigchel et al., 2006). Trials with blinks before the first 5° saccade 

were discarded (3% of all trials). 

 

Figure 3.2: Trajectory classification 

The path of gaze was classified according to whether the first saccade terminated on the target, 

distractor, or in-between. ‘Correct’ trials, where the first saccade was to the target, were further 

subdivided according to the curvature of the saccade. In this figure, each trial is coloured according 

to the initial direction of the eye velocity.  

3.2.2. Results 

3.2.2.1. Effects of reward  

On average, errors were made on 35% of trials (s.d. 15%). On correct trials, peak 

saccade velocity was calculated for the first saccade with amplitude greater than 1 
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degree. Trials were grouped according to incentive, and one-way ANOVA was 

performed on the velocities. Saccades were faster on trials when high reward cues were 

presented, with a mean velocity of 483° s-1 compared with 464° s-1 in low reward trials 

(Figure 3.3, F(1,47)=40.3, p<0.001). Thus a key effect of incentive was to significantly 

invigorate gaze responses, as indexed by saccadic peak velocity. This effect of reward 

on saccadic velocity was highly robust, with a positive velocity gradient present in 22 

out of 24 subjects, reaching significance at the single subject level in 12 subjects 

(within-subject regression or velocity against incentive, p<0.05).  

We also examined the amplitude of this first saccade. Amplitudes were also 

found to be larger with increasing reward, with a mean hypometria of 0.04° with high 

reward compared to 0.26° for low reward (F(1,47)=13.3, p<0.001). It is well known that 

saccade amplitude is a strong determinant of velocity—a phenomenon known as the 

“main sequence” (Bahill, Clark & Stark 1975). Longer saccades have proportionally 

faster peak velocities.  Could the modulation of velocity by reward (as in Figure 3.3D) 

be explained by these amplitude effects? A stepwise regression was used to remove the 

variance in velocity explained by amplitude. Reward was then used to predict the 

residuals from this regression, such that any effect here could not be attributed to the 

modulation of amplitude. Reward still influenced velocity (F>2.75, p<0.05), 

independently of amplitude, at the group level, and in 11 of the 12 subjects who showed 

significant velocity effects before.   

Reaction times on correct trials were measured from distractor onset until the 

onset of the first saccade >1° in amplitude. The mean reaction time on correct trials was 

245 ms (s.e.m. 47 ms). RT was 11 ms faster in the high-reward condition compared to 

no-reward (main effect of reward, F(1,47)=9.62, p=0.0032). Thus incentive increased 
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response speed both in terms of saccadic velocity and RT. Did this adversely affect 

distractibility? 

 

Figure 3.3: Effects of reward on saccades in young volunteers 

A) For each of the three reward incentive conditions, I plotted the proportion of trials on which the 

first saccade after the onset went to the distractor. These errors to the distractor were termed 

“oculomotor capture”. There was no effect of reward in these subjects.  Error bars are within-

subjects standard error of the mean. 

B) For trials which were correct, i.e. the first saccade went to the target, we plotted the mean time 

from distractor onset until the start of the first saccade—i.e. the saccadic reaction time. RTs were 

faster for higher incentives.  

C) For trials on which an oculomotor capture occurred, i.e. the first saccade went to the distractor, I 

plotted the mean time until the correction of the error—i.e. the total time until the target was 

reached. The correction time was speeded by rewards. 

D) For each correct trial, the peak saccade velocity was calculated. The mean peak velocity was 

speeded by rewards. 

Importantly, there was no effect of incentive on the proportion of oculomotor 

capture errors (Figure 3.3; arcsine-transformed, p>0.05). Thus control of gaze, indexed 
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by velocity and RT, was modulated by incentives but without an overall cost in terms of 

percentage of trials in which participants were distracted by the non-target. However, on 

capture trials (i.e. when gaze was distracted, defined as trials in which the first saccade 

>1° landed closer to the distractor than the target) saccadic reaction times were 

significantly faster (F(1,47)=9.6, p=0.0032) and there was a trend to speeding by reward 

(F(1,47)=3.35, p=0.073). On capture trials, the time taken to correct the error (i.e. time 

until the start of first saccade that ended in the target circle) was also computed. 

Correction RTs were also faster when higher rewards were available (F(47,1)=21.9, 

p<0.001), occurring 276 ms after the error in high reward trials, compared to 307 ms in 

low reward trials.  

3.2.2.2. Saccades curve away from the distractor 

To quantify curvature, we calculated the angle of departure of each correct saccade, 

relative to the saccade’s endpoint direction. A positive value indicates that the saccade 

was initially directed more towards the distractor; so although the saccade accelerated 

away from the distractor, we describe this as curvature toward the distractor (Figure 

3.2B). Similarly, negative value indicates a saccade that was initially directed more 

away from the distractor (Figure 3.2C). As in other studies (Hickey and van Zoest, 

2012a; Schütz, Trommershäuser, and Gegenfurtner 2012), saccades overall tended to 

curve away from the distractor, with a mean of 3.6°. Curvature of saccades was not 

modulated by reward level in these participants, though there was a trend for reward to 

increase curvature away from the distractor (F(1,47)=3.76, p=0.058).  

3.2.2.2. Higher incentives dilate the pupils 

At the start of the trial, once fixation was stable, the auditory reward cue was played 

with a simultaneous brightening of the fixated disc, followed by a 1200 ms to 1600 ms 
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foreperiod. I analysed the pupillary response to the cue during this interval, relative to 

baseline. The mean change in pupil size at 1200 ms after the auditory cue was plotted 

for each reward condition (Figure 3.5A). The pupils were significantly more dilated 

after high-reward cues, compared to low reward cues (F(1,47)=31.5, p<0.001). To 

visualise this, the pupil diameter trace after the cue was smoothed over 10 ms time bins, 

interpolating over gaps under 500 ms. At each time bin, a linear model was used to 

extract the dependence of pupil size on the cued maximum reward, and on the winnings 

on the previous trial (Figure 3.4):  

 (3.2) 

where ΔPupil represents change in pupil size at one moment in a trial, βi are the fitted 

coefficients for each contribution, depending on the type of the current trial t and 

previous trial t-1, and ε is a Gaussian random variable. This expresses pupillary trace as 

a linear combination of four functions: the grand average of all trials, and the main 

effects of current incentive, previous winnings, and previous incentive. 

The lines in figure 3.4 (β1, β3 and β3) represent the effect strengths of each factor 

in the above equation, as they vary over the foreperiod, after the incentive cue. Positive 

deviations indicate that the factor dilated the pupil, whereas negative deviations indicate 

constriction.  

The current trial’s incentive caused significant pupillary dilatation. The effect is 

given by β1 (Figure 3.4, yellow trace). When β1 is positive, it indicates that the pupil 

size change from the pre-cue baseline correlated positively with the amount of money 

signalled by the incentive cue. Thus the yellow trace shows the extent to which pupil 

size was influenced by the reward cue. This incentive effect β1 became significantly 
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different from zero 560ms after cue onset (criterion t(24)<0.05). This positive deflection 

indicates that higher rewards caused pupillary dilatation, relative to low rewards. 

The previous trial’s reward incentive influenced pupil diameter in the opposite 

direction to the current trial’s reward cue, indicated by a significantly negative value for 

β3 from 564 ms after the auditory cue (Figure 3.4, blue trace). The negative value of β3 

indicates that previous incentive size was negatively correlated with pupil change, i.e. 

when the incentive on the previous trial was high, the pupil was more constricted on the 

current trial, compared to baseline. Thus, high previous incentives caused relative 

pupillary constriction compared to previously low incentives. This suggests the pupil 

encodes the current trial incentive relative to the previous trial.  It takes about 560 ms 

for the pupil to reflect this relative value. 
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Figure 3.4: Incentives influence the pupil after the reward cue 

For each moment after the auditory reward cue, the pupil size was regressed against the cued 

incentive (3 levels, treated as a continuous regressor) and the amount won on the previous trial. The 

mean value of the regressor (i.e. the slope or sensitivity to reward) across subjects was plotted. The 

shaded area represents the standard error of the mean across subjects. 

To test whether the reward sensitivity of the pupil predicts how sensitive a 

subject’s RT is to reward, I compared the gradient of pupil change vs. reward, with the 

gradient of RT vs. reward, for each subject. The correlation across subjects for these two 

measures is shown in Figure 3.5B (green circles; purple circles show the comparable 

analysis for study 3, below). The two measures of reward sensitivity did not correlate 

significantly across individuals (r2=0.003, p=0.80), suggesting that subjects whose RT 
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was sensitive to reward did not necessarily have pupils responsive to reward. Rather, the 

amount of reward modulation of action timing is independent of autonomic reward 

responses, as indicated by pupil size.  

 

Figure 3.5: Pupillary sensitivity to reward cues 

A) For each trial, we took the pupil size at 1200 ms post-cue minus the baseline on that trial. The 

mean change in pupil size was plotted for each reward incentive condition. High reward cues cause 

dilatation of the pupil, relative to low reward cues.  

B) To examine whether the sensitivity of the pupil to reward is related to performance, we plotted 

the slope of the pupil-to-incentive function for each subject on the abscissa, and the slope of the RT-

to-incentive function on the ordinate. There was no correlation between participants’ pupil reward 

sensitivity and RT reward sensitivity. Data in green are from Study 1; data in purple are from Study 

3, Section 3.4.2.3. 

3.3. Study 2: Practice in oculomotor capture 

To assess reliability and practice effects, I examined performance again in some of the 

participants after a fortnight. 
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3.3.1. Method 

Of the 27 subjects who completed experiment 1, 21 were able to return for repeat testing 

after 2 weeks. Subjects were instructed again as in section 3.2.1.3, and performed the 

same behavioural task. Two subjects only completed 4 out of 5 blocks due to time 

constraints, and so 19 subjects were analysed. 

3.3.2. Results 

3.3.2.1. RT and reward sensitivity are reliable across sessions 

Reaction times correlated across the two sessions, establishing the validity of the 

measure (Figure 3.6, r2=0.37, p<0.005). Reward sensitivity was calculated for each 

subject in each session using linear regression over the reaction time on correct trials. 

Reward sensitivity—the regression slope—also correlated significantly across the two 

sessions (r2=0.31, p<0.01).  
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Figure 3.6: Session-to-session reliability 

A) Session 2 took place 1 to 3 weeks after session 1. The mean RT for correct saccades in session 1 

correlates with the mean RT in session 2. The dotted line indicates the linear fit, and the black line 

indicates 1:1 correspondence. Note that RTs were generally faster in session 2 (i.e. below the black 

line).  B) The RT-to-incentive function yields a slope, indicating reward sensitivity of RT. This 

measure also correlated well across the two sessions. The coincidence of the black and dotted lines 

suggests the absence of an overall practice effect. 

3.3.2.2. Practice does not affect reward sensitivity 

A within-subjects ANOVA was performed to examine the effect of practice. Error rates 

were significantly lower in session two (Figure 3.7A, reduced from 37% to 33%, 

F(1.102)=10.2, p=0.0018), but there was no interaction with reward (p>0.05). Reaction 

times on correct trials and error-correction trials were both significantly faster in session 

2 (both F(1,102)>40, p<0.001) with no interaction with reward (p>0.05). There was no 

difference in peak velocity between the two sessions and importantly the relationship 

between reward and peak velocity remained unchanged. (Figure 3.7D). 

The net curvature away from the distractor was on average 4.1°, comparable to 

study 1. Notably this was not significantly different from the curvature in session 1, and 

there was no effect of reward (p=0.61).  
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Figure 3.7: Effect of practice and reward on saccades 

Lines in green are the same data as shown in Figure 3.3, but using only the subjects who returned in 

experiment 2. Data from session 2 is shown in blue.  

A) The proportion of trials on which oculomotor capture errors occurred was lower in session 2.  

There were no significant effects of reward nor interaction. 

B) RTs in session 2 were faster than in session 1. Speeding by reward was again evident, with no 

interaction with practice.  

C) The time to correct an error was speeded both by reward and by practice, with no interaction. 

D) Peak saccade velocity was speeded by reward, and did not differ between the two sessions. 

3.4. Study 3: Age and oculomotor capture 

Age is known to slow reaction times (Botwinick, Brinley, and Robbin 1958; Rabbitt 

1964). We wished to compare whether reward effects would be similar in an older 

group of participants, compared to our subjects in study 1. 
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3.4.1. Methods 

22 healthy older volunteers were recruited from an advert. The mean age was 62 years 

(range 41 to 76), and all had normal or corrected-to-normal vision. All participants 

performed a variant of the same oculomotor capture task as in Experiment 1.  

3.4.1.3. Oculomotor capture task 

The oculomotor capture task was similar to that in Study 1 and 2, except that the 

asynchrony between the distractor and saccade target was fixed at 80 ms, and an 

additional 500 ms delay was inserted after the saccade but before reward feedback. 

Subjects performed 4 blocks, totalling 216 trials, giving 72 trials in each reward 

condition.  

3.4.1.4. Questionnaire measures 

Impulsivity has previously been implicated in distractibility by rewards (Anderson et 

al., 2011a). To study whether saccadic measures of reward sensitivity correlated either 

with reward-seeking or impulsivity traits, participants completed two established 

questionnaires. The UPPS impulsive behaviour scale (Whiteside et al., 2005) measures 

lack of premeditation, urgency, sensation-seeking and lack of perseverance. The 

BIS/BAS behavioural inhibition and activation scales (Carver and White, 1994) yield 

three scores: a behavioural inhibition scale, reward sensitivity, drive, and fun-seeking. 

Other studies have suggested that individuals with low working memory capacity are 

especially vulnerable to attentional capture (Anderson et al., 2011a; Fukuda and Vogel, 

2009); therefore we also measured forward and backward digit spans.   
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3.4.2. Results 

3.4.2.1. Older participants are more sensitive to reward  

Since older controls performed one block fewer than younger controls, only the first 4 

blocks from Experiment 1 were used in the comparison. A between-subjects mixed 

effects ANOVA (intercept nested within group) was used to compare the groups.  

The net difference in oculomotor capture between younger and older 

participants was not significant (F(1,96)=2.93, p=0.094), but there was a significant 

interaction, with older subjects being significantly improved by reward 

(F(1,96)=0.0053). In other words, they were less liable to capture, as incentives 

increased, whereas this was not the case for younger participants (Fig. 3.8). 

Older subjects had significantly slower reaction times, both for correct saccades 

and error corrections (F(1,96)=14.8, p<0.001 and 9.4, p=0.0036 respectively), in 

keeping with previous reports (Sharpe and Zackon, 1987). They had strong reduction of 

RT by reward (F(1,43)=14.3, p<0.001, effect size 14 ms) but with no interaction of age 

with reward (F(1,96)=1.95, p>0.05). There were no age-related differences for saccade 

velocity, and importantly the significant relationship between reward and peak velocity 

was present in older participants, just as in their younger counterparts (F(1,43)=35.1, 

p<0.001). The velocity slope was positive in 20 out of 22 subjects, and significant in 9 

(within-subject regressions of velocity against incentive, p<0.05). In keeping with 

previous studies, their velocities were comparable to those of younger participants 

(Sharpe and Zackon, 1987). 
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3.4.2.2. Different patterns of incentivisation with age 

As in the previous two studies, there was net curvature away from the distractor of 5.8°. 

There was no significant difference of curvature between younger and older participants 

(p>0.05) and no overall effect of reward (F(1,65)=1.30, p>0.05). 

These findings show some interesting differences between younger and older 

participants. In young people, there was no effect of incentive on the proportion of 

oculomotor capture errors. Thus control of gaze, indexed by velocity and RT, was 

modulated by incentives, but without effects on distraction. However, in older people, 

although rewards affected both RT and saccade velocity in a similar fashion to young 

people, incentive additionally reduced distractibility. 

 

Figure 3.8: Effect of age and reward on saccades 

Green lines represent the younger volunteers from experiment 1, same as Figure 3.3. Red lines are 

data from the older volunteers in experiment 3. 

A) In older participants, reward reduced the proportion of oculomotor capture errors. There was an 

age interaction, in that younger volunteers lacked this incentive speeding effect. 
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B & C) Older participants had longer saccadic RTs and slower error-correction RTs than younger 

participants. However they still showed reward-related speeding, with no age interaction. 

D) Saccade velocities showed the same pattern of speeding by reward incentives in both younger 

and older groups. 

3.4.2.3. Pupil size in older controls 

Examining pupillary reward sensitivity revealed, as in study 1, that pupil dilatation is 

greater after high rewards in older participants. As in study 1, the sensitivity of pupils to 

reward was uncorrelated with the sensitivity of RT to reward, across individuals 

(r2=0.030, p=0.44, Figure 3.5B), suggesting independent autonomic and motor reward 

sensitivities. 

3.4.2.4. Reward reduces curvature in older controls 

Saccade curvature towards the distractor was reduced by reward in older participants 

(F(2,42)=3.35, p=0.045), in agreement with previous studies (Hickey and van Zoest 

2012; Schütz, Trommershäuser, and Gegenfurtner 2012).  

3.4.2.4. Missed rewards capture attention 

To test whether missed rewards capture attention, we grouped trials according to 

whether subjects were returning to the same location that they came from two trials ago 

(“returning”), or were going to the other, alternate location (“new location”) (Figure 

3.9). Further, I subdivided trials according to their RT two trials ago (i.e. how quickly 

they previously arrived at the current location on “returning” trials, or how quickly they 

previously arrived at the alternate location on “new location” trials), and by the 

incentive two trials ago.  

This analysis enables us to separate trials on which the current distractor or 

target was previously highly rewarded or not, depending on whether subjects could have 
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won at that location. For example, a trial with a high maximum reward but slow RT, 

would result in a ‘missed reward’, in comparison to trials with equal speed but zero 

maximum reward. In other words, by dividing trials according to reaction times, we 

separated out the amount won from the amount that could have been won. Reward is 

only missed if money could have been won, but participants were too slow to obtain it. 

We can then test whether oculomotor capture is increased specifically to locations at 

which reward was previously missed, as in Chapter 2. Trials were excluded if 

oculomotor capture occurred on the previous or 2-back trial.   

A 3-way mixed effects ANOVA with factors of 2-back maximum reward, 2-

back RT (high or low, median split across all trials), and location history (returning vs. 

new location) was performed on capture rates. This resulted in 12 conditions, with 18 

trials per condition (Figure 3.9).  There were significant main effects of location 

history, with more capture when cued to shift gaze to a new location compared to 

returning to the previous location (F(235,1)=34.1, p<0.001), and of 2-back RT, with 

more capture after faster RTs (F(235,1)=4.58, p=0.033).  

There were also significant interactions of 2-back speed with location history. 

Faster RTs to a location resulted in reduced capture when the same location became the 

subsequent target, but increased capture when it became the distractor. However, 

importantly there was a 3-way interaction between 2-back speed, maximum reward and 

location history. If a high stake was won, participants were less captured (compared to 

zero stake) when that location became a target (dotted green line). But they were more 

captured when that location became a distractor (solid green). In contrast if participants 

did not obtain the high stake at a location, then subsequently capture was increased 

when that location became a target (dotted purple), and reduced when it became a target 
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(solid purple; interaction F(1,235)=7.19, p=0.0079; breakdown 2x2 ANOVA for 0p 

condition: effect of location but no interaction p=0.14; 10p and 50p condition: 

significant interaction, both F(1,63)>19, p<0.001). Capture was therefore specifically 

increased when a high reward was previously available at a location, suggesting that 

attention is captured by a potential high reward that was missed on the previous trial. 

 

Figure 3.9: Previous winnings at the current target influence oculomotor distraction 

I examined the proportion of capture errors on trial N, as a function of what happened on trial N-2. 

Only trials where N-1 and N-2 were ‘correct’ were considered. Trials were grouped according to 
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whether trial N-2 had a fast or slow RT (green vs. purple, median split), and according to the 

maximum available reward on trial N-2. For example, a “50p maximum” results in high or low wins 

depending on the RT, whereas a “0p maximum” results in 0p irrespective of RT. Depending on the 

location history, the amount won on trial N-2 would have been at either the current target location 

(dotted lines) or at the current distractor location (solid lines). I found a 3-way interaction of N-2 

reward maximum x N-2 target location (current target vs. distractor) x N-2 speed (p=0.008). 

Specifically, when no reward was available, there was less distraction when returning to the 

previous location, irrespective of speed. However when rewards were available, fast saccades on N-

2 caused more capture if they were to the current distractor, but less capture if they were to the 

current target. Importantly the effect is driven by the dotted purple line; this shows that specifically 

when responses were slow and possible reward was high, capture is greater at the distractor where 

the reward was missed.  

3.4.2.5. Questionnaire measures 

The four BIS/BAS and four UPPS subscale factors for each individual were correlated 

against the five primary saccadic measures: oculomotor capture, RT, pupillary response 

to the cue, saccade velocity and amplitude. The correlation matrix for the 22 older 

participants (Figure 3.10) shows 4 weak correlations between behavioural measures; 

although these are reported, none of these survived correction for multiple comparisons.  

Subjects with larger pupillary responses had faster saccade velocities (r2=0.51, 

p=0.016); subjects with high oculomotor capture reduce their capture in response to 

reward more (r2=0.53, p=0.012); subjects with smaller saccade amplitudes show a 

greater increase in amplitude for rewards (r2=0.47, p=0.027); and pupillary reward 

sensitivity correlates with velocity reward sensitivity (r2=0.43, p=0.047). Very weak 

correlations were noted between the behavioural activation scale “fun-seeking” 

subscale, which correlated both positively with RT (r2=0.46, p=0.031) and negatively 

with the reduction of oculomotor capture by reward (r2=0.43, p=0.047).  
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There was no correlation of working memory capacity, as measured by digit 

span, with oculomotor capture (r2=0.003, p>0.05) nor with RT (r2=0.094, p>0.05).  

 

Figure 3.10: Correlation of saccadic measures and questionnaire factors 

For the 22 subjects in experiment 3, five saccadic measures—RT, errors, pupillary response to cue, 

velocity and amplitude—and their corresponding reward sensitivity slope were correlated with 

questionnaire measures. The autocorrelation matrix shows the r2 values, thresholded at p<0.05. 

Although several questionnaire measures correlated with each other, only the BAS fun-seeking 

scale correlated with saccades—positively with RT and negatively with reward-related reduction of 

capture. None of these survived correction for multiple comparisons.  



3. Trial-to-trial incentives influence capture 3.5. Discussion 

 
140 

3.5. Discussion 

The results of the experiments reported here showed that rewards can significantly alter 

behaviour on an oculomotor capture paradigm with trial-by-trial alteration of incentive 

cues. Participants showed strong modulation of speed as a function of trial-to-trial 

incentive, as revealed by several measures including peak saccade velocity, correct 

reaction time, and error correction time (Figure 3.3). The trajectories of saccades on 

average curved away from distractors, and there was a trend for these to be pushed 

further from the distractor when incentives were high. Older subjects, although slower 

to respond, tended to respond to incentive by additionally reducing their distractibility, 

as measured by oculomotor capture (Figure 3.8). We also obtained an independent 

physiological measure of reward sensitivity: pupils dilated more in response to higher 

reward cues than low reward (Figure 3.4). 

3.5.1. Reward increases saccade velocity 

We found that saccade velocities consistently scaled with reward. This aligns with 

recent findings in monkeys for incentivised prosaccades (Chen et al., 2013) and 

asymmetrically rewarded saccades (Tachibana and Hikosaka, 2012). Both these studies 

have found that when rewards are high, animals increase their saccade velocity. In both 

these studies, due to the extensive practice required, effects could have been due to 

conditioned changes in saccade-generating circuitry. Similarly, humans produce faster 

saccade velocities to stimuli such as faces which possess reward associations (Xu-

Wilson et al., 2009), but again these effects might be generated by primitive or reflexive 

reward mechanisms. Our study extends these findings to cognitive rewards, which are 

flexibly controlled by explicit verbal cues. Taken together with previous work, our 
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velocity effects strongly suggest that explicit incentives influence motor planning at a 

relatively low level in saccadic programming.  

What parts of the saccadic system might be responsible for the effect of reward 

on peak velocity? According to models of saccade generation, velocity is programmed 

in the midbrain's medium-lead burst neurones (Van Gisbergen et al., 1981) or in the 

superior colliculus (van Opstal and Goossens, 2008).  These areas receive extensive 

projections from the caudate nucleus, which likely supplies the cognitive signals that 

give context to the selection of saccade programs. Recordings from caudate nucleus 

show that reward-learning can alter the preferred direction of cells in the caudate 

nucleus, an alteration which parallels changes in saccade velocities with reward 

(Kawagoe et al., 1998). The spatially selective reward-induced changes of such caudate 

cells may in turn be derived from input from midbrain dopamine neurones (Kawagoe et 

al., 2004). Thus a midbrain-to-caudate-to-midbrain circuit might mediate the spatially 

specific effects of cognitive reward. 

These dopaminergic signals may help to optimise yield of rewards in conditions 

where actions require effort. The speed and timing of movements must be selected to 

account for vigour costs (Niv et al., 2007) and temporal discounting (Haith et al., 2012; 

Shadmehr, 2010a). Optimal control frameworks regard such choices as minimising a 

cost function: in such frameworks, the cost of going faster depends on the rate of 

responding (Niv et al. 2007) or force exerted (Shadmehr 2010). The benefits of vigorous 

responding are incorporated either as the increase in reward rate (Niv et al. 2007), or in 

terms of temporal discounting over the time until reward (Shadmehr 2010). Both these 

accounts explain (a) why very fast responses become costly, and (b) why there is an 

incentive to respond quicker. Our task’s relatively long and static inter-trial interval 
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(~2.7 to 3.2 seconds) meant that we could not distinguish between these two 

alternatives. However, both the vigour cost and temporal discounting views postulate 

that dopamine is critical in coupling movement speed to reward, an issue that I 

investigate in subsequent chapters.  

3.5.2. Reduced distraction in older participants 

The results appear to go against previous reports of increased distractibility with ageing 

(Kim et al., 2007; Machado et al., 2009). In the current study, older subjects were both 

slower and more accurate, suggesting that they trade off speed for accuracy. One 

possibility is that they were more sensitive to reward because they were slower: later in 

a trial, reward processing may be more influential. This seems unlikely because we 

found no across-individuals relation between RT and reward sensitivity, i.e. slower 

subjects were not more reward-sensitive. A previous study of ageing on motivation used 

simple RT, and found no difference in reward sensitivity between older and younger 

participants, but they acknowledge this could have been due to hearing problems or 

learning effects (Botwinick et al., 1958). Interestingly some studies have found that 

ageing slows velocity of manual movements and saccades (Irving et al., 2006; Pierson 

and Montoye, 1958), whereas others have not (Munoz et al., 1998, see Irving et al., 

2006 for review); we found no effect of ageing: saccades were faster with higher 

rewards, regardless of age.  

Examination of reward sensitivity over ages has given mixed results, with one 

study demonstrating worse attentional selection with reward in children and older 

adults, but improvements with reward in young adults (Störmer et al., 2014). Using a 

mixed prosaccade and antisaccade design, Jazbec et al. (2006) compared incentive 

motivation in adolescents and adults. They found adults (mean age 27) were less 
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modulated by reward than adolescents (mean age 15), whereas in our Study 2.3, we 

found that older volunteers (mean age 62) were more reward sensitive than younger 

adults (mean age 24). Although our task and the Jazbec task are not directly 

comparable—Jazbec et al. used reward, penalty or neutral cues, with a 500ms deadline 

and fixed reward sizes—the two results together suggest a biphasic change in reward 

sensitivity with age, with a minimum in young adults, paralleling the U-shaped age-

dependence of simple reaction times (Hogin et al., 1960).  

3.5.3. Motivation by rewards, not Distraction by rewards 

We found that our incentives induced both faster saccades and reduced capture, i.e. 

fewer errors towards the early onset distractor. Yet some previous studies have shown 

increased distractibility with rewards (Blaukopf and DiGirolamo, 2005; Ross et al., 

2011). Why this difference? 

The task in this chapter might be considered to be a hybrid of an onset capture 

task (Jonides and Yantis, 1988) and a simple antisaccade task (Hallett, 1978). Two 

groups have used reward in antisaccade paradigms, but with subtly different results. The 

task of Ross et al. (2011) used lateralised reward cues 600 ms before each saccade 

indicating reward or penalty incentives for correct responses. The reward cues could 

thus be either congruent or incongruent to the stimulus location. Similar to the current 

study, they found that in both pro- and antisaccade blocks, incentives speeded RTs 

compared to neutral cues.  

Independently, they demonstrated that visual reward cues themselves command 

attention. For prosaccades, reward cues opposite to the subsequent target speeded RTs 

compared to cues on the same side—consistent with IOR. For antisaccades, incentive 
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benefits were strongest if the cue was congruent with the saccade target. This latter 

effect might effectively be due to the reward cue enhancing the visual salience of a 

location, or amplifying a saccadic motor program to its location. The authors did not 

control for the visual salience of their cues, and so the incentive-specific effects on 

antisaccades are especially difficult to interpret. History effects were not examined in 

that study, and would likely be weak since every trial required refixation of the screen 

centre, and rewards were presented centrally. Our current study deals with these issues 

using auditory reward cues, and by using a continuous task, in which the previous target 

location becomes the starting point for the next trial. 

Unlike Ross et al., Blaukopf and DeGirolamo (2005, 2006) counterbalanced the 

reward cue colours, such that visual salience could not explain their effects. They used 4 

reward conditions—reward or penalty, large or small—however their reward cue also 

doubled as the go cue. As a result, any reward effect in their task involves only the most 

rapid processing of the reward cue; moreover subjects relied on learnt association of 

colour with incentive. They found that cues indicating high incentives can, 

maladaptively, attract the eyes and speed errors. They also find slowing of RTs when 

incentives are high, perhaps due to “capture of resources” by the value of the reward 

cue. In contrast, we found speeding with high incentives; this is most likely because 

although auditory reward cues may command attention, they are not tied to a screen 

location, and thus would not be expected to interfere with the oculomotor task.  

