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Abstract  

Much of our knowledge of the mechanisms underlying plasticity in the visual cortex in 

response to visual impairment, vision restoration, and environmental interactions, stems from 

animal studies. Here, we evaluate human brain plasticity in vivo, in a group of patients who 

regained vision through gene therapy. Using noninvasive multimodal neuroimaging methods we 

demonstrate that reversing blindness through gene therapy promotes long-term structural 

plasticity. Results show significant normalization along the visual pathway corresponding to the 

site of retinal injection compared with projections from untreated retina. Results indicate 

significant improvement along the visual pathway corresponding to the site of retinal injection 

compared with projections from untreated retina. After gene therapy, treated visual pathways 

were not different from those in control subjects, while untreated projections deteriorated. Our 
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results suggest that visual experience, enhanced by gene therapy, may be responsible for the 

reorganization and maturation of synaptic connectivity of the treated visual pathways. This joint 

collaboration and interaction between the eye and brain enables improved and sustained long-

term visual function.  

Introduction 

Much of our knowledge of plasticity in the human visual system comes from studies 

investigating the impact of sensory input deprivation. For example, studies of blind individuals 

have suggested recruitment of the visual cortex for non-visual tasks such as Braille reading(4) or 

even verbal memory(5). However, there are limited studies regarding the effects on plasticity 

following the enhancement of visual input (primarily single case studies)(6, 7). Here, we evaluate 

plasticity following the restoration of visual function in a group of subjects who had already 

received unilateral gene therapy (GT) for Leber’s Congenital Amaurosis type 2 (LCA2), a rare 

blinding eye disease. Although an optimal neuroimaging study design would be to capture the 

baseline brain state of the LCA patients before any intervention (e.g. GT), our neuroimaging 

protocol, which was conducted independently from the LCA clinical trial, did not occur in parallel. 

As such, we did not have access to these patients at baseline (before GT). Therefore, the current 

study is concentrated on comparing the functional and structural differences between visual 

pathways emanating from the treated and untreated eyes.  

 

Comparing treated and untreated eyes within the same patients, we previously 

demonstrated the efficacy of GT in LCA2 with measurements of retinal and visual function, as 

well as functional Magnetic Resonance Imaging (fMRI). Both the retina and visual cortex were 

much more sensitive to light stimulation in the treated eye as compared to the untreated eye, 

even after prolonged (up to 44 years) visual deprivation(1).  Although the enhanced 

responsiveness of the visual cortex is suggestive of plasticity, it could still simply reflect the 

engagement of maintained visual pathways following restoration of input. The current study aims 

to ascertain the role of structural brain plasticity by investigating the impact of visual deprivation 

and subsequent vision restoration (by GT) on the major visual pathways in LCA2 patients, and 

how that relates to changes in the functional properties of the cortex.  

 

Numerous animal studies have reported structural changes in visual pathways following 

the implementation of visual deprivation. For example, dark reared mice or rats have reduced 

quantities of spines in the pyramidal cells of the primary visual cortex (V1) - potentially due to 

loss of visual inputs(8, 9). Similarly, unilateral eye closure (UEC) - as first demonstrated by Hubel 

and Wiesel(10) - produces a dramatic reduction in arborization of the geniculostriate (GS) fibers, 

which serve the deprived eye and terminate in layer 4 of the visual cortex. Subsequent UEC 

studies further confirmed these initial observations and the remarkable remodeling of the GS 

fibers due to visual deprivation(11, 12). Recently, Yu and colleagues(13) conducted a 

longitudinal study that tracked visual responses and changes of dendritic spines in the ferret 

visual cortex following brief periods of UEC. Similar to earlier reports(13), improved visual 

function in the deprived eye was tightly correlated with structural alterations in V1. Parallel to the 

shrinkage in arborization of neurons in V1 and GS fibers, the majority of UEC studies have also 

observed an increase in the synaptic terminals serving the open eye(11, 13, 14). Together, these 

animal studies demonstrate that visual deprivation leads to a reorganization of the dendritic 

architecture of V1 cortical neurons. Similar structural changes with visual deprivation have also 



been reported in studies of early blind humans, including apparent atrophy of the GS tracts(15) 

and reduction in the volume(16) and fractional anisotropy(17) of the splenium of the corpus 

callosum. Thus, it is important to ascertain if the structural changes caused by lack of vision are 

reversible when vision is restored. 

 

In an attempt to answer this question, many animal experiments first induced UEC and 

then reversed the process, restoring visual input. Results from these studies have consistently 

demonstrated that both the structural and functional changes of UEC are largely reversible when 

the deprived eye is reopened. The most common features of the structural reversibility among 

these studies have been reported to be within the lateral geniculate nucleus (LGN), V1, or along 

the GS fibers. For example, Dursteler and colleagues(18) showed a partial regrowth of 

geniculate cells receiving projections from the deprived eye after only a few days of reverse 

eyelid suture in kittens. In the monkey, recovery of GS arbors was shown in layer 4 of V1 after 

reverse suture during the critical period of development after birth(19, 20). In agreement with 

these aforementioned reports, Movshon and Blakemore(21), in a study of reverse eyelid suture in 

kittens, demonstrated that GS fibers exhibit a shift in favor of the open, recently unsutured eye 

10 days after an initial week of monocular deprivation. Finally, a recent study of UEC and 

reversal of suture in ferrets(13) reported recovery from UEC to be rapid and robust, occurring 

within a few hours of eye opening and that as little as 24 hours after eye opening, dendritic 

spines could return to their pre-UEC numbers(13).   

 

While all the animal studies highlighted so far elucidate specific neuronal underpinnings 

responsible for changes in visual cortex in response to visual impairment, vision restoration, and 

environment interactions, similar studies have not been possible in humans due to the 

invasiveness of the procedures. With access to a group of genotypically and phenotypically 

characterized subjects with LCA2 who underwent GT and regained visual function, the current 

study provides a unique opportunity to draw parallels between cortical plasticity changes 

reported in animal studies with reverse eye-lid suture (regaining sight) and human retinal GT in 

LCA2 patients (regaining sight).  

 

Distinct from the eyelid suture animal studies where vision is typically restored to the 

entirety of the retina, the GT in the current LCA2 clinical trial restores vision to specific regions of 

the retina based on the site of injection of viral vector. As different parts of the retina feed visual 

input to the brain via distinct visual pathways, this presents an opportunity to separately examine 

structural and functional changes of these pathways due to continued visual deprivation 

(untreated retinal areas) and restoration (treated retinal areas). For example, the temporal fibers 

of the retina signal to the ipsilateral visual cortex, while the nasal fibers cross to the contralateral 

hemisphere. Thus, subretinal injection to the temporal area of the retina may restore visual input 

to the ipsilateral V1 through the temporal GS fibers, while injection to the nasal area of the retina 

may restore visual input to the contralateral V1. 

