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Abstract
The vertex potential is the largest response that can be recorded in the electroencephalogram of an awake, healthy human. It is
elicited by sudden and intense stimuli, and is composed by a negative–positive deflection. The stimulus properties that
determine the vertex potential amplitude have been well characterized. Nonetheless, its functional significance remains
elusive. The dominant interpretation is that it reflects neural activities related to the detection of salient stimuli. However, given
that threatening stimuli elicit both vertex potentials and defensive movements, we hypothesized that the vertex potential is
related to the execution of defensive actions. Here, we directly compared the salience and motoric interpretations by
investigating the relationship between the amplitude of laser-evoked potentials (LEPs) and the response time of movements
with different defensive values. First, we show that a larger LEP negative wave (N2 wave) predicts faster motor response times.
Second, this prediction is significantly stronger when themotor response is defensive in nature. Third, the relation between the
N2 wave and motor response time depends not only on the kinematic form of the movement, but also on whether that
kinematic form serves as a functional defense of the body. Therefore, the N2wave of the LEP encodes key defensive reactions to
threats.
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Introduction

The appropriate detection and reaction to potentially threaten-
ing events in the sensory environment is critical to survival. Sud-
den and intense sensory stimuli elicit a large, negative–positive
biphasic wave in the human electroencephalogram (EEG), max-
imal at the scalp vertex (the vertex potential; Bancaud et al.
1953; Walter 1964). This large vertex response is a specific subset
of event-related potential components, and represents the

largest synchronization of neural activity that can be recorded
from the scalp of an awake, healthy individual. It can be elicited
by stimuli of virtually all sensory modalities, provided that they
are salient (Walter 1964; Mouraux and Iannetti 2009). When eli-
cited by either innocuous or noxious somatosensory stimuli,
the negative–positive vertex wave is labeled as N2–P2 (Treede
et al. 1988).

The magnitude of the vertex potential is sensitive to changes
in some stimulus attributes, but not in others. For example,
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increases in the energy of a somatosensory stimulus increase N2
amplitude, whereas decreases in stimulus energy and small dis-
placements have little effect (Torta et al. 2012; Ronga et al. 2013).
Therefore, it has been posited that the N2 wave of the vertex po-
tential reflects the detection of potential threats in the sensory
environment (Ritter et al. 1968; Fruhstorfer 1971; Legrain et al.
2011; Valentini et al. 2011; Ronga et al. 2013).

Nonetheless, despite extensive characterization of the stimu-
lus properties that elicit vertex potentials and influence their
amplitude, as well as their brain generators (Mouraux and
Iannetti 2009), it is not known whether and how a vertex
potential is useful. In cognitive psychophysiology research, the
dominant interpretation is based on salience: The vertex
potential reflects the detection of salient stimuli in the sensory
environment (Walter 1964; Carmon et al. 1976).

However, the vertex potential might also reflect neural activ-
ities important for initiating defensive motor responses to threat.
This view receives compelling evidence from the fact that poten-
tially threatening stimuli elicit both vertex potentials and defen-
sive or protective movements (Graziano and Cooke 2006). These
defensive movements are not only limited to reflexive and stereo-
typed subcortical motor responses (such as the flexion reflex; San-
drini et al. 2005), but also include cortically mediated, flexible and
purposeful secondary reactions to a potential threat, occurring
sometime after the vertex potential. Distinguishing between
these interpretations of the functional significance of the vertex
potential requires identifying specific criteria for defense beha-
viors. We suggest 2 candidate criteria: The spatial organization of
the response (defensive behaviors should withdraw from a threa-
tening stimulus, not approach it; Denny-Brown 1966; Vilensky and
Gilman 1997), and the affective impact of the response (defensive
behaviors should mitigate harm, either actual or potential).

In this study, we directly compare the salience and motoric in-
terpretations of the vertex potential, by investigating the relation-
ship between the amplitude of vertex potentials elicited by
nociceptive-specific laser stimuli and defensive motor responses.
Specifically, we compared responses triggered by equally salient
stimuli—which had different defensive values according to both
the spatial organization criterion and the harm reduction criterion
mentioned above. In afirst experiment, we testedwhether variabil-
ity across trials in laser-evoked potential (LEP) amplitude predicts
motor response time better when themotor response is defensive,
orwhen it does not have a defensive value. In a second experiment,
we tested whether the relation between LEP amplitude and re-
sponse time differs between 2 movements that are kinematically
identical, but have different harm reduction values.

