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Abstract. One of the ways in which attackers steal sensitive informa-
tion from corporations is by sending spearphishing emails. A typical
spearphishing email appears to be sent by one of the victim’s coworkers
or business partners, but has instead been crafted by the attacker. A par-
ticularly insidious type of spearphishing emails are the ones that do not
only claim to be written by a certain person, but are also sent by that per-
son’s email account, which has been compromised. Spearphishing emails
are very dangerous for companies, because they can be the starting point
to a more sophisticated attack or cause intellectual property theft, and
lead to high financial losses. Currently, there are no effective systems to
protect users against such threats. Existing systems leverage adaptations
of anti-spam techniques. However, these techniques are often inadequate
to detect spearphishing attacks. The reason is that spearphishing has
very different characteristics from spam and even traditional phishing.
To fight the spearphishing threat, we propose a change of focus in the
techniques that we use for detecting malicious emails: instead of look-
ing for features that are indicative of attack emails, we look for emails
that claim to have been written by a certain person within a company,
but were actually authored by an attacker. We do this by modelling
the email-sending behavior of users over time, and comparing any sub-
sequent email sent by their accounts against this model. Our approach
can block advanced email attacks that traditional protection systems are
unable to detect, and is an important step towards detecting advanced
spearphishing attacks.

1 Introduction

Spearphishing has become one of the most common ways used by attackers to
infiltrate the network of a company, gain access to additional machines in it, or
acquire sensitive information. For this type of attack, an email is crafted and sent
to a specific person within a company, with the goal of infecting her machine
with malware, luring her to hand out access credentials or to provide sensitive
information. Recent research showed that spearphishing is a real threat, and
that large companies are constantly targeted by this type of attack [37].

In a typical case, spearphishing emails appear to be coming from accounts
within the same company or coming from a trusted party, to avoid raising suspi-
cion by the victim [39]. This can be done in a trivial way, by forging the From:
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field in the attack email. In more sophisticated attacks, however, the malicious
emails are sent from an actual employee’s email account whose machine has been
compromised, or whose account credentials have been stolen. For the attacker,
this modus operandi has the advantage that it leverages a user’s social connec-
tions: previous research showed that users are more likely to fall for scams if the
offending message is sent by somebody they trust [16]. Spearphishing attacks
are particularly insidious for companies, because they can lead to large-scale
compromises in their networks and to high financial losses, due to the sensitive
information that might get stolen as a consequence of them [1,2].

Spearphishing is not spam. The techniques that are currently used to de-
tect spearphishing attacks are totally inadequate to counter them. Nowadays, the
systems used to detect spearphishing attacks leverage traditional anti-spam tech-
niques. However, these techniques were designed with a different threat model in
mind: blocking unwanted bulk email. Adaptations of anti-spam techniques are
not effective in fighting the spearphishing threat mainly for three reasons.

The first reason is that many anti-spam techniques are designed to fight bulk
email, typically sent by botnets, and therefore leverage similarity. Techniques
that leverage the similarities in the email templates or fingerprint the email
lists to which bots send emails [24, 32, 43] work well in detecting spam and
bot-infected machines, but fall short in detecting one-of-a-kind targeted email
attacks, in which an attacker crafts an email tailored to the victim, and sends
it only once. Even systems that look for changes of behavior in email accounts
leverage the fact that accounts compromised by the same cybercriminals will
show a similar behavior [10,29,30].

The second reason is that the origin of spearphishing emails is often times
the correct one: there are numerous techniques that can detect emails sent by
senders with a low reputation, and block them [14, 20, 41, 42]. However, if the
attack email is coming from a reputable user’s mailbox, whose machine has been
compromised, these techniques will fail in detecting that email as malicious.

The third reason is that the words used in advanced targeted attack emails are
the ones that are typically used in regular business emails. Therefore, techniques
that analyze the email content, looking for words that are indicative of spam [9,
22,27], are ineffective too. Moreover, even if malicious code is used in the email
attachment, these binaries will not be off-the-shelf malware samples, and will
therefore be unknown to traditional anti-virus and signature-based systems.

A new paradigm in fighting attack emails. Given how different spearphish-
ing emails are compared to traditional spam and phishing emails, we propose
a new detection paradigm to fight this threat. Instead of looking for signs of
maliciousness in emails (such as offending words or suspicious origin) we want
to determine if an email was actually written by the author that it claims to
come from. Our approach is based on a simple, yet effective observation: users
develop habits when sending emails. These habits include frequent interactions
with certain people, sending emails at specific hours of the day, and using certain
greetings and modal words in their emails. The core of our approach consists
in building a profile for the email-sending behavior of a user. When the user’s



account gets compromised, the attack emails that are sent are likely to show dif-
ferences from this behavioral profile. We implemented our approach in a system,
called IdentityMailer.

Anomalies can be more or less evident. An example of a “noisy” attack is
a worm that sends an email to the entire address book of a user [38], which is
a behavior that typical users do not show. In other cases, attackers might be
more careful, and try to mimic the typical behavior of the person that they are
impersonating in their emails. What they could do is sending emails only at
hours in which the user is typically sending them, and only to those people she
frequently interacts with, or even imitate the user’s writing style.