 

Thus, we hypothesized that restoration of retinal function in LCA2 patients lead to 

structural changes in both GS fibers and V1 specific to the subretinal injection site.  To test this 

hypothesis, we employed diffusion tensor imaging (DTI) to examine the effect of deprivation and 

subsequent unilateral retinal GT on the organization and/or reorganization of white matter 

microstructure in V1, and we used DTI tractography to examine the effect of deprivation and 



unilateral GT on the integrity and/or plasticity of white matter fiber bundles connecting V1 to other 

primary and higher order visual centers in the brain.  Finally, cortical activations induced by 

stimulation of the treated eye in LCA2 patients and the corresponding eye in sighted controls 

was compared to evaluate functional outcomes resulting from GT.  

Our results suggest that visual experience initiated by GT not only enhances functional 

responses, but may also be responsible for the reorganization and maturation of synaptic 

connectivity of the visual pathway, leading to mutually dependent structural and functional brain 

changes.  

 

Results 

Our initial analyses focused on cross sectional group differences between LCA2 patients 

and controls using both voxel-based diffusion parameters and averaged fractional anisotropy 

(FA) values relative to the principle diffusion direction of the white matter tracts connecting the 

occipital lobes to other brain areas (tractography). Diffusion results were then correlated with age 

(reflecting the progression of the disease) and clinical symptoms. All but one of the LCA2 

patients received their subretinal injection to the right eye and all 10 subjects received their 

injection in the superior temporal aspect of their macula/retina. Since projections from the right 

superior temporal retina remain ipsilateral, not crossing-over in the optic chiasm, the retinal GT 

should predominantly affect the visual pathways projecting to the right hemisphere. Thus, 

comparing the diffusion results of the left hemisphere between LCA2 patients and controls can 

reveal the effect of continued deprivation on the structural properties of the visual pathways, 

while the results from comparing the left and right visual pathways within LCA2 patients provides 

a measure of the impact of retinal GT.  

 

Asymmetric Compromised White Matter Microstructure (L>R) in the Primary Visual Areas 

in LCA2 Patients 

Results of Voxel-Based Analysis (VBA) for FA of the LCA2 patients compared with the 

sighted control group revealed a number of clusters of reduced FA within both the right and left 

occipital lobes (Fig.1A, column 1, yellow clusters). Reduced FA clusters were superimposed onto 

the color FA population-based atlas constructed from all study participants  (N=21).  As shown in 

the axial views of Fig. 1, section A, reduced FA clusters were located bilaterally in the occipital 

cortex with larger clusters in the left (3272 significant voxels) than right (2301 voxels) 

hemisphere. A Chi square test of these counts revealed a highly significant difference (Chi-

square = 169.2, p < 0.001) from a symmetrical distribution. Reduced FA clusters were mainly 

situated in the vicinity of the calcarine fissure (Brodmann Area 17 & 18) and are clearly shown on 

sagittal images of Fig. 1 (white arrows), section A. An additional reduced FA cluster for LCA2 

patients was found in the splenium of the corpus callosum (Fig. 1B), a location known to be 

involved in binocular vision, through which fiber bundles (occipital-callosal fibers) connecting the 

left and right occipital cortices pass (3). VBA did not reveal any clusters with increased FA at the 

same statistical threshold.  

 

Water diffusivity relative to the principle diffusion direction of the fibers is called axial 

diffusivity (AD), the component of diffusivity relative to the direction perpendicular to the principal 

direction is called radial diffusivity (RD), and the measure of the average diffusivity in all 

directions is called mean diffusivity (MD). LCA2 patients showed clusters of increased RD (Fig. 



1A, column 2, blue clusters). Similar to the FA results, increased RD clusters were also primarily 

located in the medial aspect of the visual cortex and distributed in and around the calcarine 

fissures (near V1). LCA2 patients also showed increased MD (Fig. 1A, column 3, blue clusters), 

again bilaterally distributed and medially located in visual cortex near the calcarine fissure. 

Finally, analysis of AD did not reveal significant clusters of abnormality for the LCA2 patients as 

compared to the control group.  Collectively, VBA results of the primary diffusion indices of FA, 

RD, and MD for LCA2 patients as compared to sighted controls suggest compromised white 

matter microstructures for LCA2 patients in bilateral primary visual cortices (V1 areas) with 

stronger effects in the left than right hemisphere (see Fig. 1, section A) and the splenium of the 

corpus callosum. Detailed information on the centroid coordinates of clusters’ size and locations 

along with their Brodmann areas (BA) in the Montreal Neurological Institute (MNI) template  

(http://neuro.debian.net/pkgs/fsl-atlases.html) for all diffusion parameters (FA, RD, and MD), 

obtained from the voxel-based analysis of LCA2 group compared with the sighted controls, are 

presented in Table 1. The mean and standard deviations of the average diffusion parameters for 

clusters in the left and right visual cortices are shown in Table 2.  

Previous reports from animal and human studies(22, 23) have shown that a combination 

of decreased FA and increased RD and MD (Table 2) without significant changes in AD may be 

indicative of demyelination, or reduced/arrested myelination.  

Importantly, VBA additionally revealed that the compromised white matter microstructures 

showed a distinct asymmetric pattern.  In particular, as shown in Table 2, LCA2 patients 

presented with lower FA and higher RD and MD values for the left as compared to their right 

visual cortex, whereas diffusion parameters for sighted controls were roughly similar for both 

occipital cortices. It is important to note that we included all patients (9/10 treated in the right eye 

and 1/10 treated in the left eye) in the group analysis, comparing LCA2 patients with 

demographically matched controls. While the group VBA results showed more compromised 

white matter in the left, for the one subject who received subretinal injection in the left eye, 

diffusion results were clearly reversed. As shown in Table 2, average FA for the right occipital FA 

was 0.260 and 0.252 for controls and LCA2 patients respectively with no significant differences. 

On the other hand, the right occipital FA value for the one subject treated in the left eye was 

0.18, which is different from the FA values reported for both the LCA2 and control groups. 