In short, by using auditory reward cues, our study isolated the motivational 

effects of incentives, removing the spatially directed effects of a visual cue.  
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3.5.4. Limitations 

3.5.4.1 Uncorrelated measures of reward sensitivity  

The RT measure of reward sensitivity correlates across sessions, and is not altered by 

practice. A separate, physiological measure of reward sensitivity was obtained by 

pupillometry. This did not correlate with RT sensitivity to reward across subjects. There 

are at least two possible explanations for this. Firstly, reward sensitivity might be a 

composite of two independent traits: one determines pupil modulation, the other 

contributes to RT modulation by reward cues. Affective autonomic responses to reward 

might be tied to arousal, and unrelated to motor vigour (Sara, 2009). As an alternative 

explanation, the lack of correlation could be due to the wide variability in pupil baseline 

size across participants; pupil dynamics are nonlinear at the extremes of its range (Usui 

and Stark, 1982), and it is possible that differences in reward slope between individuals 

is masked by absolute difference in pupil size. In the younger subjects, our results were 

more in keeping with the latter explanation, as there was a strong negative correlation 

between baseline pupil diameter and pupil sensitivity to reward (r2=0.23, p=0.01). 

However in older subjects, there was no such correlation (r2=0.04, p>0.1) suggesting 

independent effects of reward on arousal and vigour. 

3.5.4.2 Errors as distractor pull or lack of attention at target onset? 

It is possible that differences in capture rate could be explained, not as attentional 

capture by the distractor, but simply as errors of judgement in discriminating onset 

times. For subjects who are less able to detect the delay between the distractor and 

target, their capture rate would be pushed towards 50%.  

Against this, saccades with faster reaction times had much higher error rates 

than slower responses—i.e. errors were more likely to be short-latency.  If subjects had 
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“missed” the onset, one might expect the errors to be slower than correct trials, as in 

situations where a decision is difficult. The proportion of capture for early RT bins often 

exceeded 50%. We conclude that our error rate reflects the degree of pull of the 

distractor, i.e. true oculomotor capture.   

Also against this, the SOAs used here (40-120 ms) are much greater than 

previously reported thresholds for visual temporal order discrimination, which tend to 

be under 10 ms for stimuli similar to those used here (Artieda et al., 1992; Westheimer, 

1983; Westheimer and McKee, 1977). Supporting this, longer SOAs resulted in a trend 

to longer RTs of correct saccades, suggesting that longer SOAs were in fact more 

difficult than shorter SOAs, consistent with the known effect of earlier onsets 

possessing greater visual salience.  

3.5.5 Conclusion 

The new task introduced here shows that saccade velocity and reaction times are 

consistently sensitive to reward incentives. Distractibility, as measured by oculomotor 

capture by an early distractor, can also be modulated at least in older participants, who 

in our study were more sensitive to reward than younger subjects. Velocity speeding by 

incentives supports theories of response vigour in which the motor system optimises the 

timing of action to maximise reward (Haith et al., 2012; Yu and Dayan, 2005). Two 

different measures of reward sensitivity can be obtained from behavioural vigour and 

autonomic responses to incentives.  
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4. Cabergoline increases reward sensitivity of 

oculomotor distraction 

4.1. Introduction 

Several lines of research, from both animal and human studies, have suggested that 

there is a very close relationship between neural systems subserving attention and those 

encoding rewards (Assad, 2003; Bendiksby and Platt, 2006; Ernst et al., 2004; Louie et 

al., 2011; Malhotra et al., 2013; Maunsell, 2004; Peck et al., 2009; Small et al., 2005; 

Sugrue et al., 2004). But how might these cognitive processes interact? Recent studies 

have revealed one potential mechanism by demonstrating that rewards can attract 

attention in a similar way to perceptually salient stimuli (Anderson et al., 2011a; 

Berridge and Robinson, 1998; Hickey et al., 2006, 2010d; Kiss et al., 2009b; Rothkirch 

et al., 2013). For example, visual search is slowed when a distractor is presented in a 

colour that was previously associated with high reward, than with low reward 

(Anderson et al., 2011b).  

Recent studies have also investigated how saccade velocities may be controlled 

by current goals (for review see Shadmehr et al., 2010b). For a given amplitude of 

saccade, its peak velocity can be increased by the presence of reward (Chen et al., 

2013), suggesting that motivation influences motor control as well as attention shifting. 

What brain systems are responsible for coupling attention to reward? An 

attractive candidate is dopamine, which in animal studies signals reward and 

motivation, but is also released in response to perceptually salient events (Dayan, 

2012b; de la Fuente-Fernández et al., 2002; Schultz et al., 1997). Many studies of 

dopamine in humans have focused on reinforcement learning (Cools et al., 2009; Frank 
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and O’Reilly, 2006; Pizzagalli et al., 2008; Ray and Strafella, 2010; Santesso et al., 

2009; Voon et al., 2010). But according to models of basal ganglia function, 

reinforcement learning might be intimately linked with the filtering of irrelevant stimuli 

(O’Reilly and Frank, 2006). In support of this, dopamine has been implicated in the 

control of attention.  Dopamine excess may increase oculomotor distractibility 

(Crawford et al., 1995; Duka and Lupp, 1997; Howes et al., 2012), while dopamine 

receptor blockade can protect against distraction in some situations (Mehta et al., 2004). 

Dopamine may be critical in mapping rewards to spatial locations (Takikawa et al., 

2004) and in generating trial-to-trial effects in saccades (Barton et al., 2006).  

Could dopamine mediate the effects of reward incentives on attention? One way 

to quantify the sensitivity of attention to rewards is to measure involuntarily evoked 

saccades to a distractor—so called “oculomotor capture” (Anderson et al., 2012; Ding 

and Hikosaka, 2007c; Milstein and Dorris, 2007a; Theeuwes and Belopolsky, 2012). 

Specifically, we focus on three indices that have previously been shown to be 

modulated by reward. Saccadic reaction times and velocities are speeded by expectation 

of high rewards in primates (Chen et al., 2013; Nakamura and Hikosaka, 2006; Roesch 

and Olson, 2003; Takikawa et al., 2002c). Furthermore when the target and a distractor 

are not collinear, saccades may be curved, and the curvature is also modulated by 

reward (Hickey and van Zoest, 2012b; Schütz et al., 2012a; Theeuwes et al., 1998). 

Saccade direction and in-flight curvature may represent the output of different neural 

control mechanisms (Chen-Harris et al., 2008). 

One explanation for reward modulation of response timing is that the motor 

control system optimises a reward vs. effort trade-off. According to this logic, faster 

actions require more effort, but if actions are slow then less reward can be harvested 
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(Niv et al., 2006; Shadmehr et al., 2010b). The concept of response vigour formalises 

this intuition (Mazzoni et al., 2007; Niv et al., 2007; Salamone and Correa, 2002). In 

this framework, the timing of action is determined both by the cost of responding faster, 

and the baseline average reward rate. When baseline reward rate is high, the optimal 

rate of responding rises. It has been proposed that tonic dopamine regulates vigour and 

can act as an estimate of the current average reward rate (Niv et al., 2007; Robbins and 

Everitt, 2007). If this is the case, dopamine agonists might be expected to speed 

responses, mimicking the effect of a higher baseline reward rate. The optimality view 

subsumes the two older complementary interpretations of dopamine in mediating 

pleasure vs. the willingness to exert effort (Edwards et al., 1979; Hursh, 1980; Neill and 

Justice, 1981).   

Consistent with a role in motivating action, studies of D2 agonists in rodents 

have shown increases in motor behaviour (Ross et al., 1989), but due to mixed pre- and 

post-synaptic effects, the dose-dependence is biphasic. Moreover, there is evidence of 

cross-species differences, necessitating translation into human studies (Broos et al., 

2012; Ralph and Caine, 2005). In humans, D2 agonists are known to trigger impulse 

control disorders in patients with Parkinson's disease (Weintraub et al., 2006), and D2 

activation is a strong candidate mechanism through which stimulant  drugs cause 

addiction (Centonze et al., 2004; Dalley et al., 2007; Ma et al., 2014; Self et al., 1996). 

Paradoxically, D2 agonists may also reduce impulsivity as measured by a 5-

choice serial response task (Fernando et al., 2012). In keeping with this, reduced striatal 

D2 receptors are a consistent finding in individuals suffering from compulsive eating, 

drug addictions and ADHD (Volkow et al., 1990, 2003, 2007). To explain this, it has 

been suggested that motivation is “the opposite of impulsivity… the ability to resist 
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behaviour initiation, and exert greater effort in order to obtain a more valuable 

outcome” (Trifilieff and Martinez 2014). These two distinct roles of dopamine in 

initiating vs. desisting from action might be reflected in the direct and indirect pathways 

of the basal ganglia, in which D2 receptors control an inhibitory ‘No-go’ pathway 

(Gerfen and Surmeier, 2011; Graybiel, 1990; Zarrindast and Minaian, 1991).  

Thus, a crucial difference in predicting the effect of D2 stimulation is whether 

the behaviour in question is automatic or volitional. However most pharmacological 

manipulations carried out in humans to date have studied explicit volitional choices 

(Mehta et al., 2000, 2004; Robbins, 2000). Low doses of D2 agonists may speed up 

simple and choice reaction times (Rihet et al., 2002; Schück et al., 2002) and increase 

error rates (Rammsayer and Stahl, 2006). In one study, the D2 agonist bromocriptine 

was found to reduce distractor interference in the Stroop task (Roesch-Ely et al., 2005). 

We ask specifically, does D2 stimulation increase the vigour of exogenously afforded 

movements?  And when incentives are increased, is the effect of motivation altered by 

D2 stimulation? 

Here we used the novel task described in chapter 3, that uses oculomotor capture 

to measure how dopamine influences the effects of reward. To modulate dopamine 

receptor activation, participants took Cabergoline, a long-acting D2 dopamine receptor 

agonist, in a double-blinded, placebo-controlled crossover design. Cabergoline is a full 

agonist at D2 subtype 2 receptors, with partial agonist effects at subtype 3 and 4 

receptors, and has a half life of 60 hours in the bloodstream (Fariello, 1998; Kvernmo et 

al., 2006; Sharif et al., 2009). Cabergoline has been shown to modulate stop signal 

reaction times, alter cortical plasticity, and induce learning biases in humans (Frank and 

O’Reilly, 2006; Korchounov et al., 2007; Nandam et al., 2013; Shoptaw et al., 2005), 
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and its use is associated with pathological gambling in Parkinson’s disease (Weintraub, 

2010). We hypothesised that reward would speed saccades, but cabergoline would alter 

the sensitivity to reward.   

4.2. Methods 

4.2.1. Participants 

Twenty healthy male volunteers were recruited from an advert, mean age 26.5 years 

(range 18 to 36), all with normal or corrected-to-normal vision. They were screened to 

exclude chronic medical or mental illnesses, and also completed the following 

questionnaires: Barratt impulsiveness scale (BIS, Patton et al., 1995), UPPS impulsive 

behaviour scale (Whiteside et al., 2005), and Lille apathy rating survey (LARS, Sockeel 

et al., 2006).  

Each participant attended one drug session and one placebo session in randomised 

order. To minimise learning effects, all had practised 6 blocks of the task on two 

occasions, one week before the experiment and 2-4 weeks before the experiment. They 

were instructed that they would be paid a baseline fee plus a bonus proportional to the 

rewards they earned. One eye movement data set was corrupted so data from 19 people 

were analysed. On the drug and placebo sessions, participants attended at 8 am and took 

20mg of domperidone, which blocks D2 receptors outside the brain, minimising side 

effects such as nausea (Parkes, 1986; Shindler et al., 1984). After 20 minutes they took 

either 1.5mg of cabergoline or placebo tablet crushed into orange squash. After 2 hours, 

blood pressure and pulse were measured. Testing began at least 2 hours post-dose, to 

allow blood concentration to peak (Del Dotto and Bonuccelli, 2003). After the task, 

participants completed a 17-item visual analogue rating scale of mood to rule out the 
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possibility that cabergoline caused other potentially confounding cognitive effects 

(Herbert et al., 1976), in addition to a 9-item rating scale of physical side effects specific 

to cabergoline. 

4.2.2. Task 

The materials and task were identical to that used in chapter 3. The time between the 

distractor and target onsets was varied between 40 ms and 120 ms, and the same 

adaptive reward schedule was used to maintain a constant difficulty level. Participants 

performed 7 blocks (rather than 5), each comprising 54 trials, with a 2 minute break 

between blocks. This came to a total of 378 trials, lasting approximately 60 minutes. 

4.2.4. Curvature metric 

Previous measures of curvature have taken the trajectory on each trial and calculated a 

single value that characterises its curvature, e.g. the maximal linear or angular deviation 

from a straight line trajectory (McPeek et al., 2003; Theeuwes et al., 2005), or 

equivalently the quadratic component of a polynomial fit (Ludwig and Gilchrist, 2003), 

or area between the trajectory and a straight line (McSorley et al., 2004). This method 

might lose useful information about the online control of the eye movement, which in 

light of the previous findings in velocity, may be one of the ways in which reward 

influences eye movements.  

In order to capture all the information available, a linear model was used to 

extract the influence of various parameters for all points along the trajectory of the 

saccade.  I aligned all saccades such that the direction of the target was constant, and 

normalised distances to keep saccade amplitude constant. At each time-point during the 

saccade, I calculated the perpendicular deviation of gaze from a straight line connecting 
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the start-point to the target.  Positive values indicated that gaze deviated in the direction 

towards the distractor, whereas negative values indicated deviation away from the 

distractor. Trial-wise regressors such as reaction time, incentive, and previous trial 

effects could then be entered into a generalised linear model to extract their effects on 

the push or pull of the distractor, over the course of the saccades.  

This method has the advantages of a) giving a measure of distractor push or pull 

over the course of the trajectory, and b) being able to estimate the effects of multiple 

factors simultaneously. Additionally it has the potential to be used with more 

sophisticated statistical tests such as permutation testing and mixed-effects analysis (see 

below).  

4.2.5. Delta plots 

Delta plots analyse the differences between two distributions, and are commonly used 

for reaction times when two conditions are present during a block (Ridderinkhof et al. 

2004). The plot is constructed by grouping trials by RT bin— “Vincentisation” of the 

distribution (Ratcliff, 1979; Vincent, 1912)—and then taking the RT difference between 

the conditions at each RT bin. The resulting values index the amount of influence that 

the experimental manipulation has, as a function of time within the trial. In the case of 

this experiment, the contrast of interest is the difference between reward and no-reward 

conditions. (Comparison of drug vs. no-drug using distributional analysis is not 

appropriate as the data are from two different sessions, and thus corresponding quantiles 

of the two distributions are not necessarily comparable).  

Traditional delta plots divide data using 4 or 5 quantile bins (quartiles or 

quintiles; McSorley, Haggard and Walker 2009), and although quintile binning provides 
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a much richer parameterisation of the data than a simple mean or median (Dawson, 

1988), there are drawbacks. First, the assumption is made that 5 bins is the appropriate 

number, secondly, the bin edges that are chosen are essentially arbitrary, and thirdly, 

information is necessarily lost in the binning process (Rouder and Speckman, 2004). 

Furthermore, parametric statistical approaches rely heavily on selecting appropriate 

hypotheses about the different RT bins. To overcome these limitations, I devised a 

continuous version of the delta plot, in which a sliding bin was used. In this analysis, a 

20% quantile bin is moved smoothly over the two RT distributions, and the means are 

subtracted, to give a point-wise estimate of the effect of reward. 

Statistical comparison of continuous data requires some sophistication, since 

values in neighbouring windows are necessarily highly correlated. To correct for 

multiple comparisons, a permutation test can be performed by randomly re-arranging 

the three reward conditions within each subject's data, and computing across the whole 

time series the maximum value of the t-statistic (Nichols and Holmes, 2002). The 

resulting null distribution of maximum t over all the permutations can be thresholded at 

a given alpha-level to control the family-wise error rate (the probability that any one of 

the many t-tests across the timepoints will be positive, over all permutations). 

Comparing the t-statistic of the actual data to the bootstrapped null distribution yields 

the times at which there are significant effects of reward.  

Delta plots may be used to examine the differences between distributions of any 

kind. Generic commented MATLAB code for producing continuous delta plots for 

arbitrary data, with a permutation test between conditions to control family-wise error 

rate, is available on my website and is reproduced in Appendix 1. 
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4.3. Results 

In this task participants fixated one of three locations, then saw the two other locations 

illuminated, with asynchronous onsets (Figure 3.1A). They had to direct their gaze 

towards the disc that came on second (the target) while ignoring the first disc 

(distractor), and were rewarded according to the time taken to arrive at the target 

(Figure 3.1B). But on 32% of trials, participants made erroneous movements towards 

the first onset (distractor), a phenomenon termed oculomotor capture (Theeuwes et al., 

1998). Even on correct trials, the eyes were often pulled towards the distractor (Figure 

3.2).  

To investigate the reward sensitivity of distraction, we manipulated the incentive 

(maximum potential winnings) on each trial using an auditory cue which indicated how 

much monetary reward was available for a fast correct saccade to the target. We now 

examine how reward and cabergoline influence the probability of distraction, reaction 

times and saccade velocities, and then we analyse the curvature of saccades toward or 

away from the distractor.  

4.3.1 Probability of distraction influenced by previous reward 

The proportion of distracted trials varied from 9% to 73% across individuals. Incentive 

did not significantly affect this (Figure 4.1A, t(18)=1.69, p=0.19). Furthermore, the 

incentive on the previous trial did not predict subsequent distraction. However the 

amount of money won on the previous trial did affect oculomotor capture on the 

subsequent trial: the more a participant won, the more accurate they were likely to be on 

the next trial (grouped as high, medium 1-9p, or low winnings, F(1,18)=4.44, p=0.010). 

Previous winnings was therefore included as a factor in the subsequent analysis.  
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Figure 4.1: Proportion of capture was not influenced by cabergoline 

A) (pervious page) The level of reward does not significantly alter the proportion of trials on which 

participants were distracted. The D2 agonist cabergoline does not significantly increase proportion 

of distracted saccades. However, winning a high amount on the previous trial speeded RT. B) The 

conditional accuracy function, binned according to RT, shows that early saccades are likely to be 

errors. The effect of reward occurs, again, primarily at later timepoints in the trial. C) Continuous 

conditional accuracy functions, showing effect of drug (red bars show where p<0.05 by permutation 

test) 

Cabergoline did not significantly affect the probability of distraction (4-way 

mixed-effects ANOVA for incentive × previous winnings × drug on/off × session order, 

F(1,315)=2.41, p>0.05). There were also no order effects between participants who took 

the drug or placebo first (t(18)=0.83, p>0.05). There was no difference in distraction 

between the three possible starting locations, nor between clockwise and anticlockwise 

saccades, so results were collapsed across locations. A conditional accuracy plot was 

constructed for each reward level using bins centred on RT quintiles (Figure 4.1B). 

This illustrates that the earliest saccades had <50% chance of going to the target, 

whereas the latest saccades were 80% accurate.   
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Continuous versions of the continuous accuracy function were constructed using 

a sliding window (Figure 4.1C), and the effect of drug was tested by permuting the ON 

and OFF data for each subject (5000 random permutations out of 524,000 possible), and 

correcting for the maximum t value over all time points. Cabergoline decreased 

accuracy significantly at later RTs (> 240 ms), most prominently in the 0p and 10p 

incentive conditions.   

4.3.2. Cabergoline increased sensitivity of saccade velocity to 

reward 

Velocities of correct saccades were significantly speeded by reward, in keeping with 

previous findings (Chen et al., 2013; Takikawa et al., 2002d) (Figure 4.2A, 

F(1,315)=16.9, p<0.001). Cabergoline slowed velocities significantly (F(1,315)=5.38, 

p=0.021). Crucially, cabergoline slowed saccade velocities specifically when reward 

was low (interaction of drug with reward, F(1,315)=5.68, p=0.018). Cabergoline 

thereby increased sensitivity of saccadic velocity to incentive magnitude, steepening the 

gradient of the velocity–reward plot, compared to placebo (Figure 4.2A). 
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Figure 4.2: Peak saccade velocity is increased with reward, but more so on cabergoline 

A) Correct saccade velocities were slowed by the D2 agonist, but specifically when reward 

incentives were low—such that cabergoline increased reward sensitivity (reward x drug interaction, 

p=0.018)  B) There was no drug effect on error saccade velocities, although reward significantly 

speeded them. 

Practice speeded the velocity of correct saccades (F(1,315)=5.30, p=0.022), 

although previous winnings did not (F=2.40, p=0.12). Post-hoc tests revealed that 

reward had significant effects both on cabergoline (F(2,36)=10.3; p<0.001) and placebo 
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(F=3.3; p=0.047); and that there was significant drug effect at 0p reward (t(18)=1.85, 

p=0.040) but not at 10p or 50p (p>0.05).  

For error saccades, both incentive and practice speeded velocity (Figure 4.2B, 

F(1,315)=17.5 and 8.7, p<0.001 and 0.003 respectively ), but here there was no effect of 

cabergoline, nor any significant interaction. Saccade amplitudes were increased by 

incentives, for both correct and error saccades (F(1,315)=10.7, p=0.001 and F=5.04, 

p=0.03 respectively). Amplitudes were not significantly affected by cabergoline or 

practice; nor were there any significant interactions. 

4.3.3. Saccadic reaction times speeded by incentives 

Reaction times were calculated from fixation offset until the initiation time of the first 

saccade that was >1 degree. For correct saccades, incentives significantly speeded 

reaction time (Figure 4.3A, F(1,315)=28, p<0.001). In contrast to the effect of drug on 

saccade velocity, there was no RT modulation by cabergoline, previous winnings nor 

practice, and no interactions (all F(1,315)<0.8, p>0.05). Precisely the same pattern was 

observed for error saccades, in that reward significantly speeded their latency (Figure 

4.3B, F=4.74, p=0.03).  
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Figure 4.3: Reaction time was speeded by reward 

A) Saccadic latencies for correct saccades are speeded by reward incentives. There was no 

significant effect of cabergoline. B) Latencies for error saccades are also speeded by incentives. 

There is no effect of cabergoline. C) Traditional delta plot: Correct responses for each reward 

condition are binned by reaction time, and the distance between RT distributions in a pair of 

conditions is calculated at each bin. A positive value indicates that the higher-reward condition was 

faster than the lower-reward condition, at that particular time bin. Speeding due to rewards was 

greatest at later timepoints within a trial. There was no drug effect.  D) Continuous delta plots 

showed more clearly the lack of effect of cabergoline on RT reward sensitivity. 

Correct trials were binned according to their RT, and RT difference between 

reward conditions plotted for each RT bin. The resulting “delta plot” (Ridderinkhof et 

al., 2004b) shows the effect of reward on RT, over time during the trial. Calculating RT 

with 50p incentive minus RT with 0p incentive gives positive values, indicating that 

reward decreases RT. The effect of reward on speeding responses was significantly 

greater for later saccades (Figure 4.3C, main effect of RT bin, F(4,341)=23.8, 

p<0.001), consistent with previous studies showing a build-up of reward’s effect during 

a trial (Ding and Hikosaka, 2007c). Cabergoline did not influence the shape of the delta 

plot, and there was no interaction with time (F(1,341)=0.042, p>0.05, and 

F(4,341)=0.097, p>0.05 respectively). A delta plot was produced with the new 
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continuous sampling algorithm (section 4.2.5), and a permutation test on the deltas 

confirmed that no effect of cabergoline could be detected (Figure 4.3D). 

Reaction time variability, taken as the standard deviation of saccadic latency 

across trials for each condition, was reduced by rewards (F(1,91)=9.86, p=0.002), but 

was unaffected by cabergoline or practice (p>0.05).  

4.3.4. Curvature away from distractors increased by reward but 

reduced by cabergoline 

In the placebo condition, saccades that landed correctly on the target curved on average 

2.5 degrees (± 1.7 s.e.m.) in the direction away from the distractor. This mean 

“repulsion” from the distractor was significantly increased by rewards (Figure 4.4A, 

F(1,315)=10.7, p=0.001), and reward interacted with drug (p=0.018). But was this due 

to more saccades curving away, or fewer saccades curving towards the distractor?  

Correct saccades were classified by their angle of departure into direct saccades, 

those pulled towards the distractor, or those repelled away from the distractor (threshold 

15 degrees, Figure 4.4B). The proportion of saccades curving towards the distractor 

was unaffected by reward or by cabergoline. In contrast, the proportion of saccades that 

curved away from the distractor increased with higher rewards (F(1,315)=5.71, 

p=0.017). Cabergoline strongly reduced this distractor repulsion (F(1,315=13.7, 

p<0.001), but with no significant interaction or practice effect.   
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Figure 4.4: Effect of reward and drug on saccade curvature 

A) Curvature of initial saccades that ended on the target (i.e., “correct” trials). Negative values 

indicate saccades curved away from the distractor. The eyes curved away from the distractor with 
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increasing reward. B) Rewards increased the proportion of saccades that curved away from the 

distractor (“repulsion”). Cabergoline had an additive effect of reducing this repulsion. For saccades 

curving towards the distractor, there was no effect of reward or drug. 

Trials were binned according to RT quintiles (Mulckhuyse et al., 2009), and the 

angle of departure for each RT bin was plotted (Figure 4.5A). Thus, in figure 4.5B, 

positive values indicate that correct saccades curved towards the distractor, whereas 

negative values indicate they curved away from the distractor. Similarly in figure 4.5A, 

negative values indicate that error saccades to the distractor curved towards the target, 

whereas positive values indicate curvature in the opposite direction. In agreement with 

previous studies, early saccades curved more towards the distractor, whereas late 

saccades curved towards the target, often attributed to an increase in top-down control 

over the course of the trial (Mulckhuyse et al., 2009; Walker et al., 2006). This was the 

case for both error and correct saccades (main effect of time in trial, F(4,161)=16.8, 

p<0.001 and F(4,161)=2.96, p=0.022 respectively).  

Cabergoline influenced the curvature on error trials. Cabergoline was associated 

with later errors veering a little more towards the target (interaction of drug with time, 

F(4,161)=2.61, p=0.032). Thus, cabergoline actually reduced late distraction in the trial. 

No effect of drug on correct saccade curvature was observed in this binned analysis. 
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Figure 4.5: Curvature away from the distractor is stronger for late responses 

A) and B) Binning trials by reaction time revealed a general tendency of later correct saccades to 

curve away from the distractor, and later errors curved towards the target. On cabergoline, later 

errors (initial saccades that ended on the distractor) had an increased pull towards the target. C) 

Curvature reduced over time during the task.  

One interpretation of this curvature result is that cabergoline increases 

distractibility. It is therefore important to rule out the possibility that cabergoline simply 

increases fatigue. Curvature towards the distractor increased with time on task (3-way 

ANOVA over early, middle and late thirds of trials × drug × session, F(1,113)=16.3, 

p<0.001). In other words, later in a session, participants become increasingly 

distractible (Figure 4.5C). But crucially, this attentional decline did not interact with 

drug (p>0.05), suggesting that cabergoline did not increase the rate of fatigue.  

To visualise the effects of cabergoline on curvature, the actual trajectory of each 

correct saccade was compared to an ‘ideal’ straight line to the target. The deflection 

from this straight path was calculated as a function of time during the saccade. These 

deflections were aligned and superimposed (Figure 4.6A). The resulting curve shows 

the average curvature of the path of the eyes, over the course of the saccade. Then the 

factors that might influence the deflection were used as regressors in a general linear 

model, at each timepoint during the saccade. This gives a set of curves in which positive 

and negative deflections indicate an influence of a given factor on a saccade curving 

toward or away from the distractor (Figure 4.6B).  In these figures, the regression was 

performed independently for each subject, and the shaded area is the standard error 

between subjects.  
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Figure 4.6: Curvature towards or away from the distractor, during the course of each saccade 

Positive values indicate repulsion from the distractor, whereas negative values indicate a pull 

towards the distractor. A) Cabergoline reduces early repulsion from the distractor. Bars below the 

figure indicate the times when the deflection is significantly different from zero. B) The trajectories 

on individual trials were correlated against reaction time, incentive, previous trial winnings and 

incentive, and time on task using a general linear model. Incentive had a greater effect (i.e. reducing 

distraction) when on cabergoline (cyan).  However, cabergoline increased the influence of time on 

task (i.e. fatigue, blue) and RT (i.e. the slower the saccade, the less distraction, magenta). 

Cabergoline had effects of increasing the effect of incentive on causing 

repulsion from the distractor. On cabergoline, there was a significant effect both early 

and late in the trajectory, of incentive to cause curvature away from the distractor 

(Figure 4.6B, positive cyan curve).  Additionally, cabergoline increased distractor pull 

as a function of time on task (blue), but caused long-latency saccades to be more 

repelled from the distractor (magenta). Cabergoline may therefore increase 

distractibility with fatigue as participants tire, yet increase the effect of cognitive control 

as it evolves over the course of an individual trial. 
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4.3.5. Error correction 

After an error, the task required participants to look towards the correct target to 

continue. The time between the capture saccade and the correction saccade was 

measured as the correction delay. Mean correction delay was 253 ms (+/-64 ms). 

Reward significantly speeded corrections, with a mean of 270 ms for the 0p condition, 

and 236 ms for the 50p condition (Figure 4.7A, F(1,314)=18.4, p<0.001). High 

previous winnings speeded corrections on subsequent trials (F(1,314)=11.9, p<0.001), 

and there was also a significant practice effect across sessions (F(1,314)=7.55, 

p=0.006), but cabergoline did not significantly affect correction time (F(1,314)=2.2, 

p=0.14).  