To make it more difficult for attackers to successfully evade IdentityMailer,
we build the email-sending behavior for a user by leveraging both the emails that
the user sent in the past and a set of emails that the other users in the organi-
zation authored. In a nutshell, IdentityMailer compares the emails written
by the user to the ones written by everybody else, and extracts those charac-
teristics that are the most representative of the user’s behavior. For example,
certain functional words only used by a given user (and rarely by others) would
model her behavior very well. When an attacker tries to learn a victim’s sending
behavior to mimic it in his attack emails, he only has access to that user’s emails
(since he compromised her account, or her machine), but not to the ones au-
thored by the other users in the company. Therefore, what he can do is learning
the most common habits of the user (such as the email address that is more
frequently contacted, and at what time the user generally sends emails), but
he has no guarantee that those traits are actually representative of the user’s
behavior. For example, most people send many emails on Monday morning, af-
ter they come back to the office from the weekend. Our system would give a
low importance to this fact, since many users show the same behavior. On the
other hand, there might be some times at which the user is the only one sending
emails. Even if they are not that common, those emails are more representative
of the user’s behavior. However, an attacker has no way of knowing this, and
might replicate the most common behavior in his attack emails.

IdentityMailer performs the analysis when emails are sent, before they
are forwarded to the outgoing SMTP server. More specifically, IdentityMailer
builds a behavioral profile based on the emails that a user sent in the past
(and a set of emails authored by the other people in the organization). Then,
every time an email is sent by that account, IdentityMailer checks this email
against the profile learned for the account’s owner. If the email does not match
the learned profile, we consider it anomalous. The account might have been
compromised, and the email might actually be an attempted attack. However,
the anomaly might also be a false positive. Perhaps the user is working on a
deadline, and is sending emails late at night, or is sending a personal email,
and using a colloquial language, while the account is primarily used to send
work-related emails. False positives are a big problem in traditional anti-spam
systems, because they annoy users in the best case, and they prevent them from
receiving important information in the worst case.



Luckily, the fact that IdentityMailer operates on the sending side of the
email process comes to our aid. Any time an email is flagged as anomalous, we
can start a process to verify the identity of a user. This process might be asking
the user to answer a security question or some more sophisticated mechanism,
such as a two-factor authentication scheme [6]. If the user correctly confirms her
identity, we consider the anomaly as a false positive, and we send the email.
In addition, we update the user’s behavioral profile to include this email, to
avoid similar false positives in the future. However, if the user does not solve the
challenge, we consider the email as an attack, and we discard it. Of course, having
to go through an identity-verification process is annoying for users. However, we
think that having users confirm their identity once in a while is a fair price to pay
to protect a company against advanced email attacks, as long as the verifications
are rare enough (for example, one in every 30 emails).

In summary, this paper makes the following contributions:

– We present IdentityMailer, a novel approach to detect spearphishing
emails: instead of looking for signs of maliciousness, we introduce a set of
features that are representative of the email-sending behavior of a user, and
propose a method to check emails against the learned sending behavior.

– We propose to leverage an identity-verification mechanism to mitigate false
positives by IdentityMailer. We argue that such verification process, if
reasonably rare, is acceptable for users.

– We tested IdentityMailer on a large dataset of publicly-available emails,
as well as on multiple datasets of attack emails. We show that Identity-
Mailer works well in detecting attack emails.

2 Behavioral Profiles

It is important to accurately learn and model the email-sending behavior of a
user, because this allows to perform a better detection of anomalous emails.
However, it is not trivial to define user-specific traits that best distinguish a
user’s sending behavior. To determine these traits, IdentityMailer requires
two datasets: a set Mu of emails written by a user U and a set Mo of legitimate
emails written by other people. By comparing the emails in Mu to the ones
in Mo, we can extract the distinguishing characteristics of the email-sending
behavior of U .

Mo should be composed of both emails sent by people working in the same
organization as U , as well as of emails written by people who are completely
unrelated to U . As we will explain later, the privacy concerns of our approach
are minimal, because we do not save the full email, but only a feature vector
associated to it. On one side, having Mo built from the emails sent by the users
working in the same organization as U helps in giving less importance to those
characteristics that are common for the people who work in that company. For
example, if no user in the organization ever sends emails on a Sunday, it is less
peculiar if the user also does not. On the other hand, having emails sent by users
who are completely unrelated to U in Mo helps giving to the model examples of



which behavioral characteristics are uncommon in the organization, but common
outside of it. We provide a more detailed description on how we build Mo in
Section 2.2. By using only legitimate emails to build our behavioral profiles,
we do not need to have ever observed any attack email to perform detection,
similarly to what happens with traditional anomaly-detection systems. This is
important, since the number of targeted attack emails is not high compared to
legitimate emails [37]. In addition, this makes our approach independent from
specific attack schemes.

To build the email-sending behavioral profile for a user, IdentityMailer
proceeds in two steps. First, we extract a number of features for each email in
Mu and Mo. As a second step, we leverage the learned feature vectors to build a
classification model, which represents the actual behavioral profile. This profile
allows us to check any email that the user will send in the future, and determine
whether it was likely written by the user, or if it might have been written by
somebody else (i.e., a malicious party).