Similarly, the values for the left occipital FA were 0.252 and 0.199 for controls and LCA2 patients 

as whole respectively, whereas FA value for the left occipital cortex for the one subject treated in 

the left eye was 0.23, demonstrating a clearly reverse pattern of asymmetry from the group.    

In an additional analysis, the average FA values from two regions-of-interest (ROIs) in the 

primary visual cortex (calcarine area) of both hemispheres were compared between the LCA2 

and controls revealing significant differences between the left and right ROIs in the LCA2 

patients, but not controls, and a significant difference between the two groups for the left ROI 

only. The ROI analyses showed left average FA values of 0.129 and 0.161 for the LCA2 and 

controls respectively (p < .017). Results for the average FA of the right ROI was 0.142 and 0.168 

for LCA2 patients and controls respectively (p > 0.23). Of note is that the left and right mean FA 

for the calcarine ROIs of the one subject injected in the left eye was 0.166 (left) and 0.142 (right), 

respectively. Similar to the VBA results, the ROI results also show an increased FA within the 

visual cortex ipsilateral to the treated eye.  

These observed asymmetries may be due to the fact that unilateral ocular GT (in the 

http://neuro.debian.net/pkgs/fsl-atlases.html


temporal retina of the right eye in nine subjects and temporal retina of left eye in one subject) 

predominantly affected the visual pathways projecting to the ipsilateral hemisphere of the treated 

eye and not the fibers decussating to the contralateral side. This asymmetry in VBA findings of 

LCA2 patients was later closely examined in the whole group by further performing tractography 

and analyzing the white matter integrity along the left and right geniculostriate tracts. 

Our results are consistent with reports on humans with early or congenital blindness(15-17, 24-

26) that found significant disruptive WM changes especially in the primary visual cortex when 

compared with matched sighted controls.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Voxel based analyses of diffusion maps comparing LCA2 patients vs. sighted controls.  Section A; 

Voxel-based analysis (VBA) results of LCA patients vs. demographically matched normal sighted controls are 

shown for three diffusion parameters of fractional anisotropy (FA), radial diffusivity (RD) and mean diffusivity 

(MD). VBA results are superimposed onto the color FA population based atlas constructed from all study 

participants (N=21). In the first column, the VBA results for FA reveal yellow areas (arrow) that show 

decreased FA for greater than 100 contiguous voxels that are significant after corrections for multiple 

comparisons (false discovery rate (fdr) q<0.05). Axial images (top row) show larger clusters with reduced FA 

in the left V1 (4211 Voxels) as compared to the right (1853 Voxels). Sagittal images (bottom row) are 

presented to demonstrate that the reduced FA clusters within the visual cortex are primarily located in and 

around the calcarine fissure (arrowhead), which also is known as the primary visual area (Brodmann Area 17 & 

18). In the second column, VBA results for increased RD are shown, at the same statistical threshold for FA, in 

blue clusters superimposed onto the color FA atlas. Similar to FA, the RD clusters are larger on the left (arrow) 



 
 

 

 

 

The above VBA and ROI analyses clearly demonstrate a reverse normalization process for the 

occipital microstructural white matter for patients treated in the right versus the one subject 

treated in the left eye.  In the remainder of this article, further tractography and correlational 

analyses will be focused only on the 9/10 subjects treated in the right eye to insure sound and 

unbiased statistical results. 

White Matter Microstructure in Primary Visual Areas of LCA2 Patients Does Not Follow the 

Same Life-Span Trajectory as Sighted Controls   

LCA is known to occur bilaterally, affecting both eyes symmetrically(27, 28) and thus, the 

disease should affect both visual cortices.    LCA is a degenerative disease(28, 29) and, although 

there is variability contributed by the fact that each individual in our study (except for a pair of 

twins) has different RPE65 mutations and each has different environmental exposures, age can 

be considered a proxy for disease progression. A case report showing a clear correlation 

between degree of retinal/visual function in an LCA2 patient and age supports this premise(30). 

As such, separate Spearman correlations were performed between the age and the average FA  

(from the significant clusters with reduced FA) of the left and right occipital cortices (Fig. 2). No 

correlations between FA and age were observed for the left (R=0.10; p<0.770) or right (R=0.155; 

p<0.650) occipital clusters for the control subjects. This maturational trajectory of the occipital FA 

with age for control subjects, as shown in Fig. 2, is consistent and inline with previous reports. 

For example, examining age-related changes for FA in various brain regions, Salat et al(31) and 



Davatzikos et al(32) reported that occipital fibers are myelinated at an early age and are 

relatively preserved over time. While LCA2 patients demonstrated a similar absence of 

correlation with age for their right occipital FA (R= - 0.467; p< 0.25), their left occipital FA showed 

negative correlation with age (R= - 0.633; p<0.067), as depicted in the top two panels on the left 

side of Fig. 2.  A direct comparison of groups showed a trend for differences in correlation 

between the two groups for the left but not right occipital FA (Fisher test, p < 0.058 and p > 0.10, 

respectively). The asymmetry in the correlations of FA with age (albeit at trend level) is 

consistent with the asymmetry observed in the VBA results (see Fig. 1A). The decline of the 

occipital FA with age may be attributed to the degenerative nature of the LCA2 disease, which in 

turn would lead to further disuse of the visual cortex over time.  

 

                                                                                                                                                      

Fig. 2: Spearman correlations of occipital FA with age. Spearman correlations of subjects’ age with the average 

FA for the right and left clusters of abnormalities in the occipital cortex and posterior corpus callosum are shown. 

While LCA2 patients demonstrated similar correlations to those of normals for the right occipital FA, their left 

occipital FA was negatively correlated with age demonstrating a continuous decline of the left primary visual area 

for these patients. However, posterior CC FA correlation with age was noticeably different for the LCA2 patients. 

Absence of positive correlation for the FA and age in the splenium of the CC for LCA2 patients maybe due to the 

progressive nature of the disease signifying the decline in communication between the two visual cortices over 

time and reduction in the number of fibers crossing the splenium connecting the left and right occipital cortex.  



The lower panel in Fig. 2 shows the age-related changes of FA for the posterior corpus callosum 

(CC) for both LCA2 (left panel) and sighted controls (right panel). Control subjects presented 

strong and significant positive correlations between posterior CC and age (R=0.70; p<0.029), 

which is consistent with reports on the FA of CC and its positive correlation with age for normal 

aging subjects(33). However, the LCA2 subjects showed no correlations with age for this region 

(R= - 0.167; p<0.67) and once again showed deviation in their microstructural white matter 

development over their life-span trajectory. Direct comparison between groups showed that the 

difference in correlation for the posterior CC FA was significant (p < 0.028). 