Trials were binned according to the RT of the error saccade, and the mean 

correction delay for each bin was plotted (Figure 4.7B). Corrections were fastest for 

mid-speed errors; it took longer to correct early errors and late errors (effect of error 

time, F(4,161)=10.7, p<0.001). Cabergoline speeded the time to correct errors but there 

was no interaction with error RT bins, indicating a global speeding effect (main effect 

of drug, F(1,161)=4.22, p=0.041). 
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Figure 4.7: Error corrections were speeded by reward 

A) Error correction latency is the time from an error saccade to the distractor, until it was corrected 

by a saccade to the target. Error corrections were speeded by reward. There was a trend for 

cabergoline to speed error corrections, but there was no effect of time on task.  

B) Error correction latency was plotted as a function of the error onset time. Errors that occurred 

earlier were slower to correct, as were errors that occurred later. Cabergoline speeded error 

corrections overall, but there was no interaction with error time bins. 
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4.3.6. Questionnaire measures 

4.3.6.1. State measures 

To assess whether the drug effects could be explained indirectly by mental state or 

physical changes, we compared visual analogue rating scales after the drug and placebo 

sessions (Figure 4.8A and B). Only the headache rating differed significantly between 

the two groups (t(18), p=0.03 without correcting for 17 multiple comparisons). Of note, 

there were no differences in ratings for arousal, alertness, sociability, anxiety, nor mood. 

We also asked subjects to rate, on each session, whether they thought they were on the 

drug; there was no difference in ratings between the drug and placebo sessions. To 

assess whether headache might explain the effects of cabergoline, we correlated 

individual subjects’ cabergoline effect with their headache scores. There was no 

correlation for the effect on reward sensitivity of velocity (r2=0.009, p=0.69) nor for the 

effect on proportion of saccades that curved away from the distractor (r2=0.0002, 

p=0.95)—suggesting that headache was not a factor in our findings.   

We found no effect of drug on blood pressure or pulse (Figure 4.8C).  
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Figure 4.8: Visual analogue ratings and cardiovascular effects 

A) Rating scales for side effects ON minus OFF the drug; zero indicates no change in rating. 

Headache ratings were higher on cabergoline (uncorrected p=0.03). Headache ratings did not 

correlate with the measures of interest which were modulated by cabergoline, suggesting that side-

effects could not explain the findings. B) Rating scales for mental state showed no differences on or 

off the drug. C) We found no systematic differences in blood pressure or pulse on drug and placebo 

sessions.  

4.3.6.2. Trait measures 

Previous studies have shown that certain dopamine receptor polymorphisms correlate 

with behavioural traits (Ebstein et al., 1996; Munafò et al., 2008), and may underlie 

propensities to impulsive behaviour. We therefore asked whether questionnaire-based 

impulsiveness trait measures could predict the effects of D2 receptor stimulation in our 

participants. 

We first computed the three BIS questionnaire factors (attentional, motor and 

planning impulsiveness) and four UPPS subscales (premeditation, urgency, sensation-

seeking and perseverance). For each of these seven measures, we performed linear 

regression against reaction time, velocity, error rate, and reward sensitivity measures. 

There were no significant correlations with BIS or UPPS traits, and no interaction with 

cabergoline. Thus the personality traits we measured did not explain variability between 

subjects in reward sensitivity or effect of cabergoline.  
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4.4. Discussion 

We manipulated reward expectation in a saccadic distraction task and examined the 

effects of cabergoline, a dopamine receptor agonist with high selectivity for D2 

receptors, using a double-blinded placebo crossover design. Participants had to shift 

gaze to a target while avoiding a distractor, but on a substantial proportion of trials they 

erroneously looked at the distractor. When high rewards were available, there was 

speeding both of reaction times and velocities of eye movements. Cabergoline slowed 

saccade velocities, specifically only on the trials where incentives were low (Figure 

4.3A). Tonic dopamine D2 receptor stimulation thereby increased sensitivity of saccade 

velocity to rewards.  

Correct saccades sometimes curved towards or away from the distractor, a 

measure which can provide a sensitive index of the influence of the distractor (Hickey 

and van Zoest, 2012b; Mulckhuyse et al., 2009). Curvature away from the distractor 

was increased by high incentives. Although cabergoline did not affect accuracy or 

reaction times, it decreased curvature away from the distractor. This was most evident 

for early correct trials; for late error trials, cabergoline caused curvature towards the 

target.  

4.4.1. Dopaminergic effects on saccadic velocity and RT  

Our finding that reward speeds saccade velocity is in keeping with recent studies of 

rewarded prosaccades in monkeys (Chen et al., 2013) and saccades towards rewarding 

images in humans (Xu-Wilson et al., 2009). A dopaminergic basis for such effects has 

been suggested (Niv et al., 2007; Shadmehr et al., 2010b), in which tonic dopamine 

levels signal the ongoing reward rate of a task, thus indicating the “missed opportunity 
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cost” of responding slowly. A naïve application of such vigour models might predict 

that a tonic D2 agonist would increase the optimal speed of movements. But dopamine 

is also thought to be maintained in a tightly balanced range, where both excesses and 

deficits of dopamine can lead to detrimental effects, on either side of an optimal ‘sweet 

spot’ (Clatworthy et al., 2009; Seamans and Robbins, 2010), perhaps under the control 

of presynaptic activation of D2 receptors.  

Our finding that D2 activation selectively slows saccades when incentives are 

low is therefore doubly interesting, showing both an increase in reward sensitivity, but a 

reduction in the “motivational value” of low rewards. This might be predicted if the 

indirect pathway signalled recent rewards, as in recent computational models (Morita et 

al., 2013). Physiologically, D2 agonists may block the indirect pathway’s response to 

weak cortical inputs, but have no effect on strong inputs (Azdad et al., 2008). I 

conjecture that D2 stimulation of the indirect pathway might gate the reward-cue signal 

from the cortex, specifically when the reward is small, thus reducing the motivation 

conferred by the cue. Against this explanation, there is evidence in monkeys that D2 

blockade can also increase reward sensitivity of saccadic RT, as measured in a simple 

saccadic paradigm (Nakamura and Hikosaka, 2006), suggesting that the story is more 

complex. 

4.4.2. Dopamine alters curvature 

We found net curvature away from distractors, as in other studies (Doyle and Walker, 

2001; Godijn and Theeuwes, 2002a), but on many trials saccades also curved towards 

the distractor (Figure 3.2). “Repulsion” from the distractor was reduced on cabergoline 

(Figure 4.4B), supporting a role for dopamine in selection between afforded actions. D2 

stimulation might decrease the efficiency with which the distractor is inhibited, by 
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reducing the competition between the two locations. This could also explain the 

seemingly paradoxical finding that on cabergoline, although correct saccades curve less 

away from the distractor, error saccades are increasingly pulled toward the target 

(Figure 4.5b). Reduced competition, or reduced mutual inhibition, between the target 

and distractor could explain these findings.  

Saccadic curvature has previously been explained in terms of simultaneous 

activation of two movement plans (Aizawa and Wurtz, 1998; Mannan et al., 2010; 

McPeek and Keller, 2001). How might dopamine affect this? Predictive coding 

accounts have postulated that dopaminergic stimulation could increase the precision of 

representations of actions guided by bottom-up signals, promoting distractibility 

(Friston et al., 2009, 2012; Galea et al., 2012). In our task, this might increase the pull 

of both the target and the distractor, causing both movements to be simultaneously 

activated. This would account for both the curvature, and faster error correction. 

4.4.3. Lack of effect on RT 

If cabergoline reduced the mutual inhibition between target and distractor, it ought to 

result in prolonged RTs (Godijn and Theeuwes, 2002b), as predicted by integration 

models of decision making (Kopecz, 1995; Usher and McClelland, 2001). We did not 

find significant slowing, and error corrections were in fact faster, on cabergoline. D2 

blockade slows saccadic RTs in primates (Nakamura and Hikosaka, 2006) and 

computational models of the indirect pathway predict speeding with D2 stimulation 

(Morita et al., 2013). This could explain why, despite greater concurrent activation (as 

evidenced by curvature), we see no slowing in RT. 
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Our task is closely related to an antisaccade task, since at the moment of 

appearance of the first onset (the distractor), participants can plan a saccade to the other 

location, which will become the target. The advantage of our task is that the information 

about which location is the target does not remain on the screen—information is given 

only by the order of onset. Once the target appears, the two locations become 

indistinguishable. Therefore, any in-flight corrections must be made on the basis of 

information already present before the saccade began. Curvature, in our task, cannot be 

generated by new, incoming information about which location is the target. This affords 

a pure measure of the time course of activation of control mechanisms.  

4.4.4. Cabergoline shortens error correction latency 

We found that on cabergoline, the interval between the start of an error saccade, and the 

start of the subsequent error-correction saccade, was shortened. This suggests that D2 

stimulation improved either error detection or correction. This stands in contrast to one 

previous study that found increased error rates with the D2 agonist pergolide 

(Rammsayer and Stahl, 2006); in that study, the drug shortened the latency of the 

stimulus-locked evoked potential indicating enhanced stimulus processing. Their task 

was not designed to examine error-related potentials, but a plausible mechanism of error 

detection may involve dopaminergic prediction-error signals (Holroyd and Coles, 2002; 

Frank et al., 2007). Our result suggests that stimulation of D2 receptors may potentiate 

such an error signal, facilitating the generation of an error correction response.  

4.4.5. Limitations 

Could the velocity-slowing effect of dopamine be due to a general reduction in 

attention? This seems unlikely for two reasons. Firstly, our state questionnaires showed 
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no evidence for any effect of drug on alertness, arousal or mood. Secondly, cabergoline 

did not significantly increase RTs or RT variability, which are commonly taken to 

indicate reduced attentional arousal, vigilance and alertness (Paus et al., 1997; Stuss et 

al., 1989). This suggests that tonic D2 stimulation does not globally worsen 

performance. Thus slowing of velocities by cabergoline appears specifically coupled to 

the low incentive. 

A more serious worry is whether our study was underpowered to detect an 

interaction between reward and cabergoline in RT and capture rate. For our group of 19 

subjects, the standard error of the RT change between sessions was 5.5 ms, but the 

estimated effect size in this kind of drug study is uncertain. Moreover we deliberately 

used a relatively low dose of drug, to avoid side effects that might make any findings 

uninterpretable. We would argue that the presence of positive findings of reward on RT, 

and of cabergoline on curvature, suggest that any interactive RT effects of cabergoline 

with reward ought to be visible. 

Questionnaire measures raise the possibility that subjects experienced more 

headache on cabergoline, which might confound the drug effect.  I argue this is unlikely 

because there was 1) no corresponding effect of the drug on mood, 2) no correlation 

between headache score and size of drug effect, and 3) no a priori reason why headache 

might increase reward sensitivity. 

Although pupil data was obtained in this experiment, cabergoline constricts the 

pupil. It was therefore difficult to interpret reward effects, due to large baseline shifts on 

the drug.  
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4.4.6. Conclusion 

The D2-selective dopamine agonist cabergoline caused significant changes in the 

programming of eye movements, as measured by a saccadic distractor task. It had a 

reward-specific effect on saccade velocity, such that under low-reward conditions, 

dopaminergic stimulation selectively slowed saccade velocities. Cabergoline attenuated 

the repulsion effect of a salient distractor, irrespective of motivational state, without a 

measurable effect on the distractor’s pull. These findings support a role for dopamine in 

signalling motivational vigour in motor programming, but also suggest that D2 

stimulation increases conflict in selecting saccades to targets over distractors.   
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5. Effect of Parkinson’s disease on saccades 

5.1. Introduction 

Parkinson’s disease (PD) is a neurodegenerative disorder that is now known to be 

characterised by depletion of dopamine in several brain regions, including the substantia 

nigra (Jankovic, 2008). Cognitive changes are a clinically important dimension of PD, 

and include disorders of perception, learning, memory, executive control, mood and 

attention (Lange et al., 1992; Levin and Katzen, 1995; Litvan et al., 2011; Manohar et 

al., 2013; Owen et al., 1992; Shiner et al., 2012a). In particular motivational changes are 

increasingly recognised: pathological impulsivity is seen in about 14% of patients 

(Weintraub et al., 2010), and apathy in up to 60% in later stages of the condition 

(Starkstein, 2012). The motivational aspect is of considerable interest, as studying it 

may help tie together the motor and cognitive aspects of frontostriatal physiology 

(Ravizza et al., 2012). 

A key feature of motivation is that it is not constant; even for the same task, it 

can vary from moment to moment, depending upon incentives. Current theories of 

response vigour suggest that tonic dopamine signals average reward rate, and causes 

rates of responding to increase when reward yield is higher (Mazzoni et al., 2007; Niv et 

al., 2007). Vigorous responding in animals is associated with increased tonic levels of 

dopamine (Niv et al., 2007; Salamone and Correa, 2002), and slowing in PD has 

previously been characterised as a failure to energise responses (Mazzoni et al., 2007; 

Shadmehr et al., 2010b). In this framework, reward expectation and tonic dopamine 

should both act to increase motivation, shortening response times. 
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One prediction of vigour theory is that when dopamine is depleted, motivation 

will be globally reduced, resulting in an apathetic state (Sinha et al., 2013), and 

insensitivity to reward.  Vigour has previously been measured in PD using reaction 

times and movement speed (Mazzoni et al., 2007). These investigators found that PD 

patients are more sensitive to the cost of movement energy, when selecting arm 

movements. In summary, vigour theory predicts dopamine deficiency will lead to slow 

movements because effort is more costly. 

However, an alternative explanation of slowing could be increased noise in a 

decision process (Cohen et al., 2002). Dopamine is thought to improve the signal-to-

noise ratio by steepening the gain function at corticostriatal synapses (Da Cunha et al., 

2012; Lewis and O’Donnell, 2000). Increasing the nonlinearity of cells in an integrator 

network (Gruber et al., 2006; Humphries et al., 2009) would lead to a system that is 

“biased to action”, i.e. neurons will rapidly converge to an upper or lower threshold. 

Conversely, reducing the nonlinearity would slow down convergence, favouring 

intermediate states (Frank, 2005; Grossberg, 1988).  

From a decision-making perspective, this suggests that dopamine might increase 

decisiveness. In contrast, a deficit of dopamine would bias a system to deliberate for 

longer. In decision terms, PD would increase the decision criterion, or threshold, for 

choice (Bogacz et al., 2006). Similar thoughts about dopamine have been raised in 

terms of the “precision” of population codes: a lower precision in predictive coding of 

action would lead to slowness of action (Friston et al., 2009). According to these views, 

then, dopamine deficient states might lead to slower and suboptimal action selection, 

because of increased noise in the decision-making process.  
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In order to distinguish between the vigour and noise hypotheses, I examined 

distractibility. Computational models predict that if dopamine increases the 

nonlinearity, or decisiveness, of the neuronal transfer function, it would make attractor 

neural networks resistant to distraction (Brunel and Wang, 2001).  In keeping with this, 

deficits of selective attention are increasingly recognised in PD, most likely due to the 

hypo-dopaminergic state. A combination of deficits has been described, including 

increased distractor interference and attentional capture by salient stimuli (Botha and 

Carr, 2012; Briand et al., 2001b; Chan et al., 2005; Deijen et al., 2006; Zhou et al., 

2012) as well as reduced cueing effects and impaired pop-out search (Filoteo et al., 

1997; Mannan et al., 2008; Nys et al., 2010; Rodríguez-Ferreiro et al., 2010; Sampaio et 

al., 2011a; Troscianko and Calvert, 1993). Related effects are seen in reversal learning 

tasks: when a new feature must be selected, switching attention to a new feature-

dimension is impaired by PD (Cools et al. 2010).  

One explanation for effects observed on learning tasks invokes the role of 

dopamine in signalling reward (Frank 2005; Schultz 2007; Cools et al. 2009). Reversal 

learning has been shown to be sensitive to dopamine both in healthy volunteers and in 

PD (Bodi et al., 2009; Cools et al., 2006; Frank and O’Reilly, 2006; Shiner et al., 

2012a), consistent with the role of dopamine in signalling phasic reward prediction 

errors in learning (Schultz et al., 1997; Steinberg et al., 2013). For example, 

probabilistic learning is reduced in unmedicated PD, e.g., for implicit sequences, 

categorisation and classification (Knowlton et al., 1996).  

Dopaminergic treatment restores motor function but may “overdose” other 

regions of the basal ganglia which are relatively spared in PD, for example the ventral 

striatum. So in contrast, PD patients ON medication show impaired reversal learning—
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as predicted by a connectionist model of dopamine in frontostriatal loops (Frank, 2005; 

Knowlton et al., 1996; Poldrack et al., 1999). Interestingly, such models of learning 

from rewards also suggest a role for dopamine in filtering, particularly for preventing 

distractor interference (Frank et al., 2001; Gruber et al., 2006; Machado et al., 2009; 

McNab and Klingberg, 2008).  

If dopamine serves a dual purpose, both signalling reward and preventing 

distraction, one might expect rewards to modulate distraction. In healthy people, 

incentives do indeed influence distractibility: increasing attentional capture by salient 

stimuli associated with reward (Anderson et al., 2011a; Hickey and van Zoest, 2012b; 

Hickey et al., 2006; Kiss et al., 2009a) and reducing distractibility when incentives are 

high (Rothkirch et al., 2013; Schütz et al., 2012b). Do these effects of reward on 

distraction depend upon dopamine?  

If so, then firstly, we might make the following predictions: 

1) Distractibility in PD patients is modulated both by reward and by their 

dopaminergic state.   

2) PD patients should have reduced sensitivity to distraction by rewards.  

3) If dopaminergic drugs generally raised motivation levels, medication might 

improve reward sensitivity (Beierholm et al., 2013), due to tonic dopaminergic 

stimulation. However, if motivation were dependent on phasic dopamine 

signals, we might not expect drug effects on motivation. 

In this study, I used a task that varies incentives while measuring oculomotor capture 

(as in chapters 3 and 4), to quantitatively measure the capture of attention by visually 

salient distractors. I measured distractibility of eye movements (oculomotor capture) in 

patients with PD while ‘ON’ and ‘OFF’ their normal dopaminergic medication, in two 
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separate sessions. To study dynamic changes in motivation level, participants were 

offered different reward incentives on each trial. This design allows examination of all 

three predictions described above.  

In addition, I also used pupillometry to measure pupil responses to current and 

previous incentives, as well as past winnings. This measure potentially provides a probe 

of reward sensitivity and its modulation by dopamine without relying solely on 

measuring the vigour of action execution as our index of sensitivity. In addition, two 

control saccadic tasks (prosaccades and antisaccades) were also run to examine whether 

any effects on the oculomotor capture task might be explained simply by changes 

observed in these saccadic paradigms. 

5.2. Oculomotor capture task 

5.2.1. Methods 

5.2.1.1. Participants 

We studied how oculomotor capture was modulated by incentives in 16 patients with 

mild or moderate PD. Patients who fulfilled the criteria for the Queen Square Brain 

Bank for PD (Gibb and Lees, 1988; Hughes et al., 1992) were recruited from the 

neurology clinic at the National Hospital for Neurology and Neurosurgery.  The mean 

UPDRS was 21.7 (s.d. 10.3). All patients were on medication; 11 were taking levodopa, 

and 9 were taking a dopamine agonist. The mean levodopa equivalent dose, calculated 

from standard conversions (Tomlinson et al., 2010) was 532 mg.  

The mean age of the patients was 65 yrs (s.d. 9.8); the 22 control participants 

had a mean age of 62.4 (s.d. 8.9). Cognitive impairment was screened for using either 
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Montreal cognitive assessment (MoCA, Nasreddine et al., 2005) ≥ 26 or mini-mental 

state examination (MMSE) score ≥ 26; two patients had mild cognitive impairment with 

MoCA scores of 25. Two patients did not have cognitive tests but were still in full-time 

work. Digit span forwards and backwards was measured in the first session. Depression 

was excluded using the Hospital Anxiety and Depression scale (Zigmond and Snaith, 

1983). All patients had normal or corrected-to-normal colour vision. Symptomatically, 2 

patients had significant functional impairment as determined by Schwab and England 

ADL score (one patient 50%, one patient 60%, all other patients 80% or above).  

5.2.1.2. Sessions  

Each patient attended on two sessions, once ON medications, and once OFF 

medications, with the order randomised across patients. The mean time between the two 

sessions was 2.3 weeks, with a minimum of 1 week. Testing was at 9 am for most 

patients, and was always at the same time of day for both sessions, to match for diurnal 

variation. For the ON session, patients took their normal medications; all patients were 

on at least one morning tablet, either levodopa or a dopamine agonist. For the OFF 

session, patients omitted the morning tablets, and had taken their last dose of 

dopaminergic medication at least 12 hours before the session. 

5.2.1.3 Oculomotor capture task 

The oculomotor capture task was similar to that of Chapter 3 (Study 3.4). The distractor 

onset was fixed at 80 ms before the target. All patients performed 4 blocks of the task, 

giving 216 trials, with 72 trials per reward level.  
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5.2.2. Results 

Participants had to look as quickly as possible towards the target, while avoiding an 

early onset distractor. Saccades were parsed as previously and classified based on 

endpoint. This enabled detection of oculomotor capture, measurement of peak saccade 

velocity, reaction time from target onset to start of saccade, and curvature of saccade 

trajectory.  

5.2.2.1. Error rates showed reduced reward sensitivity in PD 

Distractibility was quantified as the proportion of trials on which the eyes were captured 

by the distractor (oculomotor capture). Healthy control participants were distracted on 

average on 27.5% of trials (± s.e.m. 3.5% ), whereas PD patients ON medication were 

captured on 22.3% (±3.4%), and OFF medication, 19.5% (±2.4%).   

 

Figure 5.1: Performance across groups on capture (error) rate and peak saccade velocity  

A) PD patients made fewer errors than controls, but their error rates did not show the normal 

reduction with reward (interaction p=0.033). B) Saccade velocity for correct and capture trials. 
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Reward speeded velocities in all groups, but PD patients were significantly slower than controls 

(p<0.001). There was no significant effect of drug. 

To compare the proportion of capture between groups, and to measure the effect 

of reward, a nested three-factor mixed-model ANOVA was used with reward level, 

group (PD vs. control) and drug (ON or OFF) with session order as a covariate. This 

analysis showed that, over all groups, reward significantly reduced capture errors 

(arcsine transformed, F(1,115)=8.35, p=0.0046), and that PD patients on average 

significantly made fewer errors than controls (F(1,115)=5.94, p=0.018). Additionally 

there was an interaction between reward effect and group, in that PD patients had 

reduced sensitivity to rewards compared to controls, observed as shallower slopes in 

Figure 5.1A (F(1,115)=4.64, p=0.033).  

Follow-up pairwise ANOVAs separately compared PD ON medication or OFF 

medication with controls. PD patients OFF medication were significantly less sensitive 

to rewards than controls (F(1.72)=7.80, p=0.0067), but no reward interaction was seen 

for PD ON vs. controls. A within-subject ANOVA for PD ON vs. OFF did not reveal 

any effect of drug or interaction with reward. Thus, although higher incentives reduced 

distractibility, PD patients were generally less motivated by incentives than controls, as 

indexed by capture (error) rate. 
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Capture i.e. Error 

rate (s.d.) / % 

Low reward Medium reward High reward 

Controls 31.5 (3.7) 26.8 (3.6) 24.4 (3.6) 

PD ON 23.2 (3.7) 22.8 (3.5) 21.0 (3.3) 

PD OFF 19.1 (2.8) 20.2 (2.7) 19.2 (2.5) 

Table 5.1: Proportion of oculomotor capture (error) rate in each condition. Values are 

averages over subjects for each group. Controls showed modulation by reward, but patients did 

not. There was no significant difference between patients ON and OFF medication, and no 

interaction, using a paired F-test. 

5.2.2.2. Saccade velocity slowed in PD 

A key finding, across all groups and within each group, was that peak velocity of 

correct saccades was speeded by reward (F(1,115)=13.7, p<0.001; Figure 5.1), in 

keeping with the results from Chapters 3 and 4. Control participants had higher 

velocities than patients, and pairwise comparisons showed that this was true whether 

patients were ON or OFF medication (F(1,72)=6.62 and 5.09, p=0.014 and 0.030 for 

ON and OFF respectively). Moreover, there was an interaction between group and 

reward, in that patients had significantly greater reward sensitivity than controls 

(p=0.006, F(1,105)=8.05). There was no effect of drug state, and there were no 

interactions with reward, indicating that reward sensitivity was not significantly altered, 

at least as in terms of saccade velocity, on dopaminergic medication. A similar pattern 

was observed for error saccades, i.e. those in which there was oculomotor capture.  

5.2.2.3. PD patients have reduced sensitivity of RT to reward 

Mean RTs of correct trials for control subjects were 315 ms (±s.d. 66 ms between 

subjects), compared to 372 ms (±110 ms) for PD patients ON medication, and 378 ms 

(±126 ms) OFF medication (Figure 5.2). RTs on correct trials was analysed as in 
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chapter 3. They demonstrated a trend for patients to be slower than controls 

(F(1,115)=3.45, p=0.071), but there was no significant effect of reward on RT, and no 

group interaction (F<1.8, p>0.18). RTs were speeded by practice (F(1,115)=112, 

p<0.001).  

 

Figure 5.2: Reaction times show decreased reward sensitivity in PD 

A) PD patients RTs were slower than controls, but they did not show the normal speeding with 

reward (interaction p=0.021). B) PD patients error RTs were also slowed compared to controls, but 

they were even slower when on medication (effect of drug p=0.031). When off medication, PD 

patients were more sensitive to rewards than controls (interaction of reward and drug, p=0.011). 

Pairwise ANOVAs for PD OFF vs. controls showed a main effect of reward on 

reducing RTs (F(1,72)=5.0, p=0.028), so participants had shorter RTs when there was a 

greater reward on offer on a trial. There was also a significant interaction between 

reward and group (F(1,72)=5.71, p=0.021), with no effect of group, indicating that PD 

patients OFF medication were less reward sensitive than controls. Comparing PD ON 

with controls did not give rise to a significant interaction (F(1,72)=3.54, p=0.06), and 
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the within-subject comparison of patients ON and OFF showed no significant effects 

(all p>0.5). Thus, in terms of reaction time, PD patients OFF medication were 

significantly less reward sensitive than controls, but this was not the case when ON 

medication. 

RT on capture trials was faster than on correct trials, consistent with previous 

findings (see chapter 3). However, capture RT was slowed down by medication in PD 

patients (effect of drug, F(1,115)=4.74, p=0.031). There was no overall effect of group, 

and no interaction with reward. There was no significant effect of PD ON vs. control, 

but the comparison of PD OFF to controls showed a significant interaction of group × 

reward, indicating PD OFF had increased reward sensitivity compared to controls 

(F(1,72)=6.90, p=0.011). In particular, in the no-reward condition, PD patients OFF 

medication had faster error RTs than controls. Thus lower incentives led to earlier 

distraction, specifically in patients OFF medication.  

In order to examine the time-dependence of the reward effect, I used a delta plot 

to examine changes in the shape of the RT distribution (Ridderinkhof et al., 2004b, 

Figure 5.3). My method improves on previous approaches by removing the arbitrary 

assignment of bin edges. For each RT quantile, the difference between the reward 

conditions was calculated. This gives the effect of reward for each RT bin, as the ‘delta’ 

between two RT distributions. The delta function, i.e. the effect of reward over time, 

was calculated for each subject, aligned by quantile, and bin centres were averaged 

across subjects to obtain the mean delta and standard error across subjects.  

On the graph, positive values signify that reward shortens the RT of saccades at 

a given quantile in the distribution.  Delta plots thus give a sensitive analysis of how 

effects evolve in time during the response period (Wylie et al., 2009). Whereas controls 
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(blue) have positive values throughout the reward period, indicating shorter RT with 

rewards, patients OFF do not differ from zero, indicating no effect of reward on RT for 

any part of the RT distribution. The null hypothesis, that there was no effect of reward 

at any RT, was tested by permutation, and times at which p<0.05 are shown in Figure 

5.3. The plots therefore demonstrate that reward insensitivity in PD is a feature 

throughout the response period.  

 

 

Figure 5.3: Delta plot of reaction time in PD and controls 

The plot shows reward sensitivity as a function of time during the trial. For each RT bin, the RT 

difference between high and low reward trials is shown. A positive value means that saccade 

latency is shorter with higher reward. Healthy volunteers show earlier responding when rewards are 

high compared to when they are low (blue curve, negative values) throughout the response period, 

indicating incentivisation by reward. PD patients showed no significant speeding by reward when 

OFF (magenta). Bars below represent times at which p<0.05 by permutation test. 
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5.2.2.4. PD patients more accurate than controls, but only for slower 

responses 

Why are PD patients less distractible than controls? It is well known that short-latency 

saccades are more likely to go towards distractors (Wijnen and Ridderinkhof, 2009), so 

we might expect that simple slowing associated with PD might result in reduced 

distraction. By calculating the likelihood of capture for saccades initiated at different 

times, we can examine the timecourse of distractibility. In order to determine if PD 

patients’ improved accuracy was due simply to their being slower, all saccades were 

collated in each reward condition, and distributions were Vincentised (Ratcliff 1979) 

using overlapping bins one-fifth of a quantile wide. For these RT quintile bins, the 

proportion of saccades without oculomotor capture ('accuracy') for each bin was plotted 

(conditional accuracy function, Figure 5.4). The abscissa shows the mean RT of each 

bin; slowing due to PD is evident as a rightward shift of the curve here. 

The resulting conditional accuracy function was similar both ON and OFF 

dopaminergic medication, but showed three striking differences compared to age-

matched controls. Firstly, the shortest latency responses were no more accurate than 

controls, despite being slower by around 40 ms. Thus PD-related slowing in and of 

itself cannot explain the accuracy benefit.  