2.1 Features characterizing an email

For each email, we define three types of features: writing habits, composition
habits, and interaction habits. Previous research showed that authorship iden-
tification is possible by just looking at stylometry features (which are a subset
of what we call writing habits) [8]. However, these approaches rely on texts of
a certain length [12]. Unfortunately, as we show in Section 4, many emails are
short. If IdentityMailer relied only on the writing habits of a user, it would
fail in flagging attack emails that are short as anomalous. Therefore, we need
additional information for emails that are short in content. In the following, we
describe the features that our approach uses to characterize an email.
Writing habits. People have their own style when writing. For example, some
people use certain functional words (such as “although”) more often than others,
or write dates in a certain way. Analyzing a user’s style has been used in the past
to determine authorship of texts and emails [4, 8, 23]. Similarly, we consider a
user’s writing style a strong indicator that a certain email was indeed written by
that user. An attacker could, in principle, learn the characteristics of his victim’s
style, and replicate them in the attack emails that she sends. However, previ-
ous research showed that imitation of another person’s writing style is usually
detectable [5].

In the following, we define a number of feature types that help defining a
user’s writing style. The complete list of writing-habit features can be found in
our technical report [33].
1) Character occurrence. These features represent how often a character, or a
set of characters, appear in the email text. Given a set of characters C and an
email text M , we define the character occurrence of C in M oc as the number of
times that any of the characters in C occur in M , divided by the length of M .
Examples of character occurrence features include the frequency of alphabetical
letters (such as “a”), the frequency of certain punctuation signs (such as “;”), and
the frequency of sets of characters (such as capital letters or cardinal numbers).



2) Functional word occurrence. These features represent how often the person
uses specific functional words. We define as functional words those words that
do not serve to express content, but instead are used to express grammatical
relationships with other words within a sentence. These include adverbs (such
as “when”), auxiliary verbs (such as “is”), and prepositions (such as “for”). Some
of these features are useful to determine whether a user uses certain functional
words in their extended or shortened form, and to what extent (for example,
whether she usually uses “don’t” instead of “do not”). Given a word FW and a
set of words Wm in an email, we calculate the word occurrence ofw in Wm as
the number of times FW occurs in the email, divided by the size of Wm.

3) Special word occurrence. These features represent how often a user uses cer-
tain “special” words in her emails. Special words include full names, dates, and
acronyms. Given a regular expression Rsw representing the special word, an
email M , and a set Wm containing the words in M , we calculate the special
word occurrence osw of Rsw as the number of matches in M for Rsw, divided by
the size of Wm.

4) Generic style characteristics. These features represent generic characteristics
of the style of a user. Examples include the type of bullets that the user uses in
lists (“1-”, “1.”, or others), whether she uses a comma as a separator for large
digits or not, and whether she uses a space after punctuation. Given a set of
regular expressions Rsc representing a style characteristic, an email M , and a
set Wm containing the words in M , we define the style characteristic sc as the
number of matches of the regular expressions in Rsc in the email M , divided by
the size of Wm.

5) Style metrics. These features capture information about the style of entire
emails. Some features are rather simple, such as the number of paragraphs in the
email. Others are more advanced, and depict the expressiveness of the language
used in the email. Examples are the Sichel measure or the Yule metric, which
describe how complex the vocabulary used by an author is. These metrics have
been already used in previous work [40,44].

Composition and sending habits. Other habits that users develop regarding
their email-sending behavior do not have to do with their writing style, but
rather with their way of composing emails. In the following, we describe this
type of features.

1) Message characteristics. These features capture specific habits that the user
has in the emails that she writes. Examples of such habits are including the
original email at the end of a reply, including quotes to the original email in-
terleaved with the text, or adding a signature at the end of the email. Message-
characteristic features are boolean, meaning that they are set to 1 if a certain
behavior is present in an email, and to 0 otherwise.

2) Time characteristics. Users tend to send emails at specific times of the day,
and only during specific days. For example, most people working in an office will
send emails between 9 am and 5 pm, from Monday to Friday. Given this obser-
vation, an email sent at midnight on a Saturday would be very suspicious. These
features keep information about when an email has been sent. In particular, they



look at the day of the week and at the hour at which the email was composed.
Similarly to other composition-habit features, time-characteristic features are
boolean. We define seven features for the days of the week, and 24 features for
the hours of the day.

3) URL characteristics. Some users include URLs in their emails. Users include
links to pages that are needed for their job, or to websites that they consider
interesting or entertaining. Over time, the domains of the URLs that a user
includes in her emails tend to belong to a limited set (as previous research
already noted [10]). On the other hand, if the user sent an email with a URL
pointing to a domain that she has never included before, this might be suspicious.

To instantiate URL-characteristic features, we need a set of domains Lu that
the user, as well as the other people in her organization, referenced in the past.
This helps identifying those resources that are “internal” to the organization
(which should be referenced often in the company’s emails), and those that are
not. We also include an “other” feature to take into account those domains that
were never referenced by anybody in the organization. Similarly to the other
composition-habit features, URL-characteristic features are boolean, and are set
to 1 if that domain is referenced in the email, and 0 otherwise.

Interaction habits. The last type of features involve the social network of
a user. Typical users will send most emails to a handful of contacts, who are
coworkers or close friends. Having an email sent to an address that was never
contacted before might be suspicious, especially if that user does not usually
interact with many users.