Materials and Methods
Subjects

Forty-two healthy subjects participated in the study, which com-
prised 2 separate experiments. Twenty subjects (12 women) aged
20–37 years (mean ± SD = 27 ± 4.5 years) participated in Experi-
ment 1, and 22 healthy subjects (8 women) aged 19–44 years
(mean ± SD = 25 ± 6.3) participated in Experiment 2. All subjects
provided written informed consent, and the experimental proce-
dures were approved by the local ethics committee.

Laser Stimulation (Experiments 1 and 2)

Noxious radiant heat pulses (4 ms duration)were generated byan
infrared neodymium: yttrium-aluminum-perovskite (Nd : YAP)
laser with a wavelength of 1.34 µm (Electronic Engineering, Flor-
ence, Italy). The laser beam was transmitted through an optic

fiber, and its diameter at the target site set at approximately
6 mm (28 mm2). All laser stimuli were delivered on the dorsum
of the right hand, and a He–Ne laser indicated the area to be sti-
mulated. Before starting each experiment, we delivered a small
number of low-energy laser pulses to the dorsum of the right
hand to familiarize the subjects with the stimuli.

In Experiment 1, we used 2 stimulus intensities, individually
adjusted to elicit the following average ratings of pricking pain:
3/10 (intensity “low”: 3.0 ± 0.5 J) and 6/10 (intensity “high”: 3.5 ±
0.5 J). We used a 0–10 rating scale, where 0 is “not painful at all”
and 10 is “the worst pain imaginable” (Jensen et al. 1994).

In Experiment 2,we also used 2 stimulus intensities, individu-
ally adjusted to elicit the same 2 ratings of pricking pain: 3/10
(intensity “low”: 3.7 ± 0.4 J) and 6/10 (intensity “high”: 4.1 ± 0.4 J).

Electrical Stimulation (Experiment 2)

Electrical stimuli were delivered using a surface bipolar electrode
placed on the median nerve at the left wrist. They consisted of
500-ms long trains of electrical pulses at a frequency of 500 Hz.
The duration of each pulse was 200 µs. The mean intensity of
the stimulation was 6.6 ± 3.4 mA. This intensity was individually
adjusted to elicit an aversive sensation of 6.5/10. We used a 0–10
scale, where 0 is “not aversive” and 10 is “the most aversive
imaginable.”

Experimental Design and Psychophysics

In both experiments subjects sat comfortably, with their arms
resting on a table placed in front of them, in a dimly lit, tempera-
ture-controlled room (Figs 1 and 2). Subjects were asked to focus
on the laser stimuli, keep their eyes open and their gaze on a
fixation cross (1.5 × 1.5 cm) placed at approximately 30 cm and
45° below eye level, about 20 cm to the left of the midline.

Experiment 1
The experiment consisted of a single recording session, divided
into 4 blocks. In each block, we delivered 50 laser stimuli, 25 at
low intensity and 25 at high intensity, on the right hand dorsum.
The order of stimuli was pseudorandom, and the interstimulus
interval ranged between 13 and 17 s (rectangular distribution).
Subjects were required to keep their right hand approximately
40 cm from the body, at midline (Fig. 1). Subjects were instructed
to react as fast as possible when they felt the laser stimulus, by
pressing a response button (Fig. 1). In 2 of the 4 blocks (“reach”
condition), the button was placed approximately 60 cm from
the body, at midline (i.e., ∼20 cm further away from the hand
stimulation position). In the other 2 blocks (“withdraw” condi-
tion), the button was placed approximately 10 cm from the
body, at midline (i.e., ∼30 cm closer to the body with respect to
thehand). The position of the 2 buttonswas adjusted in each sub-
ject to achieve similar response times in the “reach” and “with-
draw” conditions. This adjustment was based on a preliminary
recording of response times to 20 stimuli (10 in the “reach” and
10 in the “withdraw” condition) delivered at an energy level half-
way between the low and the high energies used in the main ex-
periment. Therefore, to match reaction times in the “reach” and
“withdraw” conditions, the distances between the response but-
ton and the hand stimulation position were different: In the
“withdraw” condition, the distance was approximately 10 cm
greater. The order of recording blocks was alternated within sub-
ject, and balanced across subjects. Response times, defined as the
time occurring between stimulus onset and the button press,
were recorded using an in-house script running under Matlab
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Figure 1. Design of Experiment 1. Participants performed a motor task in response to nociceptive laser stimulation of the right hand, while EEG was recorded. They were