Secondly, for slower saccades (at the 3rd and 4th quintile bins), PD patients were 

more accurate than controls—even at similar latencies, of around 350 to 400 ms. If the 

increased accuracy observed in PD were due simply to slowing, we would expect that 

early saccades would show the greatest improvement in PD. However, the greatest 

increase in accuracy is seen in later time bins. Thus, the improved accuracy at later 

durations is not attributable solely to the fact that patients are slower than controls. 
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Finally, trials were also broken down according to reward level. The curves 

demonstrate that patients, unlike controls, lack reward sensitivity at all response 

latencies. Continuous versions of the conditional accuracy function were created using 

the sliding window technique, and statistical comparison of the ON and OFF states was 

performed using permutation tests (Figure 5.4D and E). Medication reduced accuracy 

in a short time window from 360 to 450 ms (p<0.05).  
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Figure 5.4: Conditional accuracy function for 3 levels of reward 

 For each subject and condition, trials were binned according to RT quintile, and accuracy (1 – 

capture rate) was calculated for each bin.  A) Reward-modulation in healthy controls.  B) Lack of 

modulation by reward in PD, and no difference between patients ON and OFF their dopaminergic 

medication. C) Comparison of PD patients and controls. At their slowest reaction times, patients 

were less accurate than controls at comparable speeds. At faster reaction times, they were more 

accurate than controls at comparable speeds. Therefore a speed-accuracy trade-off alone cannot 

explain patients’ improved accuracy. If speed-accuracy trade-off explained the results, it would be 

demonstrated by the patients’ curves largely overlying control curves.  
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D) Continuous-valued delta plot of the same data, showing clearly the early effect of reward on 

accuracy in controls, and the differential effects of PD upon fast and slow RT bins. E) Same data 

shown to compare PD patients ON and OFF medication, for each reward level. Red bar shows 

p<0.05 by permutation test. 

5.2.2.5. Reward-related curvature away from distractors reduced in PD  

Curvature was calculated as in chapter 4. The curvature of correct saccades did not 

show an effect of reward, nor of group, nor of drug. However, there was a significant 

interaction between reward and group, in that reward had different effects on curvature 

in PD and controls (Figure 5.5A, F(1,114)=5.49, p=0.021). Individually comparing PD 

OFF with controls showed this same interaction with reward. In controls reward 

induced a net curvature away from the distractor, but the effect of reward was opposite 

in PD OFF (F(1,72)=5.01, p=0.028) with a similar trend in PD ON (F(1,72)=3.94, 

p=0.051). 

 
 

Figure 5.5: Dopaminergic medications reduce curvature towards distractors 

A) Controls show less saccadic curvature when incentives are high. PD patients lack this 

modulation by reward (interaction p=0.021). B)  The proportion of saccades that curved towards the 

distractor was reduced in PD patients on dopamine (p=0.020). C) The proportion of saccades that 

curved away from the distractor was unaffected by drug or reward. 
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To examine whether this curvature effect was due to increased distractor pull or 

decreased repulsion, the curved saccades were subdivided into those that curved 

towards and away from the distractor. Saccades that curved towards the distractor were 

fewer in patients ON medication, compared to OFF (Figure 5.5B, F(1,71)=6.93, 

p=0.010). There was no significant difference between patients and controls, no effect 

of reward, and no interaction. For saccades that curved away from the distractor, there 

was no effect (Figure 5.5C, all p>0.05). In other words, patients had less reward-related 

curvature away from the distractor overall, but dopaminergic medication helped to 

reduce the proportion of saccades that curved towards the distractor.  

As in the previous chapter, we examined individual trajectories as a function of 

time during the saccade (Figure 5.6A). On average saccades curved away from the 

distractor. Linear regression was used to extract the effects of reaction time, incentive, 

and previous trial winnings and incentive, and time on task upon curvature. A positive 

value means that as the variable of interest increases, the saccade curves more away 

from the distractor. A negative value means that the saccade curves towards the 

distractor as the variable increases. Thus, the green curve demonstrates that even within 

the first quarter of the trajectory, the saccade is more likely to be repelled by the 

distractor when the previous incentive was high, compared to when it was low. The 

magenta curve’s positive deflection demonstrates that on trials where the saccade was 

initiated later, i.e. longer saccadic latency, the saccade is repelled by the distractor, 

during the final part of the movement. 
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Figure 5.6: Averaged saccade trajectories for correct trials 

Trajectories are shown as a function of time during the saccade, comparing PD ON and OFF with 

matched controls. A) Overall saccades curved away from the distractor. Positive deflections 

indicate curvature away from the distractor. B) Effect of reaction time, incentive, previous winnings 

and incentive, and time on task on the trajectory. Positive values indicate that the factor causes 

increased curvature away from the distractor, and negative values indicate increased distractor pull. 

Patients have significant effects of the previous incentive (green): previous high incentives cause 

repulsion from the distractor. When OFF, distractors have more pull after winning a high reward 

(red). Saccades with longer latencies tend to curve away from the distractor (magenta).  

5.2.2.6. Reduced pupillary reward sensitivity in PD patients OFF 

medication 

To examine reward sensitivity of the pupil to the auditory reward cue, the pupil size was 

fitted to a general linear model as previously described in section 3. Regressors for the 

current reward cue’s value, the previous trial’s reward cue, and the amount of reward 

actually received on the previous trial were included. A constant regressor and a time-

on-task regressor (trial number) were used to remove the components that were 

independent of reward. Parameter estimates at each timepoint were calculated using 
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least squares. For the three reward regressors, a positive value of the parameter estimate 

indicates that higher rewards correlated with increased pupil size. For example with 

regard to current incentive, a positive value indicates that higher incentives led to 

relative dilatation of the pupil compared to lower incentives. 

Healthy controls (Figure 5.7D) showed positive effects of the current incentive, 

and negative effects of the previous trial’s incentive. This means that the pupillary 

dilatation increased with the current trial’s incentive, but was reduced after a previously 

high-incentive trial. PD patients ON mediation showed similar modulation of the pupil 

in response to the current trial reward cue, but the effect was delayed (Figure 5.7A, first 

significant at 1105 ms in PD, whereas in controls and PD OFF it became significant at 

562 and 708 ms respectively). In addition, when patients were OFF medication, this 

incentive response was blunted, and only remained significant for a 280 ms window. 

Despite the blunting, the latency was normal (525 ms).  

ON medication, patients additionally showed pupillary sensitivity to the 

winnings on the previous trial, in the opposite direction of the previous trial incentive. 

That is, pupil size encoded the difference between what patients won, and what they 

could have won. Previous trial winnings did not influence pupil response in controls, 

nor in patients OFF medication (Figure 5.7C, difference between ON and OFF 

conditions, significant between 890–1250 ms). The encoding of the previous trial’s 

incentive was relatively preserved in PD. 
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Figure 5.7: Pupil size after the reward cue is modulated by reward 

Pupil size was analysed in the period following the reward cue. The vertical axis shows values of 

the regression coefficients, where positive values indicate that higher reward correlated with an 

increase in pupil size, and negative values indicate correlation with decreased pupil size. The yellow 

traces thus indicate the sensitivity of the pupil to current incentive, as a function of time, whereas 

pink and blue indicate the effect of previous trial winnings and incentive respectively. A) shows that 

PD patients ON medication show similar pupil sensitivity to incentive cues as controls (D) as 

evidenced by the up-going yellow trace. The positive deflection indicates that the pupil dilated more 

when the current incentive was high. B) shows that when PD patients were OFF medication, the 

pupil was less sensitive to incentive, with the yellow line not deviating far above from zero. C) 

shows the drug effect, A minus B. Medication increased pupillary responses to previous winnings. 

D) shows the normal pattern of pupillary response with larger pupil for higher current incentive, and 

smaller pupils for higher previous incentive. Shaded areas represent the standard error of the mean 

across subjects; for A-C, N=15; for D), N=22. Bars below the graphs indicate timepoints at which 

each regressor differed from zero (t-test, p<0.05).  
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5.2.2.7. No correlation with age or severity of PD  

The slope of each individual’s reward sensitivity function of peak saccade velocity 

when ON was uncorrelated with age (r2=0.0003, p>0.05) and UPDRS score (0.025). 

The effect of drug on velocity was also uncorrelated with age (r2=0.009) and UPDRS 

(r2=0.002). The interaction term, which indicates the difference in reward slope when 

ON minus OFF medication, also did not correlate with age (r2=0.051) or UPDRS 

(r2=0.010).  

5.3. Prosaccades and antisaccades in Parkinson’s disease 

The presence of distractors in PD has had varied effects on response times in previous 

studies (Deijen et al., 2006; Lueck et al., 1990; Terao et al., 2013). The slowing of 

saccades in PD that we observed in section 5.2 could have been due to the presence of 

the distractor, or could have been due to globally increased RTs, e.g. related to 

bradykinesia.  

The prosaccade and antisaccade tasks were designed to be as similar as possible 

to the oculomotor capture task, with the exceptions of layout and the absence of reward. 

Thus they act as a control condition to provide baseline reaction times and velocities for 

reactive saccades and movements requiring endogenous control, which are aspects that 

may also be affected in PD (White et al., 1983). 

5.3.1. Methods 

Three dim discs were displayed on the screen: one central, and one 11 degrees to the left 

and to the right; each 4 degrees in diameter (Figure 5.8). Initially the central disc was 

brighter, and changed colour to yellow once fixation had been acquired for 500ms. 
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After a non-ageing foreperiod of between 500 and 1700ms (decay constant 400ms), the 

central disc dimmed and simultaneously either the left or the right disc brightened. In 

the prosaccade task, subjects were required to saccade to the disc that brightened; in the 

antisaccade task, they were required to saccade to the disc that remained dim. Once gaze 

arrived within 6.7 degrees of the target, the central disc was once again illuminated, and 

the next trial began. 

 

Figure 5.8: Prosaccade and antisaccade tasks 

The stimuli were similar to those used for the oculomotor capture task. After 500ms of fixation, the 

central disc changed colour to indicate the start of the foreperiod. After a variable delay, one of the 

side discs was illuminated, and simultaneously the central disc was dimmed. In prosaccade blocks 

subjects had to shift their gaze to the illuminated disc, and after this the central disc was re-

illuminated. In antisaccade blocks, subjects had to shift gaze from the centre to the opposite side of 

the screen to the luminance increment.  

Participants performed 2 blocks of 48 trials each on the prosaccade task, 

followed by 2 blocks of 48 trials of the antisaccade task. In total, the four blocks took on 

average 10 minutes. 

5.3.2. Results 

Saccades were identified offline using the same velocity and acceleration criteria as in 

the oculomotor capture task. The first saccade after target onset that was greater than 1 
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degree in amplitude was taken as the response, and was classified as leftward or 

rightward.  

5.3.2.1. Prosaccades 

Prosaccade errors occurred on <1% of trials for all three groups. Saccadic RT was 224 

ms for controls, 252 ms for PD ON, and 253 ms for PD OFF medication, with a 

significant slowing in PD (F(1,15)=2.36, p=0.024) but no drug effect. Saccade 

amplitudes were hypometric in PD (F(1,15)=5.45, p<0.001) with no effect of 

medication (means 10.8° ± 0.3 ON, 10.5° ± 0.3 OFF, compared with 12.0° ± 0.2 for 

controls). Importantly, there were no significant group differences in saccade velocity. 

Previous reports have suggested abnormalities of inhibition of return (IOR) in 

Parkinson’s disease (Briand et al., 2001b; Poliakoff et al., 2003). Although classical 

IOR is examined using a pre-cue up to 1 second before the target, we examined whether 

an analogous effect could be seen between trials. To this end, we grouped trials 

according to whether the target direction was the same as, or different to, the previous 

trial (Figure 5.9). Inhibition of return would be manifest as shorter RTs when the 

previous trial’s target was in the opposite direction to the current target. We found equal 

IOR in all groups, with magnitude 22 ms (s.e.m. 6 ms) in controls, 27 ms (s.e.m. 9 ms) 

in PD ON, and 21 ms (s.e.m. 5 ms) in PD OFF (p<0.05 in each group, but no group 

differences p>0.05).  
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Figure 5.9: Results of the prosaccade and antisaccade tasks 

A) For antisaccades, both controls and patients made approximately 20% errors. B) Parkinson’s 

patients were slower than controls for both prosaccades and antisaccades. There was a significant 

trial-to-trial effect for prosaccades, in that saccade latency was shorter for saccades to the opposite 

direction than the previous trial. This “inhibition-of-return” effect was seen in both patients and 

controls. C) Patients showed hypometria for prosaccades, that is, the first saccade fell short of the 

target. For antisaccades, controls were hypermetric, overshooting the target. PD patients were less 

hypermetric, particularly when looking to the same direction as on the previous trial.  
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5.3.2.2. Antisaccades 

A key finding here was that the error rate—perhaps analogous to capture rate in the 

previous study—did not differ between any of the groups (controls 20%, PD ON 19%, 

PD off 19%). Antisaccade RT was 343 ms for controls, 359 ms for PD ON, and 358 ms 

for PD OFF medication. No effect of previous trial direction was found (p>0.05). As 

with prosaccades, PD patients had smaller saccade amplitudes than controls (11.8° vs. 

12.6°). Again, there were no group differences in saccade velocity. 

5.3.2.3. Relationship between tasks 

As our rewarded oculomotor task might be considered to be an adaptation of pro- and 

anti-saccade tasks, we examined how velocity and RT were related between the tasks. 

Participants’ velocities in the prosaccade task were correlated with their saccade 

velocities in the oculomotor capture task (PD ON: r2=0.42, p=0.006, OFF: r2=0.47, 

p<0.003; Controls r2=0.31, p=0.009). Similarly, reaction times in the two tasks were 

correlated. However the proportion of oculomotor capture and the number of 

antisaccade task errors was not significantly correlated (r2=0.11, p=0.21).  

5.3.2.4. Disease severity covaries with distractibility 

Disease severity, as quantified by the UPDRS total score, correlated with the amount of 

oculomotor capture (r2=0.32, p=0.023), but not with RT or velocity. Average digit span 

for patients was 6.3 forward and 3.8 backward, compared to 6.7 and 4.4 for controls. 

There was no correlation of working memory span with oculomotor capture rates or 

antisaccade errors.  
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5.4. Discussion 

An oculomotor distraction task with variable incentives was used in patients with PD 

ON and OFF their dopaminergic medication. We found that whereas healthy controls 

showed faster RTs and increased accuracy with higher incentives, PD patients were less 

sensitive to rewards on both these measures (Figure 5.1 and 5.2). Saccade velocities 

were slowed in PD and, as with RT and accuracy, showed significantly reduced reward 

sensitivity.  

We also measured saccade curvature, which indexes the pull of the distractor. In 

controls, incentives increased curvature away from the distractor, but not in PD. Patients 

ON medication had decreased curvature towards the distractor (Figure 5.4). Finally, in 

PD ON medication, we found abnormal pupil dilatation in response to reward history, 

which was absent when OFF drug and in control subjects (Figure 5.5). 

5.4.1. Slowing and reduced reward sensitivity in PD implicates 

dopamine in vigour 

We hypothesised that the dopamine deficiency of PD might lead to increased 

costing of action, as proposed by Mazzoni et al. (Mazzoni et al., 2007). Our finding of 

slowing of RT and saccade velocity is consistent with this. Intriguingly, the decrease in 

reward sensitivity, observed both in RT and distraction, runs in a direction that cannot 

be explained by speed-accuracy trade-off (Figure 5.1A and 5.2A): compared to 

controls, patients were slowed the most in the high reward condition, but had the 

greatest error reduction at low reward levels. This suggests that what we are observing 

is a depletion of motivation, i.e. a reduction in the potency of rewards to induce 

motivation, as opposed to a speed-accuracy trade-off.  
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Data from the conditional accuracy functions (Figure 5.3) also argue against a 

speed-accuracy trade-off. For comparable speeds, patients are less accurate than 

controls at shorter RTs, and more accurate at longer RTs, i.e. the accuracy increases 

more steeply over time.  

The pupil response to reward appears to partially support the motivational 

interpretation. Diminished pupillary reward sensitivity when off dopamine may reveal 

dopaminergic contributions to reward sensitivity. A curious effect of the previous trial’s 

winnings upon the pupil emerged in PD patients when ON medication (Figure 5.5). The 

pupil dilated more in response to the reward cue, on the trials after a large reward had 

been won. The increase in tonic dopaminergic stimulation appears to cause ‘carry over’ 

of the reward signal from the previous trial, to the motivational period of the following 

trial – effectively, a post-reward facilitation. This might be an effect of altered of reward 

response kinetics induced by the medication.  

5.4.2. Distractibility 

Our patients had less oculomotor capture by distractors than controls, but in previous 

studies PD patients have been shown to have difficulty filtering distractors (Deijen et 

al., 2006; Machado et al., 2009). Why might this be? Machado et al. used peripheral 

irrelevant flankers which could be compatible or incompatible with the target that 

indicated which response was required. PD patients showed increased compatibility 

effects. Their task could not distinguish 1) whether the incompatibility or compatibility 

of the flanker drove the effect, 2) whether cue integration is simply better in PD, or 3) 

whether PD impairs spatial focusing of attention.  
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Our curvature results suggest that impaired distractor inhibition might be 

responsible. Deijen et al. (2006) used a task similar to ours without incentives, with 

unmedicated patients, but again found greater oculomotor capture in PD, unlike this 

study. It is possible that the lack of distractibility in our cohort is because they had all 

been on chronic dopaminergic treatment before testing, which radically alters the 

balance of receptors expressed in the striatum (Gerfen and Surmeier, 2011). Thus even 

our OFF session may not be comparable to the Deijen et al. study. A further possible 

reason for the difference is that, simply because the present study manipulates reward, 

our patients may start from a higher motivational level, compared to other studies. 

One recent study has found reduced distractibility in PD OFF medication (Cools 

et al. 2010), consistent with reports of diminished exogenous orienting (Nys et al., 

2010). One possible interpretation is that without dopamine, the striatum is less 

responsive and less able to update prefrontal processes with incoming information; 

alternatively low dopamine may simply reduce attention to appetitive stimuli (Shiner et 

al., 2012b).  

5.4.3. Relation of oculomotor capture to antisaccade errors 

Studies on antisaccades in PD have had mixed results (for a recent review see Yerram et 

al., 2013). Most likely, antisaccade latencies and errors in PD correlate positively with 

disease progression, and with other measures of executive function (Kitagawa et al., 

1994). Patients in the early stage of the disease often have normal performance, whereas 

advanced patients have difficulty suppressing reflexive saccades in this task, which has 

been compared to disinhibition phenomena seen in the “frontal release” syndrome 

(Crevits and De Ridder, 1997; Fukushima et al., 1994; Lueck et al., 1990). In addition to 

the frontal contributions to distraction, dysfunction of attentional and oculomotor 
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regions has also been implicated in PD. PD patients lack normal increases in EEG 

posterior gamma power during saccades (Javaid et al., 2010) and show reduced 

recruitment of FEF and SEF during antisaccades and self-paced prosaccades on fMRI 

(Rieger et al., 2008; Yerram et al., 2013).  

In PD, spatial attention is less effective in enhancing visual features (Sampaio et 

al., 2011a), accompanied by spatially specific deficits in orienting (Nys et al., 2010). In 

contrast, PD increases exogenous orienting—manifest by a greater exogenous pre-cue 

benefit (Briand et al. 2001; but see Kingstone et al. 2002), increased erroneous 

prosaccades during an antisaccade task (Chan et al., 2005), and generally greater 

distractor interference (Botha and Carr, 2012; Deijen et al., 2006; Zhou et al., 2012). 

However, prosaccades are slowed in PD, but are speeded by levodopa (Hotson et al., 

1986) and STN DBS (Fawcett et al., 2010; Temel et al., 2008). Pop-out effects also 

seem to be reduced in patients (Filoteo et al., 1997; Mannan et al., 2008; Rodríguez-

Ferreiro et al., 2010; Troscianko and Calvert, 1993).  The reduced distractibility in our 

task (Figure 5.1A) thus supports a central role of dopamine in “bottom-up” sensory 

guidance of spatial attention. 

5.4.4. Limitations 

Previous studies have shown increased distractibility in PD. It could be argued that the 

reason I found patients less distractible than controls (i.e. less oculomotor capture), is 

that patients were tested on two sessions, whereas controls on a single session. But I 

argue firstly, the fact that error rates were comparable between groups permits 

comparison of the interaction effect of reward, which would otherwise be hard to 

interpret (we found no group difference between PD OFF and controls). Secondly, 

practice could not explain that PD patients are slower overall compared to controls, for 
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both correct and error responses (Figure 5.2). Thirdly, I included a practice term in the 

ANOVA, so any effects of practice should be factored out.  

The longer RTs overall in PD could hamper interpretation of the interaction RT 

effects—i.e. decreased reward sensitivity (Figure 5.2A). However several studies 

demonstrate that RT differences scale with RT (Wang et al., 1998; Wilson et al., 1980). 

Thus with longer RTs, one should see larger RT effects of reward. In fact, our effect 

runs in the opposite direction; patients have smaller changes than controls. When 

considered in proportion to RT (i.e. as the ratio of the RT difference to the absolute RT; 

Luce, 1986), the observed reward-sensitivity effect is in fact stronger.  

It is possible that the reason that correct RTs show reduced reward sensitivity in 

PD is due to saturation, or nonlinearity in the measure. In other words, could it be that 

patients are always performing at their fastest, with no room for improvement with 

reward? In my view, this suggestion misses the logic behind motivational 

manipulations. All motivation must by definition act against some “resistance”, i.e. 

performance limits. If performance could be improved by extreme motivational states 

(e.g. in kinesia paradoxa), but is insensitive to laboratory manipulation of incentives, 

we may well find “ceiling performance”. But this should not be considered as a ceiling 

effect, but rather as a disorder of the scaling of motivation, in terms of effort cost. In 

support of this, PD patients did have significant nonzero reward sensitivity, so they have 

some motivational effect, but of lower magnitude.  

Could the results be explained by PD patients OFF medication being slower to 

perceive or process the reward cue? This is unlikely to be the case, as their error RT was 

abnormally sensitive to reward, indicating that they had processed the reward cue. In 

PD OFF medication, error reaction times were paradoxically faster when reward was 
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low (Figure 5.1C). A parallel effect has previously been described in response conflict: 

when conflict is high, correct RT is slowed but error RTs are actually faster. This is 

predicted by diffusion and accumulator models, in which errors occur due to faster 

build-up of evidence for the incorrect response (Teodorescu and Usher, 2013). In my 

oculomotor task, this pattern would arise if reward reduced distractor competition. 

Comparing this study to the drug study of Section 4, D2-receptor stimulation 

increases reward sensitivity of saccade velocity and curvature, but contrary to 

expectation, treatment with dopaminergic drugs did not restore reward sensitivity in PD. 

Why this discrepancy between medication for PD vs. cabergoline? 

A similar lack of effect of PD medication on the facilitatory effects of visual 

cues has been recently demonstrated (Anzak et al., 2012). One explanation of the 

negative finding is that bottom-up salience effects can be mediated by non-

dopaminergic mechanisms, for example cholinergic arousal systems driven by the 

reticular activating system, which are also affected in PD (Anzak et al., 2011), but are 

not treated by standard dopaminergic medications. 

Could my PD patients be too early in their disease stage for dopamine’s effect to 

become apparent? This seems unlikely because significant differences from controls 

were evident. It is possible, though, that the patients were undermedicated. 

Heterogeneity in clinical populations, including genetic factors, may contribute, and 

increasing the study size may unmask effects (Williams-Gray et al., 2008). But perhaps 

a critical factor might be that reward cues induce phasic dopamine release, which is 

reduced in PD. These phasic responses to reward cues are likely to still be present in 

healthy controls. But in PD patients, without these reward-predicting signals, the 

saccadic system may be unable to energise responses when appropriate, even when 
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tonic dopaminergic stimulation is present. Moreover, chronic stimulation of dopamine 

receptors has complex effects on D1 and D2 receptor upregulation and downregulation 

(Subramaniam et al., 1992). This is likely to further hamper interpretation of the effect 

of dopamine in our patients, who had all been on long-term treatment.  

5.4.5. Conclusion 

We found evidence in support of reduced vigour in Parkinson’s disease, linking the 

known reduction in reward learning to slowing of movements. By showing that 

distraction is reduced in PD, we favour a motivational account of dopamine, over a 

speed-accuracy trade-off. We found little effect of dopaminergic treatment on 

distraction or reaction time, but low dopamine states enhanced pupillary encoding of 

previous rewards.    
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6. Abnormal reward sensitivity after medial prefrontal 

lesions 

6.1. Introduction 

Much of our understanding of human medial frontal cortex is based on evidence from 

functional MRI studies, and from animal data. Both functional imaging, single cell 

recording, and animal lesion studies point to a role for orbitofrontal cortex (OFC) in 

representing reward signals, for the purpose of motivating goal-oriented behaviour 

(Rangel and Hare, 2010; Rudebeck and Murray, 2011a). If this is the case, a key 

prediction would be that lesions to orbitofrontal cortex should directly reduce the effect 

of rewards on incentivising action. However, to the best of my knowledge, no studies to 

date have directly measured sensitivity to incentives in humans following damage to 

prefrontal cortex. 

Most studies of prefrontal lesions have examined patients with large, 

symptomatic lesions, sometimes bilateral. One reason for this is that smaller strokes 

may often go unnoticed (Feng et al., 2013), especially in the frontal lobes. This is partly 

because most strokes present with a neurological deficit. As a consequence, most 

lesions reported in the literature are large enough to declare themselves by causing clear 

symptoms such as weakness, incoordination, numbness or speech problems, warranting 

clinical brain imaging. 

6.1.2. Subarachnoid haemorrhage 

Subarachnoid haemorrhages (SAH) present a unique opportunity to study otherwise 

asymptomatic infarcts, because the patients present with severe headache often in the 
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absence of a focal neurological deficit. SAH occurs when an aneurysmal swelling of an 

artery ruptures (Gijn and Rinkel, 2001). The main consequence is arterial bleeding into 

the space around the brain. Focal brain damage can occur in areas of the brain that 

whose arterial supply comes from the affected blood vessel, but in most cases, the 

symptom that causes patients to attend is headache due to irritation of the meninges, 

rather than the brain damage itself. 

The anterior cerebral artery (ACA) supplies much of the medial wall of the 

frontal lobe: medial OFC, gyrus rectus and ventromedial PFC (VMPFC), genu of the 

corpus callosum, infragenual and pregenual anterior cingulate cortex (ACC), and 

superiorly the dorsal ACC and part of the supplementary motor area (SMA) and pre-

SMA. Infarcts in this vascular territory can be recognised on brain scans after SAH, 

despite causing no specific neurological symptoms (Umredkar et al., 2010). One study 

identified 12 silent infarcts in 32 patients who suffered SAH, and “the vast majority of 

these infarcts were not detected by clinical examination” (Helbok et al., 2011), even 

though many functional imaging studies have argued that medial PFC is a key region 

subserving several supremely human cognitive processes, such as perspective-taking, 

emotional control, counterfactual reasoning, evaluation of feedback and evidence, and 

hierarchical goal-driven planning (Stuss and Benson 1984; Clark et al. 2003; Fisher et 

al. 2011).  

SAH occurs in younger patients than other strokes, and incidence is less biased 

by lifestyle factors (Suarez et al., 2006). These patients provide a valuable opportunity 

to study the effects of lesions in brain areas that produce minimal visible or 

symptomatic effects.  Thus SAH patients come as close as we are likely to get to an 

incidental yet precisely timed, isolated region of infarction in an otherwise healthy 
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brain. Compared to most stroke patients, SAH patients are less likely to have subclinical 

microvascular disease affecting white matter and basal ganglia. Compared with epilepsy 

surgery patients, they are free from the effects of seizures and anticonvulsant 

medication on brain function.  

6.1.3. Lesion studies to date 

Patients with medial frontal damage have problems with memory, control and 

monitoring, as well as loss of motivation (Godefroy, 2013). In particular, they show 

increased distractibility when they have to ignore distractors (Chao and Knight, 1995; 

Woods and Knight, 1986), and increased capture by distractors (Guitton et al., 1985; 

Paus et al., 1991).  

OFC lesions in primates lead to perseveration and impaired reversal learning 

(Dias et al., 1996; Iversen and Mishkin, 1970), but also altered subjective preferences 

(Baylis and Gaffan, 1991; Izquierdo et al., 2004). In humans, recognised features 

include impulsivity, anger, a faster subjective sense of time (Berlin et al., 2004) and a 

milder experience of regret (Camille et al., 2004). Patients may confabulate, and may 

have difficulty selecting memories based on context and time (Duarte et al., 2010; 

Gilboa et al., 2006; Schnider and Ptak, 1999). Unlike in primates, OFC patients are only 

mildly impaired on probabilistic learning (Chase et al., 2008). In experiments, they have 

difficulty choosing the best gamble when faced with a choice (Bechara et al., 1998; 

Fellows and Farah, 2005a), and a subgroup may be strong risk-takers (Sanfey et al., 

2003) with, in some cases, increased temporal discounting (Fellows and Farah, 2005b; 

Sellitto et al., 2010). In attentional paradigms, lesions to OFC have been shown to 

reduce inhibition of return in a simple saccade paradigm (Hodgson et al., 2002a). There 
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have been very few inactivation studies of medial PFC in humans (Harmer et al., 2001; 

Rushworth et al., 2002) as this area is difficult to target.  

Broadly, lesion studies can be interpreted as supporting an evaluative role for 

OFC, representing both reward values of stimuli, and goal states of the subject (Rangel 

and Hare, 2010). 

ACC lesions in primates give rise to subtle changes in the learning of action 

values over time (Kennerley et al., 2006; Rushworth et al., 2004), in keeping with 

single-cell recordings demonstrating encoding of reward values, effort, and surprise 

(Hayden et al., 2011b; Kennerley et al., 2011), and with learning, error and conflict 

signals frequently seen on fMRI (Amiez et al., 2012; Botvinick et al., 1999; Braver et 

al., 2001; Carter et al., 1998; Ridderinkhof et al., 2007).  In contrast, studies of patients 

with ACC damage have not provided a clear picture. 