 In summary, age correlations with FA in sighted controls are consistent with previous 

reports on the occipital cortex(31, 32) and CC(33). The correlation results for LCA2 patients are 

suggestive of greater effects of GT on the right visual cortex (V1) as compared to the left, a trend 

that is consistent with the results of VBA (Fig. 1A).  

 

Relationship Between Gene Therapy Treatment Time and Integrity of White Matter 

Microstructure in the Visual Cortex 

  

To further examine the effect of retinal GT on white matter microstructure of the visual cortex, we 

performed correlational analysis between the average FA values of the right and left VBA 

reported clusters of diffusion abnormalities (Tables 1&2) as a function of the amount of time 

between the administration of GT and the MRI scans (9/10 patients). As shown in Fig. 3, the left 

FA values depict significant negative correlations with time post GT whereas the FA values for 

the right visual cortex are not negatively correlated. In fact, they show a trend toward 

improvement (slight positive slope) with time post intervention. Furthermore, there was a 

significant difference between the left and right occipital FA with respect to their correlation with 

Fig. 3: Spearman correlations of the left and right 

occipital FA with patients’ treatment time.   Left and right 

occipital FA was correlated with number of years of 

treatment (years after GT) for subject treated in the right eye 

at the time of his or her MRI scan.  Results showed 

significant negative correlations (R = - 0.64, p < 0.05) for the 

left occipital FA and a trend toward a positive correlation (R 

= 0.43, p < 0.14), albeit not significant, for the right occipital 

FA and treatment time. Furthermore, there was a significant 

difference between the left and right occipital FA with 

respect to their correlation with treatment time (p < 0.003, 

Steiger's test for dependent correlations)(2).  

 



treatment time (p < 0.003, Steiger's test for dependent correlations)(2). These results show 

strong asymmetry in the values of the right and left white matter microstructures of the visual 

cortex, a finding consistent with above reported correlations of FA and age.  

Patients’ Amplitude and Frequency of Nystagmus Correlate with Compromised White 

Matter Microstructure in Left V1 

Exploratory Spearman partial correlations (covaried for age) were performed to evaluate 

possible relationships between the reduced FA clusters within the left and right occipital cortices 

and several clinical measures including visual acuity, visual field, full field sensitivity, and 

amplitude and frequency of nystagmus (9/10 patients). The only clinical symptoms that 

significantly correlated with FA values (Bonferroni corrected q = 0.05/14 = 0.0036) were the 

frequency and amplitude of nystagmus for both eyes (Fig. 4). In particular, the left occipital FA 

values showed significant correlations with amplitude of nystagmus in the right (R= - 0.98, 

p=0.002) and left (R= - 0.92, p=0.01) eyes as well as the frequency of nystagmus in both the 

right (R= - 0.96, p=0.002) and left eyes (R= - 0.95, p=0.004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 4: Spearman correlations of occipital FA with patients’ amplitude and frequency of nystagmus. 

Correlation results for the left and right occipital FA and the nystagmus frequency and amplitude of the left and right 

eyes of LCA2 patients. As shown here, nystagmus characteristics for either the right or the left eye are not correlated 

with the integrity of visual fiber bundles within the right occipital cortex.  On the other hand, there exist strong and 

significant correlations between the FA of the left visual cortex and nystagmus characteristics of both the left and 

right eyes. Data is shown for patients treated in the right eye (9/10) with nystagmus information mission for two 

subjects. 

 



Visual Pathways Show Asymmetric Disrupted Connectivity in LCA2 Patients as 

Demonstrated by Fiber Tractography 

Collectively, results from animal studies(13, 18-20) and early blind human studies(15), 

report effects of visual deprivation and its reversal on LGN, V1 and the GS fibers. To examine 

the effects of long-term deprivation and restoration of vision on the GS tracts (connecting LGN to 

V1) as well as other fibers connecting the occipital cortex to the rest of the brain in LCA2 

patients, we conducted diffusion fiber tractography.  The average FA along the left and right 

white matter fiber bundles terminating in the occipital cortex (including inferior longitudinal 

fasciculus (ILF), occipitocallosal (OC), and inferior fronto-occipito fasciculus (IFO), as well as 

Fig. 5: Fiber tractography results. Panel A: Using DTIStudio tractography software and population specific template, major fiber 

tracts connecting the occipital cortex to the rest of the brain such as the inferior fronto-occipital (IFO), inferior longitudinal 

fasciculus (ILF), occipito-callosal (OC) and, geniculostriate (GS) as well as chiasm tracts were extracted bilaterally. Following 

Dougherty et al (3) the OC fibers were extracted by placing three ROIs in the upper, middle, and lower areas of the inferior 

portion of the splenium to extract tracts that end in dorsal V3 visual areas (blue), dorsal and ventral V1 and V2 (yellow), and 

ventral V3 and V4 (red). In addition to vision related tracts, bilateral corticospinal tracts (CST) were extracted as control fibers. 

Tractography analyses of all these tracts showed no difference between the LCA2 patients and sighted controls except for the GS 

fibers. The averaged FA along the right GS fibers for the LCA2 patients did not differ from the control group (p=0.389); however, 

tractography results showed significantly decreased FA along the left GS fibers (p = 0.0045). Panel B: Laterality index (R-L) of 

the average FA along the left and right GS fibers for the LCA2 patients and controls were evaluated according to laterality index 

((Rt. GS avg. FA - Lt. GS avg. FA) / (Rt. GS avg. FA + Lt. GS avg. FA)).  LCA2 patients showed much higher average FA value 

for the right GC fibers and their laterality index (red bar) significantly (p<0.04) differed from their matched controls (blue bar).  

 



optic chiasm fibers) was assessed. Assessment was also carried out for the corticospinal tracts 

(CST) that do not terminate in the occipital cortex. These were viewed as control fibers. 

Extracted tracts for IFO, ILF, OC, GS, optic chiasm, and CST fibers are presented in Fig. 5A. 

Tractography analyses of all these tracts showed no difference between the LCA2 patients and 

sighted controls,  

except for the GS fibers (Table 3, Bonferroni 

corrected alpha = 0.05/12 = 0.0042).  To 

investigate the effects on the GS fibers more 

closely, we conducted an ANOVA using 

hemisphere as a repeated measures factor, group 

as a between-subjects factor and age as a 

covariate. This analysis revealed a significant main 

effect of group (p < 0.042) as well as a significant 

interaction between  

group by hemisphere (p<0.044). Further, post-hoc 

t-tests revealed significant difference 

between groups for the left (p < 0.0045) but not 

right GS fibers (p > 0.389). These results confirm a 

specific difference between patients and controls 

for the untreated side (see Table 3). We further 

computed a laterality index ((Rt. GS avg. FA - Lt. 