instructed to react as fast as possible when they felt the stimulus, by pressing a response button with the stimulated hand. In the “withdraw” condition, the button was

placed approximately 10 cm from the body, atmidline (i.e., ∼30 cm closer to the bodywith respect to the stimulated hand). In the “reach” condition, the buttonwas placed

∼60 cm from the body, at midline (i.e., ∼20 cm further away from the hand stimulation position). Response times were defined as the time occurring between stimulus

onset and the buttonpress. Participantswere instructed to provide a rating of the perceived pain intensity approximately 3 s after each trial. Trial-by-trial ratings, response

times, and their interaction were used in a multiple linear regression that tested the relationship between these variables and vertex potential amplitude (see equation).

These regression coefficients (βInt and βResp) were compared between conditions.

Figure 2. Design of Experiment 2. Participants performed a motor task in response to nociceptive laser stimulation of the right hand, while EEG was recorded. They were

instructed to react as fast as possiblewhen they felt the stimulus, by pressing a response buttonwith the stimulated hand. The response buttonwas placed approximately

10 cm from the body, at midline (i.e., ∼30 cm closer to the body with respect to the stimulated hand). In the “punishment” condition, the press of the response button

immediately triggered an intense electrical stimulation of the left wrist. In the “control” condition, the electrical stimulation was not time-locked to the press of the

response button; instead, it was delivered randomly, between 1 and 8 s after the button press. As in Experiment 1 (Fig. 1), participants were instructed to rate the

intensity of the painful sensation elicited by the laser stimulus after each trial. Trial-by-trial ratings, response times, and their interaction were used in a multiple

linear regression that tested the relationship between these variables and vertex potential amplitude.
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(version 7.5.0, Mathworks, Nantick, MA, USA). Subjects were in-
structed to provide a verbal rating of the subjective pain intensity
approximately 3 s after each trial, and then return the hand to the
stimulation position.

After the subject returned their hand to the stimulation pos-
ition for the following trial, the laser beamwas displaced to avoid
stimulating the same spot and to prevent nociceptor fatigue or
sensitization. Since variations in baseline skin temperature
may affect pain perception (Tjolsen et al. 1988), we used an infra-
red thermometer to ensure that hand temperature remained
constant across blocks.

Experiment 2
Experiment 2 also consisted of a single recording session, divided
into 4 blocks. In each block, we delivered 50 laser stimuli, 25 at
low intensity and 25 at high intensity, on the right hand dorsum.
The order of stimuli was pseudorandom, and the interstimulus
interval ranged between 9 and 13 s (rectangular distribution).
Subjects were required to keep their hand on a switch placed ap-
proximately 40 cm from the body, at midline (Fig. 2). Subjects
were instructed to react as fast as possible when they felt the
laser stimulus, by releasing the switch and pressing a response
button that, in contrast to Experiment 1, was always placed ap-
proximately 10 cm from the body, at midline (i.e., as in the “with-
draw” condition of Experiment 1). In 2 of the 4 blocks, the press of
the response button immediately triggered the electrical stimu-
lation of the left wrist (“punishment” condition; Fig. 2). In the
other 2 blocks (“control” condition), the electrical stimulation
was not time-locked to the press of the response button; instead,
it was delivered randomly, between 1 and 8 s after the button
press, and always at least 4 s before the beginning of the next
trial (Fig. 2). This ensured that there was no causal relationship
between the button press and the punishment, thusmaintaining
the harm reduction impact of the withdrawal, while matching
the total number of stimuli delivered in the 2 conditions. The
order of recording blocks was balanced across subjects.

As in Experiment 1, subjects were instructed to provide a ver-
bal rating of the subjective pain intensity elicited by the laser
stimulus, approximately 3 s after each trial, and then return the
hand to the stimulation position.