Bilateral ACC damage can lead to profound apathy, passivity, akinesia and 

mutism (Cohen et al., 1999), perhaps in keeping with cingulate inactivity seen in 

depression and schizophrenia (Bench et al., 1992; Dolan et al., 1995). The error-related 

negativity (ERN), which may localise to ACC (Hochman et al., 2012), can be 

diminished or absent (Modirrousta and Fellows, 2008; Stemmer et al., 2004), even 

though patients can appropriately correct errors. Loss of trial-to-trial conflict effects 

have been reported (di Pellegrino et al., 2007) with blunted autonomic responses 

(Cohen et al., 1994; Critchley et al., 2003), perhaps matching the functional activation 

seen with conflict and uncertainty (Behrens et al., 2007; Botvinick et al., 1999; 

Ghahremani et al., 2010). However, value learning itself is not generally impaired 

(Hornak et al., 2004). 



6. Abnormal reward sensitivity after medial prefrontal lesions 6.2. Methods 

 
215 

Distractibility, as measured by attentional lapses, has long been associated with 

ACC damage (Degos et al., 1993; Janer and Pardo, 1991; Laplane et al., 1981), and a 

recent study has shown increased anticipatory responses following cingulotomy 

(Srinivasan et al., 2013), supporting fMRI evidence that ACC is activated by flexible 

attention (Silton et al., 2010). On the other hand, some studies have shown reduced 

effects of salient distractors (R.A. Cohen et al., 1994; Koski et al., 1998).   

In this chapter, I examine how rewards are able to modulate distractibility in 

patients with ACC and OFC lesions. I use a the monetary-incentivised early distractor 

task from previous chapters to probe reward sensitivity, and standard pro-saccade and 

antisaccade tasks as a baseline. 

6.2. Methods  

6.2.1. Participants 

22 patients were recruited from the National Hospital for Neurology and Neurosurgery. 

All had suffered subarachnoid haemorrhages from aneurysms of the anterior 

communicating artery, and as a consequence also sustained focal infarcts in the ACA 

territory. All patients were tested between 2 and 5 years after the event.  

All had highly selective lesions involving medial frontal cortex, but with no 

neurological signs. On neurological examination, all patients had normal visual acuity 

and fields, full strength with normal sensation in all four limbs, and no speech or 

comprehension disturbances. One patient was on olanzepine (CB), and one was on 

citalopram 10mg (GB). None of the other 17 patients were on psychotropic medication, 
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and none were taking anticonvulsants. A summary of the history of individual patients 

is given in the appendix. 

Of the 22 patients tested, one had severe fatigue and dropped out, and in one 

patient eye movements were technically difficult to record. One patient had downbeat 

nystagmus, which was mild enough to permit recording. Thus eye movement data was 

available for 20 patients in total. 

Of these patients, 16 had returned to work, 2 were retired, and 2 had not gone 

back to work due to reduced memory and motivation. Three patients had noticed 

contralateral weakness of the arm/leg following the haemorrhage (2 in the dorsomedial 

group and 1 ventromedial). In two cases the weakness resolved within 2 weeks, and in 

the other case the weakness resolved gradually over a year. None of the patients had a 

past medical history of mental health problems or previous neurological illness. The age 

range was 28 to 70 years, mean 49.9 years. 

Two patients had CT imaging as they were unable to have MRI (one patient had 

surgical clips that were not MRI-compatible, and the other had an implantable 

cardioverter-defibrillator). Of the remaining patients, 11 underwent dedicated 1 mm 

volumetric T1 imaging plus isometric FLAIR sequences. Seven patients were unable to 

attend for this, therefore previously acquired clinical sequences were analysed, which 

were similar but non-isometric. One patient was found to have a temporal lobe infarct in 

addition to OFC damage, and was therefore excluded before analysis, leaving 19 

complete datasets.  

Patients were tested with the Hospital Anxiety and Depression Scale to rule out 

post-stroke mood disorders. They also completed the Lille Apathy Rating Score (LARS, 
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Sockeel et al., 2006), which was modified such that each question was rated first with 

respect to patients’ current lifestyle, then according to how the patient retrospectively 

felt they were like before the event, so that we had two assessments per individual.  

Data was collected from 32 healthy control participants, with mean age was 50.6 

years. Some of these controls were re-used from Study 5. They had no neurological or 

psychiatric illness and normal or corrected-to-normal vision. 

6.2.2. Oculomotor capture task 

The same task as in Chapter 5 was used.  

6.2.3. Prosaccades and Antisaccades 

The same task as in Chapter 5 was used. 

6.2.4. Distribution of patients’ lesions 

Lesions of the 19 patients were manually traced using FSL and MRIcro, on top of the 

original scans. The scans and lesion masks were then registered to the MNI152 

template. Clinical MRI scans were registered using FLIRT (Jenkinson and Smith, 2001; 

Jenkinson et al., 2002); linear registration reduces the chance of misalignment due to the 

lesions (Brett et al., 2001; Crinion et al., 2007). The volumetric T1 scans were 

registered using FLIRT or SPM8 and the cost-function masking toolbox (Rorden et al., 

2007), with a 5mm smoothing kernel.   

The demographics for the patient group are shown in Table 6.1. The 19 patients 

comprised 5 lesions to dorsal ACC (subjects 1 to 5), 3 lesions to rostral ACC (pregenual 

and subgenual, subjects 6-8), 4 lesions to anteromedial orbital/frontopolar cortex 
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(subjects 13 to 16), and 7 lesions to medial OFC (subjects 9 to 12, and 18 to 20). The 

mean lesion volume was 5.7 cm3 (s.d. 5.6), but ranged from 0.1 to 19.1 cm3.  

An overlap map was constructed by counting the number of patients who had a lesion in 

each voxel (Figure 6.2).  
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Table 6.1: Demographics and lesion description for the 19 lesion patients. DS = digit 

span, LV= total lesion volume.  

  Age DS LV Lesion 

1 CB 46 8 6.2 Bilateral dorsal ACC / SMA 

2 AE 44 14 3.3 Left dorsal ACC + Right pregenual ACC 

3 AH 45 13 16.6 Right dorsal ACC + bilateral pregenual ACC 

4 PR 61  8.5 Right dorsal + pregenual ACC extending to PCC 

5 GB 63 10 0.1 Small Right dorsal ACC 

6 AF 56 7 1.7 Left pregenual + subgenual ACC 

7 RJ 61 10 1.2 Left pregenual + subgenual ACC 

8 GS 57 12 0.9 Left pregenual + subgenual ACC 

9 AM 28 10 6.5 Left medial OFC and pregenual ACC  

10 CJ 48  2.1 Left medial OFC  

11 NR 46 13 9.1 Right medial OFC  

12 MO 45 16 19.1 Right medial OFC  

13 MN 55 10 2.6 Left anterior mOFC + medial frontopolar 

14 EF 33 8 3.9 Bilateral mOFC + medial frontopolar  

15 SP 43 8 11.5 Left medial OFC + medial frontopolar 

16 FR 70 9 11.6 Left gyrus rectus + medial frontopolar 

17 SW 32 15 1.9 Right gyrus rectus 

18 EC 58 7 1.3 Right gyrus rectus 

19 NF 49 11 0.5 Bilateral posterior medial OFC 
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Figure 6.1: Lesion maps of individual patients.  

In all images, left is left. Lesions were drawn onto the original scan then normalised to MNI152 

coordinates. Masks are shown here superimposed on the template. Patients 1–8 had lesions 

predominantly in ACC, and 9–19 were predominantly in OFC.  
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Figure 6.2: Lesion overlap map, axial and saggital 

Darker red areas represent areas in which more patients were lesioned. The maximum lesion density 

was 8 out of 19 patients, centred on medial OFC. Note that parts of dorsal ACC have no lesion 

coverage. 

6.3. Results 

The proportion of trials on which gaze was captured by the early onset was measured, 

and the RT from the distractor onset until the start of the first saccade that had an 

amplitude of more than 3 degrees in the target direction was calculated. Saccade 

analysis followed the same details as in previous chapters, yielding peak saccade 

velocities and curvature. 

6.3.1. Effect of individual lesions on reward sensitivity 

The sensitivity of peak saccade velocity to rewards was calculated for each of the 19 

patients. The value was compared to those of 32 age-matched healthy controls. The 

reward sensitivity values of both patients and controls were normally distributed by the 

Kolmogorov-Smirnov test (p>0.5, max|S-normcdf|=0.16). Therefore the z-score of each 

patient relative to the controls’ distribution was calculated. This was thresholded using 

the normal distribution, corrected for 19 independent multiple comparisons to give a 

family-wise type I error rate of 5%, when comparing each patient individually against 
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the reference population. This resulted in a corrected p-value of 0.0027, corresponding 

to Z=2.78 (Bonferroni method). Only one patient (CJ) had extremely low reward 

sensitivity with Z=3.13, while another (AM) exhibited very high reward sensitivity, 

Z=4.01 (Figures 6.3A and B).  

Reward insensitivity in RT was also assessed, since this measure was shown to 

be independent of velocity sensitivity in chapter 3. One patient (AE) had greatly 

increased reward sensitivity, Z=3.86; another (case RJ) was extremely insensitive to 

rewards (Z=4.11) in the sense that his RT paradoxically increased with greater 

incentives (Figure 6.3.3C and D). This might reflect a more cautious approach to 

responding when greater rewards are on offer.  

Since comparisons for both RT and velocity reward sensitivity were made, 

correction for multiple (38) comparisons was made. This gave a threshold of Z=3.01, so 

all four of these patients remain significantly different from the healthy controls. The 

lesion map of the 16 other patients, who did not individually show significant 

differences, is shown for comparison in Figure 6.3.3C. Subtraction maps of these four 

individual patients' lesions from the lesion map of the remainder of the patients revealed 

no areas that were uniquely lesioned in for reward insensitivity or hypersensitivity. Thus 

it was not possible to tell from this analysis whether damage to any specific brain area 

was responsible for the observed effects. 
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Figure 6.3: Specific patients with altered reward sensitivity 

Individual patients showed striking differences from the control population, in their reward 

sensitivity. Graphs indicate how saccade velocity (A) and reaction time (B) vary with reward. 

Positive values indicate greater reward sensitivity. Each patient was compared with the 32 healthy 

controls (HC), and when fully corrected for multiple comparisons, four patients were significantly 

different. The remaining 16 patients’ data are also shown (PF); red bar = median, box = interquartile 

range, notch = 5% median comparison interval, whiskers = farthest point within 1.5 quartiles of 

median, all points outsider the whiskers are drawn as crosses. A) Patient AM showed increased 

reward modulation of velocity, whereas patient CJ was less sensitive. B) Patient AE showed 

increased reward modulation of RT, whereas patient RJ showed paradoxical slowing by rewards.  
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C) The lesion maps of the four patients who showed abnormal reward sensitivity. Colour code 

matches the graph above. RJ and CJ have reduced reward sensitivity of RT and velocity 

respectively, and have lesions to subgenual ACC and OFC respectively. AM, who also has lesions 

in these locations, has abnormally high reward sensitivity of velocity.  

6.3.2 Grouped comparison between ACC and OFC lesions 

To facilitate pooling the results from all the lesions, I divided patients anatomically into 

two groups: those with lesions of ACC, and those with lesions of OFC. The OFC group 

had 11 patients, with lesions centred on the ventral surface; the ACC group of 8 patients 

included 5 dorsal and 3 subgenual ACC patients (AF, RJ, GS). The average 

demographics of the two resulting groups are shown in Table 6.2, and did not differ 

between groups. 

 N LV mean (sd) [range] Age Tot LARS Digit Span 

ACC 8 4.8 (5.6) [0.08-16.5] 54.1 (7.9) [19-44] 15.0 (6.0) 10.6 (2.6) 

OFC 11 6.4 (5.8) [0.46-19.1] 46.1 (12.3) [28-70] 13.2 (6.9) 10.7 (3.1) 

Table 6.2: Demographics of the two groups of prefrontal patients: anterior cingulate vs. 

orbitofrontal lesions. There was no significant difference between groups in age, apathy or 

working memory digit span. LV=lesion volume, LARS=Lille Apathy Rating Scale.  

To examine the difference between groups, and the effect of reward, three 2-way 

mixed-effects ANOVAs were used, with factors of reward and group (ACC vs. Control, 

OFC vs. Control, and ACC vs. OFC). 
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6.3.2.1. Reduced sensitivity of velocity to reward in OFC lesions 

As in previous chapters, peak saccade velocity of correct and capture saccades, the 

proportion of oculomotor capture errors, and saccadic reaction times of correct 

responses were calculated for each reward condition.  

Peak saccade velocity was compared between patients and controls using mixed 

effects ANOVA (Figure 6.4A). Although there was no main effect of group, there was 

a significant interaction, indicating that patients overall had a different sensitivity of 

velocity to reward (interaction of group with reward, F(1,102)=4.70, p=0.032). When 

divided into ACC and OFC groups, there was again no main effect of group, but a trend 

to interaction of reward and group (F(1,101)=2.49, p=0.088).  

Comparing OFC patients to controls gave a significant interaction between 

group and reward (Figure 6.4B, F(1,86)=4.87, p=0.030). In contrast, comparing ACC 

patients with controls showed no effect. Thus patients in the OFC group did not increase 

their velocity as much as controls in response to reward. The reward sensitivity, i.e. the 

increase in velocity in degrees per second per reward level, was, 5.7±6.2 for OFC, 

compared to 15.7±2.3 in controls and 9.3±5.9 in ACC. Although OFC patients appear to 

be slower, this was not significant (F(1,86)=1.8, p=0.19), with OFC patients attaining 

mean velocities of 440±21 deg/s, compared to controls 479±16 and ACC 490±34.  
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Figure 6.4: Saccadic parameters for the patients 

Upper row: all patients grouped together; Lower row: patients divided according to lesion location. 

A) Oculomotor capture rate is the proportion of trials on which the first saccade went towards the 

distractors. Capture decreased with incentive, reflecting reduced distractibility.  There was a trend 

for patients to have more oculomotor capture than controls, and a trend for an interaction between 

ACC and controls in their reward sensitivity. B) OFC patients had shallower gradient when 

modulating their velocity in response to reward. They were not significantly slower. C) RTs were 

shortened by incentives, but there were no differences between patients and controls. D) Pupil 

dilatation after the cue was increased by reward, but less so in ACC patients compared to controls.  

6.3.2.2. No increase in oculomotor capture 

Patients’ mean capture rate was 39% ± s.e.m. 4%, compared to 31%±3% for controls. 

There was a main effect of reward, but only a weak trend of difference between patients 

and controls (arcsine transformed ANOVA, F(1,102)=2.77, p=0.10). The patients were 

then divided into two groups, ACC and OFC, as above, with three groups in the 

ANOVA. Again there was no difference between groups, but a trend for an interaction 
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of reward between ACC patients and control groups (F(1,78)=2.87, p=0.094). Reward 

sensitivity, was calculated as the slope of the capture rate per step in reward level. On 

average, ACC patients reduced their capture by 0.02%±1.4 per level of reward 

compared to 2.8%±0.9 for controls, and 1.8%±1.2 for OFC.  

6.3.2.3. No effect of lesions on RT 

Reaction times showed a main effect of reward (F(1,102)=5.3, p=0.023) but no 

difference between groups, and no interactions (Figure 6.4C). Reward sensitivity was 

calculated in milliseconds per reward level, so that a negative value means shortening of 

RT with reward. The sensitivity was +3.65 ± s.e.m. 4.0 for ACC patients, compared to -

5.6±1.5 for controls, and -7.1±4.0 for OFC patients, indicating that ACC patients’ 

reward sensitivity was not different from zero, unlike the other groups. However there 

was no significant interaction between groups on this measure. 

6.3.2.4. Patients show a trend of greater curvature toward the distractor  

Curvature towards or away from the distractor was calculated for correct responses to 

the target, as the maximal deviation angle of the saccade trajectory from a straight line 

(as in previous chapters). Patients exhibited a trend of increased curvature to the 

distractor (main effect of group, F(1,102)=3.93, p=0.053). Examining subgroups, OFC 

patients were significantly more curved to the distractor than controls (F(1,86)=4.23, 

p=0.046), but ACC patients were not (F(1,78)=1.13, p>0.05).  

Was this due to increased pull of the distractor, or by decreased “repulsion”? By 

classing correct saccades as curved towards or away from the distractor, this could be 

attributable to a lower proportion of “repelled” saccades (F(1,86)=4.21, p=0.047), 

rather than an increase in the proportion curved toward the distractor. 
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Delta plots were compared to investigate whether the lack of mean RT effects 

conceals a change in the shape of the RT distribution. There were no effects of reward 

on the distribution of correct responses. Error responses were slowed by high rewards in 

the ACC group, but there were no statistical differences.   

 

Figure 6.5: Delta plot showing how RT is influenced by reward, at different RT bins  

Positive values indicate slowing by rewards.  Healthy volunteers have negative values indicating 

shorter RTs in the high-incentive condition. There was no difference between the three groups.  

6.3.2.5. Pupil signals reward less in ACC patients 

Pupil dilatation in response to the reward cue was analysed as before, extracting the 

effects of incentive, previous winning, and previous incentive. The pupils dilated when 

the incentive was higher compared to lower, and constricted when the previous trial’s 

incentive level was higher compared to lower—i.e. the same pattern as seen in previous 

chapters (Figure 6.6). However, comparison of the dilatation at 1200ms (the end of the 

foreperiod) demonstrated that modulation by reward was somewhat reduced in patients 

compared to controls (interaction of reward and group, F(1,102)=4.62, p=0.034). 
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Figure 6.6: Effect of reward on pupil size, comparing patients and controls 

The vertical axis is the change in pupil size after the time of the cue onset. The lines represent the 

relative contribution to pupil size from various sources. The yellow curve indicates the effect of the 

current reward cue: a positive value means that, when the cue was large, the pupil was more dilated, 

compared to when the cue was small. Top: In controls, the pupil dilates to a high reward cue 

(yellow), and as previously found, the pupil dilates more when the previous incentive was small 

(blue). PF patients have qualitatively similar pupillary effects. ACC patients had lower reward 

sensitivity, as evidenced by smaller deflection of the yellow curve (p=0.046). 
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Breaking patients down into ACC and OFC groups, the ACC patients had reduced 

pupillary reward sensitivity compared to controls (interaction between reward and 

group, F(1,78)=4.13, p=0.046) but OFC patients were not different to controls 

(F(1,86)=1.76, p=0.19). The difference between ACC and OFC was not significant. 

We now have two measures on which patients are less reward sensitive than 

controls: saccade velocity and pupil dilatation. Are these two measures of insensitivity 

to reward related? They are likely to be independent, since the OFC group had low 

sensitivity of velocity, whereas the ACC group had low sensitivity of the pupil. 

Confirming this, there was no correlation across subjects for the slope of pupil dilatation 

with the slope of saccade velocity (r2=0.06, p>0.05). This suggests that although lesions 

can attenuate both the modulation of velocity and pupil size, these two components are 

damaged independently.  

6.3.2.6. Pre-response distractibility greater in patients 

Numerous studies have indicated that prefrontal lesions increase distractibility in terms 

of attentional lapses.  Although no significant increase in oculomotor distraction was 

seen, distractibility might be manifest in other ways, for example in the period in 

between trials. To assess this, eye data before the target onset was parsed, to count the 

number of anticipatory saccades. Anticipatory saccades during the cue-period 

constituted all saccades that occurred after the cue onset, but before the target onset (i.e. 

during the variable foreperiod of 1400 to 1600 ms).  Overall, the number of anticipatory 

saccades was reduced when the cue was a high incentive compared to a low incentive 

(F(1,102)=11.8, p<0.001). Patients had a just-significant increase in anticipatory 

saccades compared to controls (F(1,102)=4.36, p=0.042; no interaction). When patients 

were subdivided into groups, there was no effect of group (p>0.05). 
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The number of blinks was also counted, between the end of the previous trial 

and the onset of the cue. This might provide a measure of sustained attention during the 

period before steady fixation had successfully been obtained. The number of blinks was 

no different in patients compared to controls (p>0.05). 

6.3.3. Voxel-wise lesion-behaviour mapping 

Although group-based analysis has been the standard for comparing linking lesions with 

behaviour (Fellows and Farah, 2005b; Milner, 1963; Shallice and Evans, 1978), recent 

increases in computational power have permitted statistical inference at the voxel level. 

In order to find which areas of the brain might be responsible for the reduced reward 

sensitivity in our patient group, voxel-wise lesion-behaviour mapping was used (Rorden 

et al., 2007). In this technique, for each voxel, its lesion status across all patients is used 

to predict the behavioural measure.  

Lesion masks were smoothed to give values between 0 and 1 at each location for 

each subject. This value was used as a continuous predictor of reward sensitivity of 

velocity. The t-statistic for this regression was computed for each voxel to generate a 

statistical parametric map (Figure 6.7A). With uncorrected thresholding at p<0.05, 

t(19)=1.74, there were 873 significant voxels. To estimate the worst-case number of 

multiple comparisons, I took the total number of voxels which had lesions across all 

patients, and corrected for the 5mm radius kernel smoothing. There were 26256 

lesioned voxels, which corresponds to 210 independent comparisons with 5mm resels 

(note that this is a conservative estimate, since it ignores spatial correlations in the 

lesion-state of neighbouring brain areas). With this number of multiple comparisons, 

Bonferroni correction gives p<0.00024, or  t(19)>4.20. At this threshold, 63 voxels were 
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significant, all localised in the sulcus immediately anterior to the subcallosal ACC 

(“infralimbic” cortex in primates). 
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Figure 6.7: Regions in which lesions correlate with reduced reward sensitivity of velocity 

The upper row shows the statistical parametric map from a linear regression. Coloured areas have 

uncorrected p<0.05. Lower two rows and main image show the same map thresholded 

conservatively at t > 4.2.  

One possible confounding factor could be that patients are less reward sensitive 

simply as a function of their lesion size. This possibility is unlikely since reward 

sensitivity measures did not correlate with lesion volume (velocity: r2=0.099; RT: 

r2=0.02; Pupil: r2=0.19; all p>0.05).  

Another possibility is that reduced reward sensitivity occurs just because the 

lesion influences saccade velocity itself. In other words, if there were changes in 

baseline velocity due to lesions, (as noted above in the trend for OFC patients to have 

lower velocities), this might explain the reward-sensitivity findings. To rule this out, I 

calculated a voxel-based map to predict patients' overall mean velocity. This map had 

zero significant voxels, even at an uncorrected p<0.05, showing no brain areas where 

damage correlated with saccade velocity. This suggests that damage to the regions noted 

above do not lead to overall velocity changes.  

6.3.4. Prosaccades show reduced IOR after OFC lesions  

The latency of prosaccades was not different between the three groups. To examine 

inhibition of return (IOR) effects, trials were divided according to whether the previous 

trial’s target was in the same direction or different direction. As expected for IOR, 

repeated-direction trials had slower RTs in controls (t(20)=20.8, p<0.001) and in ACC 

patients (t(8)=14.4, p=0.005), but there was no effect in OFC patients (p>0.05). 

Consistent with previous reports (Hodgson et al., 2002) I found evidence that OFC 

patients had attenuated IOR. There was an interaction between same/different location 
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and ACC vs. OFC groups (t(17)=4.66, p=0.045) but no interaction with OFC vs. 

controls or ACC vs. controls. Three of the OFC patients exhibited ‘reversed IOR’, with 

a 20 to 30 ms speeding when directions were repeated. 

mean (s.d.)  Control ACC OFC 

Prosaccade RT (ms) 224 (39) 226 (25) 221 (46) 

Prosaccade errors (%) 4.5 (1.4) 4.1 (6) 6.3 (2) 

Prosaccade IOR effect (ms) 22 (21) 37 (29) 9 (26) 

Antisaccade RT (ms) 343 (73) 304 (54) 317 (74) 

Antisaccade errors (%) 28.5 (0.5) 20.2 (8.2) 28.2 (3.4) 

Antisaccade IOR effect (ms) 5 (27) 28 (32) -10 (25) 

Table 6.3: Effect of ACC and OFC lesions on prosaccades and antisaccades. There were no 

significant effects except for reduced IOR in OFC patients. 

For antisaccades, again the latency was not different between the three groups. Error 

rates were comparable between the three groups, compatible with normal distractibility 

in the rewarded task.  

6.3.6. Apathy ratings 

For each question in the LARS, two separate scores were recorded: first to quantify 

patients’ current attitudes, and second, to ascertain how the patient felt they were before 

haemorrhage. The mean current LARS score was -13.4 (s.d. 7.1), with scores >= -16 

indicating significant apathy. By this criterion, 13 of 19 patients were apathetic. The 

current LARS score (i.e. how patients were at the time of testing) was not different 

between groups, although there was a trend in the “Concern” subscale, for OFC patients 

to be slightly more apathetic (less concerned) than ACC (t=2.09, p=0.052).  
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The change in LARS scores (comparison with scores now with estimated scores 

prior to SAH) showed that overall, patients felt they were neither more nor less 

apathetic compared to pre-haemorrhage (t(19)=0.73, p>0.05). However examining 

individual subscales, there was significant decrease in motivation (t(19)=2.91, p=0.008), 

and a trend for reduced interests (t(19)=1.83, p=0.083). Grouped by lesion location, 

ACC patients had a significant decrease in motivation (t(7)=3.0, p=0.015), whereas 

OFC patients had become significantly more concerned than before—although they 

were still less concerned than ACC patients (t(10)=3.3, p=0.010) but without significant 

reduction in motivation. 

In order to examine the brain areas which, when lesioned, increase apathy, 

voxel-based lesion correlation was performed with the three major subscales of the 

LARS. There were areas in anterior OFC which correlated with action initiation, but 

these did not survive correction for multiple comparisons (see Appendix 9.5). 

6.3.7. No effect of laterality 

Ten subjects had predominantly left-sided lesions, and nine had predominantly right-

sided lesions. There was no significant difference between reward sensitivity in patients 

with left-sided versus right-sided lesions, both as measured by velocity (t(18)=0.76; 

p>0.05) and by reaction time (t(18)=-0.06, p>0.05). There was no difference in 

oculomotor capture rate between left and right-lesioned patients, and no difference in 

capture, RT or velocity of rightward vs. leftward saccades as a function of hemisphere.  
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6.4. Discussion 

6.4.1. Summary 

Using a rewarded oculomotor paradigm, I directly measured reward sensitivity in 

patients with focal ACC and OFC damage. Four patients had extreme values of reward 

sensitivity, but their lesions did not reveal a unique pattern. Dividing patients into two 

groups, those with OFC lesions showed decreased sensitivity to reward, as exhibited by 

a shallower reward slope of their velocity as a function of incentive. Reward generally 

improved accuracy and shortened reaction times, but less so in patients. Pupillary 

dilatation to reward was reduced in ACC patients. OFC lesions reduced inhibition of 

return, in keeping with previous studies (Hodgson et al., 2002a).  

Since there were a variety of small lesions affecting medial cortex, it was 

possible to correlate lesion location with reward sensitivity. This yielded an area of 

ventromedial PFC that lay in the cingulate sulcus, just below the subgenual cingulate. 

This area may correspond to prelimbic or infralimbic cortex in lower mammals, an area 

extensively connected with the ventral striatum and medial temporal lobe (Beckmann et 

al., 2009). Posteromedial OFC lesions in animals have been shown to alter reward 

preferences, devaluation and extinction (Dias et al., 1996; Izquierdo et al., 2004; 

Rudebeck and Murray, 2011a). The data from this study thus provides causal evidence 

in humans for the hypothesis that reward representations for motivating action require 

posteromedial OFC.   

This area, being densely interconnected with the ventral striatum, has been 

implicated in stimulus-reward pairing (Fellows and Farah, 2003; Roberts, 2006). One 

interpretation is that lesions to this area prevent reward cues from generating the 
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appropriate representation of stimulus value. This would not be in keeping with the 

autonomic findings, in that pupillary reward sensitivity may be spared: across subjects 

there was no correlation between velocity modulation and pupillary dilatation in 

response to reward. Some subjects have impaired reward sensitivity with normal pupil 

responses. This suggests that the deficit when this subregion is damaged lies in the 

motivation of action, guided by the incentive.  

Rather than a monolithic function of encoding or processing reward, this posterior area 

may be responsible for the translation of incentives into actions (O’Doherty and Dolan, 

2006). Such an account parallels the conclusions of the previous chapter, in which PD 

patients on medication had appropriate pupil dilatation to reward cues, but this was 

ineffectual at invigorating their saccades.  

Thirteen of 19 of our patients would be considered to be pathologically apathetic 

as assessed on the LARS. Lesion location determined the change in apathy (i.e. 

difference between current state and patients’ recollection of pre-SAH state). ACC 

patients had a significant decrease in motivation, whereas OFC patients had become 

significantly more concerned than before, without significant reduction in motivation.  

One of the strengths of this study is that the patient group was relatively young, 

mostly still holding a job, and with no detectable neurological signs on examination. 

The lesions were confined to the vascular territory of the ACA. In commensurable 

studies of stroke patients, ischemic infarcts often co-occur with vascular risk factors, i.e. 

age, hypertension and diabetes. These factors make small lacunar infarcts, white matter 

disease and microinfarcts very likely in many patients (Kövari et al., 2004), and 

dementia develops in 25% of stroke patients within 3 months, compared to 3% in age-
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matched controls (Kalaria and Ballard, 2001). This group is free of such effects and 

unlike similar surgical cohorts, none were on anticonvulsants.  

6.4.2. Limitations 

Three out of 20 patients had acute hydrocephalus at the time of the initial aneurysm, a 

condition which may cause diffuse damage to periventricular white matter (Haug et al., 

2007). Two of these patients were in the ACC group. Given the small sample size and 

effect size, it is possible that the observed effects may not be directly attributable to the 

lesion locations. However it has previously been shown that, although acute 

hydrocephalus is a poor prognostic factor in the first 2 weeks after SAH (Hutter et al., 

1998), the long term cognitive outcomes after 3 months are unaffected, as measured by 

standard clinical neuropsychometric testing (Kreiter et al., 2002). It still remains 

possible that more subtle effects, such as on motivation and attention, may persist.  

