
Linear Reinforcement Learning with Options

Kamil Andrzej Ciosek

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Centre for Computational Statistics and Machine Learning

Department of Computer Science

University College London

Original version: March 25, 2015

This version: August 1, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79495971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

I, Kamil Andrzej Ciosek, confirm that the work presented in this thesis is my

own. Where information has been derived from other sources, I confirm that this

has been indicated in the work.

Abstract

The thesis deals with linear approaches to the Markov Decision Process (MDP).

In particular, we describe Policy Evaluation (PE) methods and Value Iteration

(VI) methods that work with representations of MDPs that are compressed using

a linear operator. We then use these methods in the context of the options

framework, which is way of employing temporal abstraction to speed up MDP

solving. The main novel contributions are: the analysis of convergence of the linear

compression framework, a condition for when a linear compression framework is

optimal, an in-depth analysis of the LSTD algorithm, the formulation of value

iteration with options in the linear framework and the combination of linear state

aggregation and options.

“You must compose your life action by action, and be satisfied if each ac-

tion achieves its own end as best can be: and no one can prevent you from that

achievement. ‘But there will be some external obstacle.’ No obstacle, though, to

justice, self-control, and reason. ‘But perhaps some other source of action will be

obstructed.’ Well, gladly accept the obstruction as it is, make a judicious change

to meet the given circumstance, and another action will immediately substitute

and fit into the composition of your life as discussed.”

Marcus Aurelius, Meditations 8.32, translated by Martin Hammond

4

CONTENTS 5

Contents

Introduction 6

1 Linear Models 15
1.1 Classical Markov Models for Control 15
1.2 Compressed Markov Models . 20
1.3 General Analysis of Convergence 22
1.4 Picking Good Features . 25
1.5 Other RL Algorithms . 31
1.6 Summary of results on convergence 32
1.7 Perfect Compositionality and Large Policies 34
1.8 Summary of Contributions . 36

2 Policy Evaluation with Compressed Models 37
2.1 Prior Work on LSTD . 38
2.2 Definition of LSTD . 39
2.3 Other Ways to obtain LSTD . 43
2.4 LSTD vs Bellman Residual Minimization 54
2.5 Regularization . 57
2.6 The Episodic version of LSTD . 59
2.7 Summary of Contributions . 60

3 Options 63
3.1 State Aggregation in Detail . 64
3.2 Options and Matrix Models . 66
3.3 Using Hierarchies to Improve Learning 67
3.4 Table-lookup Value Iteration . 67
3.5 Combining State Aggregation and Options 70
3.6 Experiments . 73
3.7 Extensions to the Options framework 80
3.8 Summary of Contributions . 82

Conclusions and Future Work 85

Appendices 87

A Proof of a fact about equation 2.4 for LSTD 87

B Exponentiating Matrices 89

C Software Setup 91

Bibliography 96

Introduction

In the late 20th century and early 21st century a combination of new technical,

economic and social phenomena has emerged. First, there has been an exponential

decrease in the cost of computation (usually referred to as Moore’s law) due to

the technical advances and increasing economies of scale in the semiconductor

industry. Second, we have witnessed a world-wide spread of connectivity via the

Internet, which is already very cheap in the developed world and which has started

to penetrate into the world’s poorest countries. This connectivity, coupled with

low-cost access devices such as smartphones (as of the time of writing, prices of

internet-enabled ones begin at £30 without contract) and tablets have lead to an

overwhelming explosion in the amounts of data available for processing. Third,

increasing economic globalization, the fall of communism in Eastern Europe and

Russia and the rise of China as a first-tier economic power have led to increased

competition to optimize business processes and models. Fourth, the emergence

of the internet-based social network, both personal (Facebook) and professional

(LinkedIn) has led to a profound change in the way members of society interact, in

addition to providing even more data. Some authors refer to these phenomena as

the Information Revolution. These developments have led to the need to provide

technologies necessary for digitally processing the new data (known as Big Data).

Approaches to this problem emerged from different fields, under terms such as

data science, computational statistics and machine learning. This work focuses

on what emerged form computer science and is traditionally referred to as machine

learning, but the distinction between the areas outlined above is very fuzzy, and

the different communities are increasingly converging to a single tool-set.

All natural quantitative science is in principle about deriving useful structure

from existing information, which can then be used in situations which are new,

8 Introduction

but is some ways similar. Machine Learning, in its most general form, can be

thought of as a meta-quantitative science in that it provides a process of doing

this automatically by means of a computer algorithm (although it has to be said

that the current state of technology is that it only works for certain well-delimited

tasks; indeed, it would be very difficult to predict when or if automatic algorithms

will be able to automate the work done by humans in, say, physics departments).

Traditionally, Machine Learning has been divided into three areas. The first

is Supervised Learning, where the data we are given has tagging information

attached to it, known as labels and the typical problem is to find a concise mapping

from data to labels. Then there is Unsupervised Learning, where we are given

just a bunch of data without any labels and the task is to find useful structure

in the data. There is also the field of Semi-Supervised Learning, which is hybrid

of the two where we are given some, but not all, labels and the tasks are the

same as in Supervised Learning. However, all the above approaches are largely

based on the assumption that data samples are drawn independently from some

probability distribution. This approach has the problem that many phenomena

that occur in the real world do not have this property. In particular, whenever

we have a setting where a machine controlled by a computer is interacting with

the world, it is reasonable to believe that the outcome depends on the sequence

of interactions and that in general, interactions may have consequences reaching

into the feature.

Therefore there is a need to have algorithms that are designed to facilitate

interactions between the machine and its environment. The study of such al-

gorithms in the context of Machine Learning is called Reinforcement Learning

(although much of the same problems were addressed by the Control and Oper-

ations Research communities much earlier, in the context of much smaller data-

streams, less complex systems and limited computational power). Customarily,

one divides Reinforcement Learning into three approaches, based on successively

more complex mathematical models (we do not claim here that this taxonomy

is exhaustive, only that it is sufficient for our purposes). First there are bandit

algorithms, where we are given a finite set of arbitrary probability distributions

(known as bandits), which are fixed but unknown. In the simplest version of

9

the problem, our task at each time step is to choose from which distribution to

sample with the goal that the total sum of outcomes from all samples should be

maximal. Of course the optimum thing to do is to sample the distribution with

the maximal mean and the whole difficulty is that we do not know which one

that is. Very good algorithms exist for useful versions of the Bandit problem (see

for example the excellent monographs by Sébastien Bubeck; Nicolò Cesa-Bianchi

and Rémi Munos [1, 2]). Bandit algorithms have been extensively used in the in-

ternet advertising industry and the technology can be described as being mature.

However, the major limitation of bandit algorithms is that the model does not

include any notion of memory or state – it does matter, unlike in the techniques

described in the previous paragraph, in which order we interact with the bandits

because it influences the information that we have, but samples from a single

bandit are independent. Therefore we need a more complex mathematical tool to

describe the notion that the environment changes its state when we interact with

it. The classic tool to model such a system is the discrete Markov Decision Process

(MDP). It is defined as a set of actions defined over the same state space, each

action consisting of a Markov Chain and a vector of expected rewards (which, for

a given action, depends only on the current state). A classic problem in MDPs,

sometimes referred to as solving the MDP, is the problem of finding an optimal

policy – i.e. a mapping from states to action such that if we choose the designated

action in each state and follow the dynamics of the corresponding Markov chain,

we will maximize the total discounted reward, i.e. the sum of all rewards obtained

along the way, where the reward at step t into the future is multiplied (discounted)

by γt, where the discount factor 0 < γ < 1 is a constant known in advance. It

is well-known that an optimal policy can be found that is deterministic, i.e. it

always chooses the same action in a given state. At the time of this writing, the

MDP problem is exactly solvable in practice for small instances. There are classic

algorithms for computing the optimum policy that have been known for decades

such as the Value Iteration algorithm, the Policy Iteration Algorithm and a reduc-

tion to an instance of Linear Programming. We will discuss in the next section

why these approaches cannot be directly applied in modern practical applications

with massive streams of data. Finally, a yet more general class of problems is the

10 Introduction

Partially Observable Markov Decision Process, where we assume that there is an

underlying MDP, but where we do not observe the state directly, but rather only

by means of a known set of observations. Unfortunately, even in the case where

we consider finitely many steps ahead, the problem is PSPACE-hard in general

[3]. Hence the only viable approach to the POMDP problem is either to consider

only a class of instances of the problem which has some special structure or to

provide only an approximate solution. Due to these constraints, the POMDP

formalism is currently less popular in practical applications. There is also the

philosophical argument that we should focus on understanding the simpler sys-

tem (MDP) first, before moving on to more complex ones such as the POMDP. In

fact, many approaches to the POMDP problem either represent the POMDP as

a continuous MDP over the belief space or a countable MDP over histories (the

former is intractable because the belief space is continuous and the latter because

there are prohibitively many histories; algorithms typically have to make some

approximation to provide a solution in a reasonable time).

Therefore this work focuses on the MDP problem, being complex enough

to model interesting features of reality and simple enough to be more likely to

be tractable. The problem with traditional approaches to solving MDPs is that

these algorithms require the full description of the system as input. This makes

their verbatim versions completely impractical for systems with many states, for

reasons both of computational complexity (polynomial in the size of the system)

and statistical efficiency (experimentally estimating the transition matrix of a

Markov chain with n states and no particular structure means there are n×(n−1)

parameters, which is far too many for realistic n). Hence the need for state

abstraction, which is a way of exploiting structure in the state space to obtain a

description of the set of states which is richer than just enumerating all possible

configurations. Combining the algorithms for solving MDPs with state abstraction

is currently a very active field – there exist working algorithms that are beginning

to be employed in the business world, but they typically do not have the properties

that one may wish, such as a guarantee that they will not diverge or a guarantee

that the solution computed with the state abstraction is in some sense close to

the true optimum solution.

11

Although this work is not directly about applications, it would not be com-

plete without at least outlining the possibilities. It is widely believed that the

first publicly-known large-scale deployments of Reinforcement Learning will be

in the area of advertising and consumer interaction; potentially later spreading

to other business processes as well. It is also very likely that the autonomous

vehicle industry (land, air and water-based) will adopt some techniques at some

point, although it is difficult to determine how exactly since the commercial work

in this area is proprietary. It is very likely that applications in other areas of

robotics will follow. In finance, approaches to time-series analysis related to RL

techniques have been used for years; it is very likely that more of RL is being

used now. There are also promising applications in healthcare and epidemiology

although using them in practice would require a serious discussion about moral

and legal pre-requisites.

The problem of state abstraction, sometimes referred to as feature induction

is not unique to MDPs or RL, but is a common theme in all of Machine Learn-

ing, and in a broader sense of all science (finding a right set of parameters to

describe useful features of a system is usually the first step in producing mod-

els for that system). There are many approaches, ranging from theories such as

RKHS through complex architectures like neural networks and the approximation

of manifolds. For this work, we decided not to use these complex ideas and use a

very simple linear model instead, where compression is achieved via simple matrix

multiplication. The reason for that is that even in this simple case, it is not trivial

whether algorithms will work or how they will behave. We believe that in applied

mathematics, it is better to try to fully understand the simple foundational ideas

first before moving on to more complex ones. We do appreciate this is not the

only approach and indeed there have been instances where non-linear approaches

have been put to practical use very impressively. Ultimately, we hope that some

of the understanding that we are trying to establish for the linear case will eventu-

ally benefit the general, non-linear case as well – however, that is not the subject

of this thesis. In chapter 1, section 1.4.2 of this thesis, we will see that the lin-

ear framework we consider captures the three desiderata that is it reasonable to

put forward for features in Reinforcement Learning. First, the features have to

12 Introduction

Machine Learning

Indep. samples
�Supervised

Dependent samples

E
co

n
om

ic
an

d
so

ci
a
l

n
ee

d
fo

r
a
u

to
m

at
ed

re
a
so

n
in

g
w

it
h

la
rg

e
a
m

o
u

n
ts

of
d

a
ta

Reinf. Learning

�Bandits

MDP

Algorithms
�Value Iteration

Feature Framework

�Linear

T
h

is
th

es
is�Unsupervised

�Semi-Supervised

via interaction –
Reinforcement

�MDPs
�POMDPs �Policy Eval.

�Policy Iteration
�Linear Program

�Non-Linear

�Tabular

Figure 1: Taxonomy of ML algorithms.

model the value function well, i.e. they have to provide a good model to distin-

guish attractive parts of the state space from unattractive ones. Second, since

Reinforcement Learning involves considering the effects of actions into the future,

they have to model the dynamics of the system. Finally, the features should be

compatible with the particular algorithm used to solve the MDP, a notion that

will be clarified in section 1.4.1. Within the linear compression framework for

MDPs, we discuss two problems, which we consider as useful and conceptually

simple: evaluating a given policy and solving the MDP using value iteration and

policy iteration. Variants of these problem occur very often as sub-cases in most

practical applications of MDPs. Although there exist approaches where none of

them is used, we argue that the two problems are canonical in that they occur

frequently enough. Figure 1 summarizes the sections above by positioning the

contents of this thesis in terms of the field of machine learning.

Another important issue that arises in practical approaches to solving MDPs

is the question of how many steps ahead one should consider at a given iteration

of the algorithm. Traditional algorithms always use just one time step, which may

by suboptimal in that it leads to slow convergence for certain methods. It is be-

lieved that this can be improved [4] by using temporal abstraction – i.e. working

with algorithms which consider the effects of a whole sequence of steps, rather

than just one at a time. This idea is not new, and has been used in the planning

community for a long time, typically in the form of macro-operators, sometimes

13

arranged in a hierarchy. However, in Reinforcement Learning, a particularly ele-

gant way of expressing non-deterministic operators can be defined, based on what

is called options.1 The assumption behind options is that we can define useful

temporal abstractions by specifying two things: the behaviour at each state and

the termination condition. In our framework, these can be inferred automatically

by specifying the desired outcome that the option should have. This is done by

defining a value function over states, called the sub-goal (if the sub-goal takes

only two values: zero and a large constant, this boils down to just defining a

subset of states). It is an open question whether this approach is useful in the

sense that meaningful sub-goals can be found for practical problems – currently

this requires substantial knowledge of the problem domain. Typically, reasonable

sub-goals are easy to define but they may not lead to a practical speed-up of

the MDP solution. In future it may be possible to efficiently construct sub-goals

automatically using just the structure of the problem (current approaches to this

exist, but have serious practical limitations). That being said, we decided it is

an approach worth exploring since it is conceptually very simple and clear-cut.

In our framework, a computed option model can be represented as a matrix and

used in algorithms just like an ordinary one-step action, while the evaluation of

an option with respect to a sub-goal is just a multiplication of a matrix times

a vector. We do not consider our work a complete solution to the problem of

temporal abstraction, but rather a useful early step.

To summarize, the overarching idea of this thesis is the study of feature-based

Reinforcement Learning in a way which makes the most use possible of linear op-

erators and their properties. This is motivated by the observation that even this

case is not entirely trivial and leads to ideas that are likely to be useful in practice.

The main concrete contributions are the following. First, in chapter 1 we use the

concept of the joint spectral radius to develop a condition for when Reinforce-

ment Learning with compressed models is stable in a certain sense. We also give

a formula that quantifies the situation where a linear compression framework is

optimal, which turns out to be an instance of the algebraic Riccati equation. We

believe it is the first time the joint spectral radius and quadratic matrix equations

1This is entirely distinct from the meaning the word ‘option’ has in finance.

14 Introduction

are applied to the analysis of approximate MDP solvers. Moreover, we describe

a span of well-known Reinforcement Learning algorithms in a common matrix

framework. Second, in chapter 2 we provide an in-depth analysis of the Least

Squares Temporal Differences (LSTD) algorithm, and the comparison to Bellman

Residual Minimization (BRM). In particular, we provide what we believe is the

first correct derivation of LSTD by means of instrumental variables. We also give

geometric analogies, expanding previous work. Third, in chapter 3 we formally

introduce the concept of options in the context of Bellman operators defined on

matrix models, again for the first time. Finally, we formally combine the linear

framework with options, formulating a modified Value Iteration algorithm. We

also describe empirical evidence from a simulated experiment. To our knowledge,

this is the first time where an algorithm using options and value iteration effi-

ciently solves medium-sized MDPs (our 8-puzzle domain has 181441 states). We

demonstrate a modest improvement in runtime performance as well as a significant

reduction in the number of iterations. Also, we have the first convergent VI-style

algorithm where options (temporal abstraction) are combined with a framework

for state abstraction, yielding far better results than the use of either idea alone.

Chapter 1

Linear Models

In this chapter, we will introduce concepts from Reinforcement Learning in the

language of Linear Algebra. The concepts are not new, but it is necessary to

provide exact definitions since we will employ them later throughout the thesis.

1.1 Classical Markov Models for Control

Many real-world control problems, can be modelled using the Markov assumption,

where we identify a finite set of discrete system states in such a way that tran-

sitions from state to state can be described as depending on the previous state

only. This framework is a generalization of planning in that transitions can be

stochastic. We begin by defining the Markov Reward Process and the Markov

Decision Process, which are the formalisms used to study such systems.

1.1.1 The Markov Reward Process

In this thesis we will consider systems with finite state-spaces of size n. It is well

known that any finite-state Markov chain can be represented as a stochastic matrix

(when we say stochastic, we mean right-stochastic, i.e. a matrix with real non-

negative entries such that the rows sum to one). We now begin by introducing the

Markov Reward Process, or MRP. It consists of two parts: the stochastic matrix

P that describes state transitions (i.e. Pij is the probability of transitioning from

state i to state j) and the reward vector R which describes a reward attached to

each state. The rewards either are deterministic functions of the state, or they

are sampled from some probability distribution conditioned on the state. If the

latter is the case, then the vector R contains the means of the distributions (i.e.

16 Chapter 1. Linear Models

we have Ri = E[R |S = i]) – for our purposes, this is indistinguishable from the

rewards being deterministic.

Studying MRPs often involves working with value functions, or real functions

defined over the state space. We will represent them as column vectors. Given an

MRP, we now define the evaluation function associated with it as the discounted

total sum of rewards we will obtain when we start in a given state and follow the

dynamics. The discounting is by a factor 0 < γ < 1, which guarantees that the

function is well-defined.

VA ≡
∞∑
t=0

(γP)tR = (I − γP)−1R

In the above, the second equality follows from the well-known von Neumann

telescoping sum argument. The series converges and the inverse is guaranteed to

exist because the eigenvalues of P are, as it is a stochastic matrix, guaranteed to

be in the complex unit circle.

We will now introduce Sutton’s homogeneous notation [5] to describe an MRP

using just a single matrix. Indeed, consider the following block matrix.

A ≡

 1 02

R γP

 (1.1)

This leads to the following formula for V .

A∞ =

 1 02

(I − γP)−1R 02

;
 1

VA

 = A∞

 1

02

Here, by A∞ we denote the limit of limt→∞A

t, which is guaranteed to exist because

the eigenvalues of A consist of the eigenvalue one and the eigenvalues of γP . By

02 we denote the zero matrix or vector of the appropriate size.

We will now describe the properties of MRPs that have the matrix format

of equation 1.1. Consider the situation where we have two MRPs A1,A2 defined

over the same state space. It is clear from the definition of matrix multiplication

that A1A2 also has the required block format. Indeed, it is easy to verify that it

1.1. Classical Markov Models for Control 17

is an MRP equivalent to first making a step according to A1 and then according

to A2. We note here that although matrices having the format of equation 1.1 are

closed under multiplication, they are not a group. We are now going to see that

such matrices also can be thought as linear operators.

First, we will define rasps [6]. Rasps are row vectors of the form
[
z ξ

]
,

where z is some real number corresponding to accumulated discounted reward and

ξ is a row vector defining a probability distribution. We see that MRPs in the

matrix format are transformations from rasps to rasps. Indeed the multiplication[
z ξ

]
A, where A is an MRP in the matrix format has the following meaning:

we start having accumulated z units of discounted reward, and our chances of

being in a given state of the MRP are given by the distribution ξ. The multipli-

cation than models making move according to the MRP, to obtain a rasp with a

new reward and a new distribution of states. We note that the multiplication by

a rasp is on the left of the MRP model.

There is also another linear operation we may do with matrix MRP models,

where the multiplication is on the right. It corresponds to evaluating an MRP with

respect to a given value function. Indeed, consider the following multiplication

for some arbitrary value function V . 1

V ′

 = A

 1

V

 (1.2)

Note that the result also corresponds to some value function V ′. Indeed, V ′ is the

function obtained by, for each state, making one move according to A and then

evaluating the state distribution we find ourselves in using the value function V

(this is often referred to as the action-value function).

1.1.2 The Markov Decision Process

We will now define Markov Decision Processes (MDPs). An MDP is a finite

set of MRPs {A1, A2, . . . , Al} defined over the same state space. The MRPs are

indexed with numbers 1, 2, . . . , l and represent different actions. When we work

with MDPs, it is often necessary to use the notion of a deterministic policy. A

deterministic policy π : {1, . . . , n} → {1, . . . , l} is a function of the state which

18 Chapter 1. Linear Models

returns the index of some action. A policy can be represented as the MRP model

Mπ where the row corresponding to state j is taken from Aj in the following way.

[
1 e>i

]
Aπ =

[
1 e>i

]
Aπ(i) (1.3)

We denote the function that evaluates this model Vπ ≡ VAπ and we call the process

of computing it Policy Evaluation (PE). Here ei is the column i of the identity

matrix.