EEG Recording

The EEG was recorded using 32 Ag–AgCl electrodes placed on the
scalp according to the International 10-20 system and referenced
to the nose. Electrode impedances were kept below 5 kΩ. The
electrooculogram (EOG) was recorded from 2 surface electrodes,
one placed over the right lower eyelid and the other placed
lateral to the outer canthus of the right eye. Signals were amplified
anddigitizedat a sampling rate of 1024 Hz (SD32;Micromed, Treviso,
Italy).

Behavioral Data Analysis

In both Experiments, response times and subjective pain intensities
were compared between experimental conditions in each subject,
using paired t-tests. Statistical threshold was set at P= 0.05.

EEG Analysis

Preprocessing
EEG datawere preprocessed and analyzed using Letswave4 (www.
nocions.org/letswave) (Mouraux and Iannetti 2008) and EEGLAB
(Delorme andMakeig 2004). Continuous EEG datawere segmented

into epochs using a time window ranging from 0.5 s before to 1 s
after stimulus onset (total epoch duration: 1.5 s), and bandpass-
filtered from 1 to 30 Hz. Each epoch was baseline-corrected using
the interval −0.5 to 0 s as a reference. Artifacts due to eye blinks or
eyemovementswere removed using a validatedmethod based on
independent component analysis (Jung et al. 2000). In all data sets,
independent components related to eye movements had a large
EOG channel contribution and a frontal scalp distribution. Finally,
epochs with amplitude values greater than ±100 µV (i.e., likely
contaminated by artifacts) were excluded from the analysis.

Standard Averaging Analysis
Epochs belonging to the same experimental condition (“reach”
and “withdraw” for Experiment 1; “punishment” and “control”
for Experiment 2) were averaged time-locked to stimulus onset,
for each subject. The 3main LEP peaks (N1, N2, and P2) were iden-
tified in each averagewaveform, as follows. The N2 wavewas de-
fined as the most negative deflection after stimulus onset, at Cz.
The P2 wave was defined as the most positive deflection after
stimulus onset, at Cz. N1 was identified at Cc-Fz (Hu et al. 2010),
and defined as the negative deflection preceding the N2 wave,
which appears as a positive deflection in thismontage. To ensure
that the LEPs elicited in different experimental conditions were
not different, peak amplitudes of the N1, N2, and P2 waves
were compared using paired t-tests. The threshold for statistical
significance was set at P = 0.05.

Single-Trial Analysis
To determine whether there was a relationship between LEP
amplitude at Cz and the response time while controlling for
pain-related variability, we used a multiple linear regression
method (Mayhew et al. 2006). We focused our analysis on Cz be-
cause it is the electrode where the negative and positive waves
composing the vertex potential aremaximal. Briefly,we calculated
a regression coefficient (β-value) for pain intensity (βInt), response
time (βResp), and their interaction (βInt × Resp) for each condition. A
detailed description of this procedure can be found in the Supple-
mentary Methods.

Given the previously identified relationship between re-
sponse time and pain intensity, we evaluated the estimability
of these predictors using the Belsley’s Collinearity test (Belsley
1991), as implemented in the “collintest” function, in Matlab.
Importantly, all 3 predictors were never found to exceed a
very stringent tolerance (i.e., a condition index of >5 and a variance
decomposition proportion of >0.5) in every single subject, for
both experiments. This result indicates that all 3 variables are suit-
able to be included as regressors in a multiple linear regression
model.

In each Experiment, we tested for differences between experi-
mental conditions, for both βInt and βResp (Experiment 1: “with-
draw” vs. “reach”; Experiment 2: “punishment” vs. “control”),
using point-by-point paired t-tests combined with nonparamet-
ric permutation testing (Maris and Oostenveld 2007). The thresh-
old for statistical significance was set at P = 0.05. To account for
multiple comparisons, significant time points (P < 0.05) were ca-
tegorized in clusters based on their temporal adjacency (clus-
ter-level statistical analysis). Only clusters composed of >30
adjacent significant timepoints were considered, and only the
largest cluster was selected to control for false-positive observa-
tions. The cluster-level statistics (

P
T) was defined by calculating

the sum of the t-values of all time points within a cluster. The β-
values were then randomly permutated 5000 times. In each mth

permutation, the same paired-sample t-test was performed on
the randomly permutated β-values, which yielded a cluster-level
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statistics
P�

TðmÞ. Permutation distributions DðPTÞ of the cluster-
level t-statistics were obtained from all

P�
TðmÞ, and the two-tailed

P-value PTwas obtained by locating the observed
P

T under the per-
mutation distribution DðPTÞfor each cluster.