To characterize the social network of a user, we look, for each email, at the
email addresses that the email is addressed to (the To: field), as well as at the
addresses that the email is sent to in carbon copy (the CC: field). We define four
types of interaction-habit features, representing the addresses and the domains
that a user sends emails to. The recipient address list features take into account
the email addresses that an email is addressed to, while the recipient domain list
ones look for the domains that those email addresses belong to. The idea behind
this distinction is that if a user sends an email to an address that she has never
referenced before, but that belongs to an organization that she often interacts
with, this is less suspicious than an email addressed to a completely unknown
domain. The carbon copy address list and the carbon copy domain list features
work in the same way, but take into account the addresses in the CC: field of the
email, rather than the ones in the To: field.

To instantiate the interaction-habit features, we need a list La of email ad-
dresses that the user, as well as the other people in the same organization,
contacted in the past. It is important to look at the email addresses that the
user has never contacted, but some of her coworkers have. This is because hav-
ing a user sending an email to an executive she has never contacted before is
very suspicious, and might be a sign of spearphishing. In addition, to account
for those addresses and domains with which nobody in the organization has in-
teracted before we add, for each of the four feature types, an “other” feature.



Similarly, we leverage a list Ld of domains to which the users in the organization
have written emails in the past.

Interaction-habit features are boolean: they are set to 1 if an email is ad-
dressed to the address (or domain) represented by a given feature, and to 0
otherwise. If, for any of the four feature types, all features of that type have a
value of 0, the “other” feature is set to 1.

2.2 Building Behavioral Profiles

To learn the distinguishing characteristics of the email-sending behavior for a
user U , IdentityMailer compares the feature vectors built from the emails
sent by the user (Mu) to the feature vectors built from a set of legitimate emails
sent by other people (Mo). The challenge in picking Mo is to select a set of
emails that is representative enough to make the most characteristic features of
the behavior of the user stand out.

Given a user U who wrote a set of emails Mu, we pick the set of emails Mo

as follows. First, for each user Ui in the organization (other than U), we keep a
set of emails that Ui has sent in the past. We call this set Mui. In addition, we
consider a “special” user Ux. The set of emails Mux corresponding to the user
Ux consists of emails that were not written by the users in the organization. This
set of emails could be a subset of the emails that were received by the company’s
mail server, or a set of publicly-available legitimate emails. Second, for each email
in Mu, we pick a random email written by another user Ui and add it to Mo.
We change the user Ui for each email in Mu, in a round-robin fashion. By doing
this, we ensure that the distribution of emails written by different users in Mo

is uniform.

After having collected Mu and Mo, we train a classifier to learn the email-
sending behavioral profile of user U . To this end, we leverage Support Vector
Machines (SVMs) trained with Sequential Minimal Optimization (SMO) [25].
The SMO algorithm is an iterative algorithm used to efficiently solve the op-
timization problem required for training SVMs. In Section 4.2 we analyze the
classifier in detail.

Since the email-sending behavior of a user is likely to slightly change over time
(for example, as the user makes new social connections), in IdentityMailer
we keep updating the behavioral profile, by adding the new emails that the user
sends. The identity-verification mechanism that we describe in Section 3 allows
us to be sure that the emails that we add to the behavioral profile have been
genuinely written by the user. Having a behavioral profile that is not static is
important also because the behavioral profile for a user gets more accurate as the
number of emails sent by the user increases. However, the strength of the model
also depends on how consistent a user is in her email-sending habits. As we will
discuss in Section 4.2, the features that we defined all contribute in defining the
email-sending behavior of a user. The weight of the different features actually
depends on each user’s specific habits, and cannot be generalized.



3 Detecting Anomalous Emails

After having built the email-sending behavioral profile for a user, Identity-
Mailer checks any email that the user tries to send against it. To do this, we
go through the following algorithm:
Step 1: For each email M that the user U sends, we extract a feature vector
Vm.
Step 2: We compare Vm against the behavioral profile for U , which we call
BPu. If Vm complies with BPu, we declare the email as being written by U ,
and go to step 4. Otherwise, we consider M as anomalous, and go to step 3.
Step 3: To make sure that the email has not been written by the user, we
perform an identity-verification process for U . If the user correctly confirms her
identity, M is considered as a false positive. We go to step 4. If, on the other
hand, the user fails in confirming her identity (or decides not to, because she
recognizes an attack), the email is considered as malicious, and discarded. In
the next section, we describe how we envision the identity-verification process
to happen.
Step 4: We add Vm to the set of feature vectors that are used to calculate
BPu. This information will be used the next time that the behavioral profile is
updated.

It is not necessary to update the behavioral profile for a user for every email
that she sends. The reason is that, although the email-sending habits of a user
change over time, they do not change that fast. In addition, as we will discuss
in Section 4.4, updating the behavioral profile for all users may require a certain
amount of time and resources. For these reasons, we envision the behavioral
profile update as a batch process that could be performed daily or weekly.
Verifying a User’s Identity. One of the main challenges that anti-spam sys-
tems have to face are false positives. Flagging a legitimate email as spam has
a high impact on the user, because it might prevent that user from seeing that
email at all. This happens because traditional anti-spam techniques operate on
the receiving side of the email process, and often times it is impossible to verify
that the sender of an email is who he actually claims to be. Operating on the
sending side, on the other hand, has the advantage that we can ask the user
whether she intended to send a certain email that looks suspicious, before the
emails is actually sent.