GS avg. FA)/ (Rt. GS avg. FA + Lt. GS avg. FA)) 

of the averaged FA along the right and left GS fibers between the LCA2 patients and 

demographically matched controls (Fig. 5B) demonstrating a significantly (p<0.04) larger 

laterality index in the LCA2 patients as compared to their matched controls. Tractography results 

also suggest that cortico-cortical connections between the visual cortex and the rest of the brain 

are well preserved in the LCA2 subjects, as no differences were observed as compared to the 

demographically matched controls.  

In summary, tractography results were consistent with VBA results and Spearman 

correlations of FA with age. Based on VBA, tractography, and age correlation, results suggest a 

normalization process within V1 and GS fibers of the right hemisphere initiated by GT in the 

superior temporal macula/retina. To further test this hypothesis we next examined the existence 

and degree of functional asymmetry of the visual cortex in response to GT as compared to the 

distribution of cortical activations observed in sighted controls.  

 

LCA2 Patients Show Similar Asymmetry in Their Visual Cortical Activation Patterns as the 

Asymmetry Observed in Their Geniculostriate Connectivity   

Avg. FA Groups Mean SD p 

Right 

GS 

Sighted 

Controls 

.417 

 

.413 

.03

6 

 

.01

9 

.389 

LCA2 Patients 

Left GS 

Sighted 

Controls 

.397 

 

.346 

.04

1 

 

.04

5 

.004

5 
LCA2 Patients 

Table 3: Statistical comparison of the average FA 

measurement for the right and left geniculostriate fibers of 

LCA2 patients treated in the right eye (controlled for age) as 

compared to sighted controls. 



The structural MRI data presented above suggest that GT applied to the temporal retina 

of the right eye reverses structural changes in the right GS fibers that were caused by visual 

deprivation. In order to examine whether functional brain responses follow the structural changes 

brought about by GT and show a similar normalization along the right GS tract, a retrospective 

analysis was performed to compare fMRI results of LCA2 subjects to the average response from 

the control group. Fig. 6A shows the group-averaged fMRI results for right eye stimulation of 9 

matched sighted controls demonstrating a near symmetrical hemispheric activation distribution in 

response to the checkerboard paradigm(1, 34). This is expected from the connectivity of the 

human retina to the brain(35) with each eye connected roughly equally to both hemispheres 

(53% of axons decussate 

in the optic chiasm). In 

contrast, group averaged 

fMRI results for the right 

eyes of the 9 LCA2 

patients, as shown in Fig. 

6B, depict significantly 

larger cortical activations in 

the right hemisphere as 

compared to the left in 

response to the same 

visual stimuli. This 

asymmetry of cortical 

activation in LCA2 patients (R>L) follows a similar pattern of the asymmetry we observed for the 

averaged FA values along the GS fibers (R>L). To further quantify this asymmetry, volume of 

Fig. 6: Group Averaged fMRI Results: Group averaged fMRI response of the right eye in response to the high contrast 

checkerboard stimuli(1) in sighted controls and LCA2 patients. A symmetrical distribution of activation in both 

hemispheres for sighted controls as opposed to a clearly asymmetric distribution for LCA2 patients is shown. As shown in 

Panel C, the cortical activation laterality index defined as (Rt. Total visual cortex activation volume – Lt. visual cortex 

activation volume) / (Rt. Total visual cortex activation volume + Lt. Total visual cortex activation volume) is significantly 

larger (p<0.003) for LCA2 patients as compared to sighted controls.  

 



cortical activations distributed over the entire right and left visual cortices were calculated for 

both the LCA2 and control subjects (Table 4).  A laterality index was then obtained: ((Rt. Total # 

of Activation Voxels – Lt. Total # of Activation Voxels)/ (Rt. Total # of Activation Voxels + Lt. Total 

# of Activation Voxels). As depicted in Fig. 6C, the laterally index for the total visual cortex 

activations induced from stimulation of the right eye in LCA2 and matched sighted controls 

subjects using the same high contrast checkerboard stimuli, is significantly greater for the LCA2 

patients (p<0.003).  

 

Discussion 

Human LCA2 patients treated with subretinal gene therapy have experienced significant 

and continual visual improvement over time. These improvements have been mostly attributed to 

the rescued retinal cells, but vision develops from the joint collaboration between the eye and the 

brain. Focusing on a group of visually impaired LCA2 patients who had received unilateral 

temporal retinal GT (in their worse seeing eye), we report strong evidence for structural plasticity 

in the visual pathways ipsilateral to the treated retina.  First, consistent with prior reports in 

animal(8, 9, 11, 14, 18, 19, 36) and blind human studies(15, 25, 37) we found impaired structural 

properties of the visual pathways compared with matched controls, suggesting atrophy of the 

visual pathways following extended visual deprivation. Critically, however, these structural 

differences were asymmetric, with reduced differences between the LCA2 patients (9/10 treated 

in the right eye) and controls in the right occipital cortex compared with the left, corresponding 

closely with the projections from the site of sub-retinal gene vector administration. Furthermore, 

for the one subject who received treatment to the left eye this effect was reversed with the left 

occipital cortex showing normalization.  This group structural asymmetry was observed in voxel-

based, tractography, and correlational analyses and was further supported by an asymmetry in 

the functional responses of the visual cortex. Collectively, our findings suggest that restoration of 

retinal function may lead to strengthening of the visual projections into the cortex. The type of 

structural changes seen in our current study are similar to those reported in a recent report on 

the relationship between the integrity of white matter tracts of the visual system and cortical 

function in a group of patients with compression of the optic chiasm by pituitary gland tumors and 

recovery of visual abilities after surgical removal of the tumor and subsequent decompression of 

the visual fibers(38). Authors showed that compression of the optic chiasm led to demyelination 

of the optic tracts and the severity of demyelination in patients predicted visual ability and 

functional activity of the primary visual areas. Furthermore, subsequent to decompression of 

optic chiasm, rapid regeneration of myelin in the human brain was observed which was closely 

correlated with cortical visual activities, and ultimately the recovery of patients’ visual 

function(38).  Results from this study are highly relevant to the current report as the authors 

clearly demonstrate human brain plasticity depicted in remyelination process of the visual fibers 

and a direct relationship between the degree of remyelination and patients’ visual ability.  