Results
Experiment 1

Behavioral Results
In all subjects, laser stimuli elicited a clear sensation of pinprick
pain, related to the activation of Aδ fibers (Bromm and Treede
1984). Pain ratings and response times for each condition are
shown in Figure 3. As expected, both pain ratings (reach:
4.3 ± 1.2; withdraw: 4.5 ± 1.2; P = 0.29) and response times (reach:
805 ± 182 ms; withdraw: 802 ± 199 ms; P = 0.84) were matched
between conditions. Similar resultswere obtainedwhen examin-
ing reaction times (Supplementary Results).

LEP Waveforms
Grand averagewaveformsof the LEPs obtained in the 2 experimen-
tal conditions are shown in Figure 4. The amplitudes of the main
LEPwaveswere not different in the reach andwithdraw conditions
(N1: P = 0.81; N2: P = 0.072; P2: P = 0.91). The corresponding scalp
topographies in the reach and withdraw conditions were also re-
markably similar. The negative (N2) and positive (P2) waves of
the vertex potential were maximal at the scalp vertex (electrode

Cz). The N2 wave extended bilaterally toward temporal regions,
whereas the P2 was more centrally distributed (Fig. 4).

Single-Trial Analysis
Figure 4 shows the time course of the coefficients of the intensity
and response time regressors (βInt and βResp, respectively), for the
reach and withdraw conditions. These coefficients reflect
whether the trial-by-trial variability of the LEP amplitude was
able to predict the subjective pain intensity (βInt) and the re-
sponse time (βResp). The βInt for reach and withdraw conditions
were not significantly different. Indeed, the βInt showed a signifi-
cant negative relationship between the LEP amplitude and inten-
sity ratings in the N1 and N2 time windows (P < 0.05), both in the
withdraw and in the reach conditions. Similarly, the scalp topog-
raphies of the peak value of βInt were not different: They were
maximal at themidline (Cz) and at the central electrodes contra-
lateral to the stimulated hand (C3), and extended bilaterally to-
ward the temporal regions.

The βResp showed a significant positive relationship between
the LEPamplitude and response times in theN1 andN2 timewin-
dows (P < 0.05), and a negative relationship in the P2 timewindow
(P < 0.05). Crucially, the βResp in the reach and withdraw condi-
tions were significantly different—the trial-by-trial variability of
LEP amplitude better predicted response times in the withdraw
condition than in the reach condition (P < 0.05; Fig. 4, lower
panel). This difference was present in the time window corre-
sponding to the latency of the N2 wave (176–207 ms, P < 0.05),

Figure 3. Behavioral results. Single-subject pain intensity ratings and response times for the experimental conditions of Experiments 1 (n = 20) and 2 (n = 22). Columns

define group averages. ns: non-significant. Reaction time data are presented in Supplementary Figure 1.
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but not in the time windows corresponding to the latency of the
N1 and P2 waves. Similar results were obtained when examining
reaction times (Supplementary Results).

Experiment 2

Behavioral Results
In all subjects, laser stimuli elicited a clear sensation of pinprick
pain. Pain ratings and response times for each condition are
shown in Figure 3. As expected, both pain ratings (punishment:
3.0 ± 1.1; control: 3.0 ± 1.0; P = 0.82) and response times (799 ± 98
ms, control: 785 ± 105, P = 0.10) were matched between condi-
tions. Similar results were obtained when examining reaction
times (Supplementary Results).

LEP Waveforms
Grand average waveforms of the LEPs obtained in the 2 experi-
mental conditions are shown in Figure 5. The amplitudes of the
main LEP waves were not different in the punishment and con-
trol conditions (N1: P = 0.27; N2: P = 0.63; P2: P = 0.93). The corre-
sponding scalp topographies in the punishment and control
conditions were also remarkably similar. The N2 and P2 waves
weremaximal at the scalp vertex (electrode Cz). The N2 extended
bilaterally toward temporal regions, whereas the P2 was more
centrally distributed (Fig. 5).