In IdentityMailer, we propose to start an identity-verification process
when an account tries to send an email that looks anomalous. This verification
process might be answering a security question or a more advanced method, such
as a text message sent to the user’s mobile phone as part of a two-factor authen-
tication process [6]. Each method has advantages and disadvantages. However,
analyzing the single identity-verification methods that one could implement goes
beyond the scope of this paper. For our purposes, we just assume that, by going
through the identity-verification process, the user can prove her identity with a
high confidence.

Of course, we are aware that having to go through such a process might annoy
users. However, we think that if the number of identity-verification processes



that a user has to go through is reasonably low, this is a fair price to pay to
significantly increase the security of a company. In Section 4.2 we perform an
analysis of how often a user would have to go through an identity-verification
process, on average, and show that this number is reasonably low.

4 Evaluation

In this section, we evaluate the effectiveness of IdentityMailer. First, we
describe the evaluation datasets that we used in our experiments. Then, we
perform an analysis of the classifier used to build the email-sending behavioral
profiles, and we show how the behavioral profiles built by IdentityMailer are
useful to detect attack emails sent by compromised accounts.

4.1 Evaluation Datasets

To test IdentityMailer we leveraged a number of email datasets. First, we
leveraged the Enron corpus [19] as a large-scale dataset of legitimate emails.
This publicly-available dataset contains the emails sent by the executives of a
large company, over the time of multiple years. In total, there are 148 users who
sent emails in the dataset, for a total of 126,075 emails. The Enron dataset is
representative of the type of emails sent in a large corporation (sending times,
language, interactions), and this makes it suitable for our testing purposes. In
the remainder of the paper, we call this dataset D1. As a second dataset of
legitimate emails we used a set of emails that were donated to a large security
company by their customers, for research purposes. This dataset is composed
of 1,776 emails. The emails in this dataset are useful to complement D1 and
give diversity. In particular, they are useful to populate Mux, as we explained
in Section 2.2. We call this dataset D2. We use the datasets D1 and D2 for
training purposes. In particular, for each user in D1, we build an email-sending
behavioral profile, by leveraging both the emails in D1 and in D2.

For testing purposes, we needed a number of emails sent by compromised
accounts, and preferably that were part of a targeted attack. The problem here
is that, unlike regular spam, it is not easy to collect a large dataset of such
emails. To overcome this problem, we manually selected three datasets of ma-
licious emails. These emails come from a set of malicious messages that were
not blocked by the anti-spam software of a large security company, and that
were submitted by their customers for checking. The first dataset, that we call
S1, is composed of generic spam emails. Such emails typically advertise goods
or services, such as stock trading, pharmaceuticals, and dating sites. The main
difference between the emails in S1 and common spam is that a state-of-the-art
system failed in detecting them as malicious, and therefore we can consider them
as “hard” to detect; we test IdentityMailer on this dataset to show that, al-
though the system has not been designed to fight traditional spam, it performs
well in detecting it, in case it was sent by compromised email accounts. S1 is
composed of 43,274 emails. The second dataset, that we call S2, is composed of
malicious emails (mostly phishing scams) that were sent by email accounts that



had been compromised. We selected these emails by looking at emails in the
dataset that were malicious, but that had valid DKIM and/or SPF records [20,42].
In particular, these emails were sent by compromised accounts in the same do-
main as the customer who submitted them. In total, S2 contains 17,473 emails.
The third dataset, which we call S3, is a dataset of sophisticated spearphishing
emails. Such emails try to lure the user into handing out corporate-specific sen-
sitive information (such as access credentials) to a malicious party, usually via
social engineering. As we said, spearphishing emails are particular insidious to
companies, because it can lead to high financial losses. S3 contains 546 emails.
The emails in S2 and S3 closely resemble the threat model that we are trying to
counter with IdentityMailer. In the next sections, we leverage these datasets
to evaluate the effectiveness of IdentityMailer.

4.2 Analysis of the Classifier

In this section, we first describe how we selected the features used by Identity-
Mailer. Then, we investigate how well these behavioral profiles can determine
if an email has been actually written by a user. As a third step, we show that
the writing habits are usually not enough to detect whether an email is forged
or not.
Instantiation of the features. As we explained in Section 2.1, some of the
features used by our approach are specific to the organization in which the
system is run. In particular, we need to know which email addresses and domains
have been contacted by the users in the organization in the past, as well as the
domains that have been referenced in the body of the emails, as part of URLs.
We leveraged the dataset D1 to calculate the sets Lu, La, and Ld. In particular,
Lu was composed of 595 domains, La of 22,849 email addresses, and Ld of
3,000 domains. Note that, in a production environment, the size of Lu, La, and
Ld would increase over time, since the users in the company would post more
URLs, and contact new people. This means that the number of features used by
IdentityMailer increases over time as well. However, this is not a problem,
since the auxiliary lists are stored in a centralized location.
Accuracy of the classifier. To evaluate to what extent the behavioral profiles
built by IdentityMailer are representative of the sending behavior of users,
we proceeded as follows. First, for each user U in D1, we extracted the sets Mu

and Mo for that user, following the algorithm described in Section 2.2. As we
said, we use the emails sent by U as positive examples, and a mix of emails from
D1 and D2 as negative examples.