Although the optimal neuroimaging study design for the evaluation of the effects of GT on human 

brain would be to capture the baseline brain state before any intervention (e.g. GT), our 

neuroimaging protocol was conducted independent from the LCA clinical trial and started after 

the LCA trial had initiated. Thus, we did not have access to these patients at baseline (before 

GT). While this is a limitation of the current study,  by comparing functional and structural 

differences between the treated and untreated eyes, the data reveal important insights into brain 

plasticity after restoration of vision.  



Similar to the results reported by the Paul and colleagues(38), the structural and 

functional changes we observed could be due to increased myelination of V1 and GS fibers, 

which in the case of GT are thought to depend on life experiences and environmental 

interactions(39). For example, Ishibashi et al(40) reports that repeated electrical stimulation of 

axons results in an increase in myelination. And more recently, considerable structural plasticity 

was reported in the brains of gorillas living in a naturalistic environment as compared to ones 

who were caged. Also, living in different habitats with semi-naturalistic environments alters brain 

structure in adult marmosets(41). Not only did animals living in more complex environments have 

more connections between neurons, but they also exhibited a higher rate of neurogenesis than 

their caged control counterparts. Consistent with these reports, our results demonstrate that 

reversing blindness through GT, and the subsequent increase in visual experiences and 

interaction with environment, promote long-term structural plasticity, which in turn further 

enhance visual function (see structural and functional asymmetry index, Figs. 4C&5C 

respectively). Although vision results from a collaborative effort between the eye and the brain, 

the degree of the brain’s involvement in securing long-term preservation and improvement of 

what was initiated by retinal gene delivery has not yet been carefully examined and deserves 

closer investigation. Evidence for changes in white matter structure through training has been 

reported in other cross-sectional and longitudinal studies in humans. For example, Bengtsson 

and colleagues(42) reported differences in the spinothalamic tract between musicians and non-

musicians. Similarly, changes in white matter structure have been reported in subjects training to 

juggle(43) or performing a balancing task(44) over several weeks. Thus, it is plausible that LCA2 

patients involved in future retinal GT studies may benefit from exercises designed to enhance the 

use and function of the visual pathway.  

 

Study Limitations 

The major limitation for the current study is lack of access to the baseline brain state of 

LCA2 patitents before any intervention (e.g. GT). This limitation was due to the fact that the 

neuroimaging study component was conducted independent from the LCA clinical trial and 

started after the LCA trial had initiated. Despite this limitation, however,  by comparing functional 

and structural differences between the treated and untreated visual pathways, the data reveal 

important insights into brain plasticity after restoration of vision. Another constraint is the limited 

correlations observed for the white matter integrity value of FA and patients’ clinical symptoms. 

Although white matter microstructural abnormalities showed correlations with nystagmus, no 

correlations were detected for main visual parameters such as visual acuity and visual fields.  

Inclusion of participants with ages ranging from 11- 47 years may be an additional limitation 

when studying white matter due to significant maturation process across such wide age span. 

However, as reflected from results presented here (see Fig. ??) and reported by Salat et al(31) 

and Davatzikos et al(32) occipital fibers are myelinated at an early age and are relatively 

preserved over time. 

 

 

Conclusions 

In conclusion, results from diffusion tensor imaging, diffusion tractography, and fMRI 

along with the strong correlations of those results with patients’ nystagmus measures, age, and 

length of time post treatment suggest that retinal GT may indeed promote re-myelination of 

axons of geniculostriate fibers as well as local changes within the primary visual cortex favoring 



the treated eye. These observations also suggest that the functional plasticity that we previously 

reported for LCA2 patients receiving retinal GT (1, 34) may be related to structural changes in 

the brain. Thus, retinal GT and structural remodeling of the primary visual cortex and GS fibers 

may indeed be joint processes necessary to sustain long term restoration of visual function. 

However, longitudinal neuroimaging studies capturing the baseline brain state (pre-GT) are also 

essential to broaden our knowledge of the effects that retinal gene and/or cell therapy may have 

on the human visual cortex or the central nervous system as a whole. Such a longitudinal design 

will also shed light on timing of the plasticity process.  

 

Methods 

Leber’s Congenital Amaurosis (LCA) 

LCA is a rare retinal degenerative blinding disease, usually inherited in an autosomally 

recessive fashion, with no available cure. It is symptomatic at birth or in the first few months of 

life, and affects around 1 in 81,000 people(45) LCA has been associated with mutations in at 

least 18 different genes. Mutations in the gene encoding retinal pigment epithelium-specific 

protein 65kDa (RPE65) are involved in one of the more common forms of LCA - LCA type 2 

(LCA2). LCA2 patients are good candidates for gene transfer therapy as the degeneration of 

their retinal cells is slow, increasing the probability of successful gene transfer to the remaining 

(although sickly) retinal cells. There are several active clinical trials evaluating gene 

augmentation therapy for LCA2 patients (www.clinicaltrials.gov) and our subjects had been 

enrolled in study NCT00516477.  

 

Study Participants  

Participants in the clinical trial consisted of 12 LCA2 patients, many of whom had more 

advanced retinal diseases than the child participants (4/12) (46, 47). One of the FDA mandates 

for the phase I clinical trial was for GT to be administered in the patients’ worse seeing eye. As 

such, comprehensive psychophysical examinations were performed to identify and document the 

worse seeing eye in all clinical trial patients.  The initial enrollment of older subjects was 

mandated by the FDA to protect children from the unforeseen complications of the first retinal GT 

clinical trial in human.  The initial subjects enrolled were 3 adults(46). Following the 

demonstration of safety and efficacy of GT in this group, additional subjects, including four 

children, received the intervention. However, still the worse seeing eye was treated in light of 

potential risk/benefit ratios.  In the 

current manuscript, we present the 

neuroimaging evaluation from 10/12 

LCA2 patients enrolled in the Phase-

I clinical trial. Comprehensive clinical 

evaluation of all patients determined 

the worse seeing eye to be the right 

eye for 9/10 patients and the left eye 

for 1/10 patients. The patients (6 

male) received subretinal injection of 

AAV2.hRPE65v2(46, 47) in the 

worse eye ≥ 2 years prior to their 

MRI study. Eleven sighted control 

subjects who were demographically 

Table 5. Subject demographics. 

http://www.clinicaltrials.gov/


matched (8 males) were recruited by flyers and word of mouth. Controls were excluded if they 

had any current or past psychiatric diagnosis or a history of drug or alcohol abuse. Additional 

exclusion criteria for all subjects included mental retardation, known neurological disorder, a 

history of head injury or any focal findings revealed by MRI, or current use of psychotropic 

medications.  Table 5 summarizes the overall characteristics for matching of LCA2 patients and 

controls.  