Another issue is whether this study was sufficiently powered to detect effects. 

This power depends upon the variance of lesion (i.e. the balance of patients with or 

without lesions) in the area of interest (Kimberg et al., 2007). Thus, voxel-based lesion 

studies have varying power to detect effects at different areas in the brain. I used a 

simulation with 100,000 runs for each effect size to estimate the power to detect voxels 

with varying proportions of lesioning.  Under the assumption that the effect size (of 

lesion upon action-initiation score) is 1 standard deviation from the unlesioned mean, 

then in voxels with an equal number of lesioned and unlesioned patients, the power is 

60%. In contrast, in voxels with only 2 of 19 patients lesioned, the power is 31% 

(Figure 6.8B). If the effect size were 2 standard deviations, the best voxels have power 

95%, and those with only 2 patients have power of 74%.  
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The most-frequently lesioned voxels in our data were in medial OFC.  75 voxels 

were lesioned in 7 patients, and 7 voxels were lesioned in 8 patients. The maps below 

are computed assuming a region-of-interest analysis, i.e. uncorrected p<0.05 (Figure 

6.8A). One limitation of the study is that we do not know the actual effect size, i.e. how 

great a change in sensitivity would be expected after a lesion. It is therefore not possible 

to draw negative conclusions about the absence of an effect in voxels that do not show a 

correlation.  

 

Figure 6.8: Power calculation for the cohort of medial PFC patients 

A) A map of regions that have 80% (top) and 60% (bottom) power to detect a significant 

behavioural effect with size 2 s.d. from the control population. B) Simulation of how power varies 

depending on the number of patients, out of 19, who have a lesion at a particular location. The best 

power is of course found in voxels which are lesioned in half of the patients. In such voxels, there is 

80% power to detect an effect size of 1.5 s.d. 
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In conclusion, although the study was able to provide evidence for a definite 

causal effect of OFC lesions in reducing reward sensitivity, it is not possible to conclude 

that other areas are not involved, particularly for effect sizes smaller than Z=2.  

6.4.3. Conclusion 

Damage to a small area of subgenual ACC is correlated with disrupted reward 

incentivisation of saccade velocity. In conjunction with the previous findings with 

dopamine and PD, it seems likely that the ventral striatum and posterior OFC function 

as a single unit in value processing. 
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7. Control cost explains the effect of reward 

7.1. Introduction 

7.1.1. Optimality and trade-off  

A fundamental and long-established finding in motor control is the phenomenon of 

speed-accuracy trade-off: when movements get faster, they are less accurate (Fitts, 

1966; Heitz, 2014; Salinas et al., 2014; Wickelgren, 1977). The speed-accuracy trade-

off is central to almost all behavioural tasks, across species. According to optimal 

control theory, how accurately we make a movement is limited by noise (Bays and 

Wolpert, 2007; Davis and Vinter, 1985; Schmidt et al., 1979; Todorov, 2005). Because 

noise scales with the size of a motor command, it has been argued that to minimize the 

variance of movement end-points, there is an optimal duration and peak velocity for a 

given movement amplitude (Harris and Wolpert, 1998, 2006). In recent years, however, 

investigations on the effects of reward on movement have presented findings that are 

seemingly difficult to explain solely on the basis of motor or force costs. 

In the previous chapters, I demonstrated that reward makes participants 

simultaneously both faster and more accurate in their responses. Motivation 

simultaneously increases both speed and accuracy, posing a serious challenge to 

theories of optimal control of movement, a finding confirmed in a range of studies in 

animals (Bendiksby and Platt, 2006; Chen et al., 2013; Opris et al., 2011; Takikawa et 

al., 2002d). In other words, the orthodoxy of the speed-accuracy trade-off is broken: 

movements are paradoxically both faster and more accurate when more reward is on 

offer. Similar effects have also been reported in humans (Blaukopf and DiGirolamo, 
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2006; Duka and Lupp, 1997; Jazbec et al., 2006; Mazzoni et al., 2007; Reppert et al., 

2012; Shadmehr et al., 2010b). 

Why should reward speed actions? Some investigators have proposed that 

temporal discounting of rewards, which gives a preference for earlier reward, explains 

the mounting time pressure as rewards increase (Haith et al., 2012; Shadmehr, 2010b; 

Shadmehr et al., 2010a; Xu-Wilson et al., 2009). Using a similar strategy, others have 

argued that movement duration and reaction time count as wasted time for an organism, 

thus driving fast responses when expected rewards are high (Niv et al., 2005, 2006, 

2007).  

Here I show that both of these theories yield comparable mathematical 

predictions about how reward increases vigour. However, crucially, neither gives a 

direct explanation of how reward can simultaneously increase accuracy. How is it 

possible to improve, if internal noise limits our performance? A consensus among 

optimal control approaches has been that error scales with the size of a motor command, 

and reward does not alter this relation (Hamilton et al., 2004; Qian et al., 2012; Reppert 

et al., 2012; Rigoux and Guigon, 2012). Is it possible that we are therefore suboptimal 

when we are not fully motivated? Or is there an additional cost to being precise, and if 

so, what is the nature of this cost? 

 

One potentially important factor that has hitherto not been considered within this 

conceptual framework is the cost of control. Exerting control to improve precision 

might itself come at a cost, similar to the cost of motor commands in optimal control 

theory. Such a factor has been invoked recently to explain how incentive might increase 
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‘cognitive control’ by overcoming a cost (Holmes and Cohen, 2014; Shenhav et al., 

2013). Here, for the first time to my knowledge, I provide a quantitative account of the 

cost of control, which extends traditional optimal motor control theories to explain how 

rewards might break speed-accuracy trade-offs. On this account, as reward is increased, 

the optimal speed and accuracy may both increase.  

The dependence of error rate on reaction time is a classic instance of the speed-

accuracy trade-off. The relationship is well described by a variety of rise-to-threshold 

accumulator models (for recent reviews see Standage et al., 2014; Summerfield and 

Tsetsos, 2012). Such models have been modified to incorporate invigoration by reward, 

postulating that the threshold can be preset to optimize reward (Bogacz et al., 2006). As 

they stand, accumulator models do not account for true motivational performance 

improvements. I applied the cost-of-control concept to these models, and demonstrate 

that, simply by allowing signal-to-noise ratio to be increased at a cost, accumulator 

models can explain the effects of reward.  

In this thesis, I studied saccades – movements so fast that they are considered to 

be under ballistic control, in which feedback cannot influence the movement trajectory 

(Chen-Harris et al., 2008; Optican, 2005). The velocity of a saccade has often been 

regarded as rigidly determined by its amplitude (Bahill et al., 1975; Beers, 2007; Beers 

et al., 2004; Harris and Wolpert, 2006), until recent studies demonstrated modulation by 

reward (Chen et al., 2013, 2014). My model, which incorporates the cost of control, 

accounts well for the observed behaviour in which the classical speed-accuracy trade-

off was broken.  

In this chapter, I will discuss the shortcomings of existing trade-off models when 

motivation by reward is concerned. I then show that incorporating a control cost into 
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optimal motor control accounts for reward’s effects on velocity and endpoint variability, 

and that a similar modification of the drift-diffusion model accounts for reward’s effects 

of reaction time and error rates. Parameters fitted to the data from controls and PD 

patients capture differences between groups. Finally I discuss possible reasons why 

control should be costly—that is, if we can sometimes be extremely precise and fast, 

what could be the cost in real terms of doing this all the time. 

7.1.2. Existing optimal control theory does not explain reward's 

effect 

The findings in Chapter 2 demonstrated that reward can shorten reaction times, at the 

same time as improving accuracy in healthy people. The experiments reported in 

Chapter 3 revealed that saccade velocity can also be increased, whilst improving 

accuracy. This immediately poses a challenge for standard optimal control theories. In 

such accounts, the speed of a movement is determined by obtaining the highest speed 

and accuracy for the lowest energetic cost; therefore speed increases always come at a 

cost of accuracy (Harris and Wolpert, 2006; Todorov, 2004). The effects of reward do 

not fit with such a trade-off, since it is possible for us to be both fast and accurate when 

motivated. It would seem, prima facie, that we perform suboptimally when incentives 

are low.  

I will now discuss current views on the biological mechanism of speed accuracy 

trade-off, and then consider in turn three possible accounts of reward’s effects: temporal 

discounting, average reward rate, and risk. I explain why each of these also falls short. I 

finally put forward a model that can account for the effects, by incorporating noise 

reduction at a cost.  
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7.1.2.1. Previously proposed mechanisms of speed-accuracy trade-offs 

If moving faster reduces accuracy, then emphasising accuracy should cause speed to 

suffer in order to boost accuracy.  My results demonstrate this speed-accuracy trade-off 

in older participants and in PD, compared to younger controls. How might such a trade-

off be generated at a neural level? 

It has been tentatively hypothesised that such a trade-off may occur in the 

cortico-basal ganglia “circuit”, in which ramping activity in cortical neurones may 

signal accumulation of information (Gold and Shadlen, 2007), whereas increasing 

activity in the caudate nucleus, under the control of DLPFC or SMA, might facilitate 

responding earlier but with less accuracy (Forstmann et al., 2008; van Veen et al., 

2008). This would imply that the build-up and thresholding posited in race models 

might have separate anatomical correlates (Carpenter and Williams, 1995).  

Alternatively, action may be withheld by activation of the subthalamic nucleus, 

under control of pre-SMA, ACC or the inferior frontal gyrus, leading to slower RT and 

more accurate responses (Aron and Poldrack, 2006; Bogacz et al., 2010; Niv, 2007).  

Control of threshold might also be achieved by plasticity in corticostriatal synapses 

dependent on dopamine (Lo and Wang, 2006). According to this model, the motor 

system non-linearly thresholds the cortical accumulated evidence, but its threshold is 

determined by inputs from internal pallidum or substantia nigra pars reticulata—which 

are ultimately under the control of prefrontal-striatal connections. All these anatomical 

speculations do not really further our understanding of what actually constrains speed 

and accuracy to be inversely related. 

The limiting condition on how fast and accurately people can move may be the 

noise introduced in generating a motor command (Harris and Wolpert, 1998; Stevenson 
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et al., 2009; Todorov, 2005; Wolpert and Ghahramani, 2000): larger forces lead to 

larger variability in movement, and consequently reduced accuracy. If noise really is the 

limiting factor, and if the movement parameters are chosen optimally, then how can it 

be that motivation can improve performance further? Surely we would be behaving 

suboptimally, when we are not motivated?  

7.1.2.2. Temporal discounting does not account for reward's effects 

Recent modifications of optimal control theory have attempted to account for 

invigoration by reward. A solution might be that we are still optimal when incentives 

are low, but the cost of acting fast is effectively greater when reward is low (Shadmehr 

et al., 2010b). This mathematical trick inserts nonlinearity into the reward function, 

combining temporal discounting of reward, with cost of effort and error. Intuitively, if 

delayed rewards were devalued compared to sooner rewards, then as the reward 

increases, there is a pressure to respond sooner, i.e. an added cost of delayed 

responding. Due to this devaluation by time, optimal speeds would increase with reward 

level, and also with steepness of temporal discounting (Choi et al., 2014). Accordingly, 

individuals with steeper temporal discount functions respond more impulsively, in terms 

of speed and accuracy (Shadmehr et al., 2010b).  

Temporal discounting may be modelled as an exponential or hyperbolic decay, 

such that the subjective value of a reward is higher if it is obtained earlier. Faster 

responding means earlier reward, yielding more utility (Shadmehr et al. 2010). This 

predicts that expected reward R, discount rate β, and effort scaling ε, determine the 

optimal response time T: 

  (7.1) 
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movement time = (√ ( expected reward of movement) + effort_scale × 

temporal_discount ) … 

See Appendix 3 for mathematical derivation. Perhaps improbably, this trick assumes 

that efforts are not temporally discounted—that is, it requires that temporal discounting 

occurs at the level of reward, rather than at the level of net utility. Moreover to explain 

saccades, this approach requires temporal discounting to occur at timescales around 20 

ms—which I believe is unprecedented. However for this discussion, the key problem 

with this account is that it rigidly predicts that reward increases error or variability.  

7.1.2.3. Average reward rate does not account for reward's effects 

An equivalent but slightly different formulation of this optimisation, that does not rely 

upon temporal discounting, can be given in terms of ongoing reward rate (Niv et al., 

2007). In a scenario in which rewards are available over the course of an experiment, 

the average rate of reward can be estimated. If rewards are conditional on responses, 

then any time spent not responding corresponds to a cost proportional to this ‘wasted’ 

time.  Reward therefore increases urgency, and time pressure in responding can be 

expressed in terms of an ongoing expected rate of reward (Niv, Daw and Dayan 2005). 

Time pressure manifests as a cost inversely proportional to response time. For optimal 

responding, the ongoing reward rate R* determines response time T: 

  (7.2) 

movement time = 1 / √(expected optimal ongoing reward rate) 

These two above approaches tackle the problem of impulsivity, and have independently 

arrived at a concept of vigour. In the former case, vigour is given as the ratio of effort 
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cost to temporal discount rate. In the latter case, vigour is a function of the ongoing 

reward rate (Appendix 3) and may be signalled by tonic dopamine (Mazzoni et al., 

2007) as well as activity in nucleus accumbens (McGinty et al., 2013). The situation for 

vigour is illustrated in Figure 7.2A.  

Both of these treatments of reaction vigour predict that movements are faster, 

and RT is shorter, when reward is present. As I have derived in Appendix 3, both make 

similar quantitative predictions. However, they are both unsatisfactory. Both theories 

require that reward increases movement error. That is, as the utility of responding early 

increases, we are willing to accept greater motor error.  

 

Figure 7.1: Speed-accuracy trade-off (SAT) does not explain the effects of reward 

Optimal control theories explain reward’s invigoration of action by positing that fast actions are 

more valuable (blue arrows). However on their own they do not explain how accuracy and speed 

can be modulated together (red arrows).  

Thus neither theory explains how reward can maintain constant error rate (or 

even reduce error) in tandem with increasing movement speed. In particular, rewards 

can increase amplitude, speed and accuracy (Reppert et al., 2012; Takikawa et al., 

2002b).  
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7.1.2.4. Risk does not account for reward's effects   

One alternative explanation is that when rewards are higher, the effective risk of not 

obtaining the target is greater. Economically, for reward R, 

 . (7.3) 

Put simply, increasing rewards under risk make accuracy even more important, 

relative to speed. Risk aversion, therefore, would impose a greater weighting for 

accuracy when reward is high (Stritzke et al., 2009; Trommershäuser et al., 2008). This 

must then be simultaneously combined with a vigour effect on movement speed, as 

above. The combined account predicts that risk aversion, in conjunction with temporal 

discounting, might explain incentive effects. Risk-averse individuals are predicted to be 

slower and more accurate with reward, whereas temporal discounters speed up, 

sacrificing accuracy.  

Putting together the components of risk and temporal discounting, the general 

form of models thus far, can be summarised in the following equation: 

  (7.4) 

However even this account does not allow that the speed-accuracy constraint can 

be broken. That is because the cost of speed, or any other ‘effort’ cost, for example 
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energy, is set against proportional noise (Diedrichsen et al., 2010), and other putative 

costs such as “attention” do not feature in this framework (Reppert et al., 2012).  

Moreover, when extending the models to hierarchical motor control, it is not 

obvious how such costs might feature in higher-level control signals or policies. These 

higher-order, internal signals, which control the gain at lower levels of motor control, 

are not costly in standard motor control, but are important for establishing well-

controlled action by applying appropriate contextual feedback. Taken with evidence 

from Chapter 2 and 3, I suggest that an explanation of vigour is called for that accounts 

for improved accuracy, and that the cost of non-motor command signals might be a 

missing ingredient. 

7.2. Quantifying cost of control 

7.2.1. Application to optimal motor control theory 

A standard assumption of optimal control theory is that motor noise is proportional to 

the size of the motor command. Generating faster movements requires larger motor 

signals, so movement speed is limited when accuracy is required, because the motor 

command u is subject to greater neural noise. This proportional noise is usually 

assumed, because the plant output is a linear stochastic function of the control signal: 

  (7.5) 

change in state = A * current state + B * motor command + BC * motor noise 

proportional to command 
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where x is the state of the system, A and B are operators representing state evolution 

and muscle effect. C is a set of motor noise matrices corresponding to a set of Gaussian 

random variables . This equation illustrates that the random variables  multiply u, i.e. 

the perturbation by motor noise is multiplied by the size of the motor command—

embodying the assumption that noise is proportional to the control signal.  

In a feedback control system, noise can be counteracted by feedback signals. In 

a ballistic system that only estimates external states, it would not be possible for both 

accuracy and movement speed to increase simultaneously, for a given movement 

amplitude (Diedrichsen, Shadmehr and Ivry 2010). However, if some of the states x are 

internal, noise in estimation of these states can be counteracted by internal control 

signals. In the general case, the state estimate  denotes not only representations of the 

world's state but also internal state, and the command u can produce both internal and 

external effects (Todorov 2005). Internal states can therefore be corrupted by internal 

noise, yet be steered towards optimality using internal components of control signals. 

To make this transparent, we can reformulate the plant model to include an 

additional control signal that is able to reduce noise. This extra “response precision” 

signal might be thought of as increasing the signal-to-noise ratio in the generation of a 

force. If u splits into a force-determining component uF and precision-determining 

component uP, we have 

  (7.6) 

change in state = A * current state + B * motor command + BC * motor noise 

proportional to motor command / precision-command   
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In this equation, there may be as many precision commands as there are motor 

commands. In our saccadic task, all quantities are scalar, and there are only two control 

signals: the size of the force signal uF and the amount of control exerted uP. As uP 

increases, the noise amplitude is scaled down. Optimal choice of action involves 

selecting a pair u, which minimises |u|2 and maximises reward. Effectively, permits 

noise to be reduced at a cost. A simple treatment is given below, for the case when a 

fixed reward R is given for saccades in a fixed radius, and assuming a constant profile 

of u(t) scaled over time and amplitude.  

To derive the value from the motor command, we note first that for constant 

amplitude, the movement time is inversely proportional to the square root of force 

amplitude uF. This is because the distance travelled . Second, we note that 

the standard deviation of amplitude error is directly proportional to uF as usual, but 

should now also be inversely proportional to precision uP, which offers control over 

endpoint accuracy. The chance of landing in a region of diameter 1, when the endpoint 

variability is σ, is given by , where  denotes the normal 

error function. This gives an action value function EV(u) that is proportional to  

  (7.7)
  

Expected value of action = Reward / (1+ discount rate × movement time) × probability 

of landing on target – cost of control signal 

where σ0 is the baseline variability of endpoints, σ is variability that can be controlled 

by the precision signal uP, and the temporal discount factor is denoted by k. The first 

term is the discounted reward multiplied by the probability of the Gaussian distribution 

of endpoints lying within a unit radius from the target, and the second term is the cost of 
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the command. σ is a single parameter in the model that encapsulates three different 

aspects of behaviour: a subject’s baseline variability, the relative cost of a precision 

signal relative to energetic (force) cost, and also the target size. The units of u have been 

matched to reward, and scaling constants are absorbed into k and σ.  

If k and σ are held fixed, then the costs of vigour and precision (Figure 7.2A 

and B) both constrain performance. Maximising the value over u gives an optimal 

speed and optimal accuracy as a function of reward (Figure 7.2C).  

 

Figure 7.2: The costs of inaccuracy, sloth and control 

If inaccuracy is expensive due to missing targets, sloth is expensive because of temporal 

discounting, and control is expensive due to implementation details, then a three-way balance 

obtains.  

A) For a given reward R, temporal discounting causes the reward’s subjective value to fall for 

longer movement times (dotted lines). However, moving faster entails greater energy expenditure 

(blue dashed line). The net value (solid lines) show that the optimal movement is faster with higher 

reward (Rigoux and Guigon 2012).  
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B) The cost of control allows the endpoint variability to be reduced at a cost. The probability of 

landing on a fixed-size target can be increased if a “precision cost” is paid (blue dashed line). The 

increases the average gain (dotted line), as shown for three different reward levels. The net value 

(solid lines) illustrates that the optimal movement is more precise with increasing reward.  

C) If both speed and accuracy are both free to vary, the optimum pair can be determined as a 

function of reward. Reward increases the optimal movement speed, and when temporal discounting 

is not too large, reduces the optimal endpoint variability. 

7.2.2. Numerical solutions for optimal motor control with precision 

cost 

The solutions yield predictions for the control signals uF and uP as a function of reward 

R, and consequently, for saccade velocity and endpoint error. Analytic solutions do not 

exist, but predict that velocity varies with reward R, in the approximate form 

a+√(bR+1), similar to the previous reward-rate (Niv et al. 2007) and temporal 

discounting (Choi, Vaswani and Shadmehr, 2014) formulations of vigour. Additionally, 

velocity depends on the internal noise σ, approximately in the form √(σ2 + aσ + b). 

To obtain numerical solutions for the effect of reward R, temporal discount rate 

k, and motor noise σ on the optimal velocity and variability, the optimal values of uP 

and uF were calculated. Each pair [uP, uF] is associated with a cost J = –EV (Figure 

7.3A). For each parameter triplet [R, k, σ], the cost function was minimised using 

gradient descent from 10 random starting points. This was performed first for 50 levels 

of reward ranging from 0.05 to 3, and 50 levels of k ranging from 0.05 to 2 (Figure 

7.3B, left), and then for the same 50 levels of reward, with 50 levels of noise ranging 

from 0.1 to 8 units (Figure 7.3B, right). The corresponding behavioural solutions for 

are portrayed in Figure 7.3C for k=1, for various rewards R and noise levels σ.   
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The two critical features are that the optimal velocity increases with reward, and 

when discounting is not too large, endpoint error falls with reward. Interestingly, under 

strong temporal discounting, i.e. when there is a strong preference for sooner rewards, 

endpoint error increases with reward, while trading off accuracy. Remarkably, this is 

precisely the effect that was found in section 2.2 (Figure 2.3a). In that experiment, error 

rate paradoxically increased with reward, while speed increased, and was explained as 

“choking” on reward. Choking is predicted for low-noise, high-urgency situations, when 

the discount rate is significantly faster than 1/(movement time). 
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Figure 7.3: Optimal control model of the effect of reward incentive 

In order to account for the ability of reward to improve both speed and accuracy, I hypothesised that 

in addition to a ‘vigour’ or force signal (uF) that determines a movement’s speed, individuals are 

also able to generate a ‘precision’ signal (uP) that determines the amount of variability in a 

movement. Crucially, this precision signal is also costly.  

A) Each given motor command, i.e. a pair of force and precision (uP, uF), gives rise to a cost J, 

composed of three elements. First, the reward available is temporally discounted by the time taken 

by the movement, e.g. by hyperbolic discounting 1/(1+k/uF). Second, this reward is only obtained if 

the saccade is on target; I assume a Gaussian variation Φ of the endpoint proportional to the size of 

the motor command. Third, although we can go faster to reduce discounting (increasing uF), and be 

more precise to reduce error (increasing uP), both of these incur a cost proportional to the squared 

control signal, u2. This leads to an optimal combination of force and precision for each movement, 

where J is minimised. 

B) The optimal motor command for a situation depends on the reward level, and on two subject-

specific parameters: discount rate k and the internal controllable noise σ. Precision (upper panels) 

and force (lower panels) are differentially influenced by reward (y-axis). Moreover the effect of 

reward depends on k and σ (left and right panels respectively).  

C) The generated commands determine the velocity and duration of each movement, and the 

amount of variability given a desired amplitude. Reward always increases velocity (left panels). A 

subject with low discounting (e.g. k<0.5) becomes less variable with higher reward, whereas a 

subject with high discount rates (e.g. k>1) tends to become more variable with higher reward (upper 

panels) as they are under greater time pressure.   

7.2.3. Application to drift diffusion model 

Can a similar approach also be used account for RT and oculomotor capture results? 

Standard speed-accuracy trade-offs are often specified in terms of a rise-to-threshold 

model, in which the threshold can be adjusted depending on the environment (Bogacz et 

al., 2006; Luce, 1986; Ratcliff, 1979). The accumulator is often described as  

  (7.8) 
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In the drift-diffusion model (Smith and Ratcliff, 2004), the accumulator 

accumulates noise over time, and stops when a positive or negative threshold ±θ is 

reached. As with motor control, these models have been modified to incorporate the 

invigorating effects of reward (Bogacz et al., 2006; Simen et al., 2006). These models 

show that adjustment of decision thresholds can generate certain observed speed-

accuracy trade-offs. However, the effect of motivation by reward, as presented so far, 

clearly cannot be accounted for as a change in threshold in accumulator models, but 

would rather require a change in the rate of accumulation.  

In order to improve both speed and accuracy, reward must effectively increase μ 

or decrease σ by increasing the signal-to-noise ratio of information accumulation. On 

traditional accounts, motivation is often stipulated to increase attention, perceptual gain, 

or alertness (Hickey et al., 2010d; Maunsell, 2004; Sarter et al., 2006; Watanabe, 2007), 

with consequent increases in this signal-to-noise ratio. But why would motivation do 

this? Here I treat control signals themselves as constituting a cost, similar to the cost of 

motor commands in optimal control theory. Reducing irrelevant signals (noise) is 

costly. In other words, the brain has capacity to effectively increase , but that it 

sometimes chooses not to, and that this choice is an economic one. As with motor 

control costs, I insert a “precision control cost”, uP, which reduces noise: 

  (7.9) 

for a given reward R, reaction time T, and delay discount rate k.  According to this, 

subjects accumulate a fixed μ with fixed baseline noise σ, but can adjust both their 

precision control uP  and response threshold θ in order to concurrently a) minimise error 
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rate, b) minimise reaction times T, and c) minimise the cost of control. Our modification 

here means that noise might be reduced at an expense, which would allow a lower 

threshold to be set for achieving a given accuracy level.  

Note that the ability to attenuate noise is mathematically equivalent to an ability 

to amplify signal. An ability to multiplicatively increase μ would lead to identical 

results; indeed attention is often supposed to act in this manner (Carandini and Heeger, 

1994; Reynolds and Heeger, 2009), but such models of attentional amplification 

generally assume subsequent divisive normalisation, so effectively attenuating noise 

(Boynton, 2005; Cohen and Maunsell, 2011).  

My formulations of control cost are agnostic about the mechanism by which the 

precision signal operates.  Noise could be reduced by increasing neuronal pools, by 

tighter negative feedback, or by somehow impeding propagation of irrelevant signals 

(discussed below in section 7.2.4). Whatever the nature of uP, ultimately, the amount of 

control exerted is optimised to maximise reward. When temporal discounting of reward 

is considered, there is an optimal expenditure on precision that will speed up 

performance.  Increasing incentives may therefore increase the optimal level of control, 

and thus break the speed-accuracy trade-off. Introducing the control cost explains 

quantitatively how motivation can cause a “true improvement” in performance.   

7.2.4. Numerical simulations of drift diffusion with control cost 

A drift-diffusion simulation of decisions was run, in which subjects can vary both their 

precision and response threshold, in order to optimise reward rate. In one run, 2000 

trials were simulated, and results were averaged over 10 runs. Parameters that were 

varied included twelve levels of reward ranging from 0.25 to 3, eight levels of the signal 
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μ ranging from 1 to 8, and three levels of accumulator noise σ = 1, 2 and 3. Diffusion 

proceeded according to  

  (7.10) 

such that the accumulator A increases or decreases with mean rate μ, perturbed by a 

Gaussian random variable N which is scaled by the internal noise σ, divided by the 

precision signal uP which a subject can increase to control the overall noise.  

The reaction time for each trial was calculated as the first time step at which 

either A > θ or A < –θ . For each condition, the cost function (precision2  minus reward) 

was calculated, assuming that reward that falls off over time as  or . 

(similar results obtain for a  falloff, as in my experiments). The cost of one unit of 

precision was scaled to 70, to produce reaction times of the order 200 ms. In order to 

calculate the optimal precision uP and threshold θ for each condition, the cost was 

minimised over uP and θ. Minimisation was performed using a pattern search with 10 

random starting points for each condition. Finally, the mean optimum RT and accuracy, 

corresponding to the optimum control parameters, was calculated for each condition.   
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Figure 7.4: Simulated optima for drift-diffusion with control cost 

Drift-diffusion was simulated with a variety of signal size (μ) which governs rate of rise, noise (σ), 

and reward levels. For each condition, the optimal pairing of threshold and precision is selected; 

precision allows the noise to be reduced, but at a cost. Reward is temporally discounted by the 

reaction time, and is proportional to accuracy—whether the decision terminates at the positive 

boundary. A) As reward increases, it is optimal increase the precision, and lower the decision 

threshold. B) This leads to improved accuracy. When the signal-to-noise ratio is high, reward 

encourages faster responding. However when the decision is noisy, reaction times actually increase 

with reward, despite falling thresholds, because the increased precision attenuates “fast-guessing”. 

The simulations showed that reward increased accuracy. The effect of reward on 

reaction time was variable: if signal-to-noise was high, then reward shortened the 
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optimal RT. In contrast, if signal-to-noise was low, i.e. at the highest levels of σ and 

lowest levels of μ, then increasing rewards led to longer RTs. This captures the intuition 

that when option selection is difficult and stakes are high, caution is the best policy. 

Note that in this case, despite a lower the threshold, caution is achieved by increasing 

the precision signal, preventing “fast guesses”.   

The simulation was also run using different scaling for precision units, and using 

a simple exponential reward-falloff function. The results were qualitatively similar, with 

reward improving both speed and accuracy. Some drift diffusion models have also 

included stochastic starting points of the accumulator, such that A(0) is chosen from a 

uniform distribution in a range ±α (Ratcliff, 1981; Ratcliff and McKoon, 2007; Ratcliff 

and Rouder, 1998). This extension enables diffusion models to account for the 

conditional accuracy function, in which early responses are more likely to be errors, 

seen in our data. I repeated the simulations with α=0.6, rather than zero, and obtained 

qualitatively similar results.     