After having a training set for each user, we performed a 10-fold cross vali-
dation on them, to investigate the accuracy of the behavioral profiles generated
from them. The 10-fold cross validation gives us an idea of how the system would
behave in the wild, while encountering previously-unseen emails. In particular,
it gives us an estimate of how many emails written by the user would be flagged
as malicious because of a change in behavior by the user, as well as how many
attack emails would actually be missed by IdentityMailer. In this experi-
ment, a false positive would indicate an email that was authored by the user,



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1000  2000  3000  4000  5000  6000  7000  8000  9000

Fa
ls

e
 p

o
si

ti
v
e
s

Number of emails

Average False Positive Rate

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1000  2000  3000  4000  5000  6000  7000  8000  9000

Fa
ls

e
 n

e
g

a
ti

v
e
s

Number of emails

Average False Negative Rate

Fig. 1: Analysis of false positives (left) and false negatives (right) on the ten-fold
cross validation. The X axis shows the number of emails that a user has sent in
the past. As it can be seen, both false positives and false negatives decrease as
the user sends more emails.

but that IdentityMailer considered as anomalous. In this case, Identity-
Mailer would have started an identity-verification process for the user, who
would have correctly confirmed her identity, and have the email sent. We want
the number of false positives to be low, because having to confirm her identity
too often would annoy the user. Conversely, a false negative would indicate an
email that had been written by somebody else, but that IdentityMailer mis-
takenly attributed to the user. We want false negatives to be as low as possible,
because, in a real scenario, each of them would correspond to an attack that
went undetected.

Intuitively, there are two factors that influence the robustness of the behav-
ioral profile for a user. The first factor is the number of emails that a user has
sent in the past. Having a larger number of examples of a user’s sending style
and habits makes the model more representative and less prone to false positives
and false negatives. The second factor is how consistent is the sending behavior
of a user. A user who always sends emails in the morning, and only to a small
fraction of recipients, will be a lot more recognizable than a user who uses her
account for both professional and personal use, and quite frequently sends emails
at night.

The number of emails sent by the users in D1 varies substantially. On average,
each user in D1 sent 840 emails, with a standard deviation of 1,345. The largest
number of emails sent by a user in D1 is 8,926. As Figure 1 shows, the accuracy of
the email-sending behavioral profile built by IdentityMailer increases as the
user sends more emails. The error bars in the figure show that the accuracy of a
behavioral profile does not only depend on the number of emails, but also on the
user style and habits. For users who have consistent habits, IdentityMailer
can reach almost no false positives and false negatives. On the other hand, certain
users who have more variable habits end up having higher false positives and
false negatives than average. However, this variability gets lower as the number
of emails sent by the user increases.



Figure 1 (left) shows the average number of false positives generated during
the 10-fold cross validation, broken down by the number of emails sent in the past
by each user. As we explained, a false positive in this context would result in the
user being required to solve an identity-verification mechanism. As it can be seen,
a user who sent 1,000 emails in the past would have to confirm her identity every
12 emails that she sends, on average. Increasing the history of sent emails, a user
who sent 8,000 emails would have to confirm her identity on average once every
58 emails that she sends. Given the number of emails that an average corporate
user sends nowadays — 33 per day, according to a recent report [36], reaching
this amount of interaction history does not take long. As we mentioned, these are
average numbers. Users with a more stable email-sending behavior already reach
2% false positives after having sent 1,000 emails. This means that, on average,
they would only have to go through the identity-verification process once every
50 emails they send. We think that these numbers are reasonable in a corporate
environment, where the hassle of confirming a user’s identity is repaid by having
the users protected from identity theft.

Similarly, Figure 1 (right) shows the number of false negatives for the 10-fold
cross validation. As it can be seen, having sent 1,000 emails in the past allows
IdentityMailer to build a model that can block 90% of the emails that have
not been written by the user. Recall gets better as the number of sent emails
increases. The behavioral profile of a user who sent more than 8,000 emails has
an average recall of 96%. The accuracy of IdentityMailer is lower than the
one of state-of-the-art anti-spam systems. However, as we said, the purpose of
our system is very different than the one of anti-spam techniques. We are trying
to ensure that no email is sent on behalf of a user, if she did not compose it. As
we have already discussed, current anti-spam techniques are not appropriate to
deal with such attacks.

Analysis of the features. Previous research showed that it is possible to iden-
tify the author of an email just by looking at stylometry features (what we
call writing habits in this paper) [8]. However, Forsyth et al. showed that such
approaches are only reliable in presence of a consistent amount of text [12].
In particular, they identified the amount of text after which stylometry-based
author identification becomes reliable to 250 words. Unfortunately, 78% of the
emails in D1 are shorter than that. In particular, 50% of the emails in that set
are shorter than 100 words.

Given the short length of emails, we use two other types of features in Identi-
tyMailer: composition habits and interaction habits. We wanted to investigate
how much these features help in making correct detections and whether it is true
that writing-habit features are not enough. To show this, we performed the same
10-fold cross validation that we ran to evaluate the classifier, but this time we
only used writing-habit features. The results show that writing-habit features
are indeed not enough to perform an accurate detection. For a user who sent
1,000 emails in the past, the average number of false positives is 22%, almost
three times higher than with the full classifier. The lowest rate of false positives
reached in this case is for users who have sent at least 8,000 emails, but it is



still around 9.8%, almost six times higher than what we obtained with the full
classifier. Clearly, if stylometry-based methods might be useful in forensic cases,
they are not enough to determine whether an email has been sent by an attacker
or not.