 

Gene Therapy Parameters 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A summary of information regarding the LCA2 patients, gene mutation, age, gender, side of 

injections, as well as their clinical visual testing for visual acuity and visual fields are presented in 

Table 6. Detailed information of clinical presentations of these patients who were evaluated as 

part of Phase I LCA2 clinical trial are presented elsewhere(47). In summary, all 12 patients who 

received unilateral GT showed considerable improvement in their retinal function. The majority of 

patients showed sustained improvement in several assessments of their retinal/visual functions 

such as light sensitivity, pupillometry, visual acuity, nystagmus and ambulation(47). When 

patients were tested for their ability to navigate a standardized obstacle course before 

administration of AAV2-hRPE65v2, 11 of 12 had great difficulty, particularly in dim light. After 

injection, subjects (especially children) had substantial improvement in their ambulation (Videos 

1-6 below) when using their injected eye only. All LCA2 patients had bilaterally diminished full-

field light sensitivity and pupillary light reflexes at baseline and they all showed improvement of at 

least a 2 log unit increase in pupillary light responses after GT in their treated eye. In fact, one 

subject had nearly the same level of light sensitivity as that in age-matched normal controls(47). 

Table 6. Detailed summary of LCA2 patients’ demographic along with their visual 

acuity and visual fields clinical results at the time of MRI scan. 



The success rate for recovery and magnitude of improvement was related to the age at 

treatment, with best results obtained in children. Visual improvement was also observed due to 

expansion of the visual field of the injected eye. 

From the ten participants in neuroimaging study, two patients received the low dose 

(1.5x1010 vector genomes), three had the medium dose (4.8x1010 vector genomes) and five were 

injected with the high dose (1.5x1011 vector genomes) of the AAV2.hRPE65v2 virus(47). Nine out 

of ten patients received their subretinal injections to their right eye and one to the left eye. All 

injections were administered primarily into the superior temporal aspect of their macula(47). This 

is important because the specific site in the retina chosen for vector delivery can play a key role 

in understanding the subsequent effects that retinal GT may have in particular locations of the 

visual pathway.  

 

Informed consent (or parental permission and child assent) was obtained from all 

subjects for the IRB-approved GT clinical trial. These individuals were consented separately for 

the neuroimaging study, as were control subjects. All patients were clinically assessed as part of 

their qualification to enter the clinical trial for retinal GT(46, 47) All control subjects were initially 

screened by phone and subsequently invited to participate in the study.  Subjects were excluded 

from the neuroimaging study if they had a positive pregnancy test; expressed claustrophobia; 

had a metallic implanted prosthetic or device (e.g. cardiac pacemaker) or other contraindications 

for MRI; had excessive metallic dental work (including braces and non-removable retainers); or 

were non-compliant. LCA2 subjects had to meet strict inclusion/exclusion criteria in order to be 

invited to participate in the GT trial(46, 47). None of the subjects had a history of drug/alcohol 

abuse. All individuals that were recruited had very close family support and provided extensive 

history including prescription drugs, over-the-counter medications, and food/drink habits. While 

there was no formal psychiatric screening carried out, each individual was interviewed in depth 

by several members of the study team to determine whether they could comply with the heavy 

time commitment and whether they had the concentration necessary to carry out all of the testing 

at baseline and follow-up visits. 

 

Vision Testing and Ocular Examination  

Multiple age-adapted tests of visual function were performed as part of the approved 

clinical trial protocol, including evaluation of visual acuity, visual field, pupillometry, and light 

sensitivity testing (dark adaptometry)(46). In addition, amplitude and frequency of nystagmus 

was evaluated independently for the left and right eyes.  

 

Magnetic Resonance Imaging  

MRI scans were conducted at CHOP on a research dedicated 3T Siemens Verio system 

using a 32-channel head coil. All scans were carried out by a single operator and monitored to 

be free of artifacts at the time of acquisition.   

Structural Imaging 

 

3D T1 Weighted (MPRAGE) Imaging: A 3D isotropic structural high resolution T1 sequence 

was acquired with inversion preparation pulse (IR-Prep: TR = 2080 ms, TE = 2.54 ms, BW =180 

Hz/Px, matrix size = 320x320, FOV = 256x256 mm2, 192 axial slices, slice thickness = 0.8 mm, 

inversion time = 1200 ms with Flip Angle =8°, NEX = 1, Echo Spacing= 7.8, iPAT = 2 and scan 



time = 7:04 minutes). This sequence was obtained for visual activation localization and the 

generation of group-averaged inflated hemispheres (www.brainvoyager.com).  

 

Diffusion Tensor Imaging (DTI): The DTI sequence employed in the present study was a 

hybrid between the standard bipolar scheme, a monopolar Stejskal-Tanner implementation, and 

a modification of the latter (Siemens Medical Systems). The sequence was used with a total of 

30 non-parallel diffusion gradient directions and a diffusion sensitization b-factor of 1000 s/mm2 

and four b0 images for the acquisition of 80 contiguous isotropic (1.7 x 1.7 x 1.7 mm3) slices 

through the whole brain with no gaps. Sequence parameters for diffusion tensor imaging were: 

TR = 1100 ms, TE = 76 ms, matrix size = 128 x 128, FOV = 220x220 mm2, bandwidth of 1446 

Hz/Px, number of excitation NEX = 1 and acceleration factor (iPAT)=2 with a total acquisition 

time of 7:14 minutes.   