A common theme in the theory of MDPs is the problem of finding an optimal

policy π?. It is defined as a policy that maximizes
∑

i Vπ(i). We sometimes

slightly abuse the notation and refer to ‘the’ optimum policy when we mean any

such maximizer because in applications, even if there are many valid choices, we

do not typically care which one we pick. We could do this formally and work

with equivalence classes of policies rather than policies themselves but we believe

this would add no substance to our results and only obfuscate them. We call the

evaluation of π? the optimal value function and denote it V ?.

In other work, it is frequently the case that one considers a generalization of

the above concept, or stochastic policies. They are defined as a mapping form

states to discrete probability distributions over actions, where the deterministic

case is obtained when the whole probability weight is concentrated on one element.

For classical MDPs as they are discussed in this section there is a well-known

lemma – see theorem 6.2.7 of the monograph [7] – that states that the optimum

value of
∑

i Vπ(i) over the general set of non-deterministic policies is attained

for some deterministic policy. Therefore the simplest choice and the one we are

making in our formal analysis here is to limit ourselves to deterministic policies.

We note that there are other reasons why one might prefer non-deterministic

policies in practice, such as the issue of exploration in sample-driven systems. If

this is needed, then the generalization of our results to the non-deterministic case

is trivial and consists in basically taking a weighted sum of rows from different

action models, where the weights correspond to action probabilities.

1.1. Classical Markov Models for Control 19

1.1.3 Solving MDPs with Value Iteration

We will now define the classic algorithm used for solving MDPs in the language of

matrix models we defined in the previous section. The algorithm is called Value

Iteration [8] and consists in starting with an arbitrary initial value function and

repeatedly applying to it a model corresponding to a policy which maximizes

the value obtained by following the model and then evaluating using the existing

value function (i.e. it always chooses the greedy action). Formally, we start with

the initial value function V0 (arbitrary, but in the absence of prior knowledge,

this is typically assumed to be uniformly zero). We then apply the following

formula to obtain Vt from Vt−1 for t = 1, 2, The formula is applied for each

state i in the range 1, 2, . . . , n (the formally inclined reader will accept that we

abuse our notation slightly and identify states with their indexes – this could be

formalized by introducing a bijection from the set of states to the index set but

such a formalization would not add anything to our analysis).

V Aa
t = Aa

 1

Vt−1

 1

Vt

 = cmax
[
V A1
t V A2

t . . . V Al
t

]
(1.4)

Here, the operator cmax denotes the maximum over column indexes, i.e. the

maximum value in each row. Exactly the same algorithm can be also phrased in

terms of multiplication of matrix models in the following way.

V Aa
t = AaMt−1

 1

02

π = imax

[
V A1
t V A2

t . . . V Al
t

]
Mt = AπMt−1 (1.5)

The operator imax is similar to cmax but returns the index of the maximum el-

ement in a given row. These operators are unusual, but they will be very useful

later on. The representation of the algorithm given by equation 1.5 is computa-

20 Chapter 1. Linear Models

tionally inefficient but serves as a useful theoretical tool, which we will use later.

The model M1 that we start with is completely arbitrary, but it is convenient to

assume that it has zeros in both the reward and the state transition parts.

We will now look at the convergence of the algorithm. It is well known that

the sequence Vt converges. We will first outline the classic justification. This goes

by the Banach contraction argument. First consider equation 1.4 as an operator

equation, i.e. we define an operator T ?, called the Bellman optimality operator

which works on value functions such that Vi = TVi−1 is by definition defined

as in equation 1.4. It is well-known that this operator is a contraction in the

norm L∞. Note that the contraction property crucially depends on the transition

matrix being stochastic. Therefore, by the Banach contraction theorem, it has a

single fix-point which can be converged to by iterated applications of T ?. Once

we know that the sequence has converged it is easy to see by equation 1.4 that

the limit equals V ? (see theorem 6.2.1 in the monograph by Puterman [7] for a

formal argument). We note that the limit of the algorithm of equation 1.5 has

the following form.

M∞
T

T−1∏
t=1

Mt (1.6)

1.2 Compressed Markov Models

It is frequently the case that the number of states n in a system is so large that

it is intractable to explicitly store model matrices which are that large. Hence

there is the need for state abstraction. In this thesis, we are concerned with state

abstraction of the linear form. More concretely, we are interested in reducing

the complexity of working with an MRP by constructing a compressed version

of size k where k � n. Denote the compression operators C (of size k × n)

and the decompression operator D (of size n × k). We are making the central

assumption that these operators are linear i.e. they are real matrices. We obtain

the compressed reward vector as R̃ = CR and the compressed transition dynamics

as P̃ = CPD. In our matrix form, if the MRP is given by a matrix A, the

1.2. Compressed Markov Models 21

compressed version Ã is given by the formula below. 1 02

R̃ P̃

︸ ︷︷ ︸

Ã∈Rk×k

=

 1 02

02 C

 1 02

R P

︸ ︷︷ ︸

A∈Rn×n

 1 02

02 D

 (1.7)

We assume that D is of full column rank. We stress that in this work, when

we want to compress a whole MDP, we apply the same matrices C and D to

all actions, which we will see later is important to assure convergence. This

framework is a generalization of [9, 10] because we do not require C and D to be

stochastic matrices or averagers. While computing good values for C and D is an

unsolved problem in general, we will describe one interesting choice good choice

of C and D in section 1.4.2.

The framework of equation 1.7 relates to existing approaches as follows: we

obtain the baseline case i.e. table-lookup case when there is no compression, i.e.

D = C = I. In this case, all matrices P are contractions in the sup-norm. A

simple, more general way [10] of ensuring CPD to be a contraction is to make D

and C rectangular stochastic matrices.1 In that case, it follows that the matrix

P̃ is stochastic as well.

1.2.1 Value Iteration with compressed models

The main problem with using the compression framework 1.7 is of course the fact

that the matrices generated by equation 1.7 are no longer models of the form 1.1,

because the matrix P̃ is no longer a stochastic matrix. Therefore, we will need

to describe additional conditions necessary to ensure that solution algorithms

converge. The most canonical algorithm is Value Iteration, which we already

described and where the resulting model at time T is of the following form.

T∏
t=1

M̃t =
T−1∏
t=1

 1 02

R̃πt γP̃πt

 (1.8)

1In this thesis we call any non-negative real matrix with rows summing to one stochastic,
even if it is not square. Non-square matrices do not correspond to any Markov chain, but they
are still useful.

22 Chapter 1. Linear Models

In the above, it is not certain whether the greedy operation 1.5 will finally settle

on one policy. By R̃πi and P̃πi we mean, for i = 1, 2, . . . , T , the respective vectors

and matrices obtained by extracting rows from the actions of the compressed

MDP as follows, where Aπi is defined as in equation 1.3.

 1 02

R̃πi γP̃πi

 ≡ Ãπi

In section 1.3, we are going to analyse when this algorithm indeed converges.

1.3 General Analysis of Convergence

We will now recall a fact from linear algebra that describes the condition that

a set of matrices must fulfil so that any infinite product of matrices from the

set converges. Consider a finite set of square matrices of the same size B =

{B1, B2, . . . , Bm}. Consider Bt to be the set of all products of matrices from B

of length t. The following quantity, called the joint spectral radius of B, is very

useful [11].

ρ(B) ≡ lim sup
t→∞

{
‖M‖1/t : M ∈ Bt

}
≡ lim sup

t→∞

{
ρ(M)1/t : M ∈ Bt

}
(1.9)

The formal proof of the equivalence of the two limits can be found in literature

[11]. Intuitively, while the value of the (classic) spectral radius ρ(M) tells us how

the norm of M t grows with t, the value of the joint spectral radius ρ(B)t tells

us how the norm of the product grows as we increase the number of matrices we

multiply together. The norm in the expression above can be any sub-multiplicative

matrix norm. An important inequality for bounding the joint spectral radius is

the following result.

ρ(B) ≤ max
i
{‖Bi‖ : Bi ∈ B} (1.10)

We stress that the matrix norm in this expression is arbitrary but fixed, i.e.

we have to apply the same norm to all elements of B. This is essentially a re-

1.3. General Analysis of Convergence 23

statement of the classic contraction argument in terms of linear algebra: we want

all our matrices to be contractions in some given norm. It should be noted that

this is not the only bound one can have; the theory of the joint spectral radius

also provides more elaborate tools, such as using (possibly piece-wise) Lyapunov

functions which are not norms.

It is clear that if ρ(B) < 1, then any infinite product of models from the

set converges to zero. On the other hand, if ρ(B) > 1, then by definition 1.9

there exists a sequence of matrices from the set such that the norm of the product

becomes arbitrarily large as we multiply more and more matrices, i.e. the product

diverges.

Consider now the set of models corresponding to all possible policies, i.e.

M = {Ãπ : π = π1, π2, . . . , πlk}, where Ãπ is defined as in equation 1.3, but

using the compressed actions Ãi instead of the uncompressed actions Ai. One can

immediately see that the set of eigenvalues of Ãπ consists of the eigenvalues of

P̃π and one. We will call an algorithm weakly stable if the models being iterated

are always contained within some ball of constant radius (i.e. independent of

the trajectory length). The following condition is sufficient to guarantee weak

stability.

ρ(P) ≤ 1 where P̃ ≡ {P̃π : π = π1, π2, . . . , πlk} (1.11)

Here, we use a soft inequality instead of a sharp one because the matrix P̃ will be

multiplied by γ, which is guaranteed by assumption to be less than one. We note

that the above condition is stronger than we require in that it guarantees weak

stability for all possible ways in which the policies can be sequenced, while we only

really care about the orderings produced by the rules governing our algorithms.

There are two reasons why we are using this stronger condition: simplicity and

the fact that it allows us to define stability only in terms of the matrices P̃ , in

a way which automatically holds for all rewards. Intuitively, one has to consider

all orderings to encompass all possible rewards since it is always possible to ar-

tificially construct a reward vector that will lead to selecting a particular policy.

Furthermore, we suspect that reward-universal algorithms are more robust when

24 Chapter 1. Linear Models

sampling.

There is one more aspect that we have to consider: when ρ(B) = 1 then

an infinite product of matrices from the set may, in general, either converge or

there may be oscillatory behaviour where the sequence does not converge but the

norm is bounded. It is currently unknown whether a system satisfying 1.11 is

convergent or only weakly stable. However, we discuss in section 1.3.1 that we

can guarantee convergence under the additional assumption that the transition

matrices are non-negative.

We note that our reasoning about stability extends to the case where we have

convex combinations of models, such as is the case with λ-type algorithms. This is

the case because joint spectral radius of a set is closed with respect to the convex

hull [11].

1.3.1 Convergence with non-negative transition matrices

In the following lemma, we will show that the value iteration algorithm converges

when we can guarantee that, in addition to criterion 1.11, the transition matrices

and the reward vector have only non-negative elements.

Lemma 1. Assume all compressed action matrices Ãi, i = 1, . . . , l have non-

negative entries. Assume further that equation 1.11 holds. Then the algorithm of

equation 1.8, starting with the zero value function, converges.

Proof. We will show that the sequence of value functions generated by the algo-

rithm is non-decreasing. Because we know that it is bounded from criterion 1.11,

this will guarantee convergence.

For any two models Ã1, Ã2 appearing subsequently in our algorithm, we have

the following.

Ã1

 1

02

 ≤ Ã1Ã1

 1

02

 ≤ Ã2Ã1

 1

02

Here, the first inequality follows because we have non-negative rewards and tran-

sition operators and hence R̃1 ≤ R̃1 + P̃1R̃1. The second inequality holds because

at each step of the algorithm, the maximization operator chooses the model max-

imizing the value function at each step.

1.4. Picking Good Features 25

1.3.2 A property of non-negative transition matrices

We will describe one particularly nice property of non-negative transition matrices.

We have seen that in order to satisfy condition 1.11, we need to bound by one the

joint spectral radius of the whole set of matrices corresponding to all policies, i.e.

all matrices that have corresponding rows taken arbitrarily from P̃1, P̃2, . . . , P̃l.

We will see in the lemma below that for non-negative matrices, it is sufficient

to fulfil a much simpler condition, namely, that the joint spectral radius of only

the set P̃1, P̃2, . . . , P̃l (i.e. the compressed transition matrices of each action) is

bounded by one. This is important because there are many fewer actions than

policies, and because manually analysing the properties of matrices that have rows

taken from a given selection is hard.

Lemma 2. Consider the set of compressed actions P̃1, P̃2, . . . , P̃l. Assume that

they are element-wise non-negative. Then we have the following.

ρ({P̃π : π = π1, π2, . . . , πlk}) ≤ ρ({P̃1, P̃2, . . . , P̃l})

Here, the lemma is stated without proof (it follows from theorem 2 of [12]).

The basic idea of the work [12] is this: for nonnegative matrices, the joint spectral

radius of a set of matrices with rows taken from a certain set is identical to a

quantity called the joint row radius, which can be be computed using only a small

number of matrices containing the rows used to construct all the others.

1.4 Picking Good Features

In this section, we discuss a possible choice of the compression framework, defined

by the matrices C and D. We do this by identifying useful properties that the

framework should have and identifying the class of choices that has them. We

begin by stating an intuitively desirable property.

CD = I (1.12)

Intuitively it means that that the compression does not lose information in the

compressed function, i.e. if we take a compressed value function, decompress it

26 Chapter 1. Linear Models

and compress again, we will get the same compressed value function we started

with.

1.4.1 The argument for non-negative features

During the iteration of the algorithm, we need to ensure that the actions chosen

in the approximate framework are in some way similar to the actions that would

be chosen by the algorithm in the table-lookup case. Consider the update rule,

which is the same as equation 1.4 except we use the compressed (tilde) models.

Ṽ Ãa
t = Ãa

 1

Ṽt−1

 1

Ṽt

 = cmax
[
Ṽ Ã1
t Ṽ Ã2

t . . . Ṽ Ãl
t

]

Now consider ‘expanded’ value functions of the form DṼ Ãi
t . Ideally, we would like

the ‘expanded’ value function and the ‘compressed’ value function Ṽt (note that

Ṽt = CDṼt due to equation 1.12) to lead to choosing equivalent actions, that is,

we postulate that the following might naively be expected to hold.

C cmax
[
DṼ Ã1

t DṼ Ã2
t . . . DṼ Ãl

t

]
should

= (1.13)

should
= cmax

[
CDṼ Ã1

t CDṼ Ã2
t . . . CDṼ Ãl

t

]
Unfortunately, the only way of satisfying equation 1.13 for all value functions is

hard aggregation – i.e. when the matrix C is binary and has exactly one 1 in each

row. Here, the operator cmax again returns the maximum of the values in a given

matrix row. Note that for non-negative entries, this is the same as the row-wise

L∞, but we do not restrict ourselves to non-negative value functions.

Since we cannot have equation 1.13, and we want to use features more expres-

sive then just hard aggregation, we propose to instead use non-negative D for the

following reason. Assume for the moment that the functions Ṽ Aa
t are constant,

i.e. all rows of the matrix in equation 1.13 are the same. We see that in this case,

if we have non-negative D then we will have equality, while if we have D that is

all negative, the operator cmax on the right hand side will in fact choose the worst

1.4. Picking Good Features 27

action. Note that the constraint to use non-negative features is not a problem

in practice; the reasoning we are going to use in section 1.4.2 only depends on

the subspace spanned by the features, not on its basis – we can therefore take

arbitrary features, find a non-negative basis which spans a subspace containing

the original features, and use the non-negative features. We stress here that the

requirement for non-negativity is clearly only necessary, but it is not sufficient to

ensure a good approximation.

1.4.2 A characterization of good features in terms of P .

In this section we will describe an algebraic condition that can be used to obtain

good features for the algorithm. We begin with a single MRP and will generalize

our findings to the MDP case later in section 1.4.4. We are interested in evaluating

the value function of the MRP given by V = (I − γP)−1R using the compressed

version of the MRP. We approximate the value function by the span of the matrix

D, i.e. the approximate value function is of the form DṼ . In particular, we will

call an approximate value function DṼ transition-optimal if DṼ = ΠV . Here, we

define Π as follows.

Π = DC

For now Π may not necessarily be a projection (but we will see later that it is useful

to limit Π to be a projection – see observation 1). We note here that according

to the definition above, a transition-optimal approximate value function can still

be useless in practice, because ΠV can be very different from V and can lead

to a completely different policy. Hence in practice, we will need two conditions:

optimality and the fact that ΠV is close to V in some sense.

We want to describe the class of matrices Π satisfying the condition that the

approximation is transition-optimal for the MRP. Ṽ is the value function of the

compressed MRP, i.e. Ṽ = (I − γP̃)−1R̃ = (I − γCPD)−1CR. We have the

following equation for optimality.

DṼ = ΠV ⇔ D(I − γCPD)−1CR = DC(I − γP)−1R

We assume this has to hold for all choices of R and we also assume that the

28 Chapter 1. Linear Models

columns ofD are linearly independent. This gives the condition (I−γCPD)−1C =

C(I − γP)−1, which simplifies to CP = CPDC, which holds if and only if the

following condition for Π holds.

ΠP = ΠPΠ (1.14)

Hence we have described the family of matrices Π satisfying the optimality con-

dition. Note that equation 1.14 is a special case of the algebraic Riccati equation

[13]. Intuitively, equation 1.14 guarantees that our compression framework mod-

els the transition dynamics correctly. We will now describe a possible solution of

1.14. It is more convenient to work with the transposed version.

Observation 1. When the matrix Π satisfies Π>P> = P>, it is a solution of the

equation ΠP = ΠPΠ.

Proof. ΠP = ΠPΠ ⇔ P>Π> = Π>P>Π> ⇔ (Π>P> − P>)Π> = 02

We will now focus on finding a suitable Π which works for the particular

transition matrix P that we are given. Because the row space of P has an intuitive

interpretation, a robust approach to do that is to simply build up a matrix Φ,

which spans a space containing the row space of P . Now, we have the following,

for some B such that the inverse (Φ>B)−1 exists.

Π = DC = B︸︷︷︸
D

(Φ>B)−1Φ>︸ ︷︷ ︸
C

(1.15)

Now, the simplest choice is to choose B = Φ, so that we have an orthogonal

projection and we have C = Φ† and D = Φ, where by (·)† we denote the Moore-

Penrose pseudo-inverse. In this case, we should choose Φ to consist of two sets

of columns, the first being the basis of the row space of P and the second being

some set of vectors which we suppose will model the value function well. This is

intuitively easy to understand: in RL we need our features to model three things

well: the dynamics of the system (represented by equation 1.14), the optimum

value function and the action selection condition of section 1.4.1. The benefit of

this approach is that this requirement is made explicit – in practical implementa-

1.4. Picking Good Features 29

tion it is easy to focus exclusively on modelling value functions and forget about

the dynamics.

We will see in the following observation that any Π such that Π> is a (possibly

oblique) projection on an invariant subspace of P> satisfies equation 1.14.

Observation 2. Any matrix Π of the form B(Φ>B)−1Φ> where there exists some

E such that P>Φ = ΦE (i.e. the columns of Φ correspond to invariant subspaces

of P>) satisfies the equation ΠP = ΠPΠ.

Proof. ΠP = ΠPΠ ⇔ P>Π> = Π>P>Π> ⇔ P>Φ = Π>P>Φ ⇔ ΦE =

Π>ΦE ⇔ ΦE = ΦE

We note that our work in this section is somewhat related to the invariant

subspace method previously described in literature. In the work of [14] a choice

of features based on invariant subspaces of P , was arrived at by first consider-

ing the Krylov basis, which is equivalent to the Bellman Error Basis Function

(BEBF) basis and then setting the Bellman Error to zero, which is equivalent to

Φ(Φ>Φ)−1Φ being a projection on an invariant subspace of P .

1.4.3 Perfect compositionality

We will now outline a connection between the Riccati equation we have introduced

and a useful property of the compression framework, which we call the perfect

compositionality property. This section contains2 ideas introduced in the work of

Singh and Sorg [15], who were the first to introduce perfect compositionality of

linear models. The idea behind perfect compositionality is as follows: ideally, we

would want the following. Consider some set of stochastic matrices of size n× n,

which we denote as S.

∀P, P ′ ∈ S. ΠPP ′ = ΠPΠP ′ ⇒ (1.16)

∀P, P ′ ∈ S. CPP ′D = CPDCP ′D

2We developed this notion independently and only discovered the paper [15] afterwards. Also,
our exposition is more general, because we consider all solutions of the Riccati equation, not
just orthogonal projections. Also, we provide a direct link between the perfect compositionality
property (which is equivalent to the set of Riccati equations 1.18) and convergence of model-
based algorithms – see section 1.6.2.

30 Chapter 1. Linear Models

Intuitively, this means that the compression of the composition is the same as the

composition of compressed operators. We have the following lemma, which states

that this condition is exactly equivalent to the Riccati Equation.

Lemma 3. Assume I ∈ S. The condition of equation 1.16 is equivalent to each

member of the set S satisfying the Riccati equation (eq. 1.14) for a single Π.

Proof. One direction of the implication follows by taking P ′ = I. The other

direction follows by post-multiplying by P ′.

1.4.4 The full MDP case

Given an MDP, our features need to solve the following system of Riccati equa-

tions.

∀a ∈ 1, . . . , l. ΠPa = ΠPaΠ (1.17)

As with the case of a single equation, again the simplest thing we can do is to

consider oblique projections along the space orthogonal to the concatenated row

space of all matrices Pa, a = 1, . . . , l. This allows us to construct the projection

without knowing the eigenvector structure of the P s. We can, if our transition

matrices P are of low rank, simply use as our features some basis of the row-space

of the vertically concatenated transition matrix for all the actions.
P1

P2

...