4.3 Detecting Attack Emails

We evaluated IdentityMailer on the attack datasets S1, S2, and S3. First,
we created the email-sending behavioral profiles for each user U in D1, as ex-
plained in Section 2.2. Then, for each email in S1, S2, and S3, and each user
U , we edited the From: field in the email to look like it was sent by U , and
ran IdentityMailer on it, to see whether the email would have been flagged
as anomalous or not, in case user U sent it. Since IdentityMailer does not
take into account header fields such as the X-Mailer one, but only the set of
recipients of the email, and the hour and day that the email was written at, no
additional editing is required.

As it happened for the validation of the classifier, the performance of Iden-
tityMailer depends on how many emails each user has sent in the past, as well
as on how consistent the behavior of a user is while sending emails. In general,
an email history of 200 messages is enough to reach a true positive rate of 80%,
while histories of 1,000 emails or more lead to 90% detection rate. As a peak,
IdentityMailer reaches 98% true positives for certain users. This number is
still lower than what traditional anti-spam techniques can detect. However, as we
mentioned, state-of-the-art systems are inadequate to detect this kind of threats,
and fail in detecting them as malicious most of the time. Therefore, Identity-
Mailer fills this gap well, detecting most of these advanced attack emails as
malicious.

4.4 Performance of IdentityMailer

A critical part of evaluating anti-spam techniques, and systems that deal with
email in general, is understanding how much delay would be introduced by the
technique in the delivery process. IdentityMailer has to undergo two main
operations to detect malicious emails: building a behavioral profile for a user and
checking each sent email against this behavioral profile. Building the behavioral
profile for a user is not time-critical, because we expect the behavior of a user
to be constant, or change slowly. For these reasons, the server can update the
behavioral profile of users in batch, for example once a day, and during periods
in which the email activity is minimal. According to our experiments, building
the behavioral model for a user in D1 takes, on average, 34 seconds, and can
take up to 141 seconds for certain users.

On the other hand, checking emails for maliciousness is more time-critical,
because it actively delays emails as they get sent. On average, IdentityMailer
requires 0.22 seconds to extract the feature vector for an email and compare it
to the behavioral profile for that user. This time is comparable to state-of-the-
art content-based anti-spam systems — SpamAssassin requires 0.5 seconds on
average to process an email [3]. We consider this performance acceptable, also



because the number of emails that a typical organization sends is four times
lower than the number of emails that it receives, and therefore IdentityMailer
would have to process less emails than the ones that anti-spam systems have
to [36].

5 Discussion and limitations

Our results show that IdentityMailer is successful in detecting and blocking
attack emails that appear to have been written by a user, but have actually been
authored by an attacker. However, as most detection systems, IdentityMailer
has some limitations, as well as some caveats that an organization should keep
in mind while operating it.

The main limitation is that, to be effective, IdentityMailer requires an
email history of 1,000 emails or more. This makes it hard to protect, for ex-
ample, the new hires of a company. We argue that email is such a pervasive
communication medium that it should not take too long to collect a large num-
ber of emails from a new employee. In addition, a new employee is probably
not going to be a good target for an attacker, who would favor more influential
people in the company. Those people, however, will have a long email-sending
history, and IdentityMailer will protect them well. Another possible limita-
tion in a corporate setting is that high-ranked executives might delegate their
assistants to write some emails on their behalf. This practice might generate
false positives, because IdentityMailer would detect that those emails were
not written by the owner of the account. A possible mitigation here is to learn
multiple email-sending behaviors, one for each of the people using an account,
and not generating an alert if the email results to be written by any of those
users.

Another limitation of IdentityMailer is that writing-habit features are
specific to the English language. If our approach had to protect the employees
of a company whose main language is different than English, we would have
to develop another set of language-specific features. Previous research showed
that this is feasible even for Asian languages, that have completely different
characteristics than English [47].

Another problem that we have to consider is the privacy of users. The email
sending behavior is built not only by leveraging a user’s personal emails, but
also by leveraging the ones sent by her coworkers too. However, for how we
designed IdentityMailer, the feature vectors built from the emails are kept
within the server, and are never seen by the users. Also, the server has to only
keep the feature vector relative to an email, and not the email itself. Therefore,
we believe that the privacy concerns revolving around IdentityMailer should
be minimal.

Another concern is that some domains, such as large webmail services, have
a very diverse set of users, and it might be challenging to model their behavior
well. For IdentityMailer, we focus on corporate users, assuming that their
behavior is more consistent than the one of general-purpose email providers. In
addition, large webmail services have access to additional signals that are not



included in our threat model (such as login patterns and IP addresses), which
can also be leveraged to build a behavioral profile.

Another limitation is that an attacker could try is imitating the email-sending
behavior learning phase of our system. To this end, he might leverage the emails
that other users sent to the victim in the past as Mo. The attacker can find
these emails, for example, in the Inbox of the victim’s mailer program. In prin-
ciple, this technique could help in making the attack more successful, and evade
IdentityMailer. However, the information that an attacker can learn from
the emails received by a user in the past is rather limited. For example, it does
not give any information on what the social network of the other users in the
company looks like, and it only shows the behavior that third party showed when
interacting with that specific user. An attacker might get additional knowledge
of the company’s emails by compromising additional employee email accounts. If
he obtained access to enough accounts, he might be able to replicate the learning
process of IdentityMailer and evade our system. However, an attack of such
breadth is hard to set up, and once an attacker gets such a pervasive presence
is the company’s network, there is not much that our approach can do. In our
technical report we show that IdentityMailer is in general difficult to evade
by an attacker, unless he achieved a complete view on the email that have been
sent by the company in the last months [33].