7.3. Fitting of PD data to the model 

The mean velocity and amplitude variability for the three reward conditions were fitted 

to the model, for each participant, by minimising the squared error using a simplex 

search. The three free parameters were: the temporal discount rate k, the controllable 

motor noise σ, and a baseline (fixed) variability σ0. Fitting the model to each subject’s 

data yielded best-fitting k, σ and σ0, to explain their velocity and variability as a 

function of R. A high discount rate indicates high time pressure, in that rewards are 

quickly devalued by waiting. The noise σ represents endpoint variability, in units 

relative to the target size in this task. The baseline noise σ0 is an additive contribution to 
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variability that increases the minimum endpoint dispersion for each subject. The control 

signal u thus predicted the velocity, as √uF, and the variability as σ0+√uP/(σ uF).  

The model parameters for each subject were compared using nonparametric tests 

(Wilcoxon signed rank test for comparing PD ON and OFF; Wilcoxon rank sum test for 

older vs. younger participants and PD vs controls). Older healthy participants had larger 

baseline noise σ0 than their younger counterparts, reflecting their greater baseline 

variability, with little difference in reward sensitivity. PD patients, compared to older 

controls, had significantly increased controllable noise σ. This presumably reflects their 

tendency to go slower, in order to lower motor variability in the face of noise. 
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Figure 7.5: Motor control model parameters  

Optimal motor control models were extended to incorporate the cost of precision. Each participant’s 

velocities and amplitude variability was fitted, as a function of reward, to the model, and yielded 

three parameters per subject, describing their temporal discount rate k, the amount of motor noise σ 

that could be attenuated by precision, and their baseline (fixed) variability σ0.  

A) Old subjects had increased fixed noise (p=0.050). This reflects increased saccade endpoint 

variability with no consequences for control. B) Patients with PD had significantly increased 

controllable noise (p=0.010). This reflects their tendency to slow down, in order to further control 

noise while maintaining precision.  

7.4. Discussion 

7.4.1. Summary 

Standard models of behaviour, including optimal motor control and the rise-to-threshold 

models, stipulate that human performance is limited by trade-offs. This is due to 

fundamental bounds due to intrinsic system noise. Consequently, these models do not 

account for motivation by reward. By introducing a cost for noise reduction, these 

models predict that when reward is high, we should in fact invest in reducing noise, to 

maximise gain. This cost mathematically encapsulates the notion of effort within 

existing frameworks. Crucially, PD patients have increased (controllable) noise, 

suggesting that dopamine could be critical in noise control. 

7.4.2. Dopamine and cost of control 

In both animals and humans, dopaminergic stimulation increases willingness to exert an 

effortful force for reward (Salamone et al., 2007; Treadway et al., 2012; Wardle et al., 

2011). Indeed, it has been proposed that a key mechanism by which reward might 

potentially exert its effects on vigour of response is via dopamine (Beierholm et al., 
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2013; Kojovic et al., 2014; Niv et al., 2005, 2007). But how is it possible to do this 

without trading off accuracy for speed? One possible explanation is via attention, e.g. 

amplifying relevant sensory signals or suppressing irrelevant signals. Such a mechanism 

is stipulated to require an effort cost and may involve dopamine (Ahveninen et al., 

2000; Christian et al., 2006; Chudasama and Robbins, 2004; Clark et al., 1989; Coull et 

al., 1995; Kähkönen et al., 2001; Nieoullon, 2002; Salo et al., 1996; Servan-Schreiber et 

al., 1998; Shelley et al., 1997; Troscianko and Calvert, 1993). 

Dopamine might be a critical modulator of speed and accuracy, due to its 

neuromodulatory effects on noise or gain. As noted above, the ability to reduce noise is 

formally identical to the ability to amplify signal then normalise. We can therefore 

consider PD as a brain state in which there is increased effective noise, or reduced 

effective gain on relevant signals. Since σ multiplies the variability term, it could 

equally be described as PD patients requiring larger target sizes for equivalent 

performance, or that healthy volunteers are effectively rendered Parkinsonian when 

targets are very small. Equivalently, a unit of precision is more expensive for PD 

patients: they require greater uP to attain comparable speed and accuracy. All these 

aspects are interchangeable from the mathematical viewpoint. Arguably, the most 

neurally plausible interpretation is that dopamine controls noise levels. 

Dopamine has been implicated in the speed accuracy trade-off by boosting 

action initiation (Pessiglione et al., 2005; Ratcliff and Frank, 2012), and by virtue of its 

effects on learning in the striatum, which might alter the threshold for reaching a 

decision (Bogacz et al., 2006; Wang, 2008). Alternatively, dopamine might exert its 

effects by directly modulating either neuronal transmission noise or gain (DeFrance et 

al., 1985; Kroener et al., 2009; Puumala and Sirviö, 1998; Seamans and Yang, 2004; 
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Seamans et al., 2001; Servan-Schreiber et al., 1990; Surmeier et al., 2007), or network 

coupling (Hammond et al., 2007; Onn et al., 2000). Via these neural-level mechanisms, 

dopamine could potentially improve performance (Ashby and Casale, 2003; Servan-

Schreiber et al., 1990). However, these modulatory mechanisms have generally been 

treated as separate from the effect of reward on vigour, which is increasingly recognised 

to be under dopaminergic control (Beierholm et al., 2013; Niv et al., 2005, 2007). If 

reward motivates true improvements in speed and accuracy, as I suggest, then a likely 

candidate mechanism might be dopamine increasing the precision of neural control 

signals (Friston et al., 2009; Yu and Dayan, 2005).   

This leaves open two crucial but linked questions: 1) How can noise be reduced, 

if it is an intrinsic property of a system? 2) Why should it be expensive to reduce noise, 

and what is the cost in real terms? 

7.4.2. Neural mechanism of true performance improvements 

If noise is the limiting factor in selection of action, for example, neural noise in the 

generation of the motor command, then how can this noise be reduced by reward? Noise 

is normally considered to be an intrinsic property of neurones, so special measures are 

needed to reduce it. This is really the only way to create a true overall improvement in 

performance, without any sacrifices. 

I will now consider in turn three possible accounts of how neuronal noise might 

be reduced at a cost, and I explain why each of these falls short. Finally I discuss two 

possibilities which appear more promising: the entropy increase generated by control 

signals themselves, and the potential cost of ignoring irrelevant information.   
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First, noise might be minimised by recruitment of larger populations of neurones 

to represent the motor command. In this case, redundancy of representation (many cells 

communicating the same motor signal) facilitates an accurate motor command, thus 

allowing more speed. This follows from an assumption that population codes are “read 

out” by combining information across multiple noisy units (Pouget et al., 2003; Seung 

and Sompolinsky, 1993). Under this assumption, if more neurones are used to encode a 

signal, then that signal is less susceptible to degradation by noise (Faisal et al., 2008), 

such that when N independent channels are used, noise is reduced by a factor of √N.  

This recruitment explanation is attractive for explaining why there is a limited 

resource. It makes the intuitive prediction that cellular firing and brain metabolic 

activity should generally increase with reward and performance, which appear to fit 

current data (Knutson and Cooper, 2005; Knutson et al., 2005; Platt and Glimcher, 

1999; Serences, 2008; Tobler et al., 2007). I am not aware though of any evidence that 

neurones could be dynamically reassigned or remapped in this way, to one function or 

another. Moreover we are very far from having even a theoretical neuronal mechanism 

for how this recruitment or reallocation might arise. 

A second approach is that the impact of noise can be mitigated by reducing 

noise correlation. Poisson spiking noise, which appears to accompany all decoded 

neuronal signals, is correlated between cells that encode the same variables (Zohary et 

al., 1994), and this noise correlation is a key contributor to the inefficacy of neuronal 

representations (Averbeck et al., 2006; Sompolinsky et al., 2001). It has been 

hypothesised that striatal dopamine plays a role in reducing correlation in cortical 

neurones (Courtemanche et al., 2003; Bar-Gad et al., 2003; Hammond et al., 2007). But 

theoretical considerations have shown that correlated noise only reduces Fisher 
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information when neuronal receptive fields are very similar, and correlations are very 

long-rage. Moreover in many situations, information content actually increases with 

noise correlation (Abbott and Dayan, 1999; Romo et al., 2003). Even more 

disappointingly, this does not explain how the resource limitation arises: why don't we 

always have decorrelated noise?  

A third approach to noise reduction also invokes dopamine. It is possible that the 

ability of cortical neurones to switch between two modes of firing may underlie the 

ability to suppress noise. The pyramidal cell membrane may have a variable response to 

excitatory and inhibitory postsynaptic potentials: there may be a linear summation, or a 

highly nonlinear, potentially bistable response. The degree of nonlinearity has been 

proposed to be under dopaminergic control, e.g. by D1 receptor stimulation promoting 

NMDA (especially calcium) currents that alter membrane metastability (Ashby and 

Casale, 2003; Durstewitz and Seamans, 2002; Durstewitz et al., 2000; Nicola et al., 

2000). However, computational neurophysiological simulations have recently shown 

the membrane bistability hypothesis to be less plausible. But even if a mechanism for it 

were elucidated, what would be the dynamic effect of increasing the nonlinearity? If 

pools of competing response neurones are responsible for generating the motor 

command, then as expected, it would promote faster decision times (Lo and Wang, 

2006; Wang, 2002; Wong et al., 2007). But it is not clear that accuracy can be increased 

using this method.  

7.4.3. No free lunch: entropy 

The question as to what constraints limit joint improvements in speed and accuracy 

(Figure 7.1) is quite distinct from the question of what constrains speed and accuracy to 

trade-off with one another (Kurzban et al. 2014).  



7. Control cost explains the effect of reward 7.4. Discussion 

 
271 

Trading off both speed and accuracy to save energetic costs may be a pervasive 

feature of homeostasis, stemming directly from the fact that energy is dissipated by any 

adaptive feedback process that corrects a perturbation (Lan et al., 2012). When a 

system's state deviates from a set-point, feedback signals cause a potential gradient (or 

equivalently a force) that restores the system to the same macroscopic state as 

previously. Although this force returns the system to the desired state, it does not do so 

via exactly the same route that the system was displaced along. The nonzero path 

integral of this force over the excursion of the system from the set point generates 

entropy (Tomé, 2006). The same principle applies to maintaining the status quo in the 

face of noise: when small random fluctuations are present—e.g. a random walk or 

Wiener process—a potential well or restoring force is also required to maintain the 

system in a constant state.  

It turns out that maintaining the status quo is itself energy expensive. A control 

signal or, equivalently, restoring force  (which can be expressed as the 

gradient of some potential V on the manifold of states), counteracts the effects of 

microscopic fluctuations, even when the macroscopic state remains stationary. Due to 

this, entropy is continually generated and transferred to the environment. The entropy 

gain ΔS depends upon how tight the control is, and on how large the fluctuations are. 

The rate is given by the expectation of the following function of the control signal: 

  (7.11) 

where D is the rate of diffusion away from the desired point, and   is the 

divergence of the restoring force, i.e. its local gain.  
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Figure 7.6: Feedback controllers expend energy in maintaining their desired state in the face 

of noise, depending on the gain.  

If a system’s state is subject to stochastic fluctuation (due to temperature), then to maintain a 

desired state, a restoring force is required. This force generates an “energy well”, into which the 

system tends to fall. Thermal noise causes the system’s state to vary around the set-point. To attain 

a small variability, steeper feedback functions are required. 

To summarise, in non-stochastic systems, there is no such energy dissipation, 

and restoring the macrostate of the system also restores the microstate: no information is 

lost. In contrast, in a stochastic system, by virtue of the fact the system has temperature, 

the restoring forces do not restore microstates, and entropy must be dissipated to the 

environment in the form of heat. This general principle applies to any system that 

maintains macroscopic states, in the face of stochastic noise. Similar ideas have also 

been endorsed by Friston (2011).  Thus, there is a fluctuation-dissipation relationship 

between dissipation of power and production of entropy (Tomé, 2006). How does this 

apply to vigour of movement? 

The principle immediately suggests that simply by representing and 

implementing a control signal, for example prediction errors in perception or motor 

control (Huys and Dayan, 2009; Mumford, 1992), a system must expend energy. This 
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energy is a cost to the organism, and in the brain it is likely that the cost is in the form 

increasing entropy. This gives an a priori reason why the square of control signal and 

its gain ought to be minimised, from equation (2). Steepening the gradient of control 

increases energy expenditure, but allows the state to remain more faithfully at the 

desired set-point. Dopamine, perhaps in consort with acetylcholine and noradrenaline, 

may set the gain of such feedback (Friston, 2009; Yu and Dayan, 2005), which is 

evidenced by abnormal feedback control in PD (Beuter et al., 1990; Rickards and Cody, 

1997; Schettino et al., 2006; Vaillancourt et al., 2001). Mechanistically, D1 receptor 

stimulation could increase control gain by steepening pyramidal cells’ transfer functions 

(Gruber et al., 2006; Thurley et al., 2008), or by rapid potentiation in the synaptic 

membrane itself (Abbott et al., 1997).  

At the level of the plant, increasing the gradient of the control signal translates 

almost directly to increasing the velocity of movement. In the oculomotor system, this 

control signal corresponds to the input to motoneurones from the medial longitudinal 

fasciculus (Robinson, 1973). At higher levels of the motor control hierarchy, steeper 

gradients imply faster correction of error, and may permit action initiation that is both 

faster and more precise.  

7.4.4. No free lunch: relevance 

A major question is how the brain can distinguish signals from noise at all. 

Distinguishing signal from noise is straightforward from an experimenter's viewpoint, 

but not from a cell's viewpoint. One view is that, the “noise” that needs to be attenuated 

in the brain is, in fact, constituted by potentially relevant but actually irrelevant stimuli. 

In particular, sense organs are tailored to transduce signals that are potentially important 

for survival.   
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In short, distractors that are filtered out are stimuli that might have been 

relevant, for example in the wild. For this reason, perhaps, it is costly for us to filter 

them out – costly because it might be dangerous. The mechanism that makes attention 

effortful is, then, an evolutionarily potent one. On this view, producing a precise motor 

output entails isolating the motor system from other competing signals. Those 

competing signals are currently irrelevant, and are termed noise. Attenuating them is 

expensive because it precludes reflexive responses that would have been useful in the 

wild—for example, saccades to visually salient objects. Attenuating these ‘noise’ 

signals precludes danger processing (recall Figure 2.1; Equation 2.1). This is a 

candidate for the “real” cost of control: excluding noise is actually, in the most natural 

setting, excluding potentially relevant signal.  

7.4.5. Conclusion 

Studies to date have suggested that costing of action, for example speed accuracy or 

economic cost, might be estimated and represented in the brain as a decision variable 

(Rangel and Hare, 2010). Metabolic activity in certain regions in the brain correlates 

strongly with the cost of an upcoming action (Croxson et al. 2009; for reiview see 

Kurniawan, Guitart-Masip, and Dolan 2011), both in limbic/ventromedial areas, and in 

areas involved in motor preparation (Bonnelle et al., submitted). Corroborating this, pre-

SMA stimulation by TMS can improve invigoration by reward (Herz et al., 2014). It is 

likely that these brain areas perform the cost calculations that underlie motivation by 

reward—and they are also the cortical regions most strongly innervated by 

dopaminergic neurones arising in the midbrain (Van den Heuvel and Pasterkamp, 

2008).  
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The results of chapter 5 demonstrated deficits in both reward-sensitivity and 

vigour in PD. I modelled these findings in terms of how action costs are evaluated in the 

brain—the cost of control—and how these may be translated into the precision and gain 

of control signals in generating movement. Dopamine depletion in Parkinson’s disease 

has been hypothesised to lead to a deficit in vigour and thus slow movements—

bradykinesia (Mazzoni et al., 2007; Schultz, 2007), but is also associated with decreased 

precision on motor tasks (Beuter et al., 1990; Galea et al., 2012; Schettino et al., 2006) 

and attentional difficulties (Brown and Marsden, 1990; Cools et al., 2001b; Obeso et al., 

2013; Owen et al., 1991; Robbins, 2005; Sampaio et al., 2011b; Wright et al., 1993; 

Yamaguchi and Kobayashi, 1998). A parsimonious explanation for these findings, 

together with mine, might be that patients with PD are impaired in reducing motor noise 

in response to reward, which would manifest as inability to increase movement speed in 

response to incentive (Mazzoni et al., 2012). 
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8. General Discussion 

8.1. Summary of findings 

The mechanisms by which an organism’s brain responds to rewards, and uses rewards 

to guide attention, have been studied by a variety of methods (reviewed in Chapter 1). 

However, few studies to date have used a direct measure of sensitivity to rewards. By 

providing reward incentives for fast eye movements to a target, while avoiding a 

distractor, I studied the factors that influence motivational influences on attention. 

In Chapter 2 I explored how oculomotor capture is influenced by reward. 

Oculomotor distractibility was measured by involuntary saccades made to a visually 

salient onset distractor, which appeared at the same time as a non-salient target that had 

to be fixated. In two studies, I first parametrically manipulated incentives and penalties 

across blocks, and then examined the trial-to-trial effects of reward history.  The first 

experiment revealed that increasing reward incentives led to shorter saccadic RTs, 

whereas introducing penalties increased RT (Figure 2.3). Both reward and penalty 

improved accuracy, reducing oculomotor capture rates, but when rewards were 

maximal, there was a paradoxical increase in oculomotor capture. This suggests that 

incentives may increase both speed and accuracy, constituting a true performance 

improvement rather than trade-off, but at high reward levels ‘choking under pressure’ 

may arise.  

The second study revealed that if the distractor location was previously a target, 

it was more likely to attract gaze, and elicit oculomotor capture. However this occurred 

only when there was oculomotor capture on the previous trial: that is, when the potential 



8. General Discussion 8.1. Summary of findings 

 
277 

reward was missed (Figure 2.7). Distraction is therefore greatest to locations that are 

seemingly ‘primed’ by missed rewards.  

In light of these findings, in Chapter 3 I designed a task that allows the 

incentive to be manipulated on each trial. A spoken reward cue was played during the 

foreperiod, and as previously, a speeded saccade to a target was made while avoiding a 

distractor (Figure 3.1). In this task the distractor was salient due to its early onset, only 

three locations were used, and the task was designed to be “continuous”: the fixation 

point for the next trial was the end-location of the previous trial, in order to strengthen 

previous-trial location effects.   

In the first study, conducted on 24 healthy young volunteers, rewards shortened 

reaction times while speeding peak saccade velocities (Figure 3.3). The degree of 

modulation of these measures, as a function of incentive, allowed quantification of 

reward sensitivity. In addition, pupillary dilatation in response to the auditory reward 

cue was modulated by reward size, providing an independent autonomic measure of 

reward sensitivity (Figure 3.4). The second experiment demonstrated that the measure 

of reward sensitivity for a given subject correlated well between sessions, when 19 

subjects were tested a second time one week later, and was not altered by practice.  

A third study explored the effect of age upon oculomotor capture and reward. 

Older participants (mean age 62) were significantly slower and more accurate, 

consistent with more conservative behaviour (Figure 3.8). Although reward had a 

stronger influence on improving accuracy in older than younger participants, there was 

no difference in reward sensitivity of RT or velocity, indicating that a) the improved 

accuracy was not due to speed-accuracy trade-off, and b) that reward sensitivity of 

velocity is a consistent finding across ages. I also explored the trial-to-trial effects in 



8. General Discussion 8.1. Summary of findings 

 
278 

this task, and found a corresponding effect to that found in Chapter 2: missed rewards 

capture attention (Figure 3.9). 

In Chapter 4 healthy male volunteers took the D2-selective agonist cabergoline, 

or placebo, in two separate sessions, in a randomised double-blinded protocol. As 

previously found, reward did not significantly affect oculomotor capture rates, but did 

speed saccade velocities and shorten reaction times (Figure 4.3). Cabergoline increased 

the slope of reward sensitivity as measured by saccade velocity. Interestingly, the effect 

was primarily on slowing down saccades when incentives were low – i.e., increasing the 

de-motivating effect of a lack of reward (Figure 4.2). This finding was also reflected in 

the curvature of saccades, such that when reward was low, cabergoline induced 

curvature towards the distractor (Figure 4.4A). 

Chapter 5 examined whether 16 patients with Parkinson’s disease (PD) had 

intact reward processing, as determined by the oculomotor capture task. PD primarily 

depletes dopamine and results in slow, stiff limb movements, but may also feature 

behavioural motivational disturbances (Czernecki et al., 2002; Pluck and Brown, 2002; 

Sinha et al., 2013). Patients performed the task both ON and OFF their usual 

dopaminergic medication, on two separate days, in counterbalanced order. They also 

performed a simple (unrewarded) pro-saccade and anti-saccade task as a control to rule 

out dopaminergic effects on saccades per se as a cause for any effects found. As 

expected, PD patients had slowed reaction times and velocities, but reduced oculomotor 

capture, compared to age-matched controls (Figure 5.1). Crucially, their sensitivity to 

reward was reduced, with a flatter slope of velocity as a function of incentive. This was 

accompanied by reduced pupillary sensitivity to reward.  
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When ON medication, PD patients showed no improvement in velocity, RT, nor 

in reward sensitivity (Figure 5.1). In contrast, pupil dilatation in response to reward was 

increased when ON compared to OFF, demonstrating that medication restored their 

autonomic measures of reward sensitivity, although behavioural measures on the task 

such as saccade velocity remained reward-insensitive (Figure 5.5).  

In Chapter 6, I measured reward sensitivity in patients with focal ACC and 

OFC damage. Datasets from 19 patients were obtained, performing the rewarded 

oculomotor capture task as well as simple pro-saccades and anti-saccades. On the 

rewarded task, four patients had extreme values of reward sensitivity compared to a 

matched control group of 32 subjects, but their lesions did not reveal a unique pattern. 

In order to look for lesion-location effects, patients were divided into two groups, 

according to the predominant lesion location, OFC or ACC (ACC included subgenual 

cingulate). Those with OFC lesions showed decreased sensitivity to reward, as exhibited 

by a shallower reward slope of their velocity as a function of incentive (Figure 6.3.4). A 

complementary pattern was found with pupil dilatation: ACC lesions made the pupil 

less sensitive to reward. On a simple prosaccade task, OFC patients exhibited reduced 

inhibition of return, in keeping with previous studies (Hodgson et al., 2002b).  

Voxelwise lesion-behaviour mapping was used find regions that, when lesioned, 

resulted in reduced reward sensitivity of peak saccade velocity. Damage to a small area 

of ventromedial PFC, just below the subgenual cingulate, correlated with loss of reward 

sensitivity.  

Finally, in Chapter 7, I advanced a quantitative approach to studying motivation 

by reward. I first noted that existing models do not allow for genuine performance 

improvement by reward. I then demonstrated that introducing a costly control signal 
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that reduces noise allows existing models to account for the data. I discussed the 

possible interpretations of such a “control cost”, in three ways: in terms of dopamine, 

entropy, and relevance.   

8.2. Interpretation 

8.2.1. Interaction between reward and dopamine 

A key finding of these studies is that dopamine altered the effect of reward incentives 

on behaviour. This suggests that dopamine signals lie somewhere in the path between 

encoding an expected reward, and energising behaviour according to that reward. 

In particular, the D2 agonist cabergoline slowed velocities and increased the pull of the 

distractor when reward was low, without altering accuracy or slowing RTs generally. 

PD flattened the sensitivity to rewards in addition to slowing velocity and RT, and 

dopamine replacement had the sole effect of improving pupillary reward responses.  

Tonic dopaminergic stimulation, therefore, appears to increase the gain of reward in 

different ways in PD and in health.   

8.2.2 Saccadic vigour  

Saccades have been the model system for motor control, and are perhaps the most well 

understood neurally (Robinson 1972). Although they are ‘primitive’, usually 

unconscious, and often reflexive (Schreij et al., 2008; Trappenberg et al., 2001), they 

may also be directed towards goals, or be voluntarily controlled. As discussed in the 

introduction, they are manifestations of the allocation of attention. The influences of 

motivation and goals on saccade control is much more poorly understood (Okada and 

Kobayashi, 2014).  
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The D2-agonist cabergoline caused an increase in the slope of reward sensitivity, 

but by slowing the velocities in the unrewarded condition (Figure 4.3). This finding is 

unexpected and might be explained in one of three ways.  

Firstly, D2 receptors are associated with the indirect pathway, sometimes termed 

the “no-go” pathway in view of its postulated ultimately inhibitory GABA-ergic 

projections to thalamus (Alexander and Crutcher, 1990; Frank and Claus, 2006). Thus 

stimulation of D2 receptors might inhibit action in general, reducing vigour, but this 

might be overcome by reward signals. Another D2 agonist pramipexole has been shown 

to reduce the normal fMRI activation by rewarding and aversive stimuli in ventromedial 

PFC, OFC, striatum and dorsal ACC – just as though the rewards and penalties 

themselves had been devalued (McCabe et al., 2013). It is not clear at this stage how 

this links with the findings reported here on cabergoline.  

Secondly, there might be dose-dependent effects: in order to ensure participants 

were blind to cabergoline or placebo, a low dose was used. Studies of D2 agonists 

reveal differential dose-dependent effects upon performance in different domains 

(Vaillancourt et al., 2013), and inverted-U-shaped effects on both cognition and at the 

cellular level (Cools, 2011; Stelzel et al., 2013; Zheng et al., 1999). The inter-subject 

variability present in drug effect (Appendix 2) would support this. Alternatively, tonic 

low doses of cabergoline might presynaptically inhibit dopamine release, such that 

vigour is reduced; this inhibition might be overcome by high motivation—leading to the 

observed effect on velocity.  

A third possibility is that there are actually two effects at play: the D2 agonist 

might slow saccade velocities across the board, yet simultaneously increase sensitivity 
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to reward, increasing the slope. The net effect would be the observed drug-induced 

vigour decrement when reward is low (Figure 4.3).  

Could any of these mechanisms also explain the results in PD? PD patients had 

slower and less reward-sensitive saccade velocities, and replacing dopamine did not 

increase either speed or reward sensitivity (Figure 5.1). This cannot be explained 

simply by a change in dopaminergic stimulation. Rather, the healthy reward response 

must be contrasted with the blunted response in patients even when medicated. It seems 

likely that phasic dopamine release is released to signal reward expectation (Bromberg-

Martin et al., 2010b; Niv, 2007), and it is unlikely that D2 agonists can restore this.  

It is fascinating, then, that pupillary responses to reward in PD patients were 

restored by medication. Do they also not require phasic dopamine? It is possible that 

autonomic reward responses are governed by a different, parallel, neural system than the 

invigoration of action. For example, the dorsal-action vs. ventral-emotion distinction 

proposed by some investigators might be one explanation (Grabenhorst et al., 2008). 

Alternatively the mesolimbic-nigrostriatal or even cortical-subcortical distinction may 

be relevant.  

8.2.3. Anatomical considerations 

The lesion-mapping suggests that damage to a small area of subgenual ACC is 

correlated with disrupted reward incentivisation of saccade velocity. In conjunction with 

the previous findings with dopamine and PD, it seems likely that the ventral striatum 

and posterior OFC function as a single unit in value processing (Haber et al., 2006). It is 

not straightforward to infer how precisely the lesion mapping localises the effect on 
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reward sensitivity, due to potential undersampling, correlated lesioning, and spatially 

heterogeneous statistical power (Figure 6.4.1).  

Doubts nonwithstanding, I present the regions in which the degree of lesion 

correlates with pupil and velocity reward sensitivity, together in Figure 7.3 in magenta 

and yellow respectively. Also shown are areas which lesion correlated with the LARS 

total apathy score, in cyan. There is considerable overlap of velocity and pupil areas in 

the depth of the medial orbital sulcus. Apathy scores also involve gyrus rectus as well as 

more anterodorsal regions of the medial left wall.  
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Figure 8.1: Combined voxelwise lesion-behaviour map 

Overall lesion correlations with saccade velocity sensitivity to reward (yellow), size of pupil 

response to reward (magenta), and the LARS apathy score (cyan) for each lesion patient in Chapter 

6. Medial orbitofrontal cortex appears to have the strongest correlations with these measurements.  

Similar to my findings in PD, pupil sensitivity after lesions varied independently from 

velocity sensitivity. This suggests a possible role for OFC in translating reward into 

motivation, to invigorate motor control—whereas ACC may feed into autonomic 

arousal. This conclusion appears to be against some other lesion studies that find 

impaired autonomic responses after OFC lesions (Bechara et al., 1997). PD may 

irreversibly blocks the invigoration of reward, but its effect on the pupil is reversible—

demonstrating that reward signals can still be generated and manifest in those 

individuals.  

8.3. Future directions 

Reward systems in the brain span many levels of explanation including 

neuroanatomical, electrochemical and computational. Consequentially, the parallel 

study of neuromodulatory pharmacology, focal frontal lesions, and neurodegenerative 

conditions appears to be a fruitful approach to understanding reward. Many outstanding 

questions appear amenable to this approach. 

Simple extensions of this work could be to increase the sample size of PD and 

PFC patient groups. PD is known to be a heterogeneous condition (Foltynie et al., 2002; 

Lewis et al., 2003). In averaging the effects over 16 patients, the results presented here 

may well mask important relationships of reward sensitivity with individual patient 

characteristics. Increasing the sample size could provide power to differentiate between 

tremor-dominant and akinetic-rigid phenotypes, and between apathetic and non-
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apathetic PD (Czernecki et al., 2002). In prefrontal patients, increasing the number of 

patients could provide greater lesion coverage over dorsolateral areas in particular 

dACC, SMA and pre-SMA, which in this study had lower power to detect lesion effects 

than in OFC. 