Pl

We note that if we do this we automatically obtain the following more general

statement, which will be useful in section 1.7.

∀π, ΠPπ = ΠPπΠ (1.18)

1.5. Other RL Algorithms 31

1.5 Other RL Algorithms

For the case where the matrices P̃ are such that we can guarantee convergence, we

present the most common algorithms used in Reinforcement Learning by putting

models in our matrix form. The result of all the described algorithms will be

an infinite multiplication of model matrices, where the next matrix is generated

from the previous according to some rule. The most canonical algorithm is Value

Iteration, which we already described and where the resulting model t time T is

of the following form.
T∏
t=1

 1 02

R̃πt γP̃πt

In the above, T is some time index at which the greedy operation 1.5 settles on

one policy. By R̃πi and P̃πi we mean, for i = 1, 2, . . . , T , the respective vectors and

matrices obtained by extracting rows from the actions of the compressed MDP as

follows, where Aπi is defined as in equation 1.3.

 1 02

R̃πi γP̃πi

 ≡ Ãπi

Policy Iteration, on the other hand, is an algorithm where the rule defining

the generation of one model from another is different, and given below.

Ṽ Ãa
t = ÃaM̃t−1

 1

02

π = imax

[
Ṽ Ã1
t Ṽ Ã2

t . . . Ṽ Ãl
t

]
M̃t = (Ãπ)∞M̃t−1 (1.19)

In this case, the result of the algorithm at time T is a matrix product of the form

T∏
t=1

 1 02

R̃πt γP̃πt

∞

There is also an intermediate version called Modified Policy Iteration [16],

where we start with a finite constant L, the generation rule is similar to the one

32 Chapter 1. Linear Models

used by Policy Iteration (we exponentiate to the power of L, not ∞) and the

result at time T is of the following form.

T∏
t=1

 1 02

R̃πt γP̃πt

L

It is straightforward to provide an extension to Modified Policy Iteration

where L is not a constant but a parameter that changes, for instance in response

to some property of the current policy or the current value function. One could

also attempt to control L with some independent process, treating it as some sort

of ‘temperature’. However, we do not concern ourselves with such modifications

in this thesis. We stress only that the convergence analysis is also valid for all

such modifications.

Another possible modification is where the algorithm produces a product

of matrices which are convex combinations of (possibly exponentiated) models

corresponding to policies. One possible choice is λ-type algorithms [10], where

the matrix product at time T is of the following form.

T∏
t=1

 ∞∑
p=0

λp(1− λ)

 1 02

R̃πt γP̃πt

p+1
We stress that from the point of view of convergence, it doesn’t matter which

convex combination we take. It is also possible to use a different combination at

each step, tuning the parameters as the algorithm progresses.

1.6 Summary of results on convergence

1.6.1 Convergence in the non-negative case

We have seen in sections 1.3.2 and 1.3.1 that if we can guarantee the compressed

actions are non-negative and fulfil the condition ρ({P̃1, . . . , P̃l}) ≤ 1 then the

value iteration algorithm converges. We will now discuss a condition for the ma-

trices P̃1, . . . , P̃l to have non-negative entries. In particular, we have the following

observation, which tells us that a matrix P̃ is non-negative if P can be factorized

in a certain way.

1.6. Summary of results on convergence 33

Observation 3. If the matrix P can be factorized as P = ΦE, where Φ and E are

matrices with non-negative entries, then the matrix P̃ = CPD has non-negative

entries, where C = Φ† and D = Φ,

Proof. P̃ = CPD = Φ†PΦ = Φ†ΦEΦ = EΦ

We note here that unfortunately this way of factoring the matrix P is con-

trasts with the Riccati equation of section 1.4.2 as follows: in section 1.4.2 it was

convenient to pick a Φ which spans the row space of P , but here we need Φ to

span for the column space of P .

1.6.2 Convergence with the Riccati equation

We have seen beforehand that the algorithms of section 1.5 are weakly stable (i.e.

do not diverge without bound) if the condition 1.11 is satisfied. In particular,

they are weakly stable if for any aggregate policy, the model Ãπ is a contraction

wrt. some vector norm independent of π. In this section, we show that if the

compression framework satisfies the Riccati equation, we can make the stronger

statement that the algorithms will converge to a single fixpoint.

Indeed, consider the case when we have that the system of Riccati equations

ΠPi = ΠPiΠ holds for each action i = 1, . . . , l. We can then show that this implies

that each matrix P̃i is a non-expansion. Indeed, we have the following lemma.

Lemma 4. For any Π = DC, if Π satisfies ΠP = ΠPΠ, then P̃ = CPD is a

non-expansion in some norm not depending on P .

Proof. Before we begin, let us state that ΠP = ΠPΠ ⇔ Π>P>C> = P>C>,

where we use the fact that the matrix D> has independent rows. Now, it is

convenient to work with the transposed version. Consider the vector norm ‖C> ·‖1

We will show that P̃> = (CPD)> is a non-expansion in this norm. Indeed, we have

‖C>D>P>C>x‖1 = ‖Π>P>C>x‖1 = ‖P>C>x‖1 = ‖C>x‖1. We thus have that

P̃> is a non-expansion in the norm ‖C> · ‖1. Note that ‖C> · ‖1 = ‖C>Λ−1Λ · ‖1 =

‖Λ·‖1, where Λ is a diagonal matrix containing on the main diagonal the L1 norms

of each column of the matrix C>. We therefore see that P̃ is a non-expansion in

the norm ‖Λ−1 · ‖∞.

34 Chapter 1. Linear Models

Observe that the norm ‖Λ−1 · ‖∞ operates row-wise, i.e. it we only have to

guarantee that all compressed actions are non-expansions, not all policies. Indeed,

we are now going to show that when the assumptions of lemma 4 hold, the value

iteration algorithm converges.

Lemma 5. For any set of compressed actions with transition parts γP̃i , if each

P̃i is a non-expansion in the norm ‖Λ−1 · ‖∞ for some non-negative Λ−1 single

for all actions, then the generalized Bellman optimality operator T̃ ∗, defined as

(T̃ ∗V)(i) = maxa R̃a(i) + γP̃a(i, :)V , is a contraction.

Proof. The proof goes through in a way very similar to the proof for the table-

lookup case. We want to show the following.

‖Λ−1(T̃ ∗Ṽ1 − T̃ ∗Ṽ2)‖∞ ≤ γ‖Λ−1(Ṽ1 − Ṽ2)‖∞

Introduce π1 and π2 as the greedy policies wrt. Ṽ1 and Ṽ2 respectively. We want

to find a policy π3, such that we have the following.

‖Λ−1(T̃ ∗Ṽ1 − T̃ ∗Ṽ2)‖∞ = ‖Λ−1(T̃π1Ṽ1 − T̃π2Ṽ2)‖∞ ≤ ‖Λ−1(T̃π3Ṽ1 − T̃π3Ṽ2)‖∞

We can construct such a π3 using row-by row argument, by setting π3(x) = π1(x) if

(Tπ2Ṽ2)(x) ≤ (Tπ1Ṽ1)(x) and else π3(x) = π2(x). The only difference between this

case and the table-lookup case is that we cancel the appropriate diagonal element

of Λ−1 on both sides, i.e. we have that |(T̃π1Ṽ1− T̃π2Ṽ2)(x)| ≤ |(T̃π3Ṽ1− T̃π3Ṽ2)(x)|

implies |Λ−1(x)(T̃π1Ṽ1−T̃π2Ṽ2)(x)| ≤ |Λ−1(x)(T̃π3Ṽ1−T̃π3Ṽ2)(x)|. We now continue

as follows: ‖Λ−1(T̃π3Ṽ1− T̃π3Ṽ2)‖∞ ≤ γ‖Λ−1P̃π3(Ṽ1− Ṽ2)‖∞ ≤ γ‖Λ−1(Ṽ1− Ṽ2)‖∞.

1.7 Perfect Compositionality and Large Policies

We will now consider, as an aside, a changed version of the value iteration algo-

rithm which impractical, but serves as a useful theoretical tool. Consider a value

1.7. Perfect Compositionality and Large Policies 35

iteration algorithm of the following form.

Mt = max
π

1>2
∼

(Aπ)Mt−1

 1

02

 where (1.20)

∼
(Aπ) =

 1 02

02 C

 1 02

R Pπ

 1 02

02 D

We note a crucial difference from algorithm of section 1.2.1 – here, the policies

are constructed not by taking rows out of compressed models, but by compressing

the policies from the original MDP. This is impractical because there are ln such

policies, but the algorithm is interesting nonetheless.

We will now concern ourselves with the question of what the algorithm con-

verges to, assuming we have the perfect compositionality introduced in section

1.4.3, i.e. we assume that equation 1.18 is fulfilled. To do that, we will consider

the implications of the perfect compositionality property for model multiplica-

tion. We would like the following equality to hold. Intuitively it means that

compression of a composition is a composition of compressions.

∼
(A1A2) =

 1 02

02 C

A1A2

 1 02

02 D

 = (1.21)

=

 1 02

02 C

A1

 1 02

02 D

︸ ︷︷ ︸

Ã1

 1 02

02 C

A2

 1 02

02 D

︸ ︷︷ ︸

Ã2

Denote by P1, P2 and R1, R2 the transition and reward parts of A1 and A2. It is

easy to see that the above equality holds provided the system 1.18 is satisfied.

We have seen in section 1.2.1 that what the algorithm converges to can be

represented as a product of matrices. We can therefore apply equation 1.21 iter-

atively. The question is whether the algorithm converges to ΠV ?. Unfortunately,

we can only assure this for the case when we have satisfied the condition 1.13, i.e.

for hard aggregation. When this is not the case, the approximate algorithm may

choose a different sequence of actions from the table-lookup one, hence converging

to a different solution.

36 Chapter 1. Linear Models

1.8 Summary of Contributions

We have presented a unified framework, which serves as a useful tool to express

many common RL algorithms. We have introduced the joint spectral radius as a

criterion of weak stability of these algorithms. We have also derived a condition

for the optimality of features used in RL, which turns out to be an algebraic

Riccati equation. We have formally shown that features used in a linear RL

framework have to meet 3 criteria: they have to model the value functions and

the transition dynamics well, and they have to be compatible with the algorithm

in the way we described in section 1.4.1. Finally, for the case where the compressed

transition matrix and the compressed expected reward vector are non-negative,

we can show that the algorithms are convergent. Finally, we have shown that for

a certain class of algorithms of section 1.7, the Riccati equation corresponds to

the perfect compositionality property, which means that a compression of model

combination is a combination of compressions.

Chapter 2

Policy Evaluation with

Compressed Models

In this chapter, we present a very popular application of the ideas of linear mod-

elling introduced in chapter 1, which is policy evaluation using the well-known

Least Squares Temporal Differences (LSTD) algorithm. We define the algorithm

as a way of evaluating an approximate model of a policy (a linear dynamical

system). We also give alternative ways of looking at the algorithm: the operator-

theory approach via the Galerkin method, the statistical approach via instrumen-

tal variables as well as the limit of the TD iteration. Further, we give a geometric

view of the algorithm as an oblique projection. Moreover, we compare the opti-

mization problem solved by LSTD as compared to Bellman Residual Minimization

(BRM). We also treat the modification of LSTD for the case of episodic Markov

Reward Processes.

The main practical problem that the LSTD algorithm solves is such: we are

given a feed of data from a stochastic system, consisting of a state description in

terms of features and of rewards. The task is to construct an abstraction that maps

from states to values of states, where the value is defined as the discounted sum of

future rewards. We will show that for LSTD, this abstraction is a linear model of

the kind we introduced in chapter 1. For example, the system may describe a chess

game, the features of state may describe what pieces the players have while the

reward signal corresponds to wither winning or losing the game. The value signal

will then correspond to the value of having each particular piece. Note that this

is not a general constant but may depend on the way the individual players play

38 Chapter 2. Policy Evaluation with Compressed Models

the game, for example the values may be different for humans than for computer

players. We have seen in the previous chapter that the value function of a given

policy can be expressed as V = (I−γP)−1R. The LSTD algorithm can be thought

as a way of computing the value of this function approximately. The motivation

for why the approximation is often necessary is threefold. First, we may not have

access to the states directly, just to functions φ of state. Second, the number

of states n is often computationally intractable. Third, even if n is tractable,

there is the problem of statistical tractability – the number of samples needed to

accurately estimate transition matrices n× n is often completely prohibitive.

Associated with our problem setting is the question whether the value func-

tion is interesting in its own right, or whether we only need it to adjust the future

behaviour of some aspect of the environment we can control (i.e. in our chess ex-

ample make a move). We believe that there is large scope for systems (for instance

expert systems) where the focus will be on gaining insight into the behaviour of

the stochastic system, but the decisions about whether or how to act will still

be made manually by human controllers, on the basis of the value-function infor-

mation. These are the cases where algorithms like LSTD are the most directly

applicable. On the other side of the spectrum, there will also of course be situa-

tions where the value function estimate is used as a tool to automatically generate

the best action on the part of the agent – such systems may also use value-function

estimation algorithms of the type of LSTD to operate within the policy iteration

framework, or more generally, one of the algorithms introduced in chapter 1.

2.1 Prior Work on LSTD

An exhaustive introduction to least-squares methods for Reinforcement Learning

is provided in chapter 6 of Bertsekas’ monograph [10]. The LSTD algorithm was

introduced in the paper by Bradtke and Barto [17]. Boyan later extended to

the case with eligibility traces [18], wherean additional parameter λ controls how

far back the updated are influenced by previous states. The connection between

LSTD and LSPE, as well as a clean-cut proof that the on-line version of LSTD

converges, was given by Nedić and Bertsekas [19]. The seminal paper [20] by Tsit-

siklis and Van Roy provided an explicit connection between the fix-point of the

2.2. Definition of LSTD 39

iterative TD algorithm and the LSTD solution, while also formally proving that

the TD algorithm for policy evaluation converges. The paper [21], described the

Bellman Residual Minimization procedure as an alternative to TD. Antos’ paper

[22] provided an extensive comparison on the similarities and differences between

LSTD and Bellman Residual Minimization (BRM). Parr’s paper [23] introduced

the LSPI algorithm as a principled way to combine LSTD with control. The

paper by Munos [24] introduced bounds for policy iteration with linear function

approximation, albeit under strong assumptions. Scherrer provided [25] the geo-

metric interpretation of LSTD as an oblique projection, in the context analysing

the differences between LSTD and BRM. The paper [26] represents an early ap-

proach to automatically constructing features for RL algorithms, including LSTD.

Schoknecht gave [27] an interpretation of LSTD and other algorithms in terms of

a projection with respect to a certain inner product. Choi and Van Roy [28]

discuss the similarities between LSTD and a version of the Kalman filter. There

exist various approaches in literature to how LSTD can be regularized, none of

which can be conclusively claimed to outperform the others. These include the

L1 approaches of [29] and [30] and the nested approach of [31]. These approaches

differ not just in the what regularization term in used, but they solve different

optimization problems (we will discuss this in section 2.5).

2.2 Definition of LSTD

2.2.1 Notation

The LSTD algorithm finds the value function of a finite-state Markov Reward

Process (MRP), which we defined in the previous chapter. The MRP is fixed, i.e.

we only consider the on-policy setting. However, while we previously assumed the

knowledge of the full model, now we only have access to linear features of states

and to the obtained rewards. More formally, denote as P the transition matrix

of the MRP. For each state s we have a feature row-vector φ. The feature design

matrix Φ gives the features of all states of the MRP, row-wise, where we assume

that Φ has independent columns. We use the vector R, the i-th element of which

contains mean reward obtained while leaving the state i. We use ξ to denote a

left eigenvector of P corresponding to eigenvalue one. Note that if the chain has

40 Chapter 2. Policy Evaluation with Compressed Models

a stationary distribution, it will correspond to such an eigenvector, but we do not

require it. We will assume that the chain only has one recurrent class since the

case where we have many classes complicates the notation without contributing

to the main argument (in practice, we can typically assume there is one class

if we do enough exploration). We also introduce the matrix Ξ = diag(ξ). We

now define expectations of functions of the Markov process in terms of weighted

averages. For example the expectation of φ>φ, is defined by E
[
φ>φ

]
= Φ>ΞΦ, and

similarly for other functions. By this we mean that if P is ergodic, it is legitimate

to consider the above quantity an expectation corresponding to long-time average

by the standard ergodic theorem for Markov chains. But in our application it is

convenient to be more general and allow for periodicity, i.e. the diagonal of Ξ may

not be a stationary distribution, but the expression still matches the long-time

average. We use subscripts to denote two-step sampling, for example φ′s denotes

the fact that we first sample a state, then the successor state and obtain the feature

of that successor state. When we write an expectation w.r.t. such a variable, for

example E[r2
s], the distribution we mean for r is

∑S
s=1 p(r|s)ξs. In contrast to the

derivations of chapter 1, we we were only concerned with the means, part of our

present derivations depends on treating some qualities as random variables; we use

small letters to denote them, for instance s denotes state and φ denotes feature.

Once we have obtained samples from our process, we store them in matrices Φ̂

and r̂, whose i-th rows correspond to, respectively, the state feature vector and

reward obtained at time i. Observe the difference between Φ and Φ̂ – in the

first one, each state is represented once, in the second one the number of rows

corresponds to the trajectory taken in the MRP and repetitions are possible. The

value function is discounted with the factor 0 < γ < 1. Moreover, we introduce

the square matrix S which has ones on the main diagonal and −γ on the diagonal

above it. It is the sample based equivalent to the operator I − γP .

S =

1 −γ

.

1 −γ

1

2.2. Definition of LSTD 41

2.2.2 The linear dynamical system approach

The derivation given in this section is based on [14]. We begin by constructing

a MRP which lives in the space of features instead of our original state space.

We limit ourselves to the class of linear dynamical systems introduced in chapter

1. We need to define the matrix P̃ and the vector R̃, so that a transition from

φ to φ′ (row vectors) is modelled by φP̃ = φ′, and the reward we expect at φ is

modelled by φR̃ = r. Now we look for the values for P̃ and R̃ that model our

system dynamics. We have that ΦP̃ should be approximately equal to PΦ and

ΦR̃ to r. We weight states by Ξ, giving the following optimization problems.

P̃ = argmin
P̃

‖ΦP̃ − PΦ‖Ξ = argmin
P̃

trace
(

(ΦP̃ − PΦ)>Ξ(ΦP̃ − PΦ)
)

R̃ = argmin
R̃

‖ΦR̃−R‖Ξ = argmin
R̃

(ΦR̃−R)>Ξ(ΦR̃−R) (2.1)

These optimization problems correspond to ordinary least squares (generalized

to matrices in case of P̃) and the solutions are obtained by weighted projection:

ΦP̃ = ΠPΦ and ΦR̃ = ΠR, where the projection matrix is defined as Π =

Φ(Φ>ΞΦ)−1Φ>Ξ and the matrix Φ cancels with the one in the projection, since

it is full column rank. Now consider a feature vector φ. In the new approximate

MRP, we can compute the value function exactly (i.e. all the approximation has

already taken place when we constructed the matrix P̃ and vector R̃). The true

value function associated with it is the expected discounted future reward, and is

expressed as follows.

φ

∞∑
i=0

(γP̃)iR̃︸ ︷︷ ︸
Ṽ

= φ (I − γP̃)−1R̃︸ ︷︷ ︸
Ṽ

(2.2)

In the above, the last equality is the well known von Neumann telescoping sum

argument as introduced in chapter 1. We thus have the equation (I− γP̃)Ṽ = R̃.

In the above, we assumed that the series
∑∞

i=0(γP̃)iR̃ converges. We show a

stronger condition, namely that the series
∑∞

i=0(γP̃)i converges, which is the

same as saying that γP̃ is a contraction in some norm.

This follows from the following lemma.

42 Chapter 2. Policy Evaluation with Compressed Models

Lemma 6. Assume that Ξ is a diagonal matrix which has on the diagonal a

left eigenvector of P corresponding to eigenvalue one. Then the matrix P̃ =

(Φ>ΞΦ)−1Φ>ΞPΦ is a non-expansion in some norm.

Proof. Consider first the case when we have Ξ > 0. We know that ΠP is a

contraction in the norm weighted by Ξ i.e. ‖ΠP‖Ξ = ‖Ξ 1
2 ΠPΞ−

1
2‖2 ≤ 1 (see for

example [32], proposition 6.3.1). Therefore the spectral radius of ΠP is bounded

by one. Define the matrix Π- = (Φ>ΞΦ)−1Φ>Ξ, so that we have ΠP = Φ(Π-P)

and P̃ = (Π-P)Φ. Using the assumption that Φ has independent columns, it

is easy to see that if v is an eigenvector of Π-PΦ then Φv is an eigenvector of

Φ(Π-P) with the same eigenvalue. Hence all eigenvalues of P̃ are also eigenvalues

of ΠP and ρ(P̃) ≤ 1. Now if we have some zero entries on the diagonal of Ξ, our

result follows by a continuity argument. Thus we have the result for the general

case.

Note that in the above proof we used the fact that Ξ is a diagonal matrix,

where the diagonal entries come from a left eigenvector of P corresponding to

eigenvalue one. If Ξ used for the projection were an arbitrary distribution, then

the matrix P̃ would in general have spectrum beyond the unit circle. For example,

consider the following.