 

DTI Voxel-Based Analysis (VBA): Prior to VBA analysis, diffusion tensor volumes were 

spatially normalized using PipeDream (http://brianavants.wordpress.com/software/). The 

normalized tensor volumes were then used to compute scalar images for fractional anisotropy 

(FA), radial diffusivity (RD) (λ⊥= (λ2+λ3)/2), axial diffusivity (AD) (λ|| =λ1), and mean diffusivity 

(MD) [D=(λ1+λ2+λ3)/3](48). The normalized scalar images were smoothed with a 6 mm 

Gaussian kernel (in 3D). To limit the analysis to primarily white matter brain areas, a 

conservative white matter mask was computed to exclude cortical and subcortical gray matter 

and CSF.  The mask was constructed by averaging the normalized FA images of all subjects and 

subsequently thresholded to retain only the major white matter bundles.  The same mask was 

used for the VBA analysis. Statistical analyses were performed using the MRIcron software 

(http://www.mccauslandcenter.sc.edu/mricro/), which uses a permuted Brunner–Munzel (BM) 

rank order statistic(49). Brunner-Munzel(50) is also known as the Generalized Wilcoxon Test and 

is more appropriate than the t-test for data that is not normally distributed.  Diffusion data in the 

current study did not follow a normal distribution, thus BM was used for all data analyses. 

Comparisons were conducted across all the voxels in the entire brain volume. To correct for 

multiple comparisons, we used the false discovery rate (FDR) and a corrected (alpha) level of q 

< 0.05. As an additional safeguard against false positives, we only retained clusters of size 

greater than 100 voxels for all analyses. To provide a common reference for our findings, we 

have further registered the population-based template, and thresholded FA, RD, and AD images 

to the MNI template to report the locations of the significant clusters in the MNI coordinates along 

with their MNI reported Brodmann areas (BA) (http://noodle.med.yale.edu/~papad/mni2tal/). 

Diffusion Tensor Tractography: Tractography was performed on a population-based diffusion 

tensor template constructed from diffusion tensor images of LCA2 patients and matched controls 

using DTI-TK(51, 52). We used a different technique of registration (DTI-TK) from the VBA 

analyses (PipeDream) to maximize the independence of the tractography results.  Specific fibers 

of interest were extracted from the diffusion tensor template using DTIStudio, which is a program 

based on the fiber assignment by continuous tracking (FACT) method(53). Fibers were selected 

by initiating a seed pixel in the anatomy of choice using the “OR” operation function of DTIStudio. 

From this seed point a line is propagated which follows the principal eigenvector in 3D 

contiguous space from voxel to voxel(53). A threshold of 0.15- 0.20 for FA value(53) and a 

turning angle of 41°(54, 55) were used. A subset of projections that were not part of the tracts of 

http://www.brainvoyager.com/
http://brianavants.wordpress.com/software/
http://www.mccauslandcenter.sc.edu/mricro/
http://noodle.med.yale.edu/~papad/mni2tal/


interest were excluded using the “NOT” operation in DTIStudio. Major fiber tracts connecting to 

the visual cortex or forming a part of the visual pathway, such as bilateral optic radiations, inferior 

longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFO), optic chiasm, occipito-

callosal (OC) and geniculostriate (GS) fibers as well as a set of control fibers that are not related 

to vision such as corticospinal tracts (CST), were extracted to examine whether regaining sight, 

due to GT, would have an effect on the major fiber tracts. After extraction, the tract-specific fibers 

were superimposed as an anatomical ROI onto the normalized FA images for each subject in 

order to obtain the average FA of each tract for individual subjects in both LCA2 and control 

groups.  

 

Functional Imaging 

fMRI Sequence:  Functional data were acquired using blood oxygenation level-dependent 

(BOLD) imaging, acquiring 3 mm isotropic resolution (matrix, 64 × 64; TR/TE, 3,000/30 ms) with 

a total acquisition time of 4:39 min. To permit T1 saturation, three additional volumes were 

acquired at the beginning of the fMRI experiment, but were not used in image analysis. A 

transistor-transistor logic (TTL) pulse was used to automatically start the stimuli in sync with the 

start of fMRI acquisition. An MRI compatible response device (a button that the subject pushed 

when recognizing the stimulus) was used to record subject responses. Subjects were instructed 

to press the button once as soon as they noticed the appearance of the checkerboard. 

fMRI Paradigm: In the past, using simple contrast reversing checkerboard stimuli, we previously 

demonstrated efficacy of GT in this patient population(1, 34), Similar to our earlier study, the 

fMRI paradigm consisted of 15-second blocks of flickering (8-Hz) black and white checkerboards 

which consisted of three contrasts of high, medium, and low, interleaved with 15 seconds of 

blank (black) screens(1, 34). Subjects were asked to fixate on a yellow cross in the center of the 

checkerboard patterns, or, if they could not see the cross, were asked to look straight ahead. 

Resonance Technology VisuaStim (www.mrivideo.com) goggles featuring a digital display and a 

30° horizontal field of view was used to present the fMRI stimuli. The visual paradigm was 

programmed in E-Prime (http://www.pstnet.com/eprime.cfm) 

 

Real Time fMRI: The research MR system at CHOP is equipped with fMRI software that allows 

real time monitoring of the patients’ performance during fMRI experiments as well as their 

translational and rotational head motions(56). Using the real time feature, fMRI acquisition with 

≥0.6 mm translational or ≥0.6 degrees for rotational movement was terminated, the subject 

informed to stay still, and the experiment restarted.  

 

fMRI Preprocessing: All functional data from individual subjects and group averaged results 

were processed using BrainVoyager- QX (www.brainvoyager.com). Pre-processing of data 

included slice scan time correction, 3D motion correction, spatial smoothing, and temporal 

filtering. Sinc interpolation was used for scan time correction to ensure that all voxels in the 

volume represented the signal simultaneously. A high-pass temporal filter of 2 cycles/run was 

applied to remove signal drift. Spatial smoothing was performed using a 3 mm full-width at half-

maximum (FWHM) Gaussian filter. In addition to real time monitoring of the subjects’ motions, all 

functional data sets were additionally processed using the motion correction algorithm 

implemented in BrainVoyagerQX that calculates head translation (in millimeters) and rotation (in 

http://www.mrivideo.com/
http://www.pstnet.com/eprime.cfm
http://www.brainvoyager.com/


degree) for each volume in relation to the first volume, in order to rule out excessive motion. 

Since the subjects’ motions were monitored at the time of data acquisition, using real time fMRI, 

none of the subjects showed excessive motion based on offline analyses (≥0.6 mm). Statistical 

analyses were performed using the general linear model (GLM) as implicated in 

BrainVoyagerQX. Each condition was analyzed by specifying a design matrix defined as blocks 

with checkerboard presentation versus blocks with blank black screen, followed by application of 

the hemodynamic response function and correction for multiple comparisons using the false 

discovery rate (fdr). Since the LCA2 subjects demonstrated the largest response to the high 

contrast condition(1, 34), only the fMRI results from the high contrast stimuli (high contrast – rest) 

are correlated to the diffusion tractography results. 
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