A topical question to ask would be, whether reward sensitivity is determined by 

dopamine-related genetic polymorphisms. Variation in DRD2 receptor, COMT and 

DAT alleles may all govern sensitivity to reward (Camara et al., 2010; Frank and 

Hutchison, 2009; Krugel et al., 2009). In the study of Chapter 4 on cabergoline, the 

sample size would be insufficient to study the effect of genetic variation; a larger cohort 

would be required. Future studies ascertaining genetic determinants may have real-

world applications, including tailoring medication for individual patients, as well as 

mechanisms of disease and addiction, and in understanding natural population 

variability in personality traits such as apathy and impulsivity. 

8.3.1. Cost of control 

Superficially, motivation by reward appears to do more than adjust behavioural 

parameters: it energises and improves. These aspects go beyond the gamut predicted by 

current optimal motor control theory, or rise-to-threshold decision models. By 

considering the cost of control in Chapter 7, these effects can be re-framed as 

optimising behavioural parameters—with the assumptions that noise in sensorimotor 

systems can be reduced at a cost, and that the brain is able to select the optimum level. It 

is possible that the control cost could be extended to other domains where resource 

limitations appear to be breached by motivation, for example working memory, 

cognitive effort, and even sport or performance arts. A strong prediction from this thesis 
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is that dopamine facilitates the ability to break the resource limitation. As yet, it is not 

clear how this position could relate to dopamine’s role in reinforcement learning.  

8.3.2. Motivation as reward contingence  

One concern with the studies I have performed is that I have assumed that 

expectation of reward generates motivation. However, this may not be strictly correct: 

in a situation where reward is certain, there would be no motivation to do anything. In 

my task, reward was always contingent on fast accurate response; when the incentive is 

zero, there is no reason to act, as outcome is not contingent on behaviour. Under zero 

reward, it could be the lack of dependence, rather than the lack of reward, that 

demotivates. Conversely, penalties carry negative reward, yet lead to positive 

motivation.  

In particular, neither the absolute reward R, nor the relative reward , 

motivates action. Absolute relative reward  is also ruled out, since it predicts 

zero motivation to act when reward equals the mean value. Rather, it is the dependence 

of reward upon behaviour  which motivates, i.e. the heterogeneity of conditional 

reward over possible actions (Solway and Botvinick, 2012). Imagine, for example, 

unconditional rewards, which in theory should not motivate any action whatsoever.  

Future studies might consider isolating the motivating component as the 

contingence of reward upon behaviour. This could be mathematically expressed as the 

mutual information of the reward distribution and the behaviour distribution: 

  (8.1) 
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or alternatively, for rewards R contingent on actions A, as the variance in reward that is 

accounted for by the choice of action: 

  (8.2) 

On this account, we are only motivated to the extent that actions alter outcomes. An 

experiment could then be devised using probabilistic rewards, in which the key variable 

is not reward per se, but rather the degree to which reward depends on action. In 

particular, motivation can be increased or decreased experimentally, without increasing 

reward expectation. A fascinating question would be whether dopamine is also involved 

in this “reward-independent” motivation.  

8.4. Conclusion 

In this thesis, I have attempted to quantify reward’s effect on attention, and how 

frontostriatal dopamine modulates this. Motivation by reward is central to improving 

human performance, yet we remain far from understanding its chemical and anatomical 

basis. Demonstrating specific effects on motivation in pharmacological manipulation, 

disease, and lesions illuminate this to some extent. In the process, I hope also to have 

produced useful quantitative models of how reward might enhance performance without 

trade-offs, and introduced new tools for reaction time analysis. Finally, my research 

delineates how we might begin to answer a central theoretical question: why do 

precision, physical effort, and avoiding distraction all share the common feature of 

requiring motivation? Future study should focus on the neuroscientific and 

computational commonalities between these phenomena.  
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Appendix 

Appendix 9.1: MATLAB code for arbitrary delta plots with 

permutation test 

The code here will generate delta plots for arbitrary data, automatically averaging across 

subjects and computing the difference between conditions for each quantile. A t-test is 

optionally performed to determine if the conditions are significantly different at any 

point in time, which is controlled for family-wise error rate rate using a permutation 

test.  

 

function [mdelta, mbin, hplot, t_test_result, t_statistics, t_threshold] = ... 

                     deltaPlot(DATA, varargin) 

% function [mean_delta, mean_bincentre, hplot,   

%           ttest_result, t_statistics, t_thresholds ] 

%             = deltaPlots(DATA, [params...] ) 

% 

% Create a delta plot (usually of reaction times) of the differences 

% between conditions, at each quantile of the distribution. 

%  

% DATA ( SUBJECT, CONDITION, TRIAL ) 

%  OR 

% DATA { SUBJECT, CONDITION } ( TRIAL ) 

%    

% Creates delta plots averaged across subjects. 

%  

% for a simple delta plot there should be 2 conditions, i.e.  

%   size(DATA) = subjects x 2 x trials 

% if there are more than 2 conditions, each neighbouring pair is compared 

% i.e. condition1-condition2, condition2-condition3, etc. 
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%  

% If the different subjects / conditions have different numbers of trials, 

% you can either use nan-padding (e.g. using nancat) or use the cell-array 

% version of DATA. 

% 

% RESULT: 

%  

% mean_delta = the mean value of the difference between conditions, for 

%              each bin 

% mean_bincentre = the value at the centre of each of the bins 

%  

% if you request 'hplot' as output, it will plot the delta plot with dotted 

% lines for error bars. 

%  

% if you request 't_test_result', then a permutation-based test will 

% calculate the threshold for t, corrected for FDR of multiple comparisons  

% across the bins, and will return 0 or 1 for each quantile. 

%  

% Delta plots - what do they mean? 

% (Ridderinkhof 2002, Ratcliffe 1979) 

% 

% SGM 2014 

  

% Default 100 bins, gaussian smoothing=0.1 of range, p<0.05 

  

NB     = 100;            % number of quantile bins 

SMOOTH = floor(NB/5);    % smoothing window (as a number of bins). < 2 means no smoothing 

SMOOTH_FILTER = 'gauss'; % which smoothing function to use 

ALPHA  = 0.05;           % if t-test is requested, then  

TWO_TAILED = false;      % should I test if condition1 not equal to condition2? 

WIDTH  = 0.2 ;           % width (in quantiles) of bins. Can be zero for a pure quantiled plot 

PLOT_P = 0 ;             % show a horizontal bar where where p < alpha 

  

if exist('parsepvpairs','file') % attempt to read in parameters 

  [  NB,  WIDTH,  ALPHA,  SMOOTH,  TWO_TAILED] = parsepvpairs( ... 
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   {'NB','WIDTH','ALPHA','SMOOTH','TWO_TAILED'}, ... 

   {100 , 0.2 ,    0.05,  1,       0          }, varargin{:}); 

elseif nargin>1, warning('parsepvpairs.m not found; parameters ignored!'); end 

  

  

WIDTH=floor(WIDTH*NB); % convert width from a quantile fraction into a number of bins 

if isnumeric(DATA)     % numeric array? convert to cells 

  if ndims(DATA)<3, error('deltaplot:dimension','DATA should be an 3-dimensional array'); end 

  for i=1:size(DATA,1) % each subject 

    for j=1:size(DATA,2) % each condition 

      DATA2{i,j}=squeeze(DATA(i,j,:));  

    end % next condition 

  end % next subject 

  DATA=DATA2; % now it's DATA { SUBJECT, CONDITION } ( TRIAL ) 

end 

NSubj = size(DATA,1); % number of subjects 

NCond = size(DATA,2); % number of conditions 

  

flattening = false;   % have we had to flatten any cells into columns (warn if so) 

quantiles = linspace(0,1,NB);  % the actual quantiles to use 

delta = nan(NSubj,NB, NCond-1); % create empty matrix for results: Delta between conditions 

bin   = nan(NSubj,NB, NCond-1); % and this is for the abscissa. 

for subject = 1:NSubj % for each subject 

  for condition = 1:(NCond-1) % for each pair of neighbouring conditions 

    c1 = DATA{subject,condition};       % get data for 1 subject for 2 conditions 

    c2 = DATA{subject,condition+1}; 

    if ~isvector(c1) || ~isvector(c2),  % flatten to column vector if needed 

      flattening=1; c1=flat(c1); c2=flat(c2);  

    end 

    q1 = quantile(c1, quantiles);   % create a vector of quantiles for each condition 

    q2 = quantile(c2, quantiles);   % quantile ignores nans. 

    if WIDTH == 0 

      delta(subject,:,condition) = q1-q2;     % DELTA ( SUBJECT, QUANTILE, CONDITION_PAIR ) 

    else 

      for i=1:(NB-WIDTH) % for each quantile bin 



Appendix Appendix 9.1: MATLAB code for arbitrary delta plots with permutation test 

 
291 

        meanc1 = nanmean( c1( c1>q1(i) & c1<q1(i+WIDTH) ) );  % c1 values within quantile range  

        meanc2 = nanmean( c2( c2>q2(i) & c2<q2(i+WIDTH) ) );  % c2  

        delta(subject,i,condition) = meanc1-meanc2; 

      end 

    end 

    bin(subject,:,condition)   = (q1+q2)/2; % BIN   ( SUBJECT, QUANTILE, CONDITION_PAIR ) 

  end % next condition pair 

end % next subject 

if flattening, warning('deltaplot:flatten','Flattening matrix data into columns'); end 

  

mbin=squeeze(nanmean(bin));    % average across subjects so can be plotted on single graph 

                               % and remove first dimension, to give  

                               % X ( QUANTILE, CONDITION_PAIR ) 

% take mean delta across subjects in each quantile bin 

mdelta = permute(nanmean(delta),[2 3 1]);                  

% and calculate sd across subjects at each quantile bin 

edelta = permute(( nanstd(delta)) / sqrt(NSubj),[2 3 1]);  

  

  

if SMOOTH>1 % SMOOTH 

  for j=1:NCond-1 % for each pair of conditions (smooth requires single column) 

    mdelta(:,j) = smooth(mdelta(:,j) ,SMOOTH,SMOOTH_FILTER); 

    edelta(:,j) = smooth(edelta(:,j) ,SMOOTH,SMOOTH_FILTER); 

  end 

end 

  

if nargout>2  % requested plot handle? then PLOT GRAPH 

  if NB<7     % this version with error bars is good for few bins 

    hplot=errorBarPlot(delta, 'xaxisvalues',mbin); 

  else        % this version shows a curve - is good for many bins! 

    washeld=ishold(); 

    plot(mbin, mdelta, varargin{:}, 'Marker','.'); % plot mean delta for each bin 

    hold on 

    plot(mbin, mdelta+edelta, varargin{:}, 'LineStyle',':'); % error lines above 

    plot(mbin, mdelta-edelta, varargin{:}, 'LineStyle',':'); % and below 
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    plot(xlim,[0 0],':'); % dotted zero-line = no difference between conditions 

    if ~washeld, hold off; end 

    ylabel(['\Delta']); 

    xlabel('value'); 

    % create legend = "condition1-condition2" etc. 

    labels = arrayfun(@(x) sprintf('condition%g-condition%g',x,x+1), [1:(NCond-1)]','uniform',0); 

    % insert blanks for error-lines 

    legend(flat([labels, repmat({'',''},NCond-1,1)])); 

    hplot=gca; % return axes handle 

  end 

end 

  

if nargout>3 % request t statistic 

  % perform a permutation test to calculate the FDR across all bins 

  for i=1:5000 % iterate 5000 times 

    % what if the order of cond1 and cond2 were randomly chosen? 

    randbool = (rand(NSubj,1)>0.5)*2-1; % +1 or -1 for each subject 

    permuted_delta  = bsxfun(@times,randbool,delta); % delta with random swapping of cond1/cond2 

    % t statistic for this permutation = mean / stderr_of_mean 

    % PERMUTED_TSTATS ( QUANTILE, CONDITION_PAIR ) 

    permuted_tstats = permute(mean(permuted_delta) ./ std(permuted_delta), [2 3 1]) / sqrt(NSubj);  

    % MAXT ( ITERATION, CONDITION_PAIR ) 

    maxt(i,:) = max(permuted_tstats, [], 1); % maximum t across all quantiles  

                                             % (for each condition-pair separately) 

     

    % this following line is for if you wanted 

    % a two-tailed test, but at the moment I am assuming the hypothesis is 

    % that condition1 is always bigger than condition2, so it's a 1-tailed 

    % test. 

    if TWO_TAILED 

      mint(i,:) = min(permuted_tstats, [], 2);  

    end 

  end 

  t_statistics  = squeeze(mean(delta) ./ std(delta)) / sqrt(NSubj); % actual t statistic! 

  if TWO_TAILED 



Appendix Appendix 9.1: MATLAB code for arbitrary delta plots with permutation test 

 
293 

    t_threshold_lower = quantile(mint, ALPHA/2);   % find upper 2.5% of max-t values 

    t_threshold_upper = quantile(maxt, 1-ALPHA/2); % find lower 2.5% of min-t values 

    % null hypothesis rejected at 5% if either threshold is passed. 

    t_test_result = bsxfun(@gt, t_statistics, t_threshold_upper)  ... 

                 |  bsxfun(@gt, t_statistics, t_threshold_lower);  

  else 

    t_threshold   = quantile(maxt,1-ALPHA);     % upper 5% of max-t values 

    % null hypothesisi rejected at 5% if t_statistics > t_threshold. 

    t_test_result = bsxfun(@gt, t_statistics, t_threshold);  

  end 

  if PLOT_P % PLOT the t test results?  

    % This shows the significant points where delta is nonzero, below the graph as a bar.  

    mainaxes = gca; 

    rect=get(mainaxes,'position'); % select region in bottom 5% of axis 

    axes('position',[rect(1) rect(2) rect(3),rect(4)*0.05]); 

    imagesc(t_test_result'); axis off;  

    % axes(mainaxes); % revert to main axes 

  end 

end 
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Appendix 9.2: Cabergoline effects in individual subjects 

A large body of literature exists on the heterogeneity of dopaminergic drug effects in 

different individuals (van Holstein et al., 2011; Mueller et al., 2014; Schellekens et al., 

2012; Wacker et al., 2013). The heterogeneity is a combination of receptor sensitivity 

differences (pharmacodynamic, e.g. Cohen et al. 2007), or differences in drug 

absorption and elimination (pharmacokinetic). It is important to explore inter-individual 

differences in drug effects, since it has implications for addiction, alcoholism and in 

selection of medication e.g. in PD (Arbouw et al., 2009; Finckh et al., 1997).  

To examine whether individual subjects showed different effects of cabergoline 

on saccade velocity, I used a permutation test amongst trials, for each subject. Each trial 

was modelled with a linear effect of reward and cabergoline. The average practice 

effects (session 2 minus session 1 velocity effect and reward-sensitivity effect) were 

calculated over all subjects, and the mean effect of practice was subtracted from each 

subject’s velocity. The second session was only 11 deg/s faster than session 1 overall, 

and had slightly reduced reward sensitivity, of magnitude 6 deg/s per unit reward. Note 

that this effect was not significant in the overall ANOVA (p<0.05).  It is still necessary 

to subtract these values, however, otherwise it is not possible to say for certain whether 

an individual’s effects were due to drug or to practice. Statistics were also calculated 

using ANOVA which yielded identical results, despite potentially violating the 

normality assumptions. 
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Figure 9.1: Mean saccade velocity as a function of reward for each subject, on and off 

cabergoline 

Practice effects have been subtracted out. Error bars are the standard error of the mean, taken across 

the 72 trials in each condition. Asterisks indicate where a subject had significant but idiosyncratic 

effects of reward, drug or an interaction term. Reward effect was homogeneous, in that it only 

increased the velocity. In contrast, the effects of drug and the interaction could occur in either 

direction in different subjects.   

 

Out of 19, 9 participants were significantly reward sensitive in both sessions, and 16 

showed significant main effects of drug and placebo on overall saccade peak velocity. 
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This comprised 10 subjects with faster velocity on cabergoline, and 5 with decreased 

velocity (all p<0.05), and 3 with no effect. However only 3 had an interaction between 

reward and drug, two became more reward sensitive and one less sensitive on 

cabergoline.  

What could explain the differing drug response ? One recent hypothesis is that 

genetic polymorphisms and baseline dopamine levels may determine the differential 

influence of dopaminergic manipulations  (Cools et al. 2007; Cools et al. 2005), and 

these genes are also known to correlate with trait impulsivity (Ebstein et al. 1996; 

Dalley et al. 2007; Paloyelis et al. 2010). I therefore examined the change in sensitivity 

to reward with cabergoline, i.e. the difference in the slopes for each subject, were 

significantly correlated with the “motor impulsivity” subscale of the BIS questionnaire 

(p=0.0099, r2=0.33). Subjects who were more impulsive had reduced reward sensitivity 

with cabergoline, whereas those who were less impulsive were more reward sensitive 

with the drug.  

Accuracy was significantly improved with cabergoline in 4 participants and 

worsened in one. Cabergoline increased reward sensitivity of accuracy in one individual 

(who had no effect of reward overall). 

Reward significantly shortened RT in 6 subjects, and slowed RT in one. 

Cabergoline shortened RT in 5 subjects (two of whom were speeded by reward), but 

also lengthened RT in 4 (all of whom had no main effect of reward). Drug interacted 

with rewards in 3 subjects, two of whom became less reward sensitive (both were also 

speeded by reward and drug), and one became more reward sensitive.  
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Appendix 9.4. Prefrontal lesion case histories 

RJ is a 61-year-old shop-fitter, who had a SAH 2½ years ago. He took 2 months to 

recover mentally, and was working again at 3 months. He feels back to 100%, and is 

planning to retire in a years’ time. He has no symptoms, but admits that he now enjoys 

his work less. His motivation has been gradually dwindling over the years but he does 

not attribute this to the SAH. He notices that he has become more laid back, and has a 

little less interest in things generally. On examination he had a fine mild symmetrical 

postural tremor of both hands. On observation he was well motivated and took the 

reward incentives very seriously.   

CB is a 46-year old Brazilian lady who worked in a call centre, who had a SAH 2 years 

previously. She has little recall of the following month. The spent 3 months in neuro-

rehabilitation due to poor balance. She currently complains of pronounced memory 

difficulties, and often cannot remember where she has put things. She feels 

incoordinated on the right side, has intermittent tinnitus, and blurred vision due to 

subhyaloid blood. On examination there was mild slowness of fine finger movements 

on the right side. There was nystagmus in the primary position with the fast phase to the 

right. She has been on olanzepine since discharge due to some early agitation during the 

amnestic phase. Although trailmaking, drawing, naming, response inhibition and verbal 

fluency were normal, she was only able to perform one of the serial 7’s, and delayed 

recall was 0/5. She found the saccadic tasks difficult, and had to be reminded of the 

instructions on one occasion. She was easily distractible and in conversation she had 

very concrete mindset. She was sometimes tangential and forgot the initial question.  
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SP is a 43-year-old IT support worker who suffered a SAH 18 months ago. Since then 

he has noticed decreased concentration, fatigue, low mood and irritability. It took him 1 

year to get back to work. On discussing any changes in his personality, he found it very 

hard to reflect upon these things. He felt he was less motivated, had a flatter affect, and 

was less regretful. In conversation, he sometimes cannot predict the effects of what he 

says on other people. Neurological examination was normal, and he performed well on 

all tasks.  

AH is a 45-year-old construction director who had a SAH 3 years ago. He had a mild 

left hemiparesis, confusion and diplopia for 2 weeks, which completely resolved and 

now he only notices stiffness in fine movements of the left hand. He gets tired very 

easily, and lacks energy. He spontaneously reported that he has become more 

impulsive: he admits to spending frivolously on online shopping, and has learned to run 

things by his wife before committing. He is less tolerant, and has difficulty waiting: 

“everything has to be done yesterday!” His prospective memory is problematic and he 

uses his mobile phone extensively for reminders. He often says inappropriate things that 

he regrets, for example jokingly asking the chair of the board “when’s it due?” in 

reference to her putting on weight. He laughs and cries more easily. He has become 

obsessive about hand cleaning, watches more TV, but gives up easily. His appetite has 

increased and he has put on weight. During the tasks he was uninterested and tired 

quickly.  

CJ is a 48-year-old receptionist, who is now working part-time. She had a SAH 3 years 

ago, and went back to work after 18 months. She initially said that she has made a 100% 

recovery, though on questioning she admits to a poorer memory and frequent tiredness. 



Appendix Appendix 9.4. Prefrontal lesion case histories 

 
303 

Her mother does the cooking now, and although she used to read avidly she has stopped 

now. She says that she does not dream any more. She feels she has become less 

talkative and more regretful, sad and worried.  Examination was normal. She had 

difficulty with trail-making, and scored 3/5 on delayed recall. During tasks, she was 

distractible and fluctuated—two blocks of the saccadic task had to be restarted as she 

lost concentration. She anticipated the target with her eyes frequently. She had strong 

emotional responses to winning and losing. 

PR is a 61-year-old lady who suffered a SAH 4 years ago, and was in intensive care for 

5 weeks. She suffered with hallucinations for 1 year, but was then able to return to 

work. She did not fare well in the workplace and was referred for anger management. 

She describes that she has “lost her filter”, and is much more blunt with her opinions, 

often upsetting family and friends. She tells me that she no longer feels guilt or regret 

after her mistakes. She finds it harder to make an effort, and is less emotionally 

driven—for example, she had to be pushed to go and see her new grandchild. She did 

not feel motivated to go, although she knew that she ought to be excited. She feels 

worry, sadness and happiness much less. She still suffers with decreased memory, 

tiredness, and insomnia. She was taking levodopa for some months as she had a mild 

tremor. On examination the tremor was not noticeable and there were no other 

neurological signs.  

AM is a 28-year-old shop administrator who was planning to go to law school. She 

suffered a SAH 2 years ago, and had no deficits after the bleed. The aneurysm was 

treated a year later by coiling, but she developed a right-sided hemiparesis for 1 week 

afterwards. She initially had difficulty walking holding a knife, but made a full rapid 

recovery. She returned to full time work but gets tired very easily, and as a consequence 
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has stopped dancing and going to the gym. In terms of motivation, she describes herself 

as “9/10” for trying new things, but “2/10” for repetitive things. She spontaneously told 

me that she plays the lottery much more than she used to, now playing the euro-lottery, 

health lottery, work lottery as well as the normal local lotto. She has started spending 

more on clothes—and feels this is because her attitude has changed: “I’ll just use my 

next paycheck for it”. Her partner complains that she no longer saves any money, and 

she admits to being unable to forward-plan, in particular thinking “more short-term”.  

MN is a 55-year-old previous legal secretary, who had a SAH 4 years ago. She was in a 

rehab unit for 3 months with right-sided weakness and cognitive changes. Her main 

problem has been tiring, concentration and low mood; she says she has made an 80% 

recovery. She angers more easily and worries more easily. She has become more aware 

of other people, and is less likely to give her own opinion spontaneously. On saccadic 

tasks she performed well but anticipated frequently.  

GS is a 57-year-old lady working as a network-manager for a school, who had a SAH 3 

years ago. She had double vision for some weeks, but then made a full recovery. She 

has noticed memory difficulties and fatigue since then, and she finds it harder to get to 

sleep. She feels she makes decisions quicker than before, and often before she has got 

enough information. She finds her job more tiring, but thinks she has become more 

novelty-seeking than before. She performed the saccadic tasks well. 

MO is a 45-year-old lighting engineer who had a SAH 5 years ago. He had transient 

incoordination of his right hand, which has recovered although his handwriting is now 

worse than before. Other than this he is 100% back to normal. Examination was normal. 

On questioning he admits to being much more emotional than previously, for example 
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he becomes tearful during crescendos in music. He sometimes has difficulty working 

out why he is angry.  He performed the tasks well.  

FR is a 70-year-old retired gentleman who had a SAH 5 years ago. His only symptom 

is that he has lost his sense of smell, and his handwriting is less steady. Examination 

was normal. He remains active, going to the mosque 3 times a day. During saccades he 

made multiple breaks of fixation, and often regressed to the previous target during the 

fixation period between trials.  

EF is a 33-year-old lady who works in business. She had a SAH 1 year ago. For 3 

months she had double vision, tiredness and concentration problems, but now she is 

95% back to normal. There is mild residual tiredness, but she is well motivated and has 

taken up golf recently. She was on prophylactic phenytoin for 6 months but is off 

medication now. Examination was normal. She was strongly motivated during the 

saccadic tasks. 

SW is a 32-year-old teaching assistant who had a SAH 2 years ago. She noticed she has 

been more emotional, and has reduced energy levels, and impaired short term memory. 

She has not noticed any changes in her personality or motivation.  On the saccadic tasks 

she was well motivated, but had some impersistence of gaze with several breaks of 

fixation in the antisaccade task.  

NR is a 46-year-old solicitor who had a SAH 1 year ago. He was in neuro-rehabilitation 

for 5 months with memory difficulties. He has now recovered well and is back in part 

time work as a solicitor. He notices his thoughts are laboured and slow – he “can’t get 

out of first gear”. He feels he has become less experimental for example in cooking and 
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life choices, and finds he is easily discouraged and gives up quickly.  He has attended a 

fatigue management course, but has only been able to return to half of his previous 

caseload, which was 300 per year. Examination was normal, and he performed the 

saccadic tasks well. 

EC is a 58-year-old lady who had a SAH followed by coiling 3 years ago. After the 

coiling she had a left-sided hemiparesis requiring a walking stick.  This recovered 

gradually over 1 month, and she went back to work part-time in her job at a charity 

shop. She has become much less emotional since the event. Examination was normal 

apart from mild bradykinesia in the left foot, with normal power. She performed the 

saccadic tasks well.  

AE is a 44-year-old musician who suffered a SAH 3 years ago. He was initially off-

balance but recovered fully. He has gone back to work and is recording new albums this 

year. He has a subtle left-sided postural tremor but no other neurological signs. He tells 

me that he finds it harder to tell lies now; he is more frank e.g. he once told his 

colleague “your record is rubbish”. He feels he is slightly colder and less empathetic, 

but happier than before. He is less concerned or upset by things in general, e.g. on 

receiving a parking ticket.  He is heavily reliant on his wife for pushing him to doing 

things, and his wife is writing a book about their journey. 

RB is a 57-year-old building contractor who had a SAH. He has a normal examination. 

He continues to work and enjoys activities such as martial arts in his spare time. Since 

the event he has noticed occasional difficulty in finding names – he can often picture the 

face but not find the name, and has no difficulties with recognition. He denies short-

term memory deficits, and was even able to remember my phone number from dialling 
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it earlier in the day. His verbal fluency was very poor, and on questioning he admits to 

tiredness, and cognitive slowing. His wife says he has lost the ability to admit when he 

is wrong. He now plays the lottery frequently, and though he has won a few tens of 

pounds, he often feels that he “should have won millions”.   

AF is a 56-year-old boiler-repairer who had a SAH 3 years ago. He was in 

rehabilitation for 6 weeks and is completely back to normal apart from tiredness. He has 

given up badminton due to his coordination being worse, but also feels sometimes that 

he can’t be bothered to play. In his work, he finds it harder to persevere at difficult jobs, 

but has not noticed any other cognitive changes. He really did not find the tasks 

motivating, commenting about the rewards, “well, it’s just numbers”.  

NF is a 49-year-old lady who worked as a computer programmer, but latterly a 

housewife. She sustained a SAH 8 months ago, and made a quick recovery. She has 

noticed grumpiness, reduced short-term memory, fatigue, and some anxiety; she feels 

70% back to normal. She notices reduced sensation on the inside of her right foot. 

Cognitively, she finds it harder to be creative when put on the spot, and she “craves less 

novelty”. She gives up easily, makes less effort, and feels “much more in acceptance of 

things” as they are. After the event, she went through a phase of being much more 

emotional, and is still somewhat more anxious.  She finds multitasking particularly 

hard, and can’t handle being interrupted. She found the saccadic tasks enjoyable but was 

tired by the end of 4 blocks.  

GB is a 64-year-old retired nurse who had a SAH 1 year ago. She takes citalopram 

since the event although she does not have a formal diagnosis of depression. She has 

significant difficulty with fatigue and diminished concentration. She finds meeting 
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friends a chore. Nonetheless she feels she has become a little more curious and creative 

since the event. She finds herself more easily moved by news and films than previously, 

and is more susceptible to guilt and regret. Perception, recall, inhibition, fluency and 

drawing were in tact, but she scored only 1/3 on serial subtractions. Examination 

revealed a fine mild symmetrical postural tremor. She performed the saccadic tasks 

well. 
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Appendix 9.5. Exploratory VLSM with apathy subscales 

The action initiation subscale of the LARS quantifies apathy towards self-generated, 

self-motivated behaviours. Scores on LARS have been found to be markedly worse in 

PD (Dujardin et al., 2007). I therefore asked whether damage to any frontal areas also 

influenced this measure, and performed voxelwise lesion-behaviour mapping using the 

total LARS apathy score, and the three major subscales: emotion, intellectual curiosity 

and action initiation.  

The behavioural trait of action initiation apathy correlated with damage to left 

anterior / frontopolar OFC. Before correction for the four multiple comparisons, the 

maximum t was 5.8 and p<0.05. However after correction, the result was not 

significant. Anterior OFC is part of area 10, and consists of highly developed granular 

cortex. This area and has been shown to be activated in fMRI studies during 

deterministic reversal learning (Finger et al., 2008; Nashiro et al., 2012), and when an 

alternative action than the one being planned has a higher value (Boorman et al., 2009, 

2011). It may have a role in filtering irrelevant memories (Schnider et al., 2000). 

 

Figure 9.5: Voxelwise lesion-behaviour map of apathy traits 

Voxels that correlated with total LARS score are shown in the top image. Blue areas correspond to 

increased apathy ratings. Right: voxels correlating with the action initiation subscale of the LARS. 

Red voxels correspond to reduced action initiation. Uncorrected threshold at p<0.05 corresponds to 

t>1.7; the maximum t value of 5.8 (seen for some left frontopolar voxels that correlate with 
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productivity) corresponds to p<0.05 corrected for ~5900 independent comparisons. Based on 5 mm 

smoothing, a t-value of 4.2 (yellow-green) is significant.  
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