P =

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

 Φ =

1 1

1 0

0 1

0 0

Now, if we assume a uniform distribution Ξ, we obtain the following matrix,

the spectral radius of which is more than one.

P̃ =
1

3

 2 3

2 0

2.3. Other Ways to obtain LSTD 43

2.2.3 Interpretation in terms of expectations

We now give the interpretation of the matrices P̃ and R̃ in terms of expectations,

which are useful when constructing sample-based versions of the algorithm.

P̃ = (Φ>ΞΦ)−1Φ>ΞPΦ = E
[
φ>s φs

]−1
E
[
φ>s φ

′
s

]
R̃ = (Φ>ΞΦ)−1Φ>ΞR = E

[
φ>s φs

]−1
E
[
φ>s r

]
We also can construct sample-based variants of the matrices P̃ and R̃ (call

them P̂ and R̂ respectively) and still obtain essentially the same algorithm. Let

us adopt the following definitions.

ˆ̃P = argmin
ˆ̃P

‖Φ̂ ˆ̃P −NΦ̂‖ = (Φ̂>Φ̂)−1(Φ̂>NΦ̂)

ˆ̃R = argmin
ˆ̃R

‖Φ̂ ˆ̃R− R̂‖ = (Φ̂>Φ̂)−1(Φ̂>R̂)

In the above, we denote by N the matrix which has ones above the main diagonal

and zeros elsewhere.

N =

0 1

.

0 1

0

We note that the required inverse exists by the assumption that Φ>ΞΦ is invertible

(we also implicitly assume that we have enough samples). Furthermore, we note

that the transition model and the reward model are independent, i.e. our solution

is also applicable to the setting where we have a single transition matrix P , but

instead of just one reward we have many tasks, each of which with a different

reward [33]. We note that in this setting, while we still have to learn R̃ for each

task separately, it is worthwhile to learn P̃ using training data from all tasks.

2.3 Other Ways to obtain LSTD

We begin with the Bellman equation, which defines the true value function:

V (s) = E[r + γV (s′) |s] = E[r |s] + γ E[V (s′) |s]. It can be rewritten in matrix

44 Chapter 2. Policy Evaluation with Compressed Models

form as V = (I−γP)−1R. We exploit a linear architecture: i.e. we seek to approx-

imate the true value function V (·) with the function V̆ (s) = Ṽ >φ, which is linear

in Ṽ . We will briefly discuss two possibilities for how to choose an appropriate

V̆ (·) within the linear class of functions. The obvious thing would be to proceed

along the lines of section 1.4.2 of chapter 1 and define V̄ = ΠV = Π(I − γP)−1R,

where Π = Φ(Φ>ΞΦ)−1Φ>Ξ where we assume that the inverse exists. This for-

mula guarantees that the distance from V̄ to V is minimal in the elliptic norm

weighted by Ξ. The problem with this approach is that it is not known how to

efficiently compute a useful estimate of the projected value function from sam-

ples.1 Therefore we need a different approximation. We call it V̆ (·). It comes

through the equation V̆ = ΠT V̆ , where we look for the fixpoint of the operator

ΠT instead of the Bellman operator T , where Tx = R + γPx. Our choice of V̆

will be motivated further later (in particular, see equation 2.7).

Now the question, of course, is about the relation between our approxima-

tion V̆ and the projection of the true value function V̄ , as we have defined it in

the previous section. We now state without proof the relation between the two

estimates developed in [34] (see their references for prior work).

V − V̆ = (I − γΠP)−1(V − V̄) (2.3)

This can be used to obtain the following bound, which does not require us to

estimate the matrices Π or P (see [34] for proof and for sharper bounds): ‖V −

Ṽ ‖Ξ ≤ (1− γ2)−1/2‖V − V̄ ‖Ξ.

We see from this that one example where the approximation of equation 2.10

is appropriate is when we have substantial discounting – in that case, if the linear

framework is good at all, i.e. if the projection V̄ = ΠV is close to the true

value function, then so will be our approximation. We emphasise here that our

derivation is for the case where there is one recursive class in the MRP. If there

are other classes, this bound tells us nothing about them (i.e. using this bound

only, we have to accept the value function at the states belonging to them may

be arbitrarily off the mark).

1One algorithm that can do that in the limit of infinitely many samples is Least-Squares
Monte-Carlo. It is, however, prone to high variance in the estimate for small sample sizes.

2.3. Other Ways to obtain LSTD 45

In the subsequent sections, we will describe various seemingly different ap-

proaches to computing V̆ (·) from samples, which however all lead to the same

formula for the solution we have already seen in section 2.2.2. In order to derive

our algorithm, we make two assumptions. First, we assume the following. We call

this the feature independence assumption.

E
[
φ>φ

]
is full rank (2.4)

This implies that the features are linearly independent (i.e. Φ is of full column

rank) but the statement is stronger in that it concerns both the features and

the transition dynamics of the MRP, and means that the parts of the features

corresponding to states visited with nonzero probability are independent. We note

that this implies that the matrix E
[
φ>(φ− γφ′)

]
is also full rank – we discuss

why this implication holds in appendix A. We will also use this to claim the

invertability of Φ̂>SΦ̂ without further comment (i.e. we assume we have enough

samples). Also, we assume that the mean of the reward process exists.

E[rs] <∞ (2.5)

The second assumption is rarely a problem because in typical applications

the reward is bounded by some constant.

To summarize the description, we restate the fundamental conditions for

LSTD to yield good value estimates: (1) the linear architecture itself needs to

match the problem and the set of features needs to be set right, that is V must

be close to V̄ , (2) the approximation V̆ needs to be good, for example through

discounting and finally (3) the sample based approximation ˆ̃V to w must also

be good (in the following sections we define a consistent estimator for w, i.e. a

way to compute ˆ̃V , so that the value function computed from a sample trajectory

approaches V̆ for the recursive states in the class corresponding to that trajectory

as the length of the trajectory goes to infinity). We note as a sideline that if we

have the perfect compositionality property of chapter 1, the first point becomes

irrelevant.

46 Chapter 2. Policy Evaluation with Compressed Models

2.3.1 Derivation by the Galerkin method

That LSTD corresponds to a special case of the Galerkin argument has been im-

plicitly realized for some time, and formally stated in [35], on which this section is

based. The general idea of the Galerkin method is to approximate the fixed point

of T , Tx? = x?. We have x? = argminx ‖Tx? − x‖. We introduce the approxima-

tion by considering points from within the column space of Φ, so that our approx-

imate fixpoint satisfies x̃? ∈ Range(Φ), yielding x̃? = argminx∈Range(Φ) ‖T x̃? − x‖,

which is equivalent to the following, after substituting Φy? for x̃? and Φy for x

and using the semi-norm weighted by Ξ.

Φy? = argmin
y
‖TΦy? − Φy‖Ξ (2.6)

Now, for our semi-norm with the corresponding projection operator Π, this has

an analytic solution: Φy? = Π(T (Φy?)). Now, in our case, Π = Φ(Φ>ΞΦ)−1Φ>Ξ

where we note that the inverse is well-defined by assumption 2.4 and the evaluation

of the operator T at ΦṼ becomes R+γPΦṼ with Ṽ assuming the role of y?. Now

we solve the following.

ΦṼ = Π(R + γPΦṼ︸ ︷︷ ︸
TΦṼ

) (2.7)

This can be transformed in the following way.

@@Φ(I − γ(Φ>ΞΦ)−1Φ>ΞPΦ))Ṽ =@@Φ(Φ>ΞΦ)−1Φ>ΞR (2.8)

In the above, we can cancel out the terms Φ, because by assumption 2.4, Φ has

to be of full column rank. We then multiply both sides by (Φ>ΞΦ), to obtain(
(Φ>ΞΦ)− γΦ>ΞPΦ

)
Ṽ = Φ>ΞR, which leads to the following.

Ṽ =
(
Φ>ΞΦ− γΦ>ΞPΦ

)−1
Φ>ΞR (2.9)

This is the same as the expression we will obtain in the instrumental variable

section. We also see that equation 2.8 is the same as the formula obtained from the

linear dynamical system approach in equation 2.2 when we plug in the computed

2.3. Other Ways to obtain LSTD 47

values of P̃ and R̃. Thus we have obtained the same estimator.

2.3.2 Derivation by instrumental variables

Again, we begin with the Bellman equation, which defines the true value function:

V (s) = E[r + γV (s′) |s] = E[r |s] + γ E[V (s′) |s]. We will first obtain a statisti-

cal model that expresses the properties of the approximation V̆ (·). By solving

the Bellman equation directly in the linear approximation regime, we obtain the

following equation.

φṼ = V̆ (s) = E[r |s] + γ E
[
V̆ (s′)

∣∣∣s]− es = E[r |s] + γE[φ′ |s]Ṽ − es (2.10)

We note that in the above, we use the convention that Ṽ is a column vector

while the features are row vectors. This convention minimizes the number of

transposes we have to write. Note that we had to introduce the TD error vector

e = [es1 , · · · , esn]> = TΦṼ − ΦṼ and the corresponding random variable es (i.e.

the error is a deterministic function of the current state, which is random), since

the sum of the reward vector R and the expected feature vector E[φ′ |s]Ṽ may

not be in the feature space (i.e. the column space of Φ). It can be verified using

equation 2.9 that, the error terms satisfy eΞΦ = 0, i.e. it is orthogonal to the

feature space (indeed it can be seen after a brief manipulation that the condition

eΞΦ = 0 is equivalent to the formula 2.9 – we will do this in section 2.3.4), and

that consequently we have the following.

Πe = 0 (2.11)

This is not a derivation from first principles, since we had to use an external argu-

ment to verify that eΞΦ = 0 (which is equivalent to assuming that the TD error

vanishes in expectation). But given the model of equation 2.10 it is nonetheless

instructive to look at the mechanics of how the derivation works because this is

the first one to have been proposed for LSTD.

We now accept equation 2.10 as a given and give a statistical derivation

as provided in the original LSTD paper [17], based on methods described in

[36]. Now, because we do not observe the expectations E[γV (s′) |s] and E[r |s]

48 Chapter 2. Policy Evaluation with Compressed Models

in equation 2.10, but merely samples of φ and φ′ we model the residue wrt. the

expected value as noise, yielding the probabilistic model rs = E[r |s] + ηs, where

we use assumption 2.5, and φ′s = E[φ′ |s]+εs. Note that by definition E[ηs |s] = 0.

Observe that this implies the following by the law of iterated expectation (LIE).

E[ηs |φ] = E[E[ηs |s] |φ] = 0 (2.12)

Analogously, we have the following.

E[εs |φ] = 0 (2.13)

Thus we can rewrite equation 2.10 to obtain the following.

φṼ = rs + γφ′sṼ − γεsṼ − ηs − es or rs = (φ− γφ′s)Ṽ + γεsṼ + ηs︸ ︷︷ ︸
ζs

+ es

(2.14)

Now, we cannot use traditional least-squares to solve this, since the expression

ζs = γεsṼ+ηs may be, in general, correlated2 with φ−γφ′s, so will be the projection

error term e and the two correlations will not cancel in general. Therefore the noise

term ζs− es may be correlated with with φ− γφ′s. Also, E[es |s] is not necessarily

zero. But ordinary least squares (OLS) requires that noise be uncorrelated with

input variables and that it have mean zero to yield consistent estimates. However,

there is still a way to obtain a good estimate. More formally, we first need to

establish the following properties. First, we have E
[
φ>ηs

]
= E

[
E
[
φ>ηs

∣∣φ]] =

E
[
φ> E[ηs |φ]

]
= 0, where the first equality follows from LIE and the second from

fact 2.12. By the same reasoning, we have E
[
φ>εs

]
= 0 from fact 2.13. With these

two properties, we can now multiply both sides of equation 2.14 by φ>, which we

for this purpose call an instrumental variable, and then take expectation, so as to

make the noise terms vanish. We also have E
[
φ>es

]
= 0 by fact 2.11. This results

2Indeed, we have E
[
φ′>s ηs

]
= 0, E

[
φ>εs

]
= 0 and E

[
φ>ηs

]
= 0 as shown later in the text;

but E
[
φ′>s εs

]
= E

[
φ′>s φ

′
s

]
− E

[
φ′>s E[φ′s |s]

]
= Φ>ΞΦ − Φ>P>ΞPΦ, where the last term does

not vanish in general.

2.3. Other Ways to obtain LSTD 49

in the following.

E
[
φ>rs

]
= E

[
φ>(φ− γφ′s)

]
Ṽ + γE

[
φ>εs

]
Ṽ + E

[
φ>ηs

]
− E

[
φ>es

]︸ ︷︷ ︸
= 0

(2.15)

Now because we know by assumption 2.4 (see section A of the appendix for a

detailed proof) that E
[
φ>(φ− γφ′s)

]
is invertible, the estimator Ṽ is given by the

following.

Ṽ = E
[
φ>(φ− γφ′s)

]−1
E
[
φ>rs

]
=
(
Φ>Ξ(I − γP)Φ

)−1
Φ>ΞR or

ˆ̃V = (Φ̂>SΦ̂)−1Φ̂>r̂ (2.16)

This finishes the formal derivation. We will now give two different intuitive inter-

pretations to the instrumental variable method. First, consider the sample equiv-

alent of equation 2.14, which we now rewrite in matrix notation r̂ = SΦ̂ ˆ̃V + ζ̂− ê,

where by ζ̂ we denote the vector containing the noise terms for each individual

sample and by ê the sample values of the random variable es. Now, as described

above, we cannot solve it by OLS because of the correlation between the noise

and SΦ̂. So we ‘fix’ SΦ̂ by projecting it onto the feature space (i.e. the column

space of Φ̂), since we know that noise is uncorrelated with features. We introduce

the projection operator Π̂ = Φ̂(Φ̂>Φ̂)−1Φ̂>, where we note that the inverse exists

by assumption given we have enough samples. Now our equation becomes the

following.

Π̂r̂ = Π̂SΦ̂ ˆ̃V + Π̂ζ̂︸︷︷︸
→0 as N→∞

−Π̂ê or ��
���

�
Φ̂(Φ̂>Φ̂)−1Φ̂>r̂ =���

���Φ̂(Φ̂>Φ̂)−1Φ̂>SΦ̂ ˆ̃V (2.17)

In the above, we can cancel the terms because Φ̂ has, by assumption, independent

columns if we have enough samples. This leads to the same estimator that we

derived above. This interpretation is known in econometric literature as two-stage

least squares (2SLS), because we solve two linear systems: first we project SΦ̂

on the subspace of features and then we solve the resulting modified equation.

In this context we stress that we would get the same solution if we only applied

the projection on the right-hand side, e.g. r̂ = Π̂SΦ̂ ˆ̃V – this can be seen by

50 Chapter 2. Policy Evaluation with Compressed Models

noticing that the choice of ˆ̃V in this equation is unaffected by any component of

r̂ orthogonal to the feature space. We also see the direct correspondence between

this and the projection step in the derivation through Galerkin method – the

equation 2.7 is essentially the limiting version of the sample-based equation 2.17.

2.3.3 The geometry of instrumental variables

There is one more way to interpret the instrumental variable approach. Observe

that the equation Π̂r̂ = Π̂SΦ̂ ˆ̃V , can be rewritten as Π̂(SΦ̂ ˆ̃V−r̂) = 0. Thus we have

that applying the projection amounts to solving r̂ = SΦ̂ ˆ̃V under the constraint

that the projection of the residual on the feature space is zero. Therefore LSTD

yields the same solution as applying the oblique projection of the rewards on

the difference between values of successive states (i.e. SΦ̂), along the subspace

orthogonal to the column space of Φ̂ (which is the left null-space of Φ̂). See also

figure 2.1.

Recall the formula for the coefficients of the oblique projection on the columns

space of X orthogonal to the column space of Y , which is X(Y >X)−1Y >. The

corresponding generalized pseudoinverse of X is (Y >X)−1Y >. It is easy to ver-

ify that putting X = (I − γP)Φ and Y = ΞΦ into (Y >X)−1Y > recovers the

LSTD solution. Notice that in this case, the projected vector, X(Y >X)−1Y > cor-

responds to obtaining the ‘smoothed rewards’ corresponding to the approximate

value function (i.e. (I − γP)V̆ S, or what the rewards would have been if there

had been no approximation of the value function). Now there is also a different

way of defining the projection, namely we can project not the reward vector but

the true value function [25]. In this case, setting X = Φ and Y = (I − γP)>ΞΦ

again produces the LSTD solution Ṽ (note that now, we are projecting the true

value function, not the rewards). Notice that in this case the projected vector

corresponds to the approximate value function.

Notice that formally speaking, in both the interpretation as a projection of

the reward vector and the value function, we also need another condition to call

LSTD an oblique projection – in order for the formula X(Y >X)−1Y > to mean

a projection on Range(X) orthogonal to Range(Y), we need the condition that

the orthogonal complement of Range(X) and Range(Y) should be complementary

2.3. Other Ways to obtain LSTD 51

subspaces. We will now claim that this is the case in either of the above ways

of thinking about LSTD as a projection. To do this, we will prove the following

statement. We denote by k the number of columns in Φ (they are known to be

linearly independent by assumption 2.4).

Lemma 7. For any invertible matrices A, B, and Φ of full column rank, we have

the following equivalence.

Range(AΦ)⊥ ⊕ Range(BΦ) = Rn ⇔ ¬∃z.Φ>A>BΦz = 0

Proof. First, we note that the dimension of Range(BΦ) is k sinceBΦ is full column

rank and the dimension of Range(AΦ)⊥ is exactly n−k since A is invertible. The

argument in the left-to-right direction is as follows: if ∃z.Φ>A>BΦz = 0, then

there would be a vector, BΦz, which is both in Range(BΦ) and Range(AΦ)⊥.

Therefore these two subspaces cannot sum to the n-dimensional space if they

share a common vector. This contradiction finishes the argument. The argument

in the right-to-left direction is thus: there is no non-zero vector in both Range(BΦ)

and Range(AΦ)⊥, then because of their dimensions they have to sum to the whole

space Rn.

We now see that the condition ¬∃z.Φ>A>BΦz = 0 is fulfilled in the case of

LSTD because by assumption 2.4 the matrix Φ>A>BΦ, and hence also Φ>B>AΦ

has to be invertible. In this expression, we can substitute A = I and B =

(I − γP)>Ξ or alternatively A = I − γP and B = Ξ to obtain either of the

interpretations of LSTD as projection outlined above. We note that in either case,

BΦ is full column rank by assumption 2.4 together with the fact in appendix A

and A is invertible since P is a Markov matrix.

2.3.4 Connection with the iterative TD algorithm

We have seen in section 2.3.2 that the equality E
[
φ>es

]
= −Φ>ΞR + Φ>Ξ(I −

γP)ΦṼ = 0 is crucial for the development of the algorithm and indeed equivalent

to the obtained estimator for Ṽ (equation 2.9). We will now show another way

of obtaining this equality – actually, it may be taken do be the definition of the

algorithm, and used as a justification for the formula 2.9 that stands on its own.

52 Chapter 2. Policy Evaluation with Compressed Models

R

(I − γP)Ṽ

Range(ΞΦ)

Range((I − γP)Φ)
Range(Φ)

ΠT ṼṼ

T Ṽ

Figure 2.1: LSTD can be interpreted as an oblique projection (left) and as a fixpoint
algorithm (right).

We now give the interpretation of this equation is in terms of the iterative TD

algorithm [37]. We note that the equality 0 = E
[
φ>es

]
corresponds to saying

that the LSTD solution corresponds to the fixpoint of iterative TD, i.e. the point

where the expected update is zero.

Consider now the definition of the iterative TD algorithm [37]. We assume

for the moment that we have an oracle Vo for the value function and are inter-

ested in iteratively solving the optimization problem minṼ (Vo(s) − V̆ (s))2 using

the approcimation architecture V̆ (s) = φsṼ . The iterative update is given by

∇Ṽ (Vo(s) − V̆ (s))2 = 2∇Ṽ V̆ (s) (Vo(s) − V̆ (s)). We now have the following for-

mula for the iteration.

∆Ṽ ∝ ∇Ṽ V̆ (s)︸ ︷︷ ︸
φ(st)>

((rt+1 + γV̆ (st+1))︸ ︷︷ ︸
oracle for value

−V̆ (st)︸ ︷︷ ︸
TD error es

)

Now we have that the update ∆Ṽ at time t, is φ(st)
>est . Setting the ex-

pectation of this update to zero gives the desired formula. We also note that the

relation between the TD iteration and the LSTD algorithm resembles the chicken-

and-egg problem – one can either, as we did above, consider the iteration a priori

knowledge and use that to justify the LSTD fixpoint, or one can start with the

fixpoint and treat the iteration as a way of reaching it, motivated by stochastic

optimization. LSTD can also be extended to compute the fixpoints of TD(λ) or,

more generally other similar algorithms with different traces. For details, see [38]

in slightly different notation.

2.3. Other Ways to obtain LSTD 53

We have seen that the iterative TD algorithm presented above solves the

equation V̆ = ΠT V̆ , which we introduced in section 2.3. However, it should not

be confused with another sample-based way of obtaining the fixpoint of the same

equation. The other algorithm, which is an adaptation of fitted value iteration to

policy evaluation, consists of iteratively applying the combined operator ΠT in the

sampled regime. More formally, we start with an approximate value function
ˆ̆
Vk.