6 Related Work

Our approach protects the identity of users against attackers sending emails on
their behalf. To this end, we borrow some ideas from anti-spam techniques, as
well as from the field of forged text detection and authorship identification. In
the following, we discuss how our approach is related to previous work, and
elaborate on the novelty of our method.

Spam Filtering: Existing work on spam filtering can be distinguished in two
main categories: origin-analysis and content-analysis techniques. Origin-analysis
techniques try to determine whether emails are good or bad by looking at their
origin. Examples of characteristics that are indicative of a malicious emails
can be the IP address or autonomous system that the email is sent from, or
the geographical distance between the sender and the recipient [14, 26, 32, 41].
Other origin-based techniques include Sender Policy Framework (SPF) and Do-
mainKeys Identified Mail (DKIM) [20, 42]. These techniques try to determine
whether an email is actually coming from the address it claims to come from, by
looking at the sender IP, or at a signature in the email headers. Origin-based tech-
niques are widely deployed, because they allow servers to discard spam emails as
soon as the malicious end connects to the mail server, saving resources and time.
In addition, they reach good coverage, because most spam is sent by hosts that
are part of a botnet, and therefore have a low reputation [34]. However, in the
scenario in which IdentityMailer works, origin-based techniques are useless,
because the only thing they can do is confirming that an email has been sent by
a certain account, regardless if it is a compromised one or not.



Content-analysis techniques look at the words in the message itself to deter-
mine if it is spam or not. Proposed methods include Näıve Bayes, Support Vector
Machines, or other machine learning algorithms [9,22,27,28]. Other systems de-
tect spam by looking at malicious URLs in the email [17, 45]. Content-analysis
techniques work well in detecting spam, however are too computationally in-
tensive to be applied to every email that a busy mail server receives [35]. In
IdentityMailer, we solve this problem by analyzing emails as they get sent.
We claim that this analysis is feasible, because the number of emails that a mail
server sends is lower than the number of emails that it receives. Another prob-
lem of traditional content-analysis techniques is that they look for words that
are indicative of spam. In the presence of a targeted attack, there might be no
such words, since an attack email will use a language that is similar to the one
used in everyday business emails. This is why in IdentityMailer we learn the
typical sending behavior of a user, and match it against the emails she sends, to
detect attacks.

A number of systems have been proposed to counter specific types of spam,
such as phishing. Such systems either look at features in the attack emails that
are indicative of phishing [11], or at characteristics of the web page that the links
in the email point to [46]. IdentityMailer is more general, since it can detect
any type of attack emails that is sent by compromised accounts. In addition,
existing phishing techniques fail in detecting those emails that rely on advanced
social engineering tactics, instead of redirecting the user to a phony login page.

Another category of spam detection techniques looks at the way in which
spammers use the TCP or SMTP protocol [18, 31]. These techniques work well
in practice against most spam, but are focused on detecting hosts that belong to
a botnet, and are therefore useless in detecting the type of attacks that Identi-
tyMailer is designed to prevent.

Forged Message Detection: A large corpus of research has been performed
on determining the author of an email. These techniques typically leverage sty-
lometry and machine learning and return the most probable author among a set
of candidates [4, 7, 8, 13, 15]. From our point of view, these approaches suffer of
two major problems: the first one is that they typically need a set of possible
authors, which in our case we do not have. The second problem is that email
texts are often times very short, and this does not allow to determine an author
by just looking at stylometry [12]. Lin et al. proposed a system that looks at the
writing style of an email, and is able to tell whether that email was written by
an author or not [21]. This approach solves the first problem, but does not solve
the second one, in which we have emails that are too short to make a meaningful
decision. To mitigate this problem, in IdentityMailer we leverage information
other than stylometry, such as the typical times in which a user sends emails, or
her social network.

Stolfo et al. presented Email Mining Toolkit (EMT) [29,30]. This tool mines
email logs to find cliques of users who frequently contact each other. After learn-
ing the cliques, the system flags as anomalous emails that are addressed to people
outside them. Although EMT leverages an idea similar to IdentityMailer’s



interaction features, it is tailored at detecting large-scale threats, such as worms
spreading through email. The fact that IdentityMailer leverages other types
of features allow our system to detect subtle, one-of-a-kind attack emails.

Egele et al. proposed a system that learns the behavior of users on Online
Social Networks and flags anomalous messages as possible compromises [10].
Because of the high number of false positives, their system can only detect
large-scale malicious campaigns, by aggregating similar anomalous messages. As
we have shown, IdentityMailer is able to detect attacks that are composed
of a single email, and that have not been seen before.

7 Conclusions

We presented IdentityMailer, a system that protects the identity of corporate
users, by checking if an email has been written by the owner of an email account.
This work is the first step towards the protection of individuals and companies
against advanced email attacks, such as spearphishing. IdentityMailer does
this by learning the typical sending behavior of the account’s owner and checking
any email that the account sends against this profile. We showed that Identi-
tyMailer is able to detect attacks that state-of-the-art systems are unable to
detect.
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