Single-Trial Analysis
Figure 5 shows the time course of the coefficients of the intensity
and response time regressors (βInt and βResp, respectively) for
the punishment and control conditions. The βInt for punishment
and control conditions were not significantly different. Indeed,
the βInt showed a significant negative relationship between the
LEP amplitude and intensity ratings in the N1 and N2 time win-
dows (P < 0.05). There was also a positive relationship between
the βInt in the P2 time window (P < 0.05). The scalp topographies
of the peak value of βInt were similar: They were maximal at the
midline (Cz) and at the central electrodes contralateral to the sti-
mulated hand (C3), and extended bilaterally toward the temporal
regions.

The βResp showed a significant positive relationship between
the LEPamplitude and response times in theN1 andN2 timewin-
dows (P < 0.05), and a negative relationship in the P2 timewindow
(P < 0.05). The scalp topographies of the peak values of the βResp
were similar, although their magnitude was clearly different
(Fig. 5). Indeed, the trial-by-trial variability of LEP amplitude bet-
ter predicted response times in the control condition than in the
punishment condition (corrected P < 0.05; Fig. 5, lower panel).
This differencewas only present in a timewindow corresponding
to the latency of the N1 and N2 wave (146–202 ms, P < 0.05), but
not in the time window corresponding to the latency of the P2
wave. Similar results were obtained when examining reaction
times (Supplementary Results).

Discussion
We have provided answers to critical questions regarding the
functional significance of the vertex potentials elicited by noci-
ceptive laser stimuli. Our study is the first, to our knowledge, to
show that the laser-evoked negative vertex wave (N2) is not sim-
ply a by-product of detecting salient stimuli. Rather, it includes
neural activities important for the initiation and the execution
of cortically mediated defensive actions. This conclusion was
based on analyzing 2 key attributes that distinguish defensive

Figure 4. Experiment 1. LEP waveforms and multiple linear regression results

(n = 20). Top panel: Group-level LEPs and scalp topographies. Note the similarity

of responses in the “reach” and “withdraw” conditions. Middle panel: Time

course of coefficients of the intensity regressor (βInt) and peak scalp

topographies. Note the similarity of the βInt waveforms and scalp topographies

in the 2 conditions. Bottom panel: Time course of coefficients of the response

time regressors (βResp) and peak scalp topographies. The lower waveform shows

the T-values of the comparison between “reach” and “withdraw” βResp.

Significance threshold (critical value, T = 2.10) is shown by the red line. The

inset shows the significant difference, using permutation testing (5000

iterations). Note that the only significant difference between the 2 βResp
(highlighted in gray) falls in the N2 time window. Note also the dissimilar scalp

topography of the βResp in the 2 conditions. Reaction time data are presented in

Supplementary Figure 2.
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actions fromother types of actions: Spatial organization forwith-
drawal (Experiment 1), and association with harm reduction (Ex-
periment 2). Based on these criteria, we conclude that the laser-
evoked vertex potential is important for “defensive agency.”

Our experiments yielded 2 main findings. First, the N2 wave
better predicts how rapidly individuals perform a defensivemove-
ment compared with a non-defensive movement (Fig. 4). Import-
antly, even the reaction time (i.e., onset of themovement) is better
predicted by theN2amplitude in a defensive context (Supplemen-
tary Fig. 2). Therefore, the strength of the relationship between N2
amplitude andmovement speed is dictated by the extent towhich
the task includes a functional response to threat. This threat-spe-
cificity is further demonstrated by our second finding: When a
punishment consisting of an intense and aversive electrical
shock is triggered by the withdrawal movement, thus strongly re-
ducing its defensive value, the relation between the N2 wave and
the speed of the subsequent movement is reduced (Fig. 5). These
results provide, for the first time, important insights regarding
the function of the laser-evoked vertex potential. In particular,
they suggest that some of the neural activities reflected by the ver-
tex potential play a significant integrative role, bridging the detec-
tion of threat to appropriate defensive actions.

N2 Wave Amplitude Predicts Perceived Intensity and
Reaction Times

The vertex potential, first described over 60 years ago, is the lar-
gest synchronization of neural activity observed in the human
brain of a healthy, awake individual (Bancaud et al. 1953; Walter
1964). Despite intense study of the rules defining the criteria by
which a sensory event elicits a vertex potential, the function of
this signal has yet to be understood. Specifically, the nervous
system is tuned to detect salient changes in the sensory environ-
ment, such asmodality changes and increases in stimulus inten-
sity (Valentini et al. 2011; Ronga et al. 2013). Nonetheless, the
understanding of these rules does not provide information
about the mechanisms through which the vertex potential
affects behavior.