We than compute the roll-outs of the operator T from some states, i.e. T (s) =

Rs + γ
ˆ̆
Vk(s

′). Assume that a certain number of such roll-outs are stored in a

vector T̂k. The value function at the next state
ˆ̆
Vk+1 can then be computed by

projecting the obtained values back on the subspace spanned by Φ i.e.
ˆ̆
Vk+1 =

Π̂kT̂k = Φ minṼ ‖ΦṼ − T̂k‖. In practice, this other algorithm is rarely used where

we are only interested in policy evaluation rather than solving an MDP with

multiple actions.

2.3.5 LSTD as minimization of a quadratic form

This section is based on [39]. It interprets LSTD as the minimization of a

quadratic form in the error between the true value function V (·) and the ap-

proximated value function ΦṼ . We begin by reformulating the formula for the

estimator obtained above.

Ṽ =
(
Φ>Ξ(I − γP)Φ

)−1
Φ>ΞR =

=
(
Φ>(I − γP)>ΞΦ(Φ>ΞΦ)−1Φ>Ξ(I − γP)Φ

)−1

Φ>(I − γP)>ΞΦ(Φ>ΞΦ)−1Φ>Ξ(I − γP)V

This equality holds because R = (I − γP)V and because the matrices Φ>(I −

γP)>ΞΦ and Φ>ΞΦ are invertible by assumption 2.4. Now, we introduce the

matrix K, as below.

K = (I − γP)>ΞΦ(Φ>ΞΦ)−1Φ>Ξ(I − γP) = (I − γP)>Π>ΞΠ(I − γP)

We note that ΞΦ(Φ>ΞΦ)−1Φ>Ξ = ΞΠ = Π>Ξ = Π>ΞΠ, where the last equality

follows by substituting the definition of Π and cancelling the inverted term. There-

fore we have Ṽ =
(
Φ>KΦ

)−1
Φ>KV . But this is the solution to the well-known

54 Chapter 2. Policy Evaluation with Compressed Models

optimization problem: Ṽ = argminṼ ′ ‖V −ΦṼ ′‖K = argminṼ ′(V −ΦṼ ′)>K(V −

ΦṼ ′). Thus we gain an insight about approximation V̆ (·) of equation 2.10 – in-

stead of minimizing the norm ‖ · ‖Ξ, which would yield us V̄ , we minimize the

different norm ‖ · ‖K , thus gaining the ability of efficiently estimating the solution

from samples. Note that we can also repeat the above reasoning, without the mul-

tiplication by (Φ>ΞΦ)−1, to obtain the matrix K ′ = (I − γP)>ΞΦΦ>Ξ(I − γP)

which also defines a valid minimization – this is the way the equivalence was

originally introduced in [27].

2.3.6 LSTD is a subspace algorithm

In section 2.3.3, we have shown that the algorithm can be thought of as an oblique

projection along the subspace orthogonal to the feature space. Here, we make ex-

plicit the property that LSTD only depends on the features through the subspace

they span i.e. any full-rank transformation (i.e. basis change) C of features does

not influence the value function. To see this, consider the sample estimate we

derived in earlier sections, where we use the transformed features Φ̂C instead of

Φ̂.

V̂C = Φ̂C ˆ̃VC = Φ̂C(C>Φ̂>SΦ̂C)−1C>Φ̂>r̂ =

= Φ̂CC−1(Φ̂>SΦ̂)−1C>
−1
C>Φ̂>r̂ = Φ̂(Φ̂>SΦ̂)−1Φ̂>r̂ = V̂

As a corollary, we state that LSTD is independent of any scaling of features.

2.4 LSTD vs Bellman Residual Minimization

2.4.1 A Decompositions of the LSTD loss

We now present an interpretation of the minimization defined in equation 2.6,

after [22]. We recall that the minimization in equation 2.6 can be rewritten

in the following way Φy? = argminy ‖TΦy? − Φy‖Ξ = Π(T (Φy?)). Therefore

Φy? −Π(T (Φy?)) = 0, or ‖Φy? −Π(T (Φy?))‖Ξ = 0. Therefore LSTD can be seen

to be equivalent to the following optimization problem.

y? = argmin
y
‖Φy − Π(T (Φy))‖Ξ (2.18)

2.4. LSTD vs Bellman Residual Minimization 55

We note that this expression has no recursion and that the minimization is

guaranteed to reach the optimum value of zero. We can now rewrite the norm as

follows ‖Φy−Π(T (Φy))‖Ξ = ‖Φy− T (Φy)‖Ξ−‖Π(T (Φy))− T (Φy)‖Ξ, where the

equality follows from the Pythagorean theorem and the fact that Φy−Π(T (Φy))

and Π(T (Φy))−T (Φy) are orthogonal vectors, with respect to the Ξ-weighted dot

product, which corresponds to Π. We thus obtain the following formula for the

LSTD solution.

y? = argmin
y
‖Φy − T (Φy)︸ ︷︷ ︸

Bellman residual

‖Ξ − ‖Π(T (Φy))− T (Φy)‖Ξ (2.19)

We see that the LSTD algorithm minimizes a quantity which is the Bellman

residual minus the reprojection error on the feature space. We discuss in section

2.4.2 the difference between simply minimizing the Bellman residual only and the

LSTD algorithm.

Another way to interpret the LSTD loss is to see it as a nested optimization

problem [40], which leads to the following two equivalent formulations. First,

define the projection in the following way.

h?(y) = argmin
h
‖Φh− T (Φy)‖Ξ (2.20)

Then we plug this for the definition of Π(T (Φy)) in equations 2.18 and 2.19

respectively, giving the following equivalent equations.

y? = argmin
y
‖Φy − Φh?(y)‖Ξ or

y? = argmin
y

(‖Φy − T (Φy)‖Ξ − ‖Φh?(y)− T (Φy)‖Ξ) (2.21)

2.4.2 Comparison with BRM loss

Instead of constructing the oblique projection as described in the previous sections,

we can use a simpler algorithm, known as the Bellman Residual Minimization,

which corresponds directly to projecting the rewards on the differences between

successive states (see figure 2.2) – i.e. it is similar to LSTD except the projection

is orthogonal, not oblique. BRM can be interpreted as the un-nested version of

56 Chapter 2. Policy Evaluation with Compressed Models

the optimization from the previous section.

h? = argmin
h
‖Φh− T (Φh)‖ (2.22)

The reason LSTD was originally introduced as an improvement over BRM [17] is

that for BRM, we do not have a justification in terms of a statistical model similar

to the one we had in section 2.3.2 – the noise terms are correlated, so we cannot

use a similar reasoning to claim consistency of BRM. But of course the fact that

one line of deriving an algorithm doesn’t work for BRM does not mean that the

algorithm is wrong – there may be other justifications available. Interestingly,

it can be shown that under our assumption 2.4 the two approaches are similar

(the argument comes from chapter 4 of [41]). Indeed, we have from the previous

section (compare equation 2.18) that LSTD is similar except for the presence of

the projection Π. It is sometimes useful to have formulas that make the difference

between the two algorithms explicit in different formulations of each algorithm.

The algebraic relationships between the two algorithms are summarized in the

table below.

LSTD BRM

minṼ ‖ΠTΦṼ − ΦṼ ‖Ξ minṼ ‖TΦṼ − ΦṼ ‖Ξ

minṼ ‖TΦṼ − ΦṼ ‖Ξ − ‖ΠTΦṼ − TΦṼ ‖Ξ minṼ ‖TΦṼ − ΦṼ ‖Ξ

Ṽ =
(
Φ>ΞLΦ

)−1
Φ>ΞR, L = I − γP Ṽ =

(
Φ>L>ΞLΦ

)−1
Φ>L>ΞR

minṼ ′ ‖V − ΦṼ ′‖(I−γP)>Π>ΞΠ(I−γP) minṼ ′ ‖V − ΦṼ ′‖(I−γP)>Ξ(I−γP)

ΦṼ = ΠTΦṼ ΦṼ = Φ(Φ>L>ΞΦ)−1Φ>L>Ξ︸ ︷︷ ︸
oblique projection, see [25]

TΦṼ

There has been renewed interest in the analysis of the difference between the

two algorithms. One argument [25] is that in an off-line setting (i.e. in the situation

when the weighing coefficients are different from the stationary distribution of the

MRP, a scenario we do not consider in this thesis) a performance bound can be

shown about BRM that is impossible to derive about LSTD [25]; on the other

hand LSTD remains widely used in practice.

2.5. Regularization 57

There is yet one more feature that means that LSTD is preferable to BRM is

some practical cases – while with LSTD, as we have shown above, we only need

one sequence of samples of features of states and a sequence of samples of reward

to obtain an estimate of the value function; but with BRM we need to have two

samples of the features of states.

2.4.3 Sample estimate of the BRM value function

We will now show a way to obtain a sample-based estimate ˆ̃VB of the BRM

solution, based on section 3.1 of [42]. We want to minimize the expecta-

tion E
[
(φṼB − φ′ṼB − r)2

]
. We have the sampled features Φ̂1 and the sam-

pled rewards r̂. We also have a second set of sampled features Φ̂2. The sam-

pled features are produced using the following process: given the trajectory

s1, s2, . . . , the features in Φ̂1 are φ(s1), φ(s2), . . . while the features in Φ̂2 cor-

respond to ‘alternative’ states s′2, s
′
3, . . . sampled from P (·|s1), P (·|s2), In

other words, the features in Φ̂2 describe where the MRP might also have gone

to given a particular previous state. Of course, such sampling is only possi-

ble if we have a model of the transition dynamics of the MRP. Now, we can

write a sample-based approximation to the expectation given above as Ê =

1
N−1

∑N−1
i=1 (Φ̂1(i)ṼB− γΦ̂1(i+ 1)ṼB− r̂(i))(Φ̂1(i)ṼB− γΦ̂2(i)ṼB− r̂(i)), where the

notation Φ̂1(i) means selecting row i of the matrix Φ̂1(i) (i.e. the i-th feature in the

trajectory). We can now introduce the notation Ψ̂1 = Φ̂1(1 : N − 1)− γΦ̂1(2 : N)

and Ψ̂2 = Φ̂1(1 : N − 1) − γΦ̂2(1 : N), where the colon notation denotes ranges

of rows. With this notation, we have that Ṽ >B (Ψ̂1)>Ψ̂2ṼB = Ṽ >B (Ψ̂2)>Ψ̂1ṼB =∑N−1
i=1 (Φ̂1(i)ṼB − γΦ̂1(i+ 1)ṼB)(Φ̂1(i)ṼB − γΦ̂2(i)ṼB). It can now be seen after

a few rearrangements that Ê = 1
N−1

(
Ṽ >B (Ψ̂1)>Ψ̂2ṼB − r̂>(Ψ̂1 + Ψ̂2)ṼB + r̂>r̂

)
=

1
N−1

(
1
2
Ṽ >B ((Ψ̂1)>Ψ̂2 + (Ψ̂2)>Ψ̂1)ṼB − r̂>(Ψ̂1 + Ψ̂2)ṼB + r̂>r̂

)
. Taking the gradi-

ent with respect to ṼB leaves the us with the system ((Ψ̂1)>Ψ̂2 + (Ψ̂2)>Ψ̂1) ˆ̃VB =

(Ψ̂1 + Ψ̂2)>r̂, where we denoted by ˆ̃VB the sample-based BRM solution.

2.5 Regularization

To overcome the problem of over-fitting, the standard procedure is to add a reg-

ularization term to the proposed algorithm. There are many ways of doing that.

58 Chapter 2. Policy Evaluation with Compressed Models

Range((I − γP)Φ)

R

VB

VB

TVB

Figure 2.2: BRM as projection of rewards (left) and minimizing the Bellman residual
(right). Cmp. fig. 2.1

One way, proposed by [30] is to consider the optimization prob-

lem of the fixpoint equation 2.6. We can extend it as follows: ΦṼ =

argminṼ ′
(
‖R + γPΦṼ − ΦṼ ′‖Ξ + β‖Ṽ ′‖

)
. Here, β ≥ 0 is an external pa-

rameter of the algorithm, ‖ · ‖Ξ is the weighted norm and ‖ · ‖ is the usual

L2 norm. This way of regularizing produces the well-known analytic solution

ṼR =
(
Φ>Ξ(I − γP)Φ + βI

)−1
Φ>ΞR. In the paper [30], a version is also given

where the second norm is L1. In this case, because equation 2.6 is a fix-point

equation, it is not possible to simply plug the problem into the standard LASSO

algorithm, and a new algorithm is necessary (see [30] for details).

Before we continue, denote the standard L2-regularized solution of a system

of equations Ax = b as solveL2(A, b, β) = argminx ‖Ax− b‖Ξ + β‖x‖2 = (A>ΞA+

βI)−1A>Ξb. Denote the version with L1 regularization as solveL1(A, b, β) =

argminx ‖Ax− b‖Ξ + β‖x‖1 (this has no explicit analytic form as has to be com-

puted using an algorithm, typically LASSO).

A second way of regularization, introduced in [40] is to add regularization to

equation 2.21, giving the following optimization problem.

y? = argmin
y
‖Φy − Φh?(y)‖Ξ + ‖y‖1 or 2

In the above, the latter norm may be either of L2 or L1. A quick cal-

culation shows that this is the same as regularizing the system of equa-

tions 2.8. This idea therefore corresponds to the solutions solve(Φ(I −

γ(Φ>ΞΦ)−1Φ>ΞPΦ)),Φ(Φ>ΞΦ)−1Φ>ΞR, β) for each of the discussed norms.

Another way is adding regularization directly to the equation where we have

already solved for Ṽ , that is, Ṽ = A−1b, where A =
(
Φ>Ξ(I − γP)Φ

)
and b =

Φ>ΞR. If we regularize with L2, this corresponds to the solutions solveL2(A, b, β).

2.6. The Episodic version of LSTD 59

This (together with other versions, that do not map to LSTD), has been done in

[41], where the author also derives finite-sample error bounds.

It is also possible to combine some of the above ways together, after the

manner of [31], and to use other sparsifiers in place of L1. In [43], for instance,

the Dantzig selector is employed, which leads to a considerable simplification of

the optimization problem (the optimization reduces to a linear program).

A yet different approach [44] to regularization is to keep the algorithm it-

self unchanged and instead do feature selection beforehand. Even if the feature

selection algorithm is very simple (greedy based on correlation with residual), sim-

ulations [44] suggest that doing feature selection leads to performance essentially

the same as the approaches described above. Because greedy feature selection is

so simple, this suggests that regularization of LSTD is not yet really a fully solved

problem.

A property of all the above regularizers is that we lose the invariance of the

algorithm w.r.t. the choice of basis for the feature space, which can be seen as

a natural characteristic of LSTD3. It is not clear whether the property would

be worth preserving in a regularized version – sparsity by its very nature is not

invariant to transformations of features, even linear ones and there is a general

tendency that a more specialized algorithm will have less generic properties.

2.6 The Episodic version of LSTD

In the other sections of this thesis, we have considered the case where the MRP

never terminates and convergence is defined by taking the limit with respect to

the length of a trajectory. We are now interested in extending our observations

to the case where there is a termination state. The limit will now be the with

respect to the number of episodes being accumulated. First, let us note that the

formula Ṽ = E
[
φ>(φ− γφ′)

]−1
E
[
φ>rs

]
is still valid in this case. We simply have

to give new meaning to the expectation terms.

We will now start by giving a design-based variant for the algorithm. All

transitions in a terminating MRP can be described using a rectangular matrix

3Indeed section 4 of [31] deals with how to perform standardization of features before plugging
them into optimization.

60 Chapter 2. Policy Evaluation with Compressed Models

Pt, where the last column is meant to denote termination. We assume in the

following that the starting state of the MRP is the first state. We also assume

that the matrix Pt is such that the MRP will always eventually terminate. We

first need to construct a state distribution Ξ. To do this, we append the row

[1, 0 . . . 0] to the matrix Pt, producing the square matrix Pa, which assumes that

the MRP restarts after reaching the termination state. Now, the diagonal entries

of the matrix Ξ are the entries of the left eigenvector of Pa which corresponds

to eigenvalue one. Now we also construct another square matrix, P , which we

obtain by appending the row [0 . . . 0, 1] to the matrix Pt. This matrix assumes

that the agent stays in the termination state forever. The intuition behind this is

the following: the matrix P describes the true dynamics of the MRP, but in order

to have a meaningful state distribution we need to take into account the fact that

we have multiple episodes – hence the definition of the matrix Pa, which models

restart. Having defined the above matrices, we may use the standard formula in

the following way: Ṽ =
(
Φ>Ξ(I − γP)Φ

)−1
Φ>ΞR. Here, we assume that the last

feature vector (i.e. the one corresponding to the state modelling termination) is

zero. By definition, the final element of R is also zero.

It can be seen that the sample-based variant is the same as in the case of one

long trajectory, except for the additional summation over the episodes. We note

we use here the fact that the termination state has the feature of zero (so that we

can still use the matrix S – there is no subtraction in the last row, but it doesn’t

matter since the last state is the terminal state). The formula looks as follows,

where the sum goes over episodes.

ˆ̃V = (
∑

e Φ̂>e SeΦ̂e)
−1(
∑

e Φ̂>e r̂e)

2.7 Summary of Contributions

We have provided a detailed survey of the different ways in which LSTD can

be obtained. Our derivation of LSTD using instrumental variables, is, to our

knowledge, the first one which is correct. We also made explicit and formal an

argument concerning the invertability of the matrix that appears in the LSTD

2.7. Summary of Contributions 61

solution (see appendix A). Moreover, we have derived geometric interpretations

of the LSTD fixpoint (independently of the work of Scherrer [25], which we only

became aware of afterwards). We also provided an exhaustive comparison with

the BRM algorithm as well as surveyed the methods that can be used to regularize

the LSTD solution. Finally, we formally described the episodic version of LSTD,

which was already implicitly known before, but not formalized.

Chapter 3

Options

In this chapter we describe a way of solving MDPs that combines state abstraction

and temporal abstraction using the linear framework we developed in chapter

1. Specifically, we combine state aggregation with the options framework and

demonstrate that they work well together and indeed it is only after one combines

the two that the full benefit of each is realized. We introduce a hierarchical value

iteration algorithm where we first coarsely solve sub-goals and then use these

approximate solutions to exactly solve the MDP. This algorithm solved several

problems faster than vanilla value iteration. The approach we take is to modify

the well-known value iteration (VI) algorithm of equation 3.3 that we introduced

in chapter 1.

In order to solve large problems, table-lookup algorithms are not practical

because of the sheer number of states, which VI must loop over. Hence the need

for state abstraction. For this work, we chose Bertsekas’ aggregation framework

[10], which is a special case of the compression-decompression scheme of chapter

1 and can be nicely integrated into our framework of the modified Bellman op-

timality equation. Algorithms based on single-step models of primitive actions

are impractical, because long solution paths require many iterations of VI. Hence

the need for temporal abstraction.1 We solve this problem via the use of options

[46, 47] — we construct option models which can be used interchangeably with

the models we have for primitive actions.

We emphasise that even though we use abstraction, the algorithm shown in

1Note that there is some evidence [45] that sub-goal-based hierarchical RL is similar to the
processes actually taking place in the human brain.

64 Chapter 3. Options

this chapter converges to the optimal value function — although we find approx-

imate solutions to the sub-goals, these solutions are then used as inputs to solve

the original MDP exactly, regardless of the choice of sub-goals.

3.1 State Aggregation in Detail

Before we begin our development, we explicitly describe a specialization of the

framework described in chapter one to stochastic matrices. The ideas of this

section are entirely due to Bertsekas [10], but we repeat them because the original

notation is difficult to apply to our work. Consider an MDP with l actions; for an

action a the probability transition matrix is Pa, defined by Pa(i, j) = γPr(it+1 =

j|it = i, at = a) and the vector of expected rewards for each state is Ra, where the

element corresponding to state i is defined by Ra(i) = E [rt|it = i, at = a]. There

are m aggregate states. The two matrices C and D defining the approximation

architecture are stochastic. In Bertsekas’ notation, the decompression matrix D is

the aggregation matrix and the compression matrix C the disaggregation matrix.

The matrix D has dimensions n × m and the matrix C has dimension m × n.

Similar to the reasoning of chapter 1, it is useful to think about these matrices

as conversion operators: the matrix D converts a value function defined over the

aggregate states into one defined over the original states; conversely, the matrix

C converts a value function defined over the original states into one defined over

the aggregate states. There are no conditions on these matrices other than non-

negativity and the fact that the rows have to sum to one, as they are probability

distributions modelling, for D, the degree by which each state is represented by

various aggregate states and, for C, the degree to which a certain aggregate state

corresponds to various original states. Having defined the matrices, we can define

our first approximation step. The Bellman optimality operator T in the original

MDP, defined by (TV)(i) = maxa(PaV)(i)+Ra(i) and the optimum value function

V ? satisfy the fixpoint equation V ? = TV ?. Now, the approximation consists in

solving the following equation instead (we will see later that this is not solved

exactly and further approximation is necessary).

Ṽ ? = CT (DṼ ?) (3.1)

3.1. State Aggregation in Detail 65

In the above, we use ·̃ to denote the aggregate problem. We note that this equation

operates on a shorter value function — Ṽ ? has entries corresponding to aggregate

states. The idea is, of course that the number of aggregate states is tractable,

so we can compute Ṽ ?. However, we need to reformulate the equation since in

its present form it contains the operator T , which still operates on the original

states. To do so, we expand the definition of T , to obtain the following state-wise

equation, for the aggregate state x.

Ṽ ?(x) =
∑
i

cxi

(
max
a
e>i PaDṼ

? + e>i Ra

)

This equation leads to the following iterative algorithm, which computes Ṽ ? as

k →∞.

Ṽ(k+1)(x) =
∑
i

cxi

(
max
a
e>i PaDṼ(k) + e>i Ra

)
In the above, e>i Pa denotes the row number i of the probability transition matrix

corresponding to action a and e>i Ra denotes the corresponding entry of the vector

Ra (in terms of the original states). Value functions are assumed to be column

vectors. In order to be able to operate exclusively with objects that have dimen-

sionality corresponding to the number of aggregate states, we introduce another

approximation and namely we do the following.

Ṽ(k+1)(x) = max
a

∑
i

cxi

(
e>i PaDṼ(k) + e>i Ra

)
We note that this approximation is exact if states mapping to a single aggregate

state all have the same optimal action. Now, we can reformulate the equation in

the following way.

Ṽ(k+1)(x) = max
a
e>xCPaDṼ(k) + e>xCRa

= max
a

(P̃aṼ(k))(x) + R̃a(x) (3.2)

In the above, e>xC denotes the row of C corresponding to aggregate state x and Pa

is the probability transition matrix corresponding to action a in the original MDP.

Now, we note that solving the above equation is equivalent to solving a modified

66 Chapter 3. Options

MDP with actions corresponding to the original actions, probability transition

matrices given by P̃a = CPaD and expected reward vectors given by R̃a = CRa.

The states of the modified MDP are the aggregate states.

Therefore, under our two explained approximations, solving the original MDP

may be replaced by solving a much smaller aggregate MDP, by computing P̃a and

R̃a. The solution can then be computed by any known algorithm, although in

this thesis we focus only on VI. We emphasize that the VI is convergent because

the matrices P̃a and R̃a define a valid MDP. We stress again that this involves

two approximations: first, we are solving a modified Bellman equation 3.1 that

utilizes state aggregation and second, we move the max operator outside of the

sum in equation 3.2.

3.2 Options and Matrix Models

An option [5, 46, 47] is a tuple 〈µ, β〉, consisting of a policy µ, mapping states to

actions, as well as a binary termination condition β, where β(i) tells us whether

the option terminates in state i. We will now discuss models [46, 5] for options and

for primitive actions. A model consists of a transition matrix P and a vector of

expected rewards R. For a primitive action a, we defined Pa and Ra in section 3.1.

For options they have an analogous meaning. R(i) is the expected total discounted

reward given the option was executed from state i, R(i) = E[
∑τ

t=0 γ
trt|i0 = i]

where τ is the (random) duration of the option and i0 is the starting state. The

element P (i, i′), is the probability of the option terminating in state i′, given

we started in state i, considering the discounting: Pγ(i, i
′) =

∑∞
τ=1 γ

τPr(τ, iτ =

i′|i0 = i). Denote by i0 the starting state of trajectory and by iτ the final state.

As in chapter 1, it is convenient to arrange P and R in a block matrix of size

(n+ 1)× (n+ 1), in the following way.

 1 02

R Pγ

3.3. Using Hierarchies to Improve Learning 67

3.3 Using Hierarchies to Improve Learning

We give a brief survey of known approaches to hierarchical learning. We stress that

our approach is novel for two reasons: we compose macro-operators at run-time

and we have no fixed hierarchy. This has not been done to date, except in the work

on options and VI [6], which introduced generalizations of the Bellman equation,

versions of which we use. But it did not include state abstraction, slowing the

resulting algorithm — it only produced a decrease in the iteration count required

to solve the MDP, while we provide better solution time. Other approaches include

using macro-operators to gain speed in planning [48], but for deterministic systems

only. Prior work on HEXQ [49] is largely orthogonal to ours – it focuses on

hierarchy discovery, while we describe an algorithm given the sub-goals. The

work on portable options [50] only discusses a flat, fixed (unlike this work) options

hierarchy. MAXQ [51] also involves a pre-defined controller hierarchy (the MAXQ

graph)2. Combining the use of temporal and state abstraction was tried before,

but differently from this work. The abstraction-via-statistical-testing approach

[53] only works for transfer learning — options are only constructed after the

original MDP has been solved. The U-tree approach [54] does not guarantee

convergence to V ? for all MDPs. The modified LISP approach [55] uses a fixed

option hierarchy and the policy obtained is only optimal given the hierarchy, i.e.

it may not be the optimal policy of the MDP without the hierarchy constraint.

3.4 Table-lookup Value Iteration

We begin by describing the table-lookup (i.e. without aggregation) algorithm for

computing the value function of the MDP. We start with plain VI as defined in

chapter 1 and then proceed to build up more complicated variants. VI can be

described as follows.

V(k+1) ← cmax
[
A1V(k) . . . AlV(k)

]
(3.3)

Here, the operator cmax selects the largest value in each row of the matrix. We

rewrite this update to construct a model corresponding to the optimal value func-

2One can learn a MAXQ hierarchy [52], but only in a way when it is first learned and then
applied.

68 Chapter 3. Options

tion — this is not useful on its own, but will come in handy later.

π ← imax

 A1M(k)

 1

02

 . . . AlM(k)

 1

02

 (3.4)

M(k+1) ← AπM(k)

Here, the operator imax selects the index of the largest element in each row. We

note that the multiplication M(k)[1, 0, . . . , 0]> simply extracts the total reward in

the model M(k) (the current value function) — hence eq. 3.4 is equivalent to plain

VI. However, it serves an an important stepping stone to introducing sub-goals,

which is what we do next. Assume that we are, for the moment, not interested in

maximizing the overall reward. Instead, we want to reach some other arbitrary

configuration of states defined by the sub-goal vector G of length n + 1. The

entry i+ 1 of G defines the value we associate with reaching state i. We will show

later how picking such sub-goals judiciously can improve the speed of the overall

algorithm. Our new update, for sub-goal G is the following.

π ← imax
[
A1M(k)G . . . AlM(k)G

]
(3.5)

M(k+1) ← AπM(k)

This iteration converges [6] to a model M∞, which corresponds to the policy for

reaching the sub-goal G. However, this policy executes continually, it does not

stop when a state with a high sub-goal value of G(i + 1) is reached. We will

now fix that by introducing the possibility of termination — in each state, we

first determine if the sub-goal can be considered to be reached and only then

do we make the next step. This is a two-stage process, given below. First, we

compute the termination condition β(i) for each state i, according to the following

equation.

β(k)(i)← argmax
β(k)(i)∈[0,1]

β(k)(i)
[

0 e>i

]
G + (1− β(k)(i))

[
0 e>i

]
M(k)G (3.6)

3.4. Table-lookup Value Iteration 69

We note that this optimization is of a linear function, therefore we will either

have β(k)(i) = 1 (terminate in state i), or β(k)(i) = 0 (do not terminate in state i).

Conceptually, this update can be thought of as converting the non-binary sub-goal

specification G into a binary termination condition β. Once we have computed

β(k), we define the diagonal matrix β(k) = diag(1, β(k)(1), β(k)(2), . . . , β(k)(n)) as

well as the new matrix B as follows.3

B(β(k),M(k)) = β(k)I + (I − β(k))M(k) (3.7)

Here, I is the identity matrix. B summarizes our termination condition — it

behaves like model M(k) for the states where we do not terminate and like the

identity model for the states where we do. Once we have this, we can define the

actual update, which is executed for each state i.

π ← imax
[
A1B(β(k),M(k))G . . . AlB(β(k),M(k))G

]
(3.8)

M(k+1) ← AπB(β(k),M(k))

By iterating this many times, we can obtain M∞, which will tend to go from

every state to states with high values of the sub-goal G. The elements of G are

specified in the same units as the rewards — i.e. this algorithm will go, for the

non-terminating states, to a state with a particular value of the sub-goal if the

value of being in the sub-goal exceeds the opportunity loss of reward on the way.

For the terminating states, the model will still make one step according to the

induced policy (see discussion in section 3.2).

There is one more way we can speed up the algorithm — through the intro-

duction of initiation sets. In this case, instead of selecting an action from the set

of all possible actions, we only select an action from the set of allowed actions for a

given state (the initiation set). More formally, let Sa(i) be a boolean vector which

has ‘true’ in the entries where action a is allowed is state i and ‘false’ otherwise.

3The reader will notice that our matrix B can be understood to be the expected model given
the termination condition: B(β(k),Mk) = Eβ(k)

[I,M(k)]. However, in our algorithm it is enough
to consider it just a matrix.

70 Chapter 3. Options

Equation 3.8 then becomes the following.

π ← imax
among Sa(i)

[
A1B(β(k),M(k))G . . . AlB(β(k),M(k))G

]
(3.9)

M(k+1) ← AπB(β(k),M(k))

In the above, the operator imax is modified to work only on a given subset of

each row. The benefit of using initiation sets is that by not considering irrelevant

actions, the whole algorithm becomes much faster. We defer the definition of the

initiation sets we used to section 3.6.3.

3.5 Combining State Aggregation and Options

We saw in section 3.1 that given the aggregation4 matrix D and the disaggregation

matrix C, we can convert an action with the transition matrix P and expected

reward vector R to an aggregate MDP by using P̃ = CPD and R̃ = CR. In our

matrix model notation, this becomes as follows.

Ã =

 1 02

02 C

A
 1 02

02 D

, where A =

 1 02

R γP

 (3.10)

This can be viewed as compressing the dynamics, given our aggregation architec-

ture D of size n ×m, where m is the number of the aggregate states. We stress

that the compressed dynamics define a valid MDP — therefore the algorithms

described in the previous section are convergent.

The main idea of our algorithm is the following: define a sub-goal, solve it

(i.e. obtain a model for reaching it) and then add it to the action set of the

original problem and use it as a macro-action, gaining speed. We repeat this for

many sub-goals. Solving sub-goals is fast because we do it in the small, aggregate

state space. To be precise, we pick a sub-goal G̃ (see section 3.6 for examples)

and an approximation architecture D. We then compress our actions with eq.

3.10 and use compressed actions in VI according to 3.8. This gives us a model

M̃∞ solving the sub-goal in the aggregate state space. We want to use this model

4In the work done in this thesis, we used hard aggregation so that each row of D contains
a one in one place and zeros elsewhere, and the matrix C is a renormalized version of D>, so
that the rows sum to one.

3.5. Combining State Aggregation and Options 71

to help solve the original MDP.

However, we cannot do this directly since our model M̃∞ is defined with

respect to the aggregate state space and has size (m + 1) × (m + 1) — we need

to find a way to convert it to a model defined over the original state space, of

size (n + 1) × (n + 1). The new model also has to be valid, i.e. correspond to a

sequence of actions.5

The idea is to make the following transformation: from the aggregate model,

we compute the option in the aggregate state space, we then up-scale the option to

the original state space, construct a one-step model and then construct the long-

term model from it. Concretely, we first compute the option corresponding to the

model M̃∞. The option consists of the policy µ and the termination condition

β. We obtain the termination condition by using eq. 3.6 for the aggregate states.

The policy µ is obtained greedily for each aggregate state x.

µ = imax
[
A1B(β, M̃∞)G̃ . . . AlB(β, M̃∞)G̃

]
(3.11)

Now, we can finally build a one-step model in terms of the original state-space.

We do this according to the following equation, which we use for each state i.

M ′(i+ 1, :) = (1− β(φ(i)))
[

0 e>i

]
Aµ(φ(i)) + β(φ(i)) e>i+1

In the above, we denote by ei+1 the column i + 1 of the identity matrix of size

(n+1)×(n+1) and by φ(i) the aggregate state corresponding6 to the original state

i. In more understandable terms, M ′ has rows selected by the policy µ wherever

the option does not terminate and rows from the identity matrix wherever it does.

Now, we do not just need a model that takes us one step towards the sub-goal

— we want one that takes us all the way. Therefore, we continually evaluate the

option by exponentiating the model matrix, producing M ′∞. Now, this new model

still has rows from the identity matrix where the option terminates — therefore

5That is why it is not possible to just upscale the model by writing:[
1 02
0 D

]
M̃∞

[
1 02
0 C

]
.

6Note that the equation could be easily generalized to the case where the aggregation is
soft — i.e. there are several aggregate states corresponding to i, simply by summing all the
possibilities as weighted by the aggregation probabilities.

72 Chapter 3. Options

it does not correspond to a valid combination of primitive actions. To solve this

problem, we compute M ′′, according to the following equation7 (for each state i).

M ′′(i+ 1, :) = (1− β(φ(s))) M ′∞(i+ 1, :) +

β(φ(s)) Aµ(φ(s))(i+ 1, :) (3.12)

M ′′ contains rows from M ′∞ where the option does not terminate and rows dic-

tated by the option policy where it does. This guarantees it is a valid combination

of primitive actions and can be added to the action set and treated like any other

action. We now run value iteration (equation 3.3) using the extended action set —

the original actions and the sub-goal models (M ′′)(q) corresponding to each sub-

goal q. This is faster than using the original actions alone, even after factoring in

the time used to compute the sub-goal models (see section 3.6).

Observation 4. Value Iteration with the action set A ∪ {(M ′′)(1), . . . , (M ′′)(g)}

converges to the optimal value function of the MDP.

Proof outline. The addition of sub-goal macro-operators to the action set does

not change the fixpoint of value iteration because the macro-operators are, by

construction, compositions of the original actions. See supplement to existing

work [6] for a formal proof of a more general proposition.

This observation tells us that our algorithm will always exactly solve the

MDP, computing V ?. The worst thing that can happen is that the sub-goal

macro-operators will be useless i.e. the resulting value iteration will take as many

iterations as without them.

Algorithm 1 provides a pseudocode version of our algorithm combining op-

tions and aggregation. In line 2, we generate the action matrices from the problem

description. The purpose of the loop in lines 4-13 is to solve each subgoal. In

lines 5 and 6, we generate the compression and decompression matrices for the

particular subgoal. In line 8 we use them to compress each action. In line 10,

we solve the subgoal as outlined in algorithm 2. Here, the convergence criterion

is implemented in line 6, where the parameter ε quantifies when we consider two

7We note that the infinte exponentiation of a matrix is done as described in appendix B

3.6. Experiments 73

successive models to be identical. In our experiments, this parameter is taken8

to equal 0.001. In line 8 of algorithm 1, the variable sol stands for the model for

getting to the subgoal in the compressed state space. In lines 11 and 12, we apply

the reasoning of this section to produce a model in the original state space, which

we store in the variable Macros(s). In line 14, we solve the original MDP by using

the initial action set extended by the computed macros.

Algorithm 1 The algorithm combining options and aggregation

1: procedure Options–Aggregation(domain)
2: As ← domain.getActions() . As = [A1, . . . , Al]
3: subgoals ← domain.getSubgoals()
4: for s = 1, . . . , subgoals.length() do
5: D ← subgoals(s).aggregation()
6: C ← normalize(D>)
7: for a = 1, . . . , l do . Compress each action

8: cAs(a) =

[
1 02

02 C

]
As(a)

[
1 02

02 D

]
9: end for . cAs = [Ã1, . . . , Ãl]

10: sol = iterate(cAs,subgoal(s).G) . Compute model for getting to
subgoal s

11: 〈µ, β〉 ← extractOption(sol) . Use eqs. 3.11 and 3.6
12: Macros(s) ← modelFromOption(µ,β,As,D) . Use eq. 3.12
13: end for
14: V ? ← vi([As Macros]) . Solve MDP with enlarged action set
15: end procedure

Algorithm 2 The algorithm for solving a single subgoal

1: procedure iterate (As, G)
2: newM ← As(1) . Use first action as initial model
3: repeat . Variable M assumes values M(1),M(2),M(3), . . .
4: M ← newM
5: newM(q) ← oneIteration(As, M, G) . Equations 3.6, 3.7 and 3.8
6: until ‖(newM−M)G‖ ≤ ε
7: return M
8: end procedure

3.6 Experiments

We applied our approach to three domains: Taxi, Hanoi and 8-puzzle. In each

case we compared several variants of VI, including our approach combining state

8Although we used this particular value, our experiments are not particularly sensitive to
the value of ε as long as the value is sufficiently small.

74 Chapter 3. Options

Figure 3.1: Run-times of our algorithm, plain VI and model VI. All algorithms com-
pute V ?.

options +
Domain plain VI model VI aggr.
Taxi (determ.) 6.43 s. 11.64 s. 4.57 s.
Taxi (stoch.) 8.30 s. 47.80 s. 4.83 s.
Hanoi (determ.) 23.45 s. 51.65 s. 11.57 s.
Hanoi (stoch.) 27.31 s. 357.52 s. 21.71 s.
8-puzzle (determ.) 100.19 s. 221.20 s. 85.94 s.

aggregation and options. For vanilla VI we considered algorithms based on both

eq. 3.3 (the familiar algorithm, denoted plain VI) and eq. 3.4 (model VI, where

complete models are constructed). Figure 3.1 summarises the solution times for

each domain; more details are given in the following domain-specific subsections.

We, however, stress beforehand that our algorithm produced a speed-up for each

of the domains we tried.

3.6.1 The TAXI Problem

TAXI [51] is a prototypical example of a problem which combines spatial nav-

igation with additional variables. Denote the number of states as n (here

n = 7000 + 1) and the number of aggregate states as m (here m = 25 + 1).

The one state is the sink state.

In our first experiment, we ran four algorithms computing the same optimal

value function, one for each combination of using (or not) state aggregation and

options. Consider using neither aggregation nor options — this is model VI, as

defined in equation 3.4, which we iterate until convergence. Here, one iteration

has a complexity of O(n2l + n3), in practice it is O(nl) because of sparsity. It

takes 22 iterations to complete.

Now consider the version with sub-goals but no aggregation. Here, we have

5 sub-goals: one for getting to each pick-up location or the fuel pump. We are

iterating equation 3.14. An iteration now has complexity O(g((l + g)n2 + n3)).

Because of sparsity, this becomes O(g((l+g)n+n)) = O(g((l+g)n). The algorithm

needs 8 iterations less to converge, because sub-goals allow it to make jumps.

However, due to the increased cost of each iteration, the time required to converge

increased.

3.6. Experiments 75

Now look at the version with aggregation (see section 3.5) and no options.

There are 26 aggregate states. We map each original state to one of 25 states by

considering only the taxi position and ignoring other variables. Sink state (state

7001) gets mapped to the aggregate sink state (state 26). We proceed in two

stages. This process is demonstrated in algorithm 3. First, in lines 5-7 all actions

are compressed (eq. 3.10). Then, in line 8, the problem is solved using model VI

(as in equation 3.4) in this smaller state-space. This takes 330 iterations, but is

fast because m is small — the complexity is O(m2l + m3). We then obtain the

value function of the aggregate system and upscale it, then in line 10 we use the

new value function to obtain a greedy model (i.e. each row comes from the action

that maximizes that row times the upscaled value function), which we use in line

11 as initialization in a model VI iteration in the original uncompressed problem,

which takes 3 iterations less than our original algorithm.

Algorithm 3 The algorithm solving the TAXI domain with aggregation, but
without options.

1: procedure Taxi–Aggregation(domain)
2: As ← taxi.getActions() . As = [A1, . . . , A7]
3: D ← taxi.aggregation()
4: C ← normalize(D>)
5: for a = 1, . . . , l do . Compress each action

6: cAs(a) =

[
1 02

02 C

]
As(a)

[
1 02

02 D

]
7: end for . cAs = [Ã1, . . . , Ã7]
8: sol ← model-vi(cAs) . Use model iteration of equation 3.4.
9: Va ← extractValueFunction(sol)

10: M ← makeGreedyModel(

[
1 02

02 D

]
Va)

11: return model-vi(As, M) . Iterate eq. 3.4, initialize iteration with M
12: end procedure

Now consider the final version, where the benefits of aggregation and options

are combined, which is the same as the process demonstrated in algorithm 1 except

we use model value iteration of equation 3.4 in line 14 to make the comparison

with other algorithms fair. Again, the algorithm consists of two stages. First, we

use compressed actions to compute models for getting to the five sub-goals. This

requires 17 iterations; the complexity of each is O(g(lm2 + m3)), where g = 5.

This is fast since m is small. We now upscale these models. We see that if we add

76 Chapter 3. Options

Figure 3.2: Run-times of the algorithm in the deterministic and stochastic versions of
TAXI .

deter. no aggregation aggregation

no options 22 iter. 330 + 19 iter.
11.64 s. 11.73 s.

options 14 iter. 17 + 7 iter.
78.20 s. 6.55 s.

stoch. no aggregation aggregation

no options 30 iter. 331 + 28 iter.
47.80 s. 26.04 s.

options 18 iter. 20 + 7 iter.
256.04 s. 6.78 s.

the five macro-actions, we do not need the original four actions for moving, as all

sensible movement is to one of the five locations. The algorithm now takes only 7

iterations to converge.9 The run-time10 is 6.55 s, i.e. a speed-up of 1.8 times over

model VI.

Results for all four versions are summarized in figure 3.2. We also constructed

a stochastic version of the problem, with a probability of 0.05 of staying in the

original state when moving. Results are qualitatively similar and are in figure

3.2. The speed-up from combining options with aggregation was greater at 7.1

times. We stress the main result.11 In the deterministic case, we replace many

O(n) iterations with many O(m3) iterations followed by few O(n) iterations. For

stochastic problems, we replace many O(n3) iterations with many O(m3) iterations

followed by few O(n3) iterations.