Here, we showed that the laser-evoked N2 vertex wave pre-
dicts both the reaction times and the response times of a defen-
sive motor action (Figs 4 and 5; Supplementary Figs 2 and 3).
Three relevant correlations have been identified in previous stud-
ies. First, there is a relationship between the trial-by-trial vari-
ation in the vertex potential amplitude and reaction times
(Donchin and Lindsley 1966; Wilkinson and Morlock 1967;
Wastell and Kleinman 1980). Second, there is a well-established
relation between reaction times and perceived stimulus inten-
sity, with higher intensities being related to shorter reaction
times (e.g., Cattell 1886; Piéron 1914; Angel 1973; Arendt-Nielsen
and Bjerring 1988). Third, perceived stimulus intensity is propor-
tional to vertex potential amplitude (e.g., Diamond 1964; Giblin
1964; Iannetti et al. 2008; Hu et al. 2014). Importantly, previous
studies investigating the relationship between reaction times
and vertex potential amplitude did not attempt to separate
these various inter-related components, nor did they account
for the valence of the movement outcome. In particular, no pre-
vious study, to our knowledge, has investigated the relationship
between vertex potential amplitude and movement parameters,
after controlling for the effects of perceived intensity. We used a
multiple regression approach to account for these interactions.
By controlling for (1) perceived stimulus intensity and (2) the
interaction between perceived intensity and response time, we
were able to identify the unique portions of trial-by-trial variance

Figure 5. Experiment 2. LEP waveforms and multiple linear regression results

(n = 22). Top panel: Group-level LEPs and scalp topographies. Note the similarity

of responses in the “punishment” and “control” conditions. Middle panel: Time

course of coefficients of the intensity regressor (βInt) and peak scalp topographies.

Note the similarity of the βInt waveforms and scalp topographies in the 2

conditions. Bottom panel: Time course of coefficients of the response time

regressors (βResp) and peak scalp topographies. The lower waveform shows the T-

values of the comparison between “punishment” and “control” βResp. Significance

threshold (critical value, T = 2.08) is shown by the red lines. The inset shows the

significant difference, using permutation testing (5000 iterations). Note that the

only significant difference between the 2 βResp (highlighted in gray) falls in the N1

and N2 time windows. Note that the scalp topographies of the βResp in the

“control” and “punishment” conditions are similar, despite the difference in

amplitudes. Reaction time data are presented in Supplementary Figure 3.
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that can be explained by perceived pain intensity (βInt) and by re-
sponse time (βResp). Furthermore, by manipulating the defensive
meaning of the movement, we were able to test whether the
laser-evoked vertex potential encodes the kinematics of the
movement or its behavioral outcome.

The N2 Wave Is Specifically Tuned to Parameters
of Threat-Related Movements

Wehypothesized that the vertex potential is related to the execu-
tion of defensive motor actions. Therefore, we investigated the
trial-by-trial relationship between LEP amplitude and response
time of 3 types of movements with different defensive values.

In Experiment 1, we explored 2 different movements: Awith-
drawal and a reach. Although both movements are clearly goal-
directed (i.e., the subject must press a button at a target location),
only the withdrawal movement closely resembles natural move-
ments related to the defense of the body (Graziano 2008).
In contrast, the reaching movement involves approach to an
external object—a direction of movement that characterizes in-
strumental actions with the external world, as opposed to with-
drawal from it (Jeannerod 1988). In other words, withdrawal is a
spatially organized motor response, aiming to defend the body,
and is elicited by salient stimuli that represent potential threats
(Graziano 2006). Such defensive movements take into account
the location and trajectory of proximal objects, the body region
that is threatened, and various other stimulus properties
(Cooke and Graziano 2003). There is strong, causal evidence
that the spatial and kinematic patterns of such movements are
represented in the frontal lobes, and particularly the premotor
cortex (Cooke and Graziano 2004). We found that the speed of a
goal-oriented movement is predicted by the amplitude of the
preceding N2 wave, but that this relation is significantly stronger
for withdrawal than for reaching movements (Fig. 5).