In our second experiment, as a digression from the main thrust of our rea-

soning, we tried a different approach: we can use the aggregation framework to

compute an approximate value function, gaining speed. Our actions are com-

pressed as defined by eq. 3.10, and we simply apply eq. 3.3. This process gives

us a value function Ṽ ? defined over the aggregate state space (in the first case

9We need an iteration to: (1) go to the fuel pump, (2) fill in fuel, (3) go to passenger, (4)
pick up passenger, (5) go to destination, (6) drop off passenger. The 7th iteration comes from
the termination condition.

10This is slightly different from the result in fig. 3.1 since after the models have been upscaled,
we can proceed either with plain VI of equation 3.3 (as is fig. 3.1) or with model VI of equation
3.4, which we do here to make the comparison fair.

11The result holds if the number of sub-goals and actions is constant.

3.6. Experiments 77

we need to extract it from the reward part of the model). We upscale this value

function to the original states using the following equation.

V̄ =

 1 02

02 D

 Ṽ ?

Of course, the obtained value function V̄ is only approximately optimal in the

original problem. Consider a D with 501 aggregate states — the aggregation

happens by eliminating the fuel variable and leaving others intact. The algorithm

used is given by eq. 3.4, applied to compressed actions. It takes 2.94 s / 28 it-

erations to converge in the deterministic setting and 3.08 s / 30 iterations in the

stochastic setting. The learned value function corresponds to a policy which ig-

nores fuel, never visits the pump, but otherwise, if there is enough fuel, transports

the passenger as intended. We have shown an important principle — if we have

an aspect of a system that we feel our solution can ignore, we can eliminate it

and still get an approximate solution. The benefit is in the speed-up. — in our

case, with respect to solving the original MDP using plain VI, it is 2.2 times in

the deterministic setting and 2.7 times in the stochastic setting.

3.6.2 The Towers of Hanoi

For r disks, our state representation in the Towers of Hanoi is an r-tuple, where

each element corresponds to a disk and takes values from {1, 2, 3}, denoting the

peg.12 There are three actions, two for moving the smallest disk and one for

moving a disk between the remaining two pegs. It is known that VI for this

problem takes 2r iterations to converge. To speed up the iteration, we introduced

the following state abstraction. There are r − 2 sub-problems of size 2,...,r − 1.

First, we solve the problem with 2 disks, i.e. our abstraction only considers the

position of the two smallest disks, ignoring the rest. There are three sub-goals,

one for placing the two disks on each of the pegs. Then, once we obtained three

models for the sub-goals, we use them to solve the sub-problem of size 3, ignoring

all disks except the three smallest ones. Again, there are three sub-goals. We

12Note that the state representation itself disallows placing a larger disk on top of a smaller
one.

78 Chapter 3. Options

proceed until we solve the problem with r disks. For each sub-goal, we need 4

iterations (Three moves and the 4th is required for the convergence criterion).

The total number of iterations is 4× 3× r, i.e. it is linear in the state space.

The details of this process are shown in algorithm 4, which has been adapted

to this particular problem domain. In line 3, we generate the matrices representing

the actions in the problem, which we store in the variable As, so that As =

[A1, . . . , Al]. The idea of the loop starting in line 5 is to solve three subgoals related

to a subproblem with s smallest disks. In line 7 we generate the decompression

matrix that abstracts away all disks other than the s smallest ones, while in line 8

we generate the three subgoals, for placing the s disks on each peg. In lines 9 to 11

we produce macros (i.e. option models) for solving each of the three subgoals. In

line 12, we save the computed macros to be used in the next iteration. In line 14,

we solve the original problem using the precomputed solution for the problem with

disks-1 disks stored in the variable prevMacros. The procedure solveSubgoal

in line 16 works by first compressing all the actions in line 19, then solving the

subgoal G in the compressed setting in line 21 and finally constructing an upscaled

model of the resulting macro-operator as outlined in section 3.5.

For 8 disks this means the following speed-up: 11.57 s (with sub-goals, i.e.

according to algorithm 4) vs. 51.65 s (model VI of equation 3.4) vs. 23.45 s (plain

VI of equation 3.3). We note however, that the time complexity of the algorithm

with sub-goals is still exponential in r, because whereas the number of iterations

is only linear, in each iteration we need to iterate the whole state space, which is

exponential.13 For a stochastic version, the run-times were 357.52 s for model VI,

27.31 s for plain VI and 21.71 s for computing the same optimal value function

with options with aggregation.

3.6.3 The 8-puzzle

The 8-puzzle [56, 57] is well-known in the planning community. Our sub-goal

is shown in figure 3.3.14 ‘A’,‘B’, and ‘C’ denote groups of tiles. The sub-goal

13However, this problem is not particular to our approach — every algorithm that purports
to compute the value function for each state will have computational complexity at least as high
as the number of such states.

14Other sub-goals are shown in appendix C. Please also consult the source code, where all
sub-goals are implemented.

3.6. Experiments 79

Algorithm 4 The algorithm solving the towers of Hanoi combining options and
aggregation.

1: procedure Hanoi–Options–Aggregation(disks)
2: hanoi ← HanoiDomain(disks)
3: As ← hanoi.getActions() . As = [A1, A2, A3]
4: prevMacros ← [] . Stores the solution to previous subproblem
5: for s = 2, . . . , disks-1 do . Solve subproblem with s smallest disks
6: hf ← HanoiFeatures(s,disks)
7: D ← hf.aggregation()
8: 〈Ga, Gb, Gc〉 ← hf.generateGs(); . One subgoal for each peg
9: newMacros(1) ← solveSubgoal([As prevMacros], D, Ga)

10: newMacros(2) ← solveSubgoal([As prevMacros], D, Gb)
11: newMacros(3) ← solveSubgoal([As prevMacros], D, Gc)
12: prevMacros ← newMacros . Use macros computed above in

next iteration
13: end for
14: V ? ← vi([As prevMacros]) . Solve MDP with enlarged action set
15: end procedure

16: procedure solveSubgoal(As,D,G)
17: C ← normalize(D>)
18: for a = 1, . . . , length(As) do . Compress each action

19: cAs(a) =

[
1 02

02 C

]
As(a)

[
1 02

02 D

]
20: end for
21: sol = iterate(cAs,G) . See algorithm 2
22: 〈µ, β〉 ← extractOption(sol) . Use eqs. 3.11 and 3.6
23: return modelFromOption(µ,β,As,D) . Use eq. 3.12
24: end procedure

Figure 3.3: The sub-goal used and run-times for the 8-puzzle. All algorithms compute
V ?.

iter. time elapsed
model VI 32 221.20 s.
plain VI 33 100.19 s.
sub-goal 25 109.51 s.

sub-goal w. init. set 25 85.94 s.

A A A

B B B

C C

consists in arranging the tiles so that each group is in correct place (but tiles

within each group are allowed to occupy an incorrect place). The matrix D is

such that the original configuration of the tiles is mapped onto one where each

tile is only marked with the group it belongs to. Using the sub-goal alone did not

result in a speed-up, so we used the notion of initiation sets [46]. We trained the

sub-goal for 9 iterations (the number 9 was obtained by trial and error), so the

80 Chapter 3. Options

obtained model is only able to reach the sub-goal for some starting states (the

ones at most 9 steps away from the sub-goal in terms of primitive actions). We

upscaled the model, but this time the new model had an initiation set containing

only those states from which the sub-goal is reachable. The iteration we then used

is plain value iteration, extended to initiation sets. The intuition behind initiation

sets is that it only makes sense to use a sub-goal if we are already in a part of

the state space close to it. Thus, we obtained a total run-time of 85.94 seconds,

which amounts to a speed-up of 1.17 over plain value iteration. The results are

in figure 3.3.

3.7 Extensions to the Options framework

In this section, we will develop some possible extensions to the options framework,

which are appealing from the theoretical point of view. Ideas in this section are

largely based on the paper [6], although we have refined the details after the paper

was published (in particular the way in which termination is handled has been

changed to be more natural).

3.7.1 Option evaluation in expectation

We have seen in chapter 1 that we can evaluate a policy model Aπ by comput-

ing A∞π . We can extend this operation to terminating option models as follows.

Consider an option with the termination condition β and policy π. Consider the

matrix B(β,Aπ), defined as in equation 3.7. Now consider the following limiting

model.

B(β,Aπ)∞

We observe that the limit exists, since the transition matrix in B is sub-stochastic

with the only non-contracting rows being absorbing. We note that unlike in the

case of policy evaluation, the transition part of the model may be non-zero.

3.7.2 Simultaneous iteration with many options

Another direction how we can extend our framework is to construct options si-

multaneously [6], in such a way that at each step, we use all other options to build

up the set of options for the next iteration. We will now construct a new algo-

rithm, distinct from the ideas discussed in section 3.5, which can be used to solve

3.7. Extensions to the Options framework 81

MDPs in a compositional way. We call the algorithm option-option model itera-

tion (OOMI), as it can be viewed as a generalisation of value iteration to option

models for multiple sub-goals. Given a base set of option models, and also a set

of different sub-goals, the algorithm updates at every iteration the set of current

option models, containing one option model for every sub-goal. The maximization

is done over the set of actions and the current set of option models. The crucial

point is that the algorithm imposes no explicit hierarchy: any option model may

be composed with any other option model. When updating the option model for

a given sub-goal, all current models are considered. In particular, the previous

iterate of the option model itself is considered; this allows option models to be re-

peatedly squared, so that a single model may be efficiently applied as many times

as required. As a result, even if OOMI is restricted to primitive actions, and only

a single sub-goal, it may still converge in significantly fewer iterations than value

iteration. Our algorithm will be a generalization of equation 3.8. We use the cur-

rent state of every model in every iteration, to compute the next iteration for both

itself and other models. Denote our sub-goals by G(1), G(2), . . . , G(g) and the k-th

iteration of the models trying to solve these sub-goals by M
(1)
(k) ,M

(2)
(k) , . . . ,M

(g)
(k) .

Define the set Ω(k) as the set of all models (macro-actions) allowed at iteration

k, i.e. Ω(k) = {A1, A2, . . . , Al,M
(1)
(k) ,M

(2)
(k) , . . . ,M

(g)
(k)}. This gives rise to the up-

date given below, for each sub-goal q and for each state i. We now compute the

termination condition.

β
(q)
(k)(i)← argmax

β(k)(i)∈[0,1]

β(k)(i)
[

0 e>i

]
G(q) + (1− β(k)(i))

[
0 e>i

]
M

(q)
(k)G

(q)

(3.13)

Then we compute one step of the algorithm according to the equation.

π ← imax
[
O1B(β

(q)
(k),M

(q)
(k))G

(q) . . . O|Ω(k)|B(β
(q)
(k),M

(q)
(k))G

(q)

]
(3.14)

M
(q)
(k+1) ← OπB(β

(q)
(k),M

(q)
(k))

These updates are used as shown in algorithm 5. The difference from algorithm

2 is that in addition to working with many subgoals simultaneously, in line 6,

82 Chapter 3. Options

we include the current iterate of every model in the set of operators considered

in the next iteration. Solving several sub-goals simultaneously can improve the

algorithm [6]. The immediate availability of the partial solution to every sub-goal

leads to faster convergence. In other words, this feature can be used to construct

the macro-operator hierarchy at run time of the algorithm.15 This is in contrast

to many other approaches, where the hierarchy is fixed before the algorithm is

run. Note that the idea of this section can be seen as a generalization of the

Bellman optimality equation.

Algorithm 5 The algorithm for simultaneous option-option model iteration

1: procedure iterate–simultaneous (As,Gs)
2: newMs ← [As(1), . . . , As(1)] . For each of length(Gs) subgoals, use

first action as initial model, M
(q)
(1) = A1

3: repeat . Loop generates sequence [M
(1)
(1) , . . . ,M

(g)
(1)],[M

(1)
(2) , . . . ,M

(g)
(2)],. . .

4: Ms ← newMs
5: for q = 1, . . . , length(Gs) do
6: newMs(q) ← oneIteration([As Ms], Ms(q), Gs(q)) . Equations

3.13 and 3.14
7: end for
8: until

∑
q ‖(newMs(q)−Ms(q))Gs(q)‖ ≤ ε

9: return Ms
10: end procedure

In table 3.4, we give results from experiments [6], where it is demonstrated

that the idea of simultaneous option construction can significantly reduce the

number of iteration value iteration takes to converge. The experiments were done

using a recursive grid-world domain (nested Nine Rooms).

3.8 Summary of Contributions

We introduced novel Bellman optimality equations that facilitate VI with op-

tions. These equations can be combined with state aggregation in a sound way,

and therefore can be applied to the solution of medium-sized MDPs. This is the

first algorithm combining options and state abstraction which is guaranteed to

converge. This is significant because other proposed approaches, notably based

on linear features, are known to diverge even for small problems. We have also

15By this we mean that the option models are built up in run time, possibly using other
models. The sub-goals are pre-defined and constant.

3.8. Summary of Contributions 83

Problem size Plain Simultaneous
(deterministic) Value Iteration Iteration w. Options

2 22 10
3 70 14
4 214 24

Problem size Plain Simultaneous
(stochastic) Value Iteration Iteration w. Options

2 24 22
3 77 24
4 239 33

Figure 3.4: The number of iterations required with simultaneous option construction
as compared to vanilla value iteration in nested nine rooms.

shown experimentally that the benefits of options and state aggregation are only

realized when they are applied together. Moreover, we have shown that the pro-

cess of evaluating any of the option models we introduced corresponds to matrix

exponentiation. Furthermore, we have described a novel algorithm that learns a

set of options on the fly, with each option contributing to all the others and have

shown that this idea is very useful in domains which have recursive structure.

Conclusions and Future Work

To summarize, in chapter 1 we have introduced a framework of linear compression

that can be used to approach the problem of approximately solving large Markov

Decision Processes. We have provided a characterization of what makes the linear

features applied to this framework good, as well as a preliminary convergence

analysis, which guarantees what we call weak stability. In chapter 2, we analysed

the LSTD algorithm and compared it to Bellman Residual Minimization, while

also providing geometric interpretations. In chapter 3, we have discussed how

a combination of three ideas: linear models, state aggregation and options can

produce algorithms that are faster, both in terms of the number of iterations and

the actual run-time, than the use of classic value iteration.

We think that the main conclusion from our work is that it is useful to

study simple, linear models for Reinforcement Learning. It turns out that even

in the linear case, the analysis of algorithms is not trivial and there are valuable

insights to be won by studying them. We adopt the philosophical viewpoint that

sustainable progress in Reinforcement Learning comes from the careful study of

clear-cut models an algorithms rather than from implementing a succession of

temporary fixes. Concretely, we believe that this thesis has still fruitful in the

following ways: the main result from chapter 1 is that it is possible to define

convergent algorithms for solving MDPs in the linear model framework. The

main point from chapter 2 is that there are many different ways to derive the

LSTD algorithm, which illuminate it in different ways. We have also emphasised

the role of geometric intuitions behind the algorithm. Indeed, we are of the

opinion that the language of geometry and the associated linear algebra is much

more intuitive and easy to understand that the statistical language in which the

algorithm was originally formulated. Finally, in chapter 3, we have demonstrated

86 Conclusions and Future Work

the usefulness of extending value iteration to options, particularly in combination

with state aggregation. We have also introduced a useful way of modelling option

termination, so that the operation of option evaluation corresponds to simply

exponentiating a matrix model.

As for the perspective for the future, we believe that expanding the linear

models line of work will eventually lead to very useful applied algorithms. To

accomplish that, we think that the following developments are necessary. First,

it is necessary to develop reasonably sharp conditions for stability when joint

spectral radius of the set of transition matrices is less than one. By sharp we mean

that the condition should guarantee convergence to a useful limiting value while

still allowing to express the original MDP adequately. Second, if it is impossible

to do this while guaranteeing convergence globally, a related direction of further

research is to come up with ways of constructing the compression framework C

and D, in such a way as to guarantee convergence for the particular MDP that

we have. In particular, it would be very fruitful to leverage the work [58, 59] done

in the linear systems community on constructing bespoke Lyapunov functions for

switched linear dynamical systems. Third, another fruitful avenue of research

would be to expand the work done in section 1.7 to maximization over a subset

of polices sampled from some distribution. We note that this would immediately

make the algorithm practical. Fourth, a very useful line of work would be to

infer linear features (what we denote by Φ) automatically just by interacting with

the environment. The features, rather than just being required to describe value

functions well, would need to satisfy a condition derived from our Riccati equation

so that they also fit the dynamics well. Finally, it would be interesting to explore

the intersection of our work with Predictive State Representations (PSRs). In

particular, PSRs may turn out to be useful way of constructing linear models of

the kind described in chapter 1 from samples.

Appendix A

Proof of a fact about equation 2.4

for LSTD

Lemma 8. Assuming E
[
φ>φ

]
is invertible, we have that E

[
φ>(φ− γφ′s)

]
is in-

vertible.

Proof. We rewrite the statement in matrix form: det(Φ>ΞΦ) 6= 0 implies

det(Φ>Ξ(I − γP)Φ) 6= 0. We will now develop the second expression. By the

well-known eigenvalue argument, I − γP is invertible. Assume for the moment

Ξ > 0 (we will deal with the case when this is not true later). Consider some

non-zero vector x. From the assumption det(Φ>ΞΦ) 6= 0 we have that Φx 6= 0.

Now, we have that Φ>Ξ(I − γP)Φx = 0 if and only if the vector y = Φx, which

in the column space of Φ satisfies the condition that Ξ(I − γP)y is orthogonal

to the column space of Φ. This implies that y>Ξ(I − γP)y = 0. This holds

if and only if y>
(

1
2
(Ξ(I − γP)) + 1

2
(Ξ(I − γP))>

)
y = 0. Now because the ma-

trix defining this quadratic form is symmetric, and thus diagonalizable and with

real eigenvalues, we have that this can only be zero if some of the eigenvalues

are nonpositive. We will show that this cannot be the case. Rewrite the matrix

1
2
(Ξ(I − γP)) + 1

2
(Ξ(I − γP))> as Ξ(I − γ 1

2
(P + Ξ−1P>Ξ)). Now because by def-

inition Ξ = diag(ξ) where ξ>P = ξ> , we have that Ξ−1P>ΞV 12 = V 12 (where

by 12 we denote the vector of all ones); moreover, Ξ−1P>Ξ has positive entries.

So it is a Markov matrix. Thus 1
2
(P + Ξ−1P>Ξ) also is a Markov matrix. Thus,

(I − γ 1
2
(P + Ξ−1P>Ξ)) has eigenvalues in the positive real half-plane. We also

know that the eigenvalues of Ξ(I − γ 1
2
(P + Ξ−1P>Ξ)) are non-negative since it

88 Appendix A. Proof of a fact about equation 2.4 for LSTD

is a symmetric graph Laplacian. But we cannot have zero eigenvalues, because it

would imply that (I−γ 1
2
(P + Ξ−1P>Ξ)) also has zero eigenvalues, which we have

shown is impossible. This finishes the proof for Ξ > 0.

Now consider the case when we do not have this, i.e. some of the diagonal

entries of Ξ are zero. Intuitively, the fact we prove is now obvious since transient

states do not influence the values of the expectations. More formally, we can,

without loss of generality assume that the states for which the probability given

by the stationary distribution is zero have highest indexes (i.e. they occur at the

back of matrices Ξ, P and Φ). We introduce the following notations for block

minors of matrices Ξ, P and the vector y corresponding to the non-transient and

transient states.

Ξ =

 Ξf 0

0 0

 P =

 Pf Pnt

Ptn Ptt

 y =

 yf

yt

Note that in the above, Pnt is has to be the zero matrix – it corresponds to

transitions from non-transient states to transient states. Therefore we have that

Ξ(I − γP)y = 0 implies Ξf (I − γPf)yf = 0 and thus, by the reasoning for the

case without transient states, yf has to be the zero vector. Therefore we have the

fact that Ξ(I − γP)Φx = 0 implies that we have the following.

Φx = y =

 0

yt

We see that this implies that Φ>ΞΦx = 0. But we know from our assumption

det(Φ>ΞΦ) 6= 0 that this is only possible for x = 0.

Appendix B

Exponentiating Matrices

We will describe a way of infinitely exponentiating a matrix A, in the sense of

A∞ = limn→∞A
n. The following lemma is due to [60].

Lemma 9. Assume that the matrix A has eigenvalues one and other eigenvalues

strictly within the unit circle. Assume further that if the eigenvalue one occurs

t times, there are t distinct eigenvectors corresponding to it. Then we have that

limn→∞A
n = P diag(I, 02, . . . , 02)P−1, where P is the generalized eigenvector

matrix from the Jordan normal form of A, where we assume that the eigenvalues

one occur first.

Proof. Take the Jordan normal form of A, i.e. A = PJP−1, where J =

diag(I, J1, . . . , Jm), where Ji are Jordan blocks corresponding to eigenvalues less

than one and by diag we denote a block diagonal matrix with the specified blocks.

We now claim that limn→∞ J
n
i = 02 for i = 1, . . . ,m. Consider the block Ji of

size k × k. Consider the matrix D = diag(ε, ε2, . . . , εk). We have that limn→∞ J
n
i

converges if and only if limn→∞(D−1JiD)n converges. The matrix D−1JiD differs

from Ji by having a superdiagonal scaled by ε. Because the moduli of diagonal

entries of Ji are less than one, we have ‖D−1JiD‖∞ < 1 for sufficiently small ε.

Because the sup-norm is a submultiplicative matrix norm we have that

limn→∞(D−1JiD)n = 02. Hence we have that limn→∞ J
n
i = 02.

Because we have that An = PJnP−1, we can state the following result.

A∞ = P diag(I, 02, . . . , 02)P−1

In the above, by 02 we denote zero blocks of sizes corresponding to J1, . . . , Jm.

Appendix C

Software Setup

This note summarizes the steps that have to be taken to reproduce our results on

combining value iteration with options with state aggregation. It describes the

MATLAB source code used to obtain results discussed in this thesis, as well as

gives the output of the software on three separate computers. It also explains how

to extend our code to work with other domains.

Hardware and software requirements

We recommend running this software on a computer with at least 2GB of RAM

and a processor running at at least 2Ghz. The computer has to be running a

recent version of MATLAB (the earliest one we tested was R2012a). The Java

heap space allocated to MATLAB must be at least 256MB. In recent versions of

MATLAB, this can be set by clicking the ‘Preferences’ button on the ‘Home’ tab,

then navigating to ‘General’ and then ‘Java Heap memory’. Please note that the

default amount that comes when you install MATLAB will typically be less, so

you have to change this. We do not support any version of Octave, because it

currently does not share MATLAB’s support of classes and other object-oriented

constructs.

How to run the software

The entry point to this software is the file run.m, which is a script that runs all the

experiment referred to in this thesis. You can run the software by unpacking the

supplied zip archive, changing the current directory to the OptionsAggregation

folder and then typing run in the MATLAB console. Please note that executing

this file to the end may take some time (a few hours).

92 Appendix C. Software Setup

Structure of the source code

There are three classes that contain methods that provide a high-level access to

the described algorithms, one for each problem domain. These are TaxiRunner,

HanoiRunner and EightPuzzleRunner. The methods in these classes then call

other functions to finally compute the value function.

There are two pieces of code responsible for the iteration proper. These

are the function iterateAll, which iterates the algorithm and the class

OptimizePolicyAndTerminationNestedIteration, which contains the code for

the particular kind of two-stage iteration employed in the thesis

The code for generating the subgoal features is contained in classes whose

name ends with Features. These classes have a method for generating the Phi

matrix and the G vector. Comments in these classes explain the particular kind

of approximation employed. For the eight-puzzle problem, there are as many as

15 possible subgoals, which are mapped to the appropriate classes in the function

EightPuzzleRunner.generateSubgoal. In figure C.1, we graphically show all

subgoals referred to in this function.

How to use our algorithm in a new domain

Before we begin, we note that the current version of our software only supports

discrete domains where the number of states is manageable (we feel about 200000

states is the maximum that can be currently handled in the deterministic setting,

and about 400 states in the completely non-deterministic setting – i.e. where the

transition matrices are completely full). Therefore the new domain has to meet

these criteria.

The first thing one needs to do is to write a function (or a class) that is capable

of generating action models for the new domain. Our system stores actions in cell

arrays, so that for instance in the Hanoi problem the As vertical cell array has

three elements, each a model of size (n + 1) × (n + 1) where n is the number of

states in the MDP. The function packModel can be used to convert a vector of

expected rewards and a transition matrix into a valid model. That being done, it

should be easy to implement value iteration by following steps entirely analogous

to the function TaxiRunner.vi.

93

1 2 3
? ? ?
? ?
1 2 3
? ? ?
? ?
1 2 3
? ? ?

? ?
1 2 3
? ?

?? ?
1 2 3
?

?
?

? ?
1 2 3

?
? ?

? ?

1

? ? ?
3 4 5
? ?
? ? ?
3 4 5
? ?
? ? ?
3 4 5

? ?
? ?

?
3 4 5
? ?
?

?

?
3 4 5
? ?

?

? ?
3 4 5
? ?

2

? ? ?
? ? ?
7 8
? ? ?
? ?

?7 8
? ? ?
?

?
?

7 8
? ? ?

?
? ?

7 8
? ?

?
? ? ?
7 8
?

?

?
? ? ?
7 8

?

? ?
? ? ?
7 8

3

1 ? ?
4 ? ?
7 ?
1 ? ?
4 ? ?
7 ?
1 ? ?
4 ?

?7 ?
1 ? ?
4

?
?

7 ?
1 ?

?
4 ? ?
7 ?
1

?

?
4 ? ?
7 ?

4

? 2 ?
? 5 ?
? 8
? 2 ?
? 5 ?

?8
? 2 ?
? 5

?? 8
? 2 ?

?
5 ?

? 8
? 2

?
? 5 ?
? 8

?

2 ?
? 5 ?
? 8

5

? ? 3
? ? 6
? ?
? ? 3
? ? 6
? ?
? ? 3
? ? 6

??
? ? 3
?

?
6

? ?
? ? 3

?
? 6

? ?
?

?

3
? ? 6
? ?

?

? 3
? ? 6
? ?

6

1 2 3
4 ? ?
7 ?
1 2 3
4 ? ?
7 ?
1 2 3
4 ?

?7 ?
1 2 3
4

?
?

7 ?

7

1 2 3
4 5 ?
? ?
1 2 3
4 5 ?
? ?

1 2 3
4 5

?? ?

1 2 3
4 5 ?

??

8

1 2 3
4 5 ?
7 ?
1 2 3
4 5

?7 ?
1 2 3
4 5 ?
7 ?

9

A A A
B B B
C C

10

A A A
A B B
A B

11

A A B
A A B
B B

12

A A A
B C C
B C

13

1 A A
B C C
B C

14

A B C
A B C
A B

15

Figure C.1: Subgoals used in the 8-puzzle domain

The next step is to add state abstraction with options. We will describe the

case where we have only one subgoal. In this case, we need two things. First,

we need a function or a class to generate the aggregation matrix Phi, where the

rows correspond to original system states and the columns to aggregate states.

Then, we also need a function to generate the subgoal G in terms of the aggregate

states. Once we have these things, it is easy to write code that first solves for the

subgoal and then solves the main goal using the subgoal model, based on code in

the function EightPuzzleRunner.optionsAggregation.

Results of three independent runs

The tables below summarize the results obtained by running the run.m script on

three separate computers. We begin with the TAXI domain. The ‘Iterations’

column refers to the iterations solving the main subgoal (we do not give the

94 Appendix C. Software Setup

number of iterations required to solve the subgoals). The time columns refer

to the total time necessary to compute the value function, which includes the

generation and solution of subgoals. All times are given in seconds. We note the

difference between value iteration and plain value iteration – the first one uses

matrix models representing the current policy, whereas the plain version only

stores the current value function. The number of iterations for the two may be

different because of different initialization (model value iteration is initialized with

the first action, plain value iteration is initialized with a zero value function).

Problem Iterations Time (1) Time (2) Time (3)

Deterministic Problem

Value Iteration (models) 22 11.64 18.36 21.06

Value Iteration (plain) 22 6.43 9.79 9.91

Options 14 78.20 121.06 136.70

Aggregation 19 11.73 18.12 20.11

Options + Aggregation (models) 7 6.55 10.42 11.22

Options + Aggregation (plain) 7 4.57 7.08 7.30

Approx. aggregation (models) 28 4.83 8.29 9.36

Approx. aggregation (plain) 28 2.94 4.92 5.17

Non-deterministic Problem

Value Iteration (models) 30 47.80 67.40 60.19

Value Iteration (plain) 30 8.30 12.36 12.69

Options 18 256.04 351.73 342.48

Aggregation 28 26.04 38.65 38.02

Options + Aggregation (models) 7 6.78 10.83 11.20

Options + Aggregation (plain) 7 4.83 7.60 7.52

Approx. aggregation (models) 31 5.23 8.82 10.06

Approx. aggregation (plain) 30 3.08 5.22 5.29

The next table gives the results in the Towers of Hanoi domain (with 8 disks).

95

Problem Iterations Time (1) Time (2) Time (3)

Deterministic Problem

Value Iteration (mat. models) 256 51.65 81.49 93.83

Value Iteration (plain) 257 23.45 35.75 39.47

Options with Aggregation 4 11.57 18.97 19.61

Non-deterministic Problem

Value Iteration (mat. models) 296 357.52 335.32 413.99

Value Iteration (plain) 297 27.31 41.28 45.32

Options with Aggregation 10 21.71 34.64 36.57

Next, we show results for the (deterministic) eight-puzzle domain.

Problem Iterations Time (1) Time (2) Time (3)

Value Iteration (mat. models) 32 221.20 341.89 395.97

Value Iteration (plain) 33 100.19 155.02 166.87

Options (subgoals 1,2,3) 24 162.52 249.84 269.91

Options (subgoals 1–6) 22 232.39 353.24 386.50

Options (subgoals 1–8) 18 602.71 875.35 917.75

Options (subgoals 7,8) 20 462.91 665.36 696.36

Options (subgoal 7) 26 282.31 411.19 433.51

Options (subgoal 8) 28 299.90 439.42 459.67

Options (subgoal 9) 5 1940.35 1910.67 2422.08

Options (subgoal 10) 25 109.51 169.22 182.50

Options (subgoal 11) 32 130.55 202.01 217.57

Options (subgoal 12) 29 119.33 235.65 198.39

Options (subgoal 13) 32 136.80 210.06 226.88

Options (subgoal 14) 32 153.25 236.72 253.97

Options (subgoal 15) 26 113.65 180.25 189.01

Options (use 1,4 to learn 7, use 1 to learn 8) 20 720.20 1005.39 1033.77

Options (subgoal 10, horizon 9) 25 85.94 131.71 146.08

Bibliography

[1] Sbastien Bubeck and Nicol Cesa-Bianchi. Regret analysis of stochastic and

nonstochastic multi-armed bandit problems. Foundations and Trends in Ma-

chine Learning, 5(1):1–122, 2012.

[2] R. Munos. From bandits to Monte-Carlo Tree Search: The optimistic prin-

ciple applied to optimization and planning. Foundations and Trends in Ma-

chine Learning, 7(1):1–130, 2014.

[3] Christos Papadimitriou and John N. Tsitsiklis. The complexity of markov

decision processes. Math. Oper. Res., 12(3):441–450, August 1987.

[4] Doina Precup. Temporal Abstraction in Reinforcement Learning. PhD thesis,

University of Massachusetts, Amherst, 2000.

[5] Richard S. Sutton. TD Models: Modeling the World at a Mixture of Time

Scales . In Proceedings of the Twelveth International Conference on Machine

Learning, pages 531–539. Morgan Kaufmann, 1995.

[6] David Silver and Kamil Ciosek. Compositional planning using optimal option

models. In 29th International Conference on Machine Learning, 2012.

[7] M.L. Puterman. Markov decision processes: discrete stochastic dynamic pro-

gramming. Wiley series in probability and statistics. Wiley-Interscience, 2005.

[8] Richard Bellman. Dynamic Programming. Princeton University Press,

Princeton, NJ, USA, 1957.

[9] G.J. Gordon. Approximate solutions to Markov decision processes. PhD

thesis, School of Computer Science, Carnegie Mellon University, 1999.

98 Bibliography

[10] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume 2.

Athena Scientific Belmont, 2012.

[11] R. Jungers. The Joint Spectral Radius: Theory and Applications. Lecture

Notes in Control and Information Sciences. Springer, 2009.

[12] Vincent Blondel and Yu Nesterov. Polynomial-time computation of the joint

spectral radius for some sets of nonnegative matrices. CORE Discussion

Papers 2008034, Universit catholique de Louvain, Center for Operations Re-

search and Econometrics (CORE), 2008.

[13] P. Lancaster and L. Rodman. Algebraic Riccati Equations. Oxford science

publications. Clarendon Press, 1995.

[14] Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, and

Michael L. Littman. An analysis of linear models, linear value-function ap-

proximation, and feature selection for reinforcement learning. In Proceedings

of the 25th international conference on Machine learning, ICML ’08, pages

752–759, New York, NY, USA, 2008. ACM.

[15] Jonathan Sorg and Satinder Singh. Linear options. In Proceedings of the

9th International Conference on Autonomous Agents and Multiagent Sys-

tems: Volume 1 - Volume 1, AAMAS ’10, pages 31–38, Richland, SC, 2010.

International Foundation for Autonomous Agents and Multiagent Systems.

[16] Martin L Puterman and Moon Chirl Shin. Modified policy iteration al-

gorithms for discounted markov decision problems. Management Science,

24(11):1127–1137, 1978.

[17] Steven J. Bradtke and Andrew G. Barto. Linear least-squares algo-

rithms for temporal difference learning. Machine Learning, 22:33–57, 1996.

10.1007/BF00114723.

[18] J.A. Boyan. Technical update: Least-squares temporal difference learning.

Machine Learning, 49(2):233–246, 2002.

Bibliography 99

[19] A Nedić and Dimitri P Bertsekas. Least squares policy evaluation algorithms

with linear function approximation. Discrete Event Dynamic Systems, 13(1-

2):79–110, 2003.

[20] John N Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference

learning with function approximation. Automatic Control, IEEE Transac-

tions on, 42(5):674–690, 1997.

[21] Leemon Baird. Residual algorithms: Reinforcement learning with function

approximation. In Proceedings of the twelfth international conference on ma-

chine learning, pages 30–37, 1995.

[22] András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal

policies with bellman-residual minimization based fitted policy iteration and

a single sample path. Machine Learning.

[23] Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. The

Journal of Machine Learning Research, 4:1107–1149, 2003.

[24] R. Munos. Error bounds for approximate policy iteration. volume 20, page

560, 2003.

[25] Bruno Scherrer. Should one compute the Temporal Difference fix point or

minimize the Bellman Residual? The unified oblique projection view. In 27th

International Conference on Machine Learning - ICML 2010, Häıfa, Israël,

2010.

[26] Philipp W Keller, Shie Mannor, and Doina Precup. Automatic basis func-

tion construction for approximate dynamic programming and reinforcement

learning. In Proceedings of the 23rd international conference on Machine

learning, pages 449–456. ACM, 2006.

[27] R. Schoknecht. Optimality of reinforcement learning algorithms with lin-

ear function approximation. In Proceedings of the 15th Neural Information

Processing Systems conference, pages 1555–1562, 2002.

100 Bibliography

[28] David Choi and Benjamin Van Roy. A generalized kalman filter for fixed point

approximation and efficient temporal-difference learning. Discrete Event Dy-

namic Systems, 16(2):207–239, 2006.

[29] Manuel Loth, Manuel Davy, and Philippe Preux. Sparse temporal differ-

ence learning using lasso. In Approximate Dynamic Programming and Re-

inforcement Learning, 2007. ADPRL 2007. IEEE International Symposium

on, pages 352–359. IEEE, 2007.

[30] J. Zico Kolter and Andrew Y. Ng. Regularization and feature selection in

least-squares temporal difference learning. In Proceedings of the 26th Annual

International Conference on Machine Learning, ICML ’09, pages 521–528,

New York, NY, USA, 2009. ACM.

[31] Matthew Hoffman, Alessandro Lazaric, Mohammad Ghavamzadeh, and Rmi

Munos. Regularized least squares temporal difference learning with nested

l2 and l1; penalization. In Scott Sanner and Marcus Hutter, editors, Re-

cent Advances in Reinforcement Learning, volume 7188 of Lecture Notes in

Computer Science, pages 102–114. Springer Berlin / Heidelberg, 2012.

[32] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, chapter

Approximate Dynamic Programming. 2011.

[33] Guy Lever. Private communication.

[34] Huizhen Yu and D.P. Bertsekas. New error bounds for approximations from

projected linear equations. In Communication, Control, and Computing,

2008 46th Annual Allerton Conference on, pages 1116 –1123, Sept. 2008.

[35] D. Bertsekas. Temporal difference methods for general projected equations.

Automatic Control, IEEE Transactions on, (99):1–1, 2011.

[36] J.M. Wooldridge. Econometric Analysis of Cross Section and Panel Data.

The MIT Press, 2008.

[37] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement

Learning. MIT Press, Cambridge, MA, USA, 1st edition, 1998.

Bibliography 101

[38] Kamil Ciosek. Generalizing LSTD(λ) to LSTD(λt). Internal UCL note.,

2012.

[39] Yi Sun, Faustino Gomez, Mark Ring, and Jürgen Schmidhuber. Incremental

basis construction from temporal difference error. In Lise Getoor and Tobias

Scheffer, editors, Proceedings of the 28th International Conference on Ma-

chine Learning (ICML-11), ICML ’11, pages 481–488, New York, NY, USA,

June 2011. ACM.

[40] Matthieu Geist and Bruno Scherrer. l1-penalized projected Bellman resid-

ual. In European Wrokshop on Reinforcement Learning (EWRL 11), Athens,

Grèce, 2011.

[41] Bernardo Ávila Pires. Statistical analysis of l1-penalized linear estimation

with applications. Master’s thesis, Univeristy of Alberta., 2011.

[42] O.A. Maillard, R. Munos, A. Lazaric, and M. Ghavamzadeh. Finite-sample

analysis of bellman residual minimization. In Proceedings of 2nd Asian Con-

ference on Machine Learning (ACML2010), Tokyo, Japan, November 2010.

[43] Matthieu Geist, Bruno Scherrer, Alessandro Lazaric, and Mohammad

Ghavamzadeh. A Dantzig Selector Approach to Temporal Difference Learn-

ing. In International Conference on Machine Learning (ICML), 2012.

[44] C. Painter-Wakefield and R. Parr. Greedy algorithms for sparse reinforcement

learning. Arxiv preprint arXiv:1206.6485, 2012.

[45] Jose JF Ribas-Fernandes, Alec Solway, Carlos Diuk, Joseph T McGuire, An-

drew G Barto, Yael Niv, and Matthew M Botvinick. A neural signature of

hierarchical reinforcement learning. Neuron, 71(2):370–379, 2011.

[46] Richard Sutton, Doina Precup, and Satinder Singh. Between MDPs and

Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement

Learning. Artificial Intelligence, 112:181–211, 1999.

[47] Doina Precup, Richard S. Sutton, and Satinder Singh. Theoretical results on

reinforcement learning with temporally abstract options. In Machine Learn-

102 Bibliography

ing: ECML-98, volume 1398 of Lecture Notes in Computer Science, pages

382–393. Springer Berlin Heidelberg, 1998.

[48] R.E. Korf. Learning to Solve Problems by Searching for Macro-Operators.

Research Notes in Artificial Intelligence, Vol 5. Pitman, 1985.

[49] Bernhard Hengst. Discovering hierarchy in reinforcement learning with

HEXQ . In International Conference on Machine Learning, volume 2, pages

243–250, 2002.

[50] George Konidaris and Andrew G Barto. Building Portable Options: Skill

Transfer in Reinforcement Learning. . In International Joint Conferences on

Artificial Intelligence, volume 7, pages 895–900, 2007.

[51] Thomas G Dietterich. The MAXQ Method for Hierarchical Reinforcement

Learning. In International Conference on Machine Learning, pages 118–126,

1998.

[52] Hongbing Wang, Wenya Li, and Xuan Zhou. Automatic discovery and trans-

fer of maxq hierarchies in a complex system. In ICTAI, pages 1157–1162,

2012.

[53] Nicholas K Jong and Peter Stone. State Abstraction Discovery from Ir-

relevant State Variables. . In International Joint Conferences on Artificial

Intelligence, pages 752–757, 2005.

[54] Anders Jonsson and Andrew G Barto. Automated state abstraction for op-

tions using the U-tree algorithm. Advances in neural information processing

systems, pages 1054–1060, 2001.

[55] David Andre and Stuart J Russell. State abstraction for programmable re-

inforcement learning agents. In AAAI Conference on Artificial Intelligence

/ Annual Conference on Innovative Applications of Artificial Intelligence,

pages 119–125, 2002.

[56] William E Story. Notes on the “15” puzzle. American Journal of Mathemat-

ics, 2(4):397–404, 1879.

Bibliography 103

[57] Alexander Reinefeld. Complete solution of the eight-puzzle and the benefit

of node ordering in ida*. In International Joint Conference on Artificial

Intelligence, pages 248–253, 1993.

[58] Pratik Biswas, Pascal Grieder, Johan Löfberg, and Manfred Morari. A survey

on stability analysis of discrete-time piecewise affine systems. In Proc. 16th

IFAC World Congress, 2005.

[59] Z. Sun and S.S. Ge. Stability Theory of Switched Dynamical Systems. Com-

munications and Control Engineering. Springer, 2011.

[60] http://math.stackexchange.com/questions/378488/

limit-of-matrix-powers. Anonymous post on math forum.

http://math.stackexchange.com/questions/378488/limit-of-matrix-powers
http://math.stackexchange.com/questions/378488/limit-of-matrix-powers

	Introduction
	Linear Models
	Classical Markov Models for Control
	Compressed Markov Models
	General Analysis of Convergence
	Picking Good Features
	Other RL Algorithms
	Summary of results on convergence
	Perfect Compositionality and Large Policies
	Summary of Contributions

	Policy Evaluation with Compressed Models
	Prior Work on LSTD
	Definition of LSTD
	Other Ways to obtain LSTD
	LSTD vs Bellman Residual Minimization
	Regularization
	The Episodic version of LSTD
	Summary of Contributions

	Options
	State Aggregation in Detail
	Options and Matrix Models
	Using Hierarchies to Improve Learning
	Table-lookup Value Iteration
	Combining State Aggregation and Options
	Experiments
	Extensions to the Options framework
	Summary of Contributions

	Conclusions and Future Work
	Appendices
	Proof of a fact about equation 2.4 for LSTD
	Exponentiating Matrices
	Software Setup
	Bibliography