We took care that both response times and subjective pain in-
tensities were matched across conditions (Fig. 3). Given that we
sought to match response times, the trajectory distance to the
reach and withdraw targets was different. Thus, Experiment 1
involved comparing withdrawal and reaching movements with
rather different kinematics. To address this limitation, in Experi-
ment 2, we had subjects perform the exact same movement,
but we altered the affective value of the movement. Specifically,
in one condition, we paired the movement with a punishment
(Fig. 2). By thismeans, we introduced a difference between condi-
tions in the defensive value of a singlemovement.We found that,
in the punishment condition, the relationship between the N2
wave and the withdrawal was reduced, relative to the control
condition (Fig. 5).

Interestingly, the scalp distribution of the relation betweenN2
wave amplitude and response time differed between defensive
movement and control movement (Experiment 1, Fig. 4). The
scalp maps for the withdrawal condition showed a single max-
imum at the vertex, whereas that for the reach condition showed
2 symmetrical maxima at the centro-parietal electrodes. This
observation suggests that the execution of defensive actions
might be related to the activity of a specific set of neural genera-
tors contributing to the N2 wave of the vertex potential. Whether
the difference in βResp between defensive and non-defensive
actions reflects neural activities directly implicated in planning
and initiating defensive movements, or whether it somehow
facilitates downstream neural activities that plan and initiate
those movements, is an open question.

Notably, the interpretation that it is the defensive context that
modulated the ability of the N2 wave amplitude to predict a

subsequent movement is further supported by the finding that
the N2 wave amplitude predicts not only the response time
(Figs 4 and 5), but also the reaction time of the movement (Sup-
plementary Figs 2 and 3). In our study, the reaction time
represents the time it takes the subject to release the switch to
perform the required movement—i.e., the movement has not
yet occurred. Therefore, the observation that both reaction and
response times are predicted by the trial-by-trial variability of
the N2 amplitude suggests that a subset of the neural activities
reflected in the vertex potential is related to the motor planning
of defensive actions.

A Putative Model: Defensive Motor Actions Are Driven
by Mid-Cingulate Cortex–Premotor Connections

The observed relationship between the N2 wave amplitude and
the response time of a subsequent defensivemovement suggests
that some of the neural generators of the vertex potential might
overlapwith neural circuitrymediating the planning of defensive
motor actions. Among the generators contributing to theN2wave
is the mid-cingulate cortex [MCC, based on the nomenclature
proposed by Vogt (2009); previously labeled as ACC, e.g., Rios
et al. 1999; Garcia-Larrea et al. 2003]. It has been proposed that
the MCC serves as a hub between affective processing and
motor planning (Vogt and Sikes 2009; Shackman et al. 2011;
Morrison et al. 2013; Perini et al. 2013). Support for the concept
of an “affective premotor cingulate” comes from several conver-
ging lines of evidence. For example, escape-related neurons have
been found inmonkeys, in a region analogous to the humanMCC
(Iwata et al. 2005), and surgical ablation of the MCC increases the
escape threshold to nociceptive stimulation (Pastoriza et al. 1996;
Donahue et al. 2001). Furthermore, the MCC is the only cingulate
region to receive input from the spinothalamic tract (Dum et al.
2009), and has direct projections to cortical motor regions and
motoneurons in the brainstem and the spinal cord (Dum and
Strick 1992). Furthermore, the MCC is strongly connected with
the premotor cortex (Beckmann et al. 2009), a region that has
been shown to initiate defensive motor actions (Cooke and
Graziano 2003). These connections might provide a neural sub-
strate for the stronger βResp in conditions entailing the execution
of a defensive movement.

It is important to note that, given the intrinsic limitations of
source analysis of scalp EEG signals (Mouraux and Iannetti
2008), it is difficult to reliably identify the source of a widespread
wave such as the N2. Therefore, we cannot rule out the contribu-
tion of neural activity arising from other midline structures such
as the supplementary motor area, the pre-supplementary motor
areas, and other subregions of the cingulate cortex.

In conclusion, we investigated the relationship between the
vertex potential amplitude and defensivemotor actions in a sim-
ple manual response task. Our results demonstrate that the
laser-evoked N2 vertex wave reflects neural activities important
for planning and initiating defensive actions.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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